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A B S T R A C T   

With long-term prospects indicating worldwide increasing urbanization over the next decades, cities are 
responsible for a growing share of global greenhouse gas emissions. This makes local policies more important in 
mitigating climate change, and calls for efficient tools allowing local decision makers to measure the impact of 
urban areas under their control. This study introduces a parsimonious screening tool to cater to this need and 
allow local governments to gauge and monitor consumption-based climate change footprint of cities. The tool 
consists of multiple-regression models that operate on easily accessible city data. To demonstrate its applica-
bility, the per capita climate change footprint is estimated for 949 cities. Australian cities are found to have the 
highest per-capita footprint, averaging 20.4 t CO2-eq, while South American cities have the lowest per-capita 
footprint, averaging 8.1 t CO2-eq. The results are evaluated against IPCC climate change mitigation pathways 
to judge which cities are on track to an absolute sustainable level of greenhouse gas emissions. Few cities are 
found to be on track to comply with the necessary levels for 2030, and the findings thus substantiate that cities all 
over the planet need major actions to comply with the required climate change mitigation.   

1. Introduction 

Long-term projections predict that urbanization will continue in all 
regions of the world over the next decades, with the share of the pop-
ulation living in cities globally growing from 56.2% to 60.4% by 2030 
(UN-Habitat, 2020). Cities are responsible for an increasingly larger 
share of global greenhouse gas (GHG) emissions (C40 Cities, 2020), 
highlighting the importance of climate mitigation and adaptation in 
cities. The United Nations have dedicated one of their 17 goals for 
sustainable development (SDGs) to achieving sustainable cities and 
communities (SDG 11) and city leaders worldwide have started to pass 
legislation and enact development plans compatible with the Paris 
Agreement (C40 Cities, 2016; 2020; Watts, 2017; Wiedmann et al., 
2021). The C40 Network thus estimates that cities worldwide can 
deliver about 40% of the reductions necessary to achieve the Paris 
Agreement (C40 Cities, 2016). City governments are hence key to suc-
cessfully mitigate climate change, and this increases the importance of 
local assessments as well as local policies and regulations (C40 Cities, 
2020; Revi et al., 2014). Finally, it is essential that the impact of cities on 
climate change is quantitatively evaluated to allow benchmarking 
against evidence-based targets to effectively implement 

transformational climate change mitigation and adaptation in cities 
(C40 Cities, 2020). 

To evaluate the climate change impact from cities, a widely accepted 
methodology is the Greenhouse Gas Protocol for cities (Arioli et al., 
2020) intended for local governments. However, it carries important 
limitations. The methodology requires extensive calculations, possibly 
attainable for larger city administrations in developed regions, but not 
feasible for smaller local governments in developing regions, with 
typically limited resources devoted to GHG accountings (Erickson and 
Morgenstern, 2016). Furthermore, assessing and reporting emissions 
embodied in food, and other products and commodities consumed in the 
city is not mandatory, and the Protocol does not provide any guidance 
on how to estimate these. Wiedmann et al. (2021) highlight the 
importance of considering emissions embodied in these imports and find 
that, for 80% of the 97 cities collaborating to mitigate climate change 
within the C40 network, GHG emissions embodied in commodities 
exceed direct GHG emissions taking place within the city boundaries. 

This omission entails a risk of burden shifting and it is hence 
important that climate change impact assessments consider direct 
emissions as well as those embodied in the products and services used by 
the city, i.e. applying a consumption-based perspective. Different 
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approaches to do so have been developed over the years, e.g. material 
flow analysis (MFA) (Alfonso Piña and Pardo Martínez, 2014; C. A. 
Kennedy et al., 2015; Rosado et al., 2014) and life cycle assessment 
(LCA) (Dias et al., 2014; García-Guaita et al., 2018; González-García and 
Dias, 2019; Lavers Westin et al., 2019). With MFA, a top-down approach 
is applied and an inventory of flows in and out of the city is developed. 
Although giving useful information at full city scale and including up- 
and downstream flows, MFA does not interpret these flows in terms of 
environmental impact (Mirabella and Allacker, 2017). This drawback 
can be overcome by coupling MFA with LCA, thus quantifying envi-
ronmental impacts related to the use of products and services within the 
city through the entire life cycle, including outside the city boundaries, 
hence applying a consumption-based perspective. However, both MFA 
and LCA are resource-intensive modelling approaches that require 
extensive data on consumption and production of products and goods, as 
well as detailed information about waste management at city level, 
which is often a challenge to acquire. 

Another approach targeting the limitations of the GHG Protocol and 
MFA coupled with LCA, is input-output (IO) models. In these models, 
aggregated sector-level monetary flows, typically more readily available at 
city level, are used in combination with emission intensities that quantify 
GHG emissions per monetary flow attributable to each sector. Multi-region 
IO (MRIO) models, which integrate trade mechanisms within and across 
sectors between countries, can, thus, assess the climate change footprints 
(CCFs, often referred to as carbon footprint) of cities (Ivanova et al., 2017; 
Wiedmann et al., 2021; Zheng et al., 2021). The most advanced study 
applying such an approach is currently the study by Moran et al. (2018), 
who estimated CCFs for 13,000 cities in 2015 by downscaling national or 
subnational footprints to the level of individual cities by considering 
population and purchasing power. Although extensive, the work of Moran 
et al. (2018) is limited by its lack of geographical and temporal differen-
tiations. Not all countries publish annually updated national input-output 
tables, which form the basis of their assessment, and the model used to 
identify urban areas is only updated every 10–15 years. Misrepresentation 
of rapidly evolving urban landscape is challenging to evaluate under such 
conditions. Additionally, the presented model relies on national statistics 
on urban vs. rural spending patterns, hence assuming that consumption 
trends are uniform across cities within a country. As demonstrated by the 
work of González-García and Dias (2019), cities in the same country can 
have markedly different consumption patterns and associated climate 
change impacts. 

Existing assessments of city CCFs thus bear two major limitations 
that hamper their use by local decision makers: dependence on resource- 
intensive modelling, which may be challenging for local authorities to 
use (e.g. MRIO modelling), and reliance on significant amounts of data, 
often not readily available for a given city and year (e.g. MFA-LCA). The 
work of Baur et al. (2015b) exemplifies a simple approach that indeed 
overcomes the modelling challenges outlined in the previous sections. In 
that work, greenhouse gas emissions are estimated for European cities 
using multiple regression models (MLRs) with two variables, namely 
household size and population density. However, Baur et al. (2015b) 
only cover territorial emissions and thus disregard the potentially 
overshadowing emissions embodied in commodities, as established in 
the above. Additionally, while data on household size may be consis-
tently available for cities within Europe, access to this type of data at city 
level in developing regions is likely limited. Inconsistency in data 
availability compromises the possibility to benchmark estimated CCFs – 
both spatially, i.e. across more cities for a single year, and temporally, i. 
e. for a single city across several years. 

Hence, there is yet a need for a simple, albeit scientifically-robust, 
and reproducible approach allowing local decision makers to gauge 
and monitor cities’ consumption-based CCF for a specific year without 
requiring comprehensive calculations and access to extensive datasets. 
In the current study, we address this gap and present a parsimonious 
screening tool, enabling quantitative assessment of consumption-based 
CCFs at city level. As a proof of concept, we apply it to 949 cities 

worldwide to estimate their CCFs. Beyond discussing the performance of 
the screening tool, we explore how the cities’ footprint result relate to 
the global reduction targets, as outlined by the Paris Agreement. 

2. Material and methods 

To develop a screening tool that enables an assessment of city CCFs, 
results from existing bottom-up studies of cities are used to train mul-
tiple linear regression (MLR) models. With MLR models, independent 
variables, whose values are known, are used to predict the value of an 
unknown dependent value. MLR models can be an effective tool for 
creating predictive equations (Osborne, 2000). In the context outlined in 
Section 1, they can be particularly useful as the amount of necessary 
calculations is minimized and data requirements can be managed 
through the selection of the independent variables, as described further 
in Section 2.2. 

Fig. 1 illustrates the overall methodology applied in the current 
study. In this work, the environmental impact potential is referred to as 
“climate change footprint”, which is also commonly referred to as 
“carbon footprint”. Climate change footprint is the impact assessment 
from emissions of all greenhouse gases (including non-carbon-based 
substances). 

2.1. Step 1: Data collection 

The first step of creating the MLR models was to collect all existing 
bottom-up studies of city CCFs. We used the search engine Web of Science 
(Clarivate, 2020) and only included peer-reviewed scientific literature (in 
English). Details on the search query and the studies included are available 
in Table S1 in Supporting Information. Finally, we applied a set of selec-
tion criteria, and identified 12 studies covering 34 cities that complied 
with all criteria, see Table S1 in Supporting Information. These 34 cities 
make up the so-called training set, used to develop the MLRs. The 34 cities 
are not evenly distributed geographically which will influence the repre-
sentativeness of any predictions made with the hereof derived MLRs. To 
address this, the regional representativeness of the MLRs is investigated in 
Section 3.2 and possible bias in predictions is discussed. 

2.2. Step 2: Evaluating possible drivers 

The second step of the approach outlined in Fig. 1 was to identify city 
characteristics that could be potential drivers of CCF. Eleven possible 
drivers were found to be reported in past studies as having an important 
contribution to cities’ CCF. Table 1 reports justifications for including 
each driver and highlighting any debate or contradicting conclusions 
regarding the driver found in literature. Additionally, the data re-
quirements of each driver in terms of data availability and consistency 
was evaluated (See Table S2). This was done to keep the MLRs simple 
enough to ensure consistency between cities when applied. Each driver 
was scored on a scale of 1–3 for both data availability and consistency. 
This score is considered in Step 4 when selecting the best MLRs. Table S3 
and S7 in Supporting Information provide an overview of the data used 
for each driver. Each driver was tested for correlation with other drivers 
based on Pearson’s correlation coefficients. Since no formal rule exists 
on which value indicates a sufficiently strong correlation, a cautionary 
approach was taken, accepting no correlation higher than 0.6 to ensure 
as high independence between the variables as possible. For example, 
the variable Gross domestic product (GDP) and Population have a cor-
relation coefficient of 0.914 and were thus not combined in any MLR. 
Correlation coefficients for all combinations of drivers can be found in 
Table S4 in Supporting Information. 

2.3. Step 3 and 4: Developing and selecting predictive models 

With 11 drivers as independent variables, 2047 possible combina-
tions could be made to achieve regression models with the dependent 
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variable “climate change impact”. To narrow down this number, a set of 
rules were imposed step by step: 

• Max. five independent variables to avoid overfitting (possible com-
binations: 1023)  

• No correlated drivers combined (possible combinations: 372)  
• All independent variables show significant contribution to the 

explanatory power of model (p < 0.05) (possible combinations: 19) 

The 19 possible combinations are presented in Supporting Informa-
tion, Table S5. The final selection among these models was based on 
evaluation against three criteria:  

1. Availability and consistency of data. How available and consistent is 
the data needed as input? (Scored 1–3, where 1 is best and 3 is worst, 
cf. Table S2)  

2. Adjusted r2. Amount of variance in the sample explained by the 
model (cf. Table S5)  

3. Q2. Amount of variance in the sample predicted by the model (cf. 
Table S5) 

With respect to Point 3 in the model validation, Q2 was determined 
using a leave-one-out (LOO) cross-validation process (Xu and Goodacre, 
2018) following Equation (1). A high coefficient indicates that the model 
has good internal predictive power. 

Q2 = 1 −
PRESS

TSS
↔ 1 −

∑n
i=1

(
yi − ŷ − i

i

)2

∑n
i=1(yi − y)2 (1)  

where: 

PRESS = Predicted residual error sum of squares 
TSS = Total sum of squares 
n = Sample size 
yi = Reported total CCF for observation i 
ŷi

(-i) = Predicted CCF for observation i, when training without the ith 
observation  

ȳ Mean of y 

Applying these three criteria to the 19 shortlisted regression models, 
three models were selected (see Table S5 for details). As the basis for the 
19 regression models, i.e. the training set, the characteristics of the 34 
cities covered by the 12 shortlisted studies described in Section 2.1 
represent the applicability limits of the regression models. This means 
that results obtained for cities with any characteristic, e.g. population 
size, either higher or lower than that of the 34 cities, should be 
considered with caution as the validity of the models is then not ensured. 
The limits of the models’ applicability are reported in Supporting In-
formation, Table S6. 

Additionally, an interval validation was performed to validate the 
models ability to predict impact results beyond the time period of the 
training set (1997–2016). The 34 cities were split into three time periods 
(1990–1999, 2000–2010, and 2010–2020). The first group was dis-
regarded as it only contained three cities, hence yielding a too limited 
dataset to be used for this purpose. The second group (containing 18 
cities) was used to train the regression models, which were then applied 
to predict impacts for the third group, containing 13 cities. The pre-
dicted results for the 13 cities and the reported CCF in the original 
studies are presented in Table S10. 

We found that, for 10 of the 13 cities, the predicted impact deviated 
from the reported impact with less than 50% with at least one of the 

Table 1 
Relevant and possible drivers of cities’ CCF.  

Possible driver Justification Driver previously investigated by 

Population [capita] Some of the world’s largest cities in terms of population also have the largest carbon 
footprints, e.g. Seoul (South Korea), Guangzhou (China) and New York (USA). There 
are however plenty of examples of large cities having small footprints, e.g. Lagos 
(Nigeria). 

Brown et al. (2008); Glaeser and Kahn (2010); 
Moran et al. (2018); Wang et al. (2014) 

GDP adjusted for purchasing power 
parity [109 €] and [103 €/capita] 

Increasing wealth may lead to increasing consumption, and thus increasing emissions, 
but could also lead to a shift toward environmentally friendly goods and energy 
efficient transport. 

Moran et al. (2018); Wang et al. (2014); 
Wiedmann et al. (2021) 

Area [km2] A larger area could – if population is not proportionally large – mean more square 
meters of living space per capita and longer transportation distances, affecting energy 
consumption for heating, cooling and fuels. 

Baur et al. (2015a) 

Annual average temperature; 
Annual average of daily minimum 
temperature; 
Annual average of daily maximum 
temperature [◦C] 

Studies comparing cities across continents and countries find no or weak correlation 
between impact and e.g. temperature. However, differences in temperature are often 
used as an explanation for differences in impact when comparing cities within a study. 

Ivanova et al. (2017); Moran et al. (2018); Muñiz 
and Dominguez (2020); Singh and Kennedy 
(2015) 

Population density [capita/km2] High population density has previously been found to have a decreasing effect on 
emissions from transportation. However, some studies find that areas with high 
population density have higher impacts as cities with high-density zones tend to have 
older and thus less energy-efficient buildings. 

Baur et al. (2015a), (2015b); Kennedy et al. 
(2007); Moran et al. (2018) 

Household (HH) median disposable 
income [103 €] 

Income directly influences ability to consume and thus may increase emissions. 
However, as argued under purchasing power parity adjusted GDP, higher income can 
lead to a shift toward goods with lower impacts i.e. presence of an environmental 
Kuznets curve (David, 2004). 

Ivanova et al. (2017); Kalmykova et al. (2016) 

CO2 intensity of electricity 
production in the city [kg CO2-eq/ 
kWh] 

Electricity mix intensity intuitively influence the climate change impact of products 
produced locally. There could however be a rebound effect causing citizens with access 
to “cleaner” energy to increase energy consumption. 

Ivanova et al. (2017); Wang et al. (2014) 

Consumer price of electricity 
[€/kWh] 

The price of electricity locally is likely to affect how much citizens consume. If 
electricity is cheap, people may consume more, thus increasing impact on climate 
change. 

Kennedy et al. (2015)  
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models. For the remaining cities, the deviation exceeded 100% with all 
three models. There is, however, no indication that the deviation in-
crease as a function of time. The predicted impacts for Bilbao and Seville 
in 2016 (from the most recent study; González-García and Dias, 2019) 
deviated with less than 40% for all models. However, Mexico City and 
New York City were found to have markedly overestimated impacts. 
This is likely due to a geographical bias inherent to the dataset (due to 
limited data availability), which is further discussed in Section 3.2. 

Additionally, the regression models were evaluated on their consis-
tency with previous work. The CCF predictions were compared to 
modelled values for 460 cities (Moran et al., 2018) covering the year 2015. 
When the 95% confidence interval (CI) of the MLR prediction overlapped 
with the 67% CI reported by Moran et al. (2018), the two results were 
deemed consistent. A full list of the 460 cities and the predicted CCF for 
these is documented in Table S11 in Supporting Information. The 
knowledge gained from this consistency evaluation was furthermore used 
to guide a regional differentiation in the model application. All three 
models were applied to the 460 cities. The model that ensured consistency 
between predicted CCF and the modelled value reported by Moran et al. 
(2018) for the highest number of cities was identified as preferable. The 
three models were evaluated by world regions, defined as Africa, Western 
and Central Asia, South and Southeast Asia, East Asia, Oceania, South 
America, North America and Europe. Based on this statistical analysis, a 

preferred model, i.e. a model demonstrating the overall highest degree of 
consistency with the results obtained by Moran et al. (2018), was selected 
and recommended for each region. 

One important assumption behind this step is the reliability of the 
results by Moran et al. (2018). Moran et al. (2018) address several points 
of uncertainty in their work, including assumptions regarding con-
sumption patterns in rural and urban areas. They have attempted to 
account for these uncertainties with sensitivity analysis and uncertainty 
margins. Thus, in the absence of better comparative ways, it was deemed 
a useful exercise to test the precision of our approach; considering the 
very different approaches undertaken in the current study and in Moran 
et al. (2018), such a comparison can also provide clues as to the accuracy 
of the assessment. 

3. Results and discussion 

3.1. Presentation of predictive models 

Based on Steps 1–4 outlined in Fig. 1, 19 MLR models were devel-
oped and using the three criteria, the models in Eqs. (2)–(4) were 
selected as the three strongest models for predicting CCFs for cities. 
Table 2 presents the central statistical characteristics of the regression 
models. 

Fig. 1. Overview of the six methodological steps through four phases of data collection (Step 1 and 2), model development and selection of statistically strong 
multiple regression models (Step 3 and 4), evaluation of the model consistency (Step 5) and application, where CCF is predicted for 949 cities (Step 6). 
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Model GPDGC: 

log(CCF)=14.96+1.12⋅log(GDP)− 0.26⋅log(Pop density)− 0.02⋅GDP/cap
(2)   

Model PGC: 

log(CCF)= 0.44+ 1.10 ⋅ log(Pop) − 0.02⋅GDP / cap (3)   

Model APDGC: 

log(CCF)=1.88+1.12⋅ log(Area)+0.88⋅ log(Pop density)+0.02⋅GDP/cap
(4)  

… where: 

CCF = The total climate change footprint in tons CO2-eq per year 
GDP = The gross domestic product of the city in billion euros 
adjusted for purchasing power parity (PPP) 
Pop_density = The population density of the city in persons per km2 

GDP/cap = The gross domestic product per capita in the city in 
thousands euros adjusted for PPP 
Pop = The population of the city in persons 
Area = The land covered by the city in km2 

For the three models, GPDGC, PGC and APDGC, the main drivers of 
climate change impact is GDP, population size and area, respectively. 
With these models, an increase in the three main variables has an 
increasing effect on the predicted total climate change impact for a city. 
Firstly, one possible interpretation is that wealth, and hence ability to 
consume, influences climate change impacts. This is aligned with pre-
vious observations made at national level, e.g. (Hertwich and Peters, 
2009) who reported higher CCF for developed countries than for 
developing countries. Secondly, as Table 2 shows, the size of the city 
(both in terms of inhabitants and land occupation), influences the total 
CCF, suggesting that larger and more populous cities tend to have higher 
impacts. 

With respect to the influence of GDP per capita, it can be observed 
that the CCF decreases with higher GDP per capita with the model 
GPDGC, while the opposite is visible with the models PGC and APDGC. 
As described by Verma and Kandpal (2021), higher GDP per capita may 
provide opportunity for technological innovation, potentially favoring 
more low-carbon technologies. However, as GDP per capita often re-
flects the affluence of the population and thus its ability to consume, a 
trade-off occurs with increasing wealth having both an increasing and a 
decreasing effect on climate change impacts, the net result of which 

depends on the city assessed (Verma and Kandpal, 2021). In developing 
regions, increasing wealth may lead to industrialization as well as 
increased ability to consume, thus increasing climate change impact 
dramatically through direct emissions from fuel combustion and indirect 
emissions embodied in consumption. In developed countries, increasing 
wealth may stimulate investments in climate change mitigating tech-
nologies, e.g. decarbonization of the energy mix, leading to overall 
decrease of CCF. On the other hand, wealth has been shown to be 
positively associated with increased political interest (Gonzalez-Gorman 
et al., 2019), and a higher GDP per capita could thus also be linked to a 
population demanding more political action towards mitigating climate 
change. For instance, a United Nations survey recently found that 
high-income countries showed the second highest level of support to-
wards climate action behind the small island developing states, for 
which climate change impacts are already dire (UNDP, 2021). 

Like GDP per capita, increasing population density has a contrasting 
effect on the CCF depending on the three models considered (GPDGC, 
PGC and APDGC). The work of Kennedy et al. (2007) and Muñiz and 
Dominguez (2020) indicate that while higher population density may 
have a decreasing effect on transportation-related GHG emissions, it can 
be associated with higher housing-related emissions depending on the 
geographical context. For example, in European cities, high-density 
areas tend to have an older and less energy-efficient building stock 
associated with a higher CCF (Muñiz and Dominguez, 2020). It means 
that a high population density in a city may not be directly linked to 
higher impacts, but rather indirectly, through the era in which the city 
was primarily erected, as this time period may explain part of the energy 
efficiency performances of the building stock. Finally, high-density areas 
may increase the citizens’ access to services such as restaurants, enter-
tainment and retail, thereby stimulating consumption and hence the 
CCF per capita. As for wealth, the resulting effect from population 
density on CCF will therefore depend on the city assessed. 

It should be noted, that these interpretations of the relationship be-
tween total CCF and population density and GDP per capita are just 
some possible explanations, and that a statistically significant relation-
ship between a dependent and independent variable in a MLR does not 
imply a causal relationship. The three MLRs are so far limited to esti-
mating CCF, but could potentially be extended to other environmental 
impacts as well. There is, however, a lack of bottom up-studies consid-
ering other impacts than climate change, and as the predictive models 
are built and trained with bottom up-studies, this is a barrier. The MLRs 
are valid as long as the inherent underlying driver mechanisms remain 
constant. For example, if the building stock of European cities undergoes 
energy renovation in the coming years, it may be possible to partly 
decouple high population density from high CCFs as emissions associ-
ated with heating will be reduced. 

3.2. Regional differentiation of model applicability (Step 5) 

As described in Section 2.3, the performance of the three regression 
models was evaluated against previously estimated CCFs for a set of 460 
cities for the year 2015 (using results from (Moran et al., 2018)). With 
the model GPDGC, the predicted CCFs was found to be consistent with 
previously estimated results for 343 out of 460 cities. With models PGC 
and APDGC, consistency was found for 367 and 382 out of 460 cities, 
respectively. 

Table 3 shows that for South and Southeast Asia, South America and 
Europe the number of cities, for which a model is consistent with 
existing findings, varies markedly between models. This difference is 
likely related to the drivers behind the CCF, which vary from region to 
region (C40, 2018). While model GPDGC is the model most consistent 
with the study by Moran et al. (2018) for cities in North America and 
South America (91.8% and 80.8%, respectively), it is the model with 
poorest prediction for cities in Europe, where model APDGC gives 
consistency for the highest share of cities (97.7%). This may be 
explained by the fact that GHG emissions related to transportation are 

Table 2 
Statistics of the regression models.  

Model GPDGC 
Log(CCF) 

Model PGC 
Log(CCF) 

Model APDGC 
Log(CCF) 

Intercept 14.96*** Intercept 0.44 Intercept 1.88. 
Log(GDP) 1.12*** Log(Pop) 1.10*** Log(area) 1.12*** 
GDP/cap − 0.02*** GDP/cap 0.02** GDP/cap 0.02** 
Log 

(Pop_dens) 
− 0.26**   Log 

(Pop_dens) 
0.88*** 

Adjusted 
R-squared 

0.9153 Adjusted 
R-squared 

0.9055 Adjusted 
R-squared 

0.9262 

P-value <2.2e-16 P-value <2.2e- 
16 

P-value <2.2e- 
16 

Q-squared 0.900 Q- 
squared 

0.891 Q-squared 0.908 

Significance: ‘.’ = p-value < 0.1, ‘*’ = p-value < 0.05, ‘**’ = p-value < 0.01, 
‘***’ = p-value < 0.001. 
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less dominant in European cities (only 3%) than in North American and 
South American cities (C40, 2018). Model GPDGC thus performs well for 
cities, where high population density can be regarded as a good indi-
cator of how car-dependent the population is (e.g. in the US). In contrast, 
the APDGC model is a strong model for older cities like those in Europe, 
where population density indirectly represents a less energy-efficient 
building stock. 

All three models ensure relatively high consistency for cities in East 
Asia. Of the 34 cities in the training set, nine are located in China, which 
together with Mongolia, Taiwan, North and South Korea, and Japan 
make up the East Asia region. Similarly, seven of the 34 cities are located 
in Australia (belonging to the region Oceania). Having just two countries 
(China and Australia) representing nearly half of the cities used to train 
the regression models, will possibly ensure higher accuracy for cities in 
these countries. Finally, there are regions that are very poorly repre-
sented in the training set, e.g. Africa (represented with one city) and 
North America (represented with three cities), and regions which are not 
at all represented in the training set, e.g. South America, Western and 
Central Asia, and South and Southeast Asia. This is due to a lack of 
available bottom-up studies on cities in these regions. Future studies 
should aim to cover these regions, which could greatly improve the 
representativeness and predictive power of the regression models. 

It is plausible that the high level of consistency observed between the 
previously estimated CCFs for the 460 cities (Moran et al., 2018) and the 
models applied in this work is due to both approaches being tied to the 
economic profile of the city. Moran et al. (2018) estimated CCFs for 
cities by downscaling national CCFs obtained from the Eora global MRIO 
(Kanemoto et al., 2016; Lenzen et al., 2012). The models presented in 
this work shows the least consistency with previously obtained results 
for cities in Africa. Although Eora covers 187 countries, only 74 have a 
corresponding national input-output table available, while a proxy table 
is constructed for the remaining 113 countries by combining 
macro-economic data with a template structure based on the average of 
tables for Australia, Japan and the United States (Lenzen et al., 2012). 
Only three African countries (Kenya, South Africa and Mauritius) pub-
lish national input-output tables, while IO tables for the rest of Africa 
rely on assumptions and modelling. Thus, CCFs estimated by Moran 
et al. (2018) for cities in African countries could bear important un-
certainties, decreasing the relevance of comparing the results in this 
study with those from Moran et al. (2018) for this region. 

3.3. Estimating climate change footprint for 707 cities (Step 6) 

Based on Table 3, we identified the model that is most consistent 
with previous work in each region and applied the selected models to a 
set of 949 cities applying data for the most recent year available 
(2016–2019). Of these, 242 were excluded from further analysis because 
they have one or more city characteristics that lie outside the range 
stipulated by the characteristics of the 34 cities in the training set. Their 
results can be found in Supporting Information, Table S14 (cities high-
lighted in yellow) since they may still be relevant for comparative 
purposes once future research manages to expand the applicability of 
the MLRs. 

It should be noted, that the purpose of this work was to propose 
models that can support the assessment of consumption-based emis-
sions. The application of the MLRs to 707 cities should be seen as a proof 
of concept and does in no way represent an exhaustive list of cities that 
the models could potentially be applied to. Currently, the necessary data 
is however not publicly available for all cities worldwide and certain 
regions are underrepresented in the 707 cities. However, as the models 
presented in this work is intended for local decision makers who in all 
probability have access to this type of data on the city they manage, this 
is not considered to be a vital flaw in the models. 

The top 10 list of cities in terms of total and per capita CCF is pre-
sented in Figs. 2 and 3, respectively (the bottom 10 cities are shown in 
Table S15). The purpose of highlighting the cities with the highest 
emissions is to identify the cities that are currently responsible for the 
largest share of global urban emissions, and hence which cities have the 
influence and potential to reduce the largest share of global emissions. 

Of the remaining 707 cities, the city with the highest total CCF is 
Beijing, China, with a CCF of 422 [95% confidence interval, CI95: 294; 
606] Mt CO2-eq/yr. Chinese cities also rank in the top in terms of per 
capita CCF in Asia, where Beijing with 19.6 [CI95: 13.7; 28.1] t CO2-eq/ 
capita/yr is the city with the highest CCF per capita. Chinese cities have 
per capita CCFs comparable to cities in both Europe and North America 
(averages of 11.4, 9.1 and 11.2 t CO2-eq/capita/yr, respectively), which 
is a testament to the rapid economic development that China has un-
dergone in the past three decades (Tian et al., 2014). It is clear that these 
results are largely driven by the increase in the affluence of the Chinese 
population and, along with this, the evolution of its consumption 
patterns. 

Among all the studied cities, Australian cities have the highest per 
capita CCF. In Geelong, located in the state of Victoria, inhabitants are 
estimated to have a CCF of 25.9 [CI95: 18.6; 35.9] t CO2-eq/capita/yr. 
The highest per capita CCF of Australian cities is found in cities that are 
generally smaller in terms of population and have low population den-
sity. Model GPDGC is applied to cities in Oceania (only Australia and 
New Zealand included), and as described in Section 3.1 and presented in 
Table 2, a high population density will thus decrease the predicted CCF, 
thus explaining why higher CCFs are predicted for the less dense cities of 
Australia. 

The cities with the lowest per capita CCF are found in Colombia, 
Kenya and Senegal. The Colombian cities have an average per capita 
CCF of 6.5 t CO2-eq/capita/yr with the city Armenia having the lowest 
predicted CCF in the entire assessed set of cities with 4.3 [CI95: 2.5; 7.3] 
t CO2-eq/person/yr. Colombian cities have some of the lowest GDP of 
the 707 cities, and model GPDGC will thus predict lower total CCF. As 
the Colombian cities are not correspondingly small in terms of popula-
tion size, the per capita CCF can be expected to be low. Additionally, the 
Colombian cities are densely populated and with the model GPDGC this 
further contributes to a lower CCF, as described in Sections 3.1 and 3.2. 
For both Kenya and Senegal, only one city is included, namely the 
capital cities Nairobi and Dakar, where the CCF per capita is estimated to 
be 5.12 [CI95: 2.6; 10.2] t CO2-eq/person/yr and 5.25 [CI95: 2.6; 10.4] t 
CO2-eq/person/yr, respectively. Both Nairobi and Dakar have very low 
per capita GDP (6720 and 7140 euros, respectively), which will 
contribute to a low per capita CCF with model APDGC. 

Table 3 
Overlap between the 95%-CI for each model and test set (Moran et al., 2018).   

Overlap between 
GPDGC predicted 
impact and test set 
impact 

Overlap between 
PGC predicted 
impact and test set 
impact 

Overlap between 
APDGC predicted 
impact and test set 
impact 

Africa (N =
12) 

5 (41.7%) 5 (41.7%) 6 (50.0%) 

Western and 
Central Asia 
(N = 34) 

26 (76.5%) 28 (82.4%) 26 (76.5%) 

South and 
Southeast 
Asia (N =
45) 

34 (75.6%) 15 (33.3%) 27 (60.0%) 

East Asia (N =
107) 

69 (64.5%) 94 (87.9%) 94 (87.9%) 

Oceania (N =
8) 

6 (75.0%) 6 (75.0%) 5 (62.5%) 

South America 
(N = 26) 

21 (80.8%) 12 (46.2%) 18 (69.2%) 

North America 
(N = 98) 

90 (91.8%) 82 (83.7%) 80 (81.6%) 

Europe (N =
129) 

92 (71.3%) 125 (96.9%) 126 (97.7%)  

P.K. Ohms et al.                                                                                                                                                                                                                                 



Journal of Cleaner Production 377 (2022) 134197

7

Comparing the results in Fig. 2 to previously estimated CCFs, it is 
observed that especially cities in the United States and Canada are 
estimated somewhat lower in this work. In previous studies, e.g. Moran 
et al. (2018), Canadian and US cities have been assessed as metropolitan 
regions and thus represented a larger, less dense urban area, while the 
results from the current study for US and Canada in Figs. 2 and 3 
represent only the core urban area. For example, for Los Angeles Moran 
et al. (2018) report a population of 13,482,000 inhabitants (covering the 
total Los Angeles-Long Beach-Anaheim area), while only the central area 
of Los Angeles and its 4,000,000 inhabitants is considered in the present 
study. 

The top ten European cities by CCF per capita are all located in 
countries that have some of the highest GDP per capita in Europe 
(United Kingdom, the Netherlands, Sweden, France, Norway, Germany 
and Finland). The bottom 10 European cities by CCF per capita (see 
Supporting Information, Table S15) are similarly located in countries 
that have some of lowest GDP per capita in Europe (Bulgaria, Romania, 
Croatia, Poland, Hungary). This finding supports the work of Lorek et al. 
(2021) who found that the top 10% richest in Europe have a carbon 
footprint of more than twice the size of the bottom 50%. 

In the set of 707 cities there is an overrepresentation of cities in 
developed countries. The assessed set contain only a few cities in Africa, 
and both Asia, Oceania and South America are represented by only a few 
countries that are not necessarily representative of the entire region. 
Cities in these underrepresented regions are expected to have low per 
capita CCFs, likely lower than any of the 707 cities assessed. 

The results presented in this section demonstrate that with only three 
variables, namely population, GDP and area of a city, it is possible to 
estimate consumption-based CCF for a city. As the MLRs are not 
restricted to a single year, the latest available data could therefore be 
used for each individual city, hence ensuring the highest possible degree 
of relevance. The models are not hindered by temporal availability of 
data and it is thus not necessary to perform projections of outdated data 
to fit with a specific year, which may increase the uncertainty of the so 

obtained results. As shown in Table S12, all necessary data on the cities 
was available in either national or regional statistical databases, thus 
demonstrating the convenience and flexibility of the MLRs, without 
comprising on accuracy as illustrated in Section 3.2. 

3.4. Evaluating the impact contribution of cities 

To evaluate cities’ overall potential of climate change mitigation, an 
urban contribution factor (UCF) is estimated for each country. The UCF 
is estimated for a country by dividing the (in this study) covered share of 
total national CCF by the (in this study) covered share of total national 
population; see Equation (5). The total national climate change impacts 
were extracted from the Eora MRIO model (Kanemoto et al., 2016; 
Lenzen et al., 2012) and the total national population was taken from 
(United Nations, 2019). 

UCF=

∑
i=cityCCFi,j

CCFcountry,j

/∑
i=cityPopulationi,j

Populationcountry,j
(5)  

where: 

∑

i=city
CCFi,j is the sum of the covered cities’ CCF within a country, j 

∑

i=city
Populationi,j is the sum of the covered cities’ population within a 

country, j 

For the example Australia, the pool includes seven assessed cities. 
The sum of their CCF is 264 Mt CO2 eq./yr., or equivalent to 52% of 
Australia’s total CCF of 507 Mt CO2 eq./yr (Kanemoto et al., 2016; 
Lenzen et al., 2012). The total population of the seven cities is 14.4 
million people or equivalent to 57% of Australia’s total population of 
25.4 million people (United Nations, 2019). With Equation (5), the UCF 
for Australia is thus calculated to be 0.93. This number provides an 
indication of whether urban life is more or less climate change impact 

Fig. 2. Heat map of predicted CCF for the top 10 cities in North America (US, Canada and Mexico), South America (Chile and Colombia), Oceania (Australia), Asia, 
Africa (South Africa, Nigeria, Kenya, Senegal and Côte d’Ivoire) and Europe. 95% confidence intervals for the predictions are given in parenthesis. Color coding: from 
red, through orange and yellow to green: decreasing CCF values. 
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intensive than rural life in Australia. If the UCF is below 1, the urban 
areas can be interpreted as climate change impact-wise preferable to 
suburban and rural areas within the country. It should however be noted 
that since not all cities are covered, the UCF is a merely an indication 
based on the available data. It is entirely possible that if all urban areas 
were considered, the UCF would be higher or lower for a given country. 

From Fig. 4, it can be observed that for some countries, cities 
generally have lower climate change impact intensities than suburban or 
rural living, e.g. Australia (UCF = 0.92, CI95: 0.73; 1.15), Canada (UCF 
= 0.49, CI95: 0.38; 0.64), and the United States (UCF = 0.52, CI95: 0.37; 
0.76). In contrast, there are countries where cities account for a larger 

share of impact than the share of the population that they accommodate, 
e.g. China (UCF = 1.68; CI95: 1.27; 2.24), Colombia (UCF = 1.64, CI95: 
1.27; 2.24), and Kenya (UCF = 3.57, CI95: 1.79; 7.11). It is notable that 
countries in the former group are “developed economies”, while coun-
tries in the latter group are all “developing economies” as classified by 
the United Nations (UN, 2022). In developing countries, urbanization is 
often linked to a large divide between urban and rural areas, which is 
recognized as one of the major differences between urbanization in 
developing and developed countries (Yuan et al., 2020). The urban-rural 
income gap is an example of such divide, which is particularly visible in 
China, where the urban-rural income gap is indeed recognized as one of 

Fig. 3. Heat map of predicted CCF per capita for the top 10 cities in North America (US, Canada and Mexico), South America (Chile and Colombia), Oceania 
(Australia), Asia, Africa (South Africa, Nigeria, Kenya, Senegal and Côte d’Ivoire), and Europe. 95% confidence intervals for the predictions are given in parenthesis. 
Color coding: from red, through orange and yellow to green: decreasing CCF values. 

Fig. 4. Urban contribution factor (UCF) estimated for each country by dividing the covered share of total national CCF by the covered share of total national 
population. If below 1, urban areas within a country can be interpreted as preferable in terms of climate change impact intensity to suburban and rural areas within 
the country. 
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the most severe cases globally and has only increased over time (Yuan 
et al., 2020). Since ability to consume is inherently decisive for a high 
consumption-based CCF, it may thus be expected that in developing 
countries urban areas will have higher impacts than non-urban areas 
and urban areas will hence appear to be less environmentally preferable, 
although the difference mostly reflects large differences in standards of 
living between the cities and the rural areas. This illustrates the 
importance of considering social as well as environmental sustainability. 
If non-urban living is associated with poverty and lack of social pro-
tection it should not be considered a favorable alternative in spite of 
lower per capita CCF. Finally, it should be noted that although the 
considered cities in Colombia and Kenya only accommodate a small 
share of the population relative to the share of CCF that they are 
responsible for, CCF per capita is not on average high compared to cities 
in other assessed countries. 

From Fig. 4 it is observed that the sum of CCFs for Chile, Peru and 
Jordan is very high and in fact close to the total national CCF. This likely 
an overestimation due to a lack of representativeness in the regression 
models as the training set for the MLRs did not include any cities from 
Chile, Peru or Jordan, due to no bottom-up studies being available for 
these regions. As mentioned in Section 3.3, some regions are not covered 
sufficiently yet, e.g. Africa, South America, and Southeast Asia, which 
leaves uncertainty in both the current and potential future impacts of 
cities in these regions. Indeed, the current knowledge on cities’ climate 
change impact is predominantly based on Western perspectives and the 
lack of knowledge on environmental impacts in these regions is a 
challenge for sustainable cities (Nagendra et al., 2018). While today 
these regions are not dominant contributors to global climate change 
impacts, it is expected that with the projected growth in population and 
affluence, these regions (e.g. India) will be major contributors in the 
future. If these regions are investigated further, the models presented in 
this work could be fine-tuned and extended to increase robustness in the 
assessment of cities outside of North America, Europe and China. 

Although Australia, the United States and Canada all have relatively 
low UCF, the cities in these countries generally have high per capita 
CCFs. As shown in Section 3.3, Australian cities are found to have the 
highest per capita CCFs in the assessed sample of cities. Thus, although 
urban areas have lower climate change impacts compared to the rest of 

Australia, it is not meaningful to consider these as environmentally 
sustainable given their high per capita CCFs. To provide a meaningful 
estimate of which cities that can potentially be considered as sustain-
able, it is imperative that the relative measure of the UCF is supple-
mented with an absolute measure, using a boundary for when per capita 
CCFs are not only lower, but low enough (see Section 3.5). 

3.5. Aligning cities with the Paris Agreement 

In Fig. 5, CCFs per capita are compared to the global pathways 
limiting global warming to 1.5 ◦C and 2 ◦C above preindustrial levels 
presented by the IPCC (Rogelj et al., 2018). These pathways provide an 
annual global budget that the total anthropogenic GHG emissions should 
respect to ensure that global warming is limited to 1.5 ◦C or 2 ◦C above 
preindustrial levels. For example, if global warming should be limited to 
1.5 ◦C, the annual global GHG emissions should not exceed 27.9 Gt CO2 
eq./yr. by 2030 (Rogelj et al., 2018). To assign a share of this global 
budget to one city, an egalitarian approach is applied where all human 
individuals are given equal rights and thus the same share, i.e. the global 
budget of 27.9 Gt CO2 eq./yr. is divided by the projected global popu-
lation in 2030 (United Nations, 2019) of 8.5 billion people. This gives 
each individual an allowable budget of 3.3 t CO2 eq./capita/yr., which 
can then be multiplied by the population of a city to obtain the city’s 
share. Although applying an egalitarian approach when sharing the 
global safe environmental operating space (i.e. the space within which 
humans can operate without jeopardizing the ecological stability of the 
Earth system) is one of the most common approaches (Bjorn et al., 
2020), it is inherently an ethical choice. Another common approach is 
“Grandfathering”, where the share assigned to an individual is propor-
tional with environmental impact in a reference year (Bjorn et al., 
2020). With this approach, cities or countries with historically high 
impacts will be assigned a larger share. In this study, owing to the 
illustrative purpose of providing a benchmark against the global carbon 
budget, only the egalitarian approach recommended by Ryberg et al. 
(2020) was followed, although other approaches may be applied to 
perform sensitivity analyses. 

The pathways are scaled to the per-capita level in 2020 and 2030 
(using global demographic historical data and projections; United 

Fig. 5. Comparing climate change impact normalized per capita in t CO2-eq/yr to the IPCCs global pathways to limiting global warming to 1.5◦ and 2◦ for 2030 with 
no or limited overshoot (OS). The global pathways are downscaled by dividing the total boundary with the global population. Error bars indicate 95%-confidence 
intervals for the CCF prediction. 

P.K. Ohms et al.                                                                                                                                                                                                                                 



Journal of Cleaner Production 377 (2022) 134197

10

Nations, 2019). The 1.5 ◦C and 2 ◦C boundaries for 2020 were scaled to 
6.5 and 7.1 t CO2-eq/capita/yr, respectively, and to 3.3 and 5.3 t 
CO2-eq/capita/yr in 2030. The predicted CCF in t CO2-eq/capita/yr for 
all of the cities are then compared to the boundaries for 2020 and 2030. 

Of the 707 cities, only 74 cities have their mean predicted value 
below the 2 ◦C boundary in 2020. The majority (48 cities) of these 74 
cities are found in Europe, with Mexican and Colombian cities (11 and 9 
cities, respectively) making up the rest of the cities below the 2 ◦C 
boundary in 2020. For 370 cities it is, however, possible that their per 
capita CCF is within the 2 ◦C boundary in 2020 if the uncertainty of the 
prediction, i.e. 95% confidence intervals, is considered. Of the 48 cities 
in Europe with a mean predicted value below the 2 ◦C boundary in 2020, 
French and Polish cities tend to dominate. Electricity production in 
Poland is highly reliant on coal (Brauers and Oei, 2020), and in 2019 
Poland was responsible for 17.5% of all CO2 emissions from heat and 
electricity production within the European Union (including the United 
Kingdom and Iceland) (European Environment Agency, 2021). In spite 
of this, the results indicate that Polish cities have some of the lowest 
CCFs, which stresses the importance of factoring in the level of affluence 
of the population in the CCF estimation. Polish cities are indeed in the 
low end in terms of GDP per capita in Europe, and, as described in 
Section 3.1, the population is likely limited in terms of ability to 
consume goods and commodities that embed GHG emissions, thus 
limiting the overall per-capita GHG emissions. With regard to France, 
the French cities with low CCFs are smaller in terms of area, but densely 
populated, which could suggest better access to public transport and 
higher feasibility of transportation modes such as biking or walking. 
Finally, 71% of electricity in France is produced with nuclear power 
(IEA, 2021) which results in markedly lower direct emissions from 
electricity consumption compared to fossil fuel-based electricity pro-
duction (Lenzen, 2008). 

Only one city (out of the 707 cities) has its entire 95% confidence 
interval below the 1.5 ◦C boundary in 2020, namely Barranquilla in 
Colombia. The low per capita CCF estimated for Barranquilla may be 
due to a high population density, and as described in Section 3.2, for 
cities in Latin America, private vehicle use accounts for 10% of their 
consumption-based impacts, and a higher population density may 
therefore influence car dependency. Finally, the cities of Colombia have 
the lowest GDP and GDP per capita of all the cities investigated, i.e. their 
ability to consume and hence pollute is lower than the rest of the cities. 
Only six cities out of the 707 cities thus have the lower limit of their 
confidence interval below the 1.5 ◦C in 2030; found in Colombia, Kenya 
and Dakar. 

Although Colombian cities have some of the lowest CCFs per capita, 
Colombia have one of the lowest human development index (adjusted 
for inequalities, 0.59) of the countries assessed. Although still consid-
ered a country with high human development, Colombia is struggling 
with social challenges, such as inequalities in income and education 
(UNDP, 2022). Considering cities that both have a mean predicted CCF 
per capita lower than the 1.5 ◦C target for 2020 and are located in a 
country classified as having a very high human development index (HDI 
>0.8; UNDP, 2020), only Granada and Santander in Spain and Brest, Le 
Mans, Montpellier and Nancy in France fulfills both criteria. 

As visible from Fig. 5, none of the Australian cities has CCFs per 
capita within any of the boundaries neither in 2020 nor in 2030. With an 
average per capita CCF of 20.4 t CO2-eq/capita/yr, they need to reduce 
with a factor 2.9 to fit within the 2.0 ◦C target for 2020. Before 2030, 
they need to achieve a reduction of averagely 3.8 to fit within the 2 ◦C 
target and to reach the 1.5 ◦C target they need to reduce with a factor 
6.2. Cities in the United States are facing similar challenges with an 
average per capita CCF of 11.1 t CO2-eq/capita/yr. To adhere with the 
2.0 ◦C target by 2020 they need to cut their CCF by more than half. 

Considering the results presented in Section 3.3 and 3.4 in the 
perspective of the IPCC guideline, Fig. 5 illustrates that evaluating im-
pacts of cities in a relative perspective, i.e. comparing individual city 
performance to other cities is not sufficient. Relying on relative targets, 

e.g. reducing emissions by a certain amount does not ensure compliance 
with absolute sustainable pathways. Decision-makers therefore need to 
go beyond this and assess whether the CCF of a city is sufficiently low to 
adhere with global commitments to climate change mitigation. The 
mitigation pathways outlined by the IPCC can be scaled to provide ab-
solute targets for cities. Urban policy makers can then use these targets 
to plan their CCF reduction to sustainable levels in absolute sense, and 
develop strategies and roadmaps for sustainable urban development. 

As mentioned in Section 3.3, it is expected that cities in Africa and 
other regions of Asia and South America that are largely underrepre-
sented in the 707 cities considered in this work, have similarly low or 
even lower CCF per capita and would therefore be within the 1.5 ◦C 
target in 2030. The impression given by Fig. 5, namely that the majority 
of cities exceed the boundaries outlined by the IPCC should therefore be 
interpreted in light of this bias in the dataset and with regard to which 
world regions are well represented. Cities in Europe, North America 
(excluding Mexico), East Asia and Oceania, which are well covered re-
gions in the dataset, are indeed expected to be in the high range in terms 
of per capita CCF. It is likely that with a better coverage of cities in 
Africa, Asia and South America more cities would perform within the 
1.5 ◦C and 2 ◦C boundaries. The results presented in Fig. 5 demonstrate 
that the majority of the cities assessed need to take action to sufficiently 
reduce their CCF before 2030. Possible actions could be to increase ac-
cess to public transport and energy-efficient housing. To mitigate 
emissions embodied in consumption, one possible solution is to impose a 
carbon tax on imported products to ensure that emissions occurring 
outside city boundaries are accounted for as well. This is currently being 
rolled out at EU level as part of the European Green Deal (European 
Commission, 2021). 

4. Conclusion and recommendations 

The approach developed in this study shows that cities’ CCFs can be 
estimated using simple MLR models with few, accessible variables. The 
regression models were trained based on bottom-up studies covering 
thirteen countries from five continents, ensuring wide applicability for 
cities across the world. Through the application of the derived models, 
results showed that out of the 707 assessed cities, Colombian, Kenyan 
and Senegalese cities currently have the lowest CCFs per capita. It is 
however important to address the social dimension of sustainability, e.g. 
by considering the progress of human development, and ensuring that 
low CCF is not just a product of lower standards of living. Few European 
cities show promising outlooks both in terms of CCFs that comply with 
the pathways outlined by the IPCC limiting global warming to 1.5 ◦C 
above pre-industrial levels and maintaining a high HDI. Examples 
include Granada in Spain and Montpellier in France. The models also 
indicate that of the cities considered, Australian cities are the furthest 
away from the IPCC’s mitigation pathways. Before 2030, Australian 
cities need to reduce their per capita CCF by more than a factor of 5 to 
comply with the 1.5 ◦C pathway. To comply with the 2 ◦C pathway they 
still need to reduce by a factor of 3.5. 

The simplicity of the proposed regression models supports local 
decision-makers in keeping track of their emissions and allows them to 
evaluate the distance to absolute targets such as the IPCC pathways. 
These models allow the inclusion of emissions embodied in consumption 
and allow a temporally and spatially dynamic assessment while relying 
only on globally and consistently available data. As a screening tool, 
they can be used to identify cities that represent regional climate change 
hot spots. To mitigate consumption-based climate change impacts 
associated with the hastily growing urban population, we are however 
still lacking a method that encompasses the benefits of the method 
presented in this work while allowing tracing of the main impact con-
tributors. With current methods, we can apply bottom-up assessments 
such as MFA-LCA at the city level, or build nested city level MRIO 
models, both of which are labor and data-intensive. Understanding 
impact contributors and testing the influence of mitigation actions in 
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scenarios is however essential to focus our efforts where it matters. Until 
such a method exists, applying regression models as described in this 
work is a way of screening for possible regional impact hotspots to 
support targeted investigations with e.g. MFA-LCA or MRIO thus saving 
valuable time and resources. 

For now, the models are more consistent with certain world regions, 
including North America, Europe, and East Asia. Only very few bottom- 
up studies are available for cities outside these regions especially Africa, 
South America, and the rest of Asia lacking detailed studies. It is 
essential that more knowledge is collected on the environmental impact 
of cities in these regions, as their growth of urban areas will be dramatic 
in the coming decades. Currently, it is cities in North America, Europe, 
and East Asia that are responsible for the majority of global emissions of 
greenhouse gases, and the screening tool presented in this work is, for 
now, ideal for local governments in these regions. Further research 
should, however, explore extending the applicability of the screening 
tool to prepare for the urban growth expected in developing regions. 
Strengthening the data available in these regions would allow the 
screening tool to reach global coverage. 
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2018. Mitigation pathways compatible with 1.5◦C in the context of sustainable 
development. In: Global Warming of 1.5◦C. An IPCC Special Report on the Impacts of 
Global Warming of 1.5◦C above Pre-industrial Levels and Related Global Greenhouse 
Gas Emission Pathw. IPCC Special Report Global Warming of 1.5 oC, p. 82. https:// 
www.ipcc.ch/site/assets/uploads/sites/2/2019/02/SR15_Chapter2_Low_Res.pdf. 

Rosado, L., Niza, S., Ferrão, P., 2014. A material flow accounting case study of the lisbon 
metropolitan area using the urban metabolism analyst model. J. Ind. Ecol. 18 (1), 
84–101. https://doi.org/10.1111/jiec.12083. 

Ryberg, M.W., Andersen, M.M., Owsianiak, M., Hauschild, M.Z., 2020. Downscaling the 
planetary boundaries in absolute environmental sustainability assessments – a 
review. J. Clean. Prod. 276, 123287 https://doi.org/10.1016/J. 
JCLEPRO.2020.123287. 

Singh, S., Kennedy, C., 2015. Estimating future energy use and CO2 emissions of the 
world’s cities. Environ. Pollut. 203, 271–278. https://doi.org/10.1016/j. 
envpol.2015.03.039. 

Tian, X., Chang, M., Lin, C., Tanikawa, H., 2014. China’s carbon footprint: a regional 
perspective on the effect of transitions in consumption and production patterns. 
Appl. Energy 123, 19–28. https://doi.org/10.1016/j.apenergy.2014.02.016. 

UNDP, 2022. Human Development Report 2021-22: Uncertain Times, Unsettled Lives: 
Shaping our Future in a Transforming World. United Nations Development 
Programme, p. 282. 

UN-Habitat, 2020. World cities report 2020. Unpack. Value Sustain. Urban. https://doi. 
org/10.18356/c41ab67e-en. 

UN, 2022. World Economic Situation and Prospects 2022. 
UNDP, 2020. The next frontier: human development and the anthropocene. In: Human 

Development Report 2020. 
UNDP, 2021. Peoples’ Climate Vote. 1, pp. 1–68. file:///C:/Users/HP/Downloads/Oxf 

ord com_compressed (1.pdf. 
United Nations, 2019. World Population Prospects 2019. https://population.un.org/ 

wpp/Download/Standard/Population/. 
Verma, S., Kandpal, D., 2021. Chapter 16 - green economy and sustainable development: 

a macroeconomic perspective. In: Environmental Sustainability and Economy. 
Elsevier Inc. https://doi.org/10.1016/B978-0-12-822188-4.00016-6. 

Wang, H., Wang, Y., Wang, H., Liu, M., Zhang, Y., Zhang, R., Yang, J., Bi, J., 2014. 
Mitigating greenhouse gas emissions from China’s cities: case study of Suzhou. 
Energy Pol. 68, 482–489. https://doi.org/10.1016/j.enpol.2013.12.066. 

Watts, M., 2017. Commentary: cities spearhead climate action. Nat. Clim. Change 7 (8), 
537–538. https://doi.org/10.1038/nclimate3358. 

Wiedmann, T., Chen, G., Owen, A., Lenzen, M., Doust, M., Barrett, J., Steele, K., 2021. 
Three-scope carbon emission inventories of global cities. J. Ind. Ecol. 25 (3), 
735–750. https://doi.org/10.1111/jiec.13063. 

Xu, Y., Goodacre, R., 2018. On splitting training and validation set: a comparative study 
of cross-validation, bootstrap and systematic sampling for estimating the 
generalization performance of supervised learning. J. Anal. Test. 2 (3), 249–262. 
https://doi.org/10.1007/s41664-018-0068-2. 

Yuan, Y., Wang, M., Zhu, Y., Huang, X., Xiong, X., 2020. Urbanization’s effects on the 
urban-rural income gap in China: a meta-regression analysis. Land Use Pol. 99 
(August), 104995 https://doi.org/10.1016/j.landusepol.2020.104995. 
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