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AI4SeaIce: Toward Solving Ambiguous SAR
Textures in Convolutional Neural Networks for

Automatic Sea Ice Concentration Charting
Andreas Stokholm , Tore Wulf, Andrzej Kucik, Roberto Saldo , Jørgen Buus-Hinkler ,

and Sine Munk Hvidegaard

Abstract— Automatically producing Arctic sea ice charts from
Sentinel-1 synthetic aperture radar (SAR) images is challenging
for convolutional neural networks (CNNs) due to ambiguous
backscattering signatures. The number of pixels viewed by the
CNN model in the input image used to generate an output pixel,
or the receptive field, is important to detect large features or
physical objects such as sea ice and correctly classify them.
In addition, a noise phenomenon is present in the Sentinel-1 ESA
Instrument Processing Facility (IPF) v2.9 SAR data, particularly
in subswath transitions, visible as long vertical lines and grained
particles resembling small sea ice floes. To overcome these
two challenges, we suggest adjusting the receptive field of the
popular U-Net CNN architecture used for semantic segmentation.
It is achieved by symmetrically adding additional blocks of
convolutional, pooling and upsampling layers in the encoder and
decoder of the U-Net, constituting an increase in the number
of levels. This shows great improvements in the performance
and in the homogeneity of predictions. Second, training models
on SAR data noise-corrected with an enhanced technique has
demonstrated a significant increase in model performance and
enabled better predictions in uncertain regions. An eight-level
U-Net trained on the alternative noise-corrected SAR data is
presented to be capable of correctly predicting many ambiguous
SAR signatures and increased the performance by 8.44% points
compared with the regular U-Net trained on the ordinary ESA
IPF v2.9 noise-corrected SAR data. This is the first installment
of this multi-series installment of articles related to AI applied
to sea ice (in short AI4SeaIce).

Index Terms— AI4Arctic, AI4EO, cryosphere, deep learning,
receptive field, SAR noise correction, sea ice charting, synthetic
aperture radar (SAR) data, U-Net.

I. INTRODUCTION

THE past decade has shown a growing political and
commercial interest in the Arctic and its waters. Simulta-

neously, global warming is reducing the amount of sea ice [1],
allowing for an increase in economic activities, such as fishing
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Fig. 1. Geographical location of training SAR scenes is shown as a red
semi-transparent silhouette. The black frame highlights the ice chart location
of Figs. 2 and 3(a). Image reproduced from the GEBCO world map 2014
(www.gebco.net).

or shipping through the Northern sea routes connecting the
North Pacific to the Atlantic Ocean [2]. With a growth in
geopolitical attention in the Arctic [3], Arctic nations are
pressured to affirm their sovereignty, requiring the deployment
of military patrol vessels. Traversing the Arctic waters safely
and efficiently necessitates up-to-date charts of the constantly
moving and changing sea ice conditions highlighting the
contemporary sea ice extent, local concentration, and auxiliary
descriptions of the ice conditions.

For several decades, sea ice charts have been manu-
ally produced by visually inspecting and analyzing satellite
imagery [4]. Synthetic aperture radar (SAR) images are often
used for this task due to the high resolution and the capability
of acquiring images independently of clouds and sun illu-
mination. Observations from other space-borne sensors are
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used by the ice analysts when available and advantageous,
including optical and passive microwave radiometer (PMR)
observations. In optical imagery, the difference between bright
white sea ice and dark blue open water is easily distinguish-
able, but the dependence on sun illumination and cloud-free
conditions reduces the utility for operational sea ice charting.
The microwave signatures of sea ice and open water in
PMR observations are generally easily distinguishable, but the
coarse resolution (typically tens of kilometers) limits its use
for detailed sea ice charting and nautical navigation purposes.
However, the backscattering signatures of SAR are difficult
to interpret and require trained ice analysts to describe the
sea ice conditions. In addition, there are ambiguities in the
electromagnetic signature between open water and sea ice aris-
ing when strong winds occur and for specific ice conditions,
such as compact or landfast ice. The Sentinel-1 extra-wide
(EW) mode SAR covers an area of about 400 km × 400 km
or in the order of 10 000 × 10 000 pixels in the native level-1
medium resolution of 40-m pixel spacing [5]. Due to image
size, manual inspection is labor-intensive and time-consuming,
limiting the time the ice analysts can spend on each image,
meaning that they have to prioritize maritime operational
regions near the sea ice edge [4]. Moreover, the accuracy of
an ice chart diminishes with time due to the dynamic nature
of the sea ice, and therefore, ice analysts have limited time to
perform the analysis. Therefore, automation of sea ice chart
production has the potential to increase the use of captured
satellite imagery, faster and more frequent chart deliveries,
a higher level of detail, and a broader geographical coverage
while increasing consistency.

With the development of Earth observation (EO) programs
and artificial intelligence (AI), automating sea ice concen-
tration (SIC) mapping using deep learning and convolutional
neural networks (CNNs) was initially published by Lei Wang
in 2016 [6] exemplifying the potential of CNNs for sea ice
charting. The authors used semantic segmentation, classifying
individual pixels, to map sea ice in the Beaufort Sea, using
dual-polarization SAR images from RADARSAT-2 and a
fully connected classification layer for pixel-wise labeling.
The model was further developed highlighting the advantage
of fully convolutional networks in 2017 [7]. More recent
advancements have been carried out by the Automatic Sea
Ice Products (ASIP) project funded by the Innovation Fund
Denmark [continued as part of the AI4Arctic European Space
Agency (ESA) initiative] in 2020 [8], which sought to over-
come the challenges of high wind speed and compact sea
ice SAR ambiguities by fusing Sentinel-1 SAR and AMSR2
PMR in an atrous pyramid convolutional network [9]. The
most recent publication in the field [10] applies a U-Net
CNN architecture [11] to downscaled Sentinel-1 SAR data and
carries out experiments with both categorical and regressional
loss functions, and a combination of them. In another branch
of sea ice charting, classifying the type of sea ice, instead of
concentration, has been carried out in [12].

This article investigates creating sea ice charts automati-
cally, based solely on Sentinel-1 dual-polarization SAR images
to produce high-quality ice charts retaining high resolution
and level of detail, while simplifying the operational data

pipeline. In addition, relying only on Sentinel-1 satellites can
increase the number of ice charts produced, because the scenes
without (spatio-temporarily corresponding) PMR do not need
to be discarded. Unlike the standard applications of computer
vision, i.e., to regular camera images, the large scale of SAR
images (up to 10 000×10 000 pixels) creates significant obsta-
cles, as computer resources capable of training CNN models
directly on these images are not commonly available. Mean-
while, semantic segmentation network architectures such as
U-Net [11] were developed for 572×572 pixels pictures, much
smaller than SAR images. The receptive field of the CNN
model is a measure of how many input pixels are contributing
to the final prediction of a pixel in the output layer. The regular
U-Net has a receptive field of 188×188 pixels. In contrast, sea
ice objects and features may extend for thousands of pixels,
which the model is oblivious to. A notable conclusion and
suggestion given in [8] is to increase the receptive field of
the model, allowing it to predict a value of the output pixel,
based on the information from a wider area in the input image.
In [13], the authors attempted to improve the results from [8]
using different spatial windows to train a model, indicating
a positive impact of increasing the effective spatial receptive
field. This is evident when we consider that the ice analysts
are capable of inspecting entire SAR images, contrary to the
models, which may give ice analysts an advantage, as shown
Fig. 3. Identifying important features further away from the
area of ambiguity can help differentiate between sea ice and
open water. Furthermore, the persistent speckle noise and
thermal noise-induced subswath transitions in the Sentinel-1
SAR scanning technique TOPSAR, visible as long-grained
vertical lines, limit the model performance [14].

Therefore, this article investigates the effects of applying
an alternative SAR noise correction scheme [14], developed
by the Nansen Environmental and Remote Sensing Center
(NERSC), and increasing the number of layers, and the size of
the associated receptive field of the U-Net model architecture.

The article is organized as follows. Section II describes
the utilized dataset with examples, preprocessing, and data
distribution. Section III presents the classification approach,
data pipeline, and evaluation metrics. Section IV outlines the
model architectures, and how the receptive field is increased.
This is followed by Section V highlighting the results of
the experiments, accompanied by a discussion. The article is
concluded with a summary of the main findings and results in
Section VI.

II. AI4ARCTIC/ASIP SEA ICE DATASET—VERSION 2

The experiments are realized using the ESA AI Ready Earth
Observation (AIREO) sea ice dataset, AI4Arctic/ASIP v2
(ASID-v2) [4]. It was compiled by the Technical University of
Denmark (DTU), Danish Meteorological Institute (DMI), and
Nansen Environmental and Remote Sensing Center (NERSC),
and released on October 2, 2020. It comprises 461 scenes,
each containing a Sentinel-1 dual-polarized HH and HV SAR
image, auxiliary image parameters, a corresponding ice chart
manually drawn by sea ice experts from SAR image, and
PMR measurements from AMSR2 instrument on board the
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Fig. 2. Sentinel-1 SAR image from Baffin Bay, Western Greenland, acquired on December 12, 2018. The location is highlighted as a black square in
Fig. 1. Brightness on images is adjusted by clipping with the individual 5 and 95 distribution percentiles and displayed in dB. (a) and (b): HH and HV SAR
channels, respectively, noise-corrected with ESA IPF v2.9, and contain a land and ice chart mask. (c) and (d): HH and HV SAR channels, respectively, and
noise-corrected with the NERSC denoising scheme.

JAXA GCOM-W satellite. Scenes are distributed across the
Greenland coast, as illustrated in Fig. 1, from March 14, 2018,
to May 25, 2019. All data are co-located and georeferenced,
and the size of the dataset is 315 GB. In this study, we utilize
only SAR images as input data and sea ice charts as reference.

A. Sentinel-1 SAR

The Copernicus Sentinel-1 A and B SAR satellites
operate in the C-band with 5.405-GHz frequency (5.5-cm
wavelength) [5]. The data products used are exclusively
medium-resolution level 1 ground range detected (GRDM),
recorded in EW operational mode [93 m × 87 m resolution
(range × azimuth), with a pixel spacing of 40 m], and data
are available in the original GRDM geometry with no geo-
graphical projection. The backscatter values are calibrated and
converted from dB in the range [−30, +10] to a linear scale
within [−1, 1]; however some outliers may still be present.
Due to negative backscatter values, some scaled values are as
low as −4.5 [4]. EW SAR images are created by combining
five subswaths in the azimuth direction, which exhibit slight
radiometric variations. The Sentinel-1 TOPSAR technique,
which electronically steers the antenna beam, causes the
weighting of the radar echoes to vary, creating a scalloping

effect, where the center of the burst is brighter than the
edges [15]. Moreover, the scalloping extent is dependent on the
antenna steering angle of each burst, which makes the effect
subswath-dependent and consistent within the same subswath.
The initial near-range subswath with the lowest incidence
angle is particularly affected.

The ESA Instrument Processing Facility (IPF) v2.9
(November 28, 2019) has been widely deployed and com-
pensates for the scalloping effect by applying the inverse of
the scalloping gain function [15]. More recently, an extended
thermal noise correction method has been proposed by the
NERSC. The authors in [14] and [16] suggest that the noise
is composed of an additive thermal [17] and a multiplicative
textural noise component. IPF v2.9 offsets the scalloping
component well, and the multiplicative part is introduced
during scaling by the SAR processor and suggested to be offset
by subwindow-wise adaptive rescaling of additive denoised
pixel values. Rescaling is based on the optimal coefficient
of the noise-induced standard deviation and the estimation of
the noise contribution to local standard deviation [14]. The
applied noise correction uses ESA IPF v2.9 for the azimuth
component and NERSC noise correction for the range additive
and multiplicative components. Negative SAR backscatter
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values after noise correction are replaced based on neighboring
pixels in a 10 × 10 moving window. Fig. 2(a)–(d) illustrates
a scene from Baffin Bay, Western Greenland, captured on
May 21, 2018. Parts (a) and (b) are noise-corrected using the
ESA IPF technique, which contains a land mask from DMI
and is limited by the extent of ice chart. Parts (c) and (d) are
modified with the NERSC noise correction scheme, and with
the DMI land mask absent. The images are grayscaled using
the individual images’ 5% and 95% percentiles. The difference
between the two noise correction schemes is most visible along
the vertical subswath transitions in HV channels. White pixels
in all the images are not number (NaN) values, representing
areas with no data and masked land.

B. Sea Ice Charts

Each ice chart is produced based on Sentinel-1 image, and
it is a snapshot of ice conditions at the acquisition time. Ice
analysts interpret the SAR image and draw polygons in a
commercial GIS software production system based on fairly
homogeneous regions of sea ice conditions. The conditions
are described by multiple parameters and follow the World
Meteorological Organization (WMO) code for sea ice—Sea
Ice GeoReferenced Information and Data (SIGRID3). The
primary descriptive factor is SIC—a metric from 0% to 100%,
indicating the ratio of sea ice to open water, where 0% is ice-
free open water and 100% is fully covered sea ice. The ice
concentration mapping is created through a creative process of
individual interpretation steered by common guidelines with
no associated uncertainty. However, studies have suggested
that ice analysts assign concentrations that vary on average
20% and up to 60% discrepancies [18]. Intermediate SICs
(10%–90%) are particularly difficult to assess. The regions
near the edge of the sea ice cover—called the marginal
ice zone—receive more attention because it is the most
important area for maritime operations. In comparison, inner
ice areas with low maritime activity receive less attention.
Despite these uncertainties, we treat each pixel as equally
valid.

The ASID-v2 ice charts are delivered as polygons with an
individual ice code with an associated lookup table containing
a multitude of parameters for the specific polygon, including
total SIC, partial concentration, stage of development, and
form of dominant ice types. In our analysis, the SIC is divided
into 14 different classes. Eleven of these describe the concen-
tration from 0% to 100% (inclusively) in discrete increments
of 10%. Two describe less than 10% sea ice and bergy water,
both of which have been converted to the representative open-
water class (0%) in the following experiments. One class
describes landfast ice, which is converted into 100% sea ice
class. The equivalent ice chart produced from SAR images in
Fig. 2 is illustrated in Fig. 3(a) with a similar mask applied.
In Fig. 3(b), a typical ambiguous example is highlighted with
areas in the upper left corner of the image identified as
100% SIC mislabeled as open water. It is produced by an
SAR trained U-Net architecture (model #3 in Table I). The
mislabeled region is of relatively high homogeneity in SAR
image potentially causing this issue.

Fig. 3. Example of sea ice concentration maps derived from SAR image in
Fig. 2. (a) Manual interpretation by an ice analyst. (b) Semantic segmentation
of SAR image by the U-net model [11] (#3 in Table I).

C. Preprocessing

ASID-v2 scenes are further preprocessed by converting the
polygon ice chart ice codes into SIC, downsampling both the
SAR and ice chart images from 40- to 80-m pixel spacing,
using a 2 × 2 averaging kernel and max kernel, respectively.
The new pixel spacing is more aligned with the Sentinel-1
SAR resolution of 93 m × 87 m (range, azimuth). This further
provides the algorithms a larger geospatial receptive field and
reduces the speckle noise. The downsides are: slightly poorer
resolution and fewer total pixels to train on. This is followed
by aligning the mask across the ESA and NERSC noise-
corrected scenes and the ice chart. The rows and columns
with only NaN values [white pixels in Figs. 2 and 3(a)] are
removed. Afterward, the scenes are normalized to [−1, 1]
range. Finally, NaN values in the SAR images are replaced
with 0, and in the ice chart, a new class 11 is established to
represent non-data pixels.

D. Data Distribution
The training and testing scenes are selected among the

461 scenes. Six scenes containing errors in the ice charts
depicting open water as 100% sea ice are removed and scenes
without sea ice are discarded to balance class distribution.
For training, 306 scenes are selected. In collaboration with
DMI, 23 scenes, deemed difficult by professional ice analysts,
have been selected for testing. There is a split of roughly 9:1
between the train and test sets, respectively. The geographical
distribution of scenes is illustrated in Fig. 1. In Fig. 4(a), the
seasonal distributions for the train and test scenes are shown.
An overview of the train and test data class distributions is
presented in Fig. 4(b). Class 0 (open water), class 10 (100%
sea ice), and class 11 (masked pixels) are most represented.
The intermediate sea ice classes, classes 1–9, are less, though
relatively equally, represented. The test scenes are well-
distributed among the regions and seasons, with few in the
South and less during spring. The test class distribution reflects
the imbalance of the dataset with slightly elevated quantities
of intermediate SICs compared with the training data.
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Fig. 4. (a) Seasonal distribution of train and test scenes. (b) Percentage of pixels belonging to each class with respect to the total pixels in the train and test
split. Classes 0–10 refer to 0%–100% sea ice, and class 11 is masked pixels.

The main obstacle when choosing the train and test set
distributions is the large scenes (up to roughly 5000 ×
5000 pixels after preprocessing and downsampling), and only
461 such scenes are available. The number of pixels is very
high, but the diversity in geographical and seasonal samples
is limited. Hence, there is an abundance of data, but it may
not be representative of other periods or regions. Randomly
cropping patches creates multiple smaller samples from each
scene. However, sampling both the train and test data from
the same scene is avoided to minimize biases, as each scene
is spatially correlated. Therefore, selecting the test scenes is
a balancing act, ensuring similar regional, seasonal, and class
representation to the training data while retaining a reasonable
train and test split. Due to these constraints, the usual training,
validation, and test split, the latter two are combined to provide
a broader test.

III. IMPLEMENTATION AND DATA PIPELINE

The estimation of SIC can be formulated as a regression
problem (predicting absolute sea ice percentage) or a dis-
crete classification problem. In this study, SIC estimation is
formulated as a classification problem with the (weighted)
categorical cross-entropy as the loss function, which represents
the dissimilarity between real distribution of labels and output
distribution predicted by the model. The categorical cross-
entropy loss evaluates each pixel vector individually, and then
averages over all the pixels, essentially giving each of them
an equal weight. To push the model to pay more attention to
underrepresented classes, each class is weighted based on the
median frequency weighting scheme [19]. It is defined as

wclass = medianfreq

classfreq
(1)

where wclass is the class weight, medianfreq is the median
frequency of all the classes, and classfreq is the class frequency

classfreq = Nclass

Npixels
(2)

Nclass represents the number of pixels per class and Npixels

the total pixel count. Masked pixels are not included in the
calculations and assigned a class weight of zero. The class
weights are calculated based on the training data distribution

w0,1,...,11 = [0.039, 1.413, 0.907, 0.925, 1.089, 1.401,

1.233, 1.154, 0.702, 0.369, 0.099, 0] .

For each pixel, the weighted cross-entropy loss is defined
as

loss(x, class) = wclass

⎛
⎝−xclass + log

⎛
⎝Nclass−1�

j=0

ex j

⎞
⎠
⎞
⎠ (3)

where x = (x j)
Nclass−1
j=0 is the vector of predicted class proba-

bilities, for each class, and class is the index of the true class.
The final weighted loss is calculated by summing the class
losses across all the Npixels pixels in the batch and discounting
it by the sum of class weights

loss =
�Npixels

i=1 loss(xi , classi)�Nclass−1
j=0 w j

. (4)

Batches are created by randomly cropping 512 × 512 or
768 × 768 pixels directly from the training scenes, with a
batch size of 64 or 32, respectively. Patches with no valid
pixels are discarded. As the number of valid pixels vary among
scenes, a probability, p(si), of sampling from the i th scene is
defined as

p(si ) = n(si )

� Nscenes�
j=1

n(s j )

n(s∗)
(5)

where n(s) is the number of pixels in a given scene, s, and
s∗ denotes the scene with the least amount of pixels in the
scene, i.e.,

n(s∗) = min
i

(n(si )). (6)
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Thus, the scene with the least amount of “valid” pixels is
sampled only once, and a scene with ten times as many pixels
will be sampled ten times more often. The model is trained
on 500 batches between each testing step, which constitutes
one epoch.

After a batch is compiled, data augmentation using an
open-source Python imgaug [20] module is applied. Each
batch is assigned a random set of augmentations independently
for every patch and identical for SAR and ice chart data.
The possible augmentations are the dihedral group; 0◦, 90◦,
180◦, or 270◦ rotations, and horizontal, vertical, and two
diagonal flips, i.e., eight in total. Additionally, there is a 50%
chance of applying between 1 and 4 of the following affine
transformations with a random bounded magnitude; [−44.99,
44.99] degrees of rotation, ±30% scaling, ±30% translation,
and ±10 degrees of shearing. The purpose of the applied data
augmentation is to provide additional variation in the samples,
limiting the number of identical patches that the model sees.
This can help minimize model overfitting.

After each training epoch, the testing step occurs. Test-
ing is carried out without augmentation on full scenes, i.e.,
no patching or stitching is utilized. This is in line with the
recommendations for large images given in [21]. Performance
is assessed based on the statistical R2 coefficient, also known
as the coefficient of determination, which is a measure of
similarity between two sets of data. It is defined as

R2 = 1 −
�Npixel

i=1

	
y true

i − ypred
i


2

�Npixel

i=1

	
y true

i − ŷ true

2 (7)

where y true
i is the true i th pixel, ŷ true

i is the mean true pixel
value, and ypred

i is the predicted class of the i th. The R2 metric
has two main advantages over accuracy. First, as SIC is in its
nature a continuous value from 0% to 100%, predicting 70%
or 90% sea ice when the correct value is 80% is far better than
predicting 0%, and this is encouraged by the R2 coefficient.
Second, accuracy does not reflect the data imbalance well. The
models are trained for about 80–90 epochs (approximately
22–24 h training duration) using the Adam optimizer with
a fixed learning rate of 10−4 and default hyperparameters.
The testing step takes approximately 2 min, and each scene
approximately 6 s. After the final training iteration, the model
version, which achieved the highest R2-score on the testing
step, is selected. For comparing models, we also utilize this
score. The R2 test performance is calculated based on all
the testing pixels (excluding masked pixels, class 11). Two
Nvidia TeslaV100 SXM2 32-GB graphics cards have been
used for computation. The training environment and models
have been created in Python 3.8.2 using the open-source
PyTorch 1.8 library.

IV. CNN MODELS

U-Net has a near-symmetric encoder–decoder structure in
which the contracting path captures rich low-level representa-
tions while the expanding path enables precise localization.
Skip-connections are used between corresponding pairs of
encoder and decoder blocks to propagate information from
the contracting path to the expanding path. This facilitates the

Fig. 5. Schematic overview of a four-level U-Net architecture.

recovery of high-frequency spatial information and improves
the boundary accuracy. In the U-Net architecture, a block
constitutes a sequence of two 3 × 3 convolutional layers, each
followed by a batch normalization (BN) procedure and the rec-
tified linear unit (ReLU) activation function. In the contracting
path, 2 × 2 max-pooling operations are used for feature map
downsampling. Similarly, in the expanding path, every block is
preceded by a bilinear upsampling operation. Each symmetric
encoder and decoder block with a skip connection between
them is defined here as a level. A schematic overview of a
regular four-level U-Net architecture is shown in Fig. 5. The
original U-Net in [11] uses the identical number of filters in
the convolutional layers across the same level and doubles
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Fig. 6. Receptive field of a two-level encoder and decoder in the U-Net.
Each square represents a pixel at different layers. White pixels denote
convolutional layers with associated yellow triangles of 3 × 3 kernel views.
Blue striped pixels illustrate the added receptive field per extra pixel in
the final layer L. Red pixels are pooling layers with accompanying red
triangles for 2 × 2 pooling views. Green pixels are upsampling layers with
the corresponding green trapezes as the upsampling views.

them for each level, i.e., 64, 128, 256, and 512. In this work,
we limit the number of filters to 16 in the initial and final
levels, and 32 in the remaining levels to both simplify and
minimize the risk of overfitting to ambiguous SAR textures.
The U-Net implementation is available at [22].

The receptive field size of sequential convolutional layers
can be calculated using the recursive equation [23]

r0 =
L�

l=1

�
(kl − 1)

l−1�
i=1

sti


+ 1 (8)

where r0 is the equivalent number of pixels in the input image,
L is the total number of layers, l is the current layer index, kl

is the kernel size of that layer, i is the index of the previous
layer, and sti is its stride. Fig. 6 illustrates the receptive field
per layer of a two-level encoder and decoder in the U-Net.
Starting from the layer L in the encoder, and going left,
it is clear that every 3 × 3 convolutional layer increases
the receptive field by 2 pixels, while the 2 × 2 pooling
layer with stride 2 doubles it. The receptive field for the
two-level U-Net encoder is 32 pixels. Additional levels raise
this to 68, 140, 284, 572, 1148, and 2300. The receptive
field of the decoder with respect to the final layer pixels
can similarly be identified by starting from the model output,
as illustrated in Fig. 6. On the contrary to pooling layers,
upsampling halves the receptive field. With two convolutional
layers between each upsampling operation, the total receptive
field can at most be composed of four encoder pixels. The blue
stripped pixels in the U-Net illustrated in Fig. 6 represent the
increase in receptive field per additional decoder pixel. This
makes the effective receptive field of the U-Net equal to the
encoder receptive field plus 3 × 2Nlevels for models with at
least two levels. The receptive field of the U-Net models is
thus 44, 92, 188, 380, 764, 1532, and 3068 for 2–8 levels,
respectively. Therefore, adding more levels in the U-Net is an
effective way of both increasing the number of layers in the

Fig. 7. (a) Repeated ice chart from Fig. 3(a). (b) Inference output from the
best performing model—# 10 in Table I.

architecture, enabling the network to model more complicated
functions, and expanding the amount of available information
for predicting individual pixels through a larger receptive field.

V. RESULTS AND DISCUSSION

In Table I, ten architectures, associated model hyper-
parameters and the highest achieved performance based on the
test scenes, are presented. The table is ordered with respect
to the receptive field size and noise correction. The patch size
was increased in models 9 and 10 to better accommodate the
increased receptive field during training. These models were
only trained on NERSC noise correction, as it had proven to
be superior in models 1–8. Due to hardware constraints (GPU
memory), the associated batch size was lowered to 32.

The best performing model is number 10 with eight levels,
a receptive field of 3068 pixels, and trained on NERSC noise
correction, with a patch size of 768 × 768 with an overall
R2-score of 86.34%. The resulting inference on the scene in
Figs. 2 and 3(a) is illustrated in Fig. 7. Predictions are more
homogeneous, and the upper left corner is correctly classified
as 100% sea ice compared with the result from standard U-Net
with ESA noise correction in Fig. 3(b), demonstrating the
improvement made by both the extended U-Net architecture
and NERSC noise correction. The R2-score for the scene is
47.12%. Discrepancies are noticeable in the fjords in the upper
half and right side of the image. In addition, intermediate SIC
(10%–90%) may be improved in the image center. Generally,
fjords are difficult to classify as few pixels are present from
shore to shore due to SAR resolution. Moreover, in the
absence of rough open-ocean dynamics, the sea ice may form
smooth surfaces and reduce SAR backscatter making it appear
darker due to specular SAR reflections. It is also possible
that ice analysts have experienced from previous years that
these fjords would usually be covered with sea ice at the
image acquisition time, which can help deciding in ambiguous
scenarios.

Furthermore, the results indicate that increasing the number
of levels in U-Net generally improves the model performance,
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TABLE I

SUMMARY OF TRAINED MODELS AND PERFORMANCE. THE COLUMN NAMES REFER TO THE FOLLOWING: REFERENCE NUMBER, TRAINING PATCH SIZE,
TRAINING BATCH SIZE, *RECEPTIVE FIELD (RF), NUMBER OF LEVELS IN U-NET ARCHITECTURE, NUMBER OF CONVOLUTIONAL FILTERS IN

THE EACH LEVEL, SAR NOISE CORRECTION, AND FINALLY THE TEST R2 SCORE

with greater improvements for those with -3–5 levels. Apply-
ing NERSC noise correction is also shown to provide clear
improvements, particularly for models with lower receptive
fields. As Sentinel-1 TOPSAR noise is spatial, it may occupy
a substantial portion of small receptive fields. The noise is
associated with small-grained pixels that may cause open
water to become ambiguous with small sea ice floes. A larger
receptive field may make the model more robust to spatial
noise.

The difference between models trained with two noise
corrections and the impact of increasing the number of levels
in the U-Net is illustrated in Fig. 8. The initial row in
Fig. 8(a)–(d) demonstrates models trained on ESA noise-
corrected SAR data, and the second row (e)–(h) exhibits
those trained on NERSC noise-corrected. The columns show
predictions from U-Nets with -3–6 levels for each noise cor-
rection. The associated R2-scores are presented underneath the
images. The NERSC-trained U-Nets are more robust against
the ambiguous region in the upper left corner. For both noise
corrections, increasing the number of U-Net levels provides
more homogeneous predictions without incorrect open-water
gaps. The performance in fjords is also decent. The associated
R2-scores highlight the importance of NERSC noise correction
for this particular scene with level 3 U-Net scoring better than
all the models training on ESA noise-corrected data.

While producing predictions more similar to the manually
drawn ice charts, models with fewer U-Net levels are capable
of creating more detailed charts but have inferior overall
performance. There may be a trade-off between the level of
detail and homogeneity—a larger receptive field increases the
homogeneity of SIC predictions, but it also appears to reduce
the level of detail in predictions. Creating a model capable of
producing homogeneous predictions and fine details in areas
with an abundance of maritime activity, such as the marginal
ice zone, could be ideal. Ultimately, the decision should be in
agreement with the national ice services and chart users.

Four additional scenes from different regions and seasons
are illustrated in Figs. 9 and 10 (inferenced by U-Net number
10 with eight levels). Fig. 9(a)–(d) is from Scoresbysund in
Eastern Greenland, acquired on February 8, 2019. The model

achieves an R2-score of 87.32% on this scene. Discrepancies
are apparent at the end of fjord and at the mouth; otherwise,
there is a strong correlation. The model shows great robustness
to high backscatter values in the SAR near-range right portion
of the image, creating ambiguous SAR textures between open
water and sea ice. Scoresbysund is notorious for landfast sea
ice which is present in this scene. It is partly incorrectly
labeled by the model. Despite the good overall performance,
landfast ice predictions are still troublesome for the model.

Fig. 9(e)–(h) is from the Davis Strait in South Western
Greenland, acquired on April 23, 2019. The model achieves a
scene R2-score of 93.01% on this scene. The scene contains
many sea ice floes with smooth surfaces resulting in low
backscatter values, which appear as dark holes within the
closed packed sea ice cover. The model predictions have
a strong correlation to the reference ice chart, capable of
identifying a high SIC, though not the exact concentration.
There is also a clear boundary between sea ice edge and open
water. Sea ice in the narrow fjords is detected and matches
relatively well the concentration in the reference ice chart.

Fig. 10(a)–(d), illustrates a scene acquired on August 22,
2018, from the Fram Strait, North Eastern Greenland. The
model achieves an R2-score of 84.89% on this scene. The
scene is characterized by a long sea ice tongue and varying
ice concentrations. There is a strong resemblance between
predictions and reference chart. The locations of the sea ice are
accurate, but the quality of concentration prediction is mixed.
The detailed features in the upper portion of the image are
lost in a homogeneous polygon. In the lower right corner, the
model has predicted a larger area to contain ice. The region
contains low backscatter values in both the HH and HV SAR
images, and thus it is very difficult to distinguish whether this
is open water or newly formed sea ice such as nilas.

The final scene in Fig. 10(e)–(h) illustrates another scene
from the Fram Strait which was acquired on September 3,
2018. The model achieves an R2-score of 88.31% on this
scene. The scene contains sea ice close to the meandering
coast with a multitude of islands and ice concentrations.
There is a strong correlation between reference ice chart and
model predictions. The concentrations appear accurate, and the
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Fig. 8. (a)–(d) ESA SAR noise-corrected trained U-Nets with levels 3–6. (e)–(h) NERSC SAR noise-corrected trained U-Nets with levels 3–6. Associated
R2-scores are listed underneath each image.

islands and coast do not interfere with the model’s capability
of identifying the sea ice. However, the drifting sea ice in the
upper right quadrant of the scene is not predicted as detailed
as the reference ice chart. This may be a downside of applying
a U-Net architecture with a very large receptive field.

It is difficult to compare the presented models’ metric
performance with other recent publications, i.e., [8], [10],
as different training and test sets are utilized. However, a visual
qualitative inspection of the produced ice predictions can
be carried out. In [8], predictions are able to differentiate
open water from sea ice but suffer from the Sentinel-1 SAR
speckle and subswath transition textures, which may be a
result of utilizing the previous version of Sentinel-1 SAR noise
correction and applying a model architecture with lower depth
and smaller receptive field. Figures in [10] indicate strong
correlations between hand-crafted ice charts and predictions
but suffer similar issues related to ambiguous SAR textures
in regions of rough ocean surfaces caused by strong winds,
Sentinel-1 subswath transitions, and compacted sea ice. The
results presented here appear to be more robust to these obsta-
cles but are still challenged by ambiguous SAR signatures
from landfast ice, limited context in the smaller fjords, and
less-than-optimal performance at intermediate SICs.

VI. CONCLUSION

This study presents the issue of ambiguous SAR backscatter
signatures on sea ice predictions in regions of fully covered
sea ice for CNN models utilizing only Sentinel-1 SAR data.
Two problems are investigated: impact of the receptive field
of the applied U-net and selection of thermal noise correction
scheme. Experiments with the standardized U-Net architecture
clearly show that increasing the number of levels produces
more homogeneous predictions with a stronger resemblance to
ice charts created by trained human ice analysts. The results
also indicate that NERSC noise correction is superior to ESA
IPF v2.9 for predicting SIC and enables models to predict
more reliably in regions of full sea ice covers with little
variation in the SAR textures. Overall results indicate that
increasing the receptive field of the model and applying a
superior SAR noise correction is a significant step toward
automatic production of high-resolution sea ice charts with
standalone Sentinel-1 SAR in seconds rather than hours.

VII. FUTURE WORK

Several improvements to the presented SAR-only trained
models could still be investigated. Increasing the decoder
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Fig. 9. (a) and (b) NERSC noise-corrected Sentinel-1 SAR image from Scoresbysund, Eastern Greenland, acquired on February 8, 2019, (c) hand-drawn sea
ice chart, and (d) inferenced image with R2-score: 87.32%. (e) and (f) NERSC noise-corrected Sentinel-1 SAR image from the Davis Stait, South Western
Greenland, acquired on April 23, 2019, (g) hand-drawn sea ice chart, and (h) inferenced image with R2-score: 93.01%. Both inferences are made the U-Net
model number 10 in Table I. The associated colorbars for (c), (d), (g), and (h) are below the images.
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Fig. 10. (a) and (b) NERSC noise-corrected Sentinel-1 SAR image from the Fram Strait, North Eastern Greenland, acquired on August 22, 2018, (c) hand-
drawn sea ice chart, and (d) inferenced image with R2-score: 84.89%. (e) and (f) NERSC noise-corrected Sentinel-1 SAR image from the Fram Strait, North
Eastern Greenland, acquired on September 3, 2018, (g) hand-drawn sea ice chart, and (h) inferenced image with R2-score: 88.31%. Both inferences are made
the U-Net model number 10 in Table I. The associated colorbars for (c), (d), (g), and (h) are below the images.
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receptive field could be achieved by adding additional convo-
lutional layers in each decoder block, providing a receptive
field greater than 4 in the final encoder layer. Naturally,
further expansion of the number of levels of the U-Net could
also be of interest but it requires changing the choice of
testing scenes or refraining from downsampling the SAR pixel
spacing from 40 to 80 m. However, this would reduce the
effective spatial receptive field of the models.

Solving the landfast sea ice prediction problem could
potentially be addressed using larger training patch sizes and
additional scenes from, for example, Scoresbysund where this
phenomenon is well-known. Adding a class for landfast ice
could also encourage the model to address it specifically.
Providing additional auxiliary data such as distance to land
and season/month of image acquisition could enable the model
to better understand regional and seasonal variations.

Finally, this work has only investigated increasing the
number of U-Net levels on SAR-only models. Similar inves-
tigations could be carried out using an SAR and PMR data
fusion model, which could lead to direct comparisons of these
types of models.
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