Extension of the eSAFT-VR Mie Equation of State from aqueous to non-aqueous electrolyte solutions

Novak, Nefeli; Kontogeorgis, Georgios M.; Castier, Marcelo; Economou, Ioannis G.

Published in:
Fluid Phase Equilibria

Link to article, DOI:
10.1016/j.fluid.2022.113618

Publication date:
2023

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Supplementary Material

for

Extension of eSAFT-VR Mie Equation of State from aqueous to non-aqueous electrolyte solutions

Nefeli Novak,¹,² Georgios M. Kontogeorgis,² Marcelo Castier,³,† and Ioannis G. Economou¹,³*

¹National Center for Scientific Research “Demokritos”,
Institute of Nanoscience and Nanotechnology,
Molecular Thermodynamics and Modelling of Materials Laboratory,
GR – 153 10 Aghia Paraskevi Attikis, Greece

²Center for Energy Resources Engineering,
Department of Chemical and Biochemical Engineering,
Technical University of Denmark,
2800 Kgs Lyngby, Denmark

³Texas A&M University at Qatar, Chemical Engineering Program, Education City,
PO Box 23874, Doha, Qatar

*corresponding author: ioannis.economou@qatar.tamu.edu

† Work done, in part, while at Universidad Paraguayo Alemana, San Lorenzo, Paraguay.
Figure S1. Comparison of experimental MIAC of NaCl and NaBr in pure MeOH and EtOH. References for the experimental data are provided in Table 3.
Figure S2. Comparison of experimental MIAC of LiCl and LiBr in pure MeOH and EtOH. References for the experimental data are provided in Table 3.
Figure S3. MIAC and IIAC in aqueous solutions with the eSAFT-VR Mie EoS using different approaches for the relative permittivity and the parameters of Table 6. Points are experimental MIAC data from the CERE database [1] or IIAC from Wilczek-Vera et al. [2] Lines are model predictions: solid lines correspond to MIAC, dashed lines to cation IIAC and dashed-dot lines to anion IIAC. Black lines to the model by Selam et al., red to the Constant, blue to the MFMR, HS, light blue to MFMR, RH, green to Zuber et al., HS and pink to Zuber et al., RH.
Figure S4. MIAC and IIAC in aqueous solutions with the eSAFT-VR Mie EoS using different approaches for the relative permittivity and the parameters of Table 6. Points are experimental MIAC data from the CERE database [1] or IIAC from Wilczek-Vera et al. [2] Lines are model predictions: solid lines correspond to MIAC, dashed lines to cation IIAC and dashed-dot lines to anion IIAC. Black lines to the model by Selam et al., red to the Constant, blue to the MFMR, HS, light blue to MFMR, RH, green to Zuber et al., HS and pink to Zuber et al., RH.
Figure S5. MIAC in single solvent solutions with the eSAFT-VR Mie EoS using different approaches for the relative permittivity. Points are experimental data, lines are model predictions. Black lines refer to the model by Selam et al., red to the Constant, blue to the MFMR, HS, light blue to MFMR, RH, green to Zuber et al., HS and pink to Zuber et al., RH.
Figure S6. MIAC in single solvent solutions with the eSAFT-VR Mie EoS using different approaches for the relative permittivity. Points are experimental data, lines are model predictions. Black lines refer to the model by Selam et al., red to the Constant, blue to the MFMR, HS, light blue to MFMR, RH, green to Zuber et al., HS and pink to Zuber et al., RH.
Figure S7. MIAC in single solvent solutions with the eSAFT-VR Mie EoS using different approaches for the relative permittivity. Points are experimental data, lines are model predictions. Black lines refer to the model by Selam et al., red to the Constant, blue to the MFMR, HS, light blue to MFMR, RH, green to Zuber et al., HS and pink to Zuber et al., RH.
1. References
