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Abstract

The use of Fourier analysis in combination with the Proper Orthogo-
nal Decomposition (POD) is investigated. In this approach to turbulence
decomposition, which has recently been termed Spectral POD (SPOD),
Fourier modes are considered as solutions to the corresponding Fred-
holm integral equation of the second kind along homogeneous-periodic
or homogeneous coordinates. In the present work, the notion that the
POD modes formally converge to Fourier modes for increasing domain
length is challenged. Numerical results indicate that the discrepancy
between POD and Fourier modes along locally translationally invariant
coordinates is coupled to the Taylor macro/micro scale ratio (MMSR) of
the kernel in question. Increasing discrepancies are observed for smaller
MMSRs, which are characteristic of low Reynolds number flows. It is
observed that the asymptotic convergence rate of the eigenspectrum
matches the corresponding convergence rate of the exact analytical
Fourier spectrum of the kernel in question - even for extremely small
domains and small MMSRs where the corresponding DFT spectra suf-
fer heavily from windowing effects. These results indicate that the
accumulated discrepancies between POD and Fourier modes play a
role in producing the spectral convergence rates expected from Fourier
transforms of translationally invariant kernels on infinite domains.

Keywords: Proper Orthogonal Decomposition, Fourier analysis, SPOD,
DFT, Translation invariant kernels, Windowing, Spectral leakage
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1 Introduction

The Proper Orthogonal Decomposition (POD) has been applied extensively
by the turbulence community since its introduction in [1]. The method was
introduced with the aim of decomposing turbulent signals into a set of orthog-
onal basis functions in an energy-optimized way. In the same work a particular
set of eigenfunctions was identified in the case of translation invariant kernels,
namely the trigonometric polynomials. The work concluded that any kernel
that exhibits translational invariance (such as in the cases of stationarity and
homogeneity) could be decomposed using a Fourier transform along those
directions and combined with the POD along any other coordinate direction
along which the flow is inhomogeneous.

The role of homogeneous and/or stationary flows has been central in the
construction of fundamental arguments behind the application of the Fourier-
based POD on finite aperiodic domains. The exploitation/presumption of
translational invariance has been advocated in numerous works since its intro-
duction by [1]. The Fourier-based implementation of the POD was spearheaded
by the work of [2], and popularly advocated by [3]. The seminal work of
[4] implemented the Fourier-based decomposition on experimental jet data
acquired using a rake consisting of 138 hot-wires. This work was extended
by [5, 6] to other regions of the jet using the same hot-wire rake. A multi-
component implementation of the Fourier-based POD was performed by [7]
and later by [8] using stereoscopic PIV measurements. The Fourier-based POD
became popularly known as spectral POD (SPOD) - to be distinguished from
the method of [9] (see also [10] in this relation) that bears the same name -
as a result of the works of [11] and [12], in which a four-dimensional space-
frequency implementation of the method was applied to the analysis of a Large
Eddy Simulation (LES) jet. Its application was followed by [13] in their anal-
ysis of a turbulent channel flow, where a Fourier-based decomposition was
applied in the lateral coordinate as well as in time. The Fourier decompo-
sition along locally translation invariant directions (that is, for kernels that
are locally stationary/homogeneous, defined on a finite domain without the
periodic boundary condition) combined with a numerical POD has proved to
serve a multitude of purposes. Firstly, it has provided enhanced insight into
the dynamics of turbulent flows, due to their semi-analytical form. Secondly,
the fact that the decomposition is frequency-based provides additional insight
into the modal structure of the turbulent flow at hand. Thirdly, the use of an
analytical set of orthogonal basis functions along a given coordinate direction
allows for a reduction of the memory load of the problem when a numerical
implementation of the POD is performed, since a separate POD analysis is
performed on a set of cross-correlation matrices for each of the corresponding
Fourier coefficients.

The use of Fourier modes in combination with the POD along aperiodic
coordinates is traditionally justified in literature by refering to the works [1]
and [14]. A much overlooked warning, however, appears in the latter work
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directed towards the use of Fourier modes on non-stationary1 flows, herein
those characterized by locally translation invariant kernels2:

Although Fourier transforms may, of course, be used wherever they exist, this
theorem serves as a justification for their use in connection with stationary
functions, and as a warning against their use in connection with nonstation-
ary ensembles (in the sense that they have no special appropriateness for such
ensembles).

In addition, the work of [14] does not explicitly elaborate on the direct use of
Fourier modes in combination with the POD for stationary flows, beyond pro-
viding analogies between general characteristics of the POD and the Fourier
transform of kernels defined on the real line. A somewhat rare re-addressal of
this subject is found in [15], where the consequences of equating homogeneous
fields with periodic ones in relation to the POD were emphasized by noting
that periodicity fixes the phase relations of all scales and affecting mostly
the representation of the largest scales. In [16], a related problem was only
briefly discussed where it was stated that difficulties may arise when the POD
was applied to time dependent problems on infinite temporal domains3. This
comment was, however, not put into context with the use of say SPOD. Impor-
tant and impactful works have been published on the relationships between
the established methods of the POD, Dynamic Mode Decomposition (DMD),
SPOD, and Resolvent Analysis, [11, 17] where clear connections between these
methods can be established in the case of periodic domains. Literature on the
impact of kernel characteristics on the relations between the POD and Fourier
modes along locally translation invariant aperiodic coordinates is, however,
significantly more scarce. This is presumably due to the more complex nature
of relating the Fourier transform to the POD and the historical use of Fourier
analysis in relation to homogeneous/stationary turbulence, going back to the
works of [18] and [19]. A limited study on this topic was performed by [20]
investigating Reynolds number similarity across POD solutions. A comparison
of the POD and Fourier spectra obtained from a quasihomogeneous region of
a solution to the Burgers’ equation resulted in similarities being identified not
only between Fourier and POD spectra for a subregion of the eigenvalue/power
spectra but also between the modes themselves.

Although complex exponentials may appear to be eigenfunctions to the
POD integral equation in the case of translation invariant kernels over the
entire real line, such functions do not satisfy the fundamental requirement of
square integrability over the real line, upon which the POD integral equation
is conditioned. Complex exponentials are only square integrable over finite
domains, but homogeneity precludes the area of integration being finite, [1].
Put in different terms, the inability of the POD to deal with homogeneous fields
is due to the fact that the respective kernels are not nuclear, [11]. Although
these paradoxes formally exclude the POD modes from being Fourier modes

1Stationarity here refers strictly to problems characterized by translation invariant kernels
defined on the entire real line representing infinite energy, [14]

2Last paragraph of section 3.12 in [14]
3Third paragraph on p. 74 in [16]
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in the case of translation invariant kernels defined on the entire real line, they
are traditionally ignored and the use of a Fourier basis along finite aperiodic
locally translation invariant coordinate directions is common. However, for-
mally equating POD modes to Fourier modes in these cases blurs the relation
between the two sets of functions. The ambiguity of their connection is further
exemplified by statements in literature often claiming that 1) homogeneity
leads to a Fourier basis in relation to the POD, and 2) as a consequence of this
the Fourier modes form an optimal basis for infinite homogeneous/stationary
turbulent flows. Fourier modes do, in many cases, appear highly optimized in
terms of representing energetic structures along locally translation invariant
coordinates, and can be justified based on this to serve as reasonable approxi-
mations to POD modes. Nevertheless, given that they differentiate themselves
from POD modes by not qualifying as solutions to the POD integral equation
(emerging from the underlying optimization problem) for any case other than
the periodic one, the focus of the current work is on quantifying their discrep-
ancies, also in terms of the effect on other flow properties than the energetics
- as these properties may be significant for transport processes expressed in
terms of Galerkin projections of governing equations of fluid flow.

A specific aim of the current work is to characterize the spectral discrep-
ancies between POD and Fourier modes on locally translationally invariant
kernels on finite aperiodic domains as a function of kernel characteristics and
domain size. We analyze the relation beteen POD modes and Fourier modes
for increasing domain sizes - the latter being a commonly used strategy to
reduce the effect of ”windowing” and ”spectral leakage”, [21]. In this capacity,
we examine some consequences that the use of a Fourier-based decomposition
on aperiodic domains may have on the spectral analysis of POD kernels and
relate these discrepancies to the macro/micro scale ratio (MMSR).

The results presented in this work may be relevant not only to spectral
convergence considerations, but also to the search for analytical solutions to
the POD integral where kernels exhibit symmetries other than translational
invariance. Subtleties in the choice of domain which may disqualify an analyt-
ical candidate solution are therefore discussed. The origins of the extension of
SPOD to flows with a symmetry weaker than homogeneity are exemplified by
the work of [22] where similarity analysis is used to argue for Fourier-based
POD solutions to the jet far-field. This was later implemented by [23–25], in
which SPOD was applied along the streamwise direction of the flow, despite
the fact that the flow was not homogeneous along that coordinate. The cur-
rent investigation is therefore a step in evaluating how far one can extend the
SPOD, by considering the most fundamental example first, namely one with
one-dimensional translation invariant kernels.

The paper is structured as follows: in section 2 the fundamentals of the
POD are defined on the space L2

w(Ω,Cn). In section 3, a relation between the
Fourier and eigenspectra is provided by a Fourier expansion of the POD modes
which will be used for a numerical analysis of the coupling between the Fourier
and eigenspectrum. The numerical analysis of the spectral properties of two
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sets of correlation functions is presented in section 4 where the discrepancies
between the POD and Fourier spectra are analyzed.

2 Proper Orthogonal Decomposition

It is imperative to properly define the vector space in which the candidate basis
functions obtained by the POD integral reside. This step is crucial since this
vector space defines both the domain and range of the integral operator in the
POD integral eigenvalue problem. For the sake of generality we consider here
the weighted vector space of complex-valued integrable functions defined as

L2
w (Ω,Cn) :=

{
ϕ : Ω→ Cn

∣∣∣∣∫
Ω

|ϕ(x)|2w(x)dx <∞ , w(x) > 0

}
, (1)

and the weighted inner product

(·, ·)w : L2
w (Ω,Cn)× L2

w (Ω,Cn)→ C , (2)

which is antilinear in the second argument

(ϕ,ψ)w =

∫
Ω

ϕ(x)ψ∗(x)w(x)dx . (3)

Equipped with the inner product induced norm

‖ϕ‖w =
√

(ϕ,ϕ)w , (4)

L2
w(Ω,Cn) is a Hilbert space. The following maximization problem is then

considered

arg max
ϕ∈L2

w(Ω,Cn)

〈{
|(un, ϕ)w|

2
}N
n=1

〉
‖ϕ‖2w

, (5)

where the angled brackets designate ensemble averaging (see definition in (7)
below). This reduces to the following integral eigenvalue problem by means of
the calculus of variations∫

Ω

H(x, y)ϕ(y)w(y)dy = λϕ(x) , x ∈ Ω , (6)

where the two-point correlation function of the velocity components is given by

H(x, y) =
〈
{un(x)un(y)}Nn=1

〉
=

1

N

N∑
n=1

un(x)un(y) , (7)
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and N designates the total number of samples. The formulation (6) can be
considered as the eigenvalue problem of the operator R : L2

w (Ω,Cn) →
L2
w (Ω,Cn)

Rϕ = λϕ . (8)

In the following, the relation between Fourier and eigenspectra is formulated.
The coupling of the aforemention spectra is formulated directly as a function
of the POD operator, without the requirement of explicit information about
the instantaneous realizations underlying the generation of the POD kernel.

3 Coupling of Fourier and eigenspectra

The general arguments behind the use of SPOD on aperiodic domains, e.g. in
its application to truncated aperiodic stationary turbulent signals, are struc-
tured around a reduction of windowing effects. One proxy typically used for
identifying whether a sufficiently long measurement domain has been achieved
is the convergence of the Fourier energy spectrum - the underlying idea being
that the Fourier spectrum would converge (by some measure) as the window
is continually increased. Given that the Fourier modes defined on the real
line do not constitute a basis for a L2(R,C), we ask the obvious question: to
what extent, if any, do we see a convergence between the POD and Fourier
modes on a finite domain as the domain is increased? The effects of integration
intervals on the spectral properties of operators are central to consider (see
Appendix A). Trigonometric polynomials satisfy the POD eigenvalue problem
only in the case of translation invariant kernels on periodic domains. Since the
eigenfunctions are required to be elements in a Hilbert space they cannot be
solutions to the POD eigenvalue problem if their domain is chosen to be the
entire real line. However, filtering the kernel by introducing a weight/window
function into the inner product definition breaks the translational invariance
of the kernel as well as the orthogonality of the Fourier modes with respect to
that inner product weight, disqualifying the latter from being a complete basis
for the pre-filtered field. Aspects of this problem have been discussed in the
past by [26–28] and others who analyzed the windowing effects on eigenspec-
tra in the case of homogeneous turbulence. The windowing effect is related to
the so-called spectral leakage where spectral energy is redistributed from lower
wavenumbers to higher ones as a result of a reduction of the domain.

In the following, the deviations between the POD eigenfunctions and
Fourier modes are investigated by expanding the eigenfunctions with a Fourier
basis, and then expanding the eigenspectrum using the latter. The analysis will
be performed for several POD eigenvalue problems across various combina-
tions of kernels and domain lengths where the aim is to quantify the windowing
effects, and to analyze the nature of the convergence between the two sets of
basis functions. In the numerical study that follows, analytic kernels will be
used for the generation of the correlation matrix, allowing us to inspect the
effects of kernel characteristics and domain length in the comparison of the
two sets of modes.
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3.1 Fourier expansion of POD eigenfunctions and
eigenvalues

The numerical analysis is performed in the Hilbert space CN , with the inner
product, (·, ·) : CN ×CN → C, defined as the complex canonical inner product

(ϕ,ψ) =

N∑
i=1

ϕiψ
∗
i , (9)

and norm
‖ϕ‖ =

√
(ϕ,ϕ) . (10)

Here the short notation, ϕi = ϕ(xi) and ψi = ψ(xi) is implied. The choice
of vector space, CN , is not arbitrary. For the numerical analysis one might
consider imposing a vector space that would result in an integral-based POD,
where a quadrature rule would need to be imposed in the definition of the
inner product. Any such choice of vector space, however, would imply that
the span of the POD modes would be larger than the Fourier modes when
the Discrete Fourier Transform (DFT) is implemented, due to the implied
condition of periodicity of the domain when using the DFT. To enable a one-to-
one comparison of Fourier and POD modes, we restrict the numerical analysis
to the vector space CN where the number of discrete wavenumbers/frequencies
is the same as the number of spatial/temporal grid points and POD modes.
This allows us to consider an expansion of the POD modes using Fourier
modes, which is useful in determining deviation between the two sets.

Let {ψn}Nn=1 be a Fourier orthonormal basis for CN . If {ϕα}Nα=1 is a POD

basis related to the operator R ∈ CN×N , then span {ϕα}Nα=1 ⊆ CN . It is
therefore possible to expand each member of the POD eigenvectors with the
Fourier series basis so each ϕα can be written as

ϕα =

N∑
n=1

cα,nψn , (11)

where
cα,n = (ϕα, ψn) , α, n ∈ [1 : N ] , (12)

and |cα,n|2 represents the Fourier spectrum of the POD mode ϕα. Note the
difference between the formulation in (11) and the implied stament in SPOD
along the locally translation invariant coordinate is that ϕn = ψm for some m.
In (11), we are allowing each POD mode to consists of multiple Fourier mode
components, unlike the case in SPOD where it is implied from the outset that
each POD mode corresponds exactly to a single Fourier mode.
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Substituting (11) into the corresponding POD eigenvalue problem, the
following expansion of the eigenvalues using the Fourier basis is obtained

λα =

N∑
n=1

N∑
m=1

cα,mcα,n∗ (Rψm, ψn) , α ∈ [1 : N ] , (13)

where we designate

Hαmn = cα,mcα,n∗ (Rψm, ψn) . (14)

Since R is self-adjoint, Hαmn = Hαnm∗. From (13) we see that if ψm = ϕα

for α = m, the right-hand side of (13) would produce a single non-zero term
corresponding to the eigenvalue λα. If, on the other hand, ψm 6= ϕα for α = m,
multiple terms on the right-hand side of (13) would in general be needed
to reconstruct each λα. In this way, the convergence rate of each λα with
respect to an increasing N is a measure of the efficiency of the Fourier modes
in reconstructing the eigenspectrum and is therefore a proxy for the energy
optimality of the Fourier basis compared to the POD basis.

From (13) it is seen that the contributions to the reconstruction of λα

consists of products of the factors cα,mcα,n∗ and (Rψm, ψn). For n = m the
first factor reduces to |cα,m|2, corresponding to the Fourier energy spectrum for
the mode ϕα. For n 6= m the first factor contributes only if a given ϕα is non-
orthogonal to both the m-th and n-th harmonic. The factor (Rψm, ψn) may
be understood by first considering the expression

(
Rϕα, ϕβ

)
= λβ . That is,

when R is applied to its eigenfunction, the operation corresponds to a scaling
of that function. However, when R is applied to the n-th Fourier harmonic, ψn,
it imposes a rotation on that function in addition to a scaling. For this reason
the projection of Rψm on ψn is generally not zero for n 6= m and thereby
produces a non-zero contribution in (13). Since (Rψm, ψn) is independent of
α, it therefore only depends on R.

Given that each eigenvalue can be formulated as

λα = (Rϕα, ϕα) , α ∈ [1 : N ] , (15)

the relation between the eigenspectrum and the Fourier spectrum obtained
from the locally translation invariant kernel can be obtained from (15) by
replacing the eigenfunctions by the Fourier basis subject to the assumption
of periodicity of the domain. This naturally means that the right hand-side
in (15) no longer represents the eigenspectrum, but yields the Fourier energy
spectrum, σm, and takes the form

σm = (Rψm, ψm) , m ∈ [1 : N ] . (16)

This formulation allows a comparison of the Fourier spectrum of the trans-
lation invariant kernel on a periodic domain and the eigenspectrum of the
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corresponding locally translation invariant kernel in (13). It is seen that (16)
appears in (13) as a factor in the terms where m = n. Using (16) we can
rewrite (13) as

λα =

N∑
m=1

|cα,m|2σm +
∑
n6=m

cα,mcα,n∗ (Rψm, ψn) , α ∈ [1 : N ] . (17)

The components of the second sum in (17) correspond to Hαmn for m 6= n,
which are the contributions related to the Fourier cross terms. Since

N∑
α=1

λα =

N∑
m=1

σm , (18)

the relation between the Fourier spectrum and eigenvalues in (17) represents
a redistribution of the same energy related to the kernel in question.

From (17), we see that the mapping of the Fourier spectrum to the eigen-
spectrum is non-linear. Secondly, in order for this mapping to be invertible,
the determinant of the matrix corresponding to |cα,m|2 must be non-zero. Due
to the symmetry of the Fourier spectrum of the eigenfunctions represented by
|cα,m|2, the corresponding matrix can in fact be shown to be singular - which
means that the mapping is not invertible. This implies that the Fourier spec-
trum cannot be obtained from the eigenspectrum due to the assumption of
periodicity implicit in the former.

Element (i, j) of R may be reconstructed using the POD basis by

Ri,j =

N∑
α=1

λαϕαi ϕ
α∗
j , i, j ∈ [1 : N ] , (19)

and combining the above results the reconstruction may be performed using
the Fourier basis by

Ri,j =
∑

α,m,n,p,q

Hαmncα,pcα,q∗ψpi ψ
q∗
j , i, j ∈ [1 : N ] . (20)

For translation invariant correlation functions on periodic domains we natu-
rally have that ϕα = ψα, for all α. The resulting correlation function is given
by the expression analogous to (19)

Rσ,i,j =

N∑
α=1

σαψαi ψ
α∗
j , i, j ∈ [1 : N ] . (21)

where Rσ,i,j = Ri,j . For locally translation invariant correlation functions,
however, we have that Rσ,i,j 6= Ri,j . The assertion, Rσ,i,j = Ri,j , in these cases
enforces a periodificiation of the original correlation function. Therefore, in



Springer Nature 2021 LATEX template

10 Discrepancies between POD and Fourier modes on Aperiodic Domains

the current work, the subscripted symbol σ following a second order statistic
indicates that the latter was generated using Fourier modes by the suppresion
of cross terms for locally translation invariant correlation functions - analogous
to the step from (20) to (21). The comparison between Ri,j and Rσ,i,j as
a function of MMSR for locally translation invariant correlation functions is
treated in section 4.4. In the following, the deviation between the Fourier and
eigenspectra spectra will be analysed for two sets of correlation functions.

4 Numerical analysis

In the comparison between POD and SPOD results, the following numerical
analyses are limited to spectral analyses of discretized versions of two sets
of analytical correlation functions. The correlation functions are chosen in
order to investigate the spectral responses to modifications of specific correla-
tion function characteristics often used to characterize turbulent flows, namely
the Taylor macro and micro scales. More specifically, we investigate the rela-
tion between the MMSR and the observed differences in spectral convergence
rates between the Fourier and eigenspectra, where a large MMSR is generally
expected for high Reynolds number flows and vice versa.

In section 4.1 the spectral responses to variations of the MMSR are investi-
gated for a family of correlation functions constructed from an inverse Fourier
transform of a set of analytical Fourier spectra, characterized by asymptotic
power law decay rates. The numerical analysis is then extended to a new set of
arbitrarily chosen correlation functions in section 4.2, in order to investigate
whether the correlation between the MMSR and the spectral discrepancies
between Fourier and eigenspectra can be expected to hold more generally. The
contributions of the Fourier modes in the reconstruction of the eigenspectrum
are then analyzed in section 4.3, in order to map the effects of window size
on the relation between the discrete Fourier and eigenspectra. Finally, the
impact of assuming the POD basis to be a Fourier basis on the estimation
of the Taylor micro scale is analyzed in section 4.4. It demonstrates how this
assumption impacts the representation of the smallest turbulent scales, com-
pared to the corresponding characteristics of the POD modes, and also serves
as a quantification of the spectral discrepancies observed in sections 4.1 and
4.2.

4.1 Spectral responses to Taylor micro scale

In the present analysis, we examine the Fourier and eigenspectral responses
to the change in the Taylor macro/micro scale obtained from a specific
parametrizable family of correlation functions. Here the micro scale is var-
ied independently from the macro scale in order to systematize the spectral
response analysis. The analytical kernels chosen for this purpose are given by
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[29]

R(ν)(s) =
2

Γ(ν)

(
1

2
s

)ν
Kν (sβ) , (22a)

β =

√
π

Γ (ν)
Γ

(
ν +

1

2

)
, (22b)

where s = |x− y| . Γ and Kν are the gamma function and the modified Bessel
function of the second kind, respectively, defined as [30]

Γ (ν) =

∫ ∞
0

xν−1e−xdx , (23a)

Kν(sβ) =
π

2

I−ν(sβ)− Iν(sβ)

sin (νπ)
, (23b)

where

Iν (s) =

 e−
1
2νπiJν

(
se

1
2πi
)
, −π < arg s ≤ π

2 ,

e
3
2νπiJν

(
se−

3
2πi
)
, π

2 < arg s ≤ π ,
(24)

and Jν is the Bessel function of the first kind. In the current case, we are
considering the functions characterized by ν = p/6, p ∈ [1 : 12]. The analytical
Fourier transform of (22a) possesses the property, [29]

Eν ∼ ω−(1+2ν) , (25)

for large values of ω. A characteristic trait of (22a) is that the Taylor macro
(integral) scale evaluates to unity for all ν, i.e.

Λf =

∫ ∞
0

R(ν)(s)ds = 1 . (26)

The discretization of (22a) is performed using an equidistant grid spacing
given by ∆s = ∆x = ∆y = 1/50 and the grid points are defined by xn =
yn = n∆x , n ∈ [0 : N − 1]. The results of the analysis using two domains are
included in the analysis that follows: one for which x, y ∈ [−20Λf : 20Λf ], and
a second where x, y ∈ [−5Λf : 5Λf ]. These results were chosen from a more
comprehensive set of analyses, which were performed for domains ranging from
5Λf to 80Λf . These showed similar tendencies, and were therefore not included
in what is to follow. The Taylor micro scale can generally be defined for some
correlation function, R(x, y), as

λf =

√
−2

∂2R(x,y)
∂x2 |y=x

. (27)



Springer Nature 2021 LATEX template

12 Discrepancies between POD and Fourier modes on Aperiodic Domains

Figure 1a illustrates the family of correlation functions in (22a) for ν = p/6,
p ∈ [1 : 12], the Taylor micro scales of which are denoted by

λf,ν =

√
−2

d2R(ν)(s)
ds2 |s=0

, (28)

and are estimated numerically from a parabolic fit to three points around the
discretized version of R(ν)(0). The evaluations of λf,ν are shown in Table 1,
where a monotonic increase of λf,ν is seen to follow from an increase in ν. Since
the integral scale evaluates to unity for all ν, it means that the ratio between
the Taylor macro and micro scale is simply the reciprocal value of the micro
scale, which is seen to range from 22.3 to 1.2 (see Table 1 and Figure 1b) over
the range of ν-values considered here.

The corresponding matrix eigenvalue problem related to (22a) is formulated
discretely by the eigenvalue problem related to the correlation matrix operator
R(ν) : CN → CN given by

R(ν)ϕαν = λανϕ
α
ν , α ∈ [1 : N ] . (29)

This is solved numerically using the MATLAB function eig, where the ker-
nels are the discretized correlation functions expresed in matrix form as
Toeplitz matrices in order to represent locally translation invariant kernels.
The normalized discrete m-th Fourier modes, ψm ∈ CN , are defined as

ψm = N−
1
2

N∑
n=1

e2πi(m−1)(n−1)/N ên , m ∈ [1 : N ] , (30)

where ên represents the n-th Cartesian basis vector. The corresponding Fourier
spectra can be computed from (16) by

σmν =
(
R(ν)ψm, ψm

)
, m ∈ [1 : N ] , (31)

enabling a comparison of the Fourier and POD decomposition of a given ker-
nel. The Fourier spectrum of a POD kernel is defined by (16) and given that
(18) holds, the total energy represented in each spectrum is the same. For prac-
tical purposes, however, only normalized versions of the spectra are considered
which are denoted by a tilde above the respective variables

λ̃αν =
λαν∑N
α=1 λ

α
ν

, (32a)

σ̃mν =
σmν∑N
m=1 σ

m
ν

. (32b)



Springer Nature 2021 LATEX template

Discrepancies between POD and Fourier modes on Aperiodic Domains 13

Table 1: Taylor micro and macro scales related to R(ν) as a function of ν.

ν 1
6

1
3

1
2

2
3

5
6

1 7
6

4
3

3
2

5
3

11
6

2

Λf 1 1 1 1 1 1 1 1 1 1 1 1
λf,ν 0.04 0.08 0.14 0.23 0.33 0.45 0.55 0.64 0.72 0.77 0.82 0.85
Λf/λf,ν 22.27 12.03 7.04 4.43 3.01 2.24 1.81 1.55 1.40 1.29 1.23 1.18

Unlike the POD eigenspectrum, the Fourier spectrum of a POD kernel, defined
by (32b), is symmetric. For a meaningful comparison of the two sets of spectra,
the usual Fourier spectrum representation of only the half-spectrum cannot
be used directly, as the number of spectral points related to the two sets of
bases would not be the same. In the numerical evaluation of the assumption
of Fourier modes being POD modes along locally translation invariant coordi-
nates, a consistent method of comparison between the two types of spectra is
based on their respective convergence rates thereby requiring us to make use
of both sides of the symmetric Fourier spectrum. In order to achieve this, the
Fourier spectral values are sorted in descending order, such that σα+1

ν ≤ σαν ,
for α ∈ [1 : N − 1] and all ν - as is generally done for the POD eigenspec-
trum. Due to the symmetry of the Fourier spectrum, this then implies that
σα+1
ν = σαν , for α = 2, 4, . . . , N − 1, since all Fourier spectral values have an

equal spectral value generated by the corresponding complex conjugate mode
(with the exception to the spectral value related to the zeroth harmonic).

A more detailed analysis of the collapse between Fourier and eigenspectra
follows in section 4.2, where the coupling between the Fourier and eigenspec-
trum is investigated for the second set of correlation functions. Currently,
however, the focus is on the general tendencies of Fourier and eigenspectra

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

(a)

0 0.5 1 1.5 2
0

5

10

15

20

25

(b)

Fig. 1: (a): Illustration of R(ν)(s), (22a), for ν = p/6, p ∈ [1 : 12]. An increase
in ν corresponds to an increase in the Taylor micro scale while the integral scale
remains constant (Table 1), (b): Taylor macro/micro scale ratio as a function
of ν.
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Fig. 2: (a)-(f): Normalized eigenvalues, λ̃αν , and sorted Fourier spectra, σ̃αν ,

related to R(ν) corresponding to Λf/λf = [22.27, 7.04, 3.01, 1.81, 1.40, 1.18]
for a domain length of 40 integral length scales. Eν depicts the asymptotic
behaviour of the exact Fourier transform of R(ν).

related to R(ν) in order to investigate more general spectral responses to the
variations of the MMSR of the kernels (22a) and how the spectra are related
to the asymptotic behaviour defined by (25).

The Fourier and eigenspectra shown in Figure 2 are related to R(ν) for ν-values
corresponding to Λf/λf = [22.27, 7.04, 3.01, 1.81, 1.40, 1.18], respectively. The
spectra are numerically evaluated over a domain length of L/Λf = 40. As
the MMSR-ratio is decreased (by increasing ν), a noticeable difference in
the low-energetic regions of the Fourier and eigenspectra is observed. As
the convergence rate of the eigenspectrum must be at least as fast as the
Fourier spectrum due to the optimality of the POD eigenfunctions, a gradu-
ally increasing tail is observed for the Fourier spectra with decreasing MMSR
(increasing ν). However, and more interestingly, the eigenspectrum exhibits
the same asymptotic power-law behaviour as is expected by the analytical
Fourier spectrum, (25).

This behaviour is tested for the extreme case in Figure 3, which shows
the spectral comparison for the very small window size L/Λf = 5 for MMSR
corresponding to the extremes 22.27 and 1.18. Even for this very narrow win-
dow, which still captures the main correlation signature, the eigenspectrum
exhibits the asymptotic spectral behaviour characterizing the exact Fourier
spectrum, and down to the very small value of Λf/λf = 1.18. These results
suggest that the optimality criterion underlying the POD correlates with a
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Fig. 3: (a)-(b):Normalized eigenvalues and sorted Fourier spectra related to
R(ν) corresponding to Λf/λf = [22.27, 1.18], respectively, for a domain length
of 5 integral length scales. Eν depicts the asymptotic behaviour of the exact
Fourier transform of R(ν).

reduced windowing effect on the corresponding spectra (see section 4.4 for fur-
ther consequences of using the DFT as opposed to the POD modes). If so,
the fact that the POD modes deviate from Fourier modes is a central ingredi-
ent to achieving asymptotic spectral behaviours of the exact Fourier spectra,
(25). The underlying reason for this is not entirely clear, but seems to reflect
that the asymptotic spectral behaviour of the POD eigenvalues is closer to the
asymptotic behaviour of the exact Fourier spectrum than the spectrum result-
ing from a DFT. As the tail of DFT spectra is a central focus point in the
diagnosis of windowing effects and underlying the choice of window functions
used to correct for the finiteness of the signal, the current results demonstrate
the advantages of using a POD decomposition in place of a the DFT, even for
locally translationally invariant kernels as it may reduce the requirements for
the window size in order to achieve the same spectral behaviour as expected
using a Fourier transform on a fully translationally invariant kernel on an
infinite domain. Secondly, if window functions are considered as inner prod-
uct weights, it is easily demonstrated that the set of discrete Fourier modes,
(30) is not orthogonal with respect to these weighted inner products (see also
Appendix A.4). This point is related to the analysis of the spectra, as it implies
that although the inner product weight reduces the windowing effect by reduc-
ing the tail end of the corresponding Fourier spectrum, it complicates the
interpretation of the same Fourier spectrum, since the Fourier modes are not
orthogonal with respect to the underlying weighted inner product. A conse-
quence of this non-orthogonality is that the energy related to each wavenumber
fails to decouple from the energy related to other wavenumbers. This adds a
degree of abstractness to the interpretation of the resulting Fourier spectrum.

It is worth recalling that the POD does not suffer from this issue, as
the POD eigenfuntions are guaranteed to be mutually orthogonal as long
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as the corresponding operator is Hermitian. Although one could argue that
the efficiency of the FFT algorithm is enough to motivate the use of the
Fourier decomposition, the corresponding windowing effects may require a
much longer measurement/simulation window. This may introduce significant
costs in terms of experimental equipment and/or computational costs, both
related to the generation of data (in case of a simulation) and to data analysis,
compared to the alternative of chosing a smaller domain and applying a POD
decomposition to this data set.

A comparison of the results in Figure 2 furthermore indicates that the dif-
ferences between the Fourier and POD eigenspectra may be directly affected
by the Reynolds number of the turbulent flow, given that the MMSR-ratio
increases for increasing Reynolds numbers. The spectral analysis of R(ν) indi-
cates that for low Reynolds number flows the difference between the POD and
Fourier modes is more profound, given that their spectra are different. In order
to determine whether this tendency is exclusively related to the discretized ver-
sions of the specific family of functions defined by (22a) or if there is support
for this hypothesis for arbitrary correlation functions, the spectral dependence
on the MMSR-ratio will be extended to other types of POD kernels in the
following section.

4.2 Fourier and eigenspectrum discrepancy dependence
on macro/micro scale ratio

The analysis of the relation between the MMSR and the discrepancies observed
between Fourier and eigenspectra is now extended to a new set of arbitrarily
chosen correlation functions, in order to investigate whether the MMSR in
more general terms can be expected to play a role in the deviations between
the aformentioned spectra. These analyses are performed for six domain sizes
(using the same grid resolution), in order to evaluate the effects of spectral
leakage.

Discretized versions of the following five analytical kernel forms are now
considered

K1j(x, y) = e−|x−y| , (33a)

K2j(x, y) =

{
K4j(x, y)− 10−1 sin (2π|x− y|/L) , if |x− y| ≤ L
0 , if |x− y| > L

,(33b)

K3j(x, y) = (4(x− y)2 + 1)−1 , (33c)

K4j(x, y) =

{
(1− |x− y|/L)

4
(1 + 4|x− y|/L) , if |x− y| ≤ L

0 , if |x− y| > L
, (33d)

K5j(x, y) = e−a(x−y)2 , (33e)

where x, y ∈ Ωj , j ∈ [1 : 6], where j indicates the domain. Note that (33a)
corresponds to R 1

2
in (22a). a = 1/8 in (33e) was included as this correlation
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Fig. 4: (a)-(f): Illustration of the correlation functions, Kij , evaluated for
x = 0 on domains with lengths LΩj , j ∈ [1 : 6], respectively.

function models self-preserving decaying homogeneous isotropic low Reynolds
number turbulent fields appearing as the solution to the fundamental equation
for the propagation of the correlation function, [31]. The lengths of the
domains Ωj are denoted by LΩj such that L ≤ LΩj and given in table 2 along
with the number of discretization intervals, Nj , used for the discretization

∆x = ∆y =
Ωj
Nj

=
1

50
, j ∈ [1 : 6] , (34)

with the grid points for each domain defined as

xn,j = yn,j = n∆x , n ∈ [0 : Nj − 1] , j ∈ [1 : 6] . (35)

Table 2: Domain specifications where LΩj is the domain length, Λreff is the
integral length scale of K1,j , Nj is the number of grid points, and L designates
the support of the functions K4j and K5j , j ∈ [1 : 6].

j 1 2 3 4 5 6

LΩj /Λ
ref
f 5 10 15 20 40 80

Nj 250 500 750 1000 2000 4000

L/Λreff 5 5 5 5 5 5
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Table 3: Taylor micro and macro scales related to Ki6, i ∈ [1 : 5] as a function
of ν obtained from numerical integrations.

i 1 2 3 4 5

Λf 1.00 1.66 0.78 1.66 2.51
λf 0.14 0.39 0.50 1.58 2.83
Λf/λf 7.04 4.30 1.56 1.05 0.89

The kernels can be categorized into two distinct groups: those characterized
by their support (for a fixed y) equalling the domain, and those whose support
is strictly smaller than the domain. The former group consists of the kernels
K1j , K3j , and K5j and the latter consists of K2j and K4j for j > 1. Table 3
shows the Taylor micro/macro scale values related to each correlation function,
Kij . The five kernels (33a)-(33e) are expressed in matrix form as Toeplitz
matrices, denoted as Kij ∈ RNj×Nj , where the kernel type is denoted by the
subscript i (corresponding to (33a)-(33e)), in order to represent discretized
versions of locally translation invariant kernels for all domains Ωj , j ∈ [1 : 6].
The discretized kernels are seen in figure 4. As an operator, the kernel matrices
are defined as Kij : CNj → CNj , i ∈ [1 : 5], j ∈ [1 : 6] where the corresponding
eigenvalues, λαij ∈ R+, and eigenvectors, ϕαij ∈ RNj , were obtained numerically
for every kernel-domain combination from the following set of equations

Kijϕ
α
ij = λαijϕ

α
ij , α ∈ [1 : Nj ] , i ∈ [1 : 5] , j ∈ [1 : 6] , (36)

using the MATLAB function eig. The normalized discrete m-th Fourier mode
related to the j-th domain, ψmj ∈ CNj , is defined as

ψmj = ψm = N
− 1

2
j

N∑
n=1

e2πi(m−1)(n−1)/Nj ên , m ∈ [1 : Nj ] , j ∈ [1 : 6] . (37)

The Fourier spectra are then obtained from

σmij =
(
Kijψ

m
j , ψ

m
j

)
, m ∈ [1 : Nj ] , j ∈ [1 : 6] , (38)

and the normalized spectra are denoted by a tilde over the variable, i.e. λ̃αij
and σ̃αij , analogously to (32a)-(32b).

Table 3 shows that the MMSR decreases with increasing index, i. Based
on the previously demonstrated strong correlation between MMSR and spec-
tral discrepancies, the closest match between the Fourier and eigenspectra
are expected to occur for (33a) and (33b), with (33d) and (33e) expected
to exhibit the most significant discrepancies. Figure 5 shows the normalized
Fourier and eigenvalue spectra of all kernels, (33a)-(33e), and for the domains
Ωj , j = [1, 4, 6]. For the kernel, (33a), with an MMSR of 7.04 the two sets of
spectra in figures (a)-(c), appear to be in very good agreeement for all domain
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sizes - even for the smallest domain corresponding to L = 5Λf . It is worth
noting that the spectra are in fact not equal, despite the fact that they appear
to collapse for the case of the largest domain. This deviation will be analyzed
in more detail in section 4.3. As the MMSR is decreased, the tail ends of the
Fourier and eigenspectra are seen to deviate from each other, as was observed
in figure 2 for the Bessel function-generated kernels. In this context, it is inter-
esting to compare the results for kernels K2j with Λf/λf = 4.30 and K4j

where Λf/λf = 1.05. Despite the substantial differences in the appearance of
these two correlation functions (see figure 4) the more complex looking ones
characterized by a sinusoid-generated lobed shape, K2j , exhibit the smallest
spectral discrepancies - which may appear somewhat surprising. However, the
smaller spectral discrepancies of K2j compared to K4j are nevertheless well
predicted by the larger MMSR of the former.

The results for the similarity solution for the case of isotropic homogeneous
decaying turbulence, K5j , from [31] are seen in Figures 5 (m)-(o), showing the
most significant deviations at the low energy end of the spectrum. The fact
that this case represents a low Reynolds number turbulent flow solution for the
correlation function is naturally indicated by the small MMSR, Λf/λf = 0.89.
This case supports the notion that the correlation between spectral descrepan-
cies and the MMSR holds for correlation functions satisfying the Navier-Stokes
equations, which the former correlation functions are not guaranteed to do.
Although the asymptotic trends of the eigenspectrum in this case are seen
to deviate significantly from the DFT spectra - even for the largest domain -
the asymptotic trends between the eigenspectrum and the analytical Fourier
spectrum of the corresponding Gaussian are still in very good agreement.

Given that the ratio between the compact support of the kernels and
domain lengths, LΩj , j ∈ [1 : 6], varies for the kernels (33a)-(33e), it is observed
that the discrepancy variations between the spectra are consistently well pre-
dicted by the MMSR for all kernels. This shows that the support of the various
kernels is not, by itself, the decisive factor for the deviation seen between the
spectra and reveals that if the SPOD is viewed as an approximation of the
POD, the quality of the approximation may be reduced significantly for low
Reynolds number turbulent flows for which MMSR approaches unity. For high
Reynolds number flows, however, the spectral discrepancies can be expected
to be less profound.

In the following, a more detailed inspection of the relation between Fourier
and eigenspectra will be performed. This includes a convergence study of the
spectral discrepancies with respect to increasing domain and thereby an inspec-
tion of whether we can expect POD modes to converge to Fourier modes for
increasing domain sizes.
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Fig. 5: (a)-(f): Normalized eigenvalues, λ̃αij , and sorted Fourier spectra, σ̃αij ,
related to the kernels Kij , i ∈ [1 : 5], for domain lengths corresponding to
j ∈ [1, 5, 6].
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4.3 Fourier Reconstruction of Eigenspectra

Given that the collapse of the Fourier and eigenspectra varies substantially
with the MMSR-ratio and thereby the choice of kernel, we now consider the
Fourier building blocks of the eigenspectrum according to (13). The main focus
of the analysis is the reconstruction of eigenspectra related to the kernels K1j

and K4j as an extension of the analysis in the previous section. These kernels
are chosen as they exhibited significant variations of convergence rates in terms
of their spectra (see Figure 5), and in terms of the collapse of their Fourier and
eigenspectra. The contributions of various Fourier modes to the reconstruction
of eigenvalues can be quantified by the measure

Γαmnij = <

{
cα,nij cα,m∗ij

(
Kijψ

n
j , ψ

m
j

)
λαij

}
, (39)

since the corresponding imaginary part to the above is negligible in the current
cases. In the special case that ψnj = ϕnij for some i in (39), we must have that
Γαmnij = δmn. If the POD and Fourier modes are not the same, however, Γαmnij

can potentially have non-zero values for all index combinations. This would
mean that all Fourier modes spanning the Hilbert space in question contribute
to the reconstruction of all the eigenvalues. In the following, Γαmnij will be
investigated for certain α-values as a function of m and n in order to illustrate
some general tendencies that generally arise for all kernels, given the relatively
high dimensionality of Γαmnij .

Figure 6 shows as an example Γ6mn
11 and Γ6mn

41 and thereby the relative
Fourier contributions to the reconstructions of λ6

11 and λ6
41. We note that the

evaluation of (39) is shown in a double logarithmic representation along m and
n. Given the symmetries of the Fourier spectrum, there is also a correspond-
ing symmetry along the diagonal of Γαmnij defined by m = n, which is not
evident in the figures, exhibited for all m,n 6= 1. This means that each value
of Γαmnij for m,n 6= 1 which is shown in Figures 6 represents approximately
half the reconstructed relative energy of the eigenvalue α of the corresponding
complex conjugate Fourier pair. Deviations from a single peak in Figure 6 are
obvious and may be expected for a domain length corresponding to merely
five integral length scales. Nevertheless, this deviation reveals spectrally the
deviation between the Fourier and POD basis given that for both kernels, mul-
tiple Fourier modes are needed to reconstruct the given eigenvalue. Appendix
B includes the evaluation of (39) for all the kernels (33a)-(33e) across domain
sizes, illustrating that these tendencies do not constitute a special case, but a
more general feature for small domain sizes. In figures B2a-B2f, an alternating
pattern between even and odd α-values is noted where for odd α, the recon-
struction is dominated by a single Fourier complex conjugate pair. For even α
the reconstruction of these modes is less efficient using the Fourier basis, where
approximately 60% of the energy of the given eigenvalue is reconstructed by a
single conjugate pair. It is worth noting that since

∑
m,n Γαmnij ≈ 1, for all α

(the deviation from unity here being due to the negligible contributions from
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(a) (b)

Fig. 6: Relative contributions, Γ6mn
i1 , to the reconstruction of λ̃6

i1 for the
domain with length LΩ1

= 5Λf . (a): Results for i = 1, (b): results for i = 4.
Multiple Fourier modes are seen to contribute to the reconstruction of the
eigenvalue in question.

the corresponding imaginary parts of (39)) for values of Γαmnij > 0.5, m,n 6= 1,
some negative contribution to the reconstruction of eigenvalues in the set of
remaining Fourier modes is needed to compensate for the overshoot of unity.
This leads to negative values of Γαmnij which are evident in figure 6. It is also
seen that the deviation from a single dominant peak increases for increasing α
in the range α ∈ [1 : 8] for both kernels.

The reconstruction components of λ5
16 and λ5

46 are shown in Figure 7 for
the largest domain of length 80Λf . Here, the significant contributions to the
reconstruction of the most energetic eigenvalues is dominated by fewer Fourier

(a) (b)

Fig. 7: Relative contributions, Γ5mn
i6 , to the reconstruction of λ̃5

i6 for the
domain with length LΩ6

= 80Λf . (a): Results for i = 1, (b): results for i = 4.
Multiple modes are seen to contribute to the reconstruction of the eigenvalue
in question.
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(a) (b) (c)

(d) (e) (f)

Fig. 8: (a)-(f): Relative contributions, Γ3mn
1j , to the reconstruction of λ̃3

1j for
the domains with length LΩj , j ∈ [1 : 6], respectively. The figures illustrate a
divergence from a single dominant mode contributing to the reconstruction of
λ̃3

1j as the domain is increased, as the contribution of m = n = 2 is decreasing
as the domain is increased.

modes than for the case of LΩ1 , but nevertheless, still only 60% of the energy
is reconstructed by a single Fourier mode pair in the case of both the K16

and K46 kernels for α ∈ [1 : 8]. This behaviour characterized by multiple
Fourier modes being needed to reconstruct a given eigenvalue is consistent
despite the appearance of high degree of collapse of the spectra related to the
K1j kernel seen in Figure 5. This shows that the convergence between the
two sets of basis functions is determined not only by the kernel in question,
but does not necessarily follow from the domain length increase. Although
a smaller percentage of the total set of Fourier modes in a larger domain
is needed to reconstruct a given eigenvalue, the results do not indicate that
this number approaches unity for increasing domain sizes. This behaviour is
illustrated by Figure 8 where it is seen that the fraction of λ3

1j reconstructed
by m = n = 2 decreases as the domain size is increased. Note that this does
not mean that the number of Fourier modes needed for the reconstruction of a
given eigenvalue is not converging in general. The current results could indicate
(for this particular case) that there is a convergence towards the effective
reconstruction of λ3

1j by the triplet of conjugate Fourier pairs corresponding to
m = n ∈ [1 : 3]. The results, therefore suggest that the convergence is simply
not towards a single Fourier mode (or Fourier conjugate pair), meaning that we
cannot assume that POD eigenfunctions converge to Fourier modes for locally
translation invariant kernels as the domain size is increased - something that
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(a) (b)

Fig. 9: Relative contributions, Γ38mn
i3 , to the reconstruction of λ̃38

i3 for the
domain with length LΩ3

= 15Λf . (a): Results for i = 1, (b): results for i = 4.
Multiple modes are seen to contribute to the reconstruction of the eigenvalue
in question.

is commonly presumed in literature, [3, 11, 24, 28, 32]. A more conservative
hypothesis is that Fourier modes should be considered as approximations to
POD eigenfunctions on aperiodic domains, especially given the discussions in
section 3 and the fact that Fourier modes do not reside in L2(R,C) in relation
to the homogeneous/stationary turbulence case.

Generally, there appears to be a coupling between the deviation of the
Fourier and eigenspectra at similar mode numbers and the number of Fourier
modes needed to reconstruct a corresponding eigenvalue. Figure 9 shows Γ38mn

13

and Γ38mn
43 for the domain length corresponding to 15Λf . Given the larger

deviation between the corresponding Fourier and eigenspectra seen in figure
5 at α = 38 for the domain length of 15Λf , a larger deviation from a full
eigenvalue reconstruction using a single Fourier pair may be expected. This
tendency is reflected in figure 9 by the significantly larger deviations from peak
values of 0.5 in the case of Γ38mn

43 than for Γ38mn
13 . A significant contribution to

the reconstruction of these low-energy eigenvalues arises from the cross terms,
m 6= n in (17), indicative of more complex relations between the Fourier and
eigenspectra.

4.4 Impact on reconstruction of the Taylor micro scale

Assuming that POD modes are Fourier modes results in enforcing a period-
icity on the correlation function when the DFT is applied. In addition to the
periodification of the correlation function, the correlation function is altered
in more subtle ways, including its Taylor micro/macro scales.

The objective is here to relate the spectral discrepancies between the
Fourier and eigenspectrum for the low-energetic modes to the periodification
of the correlation function. The ”metric” used for these high mode number dis-
crepancies is the Taylor micro scale, which is traditionally used as an estimate
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for the largest dissipative scale sizes in turbulent flows, [33], [34], [35], or simply
the estimate of velocity gradients. The Taylor micro scale, (27), is expanded
using POD and Fourier bases by first expanding the second derivative of the
correlation functions using (19) and (20)

∂2R(x, y)

∂x2

∣∣∣∣
y=x

=

N∑
α=1

λα
d2ϕα(x)

dx2
ϕα∗ (x) , (40)

=
∑

α,m,n,p,q

Hαmncα,pcα,q∗
d2ψp(x)

dx2
ψq∗(x) . (41)

Then, assuming that ϕα = ψα, for all α ∈ [1 : N ] implies that all cross terms
in (41) vanish (analogous to the step from (20) to (21)). This leads to the
following approximation of the second derivative of the correlation function

∂2Rσ(x, y)

∂x2

∣∣∣∣
y=x

=

N∑
α=1

σα
d2ψα(x)

dx2
ψα∗(x) , (42)

which in form resembles (40). However, using (42) in the case of aperiodic
domains evaluates to a different estimate of the Taylor micro scale than using
(40). While (40) completely recovers the second derivative of the correlation
functions used for the micro scale estimate, (42) yields a filtered estimate of
the microscale, denoted by

λf,σ =

√
−2

d2Rσ(x,y)
dx2 |y=x

. (43)

Figure 10 illustrates the correlation functions K2,1(x, y) and K2,4(x, y) (corre-
sponding to (33a) and (33d), respectively) along with the Fourier reconstructed
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Fig. 10: Comparison between the Fourier reconstructed correlation functions
K21 and K24, evaluated for x = 0 on domain with lengths LΩ2

= 10Λf .



Springer Nature 2021 LATEX template

26 Discrepancies between POD and Fourier modes on Aperiodic Domains

5 10 15 20 40 80
10 -4

10 -2

10 0

(a)

10 0 10 1 10 2

10 -2

10 -1

10 0

(b)

Fig. 11: Relative error of the Taylor micro scale estimate using the DFT
for various correlation functions as a function of domain size. (a): Results for
(22a), (b): Results for (33a)-(33e).

correlation functions, Kσ,21(x, y) and Kσ,24(x, y), obtained from (21). In addi-
tion to the periodification of the correlation function resulting from neglecting
all cross terms in (41), a deformation of the correlation function occurs corre-
sponding to the functions being ”compressed” towards the ends of the domain.
The result is an overestimation of the second derivative at the correlation
peak(s) and a thereby a underestimation of the Taylor micro scale. This is
demonstrated by the differences in the parabolic fits, p and pσ, of the original
correlation functions and the periodified ones, respectively (see also Appendix
C). Figure 11 shows the relative error between (43) and (27) for the two sets
of correlation functions as a function of domain size. Note that these figures
represent the deviations between the original Taylor micro scale, (27), and
the micro scale obtained after the reconstruction of (43) using the complete
Fourier basis. The results indicate a dependence on the micro scale size where
the relative error is seen to increase for decreasing MMSRs. In all of the cases,
the DFT modes underestimate the micro scale as a result of the implicit peri-
odificiation and squeezing of the correlation function inherent to the use of
DFT modes.

The full reconstruction of the micro scale is, however, possible using POD
modes with much fewer terms facilitated by the exact reconstruction of the
second derivative of the correlation function, (40). Figure 12 shows the real part
of the cumulative modal reconstruction of the micro scale related to (33a)-(33e)
as functions of domain size. The dominant contributions to the cumulative
reconstructions of the micro scale leading up to maximum value at higher
N are in fact imaginary. Given that the Taylor micro scale is defined as the
positive root of a second order polynomial fit, imaginary roots indicate that
the partially reconstructed kernel has an off-diagonal peak - meaning that the
partially reconstructed correlation function attains its maximum at x 6= y. The
polynomial roots become real as an increasing number of modes is used in the



Springer Nature 2021 LATEX template

Discrepancies between POD and Fourier modes on Aperiodic Domains 27

10 0 10 1 10 2
10 -1

10 0

10 1

(a)

10 0 10 1 10 2
10 -1

10 0

10 1

(b)

10 0 10 1 10 2
10 -1

10 0

10 1

(c)

10 0 10 1 10 2 10 3
10 -1

10 0

10 1

(d)

10 0 10 1 10 2 10 3
10 -1

10 0

10 1

(e)

10 0 10 1 10 2 10 3
10 -1

10 0

10 1

(f)

Fig. 12: Cumulative modal reconstruction of the Taylor micro scale using
POD modes related to the correlation functions (33a)-(33e) for various domain
sizes .

reconstruction of the correlation function. A region of monotonic convergence
is observed in all cases after the maxima in Figure 12, due to sign change of
the second derivative of the polynomial fit.

The general monotonic relations exhibit similar behaviours across all
correlation functions and domains in Figure 12, where certain micro scale
estimates are converging faster than others. For small MMSRs, where the
Fourier modes perform worst in terms of the reconstruction of λf , the POD
modes are seen to perform best - as seen in Figure 12. The most extreme
case is seen for the Gaussian kernel, K5j , in Figure 12, representing the
self-similar Karman-Howarth solution, [31], where a very small fraction of the
POD modes reconstruct the micro scale down to an negligible error for all
domain sizes. For the same kernel in Figure 11b the relative error estimate is
in the order of 100% for all domain sizes after using all of the Fourier modes
in the reconstruction. In addition, the error may be potentially even more
substantial if the Fourier basis was used in a reduced-order model, where only
a subset of these were used in the reconstruction.

The analysis presented above demonstrates that several different kernels
exhibit consistent trends in the relationship between, on one hand, the con-
vergence of microscale reconstruction using Fourier modes, and on the other
hand, MMSR and domain length. Further studies would be needed to address
the extend to which these trends can be generalized, and whether the effect of
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the MMSR from sampled analytical kernels translates to a Reynolds number
dependency in the case of kernels derived from empirical flows.

5 Conclusions

The current work presented a theoretical and numerical analysis of the relation
between Fourier and POD modes for locally translationally invariant kernels
on aperiodic domains. The work asserted theoretically that trigonometric poly-
nomials could not be considered solutions to the POD optimization problem
on infinite spatial/temporal domains as they are not elements of L2(R,C),
excluding them from spanning the same space. This fact leads to the numerical
analysis of discrepancies between Fourier and eigenspectra on finite aperiodic
domains as a function of kernel characteristics and domain size. A set of cor-
relation functions was generated using modified Bessel functions of the second
kind, enabling the variation of the Taylor macro/micro scale ratio. These cor-
relation functions, characterized by their analytical Fourier transforms, were
used to compare the spectral properties of the DFT and eigenspectra. The
eigenspectra (unlike the DFT spectra) were shown to replicate the analytical
spectral asymptotic behaviour to a very high degree, even for extremely small
window sizes down to five integral length scales. The results indicated that
the macro/micro scale ratio was of central importance for the observed spec-
tral discrepancies between DFT and eigenspectra, and the spectral differences
were increased for small macro/micro scale-ratios. These results were con-
firmed by the analysis of a second set of correlation functions - which included
the Karman-Howarth solution of the fundamental equation for the propaga-
tion of the correlation function - confirming that for macro/micro scale-ratios
approaching unity the deviation between the DFT and eigenspectra increased.
The Fourier expansion of the eigenspectrum was then analyzed in order to
couple the two spectral energy representations. Here a divergence between the
POD and Fourier spectra was observed, measured in terms of the number of
Fourier modes needed to reconstruct a given eigenvalue, as domain sizes were
increased. This result challenges the implied notion of POD modes approach-
ing Fourier modes for increasing domain sizes. Finally, it was demonstrated
that the implicit periodification of the correlation function imposed by the use
of DFT modes for aperiodic domains decreases the Taylor micro scale estimate
obtained from the modified correlation function. The effect was largest for
POD kernels characterized by small Taylor macro/micro scale-ratios and falls
in line with the discrepancies observed in the corresponding spectral analyses
performed earlier. While the Fourier basis was unable to fully reconstruct the
micro scale for any combination of correlation function and domain size, the
POD modes demonstrated the ability to reconstruct the aforementioned to a
very high degree using only a subset of modes in the case of a small macro/mi-
cro scale-ratio. This ability demonstrates the advantageous properties of the
POD modes compared to Fourier modes in the case of correlation functions
with small macro/micro scale-ratios.



Springer Nature 2021 LATEX template

Discrepancies between POD and Fourier modes on Aperiodic Domains 29

Acknowledgments. AH and CMV acknowledge financial support from the
European Research council: This project has received funding from the Euro-
pean Research Council (ERC) under the European Unions Horizon 2020
research and innovation program (grant agreement No 803419). PJO acknowl-
edges financial support from the Poul Due Jensen Foundation: Financial
support from the Poul Due Jensen Foundation (Grundfos Foundation) for this
research is gratefully acknowledged.

References

[1] J.L. Lumley, in Atmospheric turbulence and radio wave propagation
(Nauka, Moscow, 1967), pp. 166–178

[2] M.N. Glauser, S..J. Leib, W.K. George, in Turbulent Shear Flows 5
(Springer, Berlin, Heidelberg, 1987), pp. 134–145

[3] W.K. George, in International seminar on wall turbulence (1988)

[4] J.H. Citriniti, W.K. George, Reconstruction of the global velocity field in
the axisymmetric mixing layer utilizing the proper orthogonal decompo-
sition. Journal of Fluid Mechanics 418, 137–166 (2000)

[5] D. Jung, S. Gamard, W.K. George, Downstream evolution of the most
energetic modes in a turbulent axisymmetric jet at high Reynolds number.
Part 1. The near-field region. Journal of Fluid Mechanics 514, 173–204
(2004)

[6] S. Gamard, D. Jung, W.K. George, Downstream evolution of the most
energetic modes in a turbulent axisymmetric jet at high Reynolds number.
Part 2. The far-field region. Journal of Fluid Mechanics 514, 205–230
(2004)

[7] M.O. Iqbal, F.O. Thomas, Coherent structure in a turbulent jet via a
vector implementation of the proper orthogonal decomposition. Journal
of Fluid Mechanics 571, 281–326 (2007)

[8] C.E. Tinney, M.N. Glauser, L.S. Ukeiley, Low-dimensional characteristics
of a transonic jet. Part 1. Proper orthogonal decomposition. Journal of
Fluid Mechanics 612, 107–141 (2008)

[9] M. Sieber, C.O. Paschereit, K. Oberleithner, Spectral proper orthogonal
decomposition. Journal of Fluid Mechanics 792, 798–828 (2016)

[10] B.R. Noack, From snapshots to modal expansions – bridging low residuals
and pure frequencies. Journal of Fluid Mechanics 802, 1–4 (2016)



Springer Nature 2021 LATEX template

30 Discrepancies between POD and Fourier modes on Aperiodic Domains

[11] A. Towne, O.T. Schmidt, T. Colonius, Spectral proper orthogonal
decomposition and its relationship to dynamic mode decomposition and
resolvent analysis. Journal of Fluid Mechanics 847, 821–867 (2018)

[12] O.T. Schmidt, A. Towne, G. Rigas, T. Colonius, G.A. Brès, Spectral
analysis of jet turbulence. Journal of Fluid Mechanics 855, 953–982 (2018)

[13] S. Derebail Muralidhar, B. Podvin, L. Mathelin, Y. Fraigneau, Spatio-
temporal proper orthogonal decomposition of turbulent channel flow.
Journal of Fluid Mechanics 864, 614–639 (2019)

[14] J.L. Lumley, Stochastic tools in turbulence (Academic, New York, 1970)

[15] W.K. George, Some thoughts on similarity, the POD, and finite bound-
aries. Fundamental Problematic Issues in Turbulence (1999), 117–128
(1999)

[16] P. Holmes, J.L. Lumley, G. Berkooz, C.W. Rowley, Turbulence, Coher-
ent Structures, Dynamical Systems and Symmetry, 2nd edn. (Cambridge
University Press, 2012)

[17] K.K. Chen, J.H. Tu, C.W. Rowley, Variants of Dynamic Mode Decompo-
sition: Boundary Condition, Koopman, and Fourier Analyses. Journal of
Nonlinear Science 22(6), 887–915 (2012)

[18] A.N. Kolmogorov, The local structure of turbulence in incompressible
viscous fluid for very large Reynolds numbers. Doklady Akademii Nauk
Sssr 30(1890), 301–305 (1941)

[19] G. Batchelor, The Theory of Homogeneous Turbulence (Cambridge Uni-
versity Press, 1953)

[20] D.H. Chambers, R.J. Adrian, P. Moin, D.S. Stewart, H.J. Sung,
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Appendix A Domain dependence on solutions

A detailed analysis of the domain dependence of the POD operator on the rela-
tion between POD and Fourier modes is performed. The cases covered consist
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of translation invariant kernels on infinite domains, locally translation invari-
ant kernels on finite aperiodic domains and translation invariant kernels on
weighted inner product spaces are discussed. Initially, however, the case of the
one-dimensional POD integral eigenvalue problem with translation invariant
kernels on periodic domains is covered.

A.1 Translation invariant kernels on periodic domains

Define the POD integral operator as the map-
ping R : L2

w([−a2 ,
a
2 ],C)→ L2

w([−a2 ,
a
2 ],C), 0 < a < ∞ where K : R × R → R

is a translation invariant kernel

K(x, y) = K̃(x− y) , x, y ∈ R , (A1)

which is a-periodic, i.e.

K̃(x− y + a) = K̃(x− y) , x, y ∈ R . (A2)

The integral operator can then be evaluated for ϕ(y) = eiky with the
substitution z = x− y

(Rϕ) (x) =

∫ a/2

−a/2
K̃(x− y)ϕ(y)dy , (A3)

=

∫ x+a/2

x−a/2
K̃(z)e−ikzdz︸ ︷︷ ︸
λ(k)

eikx , (A4)

= λ(k)ϕ(x) , (A5)

where λ(k) is found to be invariant with respect to x due to the condition
(A2). Of the cases covered in the current work, condition (A2) in combination
with the finite domain, Ω = [−a/2, a/2], is the only case where the Fourier
basis can be deduced as the solution to the POD eigenvalue problem, given
the restriction ϕ ∈ L2

w([−a2 ,
a
2 ],C).

A.2 Translation invariant kernels on infinite domains

It is often assumed, in cases of statistically stationary (aperiodic) turbulence,
that the temporal eigenfunctions on a finite temporal domain are Fourier bases.
For the case of the POD, this idea originated from [1] who advocated the use of
Fourier analysis in combination with the POD for homogenous fields of infinite
extent.

Having restricted the eigenfunctions of (6) to reside in L2
w(Ω,C), we now

focus on the strict limitations imposed on the functions a Fourier transform
can be applied to. The Fourier transform can be defined as the mapping F :
L2 (R,C)→ L2 (R,C).
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Although, a translation invariant kernel resides in L2 (R,C) for a homo-
geneous field of infinite extent, it is clear that ϕ 6= eikx, x ∈ R, since
ϕ /∈ L2 (R,C). This leads to the conclusion that for homogeneous aperiodic
fields the eigenfunction in (6) cannot be of the harmonic type, as the criterion
of boundedness stated in (1) (in the case of w(x) = 1, x ∈ R) is not upheld.
Now since the homogeneous case is often referenced in literature when argu-
ing that solutions to (6) are of the type ϕ = eikx for aperiodic finite fields,
we see that the basis of this argument is flawed, since the functions x 7→ eikx,
x, k ∈ R, do not even reside in the vector space necessary for these to be
eigenfunction candidates for R.

A.3 Locally translation invariant kernels

We consider integral transforms R : L2(Ω,C)→ L2(Ω,C) given by

(Rϕ)(x) =

∫
Ω

K(x, y)ϕ(y)dy , (A6)

where K : Ω× Ω → C is the kernel function. Let the kernel K be translation
invariant within the subdomain S ⊂ R2 given by S = Lx × Ly, where Lx ={
x| − a

2 ≤ x ≤
a
2

}
, 0 < a <∞; and zero outside S. This means that K(x, y) =

K̃(x− y) for (x, y) ∈ S, where K̃ : [−a, a]→ R.
Defining the window function χ(x) by

χ(x) =

{
1 , x ∈ Lx ,
0 , x /∈ Lx ,

(A7)

we may write the kernel as K(x, y) = K̃(x−y)χ(x)χ(y). We apply the operator
R defined by this kernel via (A6) to a candidate solution ϕ(y) = eiκy with
κ = 2πn/a, n ∈ Z, yielding

(Rϕ)(y) =

∫ a
2

− a2
K(x, y)eiκydy , (A8)

=

∫ a
2

− a2
K̃(x− y)χ(x)χ(y)eiκydy , (A9)

=

∫ x+ a
2

x− a2
K̃(z)χ(x)χ(x− z)eiκ(x−z)dz , (A10)

= χ(x)

∫ x+ a
2

x− a2
K̃(z)χ(x− z)e−iκzdz eiκx , (A11)

= ζ(x, κ)ϕ(x) , (A12)
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where z = x− y and

ζ(x, κ) = χ(x)

∫ x+ a
2

x− a2
K̃(z)χ(x− z)e−iκz dz . (A13)

The candidate function ϕ is an eigenfunction if ζ(x, κ) does not depend on x.
Since ϕ ∈ L2(Lx,C) we need only consider x ∈ Lx, for which the first window
function χ(x) = 1. The limits on the integral correspond to Lz−x, which is
exactly the interval where the integrand’s window function χ(x− z) = 1. We
need therefore not include any of the window functions in the expression for
ζ, leaving us with

ζ(x, κ) =

∫ x+ a
2

x− a2
K̃(z)e−iκz dz . (A14)

The extent to which this expression depends on x is determined by the prop-
erties of K̃(z). If K̃(z) satisifies K̃(z ± a) = K̃(z) for z ∈ Lz we find that
ζ(x, κ) is indeed independent of x; for example, for −a2 ≤ x ≤ 0 we have, with
z′ = z + a,

ζ(x, κ) =

∫ x+ a
2

x− a2
K̃(z)eiκzdz , (A15)

=

∫ − a2
x− a2

K̃(z)eiκz dz +

∫ x+ a
2

− a2
K̃(z)eiκzdz , (A16)

=

∫ a
2

x+ a
2

K̃(z + a)eiκ(z+a) d(z + a) +

∫ x+ a
2

− a2
K̃(z)eiκzdz , (A17)

=

∫ a
2

x+ a
2

K̃(z)eiκz dz +

∫ x+ a
2

− a2
K̃(z)eiκzdz , (A18)

=

∫ a
2

− a2
K̃(z)eiκzdz = λ(κ) , (A19)

which does not depend on x. The same relation can be shown to hold for
0 ≤ x ≤ a

2 .
As expected, a periodic kernel produces harmonic eigenmodes (see

Appendix A.1). A general kernel, however, does not. Note that if the domain
of integration would be set to the entire real line the x-dependency of the inte-
gral would vanish. In this case, however, the operator would be characterized
by R : L2(R,C) → L2(R,C), but then ϕ(x) = eikx, x ∈ R would not qualify
as a solution since eikx /∈ L2(R,C), as discussed earlier
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A.4 Weighted translation invariant kernels

An attempt to circumvent the above issues may be to apply a filter/window
on the signal in order to ensure compactness of the kernel or in some way
argue the attainment of periodicity. Common examples of windows used are
Hamming, Hanning, and Bartlett windows to mention a few. In this approach
we must introduce a new operator F : L2

w(R,C)→ L2
w(R,C) with a kernel,

G : R × R → R. This filter/window can be represented by the inner product
weight function, w. Note that w : R → R>0 can be chosen such that eikx ∈
L2
w(R,C). However, the introduction of w means that ϕ is now required to

satisfy the POD integral eigenvalue problem with the filtered/weighted kernel.
For a non-constant w, the effective kernel is given by

G(x, y) = G̃(x− y)w(y) , (A20)

from which it is clear that the resulting kernel, G(x, y), is not translation

invariant despite the fact that G̃ is. Because of this, ϕ(x) = eikx , x ∈ R, is
again disqualified from being a solution to the corresponding POD eigenvalue
problem.

The preceding theoretical considerations have led us to conclude that ape-
riodic domains do not admit to POD integral eigenfunctions of the form eikx,
either due to the failure to attain true translational invariance in the kernel on
finite domains, or in the case of infinite domains due to the fact that eikx does
not reside in L2(R,C). The introduction of a filter is also shown to modify the
effective kernel such that it is not translation invariant - disqualifying the use
of filters as a strategy to conclude that eikx are the eigenfunctions. These the-
oretical insights have therefore led us to the conclusion that we cannot expect
that any numerical solutions to kernels on finite domains are Fourier bases.

Appendix B Reconstruction of Eigenspectra

Figures B1-B10 show the reconstruction of the first six eigenvalues for the
smallest and largest domain sizes.
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(a) (b) (c)

(d) (e) (f)

Fig. B1: Contributions to the eigenvalue reconstruction of modes α = 1 : 6
using Fourier modes. (a)-(f): contributions for K11.

(a) (b) (c)

(d) (e) (f)

Fig. B2: Contributions to the eigenvalue reconstruction of modes α = 1 : 6
using Fourier modes. (a)-(f):contributions for K16.
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(a) (b) (c)

(d) (e) (f)

Fig. B3: Contributions to the eigenvalue reconstruction of modes α = 1 : 6
using Fourier modes. (a)-(f): contributions for K21.

(a) (b) (c)

(d) (e) (f)

Fig. B4: Contributions to the eigenvalue reconstruction of modes α = 1 : 6
using Fourier modes. (a)-(f): contributions for K26.
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(a) (b) (c)

(d) (e) (f)

Fig. B5: Contributions to the eigenvalue reconstruction of modes α = 1 : 6
using Fourier modes. (a)-(f): contributions for K31.

(a) (b) (c)

(d) (e) (f)

Fig. B6: Contributions to the eigenvalue reconstruction of modes α = 1 : 6
using Fourier modes. (a)-(f): contributions for K36.
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(a) (b) (c)

(d) (e) (f)

Fig. B7: Contributions to the eigenvalue reconstruction of modes α = 1 : 6
using Fourier modes. (a)-(f): contributions for K41.

(a) (b) (c)

(d) (e) (f)

Fig. B8: Contributions to the eigenvalue reconstruction of modes α = 1 : 6
using Fourier modes. (a)-(f): contributions for K46.
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(a) (b) (c)

(d) (e) (f)

Fig. B9: Contributions to the eigenvalue reconstruction of modes α = 1 : 6
using Fourier modes. (a)-(f): contributions for K51.
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(d) (e) (f)

Fig. B10: Contributions to the eigenvalue reconstruction of modes α = 1 : 6
using Fourier modes. (a)-(f): contributions for K56.
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Appendix C Periodification of the correlation
function

Figure C11 demonstrates the periodification of of the correlation functions
Kσ,2j , j ∈ [1 : 5] as a result of of assuming POD modes to be Fourier modes.
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Fig. C11: (a)-(f): Illustration of the Fourier reconstructed correlation func-
tions as a result of assuming that ψα = ϕα, for all α evaluated for x = 0
on domains with lengths LΩ2

= 10Λreff , respectively. p and pσ denote the
parabolic fits of K2j , j ∈ [1 : 5] and Kσ,2j , j ∈ [1 : 5], respectively.
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