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Abstract— Rapid eye movement (REM) sleep behavior
disorder (RBD) is parasomnia and a prodromal manifestation
of Parkinson’s disease. The current diagnostic method relies
on manual scoring of polysomnograms (PSGs), a procedure
that is time and effort intensive, subject to interscorer
variability, and requires high level of expertise. Here, we
present an automatic and interpretable diagnostic tool for
RBD that analyzes PSGs using end-to-end deep neural
networks. We optimized hierarchical attention networks in
a 5-fold cross validation directly to classify RBD from PSG
data recorded in 143 participants with RBD and 147 age-
and sex-matched controls. An ensemble model using logistic
regression was implemented to fuse decisions from networks
trained in various signal combinations. We interpreted the
networks using gradient SHAP that attribute relevance
of input signals to model decisions. The ensemble model
achieved a sensitivity of 91.4 % and a specificity of 86.3 %.
Interpretation showed that electroencephalography (EEG) and
leg electromyography (EMG) exhibited most patterns with high
relevance. This study validates a robust diagnostic tool for RBD
and proposes an interpretable and fully automatic framework
for end-to-end modeling of other sleep disorders from PSG data.

Clinical relevance— This study presents a novel diagnostic
tool for RBD that considers neurophysiologic biomarkers in
multiple modalities.

I. INTRODUCTION

Rapid eye movement (REM) sleep behavior disorder (RBD)
is a parasomnia where abnormal movements, vocalizations,
and dream enactment occurs during REM sleep [1]. These
abnormal behaviors are secondary to a lack of paralysis
of skeletal muscles during REM sleep, a phenomenon
called REM sleep without atonia (RSWA). Idiopathic RBD
(iRBD) is often prodromal to a-synucleinopathies such as
Parkinson’s disease (PD), dementia with Lewy bodies (DLB),
and multiple system atrophy (MSA) [2].

Current clinical guidelines [1], as described by the
American Academy of Sleep Medicine (AASM), rely on
video-polysomnography (v-PSG) to demonstrate RSWA
and document vocalizations or complex motor behaviors
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during REM sleep. Quantifying RSWA is accomplished
by manual scoring [3] although automatic methods using
electromyography (EMG) signals have been developed [4].

One limitation of these guidelines is that they do not
consider other PSG biomarkers, such as slowing of the
electroencephalography (EEG) in wake, REM, and during
arousal [5], [6], abnormal electrooculography (EOG) [7],
and abnormal heart responses in the electrocardiography
(ECG) [8]. Recently, machine learning driven methods that
integrates multiple biomarkers of RBD have been proposed
[9]-[11]. However, these only rely on hand-crafted features,
which may not all be optimal for classification of RBD.

We hypothesize that using information from the entire PSG
would discriminate better between controls and patients with
RBD than using preselected features. To test this hypothesis,
we used a deep neural network we recently developed for end-
to-end modeling of the full PSG [12] to optimize diagnosis
of RBD. To explain features derived from the model, we
experimented with selecting individual channels of the PSG
and use relevance attribution to find relevant patterns.

II. METHODS
A. Data Description

We included PSG data from 82 iRBD patients, 61 patients
with PD and RBD (PD+RBD), and 147 sleep clinic controls
with various sleep complaints. These came from two sleep
centers, the Danish Center for Sleep Medicine (DCSM)
and the Stanford Sleep Medicine Center (STNF). Patients
from the DCSM were recruited between 2009 and 2015
and evaluated using v-PSG that was scored according to
the AASM guidelines [1]. These were asked to discontinue
medication that affect sleep (antidepressants, antipsychotics,
hypnotics), except for dopaminergic medications, two weeks
prior to evaluation. STNF patients were recruited from
between 2016 and 2021 and were evaluated similarly to
participants from DCSM, although RSWA was established
using the automatic Sleep Innsbruck Barcelona (SINBAR)
criteria [13]. Participants from the STNF were not required
to hold their sleep treatments prior to PSG examination.
Demographics, apnea-hypopnea index (AHI), diagnosis of
periodic leg movement disorder (PLMD), and groupings of
participants are shown in Table I. Notably, from the DCSM,
the patients from DCSM have a larger proportion of PD+RBD
and the controls are characterized by a higher AHI and more
PLMD.
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TABLE I
SUMMARY OF DEMOGRAPHICS AND CLINICAL CHARACTERISTICS OF
PATIENTS.

STNF (n = 154) DCSM (n = 136)

Age 67.58 + 6.27 65.59 + 7.90
Sex (male) 102 (66.23 %) 88 (64.71 %)
AHI 18.01 + 17.49 8.85 + 13.76
PLMD 11 (7.14 %) 35 (25.74 %)
iRBD 52 (33.77 %) 30 (22.06 %)
PD+RBD 10 (6.49 %) 51 (37.50 %)

B. Preprocessing of Polysomnographic Signals

Signals were preprocessed to streamline data for further
analysis. To do so, we implemented a previously used pipeline
for end-to-end modeling of PSG data [12], which includes: i)
channel selection [EEG (C3-A; and C4-A;), EOG (left and
right), EMG (chin and the difference between left and right
leg), and ECG (lead II)]; ii) signal resampling to 128 Hz;
iii) bandpass filter to AASM recommendations [3]; and iv)
scaling signal amplitudes to their 5% and 95" percentiles.

C. End-to-end Deep Learning from Polysomnograms

A hierarchical attention network previously used for
age estimation was implemented [12]. This network was
optimized to predict clinical variables based on a whole
night of PSG data. First, we trained the network to classify
RBD based on 5-minute epochs of data, and secondly, on
whole nights using a latent space of processed 5-minute
epochs of data. To increase complexity of the network,
we substituted the gated recurrent units (GRUs) for long
short-term memory (LSTM) layers and added its output,
averaged across time-instances, to the latent space. Moreover,
one additional LSTM layer was used in phase (2) of the
network. The overall structure of the network is shown in
Fig. 1.
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Fig. 1. High-level overview of the network architecture used in this study.
The PSG input is a combination of EEG, EOG, EMG, and ECG. The
network can be optimized on 5-minute epoch (Phase 1) of data and whole
nights of data (Phase 2). Implementation details are available in the original
publication [12].

The network was optimized and tested using 5-fold cross
validation with 70 % for training, 10 % for validation,
and 20 % for testing. It was optimized first on 5-minute
epochs of data and second on whole nights of data. Network

hyperparameters were selected based on experiments for
age estimation [12]. In both phases we used a cross
entropy loss, Adam optimization, a learning rate of 1073,
a factor of 10~ for L2 regularization, and early stopping.
In the S5-minute epoch optimization phase, we used a
batch size of 32, a patience of 3 for early stopping, and
a dropout rate of 0.1 and 0.75 for each input signal and
at the last dense layer, respectively. For whole night
optimization, we used a batch size of 64, a patience of 10
for early stopping, and a dropout of 0.2 at the last dense layer.

We also experimented with various combinations of
PSG signals as input, specifically, each modality separate,
EMG+ECG, EEG+EOG+EMG, and all modalities together.
Moreover, a logistic regression ensemble model was fitted
based on probability output of the models with various
input signals. It was optimized with Broyden-Fletcher-
Goldfarb-Shanno quasi-Newton algorithm [14] as a two-loop
leave-one-out cross validation, with the inner loop optimized
a factor for L2 regularization in a range (107%,10799)
while the outer loop was used to calculate performance.

The effect of age, sex, diagnoses, and sleep clinic was
investigated using traditional logistic regression with accuracy
of each prediction as a dependent variable. The odds ratio
(OR) of each variable was used to interpret associations.

Saliency of PSG inputs were generated using gradient
SHAP [15], [16] on the EEG+EOG+EMG network after
the 5-minute epoch optimization. To remove noise, sample
relevance scores were filtered by a gaussian window with a
length of 10 seconds and standard deviation of 0.234 seconds.
The distribution of absolute values of the relevance scores
were computed across input signals and sleep stages manually
scored according to the AASM [3].

III. RESULTS

Median fit across cross validation folds for the logistic
regression ensemble model used a factor of 0.0108 for L2
regularization and was

logit (P(RBD)) = —3.41
+3.36- P(RBD)gga
+2.3- P(RBD)gEc+EoG+EMG
+1.02- P(RBD)gca. (1)
The ensemble included the EEG, EEG+EOG+EMG, and
ECG models in all folds and no other models were included

in 89.31 % of folds. The performance of each model is
shown in Table II.

Associations between demographics and clinical variables
to performance is shown in Table III.

An example of relevance attribution scores for
EEG+EOG+EMG model is shown in Fig. 2. The distribution
of the absolute value of relevance scores across signals and
manually scored sleep stages is shown in Table IV.
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TABLE II
PERFORMANCE OF END-TO-END DEEP LEARNING MODELS OF RBD
USING VARIOUS CONFIGURATIONS OF POLYSOMNOGRAPHIC SIGNALS.

Accuracy  Sensitivity  Specificity
EEG Overall  84.5 86.8 82.0
STNF 922 94.3 90.5
DCSM  75.7 80.2 69.1
EOG Overall 779 81.5 74.1
STNF 96.1 98.6 94.0
DCSM 574 66.7 43.6
EMG Overall  79.7 91.4 66.9
STNF 94.8 94.3 95.2
DCSM 625 88.9 23.6
ECG Overall  72.1 76.2 67.6
STNF 83.8 77.1 89.3
DCSM 5838 75.3 345
EMG + ECG Overall 72.4 78.8 65.5
STNF 87.7 94.3 82.1
DCSM  55.1 65.4 40.0
EEG + EOG Overall  85.2 86.8 83.5
+ EMG STNF 94.2 90.0 97.6
DCSM  75.0 84.0 61.8
EEG + EOG Overall  76.9 76.8 77.0
+ EMG + ECG  STNF 94.8 92.9 96.4
DCSM  56.6 63.0 473
Ensemble - LR~ Overall  89.0 91.4 86.3
STNF 97.4 97.1 97.6
DCSM 794 86.4 69.1

IV. DISCUSSION

Our ensemble model achieved an accuracy of 97.4 %
and 79.4 % in classifying RBD in the STNF and DCSM
cohort, respectively. The discrepancy could be a result of
different criteria used for RSWA, AASM [3] for DCSM
and SINBAR for STNF [13], as the SINBAR criteria is
more stringent. Some of this discrepancy is also explained
by an increased fraction of controls with PLMD in the DCSM.

Besides our ensemble model, the EEG model performed
best with an overall accuracy of 84.5 %. Interestingly, the
model that included all signals (EEG+EOG+EMG+ECG) did

TABLE IV
MEDIAN OF ABSOLUTE RELEVANCE SCORES OF SIGNALS IN
EEG+EOG+EMG MODEL ACROSS MANUALLY SCORED SLEEP STAGES.

W N1 N2 N3 REM  Overall
C3-Ay 257 1.84 222 259 247 2.40
Cy-A 326 244 281 354 323 3.09
EOG, 233 137 135 145 196 1.63
EOGr 205 124 126 144 182 1.67
Leg EMG 258 209 182 149 270 2.28
Chin EMG 1.04 062 059 054 1.14 0.73
Overall 221 152 156 156 214 1.84

not perform as well as other models due to overfitting.

Although our ensemble model did not perform significantly
better for PD+RBD versus iRBD patients alone, controls
with PLMD had significantly worse predictions (OR = 0.28,
p = 0.016). Interestingly, the ECG model had the lowest
OR for PLMD (OR = 0.20, p = 0.00012) and highest for
PD+RBD (OR = 5.13, p = 0.0004) relative to the iRBD
group, i.e., the model’s accuracy was much higher for
PD+RBD and controls without PLMD. It is likely that
PD+RBD are differentiated better as they exhibit lesser
autonomic response to leg movements and cortical arousal
[8]. None of the models performed worse in participants
with higher AHI.

In a previous study, Cooray et al. classified RBD with
92 % accuracy using a random forest with hand-crafted
features derived from automatic sleep stage scoring [10].
These results were achieved in a different dataset, which
makes them difficult to compare. There is a lack of direct
comparisons for fully automatic methods that consider
several modalities, however, this is out of the scope of this
study.

Relevance attribution with gradient SHAP showed that the
EEG+EOG+EMG model relies on all modalities but mostly
EEG and leg EMG. The attribution scores for EMG were
highest in REM sleep but was still important in NREM sleep,
which agrees with previous studies that found abnormal

TABLE III

MULTINOMIAL LOGISTIC REGRESSION REGRESSION ANALYSIS OF ACCURACY SHOWING ASSOCIATIONS BETWEEN DEMOGRAPHICS, DIAGNOSES, AND

PERFORMANCE. THE ORS FOR AGE AND AHI ARE LISTED FOR AN INCREASE OF 10. NOTE THAT THE CONTROL AND PD+RBD VARIABLE IS IN

RELATION TO THE IRBD GROUP.

Age Sex AHI PLMD Control PD+RBD DCSM

OR p-val OR p-val OR p-val OR p-val OR p-val OR  p-val OR  p-val
EEG 0.71  0.16 0.78 0.1 1.02  0.87 047  0.098 0.60 0.29 097 095 0.26  0.0022
EOG 1.28 031 1.07 0.84 098 0.88 0.30 0.01 041 0.078 045 0.093 0.06 6.6e-08
EMG 1.28 033 126 0.55 1.16  0.35 0.29  0.0081 039 0.048 235 0.11 0.07  2.9e-08
ECG 1.04 0.86 0.80 0.1 0.85 0.081 020 0.00012 1.65 0.18 513 0.0004 0.20 6.7e-06
EMG + ECG 0.73  0.15 1.05 0.88 1.08 0.5 0.89 0.78 0.57 0.15 377  0.0029 0.10 1.5e-09
EEG + EOG + EMG 0.66 0.093 090 0.78 096 0.73 0.73  0.54 1.21  0.68 4.66 0.0046 0.12 5.6e-06
EEG + EOG + EMG + ECG 0.83 04 094 0.86 1.02 0.84 045 0.077 126 0.6 2.07  0.093 0.07  2.3e-09
Ensemble - LR 1.09 0.74 0.54 0.17 095 0.71 0.28 0.016 1.44  0.52 231  0.13 0.09 6.6e-05
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Fig. 2. Example of interpretation of EEG+EOG+EMG model through relevance attribution of samples. Relevance attribution was computed using gradient
SHAP. Red and blue indicates positive and negative attribution to the RBD classification, respectively. The top plot shows relevance scores averaged across

channels.

motor patterns in NREM sleep [6], [17]. Interestingly, EEG
alone seems to be a very strong predictor of RBD without
any information about RSWA.

In future research, we could include other EEG derivations,
which have been shown to better capture EEG slowing [5].
Moreover, including EMG from the upper extremities could
potentially better capture RSWA [1]. Including additional PSG
could also help the EEG+EOG+EMG+ECG model generalize
better.

V. CONCLUSIONS

We optimized a deep neural network directly from EEG,
EOG, EMG, and ECG to distinguish RBD from sleep clinic
controls with a variety of other sleep disorders and achieved an
accuracy of 89.0 %. This proves the feasibility in end-to-end
modeling of sleep disorders from PSG signals without hand-
crafting features or using automatic sleep staging, thereby, we
avoid restricting modeling to clinical guidelines. We further
interpreted the relevance of each signal and found the highest
attribution to patterns in the EEG and leg EMG.
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