

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Jun 02, 2024

A Purpose-Guided Log Generation Framework

Burattin, Andrea; Re, Barbara; Rossi, Lorenzo; Tiezzi, Francesco

Published in:
Proceedings of 20

th
 International Conference of Business Process Management

Link to article, DOI:
10.1007/978-3-031-16103-2_14

Publication date:
2022

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Burattin, A., Re, B., Rossi, L., & Tiezzi, F. (2022). A Purpose-Guided Log Generation Framework. In
Proceedings of 20

th
 International Conference of Business Process Management (pp. 181-198). Springer.

https://doi.org/10.1007/978-3-031-16103-2_14

https://doi.org/10.1007/978-3-031-16103-2_14
https://orbit.dtu.dk/en/publications/e69c9914-bd7f-4cf8-9be7-9f2166845139
https://doi.org/10.1007/978-3-031-16103-2_14

A Purpose-Guided Log Generation Framework

Andrea Burattin1, Barbara Re2, Lorenzo Rossi2,†, and Francesco Tiezzi3

1 Technical University of Denmark, Kgs. Lyngby, Denmark
andbur@dtu.dk

2 School of Science and Technology, University of Camerino, Italy
{barbara.re,lorenzo.rossi}@unicam.it

3 Dipartimento di Statistica, Informatica, Applicazioni, University of Florence, Italy
francesco.tiezzi@unifi.it

Abstract. Process mining is a prominent discipline that collects a vari-
ety of techniques fulfilling different mining purposes by gathering infor-
mation from event logs. This involves the continuous necessity of event
logs suitable for testing mining techniques with respect to different pur-
poses. Unfortunately, event logs are hard to find and usually contain
noise that can influence the results of a mining technique. In this paper,
we propose a framework for generating event logs tailored for differ-
ent mining purposes, e.g., process discovery and conformance checking.
Event logs generation and tuning are made out through business model
simulations guided by the mining purpose under consideration. Beyond
defining the framework, we implemented it as a tool, which has been also
used for the validation of the approach we propose.

Keywords: Process mining · Event log · Log generation · Simulation

1 Introduction

Nowadays, process mining is recognized as an important discipline in extracting
non-trivial information from the execution of business processes, thanks to the
increasing usage of information systems that record event logs of the deployed
processes [2]. The importance of process mining is well recognized also by com-
panies, which appreciate the possibility to gather knowledge from their processes
from actual execution data [24].

Process mining is a family of techniques and algorithms that enables to au-
tomatically extract information out of event logs recorded during the execution
of business processes. The effectiveness and the precision of process mining tech-
niques are strictly related to the reliability of their mining algorithms, whose
development requires testing them against different event logs [17], usually cou-
pled with the models that generated them [9]. Mining algorithms extract different
types of information according to the mining purpose they have to accomplish,
e.g., process discovery and conformance checking. Therefore, to test a process
mining algorithm it is important to use event logs that suit the purpose for

† Main contributor and corresponding author.

2 A. Burattin et al.

which the algorithm has been devised [22]. For instance, given a family of dis-
covery algorithms that leverages the same set of properties on the logs (e.g., the
coverage of the direct following relations for the Alpha miner family [3]), then
a fair comparison of the algorithms would require logs where such properties
are indeed satisfied. As stated in the literature [7,17,21], each of those purposes
heavily relies on the quality, with respect to specific properties, of the event logs
given as input to the related mining algorithms.

Obtaining event logs fitting for a purpose is a complex, yet necessary, achieve-
ment [6]. Specifically, [7] claims that bad quality logs hamper the use of pro-
cess mining techniques, thus researchers are encouraged to develop log gener-
ators that focus on a specific and explicit mining purpose. Event logs are dif-
ficult to find, in particular those directly extracted from deployed IT systems
that refer to real-world installations [8]. In this regard, several approaches, e.g.,
[8,12,15,17,19], propose the automated generation of artificial event logs via the
simulation of models in a predetermined language, e.g., BPMN or Petri Net.
However, these are purpose-agnostic, thus not meant to produce event logs fulfill-
ing properties required for a specific purpose. Instead, they simulate random ex-
ecution traces, producing every time a different event log. The above-mentioned
issue paves the way to the need of answering the following research questions:

RQ1: Is it possible to define an approach for the automated generation of event
logs tailored to different mining purposes?

RQ2: Can model simulation be guided to produce event logs that fulfill a mining
purpose better than the ones generated with purpose-agnostic simulations?

To address these research questions, we propose the PURpose-Guided Log
gEneration (purple) framework. The main advantages of the purple frame-
work with respect to existing simulators are as follows. purple generates event
logs specifically tailored to the purpose of the mining technique under investi-
gation. To shape out an event log, the framework performs a guided simulation
of the input model that incrementally generates specific execution traces, until
the desired purpose is satisfied. The simulation is guided by hints, produced at
each step on the basis of the partial log generated up to that moment and the
properties required by the mining purpose. Additionally, the framework is meant
to simulate many kinds of business process models (e.g., BPMN, Petri Net, WF-
net). Besides the framework, we provide the purple tool, which implements a
BPMN and a Petri-net semantic engine, and addresses mining purposes concern-
ing process discovery and conformance checking. To validate the advancements
of our proposal to the state of the art on log generation, we carried out exper-
iments measuring the quality of logs generated by purple for the purposes it
supports, and we compared these results with the ones of other log generators.

The rest of the paper is structured as follows. Section 2 provides notions on
event logs and Labeled Transition Systems. Section 3 introduces the purple
framework. Section 4 presents the purple tool and several instantiations of the
framework, while Section 5 reports the results of the conducted experiments.
Section 6 compares our approach with related works. Finally, Section 7 closes

A. Burattin et al. 3

the paper by discussing assumptions, limitations, and opportunities for future
works.

2 Background Notions

This section provides notions we use in the rest of the paper. An event log
consists of a set of cases, each of which refers to some events that can be
seen as one possible run of the process. An event refers to the execution of a
system activity, and it is described by a set of attributes. The most common
attributes for a recorded event are the activity name and the timestamp, but
also other information can be captured, such as the resource involved in the
activity execution, or the monetary cost associated with it. The sequence of
events related to a given case is called trace.

Figure 1(a) depicts a system modeled using the BPMN notation [20], Fig-
ure 1(b) shows a table containing an event log fragment with three cases gener-
ated by the BPMN model, while Figure 1(c) reports a simple event log [2, Ch. 5],
which focuses only on the names of the executed activities. In this situation, an
event log can be thought of as a multiset of traces, where a trace is a sequence
of activity names [2]. The multiplicity of a trace is denoted in the simple event
log by a positive integer (omitted when it is equal to 1). A way of generating
event logs is through the simulation of a business process model [8]. The main
idea is to repeatedly “execute” a model and to record, in a log file, all events
observed during the execution. Simulators use the so-called play-out engines, like
in [10,4], to execute models [2, Ch. 2]. An engine provides the moves a model can
perform according to the semantics of the considered modeling language (e.g.,
the firing rule of Petri Nets [18] or the transition rules of BPMN operational
semantics [11]) usually defined by means of Labeled Transition Systems (LTSs).

An LTS consists of: states, representing the possible system configurations
(i.e., the execution states of the model), and labeled transitions, corresponding
to directed edges connecting states (representing moves in the model execution).
Formally, a transition system is a triple (S,L,→) where: S, ranged over by s, is
a set of states; L = A ∪ {τ}, ranged over by l, is the union of a set of (visible)
activity labels A, ranged over by a, and a special label τ denoting an invisible
activity; and →⊆ S × L × S is a transition relation. The τ action is used to
decorate those transitions of the LTS that do not refer to the performing of an
activity included in the model, but refer to the control of the execution flow, e.g.,
the execution of decisions, that can be neglected in the log generation. In an LTS,
we call a state initial (resp. final) if it does not have incoming (resp. outgoing)
transitions. The initial state, labeled si, corresponds to the initial configuration of
the model, where its execution starts, while a final state, labeled sf , is an ending
configuration, which corresponds to a proper or an improper termination.

Finally, for a given LTS, (S,L,→) with L = A ∪ {τ}, it is possible to char-
acterize: sub-traces as sequences of visible labels; traces as sequences of visible
labels from the initial to a final state; and logs as multisets of traces. Formally,
the sequence of labels ⟨a1, a2, . . . , an⟩ with a1, a2, . . . , an ∈ A is a sub-trace if

4 A. Burattin et al.

Fig. 1. From process model to event log.

there exists ⟨l1, l2, . . . , lm⟩ with l1, l2 . . . , lm ∈ L such that: (i) ⟨a1, a2, . . . , an⟩
coincides with ⟨l1, l2, . . . , lm⟩ up to occurrences of τ ; and (ii) (s1, l1, s2) ∈→,
(s2, l2, s3) ∈→, . . . , (sm, lm, sm+1) ∈→ for some s1, s2, . . . , sm+1 ∈ S. If s1 is
the initial state and sm+1 is a final state, the sub-trace is called trace. Fig-
ure 1(d) reports the LTS representing the behavior of the model in Figure 1(a)
produced by the BPMN formalization described in [11]. Each configuration of
the model, i.e. each marking of tokens, corresponds to a state of the LTS. For
example, the initial marking, where there is only one token placed on the start
event, corresponds to the state si, while the marking obtained by one step of
execution from the initial marking, where the token is moved to the sequence
edge incoming into the activity A, corresponds to the state s1. The execution of
an activity of the model is rendered in the LTS through a transition labeled by
the name of the activity. Traversing the LTS from state si to sf , the sequences
of visible labels associated to the transitions represent the execution traces that
can be generated from the BPMN model in Figure 1(a).

3 PURPose-guided Log gEneration Framework

In this section, we introduce the PURPose-Guided Log gEneration (purple)
framework. It is meant to produce, by simulating models, event logs with dif-
ferent properties for targeting different mining purposes. purple supports the
simulation of models specified with different languages, by projecting their ex-
ecution onto a common behavioral model, i.e., an LTS. Figure 2 depicts the
components of the purple framework: a semantic engine, an evaluator, and
a guided simulator. Except for the simulator that is fixed, the other components
can be instantiated with different semantic engines, each one supporting a given
modeling language (e.g., BPMN, Petri Net), and with different evaluators, each
one tailored to a mining purpose (e.g., process discovery, compliance checking).

Before presenting in detail the purple components, we introduce here the
concept of context in which the purple components act. The context collects

A. Burattin et al. 5

Fig. 2. purple framework components.

and keeps updated the (even partial) LTS and a log of the model under con-
sideration. It acts as a sort of global variable that the purple components can
access/modify during the simulation like in a side-effect function. Notably, at
the beginning of a simulation, the context is set to an initial configuration where
the log is empty and an LTS contains only the initial state si.

We can now define the purple components starting from the semantic
engine. Being aware of its formal semantics, this component enacts the input
model. Given a state of the corresponding LTS (i.e., a model configuration), the
semantic engine returns the next reachable states (i.e., the model configurations
reachable by one move), and the labels of the transitions leading to them (i.e.,
the names of the performed activities). For example, considering the LTS in
Figure 1(d) and its state s4, the semantic engine returns the next reachable
states coupled with the labels of the connecting transitions: {(B, s5), (C, s6)}.
Relying on different semantic engines, purple can obtain from each business
process model with an executable semantics the corresponding LTS [2, Ch. 3],
thus gaining in terms of generalizability.

The second component is the simulator that is devoted to produce traces
from the execution of the input model. By invoking the semantic engine, the
simulator component incrementally adds states and transitions to an LTS, then
traverses it to produce new traces to be added in the log. Notably, the simulator
acts on the LTS and on the log maintained by the context, starting from the
initial context. While building the LTS, the simulator generates a partial view
of the entire LTS and, at any time it reaches a final state, it stores the visited
trace in the log. The peculiarity of this component lies in a guided traversal of
the LTS to guarantee the production of traces, and hence a log, that satisfies the
desired mining purpose. Indeed, differently from a purely-random simulation,
what the framework proposes is a guided simulation that takes as input a
guide suggesting an execution path, or part of it, to follow in the LTS traversal.

Lastly, the evaluator component is responsible to evaluate an event log in
relation to the peculiarities of the desired mining purpose. More practically, by
checking ‘how much’ the event log stored in the context satisfies the properties
needed for the purpose under consideration, the evaluator produces a delta, i.e.,
the guide that drives the simulator. A delta consists of sub-traces of the LTS
that have to be added in the log to increase its suitability for the purpose. These
sub-traces act as a bias for the simulation indicating the parts of the LTS to be

6 A. Burattin et al.

model(1)

LOAD MODEL &

CHOOSE PURPOSE

current log(2)

SIMULATE

final log(3)

EVALUATE

delta

(4)

RETURN LOG

Fig. 3. purple routine.

traversed, thus influencing the produced traces. As each evaluator is defined to
deal with a specific mining purpose, the generated delta is defined to achieve in
the final event log the properties required by that purpose. We clarify this point
with a simplistic example, used just for the sake of presentation: considering a
mining purpose that requires a log in which model activities appear at least once,
the evaluator will select the activities not yet in the log, and will produce a delta
containing sub-traces of length one with the labels of the missing activities.

By fixing a modeling language and a mining purpose (hence, a semantic
engine and an evaluator, respectively), we get an instantiation of purple ready
for producing logs. Providing a model as input, the purple instantiation starts
performing the looping four steps routine depicted in Figure 3. Step (1) loads
the input model and sets the initial context. Then, the framework’s routine loops
between Steps (2) and (3) before producing the final log in Step (4).

1 simulate(st) :
2 i f st = ⟨⟩
3 return randomSim()
4 States := find(lts, st[1])
5 st := st \ st[1]
6 f o r s in States
7 stp := getPrefix(lts, s)
8 t := guidedSim(stp, s, st)
9 i f t ̸= ⟨⟩

10 return t
11 return ⟨⟩

Listing 1.1. Simulation function
for a given context ⟨lts, log⟩.

1 guidedSim(stp, scurr, st) :
2 i f st = ⟨⟩
3 return finalise(stp)
4 States := find(lts, st[1])
5 f o r snext in States
6 i f ∃ (scurr, st[1], snext) ∈ →
7 stp := stp + st[1]
8 t := guidedSim(stp, snext, st\st[1])
9 i f t ̸= ⟨⟩

10 return t
11 return ⟨⟩

Listing 1.2. Giuded simulation for a
given context ⟨lts, log⟩.

Step (2) performs the guided simulation of the model taking into considera-
tion the context containing the current LTS and log. As shown in Listing 1.1, the
simulation function depends on the input parameter st that is one of the sub-
traces in the delta. In case st is empty (i.e., ⟨⟩), the function executes the model
in a random way (line 3) via the randomSim() call: starting from the initial
state of the LTS contained in the context, it repetitively invokes the semantic
engine to know the next states (adding them to the LTS in the context) and
chooses one of them randomly until it reaches one of the final states. This hap-
pens, for instance, in the case the evaluator has not performed any comparison
yet. In case of non-empty delta, instead, the function proceeds by considering st
as breadcrumbs to follow for logging a specific trace in the LTS. More in detail,
function find(lts, st[1]) (line 4) returns a set of states of the LTS reachable by a
transition labeled as the first element in the considered sub-trace, i.e., st[1]. In
case the found states do not have any successor in the current LTS, the function
find invokes the semantic engine and adds the results in the LTS. For each found
state s (line 6), the simulator calculates a prefix sub-trace stp that leads to s
via function getPrefix(lts, s) (line 7). Then, the algorithm calls the recursive

A. Burattin et al. 7

function giudedSim (line 8) to complete the trace with labels corresponding to
the remaining part of st, where the first label has been removed (line 5). The
guided simulation function, Listing 1.2, takes as input the prefix sub-trace stp,
the current state scurr of the LTS, and the remaining part of the hint of the
delta, i.e., the sub-trace st. This function recursively searches for states of the
LTS in the context, reachable from scurr through a sequence of transitions la-
beled by the remaining elements in the hint st (lines 5-10). If a reachable state
is found (line 6, where → is the transition relation of the LTS), the prefix trace
is increased with the label of the connecting transition (line 7, where + denotes
the append operator on sub-traces). Then, the function is called recursively on
the enriched prefix, the next configuration, and the hint without the first label
(line 8). Once st no longer contains labels (line 2), the function enacts the base
case (line 3) where function finalise(stp) finalizes the prefix trace logging the
labels of the transitions leading to a final state, and returns the entire trace to
the calling function.

In Step (3) of the routine, the evaluator uses the context containing the event
log produced by the simulator in Step (2). On the basis of the mining purpose, a
specific evaluator calculates the delta, and evaluates if the purpose is satisfied. If
not, the routine loops back to Step (2) to repeat a new simulation based on the
calculated delta. Instead, if the purpose is satisfied, the simulation terminates
and the generated event log is given as output in Step (4).

4 purple at work

We present here four instantiations of the purple framework addressing pur-
poses concerning process discovery and conformance checking. These instan-
tiations are described using the purple tool that implements the framework
and its routine. Tool, source code, instructions, and examples are available at
https://pros.unicam.it/purple/. The purple tool provides two semantic
engines that implement a wide subset of the BPMN semantics described in [11],
and the Petri-net semantics [18]. Concerning BPMN, purple supports process
and collaboration diagrams made up by pools, empty start and end events, mes-
sage start and end events, terminate end events, intermediate message throw
and catch events, tasks, parallel gateways, exclusive gateways, and event-based
gateways. The latter engine, instead, supports standard Petri-nets (including
particular classes of Petri-nets, such as WF-nets). Moreover, purple imple-
ments four evaluators addressing process discovery and conformance checking.
Notice that some evaluators may require, besides the log, additional parameters
dealing with specific implementation aspects (e.g., a maximum number of traces
to generate for ensuring termination). The pseudocode of the four evaluators is
available online, at the purple’s website, in a companion technical report.
Process discovery in purple. The first instantiation of purple that we con-
sider regards the process discovery. To check the reliability of a discovery algo-
rithm, or to perform a benchmark of different techniques, logs presenting spe-
cific characteristics are required. purple implements evaluators addressing two
specific discovery purposes: one is devised for algorithms relying on the order

https://pros.unicam.it/purple/

8 A. Burattin et al.

(a)

D

B

CA E

(b) A B C D E
A #→ → → #
B ← # || #→
C ← || # #→
D ← # # #→
E # ← ← ← #
→: sequential, ||: parallel,

#: exclusive

Fig. 4. An input process model (a), and the related footprint matrix (b).

relation between activities, such as the Alpha algorithm [3], while the other one
is for algorithms relying on frequencies, such as the Heuristics miner [23]. All
these purposes can be applied to both BPMN and Petri-net models. In the rest
of the section, for the sake of presentation, we consider only BPMN models,
but the same reasoning applies to Petri-net ones, with the only difference in the
generation of the LTS by means of a different semantic engine.

The aim of the Process discovery via order relations purpose is to
generate event logs for discovery algorithms that build the output models on the
basis of the order relations between activities. These algorithms, e.g., the Alpha
family, scans the input event log to find the footprint matrix of the original
model. Assuming that an activity Y directly follows an activity X (X > Y) if
and only if there exists a trace in the log where Y appears immediately after
X, the footprint matrix can contain three kinds of order relations [3, Def. 3.2].
The sequence relation, denoted by X→Y , holds if and only if X > Y and Y ̸> X.
The parallel relation, denoted by X||Y , means that X directly follows Y and
vice versa (X||Y ⇐⇒ X > Y and Y > X). The last relation, denoted by X#Y ,
is used when two activities are unrelated, i.e., neither X directly follows Y nor
Y directly follows X (X#Y ⇐⇒ X ̸>Y and Y ̸>X). Considering the model
in Figure 4(a), the corresponding matrix is provided in Figure 4(b). To obtain
an accurate version of the original model, the input event log has to provide
as many order relations as possible to fill the footprint matrix. For instance,
logging multiple times the same trace is useless as it always provides the same
order relations. This can be achieved with purple through an evaluator that
guides the simulation into the discovery of the footprint matrix avoiding to
produce duplicates of the same trace. Therefore, purple points at generating
the smallest log covering the relations in the footprint matrix.

The simulation step of the routine is triggered at first with an empty delta,
leading to a random simulation of the model. A possible trace result of the
first simulation run maybe ⟨A,B,C,E⟩, where the simulator performed tasks A,
B, C and E, one after the other modifying the initial context. Specifically, the
simulator adds to the initial LTS the states and the transitions discovered by
the semantic engine, producing the LTS in Figure 5(a) to the exclusion of dot-
ted states and transitions which are still to discover. Moreover, it inserts in the
empty log the discovered trace, resulting in Figure 5(b). Notably, to speed up
the generation of the entire LTS, the simulation adds to it all the states dis-
covered by the semantic engine, even if they do not take part to the produced
trace (see states s6 and s9). Then, the evaluator calculates the order relations
considering the updated log in the context. The log identifies 3 order relations:

A. Burattin et al. 9

si s1 s2
s9 s10

s3 s4

s5

s6

s7 s8

s11 s12 sf
τ A

τ

τ

D
τ

τ
B

C

C

B
τ

τ

E τ

(a)

(b)

(c)

log =
{⟨A,B,C,E⟩}

A B C D E
A # → # # #
B ← # → # #
C # ← # # →
D # # # # #
E # # ← # #

Fig. 5. LTS (a), log (b), and footprint (c) resulting from the first run of simulation.

A→B, B→C, and C→E; the other activities are still unrelated, thus the resulting
footprint matrix is the one in Figure 5(c). At this point, purple compares the
obtained footprint matrix with the one of the original model (Figure 4(b)) to
calculate the missing relations, and produces the delta for the upcoming simu-
lation step. The order relations that are still missing are: A→D, B→E, C→B,

and D→E. These relations are translated into sub-traces composing the delta as
following:{⟨A,D⟩, ⟨B,E⟩, ⟨C,B⟩, ⟨D,E⟩}. Since the delta is not empty, this time
is crucial to guide the simulator in the search of additional traces containing
the missing relations; in doing that, the simulator relies also on the LTS in the
context. Considering the first hint of the delta, ⟨A,D⟩, the simulator looks for
a state with an incoming transition labeled by A, that is state s2, then it goes
forward in the LTS to find a transition labeled by D. Being s3 already visited,
the simulator goes ahead to state s9 that corresponds to a state in which activity
D is enabled. Then, the simulator finalizes the trace until it reaches a final state,
logging the trace ⟨A,D,E⟩. Instead, considering the hint ⟨C,B⟩ of the delta, the
simulator has two states with an incoming transition labeled by C, i.e., s6 and s7,
from which it starts looking for a transition labeled by B. State s7 leads only to a
transition labeled by E, while state s6 leads to state s7 with a transition labeled
by B. Thus, the simulator follows this latter path in the LTS, logging the trace
⟨A,C,B,E⟩. The LTS produced by the simulator after the second run of simu-
lation corresponds to the one in Figure 5(a) considering also dotted states and
transitions. The resulting log is {⟨A,B,C,E⟩, ⟨A,C,B,E⟩, ⟨A,D,E⟩}. The evalua-
tor takes this log as input and assesses that all relations in the footprint matrix
are covered, i.e. 100% of completeness is achieved. Notably, in this example, we
required the highest level of completeness, but the user could specify a lower
threshold. The purpose is satisfied since the log covers all relations and does not
contain repeated traces, hence purple produces as output the .xes file.

The Process discovery via frequencies instantiation aims at generat-
ing event logs for discovery algorithms based on frequencies. For instance, the
Heuristics algorithm relies on threshold values for filtering less frequent behav-
iors, e.g., the occurrences of an activity or of an order relation. To this aim, we
provide an instantiation of purple permitting to choose the traces frequency.
The resulting event log can be tuned in order to represent more realistic situa-
tions where behaviors could be less or more frequent than others. Logs of that
form suite also for comparing the filtering approaches of different algorithms. To
address this purpose, purple extracts the set of traces the model can perform
and information regarding the loops. Then, the user specifies the percentage of

10 A. Burattin et al.

occurrence for each trace, a threshold value for the maximum number of rep-
etitions of loops, and a minimum number of traces to be produced. Therefore,
during the log generation, the evaluator implemented for this purpose compares
the occurrences of traces and the thresholds for the loops chosen by the user
with the current log, and generates a delta accordingly. In case some of these
values are lower than requested, the evaluator passes to the simulator a delta
containing the entire traces that are still infrequent in the log. If a trace contains
a loop, the evaluator modifies the trace in the delta by repeating the loop (for
a random number of times below the given threshold). Then, the delta, which
contains only complete execution traces of the input model, guides the simula-
tor from the initial to the final state of the LTS. Once the minimum number
of traces in the log is reached, and the requested occurrence percentages are
satisfied, purple returns the log .xes file.

Conformance checking in purple. Lastly, we present purposes related to
conformance checking, a family of techniques for comparing a model and a log. In
particular, we consider techniques based on [2]. They permit to spot differences
between the expectation (i.e., the process model) and the reality (i.e., the event
log). Alignments explicitly show where deviations are located and which are
the involved activities. Computing alignments is an expensive task, especially in
presence of models with huge state-space, and there exist different approaches
implementing it [5]. To check the reliability of such techniques, or to compare
their performances, it is necessary to have logs embedding traces with deviations
from the normal behavior, i.e., noisy behaviors. To this end, we propose two
instantiations of purple producing event logs from BPMN and Petri-nets with
a precise amount of noisy behavior, or with a precise alignment cost.

The conformance checking via noise frequencies instantiation generates
event logs with the desired percentages of noisy traces. The literature identifies
types of noise that can affect a trace in an event log [13]; here we consider
the following: missing head, a trace without some of the initial events; missing
tail, a trace without some of the final events; missing episode, a trace without
some of the intermediate events; order perturbation, a trace where some events
appear in a wrong order; and additional event, a trace in which appears an alien
event. This instantiation of the framework takes as inputs a model to simulate, a
number of traces to generate, a percentage of occurrence for each type of noise,
and a precision in reproducing the noise percentages. Whenever it is invoked, the
evaluator sends an empty delta to the simulator to receive back a random trace
without noise. Then, it compares the percentage of occurrences for each type of
noise in the current log with respect to the requested one. The trace is hence
modified introducing the type of noise farthest from the requested occurrence. In
case of missing head, missing tail, or missing episode, purple removes a random
number of events from the head, from the middle, or from the tail of the trace,
respectively. In case of order perturbation it swaps two or more events in the
trace, while in case of additional event it inserts an event named differently from
every activity name in the model. Once the evaluator finds the desired noise
percentages and number of traces, it returns the final log.

A. Burattin et al. 11

The conformance checking via fixed align cost purpose aims at gen-
erating event logs with a precise amount of noise that involves a specific cost
for the alignment. Roughly speaking, the alignment cost indicates the number
of deviations between the model and the log. An alignment cost equal to zero
indicates a perfect match between the log and the model, while higher costs
indicate the presence of non-compliant behaviors. Synchronous moves between
trace and model cost zero, while moves that can be performed only in the model
or only in the trace usually cost 1. The same trace can be aligned to the model
following different execution paths and leading to different costs; the one to con-
sider for calculating the mean value is the lowest i.e., the optimal alignment. The
overall alignment cost is the average of the optimal alignments for each trace in
the log. Considering the model in Figure 4 (a), a noisy trace could be ⟨B,C,E⟩,
where the event labeled with A lacks. By aligning this trace through the path
⟨A,D,E⟩, only the last event matches, thus we have to perform two moves in
the trace and two moves in the model that cost in total 4. While following the
path ⟨A,C,B,E⟩ and ⟨A,B,C,E⟩, the alignment costs are respectively 3 and 1.
Therefore, the optimal alignment cost to consider is the lowest one, i.e. 1.

Here, purple takes as input a model, a desired alignment cost, a log size,
and a precision in reproducing the exact alignment cost. Before evaluating the
current log, the framework extracts from the model the set of traces that can be
produced, and uses them later for calculating the alignment costs. Then, similarly
to the previous purpose, the evaluator receives from the simulator traces without
noise, perturbs them with a type of noise, and updates the reached alignment
cost. Every time a noisy trace is added to the current log, the evaluator calculates
the optimal alignment cost computing the minimum among the Levenshtein
distances [16] between the noisy trace and traces previously extracted from the
model.

5 Validation

In this section, we present a list of experiments on the presented instan-
tiations of the framework, using the corresponding implementations in the
purple tool. The experiments are carried out by means of synthetic and
real(istic) BPMN and Petri-net models, respectively generated by PLG2 (https:
//plg.processmining.it/) or obtained from the literature. The models contain
start/end events, activities, and XOR/AND gateways; their dimension ranges
from a minimum of 8 to a maximum of 53 elements. Concerning their topology,
they are both structured and unstructured, and some of them contain loops. Any
further information about the models and the artifacts generated during the ex-
periments is available at https://bitbucket.org/proslabteam/validation/.
Notably, the aim of this validation is to show the suitability of the frame-
work in addressing mining purposes of different kinds. In each experiment, we
use as a measure a quality criterion for the event logs, set on the basis of
the purpose to address. When possible, we compare the results of these mea-
surements with the ones achieved by reference tools, such as PLG2, BIMP

https://plg.processmining.it/
https://plg.processmining.it/
https://bitbucket.org/proslabteam/validation/

12 A. Burattin et al.

Coverage with 1000 traces Coverage with min traces
Model El. Traces PURPLE BIMP GED PLG2 BIMP GED PLG2
p0 10 3 100% 63% 100% 100% 63% 100% 100%
p1 11 3 100% 63% 100% 100% 63% 63% 75%
p2 12 5 100% 75% 100% 100% 75% 100% 100%
p3 17 5 100% 83% 100% 100% 83% 92% 100%
p4 21 10 100% 61% 100% 100% 56% 89% 100%
p5 27 10 100% 74% 91% 91% 70% 91% 83%
p6 34 14 100% 39% 69% 100% 39% 69% 94%
p7 40 76 100% 24% 68% 97% 24% 68% 93%
p8 49 226 100% 6% 49% 99% 6% 49% 97%
p9 53 41 100% 25% 54% 99% 25% 50% 89%

Table 1. Process discovery via order relations validation results.

(https://bimp.cs.ut.ee/), and the ProM (https://www.promtools.org/)
plugin of the GED methodology [14]. We selected these tools among the ones
found in the literature (we refer to Section 6 for a comprehensive review of tools
for log generation) using as inclusion criteria: the availability of an operating
software to be used for the experiments, and the possibility of tailoring the pro-
duced logs to the mining purpose under analysis.

Regarding the process discovery via order relations, the comparison
measure we use to assess event logs quality is coverage, i.e., the percentage of
activity relations provided in the log with respect to the entire set of relations
present in the model. In this regard, we ran the logs generation setting to 1000
the number of traces to produce by the tools, except for purple since it stops
autonomously the simulation once the purpose is satisfied. In a second experi-
ment, for each input model we decreased the number of traces to be produced
to the amount of traces that purple needs to cover the entire footprint matrix.
Notably, both kinds of experiments have been repeated 10 times for each model,
but, for the sake of presentation, the results reported in the following consider
the worst results achieved by purple and the average results achieved by the
other tools. For each of the considered process model, we obtained eight event
logs, two from each tool, and we compared them with respect to the coverage
of the footprint matrix. Table 1 summarizes the results of this comparison. The
first two columns, Model and El., contain the name of the process model and the
number of its elements, respectively. The third column, Traces, reports the num-
ber of traces autonomously generated by purple that permit to cover the entire
footprint matrix as reported in column 4. Columns from 5 to 7 show the per-
centages of activity relations covered by BIMP, GED, and PLG2, respectively,
using a threshold of 1000 traces to be generated. The last three columns pro-
vide results for analogous experiments where the values of column 3 are used as
threshold for the traces to be generated. Being guided by the evaluator, purple
covered entirely the relations matrix for each of the considered process models.
Instead, the other tools show worse results, especially in the case of bigger mod-
els containing many parallel or exclusive branches, as such models involve higher
numbers of order relations. Indeed, a model with n activities to be executed in
parallel implies having n(n− 1) relations to discover, while a model with n ac-
tivities in sequence (one after the other) shows just n−1 relations. For instance,
model p8 has six parallel split gateways and one exclusive split gateway with 3
levels of nesting, and the resulting footprint matrix contains 699 relations to be

https://bimp.cs.ut.ee/
https://www.promtools.org/

A. Burattin et al. 13

discovered. The results achieved using the number of traces generated by pur-
ple as threshold show that, on average, BIMP covers the 6% of the footprint
matrix, PLG2 the 97%, and GED the 49%. When we increase the number of
traces to produce, the results get slightly better for PLG2 which reaches the 99%
of coverage, while they remain unchanged for BIMP and GED.

For what concerns the process discovery via frequencies, we use as
quality measures the error in reproducing the desired percentages of occur-
rence for the trace variants, and the number of repetitions of each loop in
the model. For this instantiation, a comparison between purple and other
tools would be unfair, since none of the other tools permits to customize the
trace frequencies. Therefore, we run the simulations only on purple. To this
aim we used a set of models that contain loops, using a random value for
the trace frequencies, the loop repetition thresholds fixed to 5, and the num-
ber of traces set to 10000. We analyzed the resulting logs using ProM to ex-
tract the occurrences of each trace variant and the number of loop repetitions.

Loops
Model El. Traces repetition avg. Error
p10 8 10000 3.2 0%
p11 10 10000 3.2 0%
p12 19 10000 2.9 0%
p13 25 10000 2.7 0%
p14 38 10000 2.9 0%

Table 2. Process discovery via fre-
quencies results.

The results are presented in Table 2. We
report the dimension of the input model,
the number of generated traces, and the
error. For each model, purple reproduces
the correct number of trace variants, keep-
ing the loop repetitions under the selected
threshold. These results were expected
since the evaluator always provides deltas
that force the simulator to follow a precise execution trace in the LTS. Thus,
the simulator produces exactly the log required by the user, avoiding errors.

For the conformance checking via noise frequencies, we compare
the event logs generated by purple and PLG2, as the latter permits to
choose percentages of noise. We compare event logs with 5000 traces and
the 10% of noised traces for each type of noise, i.e., 500 for missing head,
500 for missing tail, 500 for missing episode, 500 for order perturbation,
and 500 for additional event. Finally, we analyze the logs to calculate the
error in reproducing the desired occurrence rate for each type of noise.

Error
Model El. Traces PLG2 PURPLE
p25 10 5000 20,6% 0%
p26 11 5000 22,5% 0%
p27 12 5000 21,0% 0%
p28 17 5000 21,3% 0%
p29 21 5000 18,8% 0%

Table 3. Conformance checking via
noise frequencies results.

Table 3 reports the results of the comparison.
It shows that purple produces always the
exact number of noised traces, while PLG2
produces fewer noised traces than requested.
On average, the error in the logs of PLG2
is equal to 20,8%, meaning that around 500
noised traces over 2500 are missing. The big-
ger lack results in reproducing traces with or-
der perturbation, probably because PLG2 swaps also activities that are in par-
allel, so that the resulting trace is still compliant with the model. This problem
is avoided in purple, because it checks if the noised trace is compliant or not
with the model before adding it to the log.

14 A. Burattin et al.

With respect to the conformance checking via fixed align cost,
we evaluate only the logs of purple, as no other tool supports this pur-
pose. Here we set the desired alignment cost to 3 for each simulated
model and a log size of 2000 traces, then we use the resulting logs and
the input models to calculate via ProM the real costs for the alignments.

Alignment cost
Model El. Traces Required Obtained Error
p30 6 2000 3 3.03 1%
p31 18 2000 3 2.91 3%
p32 27 2000 3 2.93 3%
p33 35 2000 3 2.91 2.3%
p34 43 2000 3 2.89 4.3%

Table 4. Conformance checking via fixed
align cost results.

Table 4 puts in comparison, for each
considered model, the required and
the obtained alignment costs. The re-
sults show that the generated logs have
alignment costs very close to the ex-
pectations. Overall, the error percent-
age made by the tool is on average
equal to 2.7%. This discrepancy de-
pends on the fact that the tool generates noised traces in order to make the
log converge to the required alignment cost, but before reaching it the simula-
tion is stopped because the requested number of traces to produce is reached.

6 Related works

This section discusses the most relevant works on the generation of artificial event
logs. In describing them, we put the focus on the main features of purple, such
as the generation of event logs tailored to a desired mining purpose from models
specified in different modeling languages. Thus, we mainly consider which kinds
of event logs these approaches can generate, and which models they support.

Esgin and Karagoz present in [12] a solution to the problem of unlabeled event
logs [1] proposing a synthetic event log generation approach. The generation of
event logs can be tuned according to four parameters: the activity priority, an
unexpected process termination probability, a noise threshold, and a branching
probability for the choice gateways. Apart from these options, the simulation
performs random executions of the input Petri-net. Differently from us, the ap-
proach supports only Petri-nets, cannot handle different mining purposes, and
is not implemented in a tool.

Kataeva and Kalenkova propose in [15] grammar rules generating well-
structured WF-Nets from which to produce logs. With respect to purple, this
work strongly limits the kind of logs that can be produced. Indeed, it handles
just well-structured WF-Nets; moreover, logs cannot be tuned for specific mining
purposes. In the same fashion, Burattin presents in [8] a tool, called Process Log
Generator (PLG2), that creates well-structured BPMN models, and produces
event logs from their simulation. To produce artificial models, PLG2 combines
different control-flow patterns, via context-free grammar according to options
like the number of gateways, or the presence of noise. With respect to purple,
this approach relies on random executions of the input model and works only
with BPMN. Similarly, Alves and Günter propose in [17] a tool for the genera-
tion of event logs through the simulation of colored Petri-nets. They point out
the issues related to the use of real-life event logs to fine tune mining algorithms,

A. Burattin et al. 15

and how the incompleteness of an event log or the presence of noise can compro-
mise the evaluation of the mining algorithms. Also this approach cannot tune
the logs to produce since it relies on a random simulation of the input model.

Mitsyuk et al. face in [19] the problem of defining and generating logs from
collaborative processes. They use an executable BPMN semantics supporting
a subset of elements from the standard notation, such as tasks (also send/re-
ceive), sub-processes, parallel and exclusive gateways and cancellation events.
Moreover, they consider the data perspective, as data objects can store single
data values used for driving exclusive choices. The result is a log generator in-
tegrated in the ProM framework that produces random event logs in .xes files.
With respect to our work, they can simulate communication between processes;
however their approach only deals with a single modeling language and cannot
be tuned for specific purposes. Stocker and Accorsi introduce in [21] an approach
for generating event logs for a specific purpose, i.e., testing security properties.
They present a tool, called SecSy, that generates logs from the simulation of a
Petri-net in a specific scenario. The simulation performs random execution of
the model, then it applies transformations to the generated event log. These
transformations remove or insert activities and modify traces in order to vio-
late security properties. Compared to ours, this approach takes care of just one
specific purpose for which the produced event logs are tuned, and of just one
modeling language (i.e., Petri-net).

Finally, Jouck and Depaire present in [14] a log generation approach specific
for the comparison of discovery algorithms. They produce, and then simulate, a
population of well-structured models from selected workflow patterns, to ensure
the presence of specific activities order relations chosen by the user. Compared
to ours, this work uses process trees to produce logs and, apart from process
discovery, further purposes are not taken in consideration.

Summing up, differently form the purple framework, the works mentioned
above mainly focus on generating random event logs without focusing on spe-
cific mining purposes. Moreover, they limit the simulation to single modeling
languages, and also to structured models. Lastly, some of them produce logs in
non-standard formats, jeopardizing the compatibility with process mining tools.

7 Concluding Remarks

The presented work proposes a novel framework, purple, to generate event logs
via guided simulation of business models. purple is meant to deal with sev-
eral modeling languages and different mining purposes, as well as to ensure that
the produced event log brings properties related to the selected mining pur-
pose. Along with the definition of purple, we present framework instantiations
addressing the generation of event logs tailored to four purposes. These instan-
tiations and two semantic engines for BPMN and Petri-Net are implemented in
the purple tool we provide. The analysis of the related works and the compari-
son we conducted between the existing log generators show that purple is able,
better than the others, to tune the simulation to the mining purpose.

16 A. Burattin et al.

In conclusion, both research questions presented in the Introduction can be
positively answered. Concerning RQ1, we provided a general framework for the
automated generation of event logs tailored to different mining purposes, as
well as several instantiations of it, thus proving the feasibility of the approach.
Regarding RQ2, we experimented our solution considering different purposes,
and it proved to be more effective compared to purpose-agnostic simulators.

Assumptions and Limitations. We formalize the purple framework under
the assumption of simple event logs, which contain only activity names. Conse-
quently, the purple framework focuses mainly on control-flow aspects. In par-
ticular, the delta inherits this assumption as the sub-traces included in the delta
are lists of activity names. Notably, this still allows defining mining purposes and
evaluators that guide the simulation according to aspects of some other model
perspectives. For instance, one can define an evaluator producing log on the basis
of the cost of the activities tailored to what-if analysis techniques. Nevertheless,
handling traces with just the activity names results in a limitation to the variety
of mining purposes and evaluators that can be defined on top of purple. For
example, simple logs do not deal with the resource perspective needed for social
network analysis purposes, or the data perspective for decision mining purposes.
Moreover, even if purple produces event logs containing timestamps, they cor-
respond to the moments the tool records the events. The user cannot influence
timestamps, e.g., setting activity durations and delays between activities.

Regarding the delta definition in terms of sub-traces, another concern is that
it cannot guide the simulator toward more abstract or generic behaviors. For
instance, the delta cannot suggest the simulator to look for traces where a loop
is repeated a casual number of times or where an event follows another not
directly as some events may appear in the middle. Instead, by defining the delta
using a language for expressing a set of traces (e.g., regular expressions), we
could make more complex queries on the LTS, and thus address more purposes.

Future Works. As future works, we intend to pursue the development of the
purple framework, both from the theoretical and the practical point of view.
We aim to formalize the purple framework and its components in order to
investigate its formal properties. Moreover, we intend to define and implement
other evaluators, in order to handle other mining purposes and take into account
other model perspectives, like data and multi-party communication. This can, for
instance, give the chance to the user to generate event logs with different data
quality issues in order to test approaches and algorithms dealing with them.
Regarding the tool, we aim at parallelizing the computations of the simulation
by handling more than one hint of the delta at the same time, and we plan to
implement a debugging console for spotting useful information on simulations,
including possible tool anomalies.

Acknowledgments. Work partially supported by the Italian MIUR PRIN
projects Seduce n. 2017TWRCNB and Fluidware n. 2017KRC7KT, and the IN-
dAM GNCS 2020 project Sistemi reversibili concorrenti: dai modelli ai linguaggi.

A. Burattin et al. 17

References

1. van der Aalst, W.: Matching observed behavior and modeled behavior: An ap-
proach based on Petri nets and integer programming. Decision Support Systems
42(3), 1843–1859 (2006)

2. van der Aalst, W.: Process mining: data science in action. Springer (2016)
3. van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: Discovering process

models from event logs. Knowledge and Data Engineering 16(9), 1128–1142 (2004)
4. Abdul, B., Corradini, F., Re, B., Rossi, L., Tiezzi, F.: UBBA: Unity based BPMN

animator. In: CAiSE Forum. LNCS, vol. 350, pp. 1–9. Springer (2019)
5. Adriansyah, A.: Aligning observed and modeled behavior. Ph.D. thesis, Mathe-

matics and Computer Science (2014). https://doi.org/10.6100/IR770080
6. Andrews, R., van Dun, C., Wynn, M., Kratsch, W., Röglinger, M., ter Hofstede, A.:

Quality-informed semi-automated event log generation for process mining. Decision
Support Systems 132, 113265 (2020)

7. Bose, R., Mans, R., van der Aalst, W.: Wanna improve process mining results? In:
Computational Intelligence and Data Mining. pp. 127–134. IEEE (2013)

8. Burattin, A.: PLG2: Multiperspective Process Randomization with Online and Of-
fline Simulations. In: BPM Demo Track. vol. 1789, pp. 1–6. CEUR-WS.org (2016)

9. Cios, K., Pedrycz, W., Swiniarski, R., Kurgan, L.A.: Data mining: a knowledge
discovery approach. Springer (2007)

10. Corradini, F., Muzi, C., Re, B., Rossi, L., Tiezzi, F.: MIDA: Multiple instances
and data animator. In: BPM Demo. vol. 2196. CEUR-WS.org (2018)

11. Corradini, F., Muzi, C., Re, B., Rossi, L., Tiezzi, F.: Formalising and animating
multiple instances in bpmn collaborations. Information Systems 103 (2022)

12. Esgin, E., Karagoz, P.: Process Profiling based Synthetic Event Log Generation.
In: IC3K. vol. 1, pp. 516–524. SCITEPRESS (2019)

13. Günther, C.: Process mining in flexible environments. Ph.D. thesis, Technische
Universiteit Eindhoven - Industrial Engineering and Innovation Sciences (2009)

14. Jouck, T., Depaire, B.: Generating Artificial Data for Empirical Analysis of
Control-flow Discovery Algorithms: A Process Tree and Log Generator. Business
and Information Systems Engineering 61(6), 695–712 (2019)

15. Kataeva, V., Kalenkova, A.: Applying graph grammars for the generation of process
models and their logs. In: Young Researchers’ Colloquium on Software Engineering,
vol. 8, pp. 83–87. HSE University (2014)

16. Levenshtein, V.: Binary codes capable of correcting deletions, insertions, and re-
versals. In: Soviet physics doklady. vol. 10, pp. 707–710 (1966)

17. de Medeiros, A., Günther, C.: Process Mining: Using CPN Tools to Create Test
Logs for Mining Algorithms. In: Practical Use of Coloured Petri Nets and CPN
Tools, vol. 576, pp. 177–190. University of Aarhus (2005)

18. Meseguert, J., Montanari, U., Sassonet, V.: On the semantics of petri nets. In:
Conference on Concurrency Theory. LNCS, vol. 630, pp. 286–301. Springer (1992)

19. Mitsyuk, A., Shugurov, I.S., Kalenkova, A., van der Aalst, W.: Generating event
logs for high-level process models. Simulation Modelling Practice and Theory 74,
1–16 (2017)

20. OMG: Business Process Model and Notation (BPMN V 2.0) (2011)
21. Stocker, T., Accorsi, R.: SecSy: Security-aware synthesis of process event logs. In:

Enterprise Modelling and Information Systems Architectures. pp. 71–84 (2013)
22. Van Dongen, B., De Medeiros, A., Wen, L.: Process mining: Overview and outlook

of petri net discovery algorithms. In: Transactions on Petri Nets and Other Models
of Concurrency II, LNCS, vol. 5460, pp. 225–242. Springer (2009)

https://doi.org/10.6100/IR770080

18 A. Burattin et al.

23. Weijters, A., van Der Aalst, W., De Medeiros, A.: Process mining with the heuris-
tics miner-algorithm. In: TU/e, Tech. Rep. vol. 166, pp. 1–34 (2006)

24. Yang, H., Park, M., Cho, M., Song, M., Kim, S.: A system architecture for man-
ufacturing process analysis based on big data and process mining techniques. In:
IEEE International Conference on Big Data. pp. 1024–1029 (2014)

	A Purpose-Guided Log Generation Framework

