

Methods for Nitrogen Activation by Reduction and Oxidation

Iriawan, Haldrian; Andersen, Suzanne Z.; Zhang, Xilun; Comer, Benjamin M.; Barrio, Jesús; Chen, Ping; Medford, Andrew J.; Stephens, Ifan E.L.; Chorkendorff, Ib; Shao-Horn, Yang

Published in: Nature Reviews Methods Primers

Link to article, DOI: 10.1038/s43586-021-00053-y

Publication date: 2021

Document Version Peer reviewed version

Link back to DTU Orbit

Citation (APA):

Iriawan, H., Andersen, S. Z., Zhang, X., Comer, B. M., Barrio, J., Chen, P., Medford, A. J., Stephens, I. E. L., Chorkendorff, I., & Shao-Horn, Y. (2021). Methods for Nitrogen Activation by Reduction and Oxidation. *Nature Reviews Methods Primers*, *1*, Article 56. https://doi.org/10.1038/s43586-021-00053-y

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Methods for Nitrogen Activation by Reduction and Oxidation

H. Iriawan^{1,2,9}, S.Z. Andersen^{3,9}, X. Zhang^{4,5}, B. M. Comer⁶, J. Barrio², P. Chen^{4†}, A.J. Medford^{6†}, I.E.L.

- 4 Stephens^{2†}, I. Chorkendorff^{3†}, Y. Shao-Horn^{1,7,8†}
- ⁵ ¹Department of Materials Science & Engineering, Massachusetts Institute of Technology
- ⁶ ²Department of Materials, Imperial College London
- ⁷ ³Department of Physics, Technical University of Denmark
- ⁸ ⁴Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy
- 9 of Sciences
- ⁵University of Chinese Academy of Sciences, Beijing, 100049, China
- ¹¹ ⁶School of Chemical & Biomolecular Engineering, Georgia Institute of Technology
- ¹² ⁷Department of Mechanical Engineering, Massachusetts Institute of Technology
- ¹³ ⁸Research Laboratory of Electronics, Massachusetts Institute of Technology

14

- ¹⁵ ⁹These authors have contributed equally
- ¹⁶ [†]Corresponding authors

19 Abstract

The industrial Haber-Bosch process to produce ammonia (NH₃) from dinitrogen (N₂) is crucial for modern 20 society. However, N₂ activation is inherently challenging and the Haber-Bosch process has significant 21 drawbacks, as it is highly energy intensive, not sustainable due to substantial CO₂ emissions primarily from 22 the generation of H₂ and requires large-centralized facilities. New strategies of sustainable N₂ activation, 23 such as low-temperature thermochemical catalysis and (photo)electrocatalysis, have been pursued, but 24 progress has been hindered by the lack of rigor and reproducibility in the collection and analysis of results. 25 In this Primer, we provide a holistic step-by-step protocol, applicable to all nitrogen-transformation 26 reactions, focused on verifying genuine N₂ activation by accounting for all contamination sources. We 27 compare state-of-the-art results from different catalytic reactions following the protocol's framework, and 28 discuss necessary reporting metrics and ways to interpret both experimental and density functional theory 29 results. This Primer covers various common pitfalls in the field, best practices to improve reproducibility 30 and cost-efficient methods to carry out rigorous experimentation. The future of nitrogen catalysis will 31 require an increase in rigorous experimentation and standardization to prevent false positives from 32 appearing in the literature, which can enable advancing towards practical technologies for the activation of 33 34 N_2 .

36 [H1] Introduction

³⁷ [H2] Importance of NH₃ for Population Growth

Nitrogen is essential to all forms of life and constitutes \sim 78 % of air in the form of dinitrogen (N₂). However, 38 the formidable strength of the N=N triple bond (bond dissociation energy of 9.80 eV per bond at 298 K)¹ 39 makes N₂ fixation into biologically-available forms extremely difficult². N₂ fixation in nature occurs in two 40 ways. Lightning can convert N₂ in air to nitrous oxides $(NO_x)^3$. More dominantly, nitrogenase enzymes can 41 catalyse N₂ reduction to ammonia (NH₃) by a multi-electron transfer process. The other process involves 42 the hydrolysis of at least 16 equivalents of adenosine triphosphate (ATP) to produce 2 molecules of NH_3 43 and at least 1 molecule of dihydrogen (H₂), alongside adenosine diphosphate (ADP) and phosphate (P_i) 44 release $(N_2 + 8 H^+ + 8 e^- + 16 ATP \rightarrow 2 NH_3 + H_2 + 16 ADP + 16 P_i)^4$. This system performs at up to 65% 45 selectivity to NH₃ at 1 atm N₂ in the absence of N₂O [REF^{4,5}]. Yet, biological N₂ fixation is kinetically 46 slow due to reliance on electron tunnelling⁶ and is insufficient to sustain intensive modern agricultural 47

48 practices 7 .

Prior to industrial production of NH₃ by the Haber-Bosch process, natural fertilizers came in the form of 49 caliche from Chile and guano from Peru⁸. In 1898, Sir William Crookes deemed mass starvation to be the 50 biggest challenge of the 20th century⁹, instigating the burgeoning interest in industrial N₂ activation. In 1903, 51 the Birkeland-Eyde process became commercial⁷, utilizing electric arcs to fix atmospheric N₂ into nitric 52 acid (HNO₃), based on a method used by Henry Cavendish in 1784¹⁰. In 1908, Fritz Haber managed to 53 synthesize NH₃ from N₂ and H₂ (N_{2(g)} + 3H_{2(g)} \Leftarrow 2NH_{3(g)} $\Delta G^{\circ} = -32.9$ kJmol⁻¹ (REF¹¹), eq. 1) on a table-top 54 machine, but it suffered from remarkably slow kinetics under standard temperature and pressure⁸. To boost 55 the formation rate of NH₃ and tilt the equilibrium, Haber increased both temperature and pressure over an 56 Os catalyst⁷. Subsequently, BASF bought the invention and Carl Bosch up-scaled the production in 1913⁷ 57 to the currently known Haber-Bosch process, which operates at 400-450 °C and 150-250 bar over a multi-58 promoted fused Fe catalyst¹². This system can be referred to as Gen 1 (Fig. 1) and is currently the main 59 commercially available process for NH₃ synthesis. A more active Ru-based supported catalyst was later 60 developed, but it was not as widely adopted due to drawbacks such as high cost and low stability ¹³. Gerhard 61 Ertl elucidated the molecular mechanistic details of the catalytic N_2 reduction to NH_3 over Fe, enriching the 62 understanding of the system¹⁴, for which he was awarded a Nobel Prize in 2007 (Fig. 1). 63

Industrial NH₃ production by the Haber-Bosch process is the backbone of modern society and is responsible 64 for the population boom in the 20th century^{15–17}. Current annual NH₃ production exceeds 170 million metric 65 tonnes¹⁸ (Mt) globally, of which ~80 % is used as synthetic fertilizer¹⁹, thereby providing sustenance for 66 two-fifths of the global population²⁰. Moreover, NH₃ is the source of every N atom in all synthetic 67 chemicals²¹, a key reactant in the chemical industry²² and a potential hydrogen energy carrier^{23,24}. However, 68 NH₃ production from the Haber-Bosch process is energy and emission intensive. Nearly all the required 69 energy and emissions in NH₃ production originate from the generation of H₂, most commonly from natural 70 gas via steam-methane reforming²⁵ (0.75CH_{4(g)} + $1.5H_2O_{(l)} \Leftrightarrow 3H_{2(g)} + 0.75CO_{2(g)}, \Delta G^{\circ} = +98.0 \text{ kJmol}^{-1}$ 71 (REF¹¹), eq. 2). For the methane-fed process, NH₃ production has a theoretical minimum energy input of 72 22.2 GJt_{NH3}⁻¹ with the stoichiometric emission of 1.2 t_{CO2}t_{NH3}⁻¹ (REF¹²). In comparison, modern NH₃ 73 production plants using the best available technology consume 28-33 GJt_{NH3}⁻¹ and emit 1.6 t_{CO2}t_{NH3}⁻¹ 74 (REF^{12,25}), but the global average is 2.9 $t_{CO2}t_{NH3}$ -1 (REF²⁶) owing to the use of coal and oil-based 75 feedstocks¹². The annual global NH₃ production (>170 Mt) consumes about 1% of total world energy 76 production and emits 1.4% of global CO₂ emissions^{18,25,27}. Implementation of CO₂ sequestration processes 77

or other carbon offsets can reduce emissions but will add cost, plant complexity and energy losses²⁸.

79 Overall, sustainable alternatives for NH_3 production are required to address climate change challenges by

⁸⁰ reducing reliance on fossil fuels.

[H2] Decarbonization of N₂ activation

Replacing the generation of H₂ by steam-methane reforming with renewable water splitting $(3H_2O_{(1)} \rightleftharpoons$

 $3H_{2(g)} + 1.5 O_{2(g)}, \Delta G^{\circ} = +711.4 \text{ kJmol}^{-1} (\text{REF}^{11}), \text{ eq. 3})$ can eliminate CO₂ emissions associated with the

Haber-Bosch process¹², referred to as Gen 2 (**Fig. 1**), resulting in an energy expenditure of $\Delta G^{\circ} = +678.5$

kJmol⁻¹ (REF¹¹) for $N_{2(g)} + 3H_2O_{(l)} \Rightarrow 2NH_{3(g)} + 1.5 O_{2(g)}$ (eq. 4). Operating the Haber-Bosch at reduced

temperatures and pressures and coupling with renewable H_2 production via water electrolysis could make NH₃ production sustainable and reduce capital cost via smaller, local reactors. However, major challenges

NH₃ production sustainable and reduce capital cost via smaller, local reactors. However, major challenges need to be addressed²⁹, including: synthesizing NH₃ at milder conditions (pressures of 20-40 bar) to cope

need to be addressed²⁹, including: synthesizing NH₃ at milder conditions (pressures of 20-40 bar) to cope with the intermittent and low-pressure influent of H₂ from water electrolysis; sustainable separation of pure

 N_2 from air, as N_2 is presently separated from O_2 by combustion of unreacted methane; and the discovery

of low-temperature thermochemical catalysts to achieve high yield per pass at moderate pressures.

Electrochemical reduction of N_2 and H_2O to make NH_3 is an attractive strategy because NH_3 can be 92 synthesized directly at the point of consumption, eliminating transportation cost and emissions and reducing 93 issues of excess fertilizer run-off^{30,31}. The energy expenditure of $\Delta G^{\circ} = +678.5 \text{ kJmol}_{\text{fixed N2}}^{-1}$ (eq. 4) or 19.9 94 GJt_{NH3}⁻¹ for such process can be provided by using (photo)electrochemical systems powered by solar or 95 wind (Gen 3, see Fig. 1). Assuming 5% electrical-to-NH₃ efficiency (the calculation neglects upstream and 96 downstream separations, see Supplementary Information for details), 40 m² of state-of-the-art solar cells 97 operating at 20% efficiency should meet the average nutrient requirement of 100 kg of fixed N (expressed 98 as monatomic nitrogen) per hectare of land per year, making this process sustainable and economical.^{32,33}. 99 The current densities will need to be comparable to those of the state-of-the-art electrolysers to keep down 100 capital costs; the US Department of Energy has a target³⁴ of 300 mA cm⁻²_{geo} at 90% Faradaic efficiency 101 **[G]**. 102

¹⁰³ The reduction of N₂ can also be facilitated by non-thermal plasmas, where vibrational excitations of ground-¹⁰⁴ state N₂ via collision with high-energy electrons can decrease the N₂ activation barriers [G]³⁵. Typically, ¹⁰⁵ microwave and dielectric barrier discharge [G] (DBD) reactors have been used, where the NH₃ synthesis ¹⁰⁶ rate can be increased through heterogeneous catalysis³⁶. Kim *et al.* have reported among the highest energy ¹⁰⁷ efficiencies of 25-35 g_{NH3} kWh⁻¹ (100-140 GJ t_{NH3}⁻¹) using a DBD reactor and promoted Ru catalyst³⁷, but ¹⁰⁸ the challenges lie in the uncompetitive energy efficiency compared to commercial Haber Bosch (28-33 GJ ¹⁰⁹ t_{NH3}⁻¹) and NH₃ decomposition³⁸. Additionally, recent reports suggest a mechanocatalytic method of NH₃

synthesis under (near) ambient conditions^{39,40}, by ball-milling the catalysts under N₂ and subsequently

introducing H_2 , showing early promise of comparable energy efficiency to the Haber-Bosch³⁹.

Electrochemical oxidation of N₂ by electrolysis to fixate N₂ (N_{2(g)} + H₂O_(l) + 2.5O_{2(g)} \Leftrightarrow 2HNO_{3(aq)}, ΔG° = +14.6 kJmol⁻¹, eq. 5) expends much less energy than ΔG° = +678.5 kJmol⁻¹ (REF¹¹) for the reductive counterpart (eq. 4). Such process can in principle replace the synthesis of NH₃ and subsequent oxidation of NH₃ by the Ostwald Process (2NH_{3(g)} + 4O_{2(g)} \Leftrightarrow 2HNO_{3(aq)} + 2H₂O_(l); ΔG° = -663.9 kJmol⁻¹ (REF¹¹, eq. 6) for the production of nitric acid (aqueous HNO₃ is fully ionized), a primary commodity chemical of

oxidized N_2^{41} . The remarkable difference in the energy expenditure for N_2 fixation between reduction and

oxidation can be noted clearly by standard potentials [G] of electrochemical half-cell reactions [G] plotted

- on the standard hydrogen electrode (SHE) scale and also on the absolute electron energy scale referenced 119 to the free electron in vacuum⁴², as shown in **Fig. 2a**. The standard potential for N₂ reduction (N_{2(g)} + 6H⁺ 120 $+ 6e^- \rightarrow 2NH_{3(g)}, 0.06 V_{SHE}, -4.50 eV)$ is considerably higher than that of water splitting to generate O₂ 121 $(2H_2O_{(1)} \rightarrow O_{2(g)} + 4H^+_{(aq)} + 4e^-, 1.23 V_{SHE}, -5.67 \text{ eV})$. The difference indicates the energy need of pumping 122 electron energy from -5.67 eV to -4.50 eV for each electron transferred, in agreement with standard reaction 123 free energy of +678.5 kJmol⁻¹ for $N_{2(g)} + 3H_2O_{(1)} \Rightarrow 2NH_{3(g)} + 1.5O_{2(g)}$ (with 6 electrons transferred from the 124 cathodic to anodic half reactions). On the other hand, the standard potential for N₂ oxidation (N_{2(g)} + $6H_2O_{(1)}$ 125 \rightarrow 2NO_{3 (aq)} + 12H⁺_(aq) + 10e⁻, 1.24 V_{SHE}, -5.68 eV) is very similar to that of water splitting to generate O₂ 126 $(2H_2O \rightarrow O_{2(g)} + 4H^+ + 4e^-, 1.23 V_{SHE}, -5.67 eV)$, where minimum energy is required to activate N₂ and H₂O 127 to make NO₃⁻ from the thermodynamic standpoint. 128
- Since N_2 activation is the challenging step, once N_2 is activated, N-containing compounds can easily be 129 converted to other N-containing compounds. To this end, direct conversion to nitric oxide (NO) from N_2 130 and O₂ via plasma driven processes⁴³ does not require NH₃ synthesis as an included step. The most 131 technologically mature form of N₂ oxidation is the Birkeland-Eyde process, which is assisted by electric 132 arc-generated hot plasma[G]^{44,45}. High-temperature thermal plasmas are not energy-competitive⁴⁶ and 133 require rapid quenching to prevent NO decomposing back to N_2^{47} . Researchers are paying increasing 134 attention to the use of warm and cold (non-thermal) plasmas, as its theoretical energy consumption⁴⁸ is 135 more than two-fold lower than that from N₂ and CH₄, yet a technological bottleneck lies in low conversion 136 to product⁴⁹. More recently, a growing number of studies are dedicated to the electron and photon assisted 137 conversion of N_2 to nitrate (NO₃⁻)⁵⁰⁻⁵⁶ but seem to suffer significant kinetic limitations similar to the 138 reductive counterpart. 139

140 [H2] Origin to N₂ activation challenges

Activating N2 by reduction to make NH3 is kinetically difficult, which demands much more energy than 141 what is needed thermodynamically to drive reactions at high rates to make these processes economical. 142 Catalyzing N₂ fixation has been limited largely by the cleavage of the N=N bond due to the inertness of 143 N_2 (REF²), as related to the high triple bond strength (9.80 eV), high ionization potential (15.84 eV), low 144 electron affinity (-1.90 eV) and nonpolarity. Ru is considered the most active elemental heterogenous 145 catalyst for thermochemical NH_3 synthesis (the Haber-Bosch process). The energetics of the possible 146 elementary steps are examined. The free energy profile for an associative mechanism on Ru(0001) terrace, 147 which involves N_2 bond cleavage via a hydrogenated intermediate (similar to nitrogenase⁶), is shown in 148 Fig. 2a. The protonation of adsorbed $*N_2$ to $*N_2H$ (step 1-2, where * denotes adsorbed species) has the 149 150 largest thermodynamic barrier, i.e. the largest energy difference between sequential states, of 1.1 eV compared to the other elementary steps. This *N₂ protonation step to *N₂H is considered rate-limiting by 151 invoking the Brønsted–Evans–Polanyi relationship⁵⁷, which linearly correlates the activation barriers to the 152 reaction energies. In contrast, Ru(0001) step sites adsorb N₂ more strongly than terrace sites and the 153 thermodynamic barrier at the step sites for N_2 to N_2 is much lower (~0.35 eV) as a result of stronger 154 adsorption on a more undercoordinated site. In addition, the process can be understood commonly via a 155 dissociative mechanism⁵⁸⁻⁶⁰, where N₂ is cleaved upon adsorption into atomic N, and then hydrogenated to 156 release NH₃. Although the dissociation of N₂ to 2*N is thermodynamically favored, this step has a 157 significant activation barrier, and occurs only at step sites as a result of the prohibitively high activation 158 barrier for N_2 dissociation on terrace sites^{61,62}. Experimentally, the apparent activation barrier on a clean 159 Ru(0001) single crystal (containing step site density of $\sim 1\%$) is 0.4 eV and increases to 1.3 eV when small 160

- amounts of Au, which preferentially decorate step sites, is introduced, which demonstrates that the rate of
- N_2 dissociation is completely dominated by steps⁶². It is worth noting that an activation energy found from
- the Arrhenius plot corresponds to the potential energy barrier that only captures the enthalpy term. Thus, to
- evaluate the free energy of activation (displayed in **Fig. 2a**), the energy associated with the loss of gas phase
- entropy of N_2 as it is bound on the surface has to be included (see <u>Creating free energy diagrams</u> under
- 166 <u>Results</u> for further details). Moreover, there are also significant uphill steps for the reduction of $*NH_2$ to
- 167 NH_{3(g)} (step 6-8) at the step sites on Ru(0001), signifying the cost of creating free sites. The apparent
- activation energy is the sum of both the activation energy of the rate-limiting step and the cost of making
- free sites in a non-trivial manner 61,63 ; this is the origin of the Sabatier principle.
- Activating N_2 by oxidation is equally challenging, and very few systematic investigations on the oxidative
- N_2 fixation have been reported in the literature^{67,68}. A reasonable starting point would be to consider a series
- of hydroxylation-deprotonation steps as computed for N_2 oxidation on rutile $RuO_2(110)^{56}$ in **Fig. 2a**, which
- shows N_2 activation to N_2OH is the most uphill step (1.9 eV), suggesting a large kinetic barrier.

An important distinction between electrochemical and non-electrochemical steps should be made when 174 interpreting free energy diagrams. Electrochemical steps, such as those involving proton-electron transfers 175 (see all steps in Fig. 2a except for N-N dissociation, adsorption and desorption), are affected by applied 176 potential. The overpotential required to bring the most uphill electrochemical step downhill is plotted in 177 Fig. 2b (blue, circle) for associative N_2 reduction on transition metal terraces. In addition to the 178 thermodynamic barrier, electrochemical steps can possess an additional kinetic barrier. For example, the 179 intrinsic electrochemical barrier (at $\Delta G_{step} = 0$) for the *N + e⁺ + H⁺ \rightarrow *NH step on transition metal terraces 180 were calculated as ~0.7 eV regardless of the free energy difference between the two states (*N and *NH), 181 and thus insensitive to the metal identity⁶⁶. An intrinsic barrier of 0.7 eV for all proton-electron transfer 182 steps is used in Fig. 2a. Non-electrochemical steps, such as N-N dissociation (step 0-1 of the dissociative 183 N₂ reduction, Fig. 2a), adsorption (step 0-1 of the associative N₂ reduction/oxidation) and desorption (step 184 7-8 of N₂ reduction), are not affected by applied potential. 185

The rate-limiting step, known as the maximum barrier along the reaction pathway whose rate is significantly slower than those of the other elementary steps, is a feature of interest as it governs the rate of the overall reaction. The rate constant (k) of the elementary step is given by eq. 7 from transition state theory

 $k = v \exp(\frac{-\Delta G^{\ddagger}}{k_{\rm P}T}) \qquad ({\rm eq} \ 7.)$

190

191

where the prefactor v equals
$$k_BT/h$$
 (~10¹³ s⁻¹ at 25 °C). The rate of reaction for heterogenous catalysis, expressed in mol cm_{cat}⁻² s⁻¹, is connected to the rate constant by multiplying that with the concentrations of reactants or with their surface concentrations if the rate limiting step is the first step or involves surface

reactants or with their surface concentrations if the rate limiting step is the first step or involves surface intermediates, respectively. This rate can be converted to the turnover frequency (mol site⁻¹ s⁻¹) by dividing the site area density of the catalyst (sites cm⁻²_{cat}), to mass activity (mol g_{cat}^{-1} s⁻¹) by multiplying the specific surface area (cm_{cat}² g_{cat}⁻¹), and to geometric-area-normalized activity (mol cm_{geo}⁻² s⁻¹) by multiplying the roughness factor (cm_{cat}² cm⁻²_{geo}).

¹⁹⁷ To rationalize a catalyst's viability, one can calculate the rate constant to estimate the rate and establish the ¹⁹⁸ point at which the barrier on a catalyst becomes prohibitive, which will be defined below. In using eq. 7, ¹⁹⁹ we note that the errors due to the level of theory and a free energy correction of ~0.25 eV^{67,68} correspond to ²⁰⁰ ~5 orders of magnitude difference in rate. Generally, an active catalyst would have a turnover frequency

- [G] greater than 1 s⁻¹, which corresponds to a barrier of ~0.75 eV at room temperature. Therefore, free
- 202 energy diagrams for electrochemical N₂ fixation under ambient conditions that involve an uphill step greater
- than 1.5 eV at the operating potential indicate non-viable catalysts, particularly if kinetic barriers have been
- neglected. However, a more quantitative and accurate description requires higher forms of simulation to
- 205 capture the system's complexity, such as kinetic Monte Carlo simulation or microkinetic modelling; the
- latter shown in **Fig. 2b** for the thermochemical route of NH₃ synthesis. For the electrochemical route, we
- ²⁰⁷ refer readers to REF⁶⁶ for the full microkinetic model **[G]**.
- The difficulty of finding catalysts with fast kinetics for N_2 fixation can be explained by the "scaling 208 relations"69, where the energetics of different elementary steps (Fig. 2a) cannot be controlled independently 209 on a given surface. Such scaling relations can be manifested in the volcano dependence of catalytic activity 210 on the adsorption energy of surface reaction intermediates. For example, the catalyst activity, computed via 211 the mean-field kinetic model [G] of the dissociative mechanism, exhibits a volcano dependence on the N 212 adsorption energy (Fig. 2b, circle, red)⁶⁹. On the right side of the volcano N_2 dissociation is rate-limiting 213 for weak-binding surfaces, and on the left side there is a low barrier for N₂ dissociation for strong-binding 214 surfaces, but the surface is poisoned by N species. Fe, Ru and CoMo alloy exhibit the highest activity and 215 further enhancement can be achieved by using alkali (electronic) promoters^{70,71}. However, efficient and 216 low-pressure Haber Bosch requires more active catalysts beyond the constraints set by the volcano⁷². 217
- Scaling relations also constrain electrochemical N_2 reduction. The overpotential needed to have all the 218 elementary reaction steps downhill for the associative mechanism (Fig. 2b, circle, blue), exhibit a volcano 219 relationship with the N binding energy on metal surfaces^{73,74}. More importantly, electrochemical N₂ 220 reduction in aqueous electrolytes has to compete with electrochemical H_2 evolution as both reactions have 221 similar standard potentials and electron energy on the absolute energy scale (Fig.2a). This competition is a 222 disadvantage, as the kinetics of water reduction to produce H_2 is much faster than that reduction of N_2 to 223 NH₃, as seen in the comparatively lower overpotential for H₂ evolution (Fig. 2b, blue, triangle), translating 224 to many orders of magnitude difference in the estimated rate (Fig. 2b). In addition, the bond strength of any 225 given metal surface to H (a sole intermediate of H_2 evolution) is stronger and linearly correlates with N-226 containing intermediates of N_2 reduction³², which indicates that the surface will be poisoned by *H⁷⁵ and is 227 likely responsible for negligible NH₃ reported in aqueous systems^{76,77}. Although a study on wider N₂ 228 electrooxidation trends has yet to be reported, a similar scaling relation between the reactant activation and 229 subsequent hydroxylation or desorption steps is expected, as well as scaling with $*O_2$ intermediates of the 230 competing O₂ evolution. 231
- Alternative strategies have been explored to overcome the activity and selectivity challenges in N_2 232 reduction. Excellent activities using transition metal-LiH composite catalysts in thermochemical NH₃ 233 catalysis have been reported. In these systems, two active centers are present; transition metal sites to cleave 234 the N₂ bond, and LiH to aid N hydrogenation and subsequent NH_3 desorption⁷⁸. In electrochemical NH_3 235 synthesis, the lithium-mediated approach has emerged, where the N_2 reacts with metallic Li to form Li₃N, 236 followed by nitride protonation to evolve NH₃, including continuous lithium-mediated N₂ reduction in non-237 aqueous solvents^{79–82} or a lithium-nitride cycling scheme^{83,84} (**Fig. S2**, see <u>Supplementary Information</u>). The 238 Li-mediated approach has decoupled reactant activation and subsequent protonation steps, while the non-239 aqueous solvent and the in-situ formation of protective solid-electrolyte-interphase layer restrict proton 240 availability to the active site^{82,83}, potentially responsible for the high yields. 241

[H2] The need for a strict protocol

- Progress in (photo)electrochemical N₂ fixation can benefit from developing a more rigorous protocol of 243 measurements and product quantification, as state-of-the-art yields of NH₃ (and NO₃⁻) from these processes 244 are significantly lower than thermochemical NH₃ production (see Results) while contamination (possible 245 sources summarized in Table 1) can be present at similar or greater concentration levels than the measured 246 product⁷⁶. In addition, the NH_3 yields for low-temperature and/or low-pressure thermal catalysis 247 exponentially drops, and accurate activity measurements can suffer from adventitious N contamination, N 248 and/or H leaching and non-catalytic NH₃ generation⁸⁵, where such uncertainties in catalytic activity 249 measurements can propagate into subsequent kinetic analyses. 250
- The field has been plagued with false positives. The first observation of electrochemical N₂ fixation was in 251 1807 reporting production of NH₃ and HNO₃ by passing current through distilled water⁸⁶, but was proven 252 non-reproducible some 90 years later⁸⁷. In 1995, the inability to reproduce reported photochemical NH₃ 253 synthesis using TiO₂ under rigorous measurements was rigorously reported⁸⁸. More recently, Sn(II)254 phthalocyanine catalysts were tested in 2017 for electrochemical N₂ reduction, concluding that the NH₃ 255 initially measured arose from decomposition of the catalyst⁸⁹. Work on nanoscale Fe₂O₃ in molten 256 hydroxide citing adventitious NH₃ synthesis from trace NO_x⁻ contaminants in their electrode material was 257 later retracted from Science in 2020⁹⁰. Others have retested and reported no electrochemical activity for 258 VN⁹¹, and Bi and Au catalysts⁹², reported previously to have high activity^{93–95}, after accounting for N-259 leaching from the VN catalyst and properly cleaning the supplied N₂ gas for NH₃ and NO_x impurities. 260
- The ubiquity of contamination sources calls for an exceptional scrutiny. In this Primer, we introduce a 261 general protocol focused on confirming genuine activation of inert N2 and elaborate details in performing 262 catalytic measurements (Experimentation). We then evaluate state-of-the-art results, primarily focused on 263 (photo)electrochemical and thermochemical systems using the protocol's framework, and discuss best 264 practices in reporting and interpreting both experimental and density functional theory [G] (DFT) data 265 (Results). The potential uses of these N₂ activation reactions are discussed in the context of current 266 practices, highlighting the importance of research in these areas (Applications), and we explore factors 267 affecting reproducibility, thereby establishing reporting standards (Reproducibility and Data Deposition). 268 Finally, we discuss ways to overcome cost-limitations of performing repeated isotope-labelled experiments 269 (Limitations and Optimizations), and outline future directions in N₂ activation research including 270 community-wide adoption of rigorous protocol, in situ measurements for mechanistic understanding and 271 field-specific needs (Outlook). 272
- 273

[H1] Experimentation

A general protocol for carrying out electrochemical, photo(electro)chemical, and thermochemical N_2 activation experiments is presented, which can be applied across all N_2 activation fields. The unified protocol is followed by an in-depth discussion of the experimental setups and necessary measurements, and different methods of product detection to determine product synthesis.

[H2] Protocol for N₂ reduction and oxidation

- The general protocol highlighted in **Fig. 3** is applicable to any N_2 activation reaction and is based on the principle that one should always be wary of contamination, which should be accounted for accordingly.
- The first step involves the experiment setup and is run with N_2 . If no product is measured, re-iterations with
- new parameters or catalysts is necessary, until the desired product is detected. To account for possible
- contamination sources, one must measure or estimate the total equivalent N mass of the system, $mass_{sys}$,
- which includes *mass_{N,cat}*, *mass_{N,electrolyte}*, *mass_{N,absorber}* and *mass_{N,gas}*. Precise definitions of these terms are
- outlined in **Box 1**.
- The amount of N in the product measured must exceed the amount of N in *mass_{sys}* by a factor of 2 (*mass_{prod}* > 2 *mass_{sys}*) to account for unexpected sources of contamination– and *mass_{prod}* should be well above *mass_{N,cat}* for synthesis to be classified as effective. The product concentration (C_{prod}) in the electrolyte or gas stream must be higher than 100 ppm, as this amount would easily be detectable by olfaction as per the NH₃ detection limit⁹⁶ and greater than a common source of contamination in the lab, in which case unaccounted sources of contamination (for example, glassware, breath, laboratory air, etc.) could be excluded.
- If both criteria are met, repeated testing is necessary with independently prepared samples to confirm 295 reproducibility. If these criteria were not met, the measured yield of product might stem from 296 contamination, and further evidence of product synthesis via quantifiable isotope-labelling experiments is 297 necessary. First, one must test using an inert gas (such as Ar, although any clean inert gas can be used) and 298 test N_2 in the absence of a driving force. These conditions can range from operating an open circuit potential 299 for electrochemical systems, analysis under dark illumination for photo(electro)chemical systems or in the 300 absence of applied heat for thermochemical systems. Operating under these driving force-free conditions 301 is essential to account for sources of contamination in the experimental set-up, as this should give 302 significantly less to no product compared to N_2 with a driving force. Repeated identical testing of 303 independently prepared batches also follows to ascertain reproducibility and determine the level of inherent 304 contamination (if any) in the system. A stability test is also needed to eliminate the possibility of non-305 catalytic generation of the product, such as N-leaching from an N-containing catalyst. Once all sources of 306 contamination have been accounted for, quantitative isotopic labelling experiments is necessary. Two 307 separate quantification techniques must be used to detect the product, where at least one of these methods 308 is isotopically sensitive, and repeated and reproducible overlap between the use of ¹⁴N₂ and ¹⁵N₂ over 309 multiple points must be observed (see Results). It is important to include a proper gas cleaning procedure, 310 as isotope labelled ${}^{15}N_2$ gas can contain significant levels of NO_x and NH₃ impurities⁹⁷. 311
- Kinetics parameters, such as activation energy and reaction orders [G] in the kinetic regime, are a key 312 metric to report when studying thermochemical catalysis. The kinetics measurements should be carried out 313 far from the equilibrium, where mass and heat transfer limitations are minimized, to avoid the reaction 314 reversing. Measurements that enable extracting the activation energy and reaction orders are extremely 315 beneficial for elucidating the reaction mechanism. In particular, the effect of NH₃ concentration on the 316 reaction orders and the apparent activation energy must be accounted for (see Results). Electrochemical 317 and photo(electro)chemical systems can also benefit from kinetic measurements, although this is not 318 common in the literature. To this end, reliable determination of the partial current density toward NH₃ for 319 a given system might be highly inaccurate owing to historic contamination issues in the field, which makes 320 obtaining these measurements difficult. Measuring parameters such as the pH dependence of the N_2 321 reduction activity might provide insights on the reaction path and mechanism⁹⁸ using rigorous 322

experimentation. The only published and proven work reporting kinetic measurements have investigated the effect of proton and N₂ concentration and their respective reaction orders in the lithium-mediated system⁸¹. Tafel analysis **[G]** can be a powerful tool for elucidating rate determining steps, but overly simplified assumptions will lead to an inaccurate description of the electrocatalysis⁹⁹, so researchers should apply caution when interpreting Tafel slopes as they may contain many artefacts¹⁰⁰. Overall, great care should be taken with reporting a clear definition of the kinetic parameters and kinetic models used¹⁰¹ when including these sets of measurements.

330 [H2] Experimental setup

[H3] Electrochemical measurements

Electrochemical measurements are typically conducted in a cell setup as depicted in Fig. 4a, into which gas 332 streams are introduced. Feed gases (Ar, ¹⁴N₂, and ¹⁵N₂) must be cleaned prior to use as they can contain 333 significant amounts of activated N-species (such as NH₃, NO_x and N₂O) as contaminants^{97,102}. This purifying 334 process involves using a reduced Cu catalyst and freeze trap⁷⁶ or commercial gas purifiers. One can also 335 choose to not clean the gas and measure all the N-containing contaminants to include in the value for 336 $mass_{N,gas}$. In the electrochemical cell, the working electrode (WE) will either facilitate N₂ reduction or 337 oxidation, while the counter electrode (CE) runs the respective counter reaction, depending on the reaction 338 being evaluated. Meanwhile, the reference electrode (RE) determines the potential at the surface of both 339 other electrodes. In aqueous electrolytes, numerous commercial REs are available¹⁰³ and should be 340 calibrated against the reversible hydrogen electrode (RHE) by measuring the equilibrium potential for H_2 341 oxidation and its evolution on a Pt electrode. Alternatively, a well-known RE such as saturated calomel 342 electrode (SCE) in aqueous electrolytes, or Li in non-aqueous electrolytes can be utilized, with a conversion 343 to RHE. Calibrating the RHE in non-aqueous electrolytes can be challenging¹⁰⁴, but is possible because the 344 H₂ oxidation and evolution potential is measurable for lithium-mediated N₂ reduction⁸⁰. The same REs as 345 those used in the battery literature can be used when measuring N2 reduction in non-aqueous electrolytes, 346 such as metallic Li¹⁰⁵, and calibrate the RE to the RHE scale in their electrolyte of choice in a separate 347 measurement. 348

As activated N-species are ubiquitous, electrochemical and photo(electro)chemical systems are prone to contamination. Possible sources of contamination are shown in **Table 1**, along with a recommended method of elimination. Specifically, the commonly used Nafion membrane has been shown to contaminate the setup^{76,106,107} and degrade in the presence of NH₃^{108,109}, so extra care must be taken if using this membrane. For a porous membrane like Celgard, an NH₃ crossover between electrode compartments has been observed under applied potential condition⁷⁷, which may lead to irreproducible yields especially during a long-term evaluation. Caution must be taken when using a downstream acid trap in collecting the residual NH₃ from

- the gas stream as an acidic solution can readily absorb NH₃ from the environment. Overall, the extent to which all of these factors influence product quantification must be assessed when reporting catalyst performance.
- Control experiments, such as testing using Ar with a driving force and N₂ without a driving force with timedependent experiments, are needed. All adventitious sources of activated N₂ can be avoided by the use of purified isotopically labelled ¹⁵N₂, and the subsequent measurement of ¹⁵NH₃ or ¹⁵NO_x by an isotope sensitive method^{76,77}. Liquid samples from the electrolyte should be investigated, repeated for reproducibility and quantified via at least two separate methods, and the yield produced using ¹⁵N₂ must be comparable to the yield measured with ¹⁴N₂.

Chronopotentiometric (CP) and/or chronoamperometric (CA) measurements show the stability of the 365 system over time, and representative data for these should be reported, with a description of whether Ohmic 366 correction **[G]** is utilized. When probing the potential across the electrochemical interface in question, an 367 iR-correction, based on the pre- or post-testing ohmic drop, is generally encouraged as it can eliminate the 368 system-dependent effects, such as electrolyte conductivity and electrode geometry. However, such 369 correction must be done with caution especially if the ohmic drop varies during testing owing to factors 370 such as bubble formation, rising electrolyte levels, temperature variation, build-up of non-conducting 371 phases observed in the Li-mediated process, among others. In such cases, the potential should be reported 372 as a range of values rather than a single point. Once the synthesized product is detected, the product yield 373 and Faradaic efficiency can be calculated as a function of potential vs RHE, enabling the determination of 374 the optimum for each of these factors in the system. Moreover, the difference between the operating 375 potential and the equilibrium voltage approximates the overpotential, a critical figure-of-merit. The 376 overpotential for N_2 reduction to $NH_{3(g)}$ is independent of pH and the electrolyte. The Nernstian shift in the 377 equilibrium potential occurs due to a change in product and reagent concentrations that affect the overall 378 pH of the solution, and can be taken into account via the actual amount of NH₃ produced. Relative to 379 standard conditions, the equilibrium concentration of $NH_{3(aq)}$ or $NH_{4^{+}(aq)}$ can be determined by 380 thermodynamic data (solvation energy) or measured directly via NMR¹¹⁰. At pH = 0, the difference between 381 the standard equilibrium potential $N_{2(g)}/NH_{4^{+}(aq)}$ is 0.27 V vs RHE, though at pH = 14, the standard 382 equilibrium potential of N_{2(g)}/NH_{3(aq)} is ~0.1 V vs RHE¹¹. However, this Nernstian shift is insignificant 383 when there is a large overpotential for N_2 reduction, such as the case for non-aqueous lithium-mediated 384 NH₃ synthesis. 385

[H3] Thermochemical measurements

Thermochemical measurements are usually conducted in a fixed-bed flow system as shown in Fig. 4b. 387 where the catalyst is loaded into the reactor and pretreated under specified conditions. The reactant gases 388 $(N_2 \text{ and } H_2)$ are passed over the catalyst bed with a certain space velocity, such that the reaction rates are 389 not limited by gas transport. The reactant gases may need purification by in-line gas purifiers to reduce the 390 content of impurities (for example, H₂O, O₂, CO₂) to sub-ppm level, as these might affect the surface of the 391 active catalyst by poisoning the available active sites. The measurements should be conducted under steady-392 state conditions as a function of temperature and pressure. The produced NH_3 is typically trapped in a 393 downstream diluted sulfuric acid solution, which is then quantified by using ion chromatography or a 394 conductivity meter. The related parameters (such as NH₃ synthesis rate and yield) can be obtained once the 395 amount of produced NH₃ is determined. 396

Reactors made of stainless steel are commonly employed for pressurized reactions. Transition metals 397 (including Fe, Cr, Ni) in the reactor may not be inert, and could interfere in the NH₃ synthesis by interacting 398 with the catalyst. It is recommended to use a reactor made of, or lined with, inert material such as quartz to 399 exclude the contribution of a "reactive reactor"¹¹¹. A blank test (without catalyst loading) should be 400 performed prior to catalyst evaluation, to make sure there is no detectable NH₃ contamination present in the 401 system. In addition, benchmark catalysts, such as Cs-promoted Ru/MgO should be prepared and tested, 402 with an activity comparable to that previously reported (Cs-Ru/MgO with 3-6 wt.% Ru loading should 403 have an NH₃ formation rate from 8–14 mmol g_{cat}⁻¹ h⁻¹ at 400 °C and 10 bar)^{112–114}. These two experiments 404

are important for validating the testing system.

407 [H2] Product detection and Isotope Labelling

408 [H3] Non-isotopic product detection

- 409 UV-Vis spectroscopy allows the fast and easy quantification of NH₃ through the colorimetric reactions of
- either indophenol blue or Nessler's reagents, with a detection limit down to 10 ppb ($\sim 0.5 \,\mu$ M) NH₃ (Fig. 5
- **a**, **b**). The method induces a chemical reaction between NH_3 and the reagents of choice, leading to the
- formation of a colorful dye that is quantifiable via UV-vis spectroscopy with a peak value at 640 nm for
- indophenol blue and 425 nm for Nessler's reagents¹¹⁵. Despite the simplicity of these techniques,
- interferences in the chemical reaction forming the colorful dye may be caused by the presence of different
- ions in the media (Fe^{3+} , Co^{2+} to S^{2-} , etc.), the reaction time and diverse pH conditions, which may impede
- accurate quantification of NH_3^{116} . Nevertheless, some of these can be overcome by using Seignette reagent
- (also known as Rochelle salt), which allows the analysis of samples with high salinity¹¹⁷. Similar in
- principle to indophenol-based detection, the salicylate method is also commonly used to detect NH₃.
- ⁴¹⁹ Recently, a convenient methodology to correct the effect of strong Fe^{3+} interference by using an interference
- model requiring only three experimental curves was reported¹¹⁸.
- The Griess assay is widely adopted for the quantification of NO_2^- . To quantify NO_3^- , the sample can be reduced to NO_2^- using Zn powder¹¹⁹. However, this method should be used with caution as it suffers from
- 423 a comparatively high limit of detection of 500 ppb (~10 μ M) and interferences with Fe³⁺, Cu²⁺, S²⁻ or I⁻.
- A conductivity meter provides a facile and widely adapted method in thermochemical reactions for 424 quantifying NH_3 with a 1 ppm detection limit (Fig. 5a, c). The concentration of NH_3 from the outlet gas 425 trapped in a diluted sulfuric acid solution can be determined by measuring the decrease in ion conductivity 426 of the solution, which corresponds to the conversion of H⁺ to NH₄⁺. A calibration curve of the change of 427 conductivity and the amount of NH₃ produced should be determined under a given temperature and 428 concentration of the solution. It is important to maintain a constant temperature and concentration of the 429 solution in each measurement as each of these parameters have strong influences on the ion conductivity in 430 the solution 120 . 431

432 [H3] Isotopic Product detection

- Nuclear Magnetic Resonance (NMR) is one of the most widely used techniques for determining the 433 chemical composition of a sample, and can accurately detect NH₃ down to 50 ppb (\sim 3 μ M), as shown in 434 Fig. 5a, d. It utilizes the magnetic properties of nuclei with non-zero spins and non-zero magnetic dipole 435 moments. The sample composition can be determined based on the characteristic radio frequency (RF) 436 pulse required for the excitation of the nuclei¹²¹. As the area of the signal is proportional to the number of 437 nuclei affected by the applied RF pulse, the concentration of the sample can be inferred based on calibration 438 curves. ¹H NMR can be used to differentiate isotopes of ¹⁴NH₃ and ¹⁵NH₃. Due to the difference in spin 439 between ¹⁴N and ¹⁵N, the scalar interaction of ¹H will lead to respectively a triplet peak with a characteristic 440 spacing of 52 Hz, and a doublet peak with a splitting of 73 Hz. For non-aqueous systems, the use of organic 441 442 solvents might interfere with the detection of the NH₃ signal, however, different methods for solvent signal
- suppression have been reported^{76,122}.
- In principle, the quantification of ${}^{14}NO_{3}$ and ${}^{15}NO_{3}$ can be performed using N-NMR. However, the low
- 445 production yield of the experiment coupled with the unfavorable NMR properties of 15 N (low gyromagnetic
- ratio and long T1 relaxation constants)¹²³, implies that long-duration electrochemical experiments must be
- 447 $\,$ performed to allow reproducible quantification at multiple points. One study covering N_2 oxidation has
- used ¹⁵N-NMR⁵⁶, but required >100 ppm concentration of NO_3^- for detection, which was achieved via a 50

- hour experiment. Finding a more convenient isotopic NO_3^- detection method is a gap that must be addressed
- to enable measuring advances in electrochemical N_2 oxidation more easily.

451 [H1] Results

- 452 A state-of-the-art overview of electrochemical, photo(electro)chemical and thermochemical N₂ activation
- ⁴⁵³ applying the protocol from the Experimentation section to determine levels of contamination is described.
- 454 Important reporting metrics and issues hindering progress in the field is covered in this section, along with
- ⁴⁵⁵ interpretation of both experimental and density functional theory results.
- 456 [H2] Evaluation of N₂ Catalysis Experiments
- Product yields (mass_{prod}), namely NH₃ for N₂ reduction and NO₃⁻ for N₂ oxidation, relative to the size of the 457 system from which N-contaminants may originate (mass_{sys}) are shown in Fig. 6a. Thermochemical systems 458 typically produce several orders of magnitude more NH₃ (especially at temperatures >300 °C) compared to 459 mass_{sys}. As a result, these systems can cross the mass_{prod} > 2 mass_{sys} line within the first few hours of 460 experimentation, and have experimental durations upwards to 100 hours (see Supplementary Information 461 for a demonstration). The ease with which product yields in thermochemical experiments surpass the size 462 of the system ($mass_{prod} >> 2 mass_{sys}$) supports why contamination issues are not prevalent in thermal 463 catalysis, and also inherently points towards an intrinsically high catalyst activity. 464
- In contrast, electrochemical, photochemical and photoelectrochemical experiments typically show yields 465 of NH₃ or NO₃⁻ in orders of magnitude less than the size of the system (mass_{prod} << 2 mass_{sys}). None of 466 these catalytic systems fulfill the mass_{prod} > 2 mass_{sys}, and would require several orders of magnitude longer 467 experimentation times (with proper gas cleaning) to afford more product. To this end, some suspiciously 468 high yield rates from recent (photo)electrochemical studies have been reported (Fig. 6b), including the Bi 469 point⁹⁵ operating at only -0.7 V_{RHE}, which reported production rates higher than some very active 470 thermochemical catalysts operating at elevated pressure and temperature conditions. These results should 471 have raised some concerns due to the reported high computed barrier (>2 eV) and the selectivity challenge 472 against H_2 evolution³² (see Fig. 2b). As the flagged point has been shown as non-reproducible⁹², this 473 example serves to highlight how adventitious N sources can lead to non-genuine N2 fixation and inflate the 474 reported yield rates. Comparison of the reported intrinsic activity (turnover frequency) with thermochemical 475 catalysts also shows this conclusion (see Fig. S3 in Supplementary Information) and can be used to screen 476 potential false positives. In most cases, the catalytic activity of electro/photocatalysts are much lower than 477 the thermal counterpart and so hundreds of hours of experimentation are required to surpass massays (see 478 Supplementary Information for demonstration). Therefore, quantitative isotope-labelling experiments, 479 along with a proper gas-cleaning protocol, is a convenient and unambiguous way to verify genuine N_2 480 fixation, thereby proving the origin of the activated N. 481
- ⁴⁸² Non-aqueous electrolytes are the only known conditions in which genuine electrochemical N₂ reduction ⁴⁸³ under standard temperature and pressure is reliably demonstrated to date, and the Li-mediated system is ⁴⁸⁴ therefore the only benchmark system that can be used for this process^{76,81,82}. Several generations of ⁴⁸⁵ breakthroughs are still needed to enhance reaction kinetics and achieve viable photo- and (photo)electro-⁴⁸⁶ catalytic performances for commercial applications ¹²⁴. Advances in catalyst and electrolyte design are ⁴⁸⁷ therefore required¹²⁵, but low product concentrations (*mass_{prod}*)^{76,126} in these fields means a rigorous ⁴⁸⁸ experimental protocol must be followed to ensure the integrity of reported experimental results.

The current goal in thermochemical NH_3 production is to decrease the temperature and pressure, enabling milder operational conditions compared to current Haber-Bosch plants¹². However, lowering the temperature leads to an exponential decrease in the formation rate, which increases the possibility of contamination, particularly if the catalyst contains activated N. Also, the *mass_{prod}* for these low-temperature

- 493 systems becomes so low that they fall below the $mass_{prod} > 2 mass_{sys}$ threshold and are comparable to some
- ⁴⁹⁴ of the more active electrochemical systems, necessitating isotope measurements. We note that the integrity
- ⁴⁹⁵ of the reported formation rate must be rigorously evaluated especially at the low production points, because
- ⁴⁹⁶ if the activity measurement is based on incorrect yields of NH₃, the error will propagate to the subsequent
- 497 kinetic analysis.
- ⁴⁹⁸ [H2] Electro- and Photo(electro)-chemical Reactions
- [H3] Reporting metrics of experimental results

To measure the catalytic performance, CA and/or CP measurements are carried out and the product 500 concentration is determined, enabling a calculation of the yield and Faradic efficiency of the process. 501 Typically, a metric such as the partial current density or formation rate is plotted as a function of applied 502 current or potential, and the Faradaic efficiency is overlaid on a separate y-axis, displaying the maximum 503 performance of the system (Fig. 7a)⁷⁹. In photoelectrochemical systems, incident photon-to-current 504 efficiency should be calculated utilizing a monochromatic light source¹²⁷. All experiments should be 505 repeated several times, from at least three independent batches of experiments to allow appropriate 506 determination of a mean and its associate standard deviation. Representative CA or CP graphs should also 507 be shown, as this illustrates the catalyst stability with time (Fig. 7b). In the case of powder photocatalysis, 508 the amount of product formed should be plotted versus time and a production value per hour and gram 509 catalyst can be extracted. The amount of product formed must be correlated with the amount of incident 510 photons reaching the reaction vessel by calculating the average quantum yield [G] (or quantum efficiency), 511 which is measured with monochromatic light sources or cut-off filters at a wavelength relevant to the 512 monitored species^{128,129}. 513

As rigorous product detection is key to appropriately evaluating activity of (photo)electrochemical catalysts, product concentrations should be verified using at least two independent detection methods and quantitative agreement must be observed with each method over multiple points¹³⁰. Typically, this strategy involves comparing results from colorimetric methods with results from isotope labelled experiments⁷⁶. Ideally, the amount of product measured using appropriately cleaned ¹⁵N₂ (**Fig. 7c**) can reproduce the amount measured using ¹⁴N₂ quantitatively over numerous points, and a linear increase in detected product as a function of time or charge passed is observed (**Fig. 7d**).

521

[H3] Issues hindering progress in (photo)electrochemical N₂ activation

Reported yields and Faradaic efficiencies are very low for both electrochemical N₂ reduction and oxidation 523 owing to the selectivity challenge and the activity issue. The reported partial current densities towards NH₃ 524 are $\lesssim 1$ mA cm _{geo}⁻² with up to 60% Faradaic efficiency. However, great care must be taken with 525 experimentation to avoid false positives because NH₃ is ubiquitous in the environment¹³¹ in concentrations 526 similar to or greater than those reported. Many reports in Fig. 6c now include isotopic labelling 527 experimentation (crossed points), which reflects the shift towards utilizing isotopes that has occurred over 528 the previous 2 years⁷⁶. Unfortunately, many of these reports only perform isotopic labeling in a single 529 experiment^{95,132–138}, which does not demonstrate reproducibility as this is not enough to prove beyond doubt 530 that synthesis of the product takes place. Also, the isotopically labelled gas typically contains ¹⁵NH₃ and 531 ¹⁵NO_x impurities⁹⁷, and most of these recent reports do not clean the gas prior to conducting the 532 measurements, or if gas cleaning is reported it was done incorrectly¹⁰². Many of these reports are aqueous 533 systems (non-asterisked), which typically suffer from low selectivity due to the competing H₂ evolution 534 reaction³² and could therefore be contaminated. The flagged Bi report⁹⁵ demonstrates the possibility of 535

- inflated yield rates due to contamination: therefore researchers should reexamine high catalytic activity
- results via a rigorous experimentation^{76,102} (see <u>Experimentation</u>). The Li-mediated system (denoted

 $Li_x N/xx$)^{139,140} has recently gained renewed interest as it has proven effective via rigorous isotope sensitive

experimentation⁷⁶. This system is displaying comparatively increased partial current density towards NH_3^{81} ,

⁵⁴⁰ but it requires very negative potentials owing to the necessity of Li plating, making it energy inefficient.

For N₂ oxidation (squares, **Fig. 6c**), the partial current densities to NO₃⁻ are $\leq 10 \,\mu$ Acm⁻²_{geo}⁵⁰, and the highest activity catalysts tend to correspond to $\leq 1\%$ Faradaic efficiencies ^{56,141}. The field of electrochemical N₂ oxidation is novel and small, with only a handful of published papers ^{50–52,56,141}. However, there is hope of a significant increase in the selectivity because H₂ evolution is not a competing reaction to N₂ oxidation as it is for N₂ reduction. More theory to elucidate the reaction mechanisms is needed, along with a standardization and rigour regarding measurement, as the yields and product concentrations achieved are still very low.

In the case of photon-driven N_2 fixation, there is a general lack of rigorous testing¹¹⁶. The activity of titania 548 is highly dependent on supplier, which has been attributed to differences in oxygen vacancy abundance¹⁴² 549 or carbon contaminants¹⁴³. Nonetheless, there is an increasing number of reports of photochemical N₂ 550 fixation on titania and numerous other materials^{64,116}. Literature results in photochemical N₂ fixation must 551 be viewed in the context of experimental rigour, which not only includes mere isotope labelling experiments 552 but also tangible efforts to account for contamination sources, including the elimination of ¹⁵NH₃ and ¹⁵NO_x 553 impurities in gas streams. The necessity of isotope-labelled experiments is a consequence of the inherent 554 measurement challenges, similar to those within electrochemical systems. For instance, some of the most 555 widely utilized semiconductor photocatalysts for N₂ reduction are based on carbon nitride materials^{144,145}, 556 which contain many amine terminal moieties and a generally high N content that can lead to producing 557 meaningful amounts of NH₃ upon degradation¹⁴⁶. Additionally, residual alcohols, amines and/or organic 558 solvents can interfere with NH₃ quantification and result in an unreliable determination of NH₃ yields^{116,147}. 559 Photochemical studies in which isotope labelling shows quantitative agreement between ¹⁴N₂ and ¹⁵N₂ over 560 multiple points (i.e. as a function of illumination time), along with proper gas cleaning to scrub away ¹⁵NH₃ 561 and ${}^{15}NO_x$ impurities, have yet to be reported. Nonetheless, theoretical works suggest that photo-excited 562 holes or electrons may facilitate N fixation more easily than metal electrodes, as the adsorbates at the 563 electrodes may not be in equilibrium with the charge carriers³². 564

565 [H2] Thermochemical N₂ Reduction

[H3] Reporting metrics of experimental results

The effects of temperature, pressure, and space velocity on catalytic activity as well as stability testing 567 should be measured to evaluate a catalyst. The typical reports of catalytic performance are shown in Fig. 8. 568 A temperature-dependent activity test within a certain temperature range (250-400 °C) should be conducted, 569 and a benchmark catalyst (Cs-Ru/MgO) should also be tested under identical conditions. Special care 570 should be given to the measurement of low-temperature activity (temperatures below 250 °C) as less 571 product is formed due to lower activity, thereby being more prone to contamination issues and potentially 572 not satisfying the criteria of $mass_{prod} > 2 mass_{sys}$. For some of N-containing catalysts, such as nitrides, 573 amides, imides and N-doped carbonaceous support, the catalysts should be reduced/pretreated under H_2 or 574 H_2/N_2 at elevated temperature long enough to remove any reactive species from the catalyst. The stability 575 is also crucial for evaluating the performance of a catalyst, and the activity data is only meaningful if there 576 is stable performance. A life-time evaluation should show NH₃ production that is greater than the amount 577

of N in the system, and the NH₃ concentration should be greater than 100 ppm in the outlet gas. Isotope sensitive measurements are necessary if these production levels are not observed.

Kinetic measurements should be conducted under conditions far from the thermodynamic equilibrium and in the absence of mass and heat transfer limitations (**Fig. 8c**). The reaction rate is affected by the partial pressures of all gaseous components (N_2 , H_2 and NH_3) as is shown in the power-law rate equation

(eq. 8)

$$r = k P_{NH3}{}^{\alpha} P_{N2}{}^{\beta} P_{H2}{}^{\gamma}$$

where *r* is the reaction rate, *k* is the rate constant, *P* is the partial pressure of the reactants or product, α , β and γ are the reaction orders for NH₃, N₂ and H₂, respectively ^{148,149}. The reaction order of NH₃ (α) is obtained by measuring the NH₃ synthesis rates with varying total gas flow (*F*) at constant H₂ and N₂ partial pressures. The reaction order of NH₃ (α) could be obtained by plotting log(*P*_{NH3}) (or log(*C*_{NH3}), where *C*_{NH3} is the NH₃ outlet concentration) vs. log(1/*F*) where the slope is 1/(1- α). For a step-by-step derivation, readers are referred to the <u>Supplementary information</u>.

For the reaction orders of N₂ (β) and H₂ (γ), log(r) plotted against log(P_{N2}) would give a slope of β and 590 log(r) plotted against $log(P_{H2})$ would give a slope of γ provided that the partial pressures of the other gasses 591 are kept constant. In cases where it is difficult to keep the NH₃ partial pressure (P_{NH3}) constant by changing 592 the flow rate while varying either the N₂ or the H₂ partial pressure independently, one may determine β and 593 γ by plotting log(r) - $\alpha \log(P_{NH3})$ vs. log(P_{N2}) or by plotting log(r) - $\alpha \log(P_{NH3})$ vs log(P_{H2}) (Fig. 8c) 594 respectively, however it is a less desired solution (see derivation in the Supplementary Information). It is 595 worth noting that the term $\alpha \log(P_{NH3})$ cannot be omitted unless α is close to zero or the partial pressure of 596 NH₃ is kept constant. Calculating β or γ without accounting for NH₃ partial pressure variation may obtain 597 inaccurate values of reaction orders and lead to a problematic interpretation of the reaction mechanism. 598

- $_{599}$ Generally, the N₂ order is positive and close to unity for the conventional oxide or carbon supported catalyst
- because the rate-determining step of these catalysts is the N_2 activation. However, H_2 and NH_3 orders can
- differ between various catalysts. For the iron-based catalysts, the H₂ order is positive and the NH₃ order is
- negative because of the strong adsorption of $N^{150,151}$. In contrast, the H₂ order can be negative for some of
- the Ru-based catalysts due to the strong H_2 adsorption¹⁵².
- In theory, the apparent activation energy (E_a) should be determined by plotting $\ln(k)$ vs. 1/*T*, rather than ln(*r*) vs. 1/*T* because the variation of NH₃ partial pressure has influence on the reaction rate according to
- the power-law rate equation. Thus, E_a should be measured at a constant NH₃ pressure. As shown in **Fig. 8d**,
- the apparent E_a values calculated at constant NH₃ pressure were greater than those determined at constant
- flow rate over RuCl₃/ γ -Al₂O₃ catalysts¹⁵³. The importance of NH₃ partial pressure should be considered in
- the kinetic measurements, as it could otherwise lead to inaccurate values. Moreover, we note the apparent
- activation energy is a complex function of both the activation energy for the rate-limiting step and the cost
- of freeing up sites. Thus, E_a cannot be directly compared to the activation enthalpy (nor the free energy) of
- 612 the rate-limiting step.
- 613

583

[H3] Issues hindering progress in thermochemical N₂ reduction

Generally, catalysts operated at lower temperature are associated with a lower NH₃ synthesis rate. More recently, reactive catalytic materials have been employed for thermal NH₃ synthesis (**Fig. 6d**). Materials such as electrides¹¹², hydrides⁷⁸, nitrides¹⁵⁴ and oxy-hydrides¹⁵⁵ have been found effective in promoting/synergizing with transition metals, making early- and/or late-transition metals highly active. Some of the transition metal hydrides alone were also found to be catalytic active^{156,157}. Those materials, however, have dynamic responses to the reacting environment. A recent neutron scattering investigation

- reveals formation of H-containing species in the C12A7:e⁻ lattice under reaction conditions¹⁵⁸. The TiH₂
- shows the potential nitridation of the surface during the reaction¹⁵⁶. The $VH_{0.39}$ is most likely converted into
- $VH_{0.44}N_{0.16}$ under reaction conditions, which is the stable active composition¹⁵⁷. Amides, hydrides and
- nitrides of alkali/alkaline earth/rare earth metals can also react with H₂, N₂ and/or NH₃¹⁵⁹. Moreover,
- catalyst made of coordination-unsaturated transition metal atoms or clusters may alter its chemical
- composition or physical state in response to the reacting environment. Characterization on a catalyst
- quenched by the reaction being evaluated would be more meaningful to provide information on the
- composition and chemical state of the active phase/site. However, this means of catalyst evaluation has yet
- to be fully addressed.
- Adventitious N sources can also be significant when claiming catalytic activity with NH₃ concentration below 100 ppm or $mass_{prod} < 2 mass_{sys}$. In addition to the possible sources of contamination discussed in electrochemical N₂ reduction/oxidation reactions, attention should also be given to reactive catalysts that would build up lattice or surface N species in situ under a N₂- or NH₃-rich atmosphere and elevated
- would build up lattice or surface N species in situ under a N_2 or NH_3 -rich atmosphere and elevated
- 634 temperatures. Those N species have a chance to convert to NH₃ via a non-catalytic mechanism when the
- reaction condition allows for it, such as in an H_2 -rich environment or at a low temperature. This conversion
- might result in a false-positive, which calls for using isotope labelling in the activity test for verification.
- [H2] Reporting and interpreting DFT results
- Given Quantum mechanical simulations, typically based on density functional theory [G] (DFT), are useful in understanding the mechanisms of N_2 activation. In this section, best practices in creating free energy diagrams, assessing active site stability and rationalizing free energy diagrams are discussed.

[H3] Creating free energy diagrams

To ensure the overall reaction energy is independent of the catalytic material when creating free energy diagrams, it is critical to ensure that the initial and final states correspond to gas-phase N_2 and gasphase/aqueous products (for liquid-phase systems vapor pressure of N_2 can be used), respectively. For electrochemical free energy diagrams, a convenient model of applied potential is the computational hydrogen electrode (CHE) model¹⁶⁰, but more sophisticated models of applied potential may provide more accurate energies^{161,162}.

Considering the free energy of species, rather than only the energy obtained directly from DFT, is critical 648 whenever computed energies are compared to experimental values¹⁶³. At 0 K, the free energy consists of 649 the energy obtained from DFT and the zero point energy [G]. The temperature-dependent free energy 650 includes additional contributions from enthalpy and entropy, which can be computed through statistical 651 mechanics (this standard DFT textbook¹⁶⁴ describes how each term is calculated). The entropy can be 652 computed by assuming the adsorbate acts as a harmonic oscillator as an approximate upper bound. This 653 assumption can lead to over-estimation in the case of low-frequency modes because the entropy diverges 654 as frequency goes to zero for a harmonic oscillator, calling the need for rigorous treating and reporting of 655 low-frequency modes¹⁶⁵. Compared to the DFT energies, the inclusion of all free energy terms generally 656 causes surface states to be less favorable due to the vibrational energy of the adsorbed states and the loss of 657 entropy as they are bound to the surface. The entropy loss of a gaseous reactant as it becomes bound on the 658 surface needs to be accounted for when in evaluating the free energy barrier¹⁶⁴ (**Fig. 2a**). The importance 659 of the full consideration of all free energy terms is more concretely illustrated in Fig. 9a. The *N₂H surface 660 species gains 0.16 eV to be adsorbed on Ru (211) when considering only the DFT energy (grey). However, 661 this N_2H surface species is destabilized by 0.67 eV due to the entropy loss relative to the gas phase and by 662

0.16 eV owing to change in the zero-point energy of the bonds (while it is stabilized by 0.05 eV from the 663 enthalpy change), all leading to an energy penalty of +0.62 eV for $*N_2H$ adsorption. This difference 664 between DFT and free energies reveals that not considering the relevant free energy can lead to qualitatively 665 incorrect conclusions of the thermodynamic driving force(s) for elementary reaction steps and what the 666 rate-limiting steps are. 667

[H3] Assessing Active Site Stability 668

The feasibility of an active site model can be assessed in terms of at least two criteria: stability and reactivity. 669 An active site's stability should be assessed by computing its surface energy using ab initio 670 thermodynamics¹⁶⁰. In general, activity and reactivity are related by a non-linear volcano plot relationship, 671 where sites that are more reactive tend to be less stable. Therefore, it is necessary to find a trade-off between 672 reactivity and stability^{166,167}. An example of an activity-stability plot for surfaces toward O₂ reduction 673 reaction on a number of Pt (111)-derived surfaces, where predicted current density represents activity and 674 surface energy represents stability is shown in Fig. 9b. The most relevant surfaces form a Pareto-optimal 675 frontier [G] along the activity/stability axes. Surfaces on the Pareto-optimal line represent optimal trade-676 offs between activity and stability, whereas surfaces below the line are sub-optimal, and surfaces further to 677 the right are less stable and thus more challenging to generate under the atmospheric conditions used as the 678 reference state. However, the stoichiometry of active sites can vary, and their relative stability will vary 679 depending on the chemical potential of the environment. Therefore, it is critical to consider the relevant 680 chemical potentials when assessing active site stability. Competitive adsorption is also an important 681 component of active site stability. For example, analysis of N_2 adsorption free energy often assumes that 682 there is no competitive adsorption from abundant spectator species such as *H, which may prohibit 683 adsorption and reaction⁷³. Surface phase diagrams provide a useful tool to assess stability and coverage of 684 competing intermediates as a function of chemical potential¹⁶⁸. 685

[H3] Rationalizing free energy diagrams 686

697

When reading free energy diagrams, a distinction should be made between electrochemical steps and non-687 electrochemical steps. The thermodynamic barrier ΔG_{step} , which is the most uphill step in free energy along 688

the reaction pathway, can be set as a lower bound for the true activation energy, ΔG^{\ddagger} . As mentioned, a free 689

energy diagram for electrochemical N₂ fixation with a thermodynamic barrier greater than $\Delta G_{step} = 1.5 \text{ eV}$

- 690
- under ambient conditions should be treated with skepticism. 691

Moreover, it is also important to consider the adsorption free energy of the inert N_2 molecule, an essential 692 first step of N₂ fixation. N₂ physisorbing [G] to the surface results in an energy penalty of 0.67 eV¹⁶⁹ at 25 693 °C owing to the gas-phase entropy loss, and thus must be compensated by an enthalpic gain. To assess the 694 point where N₂ adsorption becomes rate-limiting, collision theory can be used to obtain the rate of collisions 695 between a gas and a surface⁶³. Thus, the number of successful collisions per unit time per area becomes: 696

$$r \sim \frac{P_{N2}}{N_A \sqrt{2\pi m k_B T}} \exp\left(-\frac{\Delta G_{*N2}}{k_B T}\right) \left[\operatorname{mol}_{N2} \operatorname{cm}_{\text{geo}}^{-2} \operatorname{s}^{-1}\right]$$
(eq. 9)

where P_{N_2} is the partial pressure of N₂, m is the mass of N₂ molecule, k_b is the Boltzmann constant, T is the 698 temperature, N_A is the Avogadro constant, and ΔG_{*N2} is the thermodynamic N₂ adsorption free energy, 699 which is a lower bound for the true adsorption barrier. To obtain the number of successful collisions per 700 site per second, the rate can be multiplied by N_A and divided by the site density N_o. 701

702
$$r \sim \frac{P_{N2}}{N_o \sqrt{2\pi m k_B T}} \exp\left(-\frac{\Delta G_{*N2}}{k_B T}\right) [s^{-1}] \qquad (eq. 10)$$

⁷⁰³ Using a typical site density⁶³ of $N_o = 1.5 \times 10^{15}$ sites cm_{geo}^{-2} and 1 bar of N_2 , the barrier corresponding to 1 ⁷⁰⁴ successful collision per site per second (turnover frequency of 1 s⁻¹) becomes roughly 0.5 eV at 25 °C. The ⁷⁰⁵ collision rate can be estimated by using the concentration of dissolved N_2 at standard conditions ($P_{N2}=0.012$ ⁷⁰⁶ bar) with respect to aqueous solutions, in which case the N_2 adsorption free energy should be below 0.35 ⁷⁰⁷ eV to ensure that N_2 adsorption is not rate limiting.

708

709 [H1] Applications

Electrochemical, photo(electro)chemical and thermochemical N₂ fixations have primarily been discussed 710 in this Primer due to the size of interest and research efforts in these fields, and the possibilities they offer 711 to sustainably produce high value N-containing chemicals. Particularly power-to- NH_3 is an attractive 712 process, as NH₃ is the only other viable carbon-free green fuel to H₂ with significant advantages: it has 713 ~70% higher H density than H₂ in liquid form, it can be liquefied under moderate conditions (20 $^{\circ}$ C at 0.86 714 MPa) for a more economical delivery, and it can be stored in benign, low-cost metal halide salts, which are 715 mature, safe and reversible storage systems ¹⁷⁰. It can be used as fuel in gas turbines and power generators, 716 or the NH₃ can be split, thereby providing a source of H₂ gas for fuel-cell based vehicles and marine 717 transportation^{171,172}. 718

Centralized NH₃ production via the Haber-Bosch process is currently slowly replacing steam-methane 719 reforming (Gen 1 NH₃) with wind or solar-powered water electrolysis to generate H₂ (Gen 2, Fig. 1)²⁸. Gen 720 2 facilities would significantly reduce the carbon footprint of NH_3 production¹². Thermochemical N₂ 721 reduction is a crucial key point, as lowering the required pressure and temperatures of the Haber-Bosch 722 process enables smaller and thereby cheaper production facilities¹¹. For fully decentralized NH₃ production, 723 such that there would be one device per farm for fertilizer production, significant breakthrough in 724 electrochemical or photo(electro)chemical N_2 activation (Gen 3, Fig. 1) is necessary¹⁷³. These advanced 725 processes could significantly reduce the dependence on Haber-Bosch on a local scale, as the only inputs 726 should be air, water and renewable electricity on a small-scale device. Breakthroughs on the small-system 727 728 scales (on the order of 1 device per farm or greenhouse) would also lead to electricity storage as NH_3 , aiding the intermittency issue of renewable electricity sources, and more advances in overall power-to-X 729 technologies, as more infrastructure and reliance on Gen 3 NH₃ will increase understanding of general 730 electricity conversion, energy storage, and reconversion pathways. 731

Furthermore, N₂ activation has widespread use across many different fields, as N-containing chemicals is 732 pivotal in the pharmaceutical industry, the synthesis of polymer materials, dye manufacture, and the field 733 of organic synthesis¹⁷⁴. Direct synthesis of compounds such as urea¹⁷⁵, the most commonly used and highest 734 N-containing solid fertilizer by weight, via electrochemistry from N₂ and CO₂ in H₂O would skip the 735 intermediate step of NH₃ synthesis coupled with further processing, enabling decentralized production of a 736 high-value chemical. One could even dream of direct electrochemical synthesis of higher complexity N-737 containing compounds, such as acetonitrile, pyridines, amino acids, etc.¹¹. Understanding N_2 activation as 738 the critical first step can therefore tremendously impact the chemical and pharmaceutical industry. 739

[H1] Reproducibility and data deposition

[H2] The importance of reproducibility

Ensuring complete account and mitigation of contamination sources is key to improving reproducibility in

- N_2 activation. Given the ubiquity of N-impurities, results of catalytic performance must be accompanied
- with experimental details showing how contamination sources have been mitigated. To this end, performing
- complete isotope-labelling experiments, with time-dependent product quantification and proper cleaning of

- the $^{15}N_2$ gas stream, is imperative to ensure unambiguous certainty of successful N_2 fixation. Additional
- rigor needs to be applied when performing electrochemical and photo(electro)chemical measurements and
- detecting product formation from these processes, especially when the reported selectivity is very low. For
- r49 electrochemical measurements, the pre- and post-test Ohmic resistance can differ substantially (See
- $\underline{Experimentation}$) such that the shift in potential should be properly adjusted⁷⁶. Similarly, in thermochemical
- studies, catalyst preparation-pretreatment and activity measurements are two main factors influencing the
- reproducibility of the experiments, so reporting the associated experimental details is imperative.

The reported data should highlight $n \ge 3$ reproductions, which include at least three repeated measurements in product detection for each catalytic activity point, three independent activity tests, and three independently prepared catalyst batches. The mean and spread of each data point must be reported, acknowledging errors from activity measurements and product detection, with the appropriate number of significant digits. This is significant as several studies report an excessive number of digits beyond the precision usually attainable in catalysis.

[H2] Data deposition and reporting

- Transparency in reporting and data deposition are essential. Useful figures of merit regarding the catalytic performance and details of the experimental conditions, as elaborated in **Table 2**, must be reported to enable a thorough assessment of the experimental rigor and aid comparisons of data collected under different
- conditions. Ultimately, these efforts are aimed at evaluating the product mass relative to the system size of
- the experiment. Kinetic measurements such as the determination of reaction orders and activation energy
- may be required according to the need of these mechanistic details. Lastly, pre- and post-measurement
- (and/or in situ) characterization of the catalyst may be necessary to ascertain changes associated with the
- 767 reaction conditions.
- In a move towards open data, raw calibration and test data associated with catalytic activity measurements
- should be openly shared, also including the relevant data analysis scripts where possible, and results such as converged atomic coordinates and vibrational frequencies when a DFT calculation is performed.

[H1] Limitations and Optimizations

[H2] Cost of isotope experiments

- For repeated isotope labelled experiments, the cost of ${}^{15}N_2$ can be prohibitively expensive, as a single longterm experiment can easily cost upwards to 2,300 USD for 5 L. This high cost can be circumvented by introducing a glass circulation pump. Once a high enough ${}^{15}N_2$ atmosphere is achieved in the system, the glass pump will continuously circulate the gas, without the need to supply more throughout the experiment. Furthermore, the circulation pump has the added benefit of not introducing contaminants over time, if the gas stream contains any NH₃ or NO_x species, decreasing the possibility of false positives. The glass circulation pump can be made in-house¹⁷⁶ as seen in **Fig. 10a**, or purchased commercially.
- Isotopically labelled ${}^{15}N_2$ can contain significant amounts of both ${}^{15}NH_3$, and ${}^{15}NO_x$ species that reduce easily, leading to isotopically labelled contamination⁹⁷. We do not advocate the use of aqueous solutions to clean N₂, as they would not trap all contaminants¹⁷⁷. The residence time of the bubbles compared to the diffusion time inside the bubbles would need to be ideal, with a certain probability of uptake. The bubbles need to be tiny, so they rise slowly and have fast internal mixing and large surface/volume ratio¹⁰².
- Furthermore, it is unclear how NO_x species would be trapped in acid¹³⁴. We found that a home-made
- reduced Cu catalyst combined with a freeze trap to be efficacious for removing impurities, on the basis of the measured level of all NH₃ and NO_x impurities removed before and after the cleaning⁷⁶. The reduced Cu
- the measured level of all NH_3 and NO_x impurities removed before and after the cleaning⁷⁶. The reduced Cu catalyst will catch all NO_x species, while the cold trap freezes out NH_3 . Commercial gas purifiers down to

- parts per trillion per volume fraction (pptV) level are also available for purchase. A complete home-built
- and inexpensive system for both the glass circulation pump and the reduced Cu catalyst is shown in **Fig.**
- **791 10b**.

[H2] Access to NMR

NMR is the most commonly reported technique for isotope labelling experiments, as it can distinguish between ¹⁴NH₃ and ¹⁵NH₃. Not all will have access to a high-field 800 MHz NMR, but the use of the more commonly available 400 MHz NMR can achieve similar sensitivity, covered in more detail in REF⁷⁶.

[H3] Overcoming mass-transport limitations

⁷⁹⁷ Mass-transport of N_2 to the catalyst surface is one of the main limitations in electrochemical and ⁷⁹⁸ photo(electro)chemical systems. However, using a gas diffusion electrode (GDE) in a flow-cell system ⁷⁹⁹ creates triple-phase (solid, liquid and gaseous) boundary points where N_2 is readily available for reaction ⁸⁰⁰ at the surface of the electrode, which can help circumvent this limitation. Using this GDE is advantageous ⁸⁰¹ over the more common H-cell or single compartment cells that rely on N_2 solubility in the electrolyte, which ⁸⁰² is typically quite low for most liquids¹⁷⁸. For the electrochemical Li-mediated N_2 reduction in an H-cell⁸¹, ⁸⁰³ the equivalent flow-cell system has been proven to significantly increase the Faradaic efficiency and current

density via application of a slight overpressure on the backside of the GDE^{80} .

805 [H1] Outlook

806 [H2] Adoption of standardized test protocols

N₂ reduction and oxidation at low temperature and pressure are reactions with immense technological 807 significance. Unfortunately, much published research lacks rigorous and standardized testing, leading to 808 possible contamination and false positives. The possibility of contamination is particularly prominent for 809 reports with low product formation rates, spanning all electrochemical and photo(electro)chemical systems 810 to date, as well as some low temperature thermochemical systems. The only conclusive proof of productive 811 N_2 activation is via repeated and quantified isotope labelled testing coupled with proper gas cleaning. In 812 this Primer, the cut-off necessitating the use of the crucial ${}^{15}N_2$ quantitative isotope labelling 813 experimentation for all N₂ activation reactions has been defined; both $mass_{prod} > 2 mass_{sys}$ (mass_{sys} is based 814 on experimentally measured N in the system) and $C_{prod} > 100$ ppm must be satisfied. This defined caliber 815 should prevent reporting false positives, which hinder development of the N_2 activation field. 816

Beyond electrochemical, photo(electro)chemical and thermochemical systems, efforts on non-thermal 817 plasma N₂ fixation have been pursued in recent years¹⁷⁹. Generally, the plasma-driven N₂ fixation studies 818 report product concentrations of hundreds of ppm and up to $\sim 5\%$ of the gas stream³⁶, dwarfing the 819 detrimental contribution of labile N-species from various contamination sources. However, with the field's 820 primary focus on achieving higher energy efficiency, several studies using dielectric barrier discharges as 821 the most common plasma source show worryingly low NH₃ production ($C_{prod} < 100 \text{ ppm}$)³⁵, possibly dipping 822 into the range of contaminants. The mechanochemical method of NH₃ synthesis has also emerged as a new 823 direction for N₂ activation^{39,40}, with similarly high reported NH₃ yields, but the field can benefit from the 824 critical assessment of the potential size of N-contaminants. Researchers in these exploratory areas should 825 adapt the protocol in this Primer by comparing the product mass with the system size and performing 826 quantitative isotopic-labelling verification technique at the low-yield data points. 827

828 [H2] In situ mechanistic insight

Insight into the reaction mechanisms on N_2 reduction has largely been built on theoretical investigations^{69,73,180}. In-situ and in-operando techniques to probe intermediate species can validate or challenge established paradigm, and provide valuable considerations for future catalyst designs. In **Box 2**,

- we discuss four techniques which can be utilized for electrochemical and thermochemical N_2 activation,
- ⁸³³ but other spectro(electro)chemical techniques such as Differential Electrochemical Mass Spectrometry
- (DEMS) among others in development may be useful. All of these techniques can be complemented with
- Raman and core-level spectroscopies to gain an understanding of the underlying mechanistic processes
- 836 enabling N₂ activation. However, adoption of the rigorous protocol takes precedence to ensure what is being
- ⁸³⁷ detected is not associated with the presence and redox processes of adventitious N sources.

838 [H2] Commercialization

The reported false positives and likely unreliability of many prior publications in N₂ fixation have undoubtedly affected the reputation of the field. In the immediate future, the scientific community should aim to restore the field's integrity and eliminate the emergence and propagation of unreliable results. An increase in rigor of experimental practices, efforts to reproduce reported results, cross-pollination of knowledge and best practices across laboratories, and a more deliberate regard toward fundamental concepts and principles will support this restoration.

In the next 5-10 years, we anticipate researchers will focus on addressing the field-specific needs (**Box 3**),

ultimately finding breakthrough catalysts with practically relevant and reliably demonstrated yield rates,

selectivity, stability and energy efficiency to enable industrial deployment of sustainably-produced NH₃.

The obsessive pursuit of breakthrough results must go hand-in-hand with robust fundamental studies to identify reaction mechanisms, active sites and reaction kinetics, aided by experimental mechanistic studies

identify reaction mechanisms, active sites and reaction kinetics, aided by experimental mechanistic studies
 and quantum chemistry or other computational methods. Ultimately, concerted efforts from experimental

and theoretical communities will be key to discovering practical solutions to decarbonize the activation of

852 N₂.

853 Boxes

[bH1] Box 1. Sources of system N mass

855 [bH2] mass_{N,cat}

The amount of measured N in the catalyst and support, which must be experimentally determined. This 856 measure is important, even if the catalyst does not intrinsically contain N, as substantial levels of NO₃⁻ and 857 nitrides can contaminate commercial metal sources^{107,181,182}, despite manufacturer's claims otherwise. 858 The simple 2-step procedure of alkaline and acidic treatment of the catalyst should be conducted, 859 followed by HPLC or UV-vis analysis or any equivalent method for determining N-content.¹⁸² Special care 860 should be taken regarding N-buildup on the catalyst if pretreated with an N-containing procedural step. 861 These N-species could contaminate the catalyst, and convert to NH₃ via a non-catalytic route^{183,91}. 862 Therefore, examining the N-content of the catalyst as bought, after any pre-treatment, and after catalysis 863 should be a routine practice. If the N-content of the catalyst is not experimentally determined, one should 864 consider mass_{N,cat} as at least 25% of the whole mass of the catalyst, unless the catalyst is intrinsically N-865 containing (for example, a nitride), in which case 100% of the mass should be considered. 866

867 [bH2] mass_{N,electrolyte}

The measured amount of N in the electrolyte. Electrochemical and photo(electro)chemical systems submerge the catalyst in electrolyte, and if the electrolyte itself contains N species, these must be considered as sources of contamination, owing to possible electrolyte breakdown. However, the electrolyte itself may also be contaminated, as chemicals and membranes (for example, Nafion) readily soak up NH₃ from the surroundings⁷⁶, and both NO_x and NH₃ blank measurements of the electrolyte should be included with each batch of electrolyte.

874 [bH2] mass_{N,absorber}

The measured amount of N in the photoabsorber present in photo(electro)chemical system. This may contain sources of activated N as a contaminant, which should be determined experimentally.

877 [bH2] mass_{N,gas}

The total calculated N impurities of the N₂ gas stream^{97,102}. If the purity of the N₂ is 99.999%, one must consider 0.001% of the total gas used to be entirely contamination, and calculate the mass of this based on flow rate and duration. Alternatively, a proper gas cleaning procedure, with reported NH₃ and NO_x

- contamination of the gas before and after cleaning can be used.
- 882
- 883

[bH1] Box 2. In-situ and operando techniques for N₂ fixation

[bH2] Surface enhanced infrared spectroscopy (SEIRAS)

- SEIRAS can detect the adsorbates in electrochemical N_2 fixation in operando. The infrared adsorption
- peaks can be attributed to vibrational modes of reaction intermediates, and these signals can be enhanced
- on metal surfaces by the SEIRA effect (enhancement of infrared adsorption as a result of enhanced optical
 fields on a surface ¹⁸⁴. Several studies have attempted SEIRAS for electrochemical N₂ reduction^{185,186}, but
- fields on a surface ¹⁸⁴. Several studies have attempted SEIRAS for electrochemical N₂ reduction ^{185,186}, but contributions from contamination to the detected species are highly probable. Nonetheless, successful
- contributions from contamination to the detected species are highly probable. Nonetheless, successful
 in-situ Fourier transform infrared (FTIR) spectroscopy for electrochemical NH3 oxidation on Pt electrode
- has been reported 187. Here, various bands, detected at different voltages, were ascribable to the HNH
- bending mode of *NH3, NH2 wagging mode of *N₂H₄, absorption of NO bridged species and HOH bending
- mode of *OH groups.

[bH2] Electron Paramagnetic Resonance Spectroscopy (EPR)

EPR allows the monitoring on paramagnetic species - having unpaired electrons - as a function of potential
 in an electrochemical process, detectable upon rapid freezing of the electrodes. EPR spectra have
 detected nitrous oxides in redox processes in biomolecules ¹⁸⁸ and during alcohol oxidation.¹⁸⁹.
 Electrochemical EPR could detect absorbed paramagnetic surface-adsorbed NO (*NO) species formed
 during N₂ oxidation.

901 [bH2] N₂ isotopic exchange reaction (N₂-IER)

 $\begin{array}{ll} & N_2\text{-}\mathsf{IER}\;({}^{15}\mathsf{N}_2+{}^{14}\mathsf{N}_2\to 2{}^{15}\mathsf{N}{}^{14}\mathsf{N}) \text{ has been used to probe the reaction mechanisms and the rate-determining} \\ & \text{step of the thermochemical NH}_3 \text{ synthesis, by introducing } {}^{14}\mathsf{N}_2/{}^{15}\mathsf{N}_2 \text{ gas mixtures and monitoring the } {}^{14}\mathsf{N}_2, \\ & {}^{15}\mathsf{N}_2 \text{ and } {}^{14}\mathsf{N}{}^{15}\mathsf{N} \text{ gas phase composition. Examples confirming } \mathsf{N}_2 \text{ dissociation as the rate-determining step} \\ & \text{using } \mathsf{N}_2\text{-}\mathsf{IER} \text{ for } \mathsf{NH}_3 \text{ synthesis have been reported on } \mathsf{Fe}^{190} \text{ and } \mathsf{Ru}{}^{191,192}. \text{ A } \mathsf{N}_2\text{-}\mathsf{IER} \text{ study on cobalt} \\ \end{array}$

- ⁹⁰⁶ molybdenum nitride¹⁹³ demonstrates the possible participation of lattice N in a Mars-van Krevelen
- ⁹⁰⁷ mechanism involving the hydrogenation of lattice N to evolve NH₃, and the refilling of lattice N vacancies
- 908 by N₂ gas¹⁹⁴.

909 [bH2] Steady State Isotopic Transient Kinetic Analysis (SSITKA)

- SSITKA is performed under steady-state conditions and involves introducing a step change in the isotopic content of the reactant and monitoring the transient responses of the isotopically labeled species¹⁹⁵.
- SSITKA has been used to study the kinetics of NH_3 synthesis on commercial Fe^{196} and $Ru^{197-200}$ catalysts. A
- study on commercial Fe catalysts reveals *N as the most abundant reactive intermediate¹⁹⁶. The role of
- 914 potassium promoter over Ru catalysts, investigated by SSITKA, is revealed to induce surface site
- ⁹¹⁵ heterogeneity on Ru/SiO₂, creating super-active sites responsible for enhanced catalytic activity¹⁹⁷.
- 916

⁹¹⁸ [bH1] Box 3. Field-specific progress, needs, and insight

919 [bH2] Thermochemical N₂ reduction

The thermochemical N₂ reduction is the most advanced in terms of technological readiness, as there are 920 a variety of newly developed catalysts shown to produce NH₃ at low pressures (1-10 bar) and low 921 temperatures (< 300 °C). However, higher operation temperatures (compared to ambient conditions) and 922 pure H₂ as the feed gas are still required, necessitating an additional H₂ cleaning step. Therefore, major 923 efforts include exploring unconventional, highly active and electron-rich materials as catalysts or catalyst 924 supports to optimize the reaction rate and decrease the temperature further. Elucidating the active site 925 and reaction mechanism should also be a focus area. Any progress in fundamental insight and/or 926 practical transformation in thermochemical NH₃ synthesis would have a profound impact on the field of 927 heterogeneous catalysis. 928

[bH2] Electrochemical and photo(electro)chemical N₂ reduction

The requirements for high yields comparable to the Haber-Bosch process or even to thermochemical systems are not necessary, as the focus is on creating completely decentralized systems²⁸. Unfortunately,

the validation of aqueous results using rigorous protocols^{76,102} is necessary in light of the sheer selectivity challenge in aqueous environments and the ubiquity of contaminants. Once these systems are experimentally validated, efforts towards increased catalytic activity, selectivity and number of active

- sites can be considered¹²⁵.
- The non-aqueous Li-mediated N_2 reduction process is proven to work, achieving record high energy 936 efficiencies^{79–82}. However, a vast majority of the reported literature still remains focused on aqueous 937 systems (Fig. 6), which is most likely due to the numerous experimental challenges for non-aqueous 938 systems, such as Ohmic drop compensation and high over-potentials, evaporation of organic solvents, 939 compatibility of colorimetric methods, etc. Furthermore, this system has significant kinetic challenges due 940 941 to mass-transport limitations that need to be overcome, which is possible with the use of GDEs in flowcell type systems (see Limitations and Optimizations). Further research in these systems would enable 942 scientists to tackle these challenges as breakthroughs occur, thereby increasing the feasibility of the 943 system for practical commercial use. 944

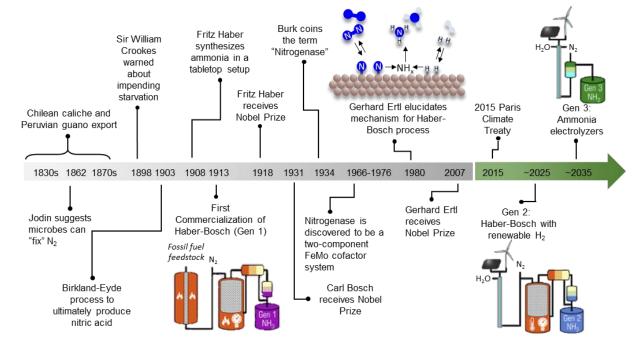
945 [bH2] Electrochemical N₂ oxidation

946 Electrochemical aqueous N₂ oxidation is piquing the curiosity of the scientific community. Nonetheless,

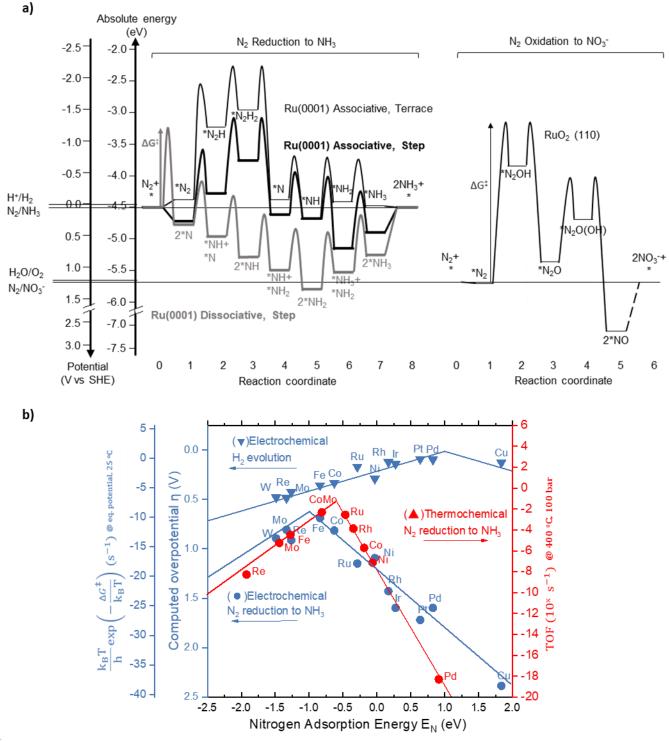
this field is in its infancy, with ample opportunity for fundamental insight and step improvements to

- 948 catalyst performance.
- 949
- 950

951 Tables

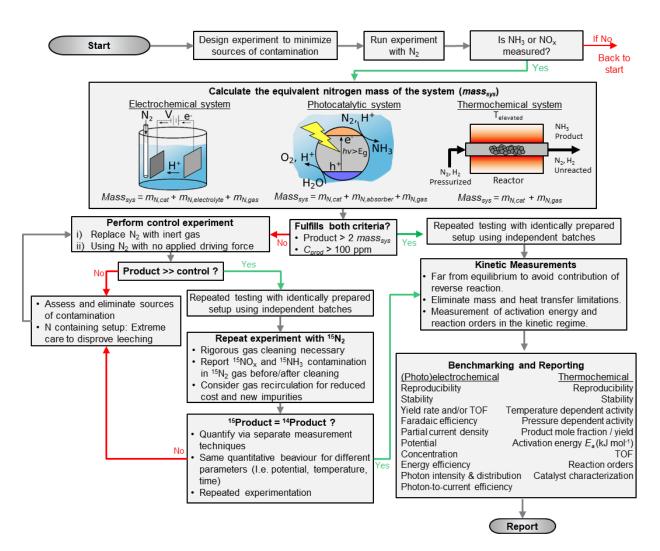

- **Table 1 Electrochemical and photo(electro)chemical systems contaminations sources and solutions.**
- 953 Methods adapted from Liu et al.¹⁰⁷

Sources of Contamination	Nitrogen form	Method of Elimination
Feed gas ⁹⁷	NO _x , N ₂ O and NH ₃	Use of home-made reduced Cu catalyst and a freeze trap, or commercial gas purifier.
Impurities in the catalyst ^{91,181,182}	NO_x^- and NH_4^+	Complete removal via pre-reduction of the catalyst before N_2 reduction testing. ¹⁰⁷
Uptake/release from the membrane ^{76,106,107}	NH ₃	Replace with contamination-free membrane, such as Celgard ¹⁰⁷ .
Electrolyte	NH ₄ ⁺ , NO ₂ ⁻ and NO ₃ ⁻	Removal via annealing of electrolyte salt or other cleaning methods.
Glassware, tubes, laboratory air, etc. ²⁰¹	NH ₃	Ensure the entire system is properly cleaned between uses; by boiling in ultra-pure water and drying in oven.


Data type	Definition	System type	
Reporting of catalyst pe	rformance	•	
Yield rate	Amount of product formed in a given time interval.	All systems	
Area-normalized	Yield rate normalized to either geometric or electrochemically	Electrochemical	
activity	active surface area.		
Mass-normalized	Yield rate normalized by the mass of catalyst.	All systems	
activity			
Turnover frequency	Rate of chemical conversion normalized to number of actives per	All systems	
	unit of time.		
Faradaic efficiency	Ratio of charges employed for the synthesis of a given product	(Photo)electrochemical	
	relative to the total amount of charge passed through the circuit.		
Stability	Capability of a catalyst to perform in prolonged time intervals	ntervals All systems	
	without detriment in its intrinsic activity		
Energy efficiency	Ratio of converted energy relative to the initial energy input.	All systems	
Average Quantum yield	Ratio of electrons transferred towards product relative to the	Photo(electro)chemical	
	incident photons reaching the sample at a given wavelength.		
Incident photon-to-	Ratio of produced photocurrent versus the incident photon flux at	Photo(electro)chemical	
current efficiency	a given wavelength.		
Reaction orders	The power dependence of reaction rate on reactant concentration.	All systems	
Activation energy	The minimum amount of energy required to activate reactants to	All systems	
	a state in which they can undergo a chemical reaction.		
Reporting of experimen		Γ	
Catalyst loading	Mass of catalyst employed in a single experiment.	All systems	
Gas purity & flow rate	Purity and flow rate of the $^{14/15}N_2$, H_2 and Ar gases.	All systems	
Time	Length of time of the experiment.	All systems	
Potential	The operating potential of working electrode during reaction.	Electrochemical	
Electrolyte volume	The volume of the supporting electrolyte used in electrolysis.	(Photo)electrochemical	
Temperature and	The temperature of the catalyst bed and the total pressure of the	All systems	
pressure	reaction gases.		
Photon intensity	Photon flux reaching the sample per second and illumination area.	Photo(electro)chemical	
Illumination	Available surface for the incident photon flux to reach the sample.	Photo(electro)chemical	
area/distribution			
Weight hourly space	Flow rate of the reaction gas fed to the reactor, divided by the	Thermochemical (most	
velocity	mass of catalyst.	relevant)	
Essential Information			
Gas cleaning procedure	An account of how impurities are removed in the gas streams.	All systems	
Technical specifications	Details such as manufacturer and purity of commercial catalyst	All systems	
of materials	and reagents used in catalyst synthesis; purity of electrolytes and		
V	ionic salts; additive content (for non-organic solvents).	$(D_{1}, f_{2}, f_{2}) = 1 + 1 + 1 + 1$	
Key experimental	Details such as the use of glovebox during electrolysis, cleaning	(Photo)electrochemical	
details	of system impurities, solvent-handling (drying steps), and		
<u></u>	residual water traces (non-aqueous systems).	A 11 4	
Catalyst	Structural or chemical information pre- and post- catalytic	All systems	
characterization	measurement to inform changes to the catalyst.		

⁹⁵⁵ Table 2. Required reporting standards for catalyzed N₂ reduction and oxidation.

956 Figure Captions



958	Fig. 1. Historical development of N2 activation. Nature mainly produces activated N-species via the
959	nitrogenase enzyme ⁶ . The source of N-containing fertilizer first originated from caliche deposits and
960	guano, both predicted to be unsustainable ⁸ . Two commercial N ₂ activation processes emerged in early
961	20^{th} century: the Birkland-Eyde and Haber-Bosch process, and the latter has since dominated the N_2
962	activation industry ⁷ , with 3 Nobel prizes given for its discovery ¹⁴ . With the global commitment to tackle
963	climate change, the decarbonization of N ₂ fixation is envisioned to involve two technology generations:
964	coupling the Haber-Bosch process with renewable H_2 (Gen 2) and electrochemical NH ₃ synthesis (Gen 3) ²⁸ .
965	Components coloured orange represent process steps requiring elevated temperatures. Schematics of
966	Gen 1, 2 and 3 technologies were adapted with permission from REF ²⁸ , Elsevier.

Fig. 2. The fundamental challenges of N₂ activation. a) Standard equilibrium potentials for N₂ and H₂O redox are aligned with the electron energy (0 V_{SHE} equals -4.44 eV on the absolute scale where electron in vacuum is 0 eV⁴²). The free energy diagrams for N₂ reduction⁷⁴ and oxidation⁵⁶ on selected surfaces are plotted at the equilibrium potentials referenced to standard conditions, 1 bar NH_{3(g)} and 1M H⁺NO₃⁻_(aq). *X refers to surface adsorbed intermediates. The energy difference between two states (for example, step

1-2 of associative N_2 reduction) corresponds to the thermodynamic barrier and can be lowered by 973 applying potential if the step involves an electron transfer. An additional activation barrier may be 974 present, shown as bumps between steps, whereby the value 0.7 eV is chosen for all coupled proton-975 electron transfer steps (consistent with Singh et al⁶⁶). The N-N dissociation barrier follows ref²⁰² in which 976 the zero-point energy and the gas phase entropy loss of N₂ have been included. The overall reaction 977 barrier can be approximated by the step with the highest barrier (ΔG^{\dagger}), which is much slower than other 978 elementary steps thus governing the rate. b) Limiting potential analysis⁶⁶ (blue) for electrochemical N₂ 979 reduction and H₂ evolution (overpotentials referenced to $N_{2(g)}/NH_{3(g)}$ and $H^+_{(aq)}/H_{2(g)}$ standard potentials) 980 981 as a function of N binding energy on transition metal terraces. For electrochemical N_2 reduction, $N_2+*+H^++e^- \rightarrow *N_2H$ (Step 0-2 in panel a) and $*NH+H^++e^- \rightarrow *NH_2$ (Step 5-6) define the right and left legs 982 respectively. For H₂ evolution, $*+H^++e^{\rightarrow}*H$ and $*H+H^++e^{\rightarrow}+H_2$ define the right and left legs. The rate 983 constants are shown in the second blue axis, where k_BT/h equals 10¹³ at 25 °C. The red points correspond 984 to the calculated turnover frequencies (TOF) on transition metal FCC/HCP (211), computed using a micro-985 kinetic model by considering the dissociative mechanism as described in ref⁶⁹. The synthesis condition is 986 400 °C, 100 bar, gas composition H₂:N₂=3:1 containing 5% NH₃. The N₂ reduction energy diagrams in panel 987 a were adopted with permission from REF⁷⁴, Royal Society of Chemistry, and the N₂ oxidation diagram 988 with permission from REF⁵⁶, Wiley. In panel b, the electrochemical N₂ reduction and H₂ evolution plots 989 are adapted with permission from REF⁶⁶, Elsevier and adapted with permission from Singh, A. R. et al. 990 Strategies toward Selective Electrochemical Ammonia Synthesis. ACS Catal. 9, 8316-8324 (2019). 991 Copyright 2019 American Chemical Society. The turnover frequency data points for thermochemical N_2 992 reduction are reproduced with permission from REF⁶⁹ 993

994

Fig. 3. General flow chart of experimentation. The total equivalent mass of the system, $mass_{sys}$, must be determined, which will be compared with the amount of product (NH₃ or NO₃⁻) measured, $mass_{prod}$, in order to determine the need for isotope labelled experiments. The $mass_{sys}$ is the summation of the relevant N-containing masses, which includes the experimentally measured N in the catalyst ($m_{N,cat}$), the mass of N in the electrolyte ($mass_{N,electrolyte}$), the mass of the N-containing absorber ($mass_{N,absorber}$), and the calculated or measured mass of impurities in the gas stream ($mass_{N,gas}$).

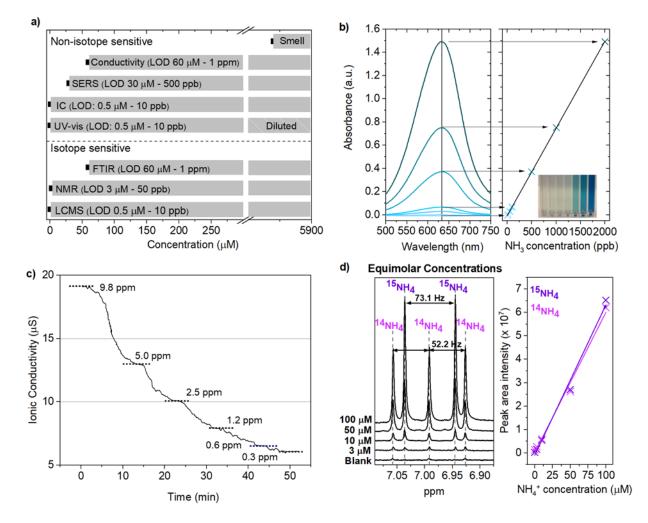
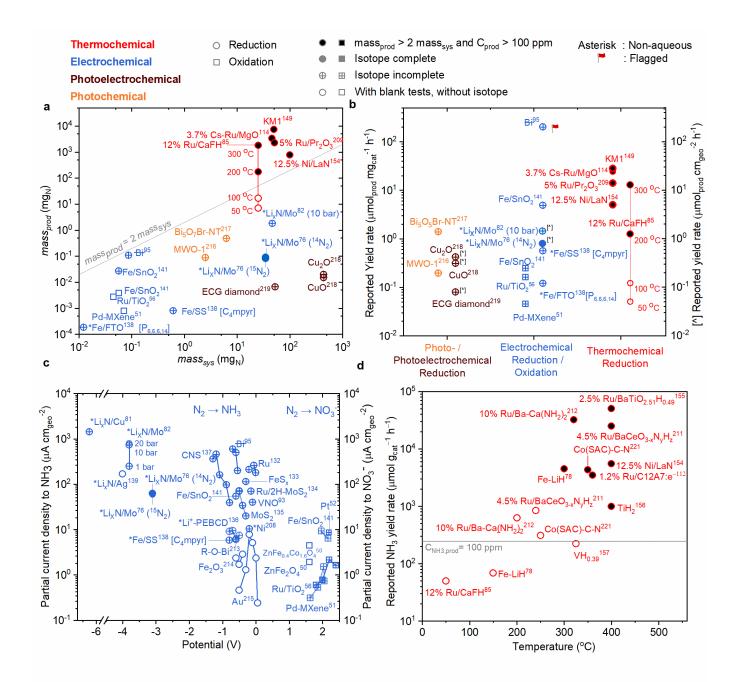
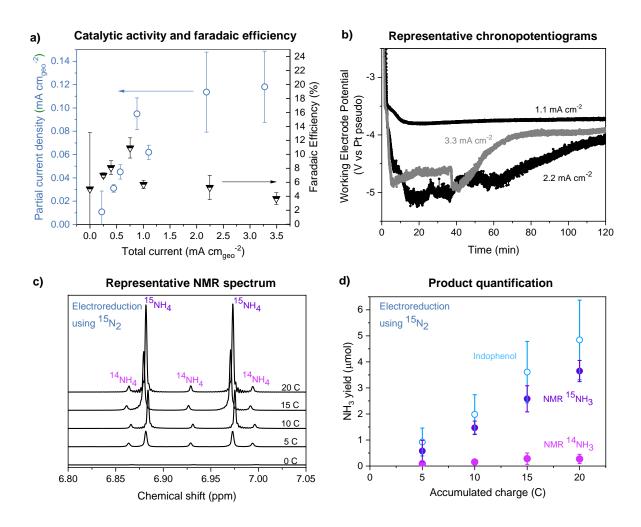




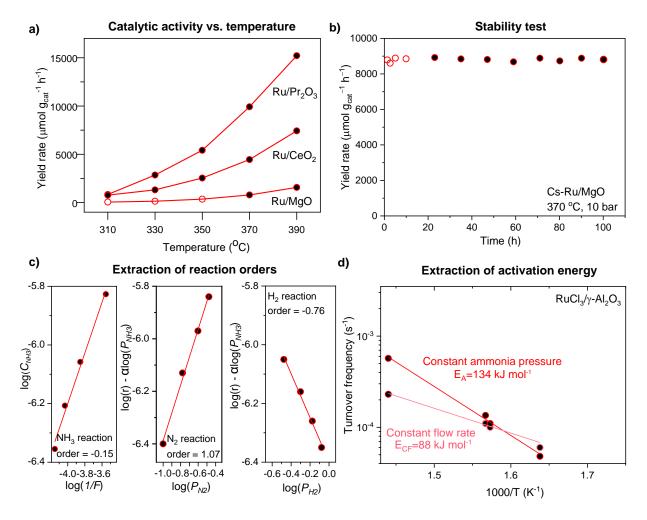
Fig. 4. Experimental setup for electrochemical and thermochemical N₂ activation. a) Experimental 1003 setup for electrochemical N₂ reduction or oxidation reactions. The gas passes through a gas cleaner (either a reduced metal catalyst and freeze trap, or a commercial purifier), then flows into the 1005 electrochemical cell with a defined flow rate. The setup can be adapted for photoelectrochemical systems 1006 by using a photoelectrochemical cell with an illumination source. The reaction of interest is undertaken 1007 by controlling the potential across the electrodes via a potentiostat. For photochemical systems, the setup 1008 does not require a potentiostat, and the cell typically contains a suspension of particles or a surface with 1009 1010 the active catalyst, and an illumination source is used to drive the reaction. b) Activity measurement system for thermal NH₃ synthesis. The setup contains a fixed-bed reactor, a furnace with a temperature 1011 controller, a thermocouple placed on the top of catalyst bed, gas purifiers, a flow meter, a pressure gauge 1012 and a back-pressure regulator. Then, the product of catalysis is detected via either non-isotope or isotope-1013 sensitive techniques if necessary. 1014

1015


Fig. 5. Isotopic and non-isotopic NH₃ detection methods. a) Detection limits of well-known techniques 1016 for NH₃ quantification. The bar at 5882 μ M (100 ppm) corresponds to NH₃ concentrations in liquid where 1017 olfactory detection is possible beyond any doubt⁹⁶. UV-vis⁷⁶, Conductivity meter¹²⁰, and nuclear magnetic 1018 resonance (NMR)⁷⁶ is discussed in text, Fourier transform infrared spectroscopy (FTIR)⁸³, liquid 1019 chromatography mass spectroscopy (LCMS)²⁰³, surface enhanced Raman spectroscopy (SERS)²⁰⁴ and ion chromatography (IC)²⁰⁵ is discussed in the Supplementary Information. b) UV-vis spectra of indophenol 1021 blue method, showing quantification via calibrated samples from 10 to 2000 ppb NH₃ in H₂O. Straight line is fitted based on peak absorbance of each sample, displaying linearity with sample concentration²⁰⁶. c) 1023 Conductivity measurement curve showing sensitivity of the NH₃ concentration from 9.8 to 0.3 ppm in 1024 purified H₂O²⁰⁷. Due to the intensity of the conductivity baseline, it is difficult to detect an NH₃ 1025 concentration below 1 ppm. d) Example of NMR spectra of increasing equimolar $^{14}NH_3$ and $^{15}NH_3$ 1026 concentrations, clearly showing the respectively distinct triplet and doublet peaks. Calibration curve for 1027 ¹⁴NH₃ and ¹⁵NH₃ based on area under peaks, respectively, the triplet and doublet peaks from the NMR 1028 spectra⁷⁶. Panel c is reprinted with permission from REF²⁰⁷, Elsevier. Panel d is reprinted from REF⁷⁶, 1029 Springer Nature Limited. 1030

103.

Fig. 6. State-of-the-art literature overview of electrochemical, photo(electro)chemical, and **thermochemical** N_2 activation. Evaluation of experimental conditions for thermochemical (red), electrochemical (blue), photochemical (orange), and photoelectrochemical (brown) N₂ fixation. 1034 Experimental details can be found in **Table S1-3**. Circle represents reduction, square represents oxidation. 1035 Unfilled symbol represents data with simple background tests. Cross represents data with either qualitative or quantitative isotope labelled experiments at a single point, without measuring or cleaning 1037 gas contaminants. Filled symbol represents repeated isotope labelled experiments with rigorous gas 1038 cleaning. Black-filled data satisfy both mass_{prod} > 2mass_{sys} and C_{prod} > 100 ppm. Asterisked points contain 1039 non-aqueous electrolytes. Flagged data raise suspicion of contamination based on non-reproducible 1040 results. a) Comparison of mass_{prod} with mass_{sys} for different catalytic systems. mass_{N,cat} is calculated based 1041


1042	on 25% catalyst weight for non-N-containing catalysts, and 100% for N-containing catalysts.
1043	Thermochemical data at 400 °C and 1 bar unless otherwise specified: Cs-Ru/MgO ¹¹⁴ at 9 bar, Ru/Pr ₂ O ₃ ²⁰⁹
1044	at 390 °C and 9 bar, KM1 ¹⁴⁹ at 10 bar. b) Comparison of reported mass-specific activity. Yield rates of data
1045	points annotated by [^] are expressed in μ mol cm _{geo} ⁻² h ⁻¹ . c) Literature overview of partial current density
1046	towards NH ₃ (left y-axis) or NO ₃ ⁻ (right y-axis) from product detection as a function of potential vs RHE,
1047	unless otherwise specified. Fe on Stainless Steel (Fe/SS) and Fe/FTO ¹³⁸ reported vs NHE, Li _x N/Cu ⁸¹ total
1048	cell potential with Ohmic correction, Ni ²⁰⁸ vs Ag wire in 0.1 M LiCl/EDA, Li _x N/Ag ¹³⁹ is vs Ag/AgCl/AgCl (sat),
1049	LiCl, LiClO ₄ /THF reference. d) Literature overview of thermochemical NH ₃ synthesis catalyzed by "reactive"
1050	materials whose composition or active phase may change during or after reaction. The line $C_{NH3-prod} = 100$
1051	ppm was calculated with the assumption of WHSV= 60,000 ml g_{cat}^{-1} h ⁻¹ . Data at 10 bar unless otherwise
1052	specified: Ru/CaFH ⁸⁵ at 1 bar, TiH ₂ ¹⁵⁶ at 50 bar, 2.5%Ru/BaTiO _{2.51} H _{0.49} ¹⁵⁵ at 50 bar, 4.5%Ru/BaCeO ₃ -xN _y H _z ²¹¹
1053	at 9 bar, Ru/Ba-Ca(NH ₂) $_2^{212}$ at 9 bar, 12.5%Ni/LaN 154 at 1 bar, VH $_{0.39}^{157}$ at 50 bar.
1054	
1004	
1055	
1056	
1057	

1059

¹⁰⁶⁰ Fig. 7. Example data of Li-mediated NH₃ synthesis in THF with LiClO₄ salt and EtOH as the proton source.

a) Partial current density to NH₃ (i_{NH3} , left y-axis) and Faradaic efficiency (FE_{NH3} , right y-axis) as a function 1061 of total applied current. b) Representative CPs for experiments plotted in panel a. c) Representative NMR 1062 data from a single measurement, with samples taken every 5 Coulumb of charge passed (C) using cleaned 1063 ¹⁵N₂ as feed-gas. d) Yield of NH₃ as a function of charge passed, showing quantitative agreement between 1064 isotope sensitive results (purple and pink) with non-isotope sensitive result (blue). Error bars signify mean 1065 and standard deviation of 3 repeated identical but independently prepared experiments. Panels a and b 1066 are reprinted with permission from REF⁷⁹, Wiley. Panels c and d are reprinted from REF⁷⁶, Springer Nature 1067 Limited. 1068

1069

Fig. 8. Recommended reports of catalytic performances for thermal NH₃ synthesis. (a) NH₃ synthesis rate 1070 as a function of temperature²⁰⁹; (b) Stability test of NH₃ synthesis rate¹¹⁴ (c) extraction of reaction orders 1071 with respect to NH₃, N₂, and H₂²²¹. (d). Arrhenius plots at constant NH₃ pressure (red) and at constant flow 1072 rate (lighter red) resulting in a difference in the extracted activation energy¹⁵³. Dark-filled points satisfy 1073 both mass_{prod} > 2mass_{sys} and C_{prod} > 100 ppm criteria. Panel a is reprinted from REF²⁰⁹, CC BY 3.0 1074 (https://creativecommons.org/licenses/by/3.0/). Panel b is adapted with permission from Wu, S. et al. 1075 Removal of Hydrogen Poisoning by Electrostatically Polar MgO Support for Low-Pressure NH3 Synthesis 1076 at a High Rate over the Ru Catalyst. ACS Catal. 10, 5614–5622 (2020). Copyright 2020 American Chemical 1077 Society. Panel c is reprinted from REF²²¹, CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/). Panel 1078 d is reprinted with permission from REF¹⁵³, Elsevier. 1079

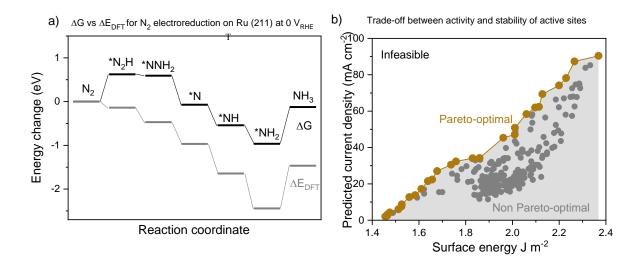


Fig. 9. Density functional theory results. (a) An energy diagram of N_2 reduction on Ru (211) showing the 1081 free energies and DFT energies respectively (black and grey respectively⁶⁵). (b) The surface energy plotted 1082 against the predicted current density for the O_2 reduction reaction (ORR) on defected Pt (111) surfaces. 1083 Beige points represent points on the Pareto Frontier, grey points represent non Pareto-optimal surfaces. 1084 The grey area represents sub optimal surfaces whereas the white region represents unobtainable 1085 surfaces¹⁶⁶. The current density (i) is calculated using the expression $i = i_c \exp(-\Delta G_{ORR}/kT)$, where i_c is an 1086 experimental value 3.68 \times 10¹¹ kA mol⁻¹ at cell potential 0.9 V, and ΔG_{ORR} is the change in Gibbs energy of 1087 the limiting step. The surface energy of each defected surface is calculated by dividing the formation 1088 energy by the surface area. The full methodology can be found in REF¹⁶⁶. In panel a, ΔG data were adopted 1089 with permission from REF⁷³, Royal Society of Chemistry, and the DFT energy points were acquired from J. 1090 Montoya. Panel b is reprinted from REF¹⁶⁶, Springer Nature Limited. 1091

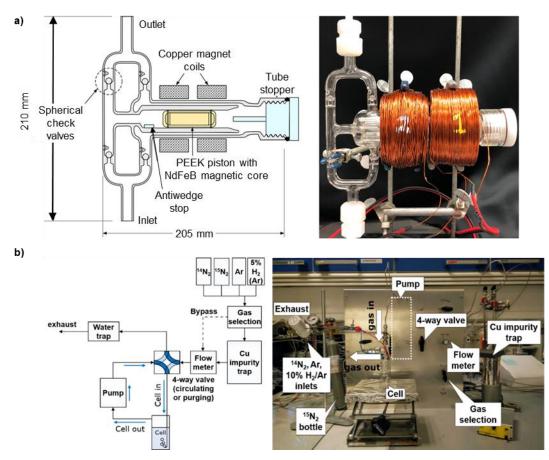


Fig. 10. Home-built glass circulation pump and full gas recirculating setup with home-built activated Cu
 catalyst for gas cleaning. a) Glass circulation pump, enabling long-duration experiments without supplying
 continuous ¹⁵N₂. b) Inexpensive gas cleaning system with a reduced Cu catalyst, freeze trap and glass
 circulation pump for cheap ¹⁵N₂ experimentation. Panel a is adapted with permission from REF¹⁷⁶
 Nielander, A. C. *et al.* Readily Constructed Glass Piston Pump for Gas Recirculation. *ACS Omega* 5, 16455–
 16459 (2020). Copyright 2020 American Chemical Society. Panel b is reprinted from REF⁷⁶, Springer Nature
 Limited.

1101 Acknowledgment

- 1102 Y.S.-H gratefully acknowledges the support by Toyota Research Institute through the Accelerated Materials
- 1103 Design and Discovery Program. H.I. acknowledges support from the Imperial-MIT Department of
- 1104 Materials Exchange Program S.Z.A. and I.C. gratefully acknowledge the funding by Villum Fonden, part
- of the Villum Center for the Science of Sustainable Fuels and Chemicals (V-SUSTAIN grant 9455) and
- Innovationsfonden (E-ammonia grant 9067-00010B). P.C. and X.L. were supported by the National Natural
- Science Foundation of China (Grant Nos. 21633011 and 21988101). The material based upon work by
- A.J.M. and B.C. was supported by the National Science Foundation under Grant No.1943707. I.E.L.S. and J.B. would like to acknowledge financial support from the Engineering and Physical Sciences Research
- J.B. would like to acknowledge financial support from the Engineering and Physical Sciences Research Council (EP/M0138/1), the European Research Council (ERC) under the European Union's Horizon 2020
- research and innovation programme (grant agreement No. 866402) and the National Research Council
- Canada through the Materials for Clean Fuels Challenge Program. We thank Marta Hatzell and Zhichuan
- J. Xu for the insightful discussion regarding N₂ oxidation. We thank Vahid Shadravan for helpful advice
- on thermochemical catalysis. We would like to acknowledge Joseph Montoya for providing data on the
- vibrational frequencies and free energy calculations for N_2 reduction on Ru (211) for Fig. 9a.

1116 Competing interests

1117 The authors declare no competing interests.

1118 Author Contributions

- Introduction (H.I., S.Z.A., and Y. S.-H.); Experimentation (S.Z.A., H.I., X.Z., J.B., P.C., I.E.L.S., I.C., and
- 1120 Y. S.-H.); Results (S.Z.A., H.I., X.Z., B.M.C., J.B., P.C., I.C., A.J.M., and Y. S.-H.); Applications (H.I. and
- 1121 S.Z.A.); Reproducibility and data deposition (H.I. and I.C.); Limitations and optimizations (S.Z.A.);
- Outlook (H.I., S.Z.A., J.B., X.Z. and I.E.L.S.); Overview of the Primer (H.I., S.Z.A., and Y. S.-H.). All
- authors discussed and edited the full manuscript.

1124

1125 References

- 1126 1. Cottrell, T. L. The Strengths of Chemical Bonds, 2nd Ed. *Prop. atoms, radicals, Bond* (1966).
- Jia, H.-P. & Quadrelli, E. A. Mechanistic aspects of dinitrogen cleavage and hydrogenation to
 produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and
 dihydrogen. *Chem. Soc. Rev.* 43, 547–564 (2014).
- 1130 3. Noxon, J. F. Atmospheric nitrogen fixation by lightning. *Geophys. Res. Lett.* (1976).
- Rivera Ortiz, J. M. & Burris, R. H. Interactions among substrates and inhibitors of nitrogenase. *J. Bacteriol.* (1975).
- Yang, Z. Y. *et al.* Evidence That the Pi Release Event Is the Rate-Limiting Step in the Nitrogenase
 Catalytic Cycle. *Biochemistry* (2016).
- Hoffman, B. M., Lukoyanov, D., Yang, Z., Dean, D. R. & Seefeldt, L. C. Mechanism of Nitrogen
 Fixation by Nitrogenase: The Next Stage. *Chem. Rev.* 114, 4041–4062 (2014).
- 1137 7. Smil, V. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food
 1138 Production. (The MIT Press, 2001).
- Hager, T. *The Alchemy of Air: A Jewish Genius, a Doomed Tycoon, and the Discovery that Changed the Course of History. Broadway Books* (Broadway Books, 2008).
- 1141 9. Science and Food Supplies. *Nature* **126**, 193–194 (1930).
- 1142 10. Ihde, A. J. *The Development of Modern Chemistry (Dover Books on Chemistry)*. (Dover Publications, 1984).
- 1144 11. Chen, J. G. *et al.* Beyond fossil fuel–driven nitrogen transformations. *Science* (80-.). **360**, 1145 eaar6611 (2018).
- 1146This review covers the thermochemistry of all nitrogen transformation reactions, and the1147challenges and opportunities associated with these reactions in overcoming reliance on fossil1148fuels.
- 1149
 12. Smith, C., Hill, A. K. & Torrente-Murciano, L. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. *Energy Environ. Sci.* (2020).
- Aika, K. & Tamara, K. Ammonia Synthesis over Non-Iron Catalysts and Related Phenomena. in
 Ammonia (1995).
- 14. Ertl, G. Reactions at Surfaces: From Atoms to Complexity (Nobel Lecture). *Angew. Chemie Int. Ed.* 47, 3524–3535 (2008).
- 1155 15. Erisman, J. W., Sutton, M. a., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of 1156 ammonia synthesis changed the world. *Nat. Geosci.* **1**, 636–639 (2008).
- 1157 16. Smil, V. Nitrogen and Food Production: Proteins for Human Diets. *AMBIO A J. Hum. Environ.* 1158 31, 126–131 (2002).
- Stewart, W. M., Dibb, D. W., Johnston, A. E. & Smyth, T. J. The Contribution of Commercial
 Fertilizer Nutrients to Food Production. *Agron. J.* 97, 1–6 (2005).
- 18. USGS National Minerals Information Center. *Nitrogen Statistics and Information, U.S. Geological Survey, Mineral Commodity Summaries, January* 2020. (2020).
- 1163 19. Apodaca, L. E. Nitrogen (fixed) Ammonia. 116–117 (2021).

1164		https://www.usgs.gov/centers/nmic/nitrogen-statistics-and-information
1165	20.	Smil, V. Detonator of the population explosion. Nature 400, 415–415 (1999).
1166 1167	21.	Schlögl, R. Ammonia Synthesis. in <i>Handbook of Heterogeneous Catalysis</i> 2501 (Wiley-VCH Verlag GmbH & Co. KGaA, 2008).
1168 1169	22.	IHS Markit. Ammonia - Chemical Economics Handbook (CEH) / IHS Markit. IHSmarkit.com (2020).
1170 1171	23.	Klerke, A., Christensen, C. H., Nørskov, J. K. & Vegge, T. Ammonia for hydrogen storage: challenges and opportunities. <i>J. Mater. Chem.</i> 18 , 2304 (2008).
1172 1173	24.	Zamfirescu, C. & Dincer, I. Using ammonia as a sustainable fuel. <i>J. Power Sources</i> 185 , 459–465 (2008).
1174 1175 1176	25.	Brightling, J. Ammonia and the Fertiliser Industry: The Development of Ammonia at Billingham A history of technological innovation from the early 20th century to the present day. <i>Johnson Matthey Technol. Rev.</i> (2018).
1177 1178 1179	26.	Brown, T. Ammonia production causes 1% of total global GHG emissions. Ammoniaindustry. https://ammoniaindustry.com/ammonia-production-causes-1-percent-of-total-global-ghg-emissions/
1180 1181	27.	Soloveichik, G. Electrochemical synthesis of ammonia as a potential alternative to the Haber–Bosch process. <i>Nature Catalysis</i> (2019) doi:10.1038/s41929-019-0280-0.
1182	28.	MacFarlane, D. R. et al. A Roadmap to the Ammonia Economy. Joule 4, 1186–1205 (2020).
1183 1184		This paper covers 3 different generations of technological advancement needed to produce ammonia sustainably.
1185 1186	29.	Stephens, I. & Nilsson, A. Research needs towards sustainable production of fuels and chemicals. <i>Energy-X, Chapter 5</i> (2019). https://www.energy-x.eu/research-needs-report/
1187 1188	30.	Erisman, J. W., Bleeker, A., Galloway, J. & Sutton, M. S. Reduced nitrogen in ecology and the environment. <i>Environ. Pollut.</i> 150 , 140–149 (2007).
1189 1190	31.	Good, A. G. & Beatty, P. H. Fertilizing nature: A tragedy of excess in the commons. <i>PLoS Biol.</i> 9 , 1–9 (2011).
1191 1192	32.	Singh, A. R. <i>et al.</i> Electrochemical Ammonia Synthesis - The Selectivity Challenge. <i>ACS Catal.</i> 7 , 706–709 (2017).
1193 1194		This viewpoint illucidates the selectivity challenge by covering a qualitative analysis of electrochemical ammonia synthesis and suggests strategies to circumvent the issue.
1195	33.	Comer, B. M. et al. Prospects and Challenges for Solar Fertilizers. Joule (2019).
1196 1197 1198	34.	Ummary, S. Renewable Energy to Fuels Through Utilization of EnergyDense Liquids (REFUEL) Program Overview. 1–16 (2016). https://arpa- e.energy.gov/sites/default/files/documents/files/REFUEL_ProgramOverview.pdf
1199 1200 1201	35.	Rouwenhorst, K. H. R., Kim, H. H. & Lefferts, L. Vibrationally Excited Activation of N2 in Plasma-Enhanced Catalytic Ammonia Synthesis: A Kinetic Analysis. <i>ACS Sustain. Chem. Eng.</i> (2019).
1202 1203	36.	Rouwenhorst, K. H. R. <i>et al.</i> Plasma-driven catalysis: Green ammonia synthesis with intermittent electricity. <i>Green Chem.</i> (2020) doi:10.1039/d0gc02058c.

1204 1205 1206	37.	Kim, H. H., Teramoto, Y., Ogata, A., Takagi, H. & Nanba, T. Atmospheric-pressure nonthermal plasma synthesis of ammonia over ruthenium catalysts. <i>Plasma Process. Polym.</i> (2017) doi:10.1002/ppap.201600157.
1207 1208	38.	Mehta, P. <i>et al.</i> Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis. <i>Nat. Catal.</i> (2018).
1209 1210	39.	Han, GF. <i>et al.</i> Mechanochemistry for ammonia synthesis under mild conditions. <i>Nat. Nanotechnol.</i> (2020).
1211 1212	40.	Tricker, A. W. <i>et al.</i> Mechanocatalytic Ammonia Synthesis over TiN in Transient Microenvironments. <i>ACS Energy Lett.</i> 5 , 3362–3367 (2020).
1213	41.	IHS. Nitric acid - Chemical Economics Handbooks (CEH) IHS Markit. IHSmarkit.com (2015).
1214 1215	42.	Bard, a & Faulkner, L. Chapter 2, Electrochemical Methods: Fundamentals and Applications, New York: , 2001. <i>Russ. J. Electrochem.</i> (2002).
1216 1217 1218	43.	Patil, B. S., Rovira Palau, J., Hessel, V., Lang, J. & Wang, Q. Plasma Nitrogen Oxides Synthesis in a Milli-Scale Gliding Arc Reactor: Investigating the Electrical and Process Parameters. <i>Plasma Chem. Plasma Process.</i> 36 , 241–257 (2016).
1219 1220	44.	Birkeland, K. R. On the oxidation of atmospheric nitrogen in electric arcs. <i>Trans. Faraday Soc.</i> (1906).
1221 1222	45.	Eyde, S. Oxidation of atmospheric nitrogen and development of resulting industries in norway. <i>Ind. Eng. Chem.</i> (1912).
1223 1224 1225	46.	Cherkasov, N., Ibhadon, A. O. & Fitzpatrick, P. A review of the existing and alternative methods for greener nitrogen fixation. <i>Chemical Engineering and Processing: Process Intensification</i> (2015).
1226 1227	47.	Hessel, V. <i>et al.</i> Industrial applications of plasma, microwave and ultrasound techniques: Nitrogen-fixation and hydrogenation reactions. <i>Chem. Eng. Process. Process Intensif.</i> (2013).
1228 1229	48.	Rusanov, V. D., Fridman, A. A. & Sholin, G. V. The Physics of a Chemically Active Plasma With Nonequilibrium Vibrational Excitationc of Molecules. <i>Sov. Phys Uspekhi</i> (1981).
1230 1231	49.	Li, S., Medrano, J. A., Hessel, V. & Gallucci, F. Recent progress of plasma-assisted nitrogen fixation research: A review. <i>Processes</i> (2018).
1232 1233 1234	50.	Dai, C., Sun, Y., Chen, G., Fisher, A. C. & Xu, Z. J. Electrochemical Oxidation of Nitrogen towards Direct Nitrate Production on Spinel Oxides. <i>Angew. Chemie Int. Ed.</i> 59 , 9418–9422 (2020).
1235 1236	51.	Fang, W. <i>et al.</i> Boosting efficient ambient nitrogen oxidation by a well-dispersed Pd on MXene electrocatalyst. <i>Chem. Commun.</i> 56 , 5779–5782 (2020).
1237 1238	52.	Wang, Y., Yu, Y., Jia, R., Zhang, C. & Zhang, B. Electrochemical synthesis of nitric acid from air and ammonia through waste utilization. <i>Natl. Sci. Rev.</i> 6 , 730–738 (2019).
1239 1240	53.	Lun Pang, C., Lindsay, R. & Thornton, G. Chemical reactions on rutile TiO2(110). <i>Chem. Soc. Rev.</i> (2008).
1241 1242	54.	Bickley, R. I. & Vishwanathan, V. Photocatalytically induced fixation of molecular nitrogen by near UV radiation [6]. <i>Nature</i> (1979).
1243 1244	55.	Yuan, S. J. <i>et al.</i> Nitrate formation from atmospheric nitrogen and oxygen photocatalysed by nano-sized titanium dioxide. <i>Nat. Commun.</i> (2013).

- 56. Kuang, M. *et al.* Efficient Nitrate Synthesis via Ambient Nitrogen Oxidation with Ru-Doped TiO
 2 /RuO 2 Electrocatalysts. *Adv. Mater.* 32, 2002189 (2020).
- Wang, S. *et al.* Universal transition state scaling relations for (de)hydrogenation over transition
 metals. *Phys. Chem. Chem. Phys.* (2011).
- 58. Bozso, F., Ertl, G., Grunze, M. & Weiss, M. Interaction of nitrogen with iron surfaces. I. Fe(100)
 and Fe(111). *J. Catal.* (1977).
- 59. Bozso, F., Ertl, G. & Weiss, M. Interaction of nitrogen with iron surfaces. II. Fe(110). J. Catal.
 (1977).
- 60. Ertl, G., Lee, S. B. & Weiss, M. Adsorption of nitrogen on potassium promoted Fe(111) and (100) surfaces. *Surf. Sci.* (1982).
- 1255 61. Honkala, K. et al. Ammonia synthesis from first-principles calculations. Science (80-.). (2005).
- 1256 62. Dahl, S. et al. Role of steps in N2 activation on Ru(0001). Phys. Rev. Lett. (1999).
- Chorkendorff, I. & Niemantsverdriet, J. W. Chapter 3: Reaction Rate Theory. in *Concepts of Modern Catalysis and Kinetics* (John Wiley and Sons, 2003).
- 64. Medford, A. J. & Hatzell, M. C. Photon-Driven Nitrogen Fixation: Current Progress,
 Thermodynamic Considerations, and Future Outlook. *ACS Catal.* 7, 2624–2643 (2017).
- 65. Comer, B. M. & Medford, A. J. Analysis of Photocatalytic Nitrogen Fixation on Rutile TiO2(110).
 ACS Sustain. Chem. Eng. 6, 4648–4660 (2018).
- 66. Singh, A. R. *et al.* Strategies toward Selective Electrochemical Ammonia Synthesis. *ACS Catal.* 9, 8316–8324 (2019).
- Medford, A. J. *et al.* Assessing the reliability of calculated catalytic ammonia synthesis rates.
 Science (80-.). (2014).
- Wellendorff, J. *et al.* Density functionals for surface science: Exchange-correlation model
 development with Bayesian error estimation. *Phys. Rev. B Condens. Matter Mater. Phys.* (2012).
- Medford, A. J. *et al.* From the Sabatier principle to a predictive theory of transition-metal
 heterogeneous catalysis. *J. Catal.* 328, 36–42 (2015).
- 1271This paper discusses scaling relations, activity maps, and the d-band model, thereby1272mapping out the development of trends in transisiton-matal catalysts.
- 70. Bare, S. R., Strongin, D. R. & Somorjai, G. A. Ammonia synthesis over iron single-crystal
 catalysts: The effects of alumina and potassium. *J. Phys. Chem.* (1986).
- 1275 71. Dahl, S., Taylor, P. A., Törnqvist, E. & Chorkendorff, I. The synthesis of ammonia over a ruthenium single crystal. *J. Catal.* (1998).
- Singh, A. R. *et al.* Computational Design of Active Site Structures with Improved Transition-State
 Scaling for Ammonia Synthesis. *ACS Catal.* (2018).
- Montoya, J. H., Tsai, C., Vojvodic, A. & Nørskov, J. K. The Challenge of Electrochemical
 Ammonia Synthesis: A New Perspective on the Role of Nitrogen Scaling Relations. *ChemSusChem* 8, 2180–2186 (2015).
- 1282This paper presents insights from DFT calculations that describe limitations on the low-1283temperature electrocatalytic production of ammonia from dinitrogen.

1284 1285	74.	Skúlason, E. <i>et al.</i> A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. <i>Phys. Chem. Chem. Phys.</i> 14 , 1235–1245 (2012).
1286 1287	75.	Rostamikia, G., Maheshwari, S. & Janik, M. J. Elementary kinetics of nitrogen electroreduction to ammonia on late transition metals. <i>Catal. Sci. Technol.</i> (2019).
1288 1289	76.	Andersen, S. Z. <i>et al.</i> A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. <i>Nature</i> 570 , 504–508 (2019).
1290 1291		This letter provides a rigorous protocol from which the source of activated nitrogen can be determined.
1292 1293	77.	Suryanto, B. H. R. <i>et al.</i> Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. <i>Nat. Catal.</i> 2 , 290–296 (2019).
1294 1295	78.	Wang, P. <i>et al.</i> Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. <i>Nat. Chem.</i> 9 , 64–70 (2017).
1296 1297		This study designed a two-active-center strategy using $TM(N)$ -LiH composite catalysts to create an energy-efficient pathway that allows NH_3 synthesis under mild conditions.
1298 1299	79.	Schwalbe, J. A. <i>et al.</i> A Combined Theory-Experiment Analysis of the Surface Species in Lithium-Mediated NH3 Electrosynthesis. <i>ChemElectroChem</i> 7 , 1542–1549 (2020).
1300 1301 1302	80.	Lazouski, N., Chung, M., Williams, K., Gala, M. L. & Manthiram, K. Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen. <i>Nat. Catal.</i> 3 , 463–469 (2020).
1303 1304	81.	Lazouski, N., Schiffer, Z. J., Williams, K. & Manthiram, K. Understanding Continuous Lithium- Mediated Electrochemical Nitrogen Reduction. <i>Joule</i> 3 , 1127–1139 (2019).
1305 1306	82.	Andersen, S. Z. <i>et al.</i> Increasing stability, efficiency, and fundamental understanding of lithium- mediated electrochemical nitrogen reduction. <i>Energy Environ. Sci.</i> 13 , 4291–4300 (2020).
1307 1308	83.	McEnaney, J. M. <i>et al.</i> Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure. <i>Energy Environ. Sci.</i> 10 , 1621–1630 (2017).
1309 1310	84.	Kim, K. <i>et al.</i> Lithium-Mediated Ammonia Electro-Synthesis: Effect of CsClO 4 on Lithium Plating Efficiency and Ammonia Synthesis . <i>J. Electrochem. Soc.</i> (2018).
1311 1312	85.	Hattori, M., Iijima, S., Nakao, T., Hosono, H. & Hara, M. Solid solution for catalytic ammonia synthesis from nitrogen and hydrogen gases at 50 °C. <i>Nat. Commun.</i> 11 , 2001 (2020).
1313 1314	86.	Davy, H. The Bakerian Lecture, on some chemical agencies of electricity. <i>Philos. Trans. R. Soc. London</i> 97 , 1–56 (1807).
1315 1316	87.	Rayleigh, Lord. XIII.—Observations on the oxidation of nitrogen gas. J. Chem. Soc., Trans. 71, 181–186 (1897).
1317 1318 1319	88.	Boucher, D. L., Davies, J. A., Edwards, J. G. & Mennad, A. An investigation of the putative photosynthesis of ammonia on iron-doped titania and other metal oxides. <i>J. Photochem. Photobiol. A Chem.</i> 88 , 53–64 (1995).
1320 1321	89.	Shipman, M. A. & Symes, M. D. A re-evaluation of Sn(II) phthalocyanine as a catalyst for the electrosynthesis of ammonia. <i>Electrochim. Acta</i> 258 , 618–622 (2017).
1322	90.	Licht, S. et al. Retraction. Science (80). 369, 780 (2020).
4000	01	Du II I. Canagehash T. D. Hadgette D. MagGadana D. D. & Simonay A. N. Critical

1323 91. Du, H.-L., Gengenbach, T. R., Hodgetts, R., MacFarlane, D. R. & Simonov, A. N. Critical

1324 1325		Assessment of the Electrocatalytic Activity of Vanadium and Niobium Nitrides toward Dinitrogen Reduction to Ammonia. <i>ACS Sustain. Chem. Eng.</i> 7 , 6839–6850 (2019).
1326 1327	92.	Choi, J. <i>et al.</i> Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. <i>ChemRxiv, Prepr.</i> (2020).
1328 1329 1330	93.	Yang, X. <i>et al.</i> Quantification of Active Sites and Elucidation of the Reaction Mechanism of the Electrochemical Nitrogen Reduction Reaction on Vanadium Nitride. <i>Angew. Chemie</i> 131 , 13906–13910 (2019).
1331 1332	94.	Bao, D. <i>et al.</i> Electrochemical Reduction of N2 under Ambient Conditions for Artificial N2 Fixation and Renewable Energy Storage Using N2/NH3 Cycle. <i>Adv. Mater.</i> 29 , 1604799 (2017).
1333 1334	95.	Hao, YC. <i>et al.</i> Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. <i>Nat. Catal.</i> 2 , 448–456 (2019).
1335 1336	96.	Smeets, M. A. M. <i>et al.</i> Odor and Irritation Thresholds for Ammonia: A Comparison between Static and Dynamic Olfactometry. <i>Chem. Senses</i> 32 , 11–20 (2007).
1337 1338 1339	97.	Dabundo, R. <i>et al.</i> The Contamination of Commercial 15N2 Gas Stocks with 15N–Labeled Nitrate and Ammonium and Consequences for Nitrogen Fixation Measurements. <i>PLoS One</i> 9 , e110335 (2014).
1340 1341		This paper shows that commercial isotope labelled $^{15}N_2$ contains significant contamination across lot numbers and different manufacturers.
1342 1343	98.	Giordano, L. <i>et al.</i> PH dependence of OER activity of oxides: Current and future perspectives. <i>Catal. Today</i> 262 , 2–10 (2016).
1344 1345	99.	Shinagawa, T., Garcia-Esparza, A. T. & Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. <i>Sci. Rep.</i> 5 , 13801 (2015).
1346 1347	100.	Limaye, A., Zeng, J. S., Willard, A. & Manthiram, K. Bayesian Data Analysis Reveals No Preference for Cardinal Tafel Slopes in CO2 Reduction Electrocatalysis. <i>ChemRxiv</i> (2020).
1348 1349 1350	101.	Neyerlin, K. C., Gu, W., Jorne, J. & Gasteiger, H. A. Determination of Catalyst Unique Parameters for the Oxygen Reduction Reaction in a PEMFC. <i>J. Electrochem. Soc.</i> 153 , A1955 (2006).
1351 1352	102.	Choi, J. <i>et al.</i> Identification and elimination of false positives in electrochemical nitrogen reduction studies. <i>Nat. Commun.</i> 11 , 5546 (2020).
1353 1354 1355		This perspective assesses a wide range of electrocatalytic nitrogen reduction reports identifying false positives and providing an experimental protocol for ensuring rigorous ammonia quantification in upcoming works.
1356 1357	103.	Wei, C. <i>et al.</i> Recommended Practices and Benchmark Activity for Hydrogen and Oxygen Electrocatalysis in Water Splitting and Fuel Cells. <i>Adv. Mater.</i> 31 , 1806296 (2019).
1358 1359 1360	104.	Ledezma-Yanez, I., Díaz-Morales, O., Figueiredo, M. C. & Koper, M. T. M. Hydrogen Oxidation and Hydrogen Evolution on a Platinum Electrode in Acetonitrile. <i>ChemElectroChem</i> 2 , 1612–1622 (2015).
1361 1362	105.	Raccichini, R., Amores, M. & Hinds, G. Critical review of the use of reference electrodes in li-ion batteries: A diagnostic perspective. <i>Batteries</i> (2019) doi:10.3390/batteries5010012.
1363 1364	106.	Ren, Y. <i>et al.</i> Is It Appropriate to Use the Nafion Membrane in Electrocatalytic N2 Reduction? <i>Small Methods</i> 3 , 1900474 (2019).

1365 1366 1367	107.	Liu, H., Zhang, Y. & Luo, J. The removal of inevitable NO species in catalysts and the selection of appropriate membrane for measuring electrocatalytic ammonia synthesis accurately. <i>J. Energy Chem.</i> 49 , 51–58 (2020).
1368 1369	108.	Hongsirikarn, K., Goodwin, J. G., Greenway, S. & Creager, S. Influence of ammonia on the conductivity of Nafion membranes. <i>J. Power Sources</i> 195 , 30–38 (2010).
1370 1371	109.	Halseid, R., Vie, P. J. S. & Tunold, R. Influence of Ammonium on Conductivity and Water Content of Nafion 117 Membranes. <i>J. Electrochem. Soc.</i> 151 , A381 (2004).
1372 1373 1374	110.	Lindley, B. M., Appel, A. M., Krogh-Jespersen, K., Mayer, J. M. & Miller, A. J. M. Evaluating the Thermodynamics of Electrocatalytic N 2 Reduction in Acetonitrile. <i>ACS Energy Lett.</i> 1 , 698–704 (2016).
1375 1376 1377	111.	Guo, J. <i>et al.</i> Lithium imide synergy with 3d transition-metal nitrides leading to unprecedented catalytic activities for ammonia decomposition. <i>Angew. Chemie, Int. Ed. English</i> 54 , 2950–2954 (2015).
1378 1379	112.	Kitano, M. <i>et al.</i> Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. <i>Nat. Chem.</i> 4 , 934–940 (2012).
1380 1381 1382	113.	Ma, Z., Zhao, S., Pei, X., Xiong, X. & Hu, B. New insights into the support morphology- dependent ammonia synthesis activity of Ru/CeO2 catalysts. <i>Catal. Sci. Technol.</i> 7 , 191–199 (2017).
1383 1384	114.	Wu, S. <i>et al.</i> Removal of Hydrogen Poisoning by Electrostatically Polar MgO Support for Low- Pressure NH3 Synthesis at a High Rate over the Ru Catalyst. <i>ACS Catal.</i> 10 , 5614–5622 (2020).
1385 1386	115.	Searle, P. L. The berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen. A review. <i>Analyst</i> 109 , 549 (1984).
1387 1388	116.	Zhao, Y. <i>et al.</i> Ammonia Detection Methods in Photocatalytic and Electrocatalytic Experiments: How to Improve the Reliability of NH 3 Production Rates? <i>Adv. Sci.</i> 6 , (2019).
1389 1390 1391	117.	Zhou, L. & Boyd, C. E. Comparison of Nessler, phenate, salicylate and ion selective electrode procedures for determination of total ammonia nitrogen in aquaculture. <i>Aquaculture</i> 450 , 187–193 (2016).
1392 1393 1394	118.	Giner-Sanz, J. J., Leverick, G. M., Pérez-Herranz, V. & Shao-Horn, Y. Salicylate Method for Ammonia Quantification in Nitrogen Electroreduction Experiments: The Correction of Iron III Interference. <i>J. Electrochem. Soc.</i> 167 , 134519 (2020).
1395 1396	119.	Murray, E. <i>et al.</i> A colorimetric method for use within portable test kits for nitrate determination in various water matrices. <i>Anal. Methods</i> 9 , 680–687 (2017).
1397 1398	120.	Hayashi, M. Temperature-electrical conductivity relation of water for environmental monitoring and geophysical data inversion. <i>Environ. Monit. Assess.</i> 96 , 119–128 (2004).
1399	121.	Bruker. What Is NMR? Bruker BioSpin 145–158 (2010).
1400 1401 1402	122.	Nielander, A. C. <i>et al.</i> A Versatile Method for Ammonia Detection in a Range of Relevant Electrolytes via Direct Nuclear Magnetic Resonance Techniques. <i>ACS Catal.</i> 9 , 5797–5802 (2019).
1403 1404		This paper reports on a frequency-selective pulse nuclear magnetic resonance method for the accurate determination of ammonia.
1405	123.	Mooney, E. F. & Winson, P. H. Nitrogen Magnetic Resonance Spectroscopy. Annu. Reports NMR

1406		Spectrosc. 2, 125–152 (1969).
1407 1408	124.	Giddey, S., Badwal, S. P. S. & Kulkarni, A. Review of electrochemical ammonia production technologies and materials. <i>Int. J. Hydrogen Energy</i> 38 , 14576–14594 (2013).
1409 1410	125.	Seh, Z. W. <i>et al.</i> Combining theory and experiment in electrocatalysis: Insights into materials design. <i>Science (80).</i> 355 , eaad4998 (2017).
1411 1412	126.	Choi, J. <i>et al.</i> Electroreduction of Nitrates, Nitrites, and Gaseous Nitrogen Oxides: A Potential Source of Ammonia in Dinitrogen Reduction Studies. <i>ACS Energy Lett.</i> 5 , 2095–2097 (2020).
1413 1414	127.	Li, J. & Wu, N. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: A review. <i>Catalysis Science and Technology</i> (2015).
1415 1416	128.	Kisch, H. Semiconductor Photocatalysis-Mechanistic and Synthetic Aspects. <i>Angew. Chemie Int. Ed.</i> 52 , 812–847 (2013).
1417 1418	129.	Chen, X., Shen, S., Guo, L. & Mao, S. S. Semiconductor-based Photocatalytic Hydrogen Generation. <i>Chem. Rev.</i> 110 , 6503–6570 (2010).
1419 1420	130.	Kibsgaard, J., Nørskov, J. K. & Chorkendorff, I. The Difficulty of Proving Electrochemical Ammonia Synthesis. <i>ACS Energy Lett.</i> 4 , 2986–2988 (2019).
1421 1422 1423	131.	Turner, C., Španěl, P. & Smith, D. A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry, SIFT-MS. <i>Physiol. Meas.</i> 27 , 321–337 (2006).
1424 1425	132.	Tao, H. <i>et al.</i> Nitrogen Fixation by Ru Single-Atom Electrocatalytic Reduction. <i>Chem</i> 5 , 204–214 (2019).
1426 1427 1428	133.	Xiong, W. <i>et al.</i> Facile, cost-effective plasma synthesis of self-supportive FeS x on Fe foam for efficient electrochemical reduction of N 2 under ambient conditions. <i>J. Mater. Chem. A</i> 7 , 19977–19983 (2019).
1429 1430	134.	Suryanto, B. H. R. <i>et al.</i> MoS 2 Polymorphic Engineering Enhances Selectivity in the Electrochemical Reduction of Nitrogen to Ammonia. <i>ACS Energy Lett.</i> 4 , 430–435 (2019).
1431 1432	135.	Li, X. <i>et al.</i> Boosted Electrocatalytic N2 Reduction to NH3 by Defect-Rich MoS2 Nanoflower. <i>Adv. Energy Mater.</i> 8 , (2018).
1433 1434	136.	Chen, GF. <i>et al.</i> Ammonia Electrosynthesis with High Selectivity under Ambient Conditions via a Li+ Incorporation Strategy. <i>J. Am. Chem. Soc.</i> 139 , 9771–9774 (2017).
1435 1436	137.	Song, Y. <i>et al.</i> A physical catalyst for the electrolysis of nitrogen to ammonia. <i>Sci. Adv.</i> 4 , e1700336 (2018).
1437 1438	138.	Zhou, F. <i>et al.</i> Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. <i>Energy Environ. Sci.</i> 10 , 2516–2520 (2017).
1439 1440	139.	Tsuneto, A., Kudo, A. & Sakata, T. Lithium-mediated electrochemical reduction of high pressure N2 to NH3. <i>J. Electroanal. Chem.</i> 367 , 183–188 (1994).
1441 1442	140.	Tsuneto, A., Kudo, A. & Sakata, T. Efficient Electrochemical Reduction of N2 to NH3 Catalyzed by Lithium. <i>Chem. Lett.</i> 22 , 851–854 (1993).
1443 1444	141.	Zhang, L. et al. A Janus Fe-SnO 2 Catalyst that Enables Bifunctional Electrochemical Nitrogen Fixation. Angew. Chemie Int. Ed. 59, 10888–10893 (2020).
	1.40	

1445 142. Hirakawa, H., Hashimoto, M., Shiraishi, Y. & Hirai, T. Photocatalytic Conversion of Nitrogen to

1446 1447		Ammonia with Water on Surface Oxygen Vacancies of Titanium Dioxide. J. Am. Chem. Soc. 139, 10929–10936 (2017).
1448 1449		Comer, B. M. <i>et al.</i> The Role of Adventitious Carbon in Photo-catalytic Nitrogen Fixation by Titania. <i>J. Am. Chem. Soc.</i> (2018).
1450 1451		Wang, Z. <i>et al.</i> Recent Developments in Polymeric Carbon Nitride-Derived Photocatalysts and Electrocatalysts for Nitrogen Fixation. <i>ACS Catalysis</i> (2019).
1452 1453		Lv, C. <i>et al.</i> Defect Engineering Metal-Free Polymeric Carbon Nitride Electrocatalyst for Effective Nitrogen Fixation under Ambient Conditions. <i>Angew. Chemie - Int. Ed.</i> (2018).
1454 1455		Hu, B., Hu, M., Seefeldt, L. & Liu, T. L. Electrochemical Dinitrogen Reduction to Ammonia by Mo2N: Catalysis or Decomposition? <i>ACS Energy Lett.</i> 4 , 1053–1054 (2019).
1456 1457		Liu, Q. <i>et al.</i> Photocatalytic N2 reduction: Uncertainties in the determination of ammonia production. <i>ACS Sustain. Chem. Eng.</i> (2021).
1458 1459 1460)	Bielawa, H., Hinrichsen, O., Birkner, A. & Muhler, M. The ammonia-synthesis catalyst of the next generation: Barium-promoted oxide-supported ruthenium. <i>Angew. Chemie-International Ed.</i> 40 , 1061- (2001).
1461 1462		Hagen, S. <i>et al.</i> New efficient catalyst for ammonia synthesis: barium-promoted cobalt on carbon. <i>Chem. Commun.</i> 11 , 1206–1207 (2002).
1463 1464		Kojima, R. & Aika, K. Cobalt molybdenum bimetallic nitride catalysts for ammonia synthesis Part 2. Kinetic study.pdf. <i>Appl. Catal. A Gen.</i> 218 , 121–128 (2001).
1465 1466		This article presents a typical kinetic study for thermocatalytic ammonia synthesis, including the measurement conditions, derivation process of the equations, and the calculations.
1467 1468		Hagen, S. Ammonia synthesis with barium-promoted iron–cobalt alloys supported on carbon. <i>J. Catal.</i> 214 , 327–335 (2003).
1469 1470		Aika, K. Role of alkali promoter in ammonia synthesis over ruthenium catalysts—Effect on reaction mechanism. <i>Catal. Today</i> 286 , 14–20 (2017).
1471 1472		Holzman, P. R., Shiflett, W. K. & Dumesic, J. A. The importance of ammonia pressure in the kinetics of ammonia synthesis over supported Ru. <i>J. Catal.</i> 62 , 167–172 (1980).
1473 1474 1475	1	This study compared the results of apparent activation energies measured at constant ammonia pressure and at constant flow rate, demonstrating the importance of ammonia partial pressure for reaction kinetics.
1476 1477		Ye, TN. <i>et al.</i> Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. <i>Nature</i> 583 , 391–395 (2020).
1478 1479		Tang, Y. <i>et al.</i> Metal-Dependent Support Effects of Oxyhydride-Supported Ru, Fe, Co Catalysts for Ammonia Synthesis. <i>Adv. Energy Mater.</i> 8 , (2018).
1480 1481		Kobayashi, Y. et al. Titanium-Based Hydrides as Heterogeneous Catalysts for Ammonia Synthesis. J. Am. Chem. Soc. (2017).
1482	157.	Cao, Y. et al. Vanadium Hydride as an Ammonia Synthesis Catalyst. ChemCatChem (2020).
1483 1484		Kammert, J. <i>et al.</i> Nature of Reactive Hydrogen for Ammonia Synthesis over a Ru/C12A7 Electride Catalyst. <i>J. Am. Chem. Soc.</i> 142 , 7655–7667 (2020).
1485	159.	Gao, W., Guo, J. & Chen, P. Hydrides, Amides and Imides Mediated Ammonia Synthesis and

1486		Decomposition. Chinese J. Chem. 37, 442-451 (2019).
1487 1488 1489	160.	Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. <i>Energy Environ. Sci.</i> (2010).
1490 1491	161.	Sundararaman, R., Goddard, W. A. & Arias, T. A. Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry. <i>J. Chem. Phys.</i> (2017).
1492 1493	162.	Kastlunger, G., Lindgren, P. & Peterson, A. A. Controlled-Potential Simulation of Elementary Electrochemical Reactions: Proton Discharge on Metal Surfaces. <i>J. Phys. Chem. C</i> (2018).
1494 1495 1496	163.	Govender, A., Curulla Ferré, D. & Niemantsverdriet, J. W. A density functional theory study on the effect of zero-point energy corrections on the methanation profile on Fe(100). <i>ChemPhysChem</i> (2012).
1497 1498	164.	Sholl, D. S. & Steckel, J. A. Density Functional Theory: A Practical Introduction, Chapter 5, Pg. 113-130. Density Functional Theory: A Practical Introduction (2009).
1499 1500		Book chapter covering zero point energy and entropy/enthalpy energy terms, and provides a good overview of the theory.
1501 1502	165.	Sprowl, L. H., Campbell, C. T. & Árnadóttir, L. Hindered translator and hindered rotor models for adsorbates: Partition functions and entropies. <i>J. Phys. Chem. C</i> (2016).
1503 1504	166.	Núñez, M., Lansford, J. L. & Vlachos, D. G. Optimization of the facet structure of transition-metal catalysts applied to the oxygen reduction reaction. <i>Nat. Chem.</i> 11 , 449–456 (2019).
1505		This paper shows trade-offs between activity and stability.
1506 1507 1508	167.	Goldsmith, B. R., Sanderson, E. D., Bean, D. & Peters, B. Isolated catalyst sites on amorphous supports: A systematic algorithm for understanding heterogeneities in structure and reactivity. <i>J. Chem. Phys.</i> (2013).
1509 1510	168.	Wexler, R. B., Qiu, T. & Rappe, A. M. Automatic Prediction of Surface Phase Diagrams Using Ab Initio Grand Canonical Monte Carlo. <i>J. Phys. Chem. C</i> (2019) doi:10.1021/acs.jpcc.8b11093.
1511 1512	169.	Shimanouchi, T. 'Molecular Vibrational Frequencies' in NIST Chemistry WebBook. <i>NIST Standard Reference Database Number</i> 69.
1513 1514	170.	Makepeace, J. W. <i>et al.</i> Reversible ammonia-based and liquid organic hydrogen carriers for high- density hydrogen storage: Recent progress. <i>Int. J. Hydrogen Energy</i> 44 , 7746–7767 (2019).
1515	171.	Service, R. F. Liquid Sunshine. Science (80). 361, 120-123 (2018).
1516 1517	172.	Christensen, C. H., Johannessen, T., Sørensen, R. Z. & Nørskov, J. K. Towards an ammonia- mediated hydrogen economy? <i>Catal. Today</i> 111 , 140–144 (2006).
1518 1519	173.	Soloveichik, G. ARPA-E REFUEL Program: Distributed Production of Ammonia and its Conversion to Energy. in 2019 AIChE Annual Meeting (AIChE, 2019).
1520 1521 1522	174.	Kerru, N., Gummidi, L., Maddila, S., Gangu, K. K. & Jonnalagadda, S. B. A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications. <i>Molecules</i> 25 , 1909 (2020).
1523 1524	175.	Chen, C. <i>et al.</i> Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. <i>Nat. Chem.</i> 12 , 717–724 (2020).
1525	176.	Nielander, A. C. et al. Readily Constructed Glass Piston Pump for Gas Recirculation. ACS Omega

- 1526
- 5, 16455–16459 (2020).
- 1527 177. Tang, C. & Qiao, S.-Z. How to explore ambient electrocatalytic nitrogen reduction reliably and
 1528 insightfully. *Chem. Soc. Rev.* 48, 3166–3180 (2019).
- 178. Kang, C. S. M., Zhang, X. & MacFarlane, D. R. High Nitrogen Gas Solubility and
 Physicochemical Properties of [C 4 mpyr][eFAP]–Fluorinated Solvent Mixtures. J. Phys. Chem. C
 1531 123, 21376–21385 (2019).
- Shi, R., Zhang, X., Waterhouse, G. I. N., Zhao, Y. & Zhang, T. The Journey toward Low
 Temperature, Low Pressure Catalytic Nitrogen Fixation. *Adv. Energy Mater.* 10, (2020).
- 180. Munter, T. R., Bligaard, T., Christensen, C. H. & Nørskov, J. K. BEP relations for N2 dissociation over stepped transition metal and alloy surfaces. *Phys. Chem. Chem. Phys.* **10**, 5202 (2008).
- 181. Yu, W. *et al.* Cathodic NH 4 + leaching of nitrogen impurities in CoMo thin-film electrodes in aqueous acidic solutions. *Sustain. Energy Fuels* **4**, 5080–5087 (2020).
- 1538 182. Chen, Y. *et al.* Revealing nitrogen-containing species in commercial catalysts used for ammonia 1539 electrosynthesis. *Nat. Catal.* **3**, (2020).

This paper shows that various commercially sold pure metals contain significant Ncontaining contamination, and provides a way to measure these contaminants.

- 183. Hargreaves, J. S. J. Heterogeneous catalysis with metal nitrides. *Coord. Chem. Rev.* 257, 2015–2031 (2013).
- 1544 184. Krauth, O., Fahsold, G. & Lehmann, A. Surface-enhanced infrared absorption. *Surf. Sci.* **433**, 79– 1545 82 (1999).
- 185. Yao, Y., Zhu, S., Wang, H., Li, H. & Shao, M. A Spectroscopic Study on the Nitrogen
 Electrochemical Reduction Reaction on Gold and Platinum Surfaces. J. Am. Chem. Soc. 140, 1496–1501 (2018).
- 186. Yao, Y., Wang, H., Yuan, X. Z., Li, H. & Shao, M. Electrochemical Nitrogen Reduction Reaction on Ruthenium. *ACS Energy Lett.* 4, 1336–1341 (2019).
- 187. Matsui, T. *et al.* In Situ Attenuated Total Reflection Infrared Spectroscopy on Electrochemical
 Ammonia Oxidation over Pt Electrode in Alkaline Aqueous Solutions. *Langmuir* 31, 11717–
 11723 (2015).
- Abdiaziz, K., Salvadori, E., Sokol, K. P., Reisner, E. & Roessler, M. M. Protein film
 electrochemical EPR spectroscopy as a technique to investigate redox reactions in biomolecules.
 Chem. Commun. 55, 8840–8843 (2019).
- 1557189.Bajada, M. A. *et al.* A Precious-Metal-Free Hybrid Electrolyzer for Alcohol Oxidation Coupled to1558CO2-to-Syngas Conversion. Angew. Chemie Int. Ed. 59, 15633–15641 (2020).
- 190. Joris, G. G. & Taylor, H. S. Exchange reactions of nitrogen isotopes on iron and tungsten surfaces.
 J. Chem. Phys. 7, 893–898 (1939).
- 191. Urabe, K. Activation of nitrogen by alkali metal-promoted transition metal II. Isotopic exchange in molecular nitrogen over potassium-promoted ruthenium-carbon catalyst. J. Catal. 32, 108–113
 (1974).
- 192. Urabe, K. Activation of nitrogen by alkali metal-promoted transition metal VI. Hydrogen effect on
 isotopic equilibration of nitrogen and rate-determining step of ammonia synthesis on potassium promoted ruthenium catalysts. J. Catal. 42, 197–204 (1976).

- Hunter, S. M. *et al.* A study of 15N/14N isotopic exchange over cobalt molybdenum nitrides. *ACS Catal.* 3, 1719–1725 (2013).
- Hargreaves, J. S. J. Nitrides as ammonia synthesis catalysts and as potential nitrogen transfer
 reagents. *Appl. Petrochemical Res.* (2014).
- 195. Shannon, S. L. & Goodwin, J. G. Characterization of Catalytic Surfaces by Isotopic-Transient
 1572 Kinetics during Steady-State Reaction. *Chem. Rev.* 95, 677–695 (1995).
- 196. Nwalor, J. Steady-state isotopic transient-kinetic analysis of iron-catalyzed ammonia synthesis. J.
 1574 Catal. 117, 121–134 (1989).
- 197. Nwalor, J. U. & Goodwin, J. G. Isotopic tracing study of K promotion of NH3 synthesis on Ru.
 1576 Top. Catal. 1, 285–293 (1994).
- McClaine, B. Isotopic Transient Kinetic Analysis of Cs-Promoted Ru/MgO during Ammonia
 Synthesis. J. Catal. 210, 387–396 (2002).
- McClaine, B. C. & Davis, R. J. Importance of Product Readsorption during Isotopic Transient
 Analysis of Ammonia Synthesis on Ba-Promoted Ru/BaX Catalyst. J. Catal. 211, 379–386
 (2002).
- Siporin, S. Isotopic transient analysis of ammonia synthesis over Ru/MgO catalysts promoted by cesium, barium, or lanthanum. *J. Catal.* 222, 315–322 (2004).
- Schlesinger, W. & Hartley, A. A global budget for atmospheric NH3. *Biogeochemistry* 15, 191– 211 (1992).
- Vojvodic, A. *et al.* Exploring the limits: A low-pressure, low-temperature Haber-Bosch process.
 Chem. Phys. Lett. (2014).
- Spinelli, J. B., Kelley, L. P. & Haigis, M. C. An LC-MS Approach to Quantitative Measurement of Ammonia Isotopologues. *Sci. Rep.* 7, 10304 (2017).
- Liu, Y. *et al.* Facile All-Optical Method for In Situ Detection of Low Amounts of Ammonia.
 iScience 23, 101757 (2020).
- ¹⁵⁹² 205. Mou, S., Wang, H. & Sun, Q. Simultaneous determination of the three main inorganic forms of ¹⁵⁹³ nitrogen by ion chromatography. *J. Chromatogr. A* **640**, 161–165 (1993).
- Andersen, S. Z. Electrochemical Nitrogen Reduction Under (Near) Ambient Conditions. *Technical University of Denmark* (2020).
- ¹⁵⁹⁶ 207. Timmer, B. H., van Delft, K. M., Otjes, R. P., Olthuis, W. & van den Berg, A. Miniaturized ¹⁵⁹⁷ measurement system for ammonia in air. *Anal. Chim. Acta* **507**, 137–143 (2004).
- Kim, K., Yoo, C.-Y., Kim, J.-N., Yoon, H. C. & Han, J.-I. Electrochemical Synthesis of Ammonia
 from Water and Nitrogen in Ethylenediamine under Ambient Temperature and Pressure. *J. Electrochem. Soc.* 163, F1523–F1526 (2016).
- ¹⁶⁰¹ 209. Sato, K. *et al.* A low-crystalline ruthenium nano-layer supported on praseodymium oxide as an active catalyst for ammonia synthesis. *Chem. Sci.* **8**, 674–679 (2017).
- Chang, F. *et al.* Alkali and Alkaline Earth Hydrides-Driven N2 Activation and Transformation
 over Mn Nitride Catalyst. *J. Am. Chem. Soc.* 140, 14799–14806 (2018).
- Kitano, M. *et al.* Low-Temperature Synthesis of Perovskite Oxynitride-Hydrides as Ammonia
 Synthesis Catalysts. *J. Am. Chem. Soc.* 141, 20344–20353 (2019).

1607 1608 1609	212.	Kitano, M. <i>et al.</i> Self-organized Ruthenium-Barium Core-Shell Nanoparticles on a Mesoporous Calcium Amide Matrix for Efficient Low-Temperature Ammonia Synthesis. <i>Angew. Chemie Int. Ed.</i> 57 , 2648–2652 (2018).
1610 1611	213.	Wang, Y. <i>et al.</i> Generating Defect-Rich Bismuth for Enhancing the Rate of Nitrogen Electroreduction to Ammonia. <i>Angew. Chemie Int. Ed.</i> 58 , 9464–9469 (2019).
1612 1613	214.	Kong, J. <i>et al.</i> Electrochemical Synthesis of NH 3 at Low Temperature and Atmospheric Pressure Using a γ-Fe 2 O 3 Catalyst. <i>ACS Sustain. Chem. Eng.</i> 5 , 10986–10995 (2017).
1614 1615 1616	215.	Shi, MM. <i>et al.</i> Au Sub-Nanoclusters on TiO2 toward Highly Efficient and Selective Electrocatalyst for N2 Conversion to NH3 at Ambient Conditions. <i>Adv. Mater.</i> 29 , 1606550 (2017).
1617 1618	216.	Zhang, N. <i>et al.</i> Refining Defect States in W18O49 by Mo Doping: A Strategy for Tuning N 2 Activation towards Solar-Driven Nitrogen Fixation. <i>J. Am. Chem. Soc.</i> 140 , 9434–9443 (2018).
1619 1620	217.	Wang, S. <i>et al.</i> Light-Switchable Oxygen Vacancies in Ultrafine Bi5O7Br Nanotubes for Boosting Solar-Driven Nitrogen Fixation in Pure Water. <i>Adv. Mater.</i> 29 , 1701774 (2017).
1621 1622 1623	218.	Jang, Y. J., Lindberg, A. E., Lumley, M. A. & Choi, K. S. Photoelectrochemical Nitrogen Reduction to Ammonia on Cupric and Cuprous Oxide Photocathodes. <i>ACS Energy Lett.</i> 5 , 1834– 1839 (2020).
1624 1625	219.	Zhu, D., Zhang, L., Ruther, R. E. & Hamers, R. J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. <i>Nat. Mater.</i> 12 , 836–841 (2013).
1626 1627	220.	Wang, X. <i>et al.</i> Insight into dynamic and steady-state active sites for nitrogen activation to ammonia by cobalt-based catalyst. <i>Nat Commun</i> 11 , 653 (2020).
1628 1629	221.	Ogura, Y. <i>et al.</i> Efficient ammonia synthesis over a Ru/La 0.5 Ce 0.5 O 1.75 catalyst pre-reduced at high temperature. <i>Chem. Sci.</i> 9 , 2230–2237 (2018).
1630 1631	222.	Hodgetts, R. Y. <i>et al.</i> Refining Universal Procedures for Ammonium Quantification via Rapid 1 H NMR Analysis for Dinitrogen Reduction Studies. <i>ACS Energy Lett.</i> 5 , 736–741 (2020).
1632 1633		This paper assesses the sensitivity of nuclear magnetic resonance towards the detection of ammonia in solutions with different proton concentration
1634		

1635 Glossary Terms

- **Faradaic Efficiency:** The efficiency at which charge, in the form of electrons, participate in a specific electrochemical reaction
- Activation barriers: The minimal amount of energy required for reactants to undergo a chemical reaction This is the energy difference between the reactant and the transition state.
- Standard potential: The potential (V) of a reversible electrode at standard state with ions at an effective
 1 M concentration at the pressure of 1 atm.
- **Electrochemical half-cell reactions:** Either an oxidation reaction on the anode electrode where an electron is lost or a reduction reaction on the cathode electrode where an electron is gained.
- **Electric arc-generated hot plasma:** A discharge of electric current across a spatial gap, sustained by the presence of a thermally ionized plasma, which allows for the flow of said current.
- **Reaction orders:** the power dependence of the rate on the concentration of each reactant, which is an experimentally determined parameter that can have fraction values.
- **Tafel analysis:** is used to determine an electrochemical systems transfer coefficient via voltammograms, thereby providing information about the electrochemical mechanism and catalytic activity.
- **Ohmic correction:** Accounting for the Ohmic resistance of the media to accurately determine the potential at the surface of the electrode.
- **Quantum yield:** Determining the number of times a specific event occurs per absorbed photon by the system in question.
- **Density functional theory:** a computational quantum mechanical modelling method used to investigate the electronic structure of many-body systems.
- **Zero point energy:** The lowest possible energy that a quantum mechanical system contains, which includes fluctuations in the lowest energy state from the Heisenberg uncertainty principle.
- Pareto-optimal frontier: A curve which contains physically possible optimal trade-offs between activity
 and stability
- **Physisorption:** Also called physical adsorption, is a weak intermolecular attraction via van der Waals
- forces, which results in the development of monolayers or multilayers of adsorbates upon a surface.

1662

1663 **RAT**

1664 Nature Reviews Methods Primers thanks ref name, ref name and the other, anonymous, reviewer(s) for
 1665 their contribution to the peer review of this work.

1666

1667 TOC blurb

- 1668 This Primer highlights the range of new strategies for sustainable N₂ activation and the step-by-step
- protocol necessary for evaluating genuine activity. The required metrics and how to interpret data
- alongside the best practices to improve reproducibility and enable the development of practical
- 1671 technologies are discussed.