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Abstract
The question of how methods from the field of artificial intelligence can help improve the conventional
frameworks for topology optimisation has received increasing attention over the last few years. Motivated by the
capabilities of neural networks in image analysis, different model-variations aimed at obtaining iteration-free
topology optimisation have been proposed with varying success. Other works focused on speed-up through
replacing expensive optimisers and state solvers, or reducing the design-space have been attempted, but have not
yet received the same attention. The portfolio of articles presenting different applications has as such become
extensive, but few real breakthroughs have yet been celebrated. An overall trend in the literature is the strong
faith in the “magic” of artificial intelligence and thus misunderstandings about the capabilities of such methods.
The aim of this article is therefore to present a critical review of the current state of research in this field. To this
end, an overview of the different model-applications is presented, and efforts are made to identify reasons for the
overall lack of convincing success. A thorough analysis identifies and differentiates between problematic and
promising aspects of existing models. The resulting findings are used to detail recommendations believed to
encourage avenues of potential scientific progress for further research within the field.

1 Introduction

Topology Optimisation (TO) is a mathematical approach to
mechanical and multiphysics design aimed at maximising
structural performance. Spatial optimisation of the distribution
of material within a defined domain subject to sets of physical
and geometric constraints, effectively increases the design
freedom compared to other design approaches. Since the
introduction of the homogenisation approach for topology
optimisation (Bendsøe and Kikuchi 1988), the field has become
an increasingly popular academic field as well as a practical
design tool for industry, also fuelled by the developments
in Additive Manufacturing (AM) permitting production of
more complex features to better exploit the increased design
freedom gained from TO. While the homogenisation approach
demonstrated the promise of TO, it was considered to consist of
complex operations and resulted in indistinct blurry optimised
designs. Therefore, the SIMP (Solid Isotropic Material with
Penalisation) approach (Bendsøe 1989, Zhou and Rozvany
1991) soon became the preferred method. This approach
considers the relative material density in each element of the
Finite Element (FE) mesh as design variables, allowing for
a simpler interpretation and optimised designs with more
clearly defined features. Later, alternative approaches to TO
emerged, among others, evolutionary algorithms (Xie and
Steven 1997), the level-set method (Allaire et al. 2002, Wang
et al. 2003), feature-mapping methods (Norato et al. 2004, Guo
et al. 2018, Wein et al. 2020) and stochastic metaheuristics such
as Simulated Annealing (SA) and Genetic Algorithms (GA).
The latter non-gradient based TO algorithms have been proven
inefficient and intractable for practical problems (Sigmund
2011).

Common for the implementation of the different solution
methods is that they use an iterative procedure to create a

complex mapping from problem-defining characteristics (i.e.
supports, loads and objective function) to an optimised structure.
To ensure coherence with laws of physics the structure is
governed by a system of partial differential equations. As
the considered approach to TO is based on nested analysis
and design, this system of equations must be solved for the
intermediate solution in each iterate of these procedures. For
problems increasing in size and complexity obtaining this
solution becomes a highly computationally expensive process
posing a challenge in large-scale topology optimisation. As
accuracy and obtained detail of solutions are highly dependent
upon the element size in FE-analysis, the applicability of
topology optimisation for real-life design cases is limited by
this computational complexity. Therefore, current developments
within the field are strongly motivated by the desire to either
limit the number of iterations needed to obtain an optimised
structure or the computational cost of completing an iteration.

The technological development in high-performance computing
has not only provided important support in the progress of
topology optimisation, but also in other increasingly popular
research fields such as Artificial Intelligence (AI). Especially
prominent is the growth within the field of Machine Learning
(ML) and its subfield Deep Learning (DL), offering promising
capabilities in pattern recognition and approximation of
complex relations. Machine learning is roughly a collection of
model-frameworks for applied function approximations when
explicit descriptions of input-target mappings are difficult or
impossible (Goodfellow et al. 2018). The field has also evolved
towards establishing ML-models for approximating probability
distributions rather than predicting specific targets (Lee et al.
2017). Due to such developments within the field, there has been
an emergence of algorithms that are able to solve specific tasks,
i.e. object or face recognition, better than humans (Goodfellow
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et al. 2018). It is especially advances within image-analysis by
Artificial Neural Networks (ANNs) and deep learning which
have motivated the growing research interest in applying such
technologies to increase the efficiency of topology optimisation.
Assuming a regular finite element mesh is used to discretise the
design-domain, one obtains a direct relation between pixels
in an image and the material-density distribution throughout
the elements in the mesh. This makes the application of well
known image-analysis type models directly applicable to the
discretised domain in terms of data-representation. Further, as
topology optimisation in itself consists of several approximate
mappings achieved by iterative solvers, i.e. for solving the PDEs
or optimising the sub-problem in each iteration, the idea of re-
duced and more direct substitutes for these operations is alluring.

In the past few years there has been an increase in publications
applying AI-frameworks in an attempt to reduce the compu-
tational cost of TO. Many of these proposed frameworks are
motivated by the resemblance between an element-based mate-
rial distribution and an image, and the significant developments
within deep learning for pattern recognition in image analysis.
Increasing attention has, however, not yet yielded much
significant progress. The existing literature demonstrates several
dead ends, where non-transparent presentations of results
oversell the promise of model architectures with unrealistic
expectations. Neural network models are in some works treated
as magic black-boxes with capabilities exceeding human limits,
overlooking well-known limitations within the AI field. The
idea of iteration-free TO by use of deep learning is particularly
prominent, but also problematic. This review article is a reaction
to these apparent misconceptions about the current state of AI,
and what these models are capable of. Much like Sigmund
[2011] was a response to then current trends in non-gradient TO,
this review seeks to clarify why many existing AI-applications
in TO seem unfruitful.

It is noted that the field of using neural networks for inverse
design generally is expanding rapidly, not only in mechanics
but also in a wide range of different fields, and not only in TO
but also for many other varieties of design parameterisations.
This review will mainly concentrate on TO formulations in
solid mechanics, but also include some discussions about
alternative physics applications. Considering the rapid growth
and expansion of this field, there is no guarantee that all relevant
works are included in this review, however, it is believed that the
selection of papers discussed are representative of the current
state of the art.

The paper is structured as follows; Section 1.1 gives a brief
introduction to machine learning and neural networks, Section 2
presents the literature considered in this review and the differ-
ent applications of neural networks presented in these articles,
Section 3 addresses how to assess and evaluate such solution
frameworks in TO, Section 4 discusses the limitations of cur-
rent AI-technology and how these are reflected in the reviewed
literature, Section 5 formulates some recommendations for fur-
ther research into AI-aided TO and Section 6 summarises the
important findings and comments on future prospects.

1.1 Artificial Intelligence and Neural Networks

Artificial intelligence is a branch of the computer science
field aiming to simulate intelligent behaviour using computers
(Tiwari et al. 2018). The conceptual idea of AI has been present
for decades, but the real acceleration in research-interest has
only been apparent over the last few years. The resurrection
and increasing popularity is a reaction to technological devel-
opments improving computing power and techniques, where
especially the introduction of GPUs for more efficient parallel
processing has been crucial or the determining factor. Currently,
AI is one of the hottest research topics due to the prospects
of efficient computer-driven applications and the dream of
obtaining AI systems capable of matching or succeeding human
capabilities. General AI refers to the concept of a machine
able to mimic the intelligence of humans and can be applied to
serve any relevant function. This type of AI is, however, not
yet realised and the feasibility of obtaining such machines is
unknown. Research, therefore, mostly concerns itself with the
area of Narrow AI, which is designed for specific applications.
Within Narrow AI especially the sub-field of machine learning,
and subsequently deep learning, has received increased
attention. These sub-disciplines are focused on exploiting
existing data to make algorithms or models capable of solving
specific problems or serving particular functions.

Machine learning refers to the group of methods engineered to
complete specific computational tasks intelligently by learning
from existing data. The field distinguishes itself from general
computational sciences as it aims to automate the task of ana-
lytical model building by using data and experience, relieving
the degree of human analysis and hardcoded rules needed. This
separation between what is seen as human and artificial intelli-
gence is not consistently agreed upon in the scientific community.
Some go as far as deeming anything that is programmable as be-
ing AI, which would imply that conventional TO is also AI. The
authors of this review paper do, however, support the definition
presented by Copeland [2016], which describes the distinction
by

“So rather than hand-coding software rou-
tines with a specific set of instructions to ac-
complish a particular task, the machine is

“trained” using large amounts of data and al-
gorithms that give it the ability to learn how
to perform the task.”

A “traditional” gradient-based algorithm is indeed hand-coded
and does not have any such built-in learning aspects. All
changes and update rules are pre-programmed. Given de-
terministic computing conditions and perfect arithmetics,
repeated applications will arrive at the exact same final
solution, even if the algorithm navigates through a complicated
design space. Potential variations in final solutions may
be caused by imperfect arithmetics or non-deterministic
computing, i.e. due to parallel execution, but these variations
are not deliberate actions the algorithm does to improve
performance for the next run, and hence nothing is learned.
The same can be said about genetic algorithms. Given the
same starting conditions and random seed, the algorithm
will always converge to the same solution. If later solving a
slightly perturbed design problem, there is no mechanism for
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exploiting knowledge from the previous study to improve the
solution obtained for the new problem. With this definition,
it is thus not correct to categorise TO in its traditional form as AI.

To illustrate what actually does qualify as AI, based on the
presented definition, this section aims at introducing the core
concepts of machine learning relevant for topology optimisation.
The methods applied in the papers reviewed are specialised
models based on versions and combinations of those to be
presented in this brief theoretical introduction.

The majority of ML-methods used for topology optimisation are
deep learning frameworks, meaning they are based on the use of
Artificial Neural Networks (ANNs). Therefore, the following
theory will focus on introducing such ANN-based methods.
This family of methods is popular due to the associated
design-flexibility resulting in possible modifications for a wide
variety of applications (Janiesch et al. 2021). An ANN mimics
information processing in biological systems by modelling
connected processing units referred to as neurons, where the
connections between them represent signal transmissions.
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Figure 4: General structure of an ANN illustrating how the input-array x flows through the layers of
the network and is translated to some output-array y. Di↵erent network architectures are achieved
by varying the number of hidden layers, the number of nodes within each hidden layer and the
connections between the nodes in di↵erent hidden layers.
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Figure 1: General structure of an ANN illustrating how the input-
array x flows through the layers of the network and is translated
to some output-array y. Different network architectures are
achieved by varying the number of hidden layers, the number of
nodes within each hidden layer and the connections between the
nodes in different hidden layers.

In simple terms ANNs are used to represent non-linear functions,
mapping some n-dimensional input to some m-dimensional out-
put. Fig. 1 illustrates the general structure of an ANN where the
neurons are represented by nodes and the signal transmissions
as edges. The network consists of three elementary types of
layers, namely input, hidden and output layers. Data is passed
to the network in the input layer, and passed on through the
hidden layers using the neural connections, before the mapped
result is passed to the output layer. During each connection the
signal from the origin node is multiplied by a weight and added
to a bias before being passed through an activation function
associated with the destination node. Different activation
functions may be used for separate parts of the network,
and the general definition is that such a function determines
how the weighted sum of the neural input is transformed to
the appropriate neural output. The typical choices of such

activation functions is what introduces non-linearity in the ANN.

The different layers in an ANN as such represent nested
function evaluations of the input data to obtain the desired
output format. The nature of the overall model is determined by
the network architecture in terms of number of hidden layers
and number of neurons associated with each of these layers,
as well as the weights, biases and activation functions used.
The weight and bias parameters of a network are determined
through the training process, where the model is fitted to the
desired application based on available data. Training an ANN
can be seen as a form of complex regression analysis or an
optimisation problem, aimed at obtaining the best cost function
for the model based on the desired input-output characteristics.
Depending on the specific application this cost function may
include simple measures like prediction accuracy or more
complex measures such as distributional transport or equilibria
to min-max games as discussed further below. There are several
different learning algorithms available for such tasks, these are
typically categorised by the characteristics of the desired model
and the available data for knowledge extraction.
Figure 2 gives a general overview of learning methods in terms

of training strategy and how they relate to TO applications.
Supervised and unsupervised learning constitute the most
commonly considered strategies for fixed datasets while
reinforcement learning is a different experience-based approach
(Goodfellow et al. 2016). Transfer learning acts as an extension
applicable to any of the other strategies. To further elaborate on
the fundamentals of ML it is also relevant to give an introduction
to the mathematical models commonly applied within each of
these categories.

Supervised learning is used when the training data consists of
inputs with known corresponding output values, i.e. the x-values
and desired y-values of Fig. 1 are known for each data sample.
In this case the parameters of the network are updated as to
minimise the prediction error, i.e. the loss function, between
the model-obtained (x) and target output (y) across each of the
training samples, such that an approximate map from input to
output is achieved. Supervised learning is commonly applied
when the aim is to achieve iteration-free TO (Abueidda et al.
2020, Yu et al. 2019) or when an efficient approximation of
sensitivities is desired (Qian and Ye 2021). In the first case
the inputs could be the problem boundary conditions and
applied loads while the outputs are corresponding pre-optimised
structures. In the latter case the inputs also include information
about the structural design, i.e. the element density values, and
the outputs could for instance be the displacement field or strain
energy density for each element in the structure.

Unsupervised learning is used when the model should detect
underlying patterns without any predefined output images.
Instead, the formulation of the loss function alone controls the
objective of the learning process. Care is therefore needed
to ensure that the loss function measures the performance
for the intended task, accounting for all aspects of what
defines a desired output. On the other hand, this feature makes
unsupervised learning more suited than supervised learning
for problems where there are multiple useful outputs for each
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problem-case during use

2

Figure 2: An overview of the common learning strategies from ML used for ANNs and their respective areas of application in TO.

input. This would, however, require that one is only interested
in one of the possible outputs for each input and that there
exists an appropriate function for measuring the quality of the
output. The unsupervised approach to achieving iteration-free
TO could therefore circumvent the generation of pre-optimised
structures by including the compliance and volume fraction
constraint in the loss function (Halle et al. 2021). Unsupervised
learning can also be used directly as an optimisation process
of a reparameterised design representation (Chandrasekhar
and Suresh 2021a, Deng and To 2021), or post-processing of
an optimised structure by de-homogenisation (Elingaard et al.
2022).

Reinforcement learning is a process for discovering policies
for how to best choose a sequence of actions to evolve a system
from an initial state to reach some predefined goal. The loss
function equivalent for this learning procedure is defined by a
reward-punishment scheme evaluating the quality of an action.
Reinforcement learning differs from unsupervised learning in
that the possible system states and actions must be pre-defined.
This strategy is useful for conducting optimisation tasks which
can be reformulated as a Markov decision process like binary
optimisation of trusses by evolutionary strategies (Hayashi and
Ohsaki 2020). In this case, the system states correspond to a
truss structure, formed by a set of members, the actions are
the removal of some structural members, and the punishment
or reward is measured by whether the chosen action leads to
a violation of constraints (i.e. compliance or stress). As such,
the goal is to achieve an optimised structure satisfying the
constraints by iteratively removing structural members, and the

trained model is used to determine what structural members
to remove at each iteration. This learning strategy can also be
used for exploration of the design space by choosing different
parameter settings for topology optimisation (Sun and Ma 2020,
Jang et al. 2022)

Transfer learning refers to when a pre-trained model developed
to solve a specific task is re-purposed to a second task by using
the parameters and biases of the pre-trained network as initial
settings in the training process for the new task. Knowledge
gained from training the model to handle the initial task is
as such used to limit the effort in terms of data samples and
computational time needed to obtain good performance for
solving a different but related task. The applicability and
viability of transfer learning heavily depends on the generality
of the initial task or how closely the different tasks are related.
Transfer learning could be used to improve the performance of
a model trained for iteration-free TO on new problems with
boundary conditions, length scale or constraints different from
those covered in the training cases for the original model.

Several of the solution frameworks contained in this review
incorporate what is deemed active or online learning. This
could either indicate that transfer learning is conducted during
the optimisation procedure to improve the performance for the
specific problem being solved, or that the learning procedure is
re-started for each instance, where sequential transfer learning
ensures adaption to the current problem. As for transfer learning,
both supervised and unsupervised learning can be utilised in
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this way.

Based on some initial guesses for the weights and biases,
an optimisation procedure is used to iteratively update the
parameters to improve the performance measured by the loss
function. There are different learning algorithms with different
settings available to perform this training process, and an
appropriate choice of method and settings is up to the designer.

In supervised and unsupervised learning some version of a
gradient-based optimisation algorithm like gradient descent
and Levenberg-Marquardt is commonly employed to determine
the best choice for model parameters. The concept of back-
propagation is often exploited to compute the desired gradients.
Backpropagation simply refers to the procedure of computing
the gradient of the loss function with respect to the model
parameters using the chain rule, very similar to TO with multiple
filtering operations (Wang et al. 2011). Reinforcement learning
problems are represented as Markov Decision processes and
differ from the other training categories in that the sequence of
actions chosen are dependent. Therefore, the frameworks of
the applied training algorithms are inspired by Dynamical Pro-
gramming or probabilistic methods like Monte Carlo simulation.

In addition to the training procedure setup, the activation
functions and the network architecture must be determined. The
network architecture is defined by the number of hidden layers,
the number of nodes in each of these layers and the connectivity
between nodes of different layers. These characteristics are
commonly referred to as the network hyperparameters and can
both be determined manually or by a separate optimisation-like
routine (Goodfellow et al. 2016).

The number of hidden layers is used to distinguish between
shallow and Deep Neural Networks (DNNs). It is especially
within the deep learning segment that technological advances
have had an important influence, as an increasing number
of hidden layers and thus an increasing model complexity,
requires both more robust learning algorithms and more efficient
hardware technology. As the number of parameters in a network
grows, so does the memory consumption and time needed for
training. Therefore it is crucial to exploit the flexibility in the
network structure to increase performance for the desired task,
while limiting the size of the network.

There are some well-established network architecture types
that form the foundations for most ANN models. Feedforward
NNetworks (FNN) or Multilayer Perceptrons (MLPs) are acyclic
ANNs where information only moves forward from the input
layer, through the hidden layers sequentially, towards the output
layer (Goodfellow et al. 2016). Feedforward neural networks
are usually used for supervised learning of data that is neither
sequential nor time-dependent. A network is fully connected if
each neuron is connected to all neurons in the next layer. Such
networks are useful as no special assumptions need to be made
about the structure of the input. The drawback is however that
this generality may hamper the model performance and require

unnecessarily high computational costs.

Convolutional Neural Networks (CNNs) are a special case
of feedforward networks which are not fully connected, and
where weight sharing is used to make the networks translation
equivariant. Translation equivariance means that the network
has the same output for given features, regardless of where
they are located in the input. CNNs are particularly useful for
treating regular grids such as 2D or 3D images (Janiesch et al.
2021). A crucial ingredient in a CNN is the use of an ANN as a
filter which can be seen as a sequence of discrete convolutions
where each is followed by a non-linear mapping. Considering
the input image to be the discrete function being convolved,
the network weights define the convolution function while the
activation functions introduce the non-linearity in the network.
The concept of weight sharing means that the same filter can be
placed in different locations of the input image reusing the same
weights to extract the same features. Typically, many layers of
such filters are used, paired with pooling, downsampling, or
upsampling between layers. The term CNN refers to the entirety
of the network constructed by these multiple layers of filters.
Note that the weights are not shared between layers but only
within each layer.
As such, weight sharing allows for the network to be trained
to recognise the same objects anywhere in the image, even
if the object placement is not varied in the training dataset.
Another important benefit of weight sharing is that the
size of the network is reduced, in terms of the number of
parameters one need to adjust during training. The CNN-
architecture therefore allows for using fewer training data
samples to create a smaller network with improved performance.

The mentioned network architectures are suitable for supervised
training and generating discriminative models, which are
usually used for regression or classification with known output
features. Alternatively, there are generative models that aim to
learn some data distribution through unsupervised learning. One
such model is the Variational Autoencoder (VAE) which aims
at learning how to efficiently represent the data by compressing
it to a latent vector, and consequently how to translate from
such a latent vector back to the original input format. The
corresponding network thus has an encoder-decoder structure
similar to CNN, but the purpose is to accomplish a proficient
dimensionality reduction of the data. Based on a trained VAE,
new data instances can then be generated by sampling in the
latent space and subsequently applying the decoding procedure.
This allows for training a VAE to reduce the dimensionality
of the design representation such that optimisation can be
performed by iteratively updating the latent vector (Guo et al.
2014). The drawback of the VAE is that when used to generate
new data one can obtain blurry samples as a consequence of the
learned average data representation.
Generative Adversarial Networks (GANs) take a different
approach to the generative task by coupling a generator network
with a discriminator used to judge the quality of the data
samples created by the generator. The training of a GAN
constitutes a min-max game between the two networks where
the generator aims at improving its ability to create “fake”
data samples imitating the available training data, while the
discriminator is trained to distinguish whether some input
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data sample is a generated fake or not. By this procedure the
GAN learns how to create new seemingly real data samples.
The provided data samples could consist of TO optimised
structures, where the generator then learns to generate new
believable structural layouts and the discriminator learns how
to detect inappropriate structures. In application the provided
data samples could consist of TO optimised structures, where
the generator then learns to generate new believable structural
layouts and the discriminator learns how to detect inappropriate
structures. The model can then be used within a framework for
diversifying design options for a specific mechanism (Oh et al.
2019, Rawat and Shen 2018)
A third family of generative models is Normalising Flows
(NFs) which, in contrast to VAEs and GANs, explicitly learns
the probability density function of the input data (Kobyzev
et al. 2021). These models are constructed by invertible
transformations mapping the complex distribution of observed
data to a standard Gaussian latent variable. The latent space is
in this case of the same dimensionality as the input and does
therefore not suffer from the loss of information by averaging
as VAEs do, where the latent space commonly serves as a
compression of the input data. The invertible nature of the NF
models allows for loss-less reconstruction of the input data
and generative potential. This generative potential allows for
high-dimensional image (Kingma and Dhariwal 2018, Dinh
et al. 2016) and point cloud (Yang et al. 2019) generation and
could be utilised for TO in a similar manner to VAE and GANs.
NFs can further be used to map between image and point-cloud
representations (Pumarola et al. 2020) which could indicate
potential for post-processing of TO optimized structures. To
the best of our knowledge, there are no works in the current
literature utilising NFs for TO.

As such, an overview of the modelling principles at the core
of ML-applications for TO has been presented. How these
strategies are combined and exploited to aid in the development
of TO solution frameworks is covered in more detail by the
following literature review.

2 Literature Review

Initially the motivation behind combining AI with TO was re-
lated to the increasingly successful utilisation of deep-learning
models for image analysis and generation. This is reflected
within the currently most popular applications of AI in TO,
where some NN-architecture is trained in the hopes of generat-
ing viable structural images given problem-descriptive inputs.
In such approaches, one seeks to develop an AI-methodology re-
placing the need for conventional iterative optimisation methods.
Other applications of AI-methods related to sub-procedures of
the optimisation process are however also receiving increasing
interest, with the hopes that one can develop models to support
or fully replace certain computationally expensive components
of the solution procedure.

2.1 Overview

The current literature on AI in TO can be categorised into five
main groups. For the purpose of this review, these categories
are defined as Direct design, Acceleration, Post-processing,

Reduction and Design diversity. This section will give a quick
overview over what these categories entail and connect them to
the principal AI concepts utilised within each category.

Direct design refers to the strategy of creating learning models
to directly predict an optimal structure when given some
problem descriptive characteristics, and as such the aim is
to achieve optimal structures “instantly”, in an iteration-free
manner.

Acceleration refers to learning models used as supplements
to conventional iterative solution methods, with the aim of
reducing the computational costs. This is typically achieved
through replacing the FE analysis with some approximate
model at a subset of the iterations, or by constructing a direct
mapping between intermediate structures effectively skipping
some subset of iterations.

Post-processing is defined as the modification of structures
obtained through conventional TO or homogenisation usually
aimed at ensuring manufacturability by changing the shape,
determining microstructure configurations, smoothing of
boundaries or as a substitute for de-homogenisation approaches.

Reduction is performed with the aim of reducing the size of the
design space by constructing a model that describes the topology
in a more compact way. This reparameterisation then allows
for iterative optimisation with fewer design variables, which
effectively speeds up the solution procedure. Note that such
approaches resemble standard Model Order Reduction methods,
but with the distinction that the nature of the AI approaches is
different, since these are not explicitly programmed.

Design-diversity concerns generating multiple design solutions
to the same topology optimisation problem and is somewhat re-
lated to finding the Pareto-front in multi-objective optimisation.
A set of several candidate structures exhibiting different desired
characteristics are generated providing multiple different design
options to choose from.

For ease of describing trends within the different application
areas Table 1 sorts most of the reviewed articles into appropriate,
more specific sub-categories of each of the five main groups.

2.2 Categorisation

Within each of the five main categories presented, the research
is built on similar fundamental ideas and motivations. Further,
the resulting model performances exhibit mostly comparable
strengths and weaknesses. Therefore, this section will focus on
the contents of each category in a collective manner, highlighting
works if distinction is deemed necessary.

2.2.1 Direct design

The direct design model approach is currently one of the
most popular applications of AI in TO, and the aim is to
directly achieve an optimised structure for a given problem
definition, completely removing the need for expensive iterative
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Table 1: An overview of how 82 out of 111 articles in this review distributed amongst the different application-based categories.

Direct Design Abueidda et al. [2020], Ates and Gorguluarslan [2021], Behzadi and Ilieş [2021], Behzadi and Ilies [2021],
Bielecki et al. [2021], Cang et al. [2019], Garrelts et al. [2021], Halle et al. [2021], Harish et al. [2020],
Herath and Haputhanthri [2021], Hoang et al. [2022], Lei et al. [2019], Li et al. [2019], Li et al. [2020], Luo
et al. [2021], Ma and Zeng [2020], Nakamura and Suzuki [2020], Nie et al. [2020a], Rade et al. [2021],
Ulu et al. [2016], Wang et al. [2021a], Yan et al. [2022], Yu et al. [2019], Zheng et al. [2021a], Zheng et al.
[2021b]

Acceleration Sensitivity analysis: Aulig and Olhofer [2013], Olhofer et al. [2014],
Aulig and Olhofer [2015], Barmada et al. [2021], Qiu et al. [2021],
Chi et al. [2021], Keshavarzzadeh et al. [2021a], Lee et al. [2020],
Papadrakakis et al. [1998], Qian and Ye [2021], Sasaki and Igarashi
[2019],Yue et al. [2021], Zhang et al. [2021a]

Convergence: Banga et al. [2018],
Joo et al. [2021], Kallioras et al.
[2020], Kallioras and Lagaros
[2021], Kallioras et al. [2021],
Keshavarzzadeh et al. [2021b],
Lin et al. [2018], Sosnovik and
Oseledets [2017], Xue et al.
[2021], Ye et al. [2021]

Post-
processing Shape optimisation: Hertlein et al.

[2021], Lin and Lin [2005],
Vulimiri et al. [2021], Yildiz et al.
[2003]

Upscaling: Elingaard et al. [2022], Li et al. [2019], Napier et al. [2020],
Wang et al. [2021b], Xue et al. [2021], Yoo et al. [2021]

Reduction Chandrasekhar and Suresh [2021a], Chandrasekhar and Suresh [2021b], Chandrasekhar and Suresh [2021c],
Chen and Shen [2021], Deng and To [2020], Deng and To [2021], Guo et al. [2018], Greminger [2020],
Hayashi and Ohsaki [2020], Hoyer et al. [2019], Zehnder et al. [2021], Zhang et al. [2021b], Zhu et al.
[2021]

Design
Diversity Jang et al. [2022], Keshavarzi et al. [2020], Oh et al. [2019], Rawat and Shen [2018], Rawat and Shen

[2019a], Rawat and Shen [2019b], Shen and Chen [2019], Sun and Ma [2020], Sato et al. [2019], Yamasaki
et al. [2021]

procedures. Commonly this is achieved by implementing
neural network architectures popular in image segmentation,
like CNN or GAN. The structural design representation is
typically defined by element densities within a regular FE-mesh,
similar to the conventional SIMP approach, but some base their
structural representation on geometrical features inspired by
Feature Mapping or Moving Morphable Components (MMC)
techniques (Zheng et al. 2021a, Hoang et al. 2022).
The considered optimisation problem is usually minimum com-
pliance subject to a volume constraint, but other applications
like thermal conduction problems, Li et al. [2019] and Lin et al.
[2018], are also considered. Model inputs consist of boundary
conditions, applied forces and volume fraction, given in spatial
representation by a sequence of input matrices with dimensions
equal to those of the considered FE-mesh. In certain works,
additional inputs related to initial stress or strain (Nie et al.
2020a, Yan et al. 2022) and displacement fields (Wang et al.
2021a) are also included. The trained network is then used
to map these inputs to some final structural design, either by
regression as continuous grey scale element-density values, or
by classification as binary black-and-white values indicating
whether material is present within an element or not. Garrelts
et al. [2021] presented a slightly different approach aiming
at training a model to also handle rotated pictures taken of
hand-sketched boundary conditions as input, and then mapping
this image to an optimised Michell structure.

Most of the direct design models are trained in a supervised
(CNN) or semi-supervised (GAN) manner where a large
number of optimised structures are used as training output
target samples. This means that at least one complete run of
conventional TO must be completed for each problem case
considered in the training process. Therefore it is critical to limit
the size of the needed training dataset as well as the number of
elements in each sample to make the computational time for
building the desired model viable. This is however in conflict
with obtaining a well-performing model that is able to handle a
wide variety of different problems, as neural networks perform
better on inputs that are similar to the previously seen training
samples. These factors are likely the reason for most direct
design models in the literature focusing on problems with fixed
or very similar support conditions, only varying the volume
fraction and applied loads, where the number of and possible
placements of loads typically also come with limitations.

Common for most of these network architectures, is that they
avoid fully connected layers. Therefore, in theory, they allow for
flexibility in terms of the dimensions of and number of elements
in the considered FE-mesh. Still, the presented training and
test problems are typically restricted to a small fixed mesh
where the input matrices and the output image for the network
are explicitly defined by the dimensions of this fixed mesh,
such that this potential adaptability is not exemplified. Further,
when the network is only trained for the same regular mesh
dimensions as a direct mapping from boundary conditions
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to an optimised structure, it is unclear whether the model is
readily translated to problems with different mesh dimensions
or resolutions, even given the inherent flexibility of the CNN.
Zheng et al. [2021b] made some effort to ensure mesh flexibility
by designing a network for a larger reference mesh with a
mechanism for defining empty elements, such that the mesh
dimensions could be varied within this reference domain. Their
approach implies that the fixed-dimension reference mesh
is defined before training, where it must be large enough to
encompass the meshes of all problems the network will be used
to solve in the future. In this review, it is found that none of the
published direct design models explore whether it is possible to
fully exploit the generality offered by CNN-types networks, in
terms of input image dimensions.

If the network architecture is designed specifically for certain
mesh dimensions, then the network size increases with the
number of elements in the mesh, resulting in more parameters to
be determined during training and a larger memory consumption
for storing the model. In turn, this also increases the cost
of obtaining training samples, as finer meshes imply more
time needed to optimise a structure using conventional TO. It
appears that such perceived mesh dependency of the direct
design models is a limiting factor for research within this
class of approaches. Further, the expense of generating
high-resolution training samples and the increased structural
complexity associated with higher resolution FE-meshes, are
likely determining factors explaining why most of the current
literature only considers low-resolution meshes, typically with
fewer than 4,000 elements and at the most 26,000 elements (Lei
et al. 2019, Li et al. 2019, Zheng et al. 2021b), which is five
orders of magnitude below state-of-the-art TO methods using
two billion elements (Baandrup et al. 2020).

Yu et al. [2019] considered 2D coarse grid problem cases with
fixed boundary conditions, randomly sampled volume fraction
between 0.2 and 0.8, and random single-point directional
force application. By repeated sampling and application of
open-source topology optimisation code (Andreassen et al.
2011) 100,000 corresponding optimised structures are generated,
where a random subset of 80,000 of these are used for training
and validating the network, while the remaining 20,000 are used
for testing. The restricted sampling space, the large number
of generated structures and the random selection of training
and test data means that there is a high likelihood of each
test-sample being similar to one of the training cases. Still, the
reported results show that the prediction ability of the model
is lacking when applied to the test-cases as larger structural
disconnections are apparent in the predicted structures. Thus,
thousands of expensive datasamples are collected to train a
network which fails at solving problems strongly related to
those seen by the network during training. Nakamura and
Suzuki [2020] used the results reported by Yu et al. [2019] as a
benchmark for their direct design network. By increasing the
number of optimised structures used for training and validation
of the model to 330,000, within the same sample-space, they
reported a greater prediction accuracy in terms of pixel-wise
density errors, as expected when allowing for more than three
times the number of training instances. However, the worst case
solutions still exhibit structural disconnections, implying a large

prediction error in terms of the compliance of the design.

To illustrate both why such disconnections may occur and their
effect on the structural performance, a simple test case inspired
by the type of problems considered by Yu et al. [2019] and Naka-
mura and Suzuki [2020], is presented in Fig. 3-4. By reducing
the density of two of the elements in the original structure (4(a)),
the central bar is almost disconnected completely (4(b)). Ap-
plying volume-preserving thresholding (Sigmund and Maute
2013) the corresponding solid-void structures (4(c)) and (4(d))
are obtained, where a full disconnection is now obtained. The
structural compliance with respect to the boundary conditions
(Fig. 3) is indicated for each of the four presented structures.
The presented test case is as such modelled on a square domain
with a clamped left side, subjected to an external single-point
load of horizontal magnitude 0.5 and vertical magnitude 1.0
applied to the top right node.

Figure 3: Problem boundary conditions considered for exempli-
fying the effect of grey scale and structural disconnections.

Table 2 presents the mean average density error (MAE) as well
as the relative increase in compliance (Gap) when comparing the
connected and disconnected structures for both the grey scale
and black-and-white designs. Firstly, it can be observed that
for the grey scale structures, if the MAE was used to assess
the difference between the two, they would be nearly identical.
However, the compliance of the semi-disconnected structure is
12.9% higher than for the originally connected. After threshold-
ing to fully black-and-white designs this effect is intensified, as
the MAE remains below 0.4%, but the compliance is more than
doubled. Therefore, if the model is trained with an increased
focus on minimising errors related to image-reconstruction (e.g.
MAE or Binary-Cross-Entropy) there is a risk of overlooking
adverse effects when it comes to model-performance. The works
of Luo et al. [2021] and Behzadi and Ilies [2021] corroborate
this suspicion, as physical performance or topology awareness
is included in the loss function of the direct design model and a
reduction in structural disconnections is observed. Halle et al.
[2021] further considered fully unsupervised learning for di-
rect TO where no disconnections are observed in the illustrated
examples, but occurences of discontinuities and a loss of fine
features are still presented. Note that with increased physical
information embedded in training, FEA is needed each time the
loss function is evaluated, making the actual training procedure
much more computationally expensive. This could, however,
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(a) Grey scale connected
structure (compliance 90.04).

(b) Grey scale disconnected
structure (compliance 101.63).

(c) Black-white connected
structure (compliance 66.16).

(d) Black-white disconnected
structure (compliance 199.46).

Figure 4: Compliance minimisation example for boundary conditions in Fig. 3 (subject to a volume fraction constraint of 0.2)
illustrating the effect of disconnections on a 32x32 mesh. The grey scale structure (a) is obtained by top88(32,32,0.2,3,1.5,2)
(Andreassen et al. 2011). Disconnections are imposed (b) and thresholding is applied to obtain the 0-1 counterparts (c)-(d).

reduce the overall cost of training data generation by obtaining
higher accuracy using fewer optimised structures for training.

Table 2: The relative pixel-wise (MAE) and compliance error
(Gap) between the original structure and the disconnected ver-
sion for the grey scale and black-and-white cases from Fig. 4.

Grey scale Black-and-white
MAE 0.0014 0.0039
Gap 0.1288 2.0148

By presenting both the grey scale and 0-1 designs, other
important aspects of comparing optimised structures are
also highlighted. Firstly, considering the compliances of the
two connected structures from Fig. 4, volume-preserving
thresholding improves the structural performance signifi-
cantly. Secondly, a partial disconnection by a low-density
region in grey scale may result in a full disconnection when
thresholded to a 0-1 design, which leads to a significant
increase in compliance. As such, thresholding is important
to reveal the true structural performance. Therefore, in line
with the recommendations of Wang et al. [2021c], solid-void
designs are advised for a fair comparison of optimised structures.

Based on the presented example, it is explained why MAE
alone is not sufficient for either training a direct design model
nor evaluating performance of a solution framework, as this
measure may erroneously overestimate the performance of
a structure. Further, the degree of grey scale may influence
compliance comparisons between structures. Either a structure
with more grey scale can be at a disadvantage or it can fail to
capture a crucial structural disconnection. Hence, it is clearly a
fundamental mistake to compare discrete to grey scale designs,
or vice versa.

Bielecki et al. [2021] proposed an extended direct design
approach utilising a three-step procedure. Given the problem-
defining boundary conditions a DNN is first trained to realise
a structure by determining the material distribution within the
design domain. Thereafter a CNN is used for structure refine-
ment achieving reduced grey scale and smoother boundaries.
In the last step conventional TO is applied for a maximum of
5 iterations to post-process the structure to ensure physical

consistency and volume-constraint coherence, i.e. removing
disconnections and ensuring that constraints are satisfied. The
model was trained separately for 2D and 3D problems with
fixed mesh sizes of 80x80 and 20x20x20 elements respectively.
Similar conditions for sampling of training data were utilised
in both cases, where different volume fractions and supports
or loads in corner nodes constituted the sampling space. To
avoid rigid body motion, 3 out of 8 and 6 out of 24 degrees of
freedom (DOFs) were fixed throughout for 2D and 3D cases,
respectively. In total 614,304 samples were optimised and used
for training for the 2D case, while for the more time-consuming
3D-case the training set size was restricted to 45,000 samples.
Test-cases used for model-assessment are obtained by sampling
from the same problem space as for the training data generation.
Comparative results are not reported across all 1,000 test
samples, but a significant speed-up is obtained and for the
presented results the compliance values are at least as good as
those obtained by conventional TO. This holds true for both
the 2D and 3D cases, but as a significantly smaller fraction
of the problem space is used for training the 3D-model, the
overlap between training and test problems is expected to be
smaller. Due to the large number of optimised structures needed
for training, the construction of the model is computationally
expensive. Further, as the problem instances considered are
sampled within a very restricted subset of possibilities that
utilise the same coarse mesh resolution, transferring this
framework to problems outside the training-instance distribution
is expected to increase the computational cost further.

A common trend amongst the papers within the direct design
category is the requirement of a large set of TO-optimised
structures, which becomes computationally expensive to col-
lect and is likely the reason why these papers only consider
very coarse scale fixed meshes and few variations in boundary
conditions. Even with a large amount of training data and a very
restricted problem space most works present results with poor
structural performance. The use of image-reconstruction type
loss-functions only is a popular way of training the presented
ANNs, significantly reducing the training time compared to if
structural performance was to be integrated. Image-based er-
rors do, however, not reflect the quality of a structure and thus
the network learns based on an incorrect measure. There are
other reasons for why the premise of this application category is
flawed, which will be covered later in Section 3 and Section 4.



Preprint – On the use of Artificial Neural Networks in Topology Optimisation 10

2.2.2 Acceleration

The application of AI-methods for accelerating TO is receiving
increasing attention, where approaches both aim at limiting
the number of iterations and complex computations needed
within a conventional iterative optimisation procedure. The
strategies in this category offer a more diverse profile than for
the previously described direct design models, but there are some
key similarities in the motivational ideas behind the presented
works.

Sensitivity analysis An AI-method is considered to apply
to sensitivity analysis when the aim is to replace or reduce
the need for exact evaluations of sensitivities. Some of the
works (Aulig and Olhofer 2013, Olhofer et al. 2014, Aulig and
Olhofer 2015) contained in this section are only applicable, in
the sense that they actually facilitate a speed-up, in cases where
the sensitivities are difficult to obtain by conventional FEA and
adjoint analysis. The claim of existence of such TO problems is
often heard, but seldom exemplified. Other works (Chi et al.
2021, Qian and Ye 2021, Keshavarzzadeh et al. 2021a) try to
reduce the computational load of, or completely eliminate,
FE-analysis needed in the TO process.

Common for these approaches is that they aim to train a model
to approximate complex computations by some functional
relation. With this purpose some feed-forward neural network is
constructed and trained as a regression model using supervised
learning. Typically the network inputs consist of at least the
current element densities. In some cases the loading conditions
are also included and for procedures where FEA is still present
in some form, displacement or strain energies are also supplied.

A single pass through the network may apply to one individual
element, a patch of elements within the structure or all
elements in the structure simultaneously. Approaches only
considering subsets of elements at a time can allow for increased
generalisation ability in that mesh- and problem-dependencies
are potentially reduced, but on the other hand, important global
information may be overlooked. Further, FE-analysis of a single
structure and its density histories can provide a larger set of
training samples with varying characteristics. As such, data
generation is in most cases significantly cheaper than for the
direct design models and there is potential to naturally capture
greater input-diversity. By considering such sub-structures, the
similarities between training and test data could be expected to
increase, even with vastly different boundary conditions and
load cases.

Lee et al. [2020] proposed a solution framework based on the
conventional Optimality Criteria (OC) method, where two
separate CNN-models are trained to predict compliance and
volume fraction respectively. For compliance this means that the
need for FEA to evaluate the structural integrity is eliminated,
replacing the computations with a less complex functional
approximation. The conventional computation of the volume
fraction is of linear complexity which is now replaced by some
non-linear function represented by the corresponding CNN.
The overall idea is that these neural networks will reduce the
computational load of each iteration in the optimisation process,

resulting in a significant speed-up. Most of the presented
experimental results are focused on the network’s ability to
predict volume fraction and compliance for a given structure,
and thus the integration of the model in a TO process, where
element sensitivities are needed, is not detailed. The MBB-beam
and cantilever beam with fixed mesh discretisation and varying
volume fractions are considered throughout the paper, both
for training and testing. A full assessment of the method
performance is therefore difficult, due to large similarities
between training and test cases. Papadrakakis et al. [1998]
and Sasaki and Igarashi [2019] similarly presented ANNs
trained to predict objective and constraint values of a structure,
aimed at replacing the fitness-evaluations in each iteration
of a GA framework. Qiu et al. [2021] trained networks to
iteratively remove material from a fully solid domain, similarly
to evolutionary structural optimisation, but without the use of
FEA in the actual optimisation procedure.

Aulig and Olhofer [2013], Olhofer et al. [2014] and Aulig
and Olhofer [2015] focused on designing regression-type ML-
models for predicting sensitivities when the adjoint approach
is unattainable (not exemplified in their work) such that finite
differencing is the only alternative. Standard compliance
minimisation problems are used as examples, for which the
formulas for exact sensitivities are known. The model inputs are
related to the element densities and displacements (computed
by FEA). In compliance minimisation the exact gradient of
an element with respect to the objective is a function of these
same features. This means that a good performance in terms
of sensitivity accuracy can be expected for this exact problem
formulation, but no conclusions about transferrability to other
formulations can be made. A framework for further limiting
the computational cost of the finite differencing alternative is
also presented. Here the computational load of FEA is reduced
by adaptive sampling of elements needed for exact evaluation,
reducing the degrees of freedom in the FEA. This strategy is,
however, not related to ML or NNs, and thus outside the scope
of this review.

If the desired effect of the model is to reduce the computational
load of FEA, but not necessarily completely removing this
analysis technique from the optimisation procedure, another
option for training the model is to facilitate for online learning.
Online learning refers to when the model is not trained on
pre-collected data, but rather trained during application to adapt
to a specific problem. For the considered purpose, this entails
that the model is trained during the optimisation run where
FEA is then only completed in a subset of iterations and the
obtained solutions are used in a sequential transfer learning
procedure with an increasing number of data samples. Chi
et al. [2021], and similarly Zhang et al. [2021a], presented
such an approach where a transfer learning based procedure
is conducted after each set of new training data additions
as to iteratively make the model more precise. The authors
propose to perform the optimisation as a two-scale approach
where a coarse grid version of the structure is subject to FEA
at each iteration, while the trained model is applied to map
these results to a finer mesh where FEA is only applied at a
subset of the iterations. These approaches are as such not only
concerned with sensitivity analysis, but utilise a multi-level TO
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approach to obtain the computational reductions associated with
the sensitivity analysis. The presented results show promise
and accuracy of the fine grid sensitivity predictions appear to
improve with this online-approach. The approach and resulting
speed-up are similar to those of multi-resolution techniques
(Groen et al. 2017, Nguyen et al. 2012).

The main challenges for ANNs aimed at reducing the compu-
tational cost spent on FEA during optimisation are two-fold.
Firstly, some approaches build on erroneous premises where the
conventional alternatives are assumed less efficient than they
really are, leaving these approaches redundant. Secondly, mod-
els developed for very specific problem-instances become too
restricted to be used as a general framework for TO. As for
the multi-resolution online-learning approaches, these may be
affected by coarse mesh restrictions of fine features when pro-
jected to a higher resolution. This phenomenon is common for
the two-scale methods reviewed and will be covered in more
detail when covering the upscaling category in Section 2.2.3.

Convergence If a model is trained to map between intermedi-
ate solution structures with the aim of reducing the total number
of iterations in the optimisation procedure, it is said to pertain
to accelerating convergence. Typical choices of methods are
based on either a direct design-like model (Ye et al. 2021, Joo
et al. 2021) or some time-series inspired forecasting (Kallioras
et al. 2020). The direct design-type models map the input grey
scale image of an intermediate design to an almost converged
structure. Alternatively, the time-series inspired methods
consider the trajectories of the densities of the individual
elements and seek to directly map each element from a given
iteration to a close to converged state.

The first approach inherits most of the challenges associated
with direct design models. If the full image is to be mapped at
once, the constructed model is likely to be mesh-dependent.
Ensuring diversity and accuracy for different problem charac-
teristics is difficult and comes with a large computational cost
related to data sample generation. It does, however, benefit
from the fact that more descriptive data is available as network
inputs. From the performed optimisation iterations, used to
reach the intermediate structure, both the displacement-field and
density-history of the elements are known and can be used as
inputs to the model.

Sosnovik and Oseledets [2017] trained a CNN to translate
the grey scale image of the structure obtained after k SIMP
iterations to a final black-and-white design. The training
dataset was generated by running 100 iterations of SIMP on
pseudo-random problem formulations on a 40x40 mesh. As
inputs to the network the element densities at iteration k ≤ 100
and the latest change in densities from iteration k−1 to iteration
k are supplied as two grey scale images. Different strategies for
sampling k in each training sample were tested, and the output
target considered was the black-and-white image obtained by
thresholding the optimised structure at k = 100. The trained
model is shown to outperform standard thresholding for the
training dataset, but when tested on new problem formulations,
heat conduction problems, the performances become similar.

Performances are measured by binary similarities between
structures, and no measures for compliance or volume fraction
of the obtained structures are reported. Structural results are
also illustrated for problems similar to the training datasamples
on finer grids (up to 72x108 elements), but the effect seems
to simply be smoothing of boundaries compared to coarser
structures. Joo et al. [2021] proposed a similar approach, but
instead of mapping the full structure at once, their model divided
the structural image into overlapping sub-modules, which then
separately are mapped to an optimised sub-structure, and the
complete structure is subsequently obtained by integrating over
these sub-modules.

One benefit of considering the structural image as patches or a
whole instead of element-wise is that some information about
the interaction between the elements can be retained and learned
by the CNN. In the time-series approach however, there is an
assumption of independent density-trajectories of each element
which might be problematic exactly because of the fact that the
elements must have appropriate interaction to form a viable
structure. Some of these interactions may be observable for the
network given similarities in their iterative density-histories
before the mapping is applied. A benefit of this approach is
that the generalisation ability of the proposed method is likely
to increase as there is less mesh- and problem-dependency
reflected in the training samples. Success of this method
does, however, depend on the expected iterative trajectories
being similar even for different problem definitions. A moving
structural member will lead to bell-type trajectories, meaning
the direction of the density-trajectory of the concerned elements
change several times during the full iteration history. The
assumption is therefore that an element’s density-trajectory
during the first few iterations is sufficient to distinguish the
elements for which this happens, no matter what structural
problem is considered.

Kallioras et al. [2020] proposed a time-series approach where
the iterative element density histories over the first 36 SIMP
iterations were used as input to a neural network which
individually maps the element densities to close-to-converged
values to form a structure from which SIMP is continued until
convergence. The model used is a Deep-Belief Network (DBN)
which is a type of ANN where feature detection to achieve
dimensionality reduction is conducted in each layer. As such,
the input-vector of the iterative density history of an element
is gradually reduced to a final density value throughout the
network. The network was trained on data samples consisting
of the iterative history obtained from solving versions of
the cantilever and simply supported beams with different
length-scales and discretisations. The number of finite elements
in these training samples ranged from 1,000-100,000, where
four sets of boundary conditions for two different length-scales
were solved for each resolution. When testing the model on
problems different from the training cases, a computational
speed-up is achieved. The speed-up is reported in terms of
the number of SIMP-iterations needed to reach convergence,
compared to the conventional approach. The obtained solutions
have compliance values approximately matching those of
the SIMP-obtained benchmarks. It should be noted that the
comparisons to the conventional SIMP-approach is done in grey



Preprint – On the use of Artificial Neural Networks in Topology Optimisation 12

scale, which as shown in Fig. 4 may significantly underestimate
the actual stiffness of a structure and thus the comparative
results may not be representative.

Common for the presented convergence applications is that they
assume part of the iterative density-history early in the opti-
misation procedure is sufficient to determine the nature of the
final result. This can be a problematic assumption for problem
instances where structural members move during optimisation
causing large changes in both the individual element densities
and the density field as a whole. The time-series approach based
on individual pixel density histories is especially unlikely to suc-
ceed, but there may still be potential for approaches considering
the global design change (Muñoz et al. 2022). It is reasonable to
assume that given previous iteration history it is possible to pre-
dict the density-change after a subset of consecutive iterations,
but by eliminating significant parts of the iterative search one
is likely to face some of the same challenges as for the direct
design applications.

2.2.3 Post-processing

AI-methods are considered as post-processing procedures when
an optimised structure is used to generate the model input. As
such, this application category pertains to methods for interpo-
lating the given structure to a finer mesh resolution or shape
optimisation and feature extraction for manufacturability pur-
poses.

Shape optimisation When the aim of the formulated model
is to alter the features of the obtained structure to ensure
practical and cost-efficient manufacturability requirements
are satisfied the method is said to perform post-processing
by shape optimisation. Design aesthetics may also motivate
such applications, where for instance Vulimiri et al. [2021]
considered TO for minimal compliance while adhering to
some reference design for structural patterns like circles or
spider-webs.

Two of the works presented in this category, Lin and Lin
[2005] and Yildiz et al. [2003], each proposed versions of
ANN designed to perform hole-classification in a TO optimised
structure. Lin and Lin [2005] proposed a two-stage procedure
where the first ANN is trained to recognise the underlying basic
geometric shape of the hole, when given an input in the form of
invariant moments describing the geometric characteristics of
the hole in the optimised structure. The second stage consists
of several ANNs, one for each basic geometry group defined
for the first ANN, and they are each trained to fit a detailed
shape template for the hole, within their basic geometry group.
The input format used is a set of distance and area-ratios of the
hole image represented in a dimension-independent manner,
and the network uses this information to map the hole to one
of twelve predefined geometric shape templates within the
considered shape-category. Yildiz et al. [2003] trained a single
ANN which uses the grey scale image of the TO optimised
structure as input and computes confidence measures for each
hole in the structure, based on the perceived similarities to four
basic feature templates. The identified hole-shapes are then
used to formulate a feature based part model which is subjected

to shape optimisation to obtain the desired final structural
layout. The main challenges associated with the presented
works relate to the fact that they both rely on manually defined
sets of possible shapes. Further, as the sizes of these sets are
limited it is unclear whether anything is gained from applying
AI-based models to perform the identification tasks. Yildiz et al.
[2003] also found, by testing different ANN architectures, that
the best results were obtained when the ANN only contained
one hidden layer. This raises the question of whether alternative
and simpler deterministic methods could achieve similar results.

Hertlein et al. [2021] proposed a direct design type GAN-model
with integrated manufacturing constraints for additive manufac-
turing and paired it with a post-processing procedure utilising
conventional TO. The inputs to the model consist of channels
relating directly to the 64x64 mesh considered, indicating
supports and loads as well as build-plate orientation to account
for the manufacturability. The input encoding is constructed
such that existence of material is encouraged in elements where
the optimised structure is expected to have material, here
defined by the locations of loads and build plate. The output
from the GAN is a grey scale image representing the optimised
topology. Training data are obtained running conventional TO
(Andreassen et al. 2011) with an integrated overhang filter as
presented by Langelaar [2017]. It is also suggested that the
resulting structure is post-processed by running some number
of iterations of this conventional alternative, to further eliminate
overhanging features and correct any compliance-related
inaccuracies.

Overall, this type of application of AI-technology is not well-
studied in the literature. This might be due to the introduction
of filters and manufacturability constraint in the TO problem
formulation and solution process reducing the need for post-
processing, or that alternative conventional methods for post-
processing with satisfactory performance exist. It would be of
great benefit if ML could be used to extract CAD geometries
from optimised designs, as many manufacturing methods re-
quire a format for structural representation which is not directly
attainable from density-based designs. The viability of obtain-
ing such a model is, however, not guaranteed. There is a body
of literature on reverse engineering methods (Buonamici et al.
2018). These methods reconstruct CAD models from acquired
3D data in the form of triangle meshes or point clouds. Some
methods produce constructive solid geometry (CSG) models
(Du et al. 2018). These methods are often based on detecting
primitive shapes in the input (Li et al. 2011) whereas Eck and
Hoppe [1996] generated B-Spline patches from the input. Such
methods could be exploited for post-processing of TO optimised
structures.

Upscaling The works belonging to the post-processing
upscaling category typically consider a coarse grid structure
optimised using conventional methods and apply some type
of neural network to translate this structure to a finer mesh.
There are various approaches to how to format the input to
the considered model where Wang et al. [2021b] and Yu et al.
[2019] evaluated the entire structural image of element-densities
as input while Napier et al. [2020] and Xue et al. [2021]
divided the structure into patches of element-densities that are
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processed individually but may have some overlap in terms
of what elements belong to each patch. The latter option is
likely to be the most beneficial in terms of generalisation ability,
especially as the models have the potential to be more or less
mesh-independent. Further, the patch-based approach may
allow for fewer optimised high-resolution structures to be used
for training data, and thus overall significant computational
cost-savings may be achieved. One concern is, however, that
the applied model does not have any concept of the structure as
a whole, such that only boundary fine-tuning and no topology
refinement is obtained.

Kallioras and Lagaros [2021] proposed a method (DL-scale) that
somewhat differs from this approach as they apply deterministic
upscaling, iteratively paired with the DBN convergence
acceleration framework proposed in Kallioras et al. [2020]. This
work does therefore not apply AI-methodology for the actual
upscaling, but is mentioned here as the reported results still
reflect some of the common challenges within this category.
Even though it is true that they observe significant speed-up for
increasingly finer grids it becomes evident that the solutions
obtained by the modified approach has a reduced capability of
capturing finer features, when compared to the corresponding
SIMP optimised structures. Further, for several of the reported
cases, the level of grey scale appears to be higher for the
DL-scale obtained structures, and as the minimum compliances
compared in each test case are computed for grey scale images,
it is unclear whether the overall better objective values obtained
using DL-scale actually are representative. The lack of finer
structural components when applying upscaling is a common
occurrence in the literature, and works like Wang et al. [2021b]
illustrate how the attempt to capture fine features might lead
to structures with a large degree of blurry grey scale areas or
even structural disconnections. Essentially, details on the fine
scale are limited by the coarse scale resolution, which effectivly
works as a crude length-scale constraint.

Elingaard et al. [2022] proposed a CNN for mapping a set of
lamination parameters on a coarse mesh to a fine scale design
promoting very fine features. The network is as such used as
a computationally efficient substitute for de-homogenisation
(Pantz and Trabelsi 2008, Groen and Sigmund 2018) to over-
come the current bottleneck in extraction of fine scale results
in homogenisation-based topology optimisation. As inputs
to the network the orientations from a homogenisation-based
TO solution are used. The network is then used to upsample
this information to an intermediate density field, which is
post-processed using a sequence of graphics-based steps
running in linear time to obtain the final high-resolution
one-scale design. Unsupervised training is utilised to avoid
the need for generating expensive targets and cheap input data
generation for training is ensured by sampling from a surrogate
field of low-frequency sines. The training is as such performed
independently of the physical properties of the underlying
structural optimisation problem, which makes the method
mesh and problem independent. By numerical experiments,
it is found that this approach achieves a speed-up of factor 5
to 10, compared to current state-of-the-art de-homogenisation
approaches.

Common for the presented two-scale approaches aimed at trans-
lating structural information from a coarse to a fine grid, using
the same measures, mainly densities or sensitivities, is that the
coarse scale mesh imposes length-scale constraints on the fine
grid. This means that little information is gained by utilising
ANNs to perform this mapping, when compared to conventional
interpolation techniques. This challenge does not occur if the
ANN is applied for de-homogenisation, as here it serves as a
tool for replacing a computational process which is a part of
a pre-existing upscaling scheme where details are constructed
from coarse scale information based on predefined rules.

2.2.4 Reduction

The typical approach for achieving reduction or problem
re-parameterisation by use of AI-methods is to construct
one or more inter-connected neural networks with the aim
of representing a structure using fewer design variables and
thus decrease the computational load of the optimisation
procedure. This can be done by training a VAE for feature
extraction and exploiting the reduced dimensionality of the
obtained latent space to conduct the optimisation on this latent
vector. Alternatively, the network can be constructed as a direct
surrogate for the optimisation process such that the training
of the network is equivalent to solving the given optimisation
problem exploiting that the parameters and biases of the network
are sufficient as design variables.

Guo et al. [2018] considered a multi-objective thermal
conduction problem for which a VAE is trained in a supervised
manner, with the aim of minimising the reconstruction-error
of the encoder-decoder network. The model is then tested by
integration in various conventional optimisation frameworks,
including gradient-based methods, genetic algorithms and
hybrid versions of the two. By encoding the intermediate
structure, design-updates can be executed in the reduced latent
space. The new latent vector can then be translated to an
interpretable structure by the decoder, which is next subjected
to physical analysis. As such, FEA is still needed for the full
design space, using the same mesh discretisation, meaning the
computational cost of computing objective and sensitivities
remains the same as for the conventional methods. Nevertheless,
there might be a potential gain in performance by reducing the
number of iterations required, as the number of FEAs reported
to reach convergence varies between the different solution
frameworks tested. However, few test cases are reported and
little comparison to state-of-the art procedures is conducted.

Chandrasekhar and Suresh [2021a] used an ANN to re-
parameterise the density function, and thus in principle making
the density representation independent of the FE-mesh. When
integrating the new structural descriptor into a conventional
solution framework, the weights and biases of the ANN become
the design-variables that are optimised through unsupervised
learning with a loss function corresponding to a weighted
sum of structural compliance and volume-constraint violation.
This is equivalent to conventionally optimising a new design
representation, meaning that the network is not subjected to
any actual learning. Thus, this is an example of using an ANN
without the learning aspect.
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Later, Chandrasekhar and Suresh [2021b] showed how this
framework can be extended to a multi-material TO problem
where the distribution of two or more materials within the
structure is obtained simultaneously with the optimised
topology, and Chandrasekhar and Suresh [2021c] added a
Fourier-series extension to the ANN to impose length-scale
control. In either case, FEA is evaluated on the same FE-mesh,
which in each iteration is constructed by sampling densities
for the needed spatial coordinates using the ANN. As such,
conventional physical analysis on a discretised grid is still
necessary to compute the sensitivities of the objective (in this
case also the loss function) with respect to element densities,
after which the sensitivities with respect to network parameters
can be determined by classical back-propagation. A promising
feature of this application is that because of the analytical
density-field representation, sharper structural boundaries can
be obtained. Currently, however, the structures are projected on
a fixed FE-mesh for analysis which means that the boundary
effectively is blurred. Further, there is a loss of fine features
in the structures obtained by the new solution procedure, and
detail does not appear to increase much with finer meshes.
The results presented in Chandrasekhar and Suresh [2021c]
also indicate that artefacts from the coarse discretisation may
cause non-physical structures in the upscaled results. Moreover,
as >90% of the optimisation time is spent on the FEA, this
approach is unlikely to provide any promising speed-up unless
additional measures are implemented to reduce the efforts
needed to complete this evaluation process.

Deng and To [2020] presented a re-parameterisation approach
similar to that of Chandrasekhar and Suresh [2021a], but with
an increased focus on enabling representation of detailed
3D-geometries. Their method is coined deep representation
learning and several different test-cases illustrate the increased
ability to achieve structures including finer features. A
comparative study to conventional TO is not detailed in the
article, but the results do encourage further exploration of
this method’s capabilities. Additionally, applications related
to post-processing, and more specifically extraction of CAD
models for manufacturability, could potentially benefit from this
approach.

Other similar versions of re-parameterisation applications are
also attempted in the literature. Chen and Shen [2021] perform
online training of a GAN to obtain an optimised structure.
The model is trained to firstly ensure volume-constraint
satisfaction and secondly compliance value minimisation in
an iterative manner. Hoyer et al. [2019] and Zhang et al.
[2021b] altered the approach to directly enforce the constraints
in each iteration, reducing the loss function to compliance
only. Deng and To [2021] replaced the level-set function with
an ANN, Zehnder et al. [2021] combined the method with
a second ANN aimed at predicting displacements to achieve
mesh-free TO, and Greminger [2020] ensured manufacturability
in each iteration by manipulations in the latent space of a
trained GAN. Hayashi and Ohsaki [2020] and Zhu et al. [2021]
performed reparameterisation by reinforcement learning for
truss structure optimisation. As most of these approaches
still perform FE-analysis on the full mesh in each iteration,
reported speed-ups are mainly caused by a reduction in the

number of iterations until convergence. Another common trend
for these works is that the resulting structures have fewer fine
scale features than the corresponding solutions obtained by
conventional TO. One could therefore speculate whether the
reduction in iterations is a result of the re-parameterisation
causing a perceived larger filter radius or coarser mesh.

Most of the works utilising ANNs for reductions in the dimen-
sionality of design representation do not rely on typical learning
techniques, as the network is re-initialised before optimisation
each time. Here the NN architectures are simply used as a repa-
rameterisation of the density field which is then subjected to
a conventional optimisation procedure. An evident challenge
for such approaches is the decreased ability in representing fine
features when using fewer network-defining parameters.

2.2.5 Design-Diversity

Generative design is the process of exploring different design
options satisfying structural performance requirements and
selecting a suitable subset fulfilling various specifications. A
good subset of structures would present visually different good-
quality design candidates, providing the option of selecting the
final design based on other practical or visual demands not
integrated in the optimisation model. Such demands could
be the personal preference of a designer wanting a visually
pleasing structure, which may not be directly quantifiable by
mathematical constraints. To this end, ML-applications for
design-diversity are aimed at maximising the aesthetic variety
of the search space in the exploration phase or at determining
the best subset in the selection phase.

Rawat and Shen [2018], Rawat and Shen [2019a], Shen and
Chen [2019] and Rawat and Shen [2019b] presented a series
of papers considering the same GAN-CNN paired framework.
The GAN is here trained using 3,024 conventionally optimised
structures to generate new unseen structural variations, while
the CNN is trained to predict the volume fraction, penalty
parameter and filter radius corresponding to these new solutions.
The same fixed boundary conditions are considered throughout
the papers, but only the 2D formulation is considered in the
first three while Rawat and Shen [2019b] extend the model
to 3D. The proposed framework provides a way of exploring
the parametric solution space for a single problem requiring
fewer direct optimisations, thus reducing computational time.
In this manner, a larger number of design-options for a structure
can be investigated. The obtained structural results for the
CNN-GAN pairing similarly to the direct design models
exhibit some disconnections and noisy boundaries, motivating
a post processing procedure exploiting different filters to
obtain a smoother design. This post-processing procedure is
utilised throughout all above mentioned papers, and is found
to significantly improve the generated designs, but not com-
pletely remove all occurrences of noise or disconnected features.

Oh et al. [2019] similarly integrated a GAN in the exploration
process to more efficiently generate new and different designs
by replacing some of the topology optimisation runs needed.
The network is trained to generate viable wheel designs that
appear different from some given reference structure, such that
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it can expand the set of diverse designs more quickly. Sun and
Ma [2020] and Jang et al. [2022] proposed alternative processes
for exploration in generative design utilising reinforcement
learning to maximise the design diversity. Sun and Ma
[2020] employed different exploration tactics to alter the
search trajectory of density-based TO methods by integrating
reinforcement learning in the TO-process. Jang et al. [2022]
combined reinforcement learning for parameter selection with
GAN, similarly to Oh et al. [2019], for faster generation of new
designs. Yoo et al. [2021] expanded on the generative model
from Oh et al. [2019] where ANNs are also applied for both
upscaling the 2D design to a 3D CAD design and prediction of
physical performance.

A natural extension to design diversity is to consider multi-
objective optimisation problems, where the exploration and
selection relates to the determination or selection of a variety
of options from the Pareto-front. Sato et al. [2019] utilised
clustering and association rule analysis for selection of a
beneficial subset of structures. The fundamental idea is to
train a machine learning model to recognise determining
similarities and differences between structural composition and
performance, such that comparable designs can be grouped
together. The selection of a limited subset which contains
designs spanning a wide variety of structural options can then
be obtained by sampling from each of the obtained groups.

ANNs for design diversity appear to have value in creating
visually different designs. Much like for the direct design appli-
cations, the structural integrity of the newly generated designs
cannot necessarily be trusted, and thus post-processing would
be advised before the final design selection.

2.2.6 Other applications and physics

There is a wide variety of different NN-applications in the
literature, and not all structural TO frameworks were deemed
to fit within the frames of the presented categorisation. Some
of these are, however, still worth mentioning as they con-
tribute to a more complete picture of the current state of the field.

Even before the real emergence of ML-assisted TO as its own
field, a few preliminary works considered using NN-like models
to support size and shape optimisation. Adeli and Park [1995a],
Park and Adeli [1995] and Adeli and Park [1995b] presented
one of the earliest works utilising NN-models for structural
optimisation. A neural dynamics model was presented, corre-
sponding to an ANN with one variable layer and one constraint
layer, meaning that the network size is related to number of
design variables and constraints in the optimisation problem.
Papadrakakis et al. [1998] and Papadrakakis and Lagaros [2002]
later proposed a NN to replace the structural analysis within
an optimisation framework based on Evolution Strategies (ES),
obtaining a non-gradient optimisation procedure. The approach
proved to provide significant speed-up compared to a “standard”
ES optimisation algorithm, a family of methods later judged
insufficient (Sigmund 2011). Luo et al. [2020] proposed another
non-gradient TO framework, the Kriging-based MFSE method,
utilising Gaussian process regression to build a surrogate model
and a material-field series expansion representation of the

structural design. Results indicated that a much larger number
of FE-evaluations are needed to obtain convergence compared
to gradient-based TO methods.

Lynch et al. [2019] and Jiang et al. [2020] proposed ML-
strategies to aid in tuning of parameters used in TO by SIMP
and MMC to limit the number of re-optimisations needed
when uncertainties in the appropriate choice of optimisation
parameters is present. Perry et al. [2020] tested different
clustering and sampling approaches used for subset-selection
within a visualisation framework aimed at illustrating the
solution space for TO problems and the relationship between
changes in boundary conditions and optimal solutions. Nie et al.
[2020b] presented a CNN to predict stress-field distribution of
a cantilever structure with external loads applied to the free
end of varying magnitude and orientation and a selection of
domain shapes (rectangular, trapezoid and holes). The isotropic
material properties, mesh discretisation and supports were
considered fixed. 100,000 instances were used for training, each
requiring FEA to obtain the target values. As the test cases
presented were sampled from the same restricted problem space
as the training data, no efforts were exhibited to ensure clear
distinction between training and test data. This means that
accuracy in the obtained predictions does not necessarily prove
the model has learned anything.

Li et al. [2021] presented a GAN utilising online training
to replace stochastic alternatives in failure sampling during
subset simulation for optimisation of periodic structures. Yim
et al. [2021] proposed an ANN for predicting topology and
end-effector location of a planar linkage mechanism given
the path description. Barmada et al. [2021] utilised a VAE to
predict magnetic field distribution of a die press to accelerate
optimisation of a die press with an electromagnet for orientation
of magnetic powder. Bonfanti et al. [2020] proposed a CNN for
predicting the deformation properties of an image of mechanical
actuators within a Monte Carlo/simulated annealing strategy
for optimisation. As such, this approach is effectively an
acceleration framework, but due to the image-related nature
of the approach and the large number of training samples,
nearly one million structural images, many of the same
arguments against claims of improved performance compared
to conventional TO methods as for direct design approaches,
like e.g. Bielecki et al. [2021], can be made.

NN approaches have also become popular and largely adopted
by researchers outside the structural optimisation field. Probably,
due to the lack of knowledge or insight into TO, partly due
to simple access to NN and GA schemes and partly due to
reviewers that are not aware of TO advances, there is a rapidly
growing trend for such papers in physics oriented journals.
Examples are Abueidda et al. [2019], Chen and Gu [2020], Gu
et al. [2018], Kim et al. [2021a], that solve typical linear TO
problems on coarse grids for crack-propagation and Jiang and
Fan [2019], Jiang et al. [2021], that solve nano-photonic grating
problems.

Abueidda et al. [2019] and Gu et al. [2018] trained a CNN to
predict the mechanical properties of a two-phase (soft or stiff ma-
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terial) chequerboard composite material to replace the need for
FEA within a GA optimisation framework. Kim et al. [2021a]
proposed an extended framework incorporating active learning
such that the predictor can adapt to the specific problem con-
sidered, during optimisation. The additional data samples used
in this iterative transfer learning are obtained by validating the
selected solution pool, obtained by convergence of GA using the
DNN for function evaluations, by FEA. The true target values
for these, ideally well-performing, composites are then known
and can thus be used to fine-tune the DNN before the next GA
run.
Chen and Gu [2020] proposed a general-purpose inverse de-
sign approach utilising a predictor-designer DNN-pairing. The
predictor is trained to approximate a physics-based model or
complex function and the designer utilises this learned mapping
to perform optimisation of some specified desired properties. An
integrated feedback-loop allows for continued improvement of
the predictor as a response to the output from the designer. Max-
imisation of toughness in a 2-phase composite material subjected
to individual base material volume constraints was presented as
a case study of the presented framework. A fixed discretisation
of 16x16 elements is considered, and for three different volume
fractions one million composite designs are sampled and their
toughness evaluated by FEA to form the dataset. 800,000 of
the samples for each volume fraction are used for training and
200,000 for testing. From the active learning from the feedback
loop mechanism, new training and test samples of higher value
toughness are evaluated by FEA and added to the dataset during
optimisation.

Inverse homogenisation and composites Inverse homogeni-
sation (Sigmund 1994) and design of metamaterials is another
rapidly growing application area of AI in TO – not only in
structural applications but also e.g. in optics and nano-photonics
(Jiang and Fan 2019, Jiang et al. 2021). A feature of inverse
homogenisation and meta material design problems that
may make them better suited for AI approaches compared
to structural problems is the limited number and position
independent nature of load cases for such problems. Typically,
in order to e.g. determine effective mechanical properties of a
periodic material, just three load cases are needed in 2D and six
in 3D, which in each case are independent of the design and
geometry of the unit cells. Hence, the need for training data is
significantly reduced. At the same time, however, variability in
the outcome is also significantly reduced raising the question
of whether an AI-approach is even needed for such problems.
For example, there is no need for complex training if the
goal is to provide stiffest possible microstructures for given
macroscopic stress fields. In this case, analytically optimal
multi-scale microstructures, rank-N laminates, are known and
can be converted to simpler single-scale microstructures with
little effort and loss as described in e.g. Träff et al. [2019].

Similarly to direct design AI-applications for structural TO,
Kollmann et al. [2020] trained a CNN to achieve iteration-free
TO by predicting the optimal material layout directly from
given problem-defining parameters for grey scale microstructure
design problems. Wang et al. [2020] developed a VAE-ANN
pairing to transform the inverse design problem for unit cell
solid-void microstructures to sequences of simple vector

operations in the latent space. The VAE is for this purpose
trained to achieve a smooth latent space capable of representing
geometric information about different microstructures. Sui
et al. [2021] employed reinforcement learning to automate the
design process of digital materials and Garland et al. [2021]
used a CNN to predict properties of solid-void lattice materi-
als, both to be incorporated within non-gradient GA frameworks.

As the microscale design problem offers reduced design
freedom compared to structural TO, utilising a large number of
training samples to train a direct design-like ML-application
increases the likelihood of training and test-data overlap.
Therefore, the measured performance of such ANN-frameworks
may be questioned. The ability to extract geometrical families
as in Wang et al. [2020] is, however, a beneficial trait of the
presented approach. The works utilising ANNs to remove the
need for FEA within a GA framework claim success based on
the NN’s ability to outperform conventional GA for problems
with very few design variables, ignoring the large number of
training samples used and the computational effort this entails.
Utilising several thousands of samples to train a NN to speed up
the optimisation of a 7x7 element mesh by claiming negligible
training time gives a disproportionate representation of actual
gain as a large part of the full solution space will be covered
already in the training set. As such, the presented results do not
actually prove the claimed viability of such GA frameworks.
Further, these observations tie into how these works are found
to suffer from similar issues to those discussed for other direct
design approaches.

Guo et al. [2021] presents a more comprehensive overview of
how ML has been applied within the field of material design in
general. These developments are covered with great optimism,
but the authors also highlight the common treatment of ML-
models as black-box solvers for complex problems. Related to
this, the review also observes that treating material design as
image-to-image mappings, similar to the direct design applica-
tions for structural TO in the previous section, is widespread
within this field.

Multiscale TO Multiscale TO (MSTO) is the approach
of obtaining both the optimal structural topology on the
macro-level as well as the local microstructure material layout
(Wu et al. 2021). In fact, this was the approach used in the
original works on topology optimisation by Bendsøe and
Kikuchi [1988] and Bendsøe [1989]. In Bendsøe and Kikuchi
[1988], effective properties of near-optimal rectangular hole
microstructures were precomputed and interpolated, whereas
they were computed analytically for optimal so-called rank-n
microstructures in Bendsøe [1989]. Recently, several works
have used AI to learn the effective properties of various
micro-architectures, effectively replacing the interpolations or
analytical expressions from the original works (Kim et al. 2021b,
White et al. 2019, Yilin et al. 2021, Zheng et al. 2021c, Wang
et al. 2022, Elingaard et al. 2022, Chandrasekhar and Suresh
2021b, Chan et al. 2021, Wang et al. 2021d). With such off-line
computations, either analytical, interpolated or learned, very
efficient MSTO algorithms can be constructed. The challenge
of ensuring connectivity between local microstructures is
taken care of by imposition of periodicity, which results in
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simple geometries but possibly deteriorated performance (Wu
et al. 2021), by mapping techniques (Kim et al. 2021b, Chan
et al. 2021, Wang et al. 2021d) or by special microstructure
parameterisations that by construction satisfy connectivity
(Zheng et al. 2021c, Wang et al. 2022, White et al. 2019, Yilin
et al. 2021), but do not necessarily meet the theoretical bounds.

Kim et al. [2021b] and Chan et al. [2021] utilised an ANN to
model material properties for functionally graded composite
structures. White et al. [2019] utilised an ANN to model
the elastic response of the microscale material within a
gradient-based MSTO framework where the parameters
describing the local microstructures were used as design
variables. Yilin et al. [2021] similarly proposed a CNN for
predicting the effective elasticity tensor and its gradients for
voxel-based non-parametric microstuctures, and Zheng et al.
[2021c] for spinodiod microstructures. Wang et al. [2022]
proposed a data-driven TO approach to multiscale cellular
design for natural frequency optimisation including multiple
choices for microstructure classes. By defining a finite set of
different material choices, Chandrasekhar and Suresh [2021b]
integrated a multi-material blending scheme in the previous
ANN reparameterisation approach for TO (Chandrasekhar
and Suresh 2021a). Da et al. [2022] used an ML-inspired
sampling procedure to construct a database of microstructure
unit cells integrated in an approach to produce connected
microstructures for indirect control of fracture resistance. Wang
et al. [2021d] trained an ANN as a surrogate for modelling the
geometry-property relation for parameterised microstructures
to avoid homogenisation analysis during optimisation, while
Elingaard et al. [2022] utilised a CNN as a surrogate for
conventional de-homogenisation procedures.

The idea of using AI approaches to provide effective properties
for multiscale approaches seems promising, especially for more
complex non-linear problems where CPU-heavy path-dependent
microstructure simulations would render a full multi-scale ap-
proach extremely expensive. Here, a costly off-line training at
the microstructure level will be compensated in the form of much
more efficient overall modelling and optimisation procedures.

3 Assessments

An overview of the works implementing AI-methods for use
in TO was given in Section 2. Within each of the presented
application-categories several challenges and disadvantages
were identified and discussed. This section will elaborate on
some of these issues. First the importance and requirements
for computational costs and generality of method applicability
will be discussed followed by an assessment of the quality of
solutions obtained and presented in the literature.

3.1 Computational cost and applicability

Disregarding the quality of obtained solutions, this section
will focus on the overall merit of the different approaches in
terms of the generalisation ability and associated computational
costs. The motivation behind this focus is that the range of
problems for which a model is applicable and the computational
effort associated with generating training samples, running

the learning algorithm and applying the proposed procedure
to obtain a solution are factors strongly influencing the actual
usefulness of the suggested framework. If a solution method
is computationally expensive to prepare and tune and can only
be applied to very specific problem cases, as seen for most
of the direct design applications, it is not likely to provide
any benefits regardless of the solution quality. Whether the
structural results are promising should only be a determining
factor in the evaluation of a method that offers a sufficient
balance of speed-up and generality.

The computational cost of a method is not only related to
the actual solution time, but time spent on collecting data
and training might also have a significant impact as the
computational cost of a conventional iterative TO solution
procedure is typically what AI-technology is aimed at reducing.
For instance, Nakamura and Suzuki [2020] sampled 333,000
TO optimised structures as training and validation data. This
means that their resulting direct design model should be
applied at least 333,001 times to similarly sized problems
for any actual speed-up to be gained. Due to the need for
target samples, examples of good quality solution structures
to different problems, this holds true for any direct design
model developed utilising a (semi-)supervised training approach.

If the range of problems the trained model is able to handle
is extensive, an expensive training process becomes less
concerning, but should still be a factor. Given a very large
dataset, even a naive ML-model may perform well on a range
of new problems. Consider a model which simply finds the
example from the training data which is the most similar to the
new problem, and returns this example’s corresponding solution.
In this case, the larger and more diverse the database known
by the model, the better it will perform for most test cases.
However, if a new problem has a significantly different optimal
solution than any of the training samples, a new data sample
similar to the new problem must be obtained by optimisation
and added to the model’s database before it is able to solve the
problem. Thus, the model is not able to learn such that it can
predict anything new. Indications of this behaviour could be
seen for the direct design model for fixed supports proposed by
Yan et al. [2022], where the predicted results for the test-cases
resemble those optimised by SIMP in overall composition, but
some of the predicted solutions to test instances were missing
material where the load was applied. This could indicate that
the test case corresponded to a small shift in load locations
compared to one of the training instances, resulting in an
infeasible solution, and implying that the model had not learned
the significance of applied load positions.

Considering the different application categories the threshold
for achieving actual speed-up can be reduced in that the
data needed is of a different, easier-to-obtain, nature or
by increasing the degree of unsupervised learning when
training the model. There are, however, still some non-direct
design approaches that require computationally expensive
training. Lin et al. [2018] and Sosnovik and Oseledets [2017]
utilised a direct design-like model to directly map from an
intermediate structure obtained by SIMP to a converged
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structure. Thus the proposed approaches also require training
data consisting of a large number of conventionally optimised
structures, and with the added computational cost of performing
SIMP iterations to reach the intermediate designs for new
problems, not much is gained in terms of solution time speed-up.

Keshavarzzadeh et al. [2021b] suggested an approximate way
of computing the breakeven threshold for how many problems
and AI-based solution framework must be applied before any
actual gain in speed-up is obtained. This measure is obtained
based on the computational cost in terms of FEAs needed for
both obtaining the training data and executing the proposed
procedure. It is not an exact representation of the computational
costs as the use of optimisation algorithms in both the training
of the network and the completion of the procedure may infer
additional notable costs. Further, the computational cost of
FE-analysis is computed as an approximative function of the
number of elements in the FE-grid. The considered formula
does, however, allow for comparing several different approaches
and problem sizes in a relatively fair manner.

Let τ ∈ N+ denote the desired breakeven threshold (i.e. the
number of optimisations that must be performed before the
considered method outperforms conventional TO methods) and
Ctrain the computational cost of training. Given the computa-
tional cost of solving a problem over an FE-mesh of N ∈ N+

elements using both SIMP, CS IMP(N), and the proposed frame-
work, CAI(N), the threshold τ can be computed as in equation
(1).

τ =
Ctrain

CS IMP(N) −CAI(N)
(1)

For the direct design models reviewed in this paper, the
breakeven threshold is commonly equal to the number of
training samples used. This is because the mesh size N is
approximately (or exactly) the same for the training samples and
the problem formulations for which the model is applied and, as
FEA is not needed to execute the suggested AI-framework, one
obtains CAI(N)=0. This mesh dependency is not represented in
the given threshold computation, but is still a significant factor
in terms of determining whether a proposed solution framework
will be a reasonable alternative to conventional methods. If, for
instance, a method that has a medium-level breakeven threshold,
is restricted in terms of mesh size and dimensions and is focused
on a limited set of boundary and load conditions, the perceived
breakeven threshold might actually be much higher. This is
because with limited applicability, there might not exist more
than τ relevant problem cases that one could ever wish to solve.

Such considerations relate to the generalisation ability of a
method. Judging the exact generalisation ability of a method
can be challenging, but the aim should be to develop solution
procedures that are as close to universal in terms of problem
definition as well as mesh dimensions and resolutions as
possible. Ideally the method should at the least be applicable
to different sets of loads, boundary conditions length-scales
etc. within the current problem setting. Further, it would be
beneficial if the model is easily extendable to different objective
functions and constraints as well.

Fewer limitations of model applicability imply greater gener-
alisation ability. However, it is not necessarily expected that
a useful application offers a universal solution approach to
any problem. This is likely neither realistically achievable
nor a quality found in conventional methods. The traditional
TO methods are inexact in nature, relying on many different
parameter settings, filters and search algorithms. One chosen
combination of these is not likely to achieve universality and
successfully solve any imaginable problem formulation. It
is however possible to fit most problem formulations to the
required “inputs” for conventional methods, and in many cases
one can achieve satisfactory results with little parameter tuning.
It is therefore fair to expect that e.g. a change of physics or
constraints require retraining. However, for the purpose of pure
compliance optimisation, one should assume that a single model
setting is realisable. Generalisation ability can therefore relate
to both the direct applicability of a method and its transferability.
Transferability refers to how easily the model can adapt to
new problems by changing parameters or network architecture,
while still achieving good results.

To present an idea of how computational cost and generalisation
ability compare for some of the key concepts presented in the
literature, the breakeven threshold (1) from Keshavarzzadeh
et al. [2021b] is first adapted to approximate computational
costs for a greater variety of applications.
For computing the breakeven threshold an estimation of compu-
tational cost associated with performing one FEA for a problem
meshed using N elements is defined by CFE(N) = N2. This is
based on the computational order of O(bw2m) associated with
solving a linear sparse system with a m × m coefficient matrix
and bandwidth bw. Assuming that for a 2D linear elasticity
FE-problem discretised using 4-noded rectangular elements with
equal number of elements in the x- and y-direction, nx = ny, the
number of equations is given m = 2(nx + 1)(ny + 1) = 2(nx + 1)2.
Further, the best case node-numbering of such a mesh achieves
a bandwidth of bw = nx + 1, and the number of overall elements
N is given N = n2

x. Thus, the process of solving this system is
of computational complexity O(bw2m) = O((nx + 1)4) = O(N2),
which is used directly as the estimate for completing one FEA.

Let N denote the set of considered mesh resolutions, smethod
N the

number of samples at mesh size N ∈ N needed by the method
and tmethod

N the average number of FEAs the method uses to
obtain a sample at mesh size N. Based on these definitions the
computational cost of a method can be computed by (2).

Cmethod(N) =
∑
N∈N

smethod
N ·CFE(N) · tmethod

N (2)

The computational cost of obtaining the training dataset can
thus be computed given the different mesh sizes considered,
the needed number of samples for each mesh size and the
cost of obtaining a sample at each mesh size. Ctrain is as such
the sum of the computational cost associated with obtaining
each training sample, while CS IMP(N) is the cost of the
average number of FEAs needed by SIMP to solve a given test
problem of size N. CAI(N) depends on the specific framework
considered. For direct design models this cost is zero, for
post-processing upscaling methods this cost usually corresponds
to CS IMP(αN) where α < 1, while within the acceleration
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Table 3: Components of method generalisation ability described in levels of achievements. Depending on model applicability
for different BCs, mesh dimensions and loading conditions the levels are used as indicators for computing an overall generality
score. The last category is related to how similar the training and test problems presented are. The last row indicates the weight
prescribed to each category when computing the total score which is the weighted sum of the levels across the four categories,
resulting in a generality scale ranging from 0 to 36. Note that computing the generality score for a given method does involve
subjective assessment. Therefore, this score is not intended as a precise way to compare two specific methods. Rather, the aim is to
provide a measure of how application categories compare and provide an illustration of overarching trends.

Category/
Level Supports Mesh Loads Test≈Train

0 fixed small fixed single-point restricted sampled from the same
limited pool

1 few (2-3 or very similar) larger fixed single-point many options small difference (i.e.
changing supports
marginally resulting in
small visual difference)

2 some (multiple options,
but still similar problems)

limited variation possible
(i.e. 2-3 choices for
different aspect-ratios or
resolutions)

multiple limited (i.e. ≤10
loads or placements
restricted domain
boundary)

some difference (i.e.
definite difference
aspect-ratios or loads)

3 many (a set of clearly
different options)

many (some flexibility
both in terms of shape
and resolution)

multiple many (either no
upper bound on no. loads
or no restriction on
placements)

medium difference (i.e.
ensured difference loads
and BCs)

4 any (method appears
applicable to any set of
reasonable support
options)

any (complete
mesh-independence)

any (no restrictions apply) significant difference
(BCs, loads, mesh-shape
and resolution different)

Weight 3 2 3 1

category this computation varies considerably between the
individual applications. As this measure is still approximative it
is not the exact threshold value that should be of interest, but
the order of magnitude which is believed to be appropriate even
with different estimations for CFE(N).

For quantifying the generalisation ability of the applications no
corresponding measure is available. Therefore a set of criteria
are developed to manually judge the perceived generalisation
ability of an application based on method description and
presented results. These criteria are listed in Table 3, and relate
more to the range of possible problem applications than the
actual performance in terms of solution qualities. Poor results,
in terms of structural disconnections or difficulty adhering
to the constraints, do in practice have an influence on the
generalisation ability, as the models should be able to feasibly
solve the intended test problems. However, to limit the level of
subjectivity in the generalisation score, this is not accounted for.

The generalisation ability for a method is calculated as a
weighted sum of the levels across the four categories in Table
3, and is as such subjectively judged on a scale from 0 to 36.
From the given weights, the main determining factors are mesh
dependency and the variety of viable problem definitions the
application can handle (category 1-3). As such, a solution
framework is appointed a low generalisation ability if it is

developed for a fixed FE-mesh with training and test problem
instances limited by fixed boundary conditions, while a high
score is allotted if there is no mesh dependency and the
application is believed to work for any reasonable boundary
conditions. The fourth category relates to the similarity between
the training and test data-sets, as to penalise instances where no
direct effort is put towards making these clearly distinguishable.
Generally, this is a very important factor for any ML model,
as overlaps between test and training data are likely to lead to
inflated performance measures, overestimating the capabilities
of the model. This factor is still given a lower weight in this
specific assessment, related to the choice of differentiating more
between generality and solution quality. The overall purpose
of this quantification of generalisation ability is not to serve
as an absolute and true instrument for evaluating AI-based
solution methods in TO, but rather as a measure for illustrating
the current state of the field and how the application categories
compare.

Fig. 5 illustrates the breakeven threshold compared to the
perceived generalisation ability for a selection of methods in
the literature reviewed. It is noted that only literature providing
sufficient information to estimate the computational cost is
considered. Further, only methods that are directly comparable
to conventional iterative solution methods like SIMP are
included. Therefore the presented applications belong to the
direct design, acceleration or upscaling categories, which is
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Figure 5: Comparing, for different methods in the reviewed literature, the perceived generalisation ability along the x-axis to when
speed-up is achieved, by the breakeven threshold τ, along the y-axis. The datapoints are coloured based on the application category
to which they belong.

illustrated by the different marker colours. The dual-coloured
scatter points indicate that the associated solution framework
is a hybrid between the two corresponding categories. For
instance, Li et al. [2019] used a direct design model to directly
predict an optimised low-resolution structure before applying
upscaling to achieve the final desired structural layout. Chi
et al. [2021] and Kallioras and Lagaros [2021] both utilised
upscaling as an integrated part of the acceleration-based iterative
procedures proposed.

As both presented measures, breakeven threshold and gen-
eralisation ability, are approximative, the datapoints are in
general not explicitly linked to the corresponding works in the
presented figure. It is however evident that solution methods
belonging to the direct design category perform worse than the
other alternatives as seen by their high breakeven thresholds
and low generalisation abilities. The best scoring direct design
model (Zheng et al. 2021b) is given a higher generality score
than the other similar approaches due to the incorporation
of zero-padded buffers in the network input format to allow
for different mesh dimensions and resolutions. However,
due to the only guaranteed difference between training and
test data being the mesh size and the limited sample space
for problem characteristics, it is still seen as having a low
generalisation ability. The lower breakeven threshold is
obtained by considering overall finer mesh discretisation for
the test problems than for the training problems. Even though
7,500 optimised structures are used for training, the breakeven
threshold is approximated to be lower than 1,000.

For the acceleration and upscaling categories the performances
are more varied across the different approaches, where worst
case is similar to the poorest of the direct design models while
best case approaches a negligible breakeven threshold and
high generalisation score. Two acceleration-based methods are
given the lowest generality score, both due to the restricted
problem spaces considered. The first (Lin et al. 2018) restricts
the problem to a small, fixed mesh, 2D thermal conduction
problem where only the volume fraction, heat source and sink
are varied. One of the two highest breakeven thresholds for the
considered acceleration-methods is also reported for this model,
linked to the use of SIMP paired with a direct design-like model
mapping an intermediate solution to a final design. The second
(Qian and Ye 2021) has a significantly lower threshold because
ANNs are used for objective and sensitivity predictions within
a conventional SIMP framework, such that fully optimised
designs are not needed for training. In terms of generality, the
model is, however, trained and tested considering a set of fixed
boundary conditions with different single-point loads, resulting
in a poor performance.

The overall best scoring work is that of Chi et al. [2021] which
has a breakeven threshold close to zero and is given a generality
score of 36. As the method is based on a concept of online
learning integrated in a two-scale optimisation procedure no
cost is associated with pre-training of the model and the overall
computational cost to achieve an optimised structure is lower
than that of conventional methods, and thus a speed-up is
achieved regardless of how many times the model is used. This
approach is also what makes the degree of generality so high,
as the network input and output format can be adapted to each
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individual problem.

There are some promising works that exhibit great generalisa-
tion abilities but are not included in the evaluation in Fig. 5 due
to deficiencies in reported computational costs. This holds true
for most of the reduction-category frameworks. The relevant
works apply an ANN for reparameterising the geometric repre-
sentation and optimise a given topology through online training
of the network. This means that the network model in itself is
independent of the boundary conditions, but adapts to the given
problem during optimisation similarly to a conventional TO pro-
cess. As such, there is little to no computational cost associated
with offline data collection and network training, contributing
to a lower breakeven threshold. Further, the generality of these
frameworks is expected to be high in terms of solving different
problem formulations. Zhang et al. [2021b] exemplified this
by applying their proposed method to minimum compliance
problems (both with and without stress constraints), compliant
mechanism design and a 2D heat conduction problem. An ex-
tended framework for nonlinear elasticity was also proposed
and tested. The complications with assessing such reduction
methods arise from the fact that FEA is still needed for the full
mesh in each iteration, as it is required for evaluating the loss
function of the ANN. As FEA is the most expensive operation
in conventional topology optimisation (and used here for ap-
proximately measuring speed-up), the gain in computational
efficiency of such methods rely on a reduction in the number
of iterations needed to reach convergence. Such behaviour is
observed for some selected comparisons to SIMP reported in
the literature, but no extensive analysis allows for conclusive
judgement.

3.2 Solution quality

After having assessed the merit of the different solution
frameworks in terms of generalisation ability and computational
cost as in Section 3.1 evaluation of solution quality in terms of
structural performance should be included as a third dimension
for judging overall performance. Overall it is deemed that any
model with higher breakeven threshold and lower generalisation
ability should be disregarded regardless of solution quality.
However, as most of the works represented by data-points
located in the top left of Fig. 5 describe direct design models, it
is worth noting the problematic solution qualities discussed in
Section 2.1 and the common occurrence of disconnections as in
Fig. 4.

For the remaining works, for which the combination of generali-
sation ability and breakeven threshold is considered reasonable,
the solution quality and speed-up are the integral measures
of quality. Speed-up here refers to the actual solution time,
and thus, provided a trained model and solution framework,
the reduction in computational cost of solving a problem
compared to conventional state-of-the-art methods. Therefore,
it would be desirable to evaluate methods in a similar manner as
in Fig. 1, but now for mechanical performance and solution time.

It is found that a majority of the papers do not present
performance metrics allowing for fair quantifiable comparison
of results. There are several different reason for the presented

results not being suitable for assessment. Firstly, there is
a tendency to only present the mean value of the selected
performance metrics for the test instances, or to only present
the results for a few illustrative problems from the test set.
Such formats for reporting results may not be representative
of the full distribution of performance across the entire set,
potentially hiding outliers for which very poor performance
is observed. Secondly, the overlap between the training and
test sets may be large, by i.e. randomly sampling from the
same restricted pool of problem combinations, which is likely
to overestimate the performance and not be representative if
different problem characteristics are considered. Thirdly, the
choice of performance measures are often related to pixel-wise
density errors only, neglecting to evaluate the actual structural
properties of the obtained structure. Lastly, the comparison
to conventionally obtained benchmarks is not done in a fair
manner. Many works compare the obtained results, in terms of
relevant measures such as structural compliance, to grey scale
structures obtained by SIMP using a large filter radius. It was
shown in Fig. 4 how compliance is reduced significantly when
the structure is thresholded to a solid-void design. Further, a
large filter radius means that the structure will contain fewer fine
features, which may influence the structural performance of the
resulting design negatively2. Also, as several of the proposed
frameworks do not contain mechanisms for directly enforcing
the volume constraint, this is also an important property, as
more material results in lower compliance. Inspired by these
challenges, and to allow for future fair comparisons of quality,
recommendations for how to test the model will be given in
Section 5.2.

Many applications within the upscaling and acceleration
categories exhibit similar problems in terms of the solution
quality assessment, based on the reported experimental results.
Firstly, very few coarse grid cases are considered for testing, and
in some cases they are very similar to training. Secondly, the
reported results tend to focus on average elementwise-density
errors which means that quantitative assessments of actual
structural performances and expected worst case behaviour are
prohibited. Generally, illustrations of the obtained structures, for
selected test-instances, using both conventional and AI-based
methods do, however, show a high degree of grey scale and
tendencies for disconnections. The frameworks including
features of upscaling tend to yield blurry boundaries resulting
in structures without the fine features of those obtained by
conventional methods, due to length-scale restrictions provided
by the coarse mesh. Xue et al. [2021] showed the only
noticeable occurrence of the AI-based method obtaining a
structure with finer features than those obtained by SIMP.
These structures also exhibited lower compliances than the
corresponding benchmarks, but as the benchmarks were
obtained by enforcing a large filter radius, it is unclear whether
the results are better than what can be obtained by SIMP overall.

The reduction category applications are typically tested on a
wider range of problems and mesh discretisations, but the results
presented tend to lack transparency as for the above-mentioned

2Sigmund and Maute [2013] included a few lines of Matlab code to
perform a volume-preserving threshold.
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methods. A clear benefit is that the obtained structures appear to
have a smoother and sharper structural representation than the
presented solutions within the other highlighted categories. As
regular FEA is used to extract the structural geometry for analy-
sis, this feature is, however, not utilised in a beneficial manner.
What is also prominent is the loss of finer features, compared
to conventionally obtained solutions to the identical problems.
This loss in detail could, in some cases, be a consequence of the
reduced geometric representation not being able to describe the
more complex features. A reason for fewer iterations needed
in these reduction-based procedures could therefore be related
to the size of the feasible solution space. Optimised structures
illustrated in Deng and To [2021] do indicate that capturing
the finer features is achievable with a larger number of hidden
layers. Zhang et al. [2021b] argued that the thicker structure
with fewer holes is an advantage of their proposed method as
these properties make the structure easier to manufacture. Here
it is relevant to note that one easily can reduce the fine features
resulting from SIMP by increasing the filter radius or lowering
the mesh resolution, and that several strategies for achieving
length-scale control and manufacturability have been reviewed
in Lazarov et al. [2016]. In fact, for the MBB-beam example
presented in Zhang et al. [2021b] a similar structure with a lower
compliance can be achieved by considering a coarser mesh when
applying SIMP for optimisation (Fig. 6(a)), and then upscaling
the optimised structure using the imresize image-scaling pro-
cedure in Matlab with bicubic interpolation, before applying a
volume preserving threshold to obtain a 0-1 design (Fig. 6(b)).
The corresponding Matlab-code for performing this sequence
of operations is found in Appendix A. Doing so decreases both
the computational cost of FEA in each iteration, as well as the
number of iterations needed (Fig. 6).

(a) Optimised MBB-beam on a 60x20 FE-mesh w. volume fraction 0.5
and filter radius 2.0 (Compliance 209.1529).

(b) Upscaled and projected MBB-beam to a 120x40 FE-mesh w. com-
pliance 191.1536 (compared to 191.2364 in Zhang et al. [2021b]).

Figure 6: A solution to the MBB test case from Zhang et al.
[2021b] obtained by optimising on a coarser grid (a), resizing
the image using Matlab built-in function with bicubic interpola-
tion followed by volume perserving thresholding (Sigmund and
Maute 2013) to obtain higher resolution solid-void structure (b).

4 AI limitations

State-of-the art ANNs have achieved a level of pattern-
recognition abilities exceeding human abilities. This
development has been made possible by the availability
of massive sets of labelled data and increased computing
power. High-level ANNs contain tens or hundreds of hidden
layers and are trained utilising high-performance GPUs and
hundred of thousands to millions of data samples. For instance,
AlexNet, the first ANN to adopt an architecture consisting
of consecutive convolutional layers and a leading model for
object-detection, was trained on 1.2 million labelled data
samples and has obtained the ability to recognise 1,000 different
objects (Krizhevsky et al. 2017). An ANN learns directly
from the provided data with limited human influence on
what it learns. These models are powerful tools because they
allow for a complexity enabling pattern recognition that is
not explicitly defined by human understanding. Successful
application of these models do, however, often rely on carefully
curated data, and the measured accuracy of an ANN is typically
measured using standard benchmark datasets. The measured
accuracy depends greatly on the nature of the chosen test data,
where greater similarities to the training data implies a higher
measured accuracy (Goodfellow et al. 2018).

The current leading deep learning technology is fundamentally
brittle, as it breaks in unpredictable ways when exposed to
unfamiliar domains (Heaven 2019). A small perturbation or
added noise to input samples may lead to incorrect predictions
with high confidence and the same input is able to break a
wide variety of model architectures trained on different datasets
(Kurakin et al. 2016). Such failures are strongly related to
ANNs not actually understanding the world or comprising any
knowledge of salient features, which are core factors in human
recognition. ML models are traditionally developed under the
assumption that the environment it is operating within is benign
both during training and validation and that the sample-space
distribution is the same as for the training data in any future
tests. There exists measures for increasing the robustness of
ANNs in form of data augmentation (Goodfellow et al. 2016)
or adversarial examples (Kurakin et al. 2016), but increasing
robustness against one type of error could weaken the model
against others. It is commonly believed that augmentations to
the current model-framework providing additional reasoning
abilities could aid in overcoming this brittleness (Heaven 2019).

When utilising these frameworks to solve different tasks it
is therefore important to be realistic about what the possible
capabilities of any ML-model are. Many of the articles included
in this review appear to overestimate the abilities of current
ML-technology, ignoring that these models simply are complex
versions of regression and classification and treating them as
some black-box “magic” solver able to handle any complex task.

The direct design approaches are often based on generative
methods (e.g. GANs or VAEs). The assumption of such methods
is that the output should belong to a specific distribution, and
generative methods aim at generating outputs (for instance a
2D or 3D image) that belong to such a distribution. In practice,
generative methods, and most CNN-type networks, often learn
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a mapping from a latent space of much smaller dimension to
the output image. It might seem reasonable to assume that one
could simply interpret (or map) the boundary conditions for
a TO problem as (or to) a point in the latent space which is
subsequently mapped directly to a mechanical structure using a
mapping that is learnt from examples. Given sufficient examples,
one might expect this to work. Unfortunately, there are good
reasons to believe that such strategies will always fail. The
main reason is that relatively small changes to the boundary
conditions can lead to a very different solution being optimal.
Thus, any learning based approach would face the challenge
that a small perturbation of the boundary conditions could lead
to a big change in the optimal structure. Unless the types of
problems that can be solved with a hypothetical direct design
approach based on a generative method, are strictly limited, it is
clear that an unbounded number of examples could be necessary
to learn all the discontinuities in the mapping from latent space
to mechanical structure. An example of this is illustrated in Fig.
7, where the problem described in Fig. 7(a) is optimised for
two single-point load cases. The first case describes a vertically
applied load, and the obtained structure is given in Fig. 7(b).
For the second case the applied load is applied at a slight angle
and the optimised structure is now given in Fig. 7(c).
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(a) Load magnitude |F|=1, volume fraction of
0.3, 64x64 elements, filter radius 2.0

(b) θ=0

(c) θ=0.01

Figure 7: Test-case illustrating the potentially significant effect
small changes in boundary conditions can have on the opti-
mal material layout. The boundary conditions (a) with corre-
sponding optimised 0-1 designs for (b): Fx=0, Fy=1 and (c):
Fx=0.0099998, Fy=0.99995.

The difference between the optimised structure of the first and
second considered load case is that the first is simply one verti-
cal bar to counteract the applied load, while the second has an
additional thin bar to also supply support in the horizontal direc-
tion. Table 4 compares the compliances of these two optimised
structures when they are subjected to each of the two load-cases.
It becomes evident that the small load-angle perturbation results
in a collapse of the first structure (Fig. 7(b)) while the second
structure (Fig. 7(c)) performs similarly in both cases.

Further arguments could be made about the individual element-
density time-series acceleration approach proposed by Kallioras
et al. [2020] also suffering from the lack of understanding of

Table 4: The compliance of the optimised structures in Fig. 7 (b)
and (c) with respect to different θ-values changing the loading
conditions in (a).

Design (b) (c)

θ=0 7.255 7.372
θ = 0.01 1,649,351,760 7.5591

physical properties. For many problems, it is plausible that the
iterative history of element densities will map to a reasonable
structural composition, but this cannot be guaranteed for all
problems. As the model does not know the relations between
neighbouring elements there is no guarantee that even a smooth
structure will emerge when combining the individual predicted
trajectories. This is not to discourage that simple mappings
between intermediate solutions in the optimisation process
may aid in faster convergence, especially as SIMP iterations
are run on the mapped structure to ensure physical consistency
in the final design. One should however be cautious of the
fact that this does not guarantee increased performance, and
especially not for problems with moving members during the
later iterations.

The approach of reducing the number of exact high-resolution
FE-solutions in a multi-scale framework proposed by Chi et al.
[2021] might be a more rewarding application of approximate
mappings. During several iterations of the TO process,
approximate sensitivities may be sufficient to make progress in
the overall optimisation, as also investigated for conventional
TO (Amir and Sigmund 2011). Therefore, understanding the
problem may not be necessary to perform this task, and errors in
the predictions are less likely to have major effect on the overall
results. A fast increase in prediction errors as a function of the
number of iterations since the last exact sample may indicate
that model-improvements could be fruitful.

The upscaling category on an overall level likely suffers from
similar lack of physical understanding as the direct design mod-
els. It is observed that the applied models mainly perform
boundary smoothing, which is understandable if the mapping
between resolutions is simply seen as an image-resizing task
by the ANN. The work of Elingaard et al. [2022] is an outlier
within this category, as here the ANN is utilised to perform
de-homogenisation. As physical understanding is not necessary
to translate the input vector-field to an intermediate density field
the abilities of ANN to perform pattern recognition may be very
useful in such an application. However, it is found that the
post-processing procedure utilised could benefit from some al-
terations to replace the u-shaped branching with v-shaped ones,
which are known to provide better structural performance.

5 Recommendations

The motivation behind implementing an AI-model to be used in
TO should rest on some belief that it will improve the overall
solution framework, compared to conventional procedures. As
the limiting factors for large-scale TO are related to memory
consumption as a result of the design representation and
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computational time associated with the calculations required
in the applied iterative solution procedures, the aim should be
to reduce the cost of at least one of these challenges without
compromising performance with respect to the other. Scientific
contributions are only significant if they increase the scope of
viable applications. This could be solving any problem faster
than conventional state-of-the-art approaches or extending the
range of problems that can be solved, both in terms of size and
complexity.
These statements are not to diminish the value of proofs-of-
concept in a new application area of AI, but there should be
convincing arguments and proofs supporting the capabilities
of the presented ideas. Such considerations should focus both
on how the method compares to current state-of-the-art and
the range of problems that can be handled appropriately. New
solution procedures should be accompanied by convincing
descriptions of why they contribute positively to the scientific
progress within the field. If insufficient results are obtained,
a thorough reflection of why the motivating hypothesis or
method-construction was wrong would be of great benefit for
the field moving forward.

AI-technology has become an immensely popular research topic
due to the prospective abilities of methods within the field. It is
however important to recognise that the current capabilities of
even state-of-the-art applications are limited and susceptible to
errors. The application area of such models should therefore
be robust with regards to possible model errors not having
significant negative effects on the system as a whole. Further,
the tasks at which existing technologies excel are limited and
mostly related to pattern recognition. Methods such as neural
networks are good at data reconstruction and feature extraction,
but are insufficient when it comes to higher level understanding
and data interpretation. This again is not to discourage research
focused on applying AI-methods for TO. The combined choices
of model types, model-configurations and applications are
endless, and successful choices may provide meaningful
contribution to scientific progress. To approach such useful
choices one should however ensure understanding of the
different model choices and practice critical evaluation of both
the potential and longevity of the modelling framework itself, as
well as the observed performance through testing.

Based on the ideas and results observed in the current litera-
ture, this section will therefore provide what is believed to be
basic but useful guidelines for researchers interested in pursuing
different application of AI in TO. To this purpose recommenda-
tions for what to consider when developing a model as well as
how to properly assess its resulting performance are listed in the
following.

5.1 When designing the model

When choosing a model type and its configurations the aim
should be to determine which settings are likely to perform
best for the intended application. With AI-methods this can
be difficult as model design is not an exact science, but efforts
should still be made to research different options and how they
have successfully been applied in other fields. Doing so, it is
also paramount to account for all aspects having an influence on

the problem at hand, and remembering that relational properties
should be provided to the model as one cannot expect the model
to magically realise the environment it is applied within. Some
concrete comments on the choices made in the current literature
will highlight how such challenges can manifest, but as this very
much is a new and open research field a complete guide cannot
be provided.

After having identified the desired task, efforts should be
focused on determining appropriate inputs, outputs and loss
function. The analysis of breakeven threshold and generalisation
ability in Section 3.1 illustrates the effect of data formatting
on the computational performance of the model. It is found
that in current works the training data generation requires a
high computational cost which is often incorrectly deemed
negligible. It is fair to assume that the more versatility the
obtained model can provide, the more training time one can
justify. However, most of the reviewed works having greater
generalisation abilities typically present methods that have
lower training costs. The reason for this is likely related to the
fact that cheaper training data often is more removed from any
specific problem instance, such that patterns the model learns
from are relevant for a wider variety of cases.
The chosen model output is therefore a deciding factor in the
model design phase. These outputs should be realistically
attainable by the chosen model and preferably in a format that
allows for a wide range of problems and mesh dimensions.
Further, it is beneficial if benchmark targets can be computed
somewhat efficiently as to evaluate the accuracy of the output.
This means that neural networks aimed at directly predicting an
entire output structure like the described direct design models
might be unrealistic and very limited in terms of generality.
Another limiting effect of using optimised structures to train the
model is that it is likely to be influenced by the nature of the
conventional solver used and the select set of parameters, where
for instance using a larger filter radius to obtain the training
samples may result in the model never considering finer features
as optimal.

The formatting of the input and loss function is also an
important aspect, as the information contained should, ideally,
be sufficiently able to describe the unique properties of a
considered problem instance, such that there is a believable
relation between the input and the output. The input should
allow for different problem dimensions while the input
dimensions are kept limited to reduce the size of the network.
Therefore it is recommended that greater efforts are made
towards defining an appropriate loss function to capture more
complex system relations.

These aspects means that one should seek more complex loss
functions relating more to physical properties that require FEA
in the evaluation of results and less to image-based prediction
error. The norm should be to move away from designing mesh
and boundary condition specific models and towards more adapt-
able frameworks than what is seen in most of the current liter-
ature. Further, it is recommended to consider automated post-
processing as a valid option to refine the final structures to i.e.
limit the occurrence of disconnections. In many cases this can
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be done in an inexpensive manner, such that the computational
time is not significantly affected.
Overall, the most important reflection points are related to how
many different problem types or settings the method can handle
without retraining, while supplying good quality results.

5.2 When testing the model

When testing the model the aim should be to accurately
determine whether the performance for the intended task is
sufficient. This relates both to the statistics presented for model
evaluation and the benchmarks used for comparison.
Fig. 4 in Section 2.2 proved how the pixel-based density error
is not an appropriate error measure when evaluating structural
performance, as a small pixel-based error may imply good
performance even for disconnected structures. Image-related
error measures in isolation say more about the exactness of
the reconstruction than whether the approach was successful
in solving the TO problem. The physical performance of the
obtained solution in terms of the desired properties defined by
the optimisation objective and constraints should therefore be
the main focus. When testing the model on several problem
cases it is also crucial to include the entire distribution of the
obtained results. This is to ensure that worst case behaviour is
identified, because in structural design, even one insufficient
solution can have detrimental consequences.

In terms of benchmarking it is both important to ensure the
desired test cases are notably different from all cases considered
during training and that the comparison to conventional methods
is done under fair circumstances. Firstly, this means that it
is not sufficient to test on random problems that are sampled
from the same limited pool as the training data. Secondly, it
should be assured that the two compared structures are defined
on the same length-scale and thresholded to a black-and-white
design, satisfying the same volume fraction. Some of these
latter requirements might differ depending on the considered
optimisation problem, but as most works are concerned with
compliance-minimisation subjected to a volume constraint, it is
convenient to base the recommendation on this type of problem.

If comparison to other similar AI-based models is conducted,
all aspects should be considered and one should aim at ensuring
the same testing conditions. As such, similar problems should
be solved, the same performance measures should be used and
training time, including data generation, should be included in
the assessment. If a larger number of data samples or longer
training time is allowed, increased prediction performance may
be observed without the model architecture actually being better.

5.3 Benchmark cases

The previous section exemplified how results should be
presented and compared to conventional approaches for
standard minimum compliance problems, and has encouraged
proving performance for a wider range of problems. What has
not been covered, however, is how appropriate problems for
benchmarking should be chosen.

Constructing a set of specific benchmark problems that should be
included to prove the validity of a conventional TO framework
is difficult in itself, but for NN-based frameworks this becomes
even more challenging as it also depends on how the NN is
applied and what data is used for training. Firstly, if a model is
trained on these specific benchmarks, then good performance
for these problems is not an indication of the model’s general
capabilities. Secondly, the different ways in which ANNs can
be applied within TO further individualises what appropriate
benchmarking is. Therefore, instead of presenting a finite set
of problems to include, this section will cover some impor-
tant considerations when choosing the test-cases for a specific
ANN-framework and how to evolve from a proof-of-concept to
certified state-of-the-art legitimacy of the proposed approach.

The basic The first level of difficulty for benchmark problems
can be directly related to the definition of generalisation ability
in Table 3, where the aim should be to justify the highest
score possible. An approach for achieving a high score could
be to select a small set of domain shapes different from the
training problems and for each of these shapes consider separate
combinations of mesh-resolutions, supports and loads.

Based on how the ANN is integrated within the optimisation
framework, i.e. what application category the presented model
belongs to, there may be additional considerations that become
important when benchmarking. If the ANN is used to perform a
sub-task in the optimisation process it is of interest to assess
performance for this specific task, in addition to how the overall
optimisation procedure is improved. This means that for ANNs
trained to perform FEA the accuracy of the obtained sensitivities
should also be assessed. Approximate sensitivities could lead
to good quality optimised results, but the accuracy may still
have effects on the reliability of the approach for future cases.
Further, for convergence type frameworks mapping between
intermediate designs to skip parts of the optimisation process,
the output from the model, before continued iteration, is also of
interest. This last point is of particular interest because if the
achieved speed-up is the result of pixel-rounding or moving
average type changes, one can avoid the expensive training and
obtain more general frameworks performing equally well.

The issue of coarse-mesh restrictions on the minimum
length-scale of high resolution structures obtained by two-scale
applications has been a prominent topic throughout the review.
Assessments of this effect should thus be included for these
methods. One potential approach could be to illustrate the
underlying coarse mesh of the fine scale result. Restrictions
on the complexity of the obtained structures were also
evident for re-parameterisation approaches due to the reduced
design-representation and solution space. The question for such
approaches could therefore be whether one can control the
length-scale or impose local volume constraints to force fine
features in the optimised structure (Wu et al. 2018).

Lastly, there are some works claiming that the proposed NN-
frameworks are justified only for problems where conventional
approaches are less efficient or effective. In such cases it
is crucial that the provided benchmark cases belong to the
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problem-categories for which the framework is intended to be
beneficial.

The generalisation ability measure includes no requirements
about changes in problem definition (material parameters, ob-
jective function, constraints) or the scale of the different mesh-
resolutions. For developing new methods for TO it is not ex-
pected that one can instantly outperform state-of-the-art large
scale TO (millions of elements and constraints), but it strength-
ens the proof-of-concept to provide qualitative arguments for
how the framework allows for future scalability and transferabil-
ity.

The intermediate The basic benchmark-selection approach
should be the minimum to illustrate the potential of a framework
in a proof-of-concept manner, in addition to a fair qualitative
justification of the method. The next step in proving whether
the framework is competitive is to consider whether it allows
for changes in the problem definition. This could be included
by considering the same benchmark problems as from the
basic approach, but now altering or extending the underlying
optimisation problem.

Admittedly, the basic benchmark problems considered in the
TO community have a tendency to be overly simplistic, e.g. by
considering minimisation of physical performance subject to
a linear volume constraint. This formulation allows for using
bi-section algorithms for determining Lagrange multipliers
and results in designs that are independent from base material
stiffness. Similarly, in learning-based approaches, a formulation
with a volume constraint makes training easier and results
independent of material properties. For gradient approaches
combined with flexible optimisers like the Method of Moving
Asymptotes (MMA) (Svanberg 1987), switching the objective
and constraint functions is straightforward. However, for a
learning-based approach, especially aimed at direct design,
training becomes increasingly challenging due to varying
volume fractions of final designs and the need for quantitative
evaluation of the constrained response function.

Hence, a challenging test case, with a high degree of industrial
and practical relevance, would be to solve volume minimisation
subject to compliance constraints. For additional complexity one
could also consider solving for different material properties. For
extending the problem one can consider additional constraints,
such as additional compliance, displacement, local stress or local
volume constraints. These changes are all readily implementable
within conventional gradient based frameworks and are thus
important factors for judging whether the ANN-based method is
competitive in a broader more applicable sense.

The advanced State-of-the-art TO has come a long way, and
is now capable of solving large-scale problems with hundreds
of millions of elements, millions of local constraints, a vast va-
riety of alternative physics (a.o. thermofluidics, micro electro
mechanical systems) and solved using unstructured meshes on
irregular domains. The latter point is of particular interest as the
reviewed NN-frameworks for TO exclusively consider regular
meshes, which do not guarantee the necessary accuracy for prac-

tical applications. The ultimate end-goal for a procedure should
be to improve on the performance of conventional methods for
such problems or to achieve capabilities for new even more com-
plex or difficult problems. This is, as specified, not necessary
for proof-of-concept when presenting new solution frameworks,
but this should be the ultimate goal for true scientific progress
within the field.

6 Conclusion

6.1 Current status for AI in TO

The recent surge in publications presenting research into
exploiting AI-technology for TO is likely motivated by such
technologies’ positive impact on the field of computer vision.
With the desire to eliminate the need for iterative solution
procedures in structural optimisation, a large number of neural
network models have been suggested, clearly inspired by the
success of using deep learning for image segmentation and
generation tasks. These direct design models are however
found to produce poor designs, be expensive to obtain and be
very restricted in terms of the variety of problems and mesh
resolutions they can handle. Their insufficient performance
has, however, not reduced the popularity of the premise of
iteration-free TO. It is true that conventional TO consists of a
computationally expensive iteration process, but the iterative
nature in itself is not what makes true large-scale TO impractical.
Rather, it is the expense of the inter-iteration computations that
pose the real challenge. Therefore, it is postulated that the idea
of a direct iteration-free TO should be discarded and that the
focus should shift towards alleviating the computational load of
the costly components within the iterative process.

This literature review includes descriptions of several other
application areas, relating to for instance acceleration of the
optimisation procedure and post-processing of optimised results.
These methods allow for designing models with more specific
tasks that have a more realistic possibility of being handled
by an approximative mathematical model. Designing viable
models for these purposes is proven to be a challenge, as there
is still a lack of convincing results presented in the literature.
Few of the reviewed articles exhibit promise towards actual
scientific progress, but the alternatives for such methods are
not exhaustively researched, and greater potential is expected.
Therefore, one should definitely not reject all prospects for
utilising AI-technology to aid in TO.

What is important for overall success within this field, is to
adopt a more critical perspective when it comes to evaluating
ideas and results both pertaining to work done by oneself
and others. Throughout this review it has become clear
that there is a lack of understanding both related to model
viability and interpretation of results. This is seen both by
presenting ML-models with tasks they cannot realistically
solve, and insufficient reporting of experimental results.
Further, there is a trend of describing the output from research
works in terms of what the aim was to achieve, instead
of what was achieved. To ensure further progress, it is
crucial to present ones research results with full transparency,
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and to accurately assess the work of others when citing literature.

The recommendations made in this review article are meant to
instigate the above mentioned needed changes. To summarise
the important points of the analysis results, 6 questions to con-
sider when working with AI in TO are presented. This list is
inspired by the recommendations made by Marcus and Davis
[2019] for assessing AI research results.

1. Disregarding the theoretical expectations, what does
the AI system actually achieve?

2. How general is the approach? (E.g. can it capture
all aspects of the problem, or just mimic the provided
training data?)

3. Is there a transparent and thorough presentation of
performance? (E.g. is the worst-case performance
presented and is the computational gain fairly repre-
sented?)

4. If it is claimed that an AI system outperforms its con-
ventional counterpart, then on what aspects/measures,
and how much better?

5. How far does successfully solving the presented ex-
ample instances take us toward achieving AI-based
state-of-the-art solution methods?

6. How robust is the system and what is its generalisation
ability? Could it work equally well with other prob-
lem characteristics (boundary conditions, loads, etc.),
without demanding re-training?

Addressing the above points should at least include listing of
breakeven thresholds (1) and generalisation ability (Table 3) or
equally transparent alternatives where these measures are not
feasible. Further, a fair presentation of solution qualities and
comparisons to the most relevant benchmarks, is also expected.
Such a proper assessment of method capabilities should be a
minimum requirement before publication.

Interestingly, it is observed that only 14 out of 111 ML-papers
discussed in this review have appeared in the Structural and
Multidisciplinary Optimization (SMO) journal. A large majority
of papers seems to appear in “non-optimisation” and physics
journals, where readers and reviewers may have been less ex-
posed to efficient topology optimisation approaches and, hence,
more likely to accept the concept of learning-based methods
for inverse design. Even if this review is published in SMO,
the ambition and hope is that its message will spread to other
journals and scientific societies, such that future research efforts
are spent in meaningful ways.

6.2 Future promise

As mentioned, the most promising ideas for applications of AI
in TO in the current literature, relates to acceleration of the
iterative optimisation process or post-processing optimised
results for manufacturability. An obvious approach that could
offer substantial speed-up is to reduce the number of FEAs
needed throughout the optimisation procedure. This could
be obtained by either removing a part of the iterative process
(Kallioras et al. 2020) or replacing the FEA for a polynomial

process in a subset of the iterations (Chi et al. 2021, Sasaki and
Igarashi 2019). Multi-scale approaches where ML-models are
used to map analytical results on a coarse grid to approximate
values on a fine grid do also seem viable, but the results should
then be appropriately compared to other multi-grid methods.

Relating to this, the concept of physics-informed neural
networks (PINNs), first introduced by Raissi et al. [2019], has
lately gained increasing traction and is useful for learning tasks
in the presence of physical laws that should be respected. By
encoding structured information into the loss function of a
neural network utilising the principles of PINNs, one could for
instance obtain an approximate model describing the solution
to a set of partial differential equations that would function
as a substitute for FEA. So far experimental results show that
this approach requires fewer data samples to train a more
generalised model. Due to a current lack of combinations with
TO this is beyond the scope of this review, but it is believed
that this could be an interesting path for further research in
the field. This approach may allow for both more efficient
and accurate approximations of the governing equations in a
topology optimisation problem, as well as modelling of more
complex and highly nonlinear mechanical properties. However,
optimisation is known to optimise numerical errors before
physics (cf. the checkerboard problem), and therefore caution
should be taken when working with potentially inaccurate
numerical physics descriptions.

Post-processing of TO-optimised structures utilising ML-
methodology is currently an underrepresented application
area in the literature that may deserve more attention in the
future. Especially, converting the TO-optimised structure
representation to a format suited for different manufacturing
techniques may have a positive effect on the possibilities
for applying TO in real-life product design processes. Also,
as shown in Elingaard et al. [2022], ML has promise for
efficient de-homogenisation which strengthens the capabilities
of the more efficient homogenisation-based TO method.
As such, one can achieve more efficient optimisation proce-
dures also without changing the main optimisation process itself.

Further, the structural representation, typically in the form of
discretised FE-grids, is a main reason for both the computational
time and memory requirements associated with large-scale
TO. Therefore, significant improvements could be achieved
by appropriate re-parameterisations of the TO-models, where
the problem size is reduced in terms of number of design
variables or the information needed to sufficiently represent
a structure. This is, however, only true provided that FEA is
also removed from the usual mesh. As there exists several
ML-methods that have proven to be good for feature extraction
through down-sampling, this could be another interesting
research avenue, related to the PINNs. Note that any such
new method should be compared to current state-of-the-art
model order reduction methods and not to full scale standard TO.

Overall, the research into using AI-technology in TO has barely
begun. This review has mainly focused on the use of ANNs,
but it is believed that many crucial arguments readily translate
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to other types of ML-models. A select group of applications
have so far shown promising results for future development,
but most works exhibit unrealistic expectations for what such
models can learn. To further advance the use of AI in TO, there
is therefore a need for greater knowledge and understanding
of existing AI capabilities amongst researchers applying such
technology. As new technology continues to emerge, some of
the recommendations in this paper may change, but the proposed
considerations for how to evaluate new frameworks will most
probably not.

A Fig. 6 - Upscaling procedure

1 % problem parameters
2 nelx=60; nely=20; volfrac=0.5;
3 penal=3.0; rmin=2.0; ft=1;
4 % extract coarse scale design x0 obtained by SIMP
5 x0=top88(nelx,nely,volfrac,penal,rmin,ft);
6 nelx=120; nely=40; % fine grid discretisation
7 % bicubic interpolation for image-resizing to fine grid
8 x=imresize(x0,[nely,nelx],'method','bicubic');
9 % apply volume-preserving threshold to obtain discrete

structure xt
10 xt=x; [Y,I]=sort(x(:),'descend');
11 vt=floor((volfrac-1e-9)*nelx*nely/(1-1e-9));
12 xt(I(1:vt))=1; xt(I(vt+1:end))=1e-9;
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