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We compare the power of quantum and classical physics in terms of randomness certification from
devices which are only partially characterized. We study randomness certification based on state
discrimination and take noncontextuality as the notion of classicality. A contextual advantage was
recently shown to exist for state discrimination. Here, we develop quantum and noncontextual semi-device
independent protocols for random-number generation based on maximum-confidence discrimination,
which generalizes unambiguous and minimum-error state discrimination. We show that, for quantum
eavesdroppers, quantum devices can certify more randomness than noncontextual ones whenever none of
the input states are unambiguously identified. That is, a quantum-over-classical advantage exists.
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Quantum physics departs radically from everyday expe-
rience. Observations on quantum systems can defy classical
notions of cause and effect and exploiting quantum effects
enables advantages for a number of applications including
precision sensing, computing, and information security.
Understanding the quantum-classical boundary is both of
fundamental importance to the foundations of physics in
general and of relevance to characterizing and quantifying
quantum-over-classical advantages in specific tasks and
applications.
In this work, we compare the power of quantum and

classical physics for randomness certification. Random
numbers are needed for many tasks in science and
technology [1,2]. In particular, high-quality randomness
is central to cryptographic security and thus to much of
modern information technology. Because of the inherent
randomness in quantum measurements, strong guarantees
can be established for the extraction of randomness from
quantum systems. In fact, randomness can be certified with
little or no trust in the devices used to generate it. In setups
with multiple, separate parties, randomness can be certified
in a device-independent (DI) setting, where the devices are
treated as untrusted black boxes [3–5]. In that setting, the
relevant notion of classicality is locality (also known as
local causality), in the sense of Bell [6,7], and the setup is
required to violate a Bell inequality to generate random-
ness. This is, however, technologically very demanding, as
the violation must be loophole free [4,8–12]. Here, we
focus on the semi-DI setting, where the black boxes are
complemented by a few, general assumptions, representing
an increased level of trust in the devices. This renders
implementations much more accessible, and semi-DI ran-
domness certification can be realized in simple prepare-
and-measure setups [13–24]. As our notion of classicality

we adopt noncontextuality [25,26], in the form introduced
by Spekkens [27], which is applicable also in scenarios
which do not have the multipartite structure of Bell tests.
We consider semi-DI randomness certification based on

state discrimination, where the partial trust in the devices
consists in an assumption about the distinguishability
of the prepared states. In particular, we consider maximum-
confidence state discrimination [28]. In the context of
randomness certification, a semi-DI protocol based on
unambiguous state discrimination was previously demon-
strated [29], and in the context of comparing quantum and
noncontextual models, a quantum advantage for minimum-
error state discrimination was demonstrated by Schmid and
Spekkens [30]. Maximum-confidence discrimination is
more general, containing minimum-error and unambiguous
state discrimination as particular cases. In related work, we
demonstrate a quantum-over-noncontextual advantage for
maximum-confidence state discrimination [31]. In the
present work, we find a rich picture. In a setting where
the devices are either quantum or noncontextual, but where
the eavesdropper in both cases is allowed quantum powers,
quantum devices outperform noncontextual ones. However,
comparing a quantum universe with quantum eavesdrop-
pers against a noncontextual universe with noncontextual
(hence less powerful) eavesdroppers, the amount of quan-
tum certifiable randomness may be both larger than,
smaller than or equal to the amount of noncontextual
randomness, depending on the distinguishability of the
states and the observed confidence of discrimination.
A prepare-and-measure setting for state discrimination

and randomness certification is illustrated in Fig. 1(a). We
will restrict our attention to binary inputs x ∈ f0; 1g and
ternary outputs b ∈ f0; 1; øg. In the case of state discrimi-
nation, b represents a guess for which state was prepared,
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with ø labeling inconclusive outcomes. For randomness
certification, the amount of true randomness present in the
output b can be lower bounded based on the observed
distribution pðbjxÞ and an assumption on the distinguish-
ability of the prepared states. We start by considering state
discrimination, first in the quantum case and then for
noncontextual theories.
In quantum state discrimination, quantum states ρ̂x

are prepared and the measurement device implements
a POVM with elements Π̂b, resulting in the distribution
pðbjxÞ ¼ Tr½ρ̂xΠ̂b�. For binary inputs, without loss of
generality, the state space can be taken to be a qubit space.
When the states are furthermore pure, ρ̂x ¼ jψxihψxj, their
distinguishability can be quantified simply by their overlap
δ ¼ jhψ0jψ1ij. Its estimation will depend on the imple-
mentation. For instance, in [29] a time-bin encoding with
coherent states was used. In that case, the overlap can be
controlled through the amplitude of the pulses. Different
quantifiers of performance can be adopted.
In minimum-error state discrimination (MESD), no

inconclusive outcomes are permitted, pðøjxÞ ¼ 0, and the
figure of merit is the average error rate Pe¼p0pð1j0Þ þ
p1pð0j1Þ, where px is the prior probability for input x.
Optimal MESD achieves a minimal error rate given by the
Helstrom bound Pe ¼ 1

2
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4p0p1δ

2
p

Þ [32]. Thus,
errors are unavoidable for nonorthogonal states.
Errors can be suppressed at the cost of a nonzero rate

of inconclusive outcomes. In unambiguous state discrimi-
nation (USD), the error probabilities are strictly zero,
pð0j1Þ ¼ pð1j0Þ ¼ 0, and the average inconclusive rate
Pø ¼ p0pðøj0Þ þ p1pðøj1Þ can be taken as the figure of
merit. For unbiased inputs, p0 ¼ p1 ¼ 1

2
, optimal USD

achieves Pø ¼ δ [33]. In the case of qubits, USD is possible
only for two pure states.

Maximum-confidence discrimination (MCD) general-
izes the notions of MESD and USD [28]. The confidence
Cx is the probability that, given an outcome b ¼ x, the
input was x. From Bayes’ theorem

Cx ¼
px

ηx
pðxjxÞ; ð1Þ

where ηb ¼
P

x pðbjxÞpx is the rate of outcome b (i.e., the
marginal distribution of the output). In MCD, the figure of
merit is a given Cx, or any convex combination of them,
and the goal is to maximize this quantity. WhenCx ¼ 1, the
input x is unambiguously identified. Hence, unambiguous
discrimination is a particular case of MCD, and if no further
constraints are imposed, MCD recovers USD whenever the
latter is possible. This is the case for an arbitrary number of
linearly independent pure states, and thus in particular
always for two distinct pure states, as considered here.
MESD can also be recovered by adopting η0C0 þ η1C1 ¼
1 − Pe as the figure of merit, when the inconclusive rates
are zero [33]. In general, MCD is flexible and can handle
situations in which both error rates and inconclusive rates
are nonzero.
We now proceed to consider noncontextual state dis-

crimination. We start from an ontological model of the
prepare-and-measure scenario [30,34]. The system is asso-
ciated with an ontic state space T in which each point τ
completely defines all physical properties, i.e., the out-
comes of all possible measurements. Each state preparation
x samples the ontic state space according to a probability
distribution μxðτÞ, referred to as the epistemic state. Each
measurement is defined by a set of response functions,
that is, non-negative functions ξbðτÞ over the ontic space,
such that

P
b ξbðτÞ ¼ 1 for all τ ∈ T. The probability of

obtaining the outcome b when state μx was prepared is

FIG. 1. (a) Prepare-and-measure scenario for state discrimination and randomness certification, in quantum and noncontextual
settings. A preparation device takes an input and transmits states to a measurement device, which produces an output. From an
assumption about the distinguishability of the states and the observed input-output correlations, the entropy in the raw output can be
bounded and random numbers extracted from it. (b) In the quantum setting, the distinguishability is quantified by the overlap of the
quantum states. For binary inputs, these can be represented by qubit states. (c) In the noncontextual setting, there is an ontological state
space, consisting of perfectly distinguishable states. The preparation device emits epistemic states, given by probability distributions
over ontological states. The distinguishability of epistemic states is quantified by the confusability, which measures the overlap of the
corresponding distributions.
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pðbjxÞ ¼
Z
T
dτ μxðτÞξbðτÞ: ð2Þ

While distinct ontic states can be perfectly discriminated,
epistemic states with overlapping distributions cannot. It is
the discrimination of epistemic states which we compare
against quantum state discrimination.
To compare the two requires a notion analogous to the

quantum state overlap. Note that δ2 ¼ jhψ0jψ1ij2 can be
thought of as the probability that an outcome corresponding
to projection onto jψ1i occurs when jψ0i was prepared (or
vice versa). Similarly, in the ontological model we define
sharp outcomes as outcomes that are certain to occur
for a given preparation. ξb is a sharp outcome for μx if
pðbjxÞ ¼ 1. For discrimination of μ0 and μ1, the confus-
ability Δ0;1 is then the probability that a sharp outcome for
μ1 occurs when μ0 was prepared. For preparation-non-
contextual models, that we now introduce, one has the same
symmetry as in the quantum case Δ0;1 ¼ Δ1;0 ¼ Δ, and the
models can be compared for Δ ¼ δ2.
Two preparation procedures are said to be operationally

equivalent if they cannot be distinguished by any
measurement, and the ontological model is said to be
preparation noncontextual if all operationally equivalent
preparations are represented by the same epistemic state.
We take preparation noncontextuality as our notion
of classicality and refer to it simply as noncontextuality.
We impose two requirements on the noncontextual model.
First, it reproduces the observed distribution pðbjxÞ.
Second, we need an operational equivalence to which
noncontextuality can be applied. We take the model to
reproduce the existence of complementary states jψ x̄i, with
jψxihψxj þ jψ x̄ihψ x̄j ¼ 1 and jhψ 0̄jψ 1̄ij ¼ δ. That is, in
addition to the epistemic states μ0, μ1, it must also contain
two states μ0̄, μ1̄ such that their confusability is Δ, they
obey μxμx̄ ¼ 0, and the convex combinations 1

2
μx þ 1

2
μx̄ for

x ¼ 0, 1 correspond to operationally equivalent prepara-
tions. By noncontextuality they must hence be equal
1
2
μ0 þ 1

2
μ0̄ ¼ 1

2
μ1 þ 1

2
μ1̄. It was shown by Schmid and

Spekkens, under similar assumptions, that quantum
mechanics outperforms noncontextual theory for MESD
in the sense that the Helstrom bound is lower than the
minimum achievable error rate in the noncontextual model
for any value of Δ [30]. In Ref. [31], we study quantum vs
noncontextual maximum-confidence discrimination.
The prepare-and-measure state-discrimination setup can

be exploited for semi-DI randomness certification by
taking Δ as given while the devices are otherwise unchar-
acterized (the states and measurements are unknown), and
then assess the randomness of b based on the observed
distribution pðbjxÞ. Intuitively, if pðbjxÞ is close to optimal
discrimination for the given Δ, this constrains the mea-
surements to be close to the optimal ones, and the
predictability of b to someone with perfect knowledge
of the states and measurements can be estimated.

More precisely, we introduce a hidden variable λ, distrib-
uted according to qλ, labeling measurement strategies. The
average guessing probability for an eavesdropper with
access to λ and the input x

pg ¼
X
x

px

X
λ

qλ max
b

pðbjx; λÞ; ð3Þ

with pðbjx; λÞ given by Tr½ρ̂xΠ̂λ
b� when the eavesdropper

is quantum and by (2) with response function ξλb if the
eavesdropper is restricted to be noncontextual. Note that λ
is assumed to be independent of x (otherwise the discrimi-
nation problem becomes trivial). We quantify the random-
ness by the min-entropy Hmin ¼ −log2pg, which gives the
number of (almost) uniformly random bits which can be
extracted per round of the protocol [35].
Since the measurement strategies are unknown to the

user, to certify randomness pg must be upper bounded by
optimizing over all strategies compatible with the observed
data. We focus on MCD for the input x ¼ 0 and impose
only that the rate η0 and the confidence C0 are reproduced
(as opposed to the full distribution pðbjxÞ. For a quantum
eavesdropper, pg ≤ pQ

g with

pQ
g ¼ max

qλ;Πλ
b

X
x;λ

pxqλ max
b

Tr½ρ̂xΠ̂λ
b�; ð4Þ

subject to qλ and Π̂λ
b being valid probability distributions

and POVMs, respectively,
P

x;λ qλpxTr½ρ̂xΠ̂λ
0� ¼ η0 andP

λ qλp0Tr½ρ̂0Π̂λ
0� ¼ η0C0. Without loss of generality, the

states can be fixed to any pair of states with overlap δ. Thus
pQ
g is a function only of the confusability Δ and the

distribution pðbjxÞ. The optimization problem in (4) can be
rendered as a semidefinite program (SDP), as we show
in [36].
Similarly, the guessing probability for a noncontextual

eavesdropper is bounded by pg ≤ pNC
g with

pNC
g ¼ max

qλ;M
λ
b

X
x;λ

pxqλmax
b

Z
T
dτ μxðτÞξλbðτÞ; ð5Þ

where now ξλb must be valid response functions, and the
constraints are the same as in the quantum case with the
Born rule replaced by (2).
In a noncontextual theory, a pair of epistemic states must

be equal on the overlap of their supports [27,30]. This
allows a general response function to be decomposed into
four extremal functions, corresponding to integrals over the
regions defined by the overlapping supports of μ0, μ1 and
their nonoverlapping partners. These integrals are, further-
more, functions of the confusability Δ. Using this, in [36]
we show that (5) can also be rendered as a semidefinite
program.
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In Fig. 2, we compare the certifiable quantum and
noncontextual min-entropies, HQ

min and H
NC
min, in two differ-

ent manners, focusing on equal prior probabilities p0 ¼
p1 ¼ 1

2
for simplicity. First, we compute the certifiableHmin

within each theory (top row), i.e., HQ
min when the device

attains the maximum quantum confidence and the eaves-
dropper is also quantum, and HNC

min for maximum non-
contextual confidence and a noncontextual eavesdropper.
This is the maximal certifiable randomness in each theory,
as Hmin is maximized for optimal discrimination. Second,
we consider the case in which the eavesdropper is always
quantum (bottom row). That is, the minimum entropy is
computed via the quantum SDP. Since quantum MCD can
reach higher confidences than noncontextual MCD, C0 is
not necessarily the same in the two cases. In [36] we went
beyond the study of pure states by studying the case where
noisy (mixed) states ρ̂0x ¼ ð1 − rÞρ̂x þ r1=2 are prepared.
Distinguishablity is still bounded by Δ, and the eaves-
dropper has no access to decompositions of the mixture.
The qualitative behavior in this setting is similar and thus
our main conclusions remain valid.
In the first case we find quantum-over-noncontextual as

well as noncontextual-over-quantum advantages in terms of
certifying randomness. Whenever any of the states is
unambiguously identified by the measurement device,
the quantum and noncontextual certifiable randomness
are equal, HQ

min ¼ HNC
min. Outside these regions, for con-

fusabilities Δ < 1=2 there is a noncontextual advantage,
while for Δ > 1=2 a quantum advantage appears and
eventually dominates for large Δ. We interpret this as
follows. A quantum eavesdropper is more powerful than a

noncontextual one, but optimal quantum discrimination
also imposes stronger constraints on the measurement
device. For states that are easy to discriminate (low Δ),
the former effect wins while for states that a hard to
distinguish (highΔ), the second effect dominates. Note that
a noncontextual advantage appears only in a universe where
the eavesdropper is noncontextual, but does not have access
to the ontic state.
In the second case, the eavesdropper is quantum in both

models, i.e., we allow the eavesdropper in the noncontex-
tual setting more power. As may be expected, quantum
devices are then always at least as powerful as non-
contextual ones, with a quantum-over-noncontextual ad-
vantage appearing for all values of Δ whenever none of the
inputs are unambiguously identified.
The maximal quantum advantage in terms of generating

unpredictable (random) measurement outputs for a quantum

FIG. 2. QuantumHQ
min and noncontextualH

NC
min certifiable min-entropies vs output rate η0, for three different confusabilities Δ, optimal

confidence C0, and equal prior probabilities p0 ¼ p1 ¼ 1
2
. Solid vertical lines delimit parameter regions in which input x is

unambiguously identified, labeled UI-x. Dashed vertical lines indicate rates at which HQ
min is maximal. The confidences are maximal in

all plots. Top row: eavesdroppers in quantum and noncontextual models are respectively quantum and noncontextual. Bottom row: a
quantum eavesdropper is considered in both cases.

FIG. 3. Minimum entropy corresponding to the output rates
with maximal quantum advantage, for quantum and noncontex-
tual discrimination schemes and a quantum eavesdropper.
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eavesdropper is plotted against the confusability in Fig. 3.
The quantum advantage is largest for nearly indistinguish-
able states (similar to what was found in Ref. [39]). The
eavesdropper’s available strategies becomemore constrained
when the optimal confidence has to be reproduced. In a
noncontextual scenario, the constraint on the eavesdropper’s
strategies grows weaker for both nearly distinguishable and
indistinguishable states.
In conclusion, we have computed the amount of random-

ness which can be semi-device-independently certified in
maximum-confidence state discrimination setups in both
quantum and preparation-noncontextual models. We have
derived the maximal randomness within each model, and
we find a quantum advantage for MCD-based randomness
generation against quantum adversaries. When the adver-
sary in the noncontextual setting is constrained to be
noncontextual as well, we find a quantum advantage when
the prepared states are difficult to distinguish, but a non-
contextual advantage when they are easy to distinguish. In
the future, it would be interesting to extend these results to
settings with more than two inputs, where more random-
ness can potentially be generated, and to mixed-state
preparations, where correlations between the prepared
states and the eavesdropper potentially need to be taken
into account.
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M. Bourennane, Self-testing nonprojective quantum mea-
surements in prepare-and-measure experiments, Sci. Adv. 6,
eaaw6664 (2020).

[38] J.-D. Bancal, L. Sheridan, and V. Scarani, More random-
ness from the same data, New J. Phys. 16, 033011
(2014).

[39] M. Ioannou, J. B. Brask, and N. Brunner, Upper bound on
certifiable randomness from a quantum black-box device,
Phys. Rev. A 99, 052338 (2019).

PHYSICAL REVIEW LETTERS 129, 050501 (2022)

050501-6

https://doi.org/10.1103/PhysRevApplied.12.034017
https://doi.org/10.1103/PhysRevA.100.062338
https://doi.org/10.1103/PhysRevX.10.041048
https://doi.org/10.1103/PhysRevX.10.041048
https://doi.org/10.1512/iumj.1968.17.17004
https://doi.org/10.1512/iumj.1968.17.17004
https://arXiv.org/abs/2102.13036
https://doi.org/10.1103/PhysRevA.71.052108
https://doi.org/10.1103/PhysRevA.71.052108
https://doi.org/10.1103/PhysRevLett.96.070401
https://doi.org/10.1103/PhysRevApplied.7.054018
https://doi.org/10.1103/PhysRevApplied.7.054018
https://doi.org/10.1103/PhysRevX.8.011015
https://arXiv.org/abs/2112.09626
https://doi.org/10.1364/AOP.1.000238
https://doi.org/10.1103/PhysRevLett.101.020401
https://doi.org/10.1103/PhysRevLett.101.020401
https://doi.org/10.1109/TIT.2009.2025545
https://doi.org/10.1109/TIT.2009.2025545
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.050501
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.050501
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.050501
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.050501
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.050501
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.050501
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.050501
https://doi.org/10.1126/sciadv.aaw6664
https://doi.org/10.1126/sciadv.aaw6664
https://doi.org/10.1088/1367-2630/16/3/033011
https://doi.org/10.1088/1367-2630/16/3/033011
https://doi.org/10.1103/PhysRevA.99.052338

