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Abstract: Tissue engineering has become a medical alternative in this society with an ever-increasing
lifespan. Advances in the areas of technology and biomaterials have facilitated the use of engineered
constructs for medical issues. This review discusses on-going concerns and the latest developments
in a widely employed biomaterial in the field of tissue engineering: gelatin. Emerging techniques
including 3D bioprinting and gelatin functionalization have demonstrated better mimicking of native
tissue by reinforcing gelatin-based systems, among others. This breakthrough facilitates, on the one
hand, the manufacturing process when it comes to practicality and cost-effectiveness, which plays
a key role in the transition towards clinical application. On the other hand, it can be concluded that
gelatin could be considered as one of the promising biomaterials in future trends, in which the focus
might be on the detection and diagnosis of diseases rather than treatment.

Keywords: gelatin; biomaterials; regenerative medicine; tissue engineering

1. Introduction

Tissue engineering is defined as a new branch of knowledge that is a result of com-
bining technologies from different research areas including biology, chemistry, engineering,
medicine, pharmacy or material science [1]. This interdisciplinary field can provide a medical
alternative in the current health issue of organ and tissue failure. The US government
has recently reported that 107,000 people are on the waiting list for organ transplanta-
tion and as many as 17 people on these lists die every day [2]. In Europe, every hour,
six patients join the waiting list and, approximately, 18 of them die every day [3]. In 2017,
22.3 million bone-related procedures were executed, and by 2022, there is expected to be
an increase of 30% [4].
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In this line, tissue engineering has gained importance as it relies on designing, de-
veloping and optimizing three-dimensional (3D) scaffolds for tissue repair, healing and
regeneration [1]. With this important development in hand, tissues with a high donor
demand, such as bone and cardiac, have taken advantage of this revolutionary multidisci-
plinary area and dealt with donor scarcity [1]. In addition, some of the studies have reached
clinical trials, being proof of the capacity of designed systems to regenerate tissue [5–7].
Nonetheless, although tissue engineering has opened up a new way of practicing medicine,
there are some concerns in terms of cost-effectiveness, reproducibility or scalability that
need to be addressed [8].

The development of new technologies such as 3D bioprinting led to burgeoning in-
terests in the use of these technologies. On the one hand, this forefront approach permits
integration into scaffolds of an array of composites such as biological agents or cells, bring-
ing about enhanced system effectiveness. On the other hand, its unique feature with respect
to automation enables the manufacturing of complex scaffolds cost-effectively, together
with higher reproducibility rates, hence addressing the lack of clinical translation [4,9]. In
fact, it has already been employed in a wide range of tissues including skeletal muscle,
bone and neural regeneration [10–12].

The latest advancements in 3D bioprinting have paved the way for the new trend
known as 4D bioprinting, which has demonstrated promising results so far. This 4D
bioprinting allows 3D-printed structures to respond to stimuli such as pH or temperature,
in accordance with the changes the tissue may encounter over time [13–15]. This new
methodology is a great advantage, as it helps to design structures that can better mimic
natural tissue, as well as adapt to interfaced tissues [16].

It is worth bearing in mind that these new technologies are used in certain biomaterials.
Particularly in the field of tissue engineering, these materials must meet the following
requirements: good biocompatibility and biodegradability and low toxicity, among others.
Thus, one of the most widely used biomaterials in the area is gelatin. Specifically, the
fact that it originates from collagen makes this material suitable for orthopedics and it
has already been widely employed in a myriad of systems such as drug delivery systems,
hydrogels, scaffolds or films for wound dressing [16–19]. Additionally, the Food and
Drug Administration (FDA) has approved a blend of demineralized bone matrix and
gelatin (DBX Strips) for bone tissue engineering, together with absorbable gelatin sponges
(Surgiflo®, Ferrosan Medical Devices A/S, Søborg, Denmark, Cutanplast®, Mascia Brunelli
S.p.a., Milano, Italy) to maintain hemostasis in multiple surgeries [20,21].

Due to the aforementioned properties, researchers have continued to use this versatile
biomaterial. Hence, this review focuses on the latest progress with gelatin in the field
of tissue engineering. Current challenges together with the latest advances and most
significant results of gelatin-based approaches are discussed.

2. Gelatin as a System

Since the launch of biomaterials for tissue regeneration purposes, gelatin has been
used in several systems such as injectable hydrogels, drug delivery systems and scaffolds.
This section highlights the advantages and disadvantages of using gelatin as a biomaterial
in the field of tissue engineering.

Gelatin is a natural polymer that bears a resemblance to its precursor collagen
(one of the most abundant components of the extracellular matrix). As previously de-
scribed, after isolating collagen, gelatin can be extracted in two ways: by alkaline or acid
hydrolysis [22–24]. The latter will determine the isoelectric point (IP) of gelatin. When sub-
jected to acid hydrolysis, gelatin is classified as type A with IP ≈ 5. Extraction in an alkaline
medium gives rise to type B gelatin with IP ≈ 9. It is worth mentioning that, as a result of
the denaturalization step, gelatin has a linear structure, consisting of Gly-X-Y (mainly pro-
line and hydroxyproline) sequences. Similarly, other amino acid sequences in the structure,
known as the RGD motif, help in cell adhesion, proliferation and differentiation.
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Its advantageous characteristics, mainly biocompatibility, biodegradability and low
toxicity, allow for increased cell adhesion, differentiation and proliferation at the same time
that it is degraded by body enzymes (metalloproteinases), without causing an immunogenic
response [22,25,26]. Moreover, as it is cost-effective, it has been employed in a wide range
of tissues (bone, skeletal, neural), forming different systems that range from microparticles
for bone regeneration enhancement, to wound dressing or hydrogels for the controlled
release of chemotherapeutic agents in the treatment of cancer [27–29].

Although its benefits make this material appropriate to be used in tissue engineering,
gelatin manipulation also has some potential drawbacks. A noticeable property of this
polymer is the lack of thermostability, changing from solid formto gel depending on
temperature. One of the most common strategies to overcome this limitation is to crosslink
its sequences either physically or chemically [22,24]. Widely described physical methods
rely on using UV light or microwave energy to rearrange gelatin’s amino acid sequences,
but this approach is more likely to lack efficacy, as it is more difficult to have good control of
the crosslink density. There have also been attempts with chemical agents that range from
synthetic polymers (glutaraldehyde) to natural enzymes (transglutaminase) [18,30–32].
Synthetic polymers have shown controlled synthesis, but the byproducts may result in
cytotoxicity, whereas enzymes may not generate chemical waste materials, as they are
natural and bond gelatin fibers [30,32–35]. Nonetheless, this necessity to crosslink gelatin
has put aside the idea of forming in situ hydrogels.

On the other hand, gelatin is known for its ability to absorb water. This characteristic
is highly valued in tissue regeneration, since porosity ensures a diffusion of nutrients as
well as oxygen for proper cell growth [36]. However, porous structures do not always meet
all the requirements to provide the exchange of products for cell survival, because either
the size or the diameter of the pores is not sufficient, or they are not regular enough, and
some gelatin-based cell delivery systems have demonstrated a poor cell survival rate [37].
Along these lines, the current issue lies in finding how to use gelatin-based systems, as
a means to ensure proper pore size that may result in a high rate of cell survival.

Finally, gelatin is a polymer that can be obtained from different sources, but the most
common is the natural one, for example the porcine skin [16,19,38]. The latter made it
the polymer of choice for many researchers. However, the disadvantages stated above,
including poor mechanical stability, imply that it has to be combined with other materials
to improve its properties. Such a process, in some instances, resulted in complicating the
design of the composite system [39]. This, in turn, leads to a lack of reproducibility and
reduces cost-effectiveness, and consequently, scalability, leaving behind the translation
from in vitro to human use in medical practices.

3. New Advances in the Production of Gelatin-Based Constructs

The latest advances in tissue engineering have brought about novel systems that
encompass the disadvantages and make gelatin a promising candidate. Owing to that, the
pace towards clinical translation might be accelerated. This section describes the progress
made in coping with the above-mentioned limitations (Figure 1).
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the search to find an alternative for adipose tissue regeneration, Daikuara et al. designed 
a simple yet effective gelatin-based hydrogel using the bioprinting technique. This emerg-
ing technique enabled the design of adipose tissue by simply varying the gelatin concen-
tration and printing conditions, without the need to combine it with other materials [40]. 
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and application of gelatin directly to the injured site (Figure 2a). An enlightening study 
described the 4D bioprinting of gelatin by combining a 3D printed gelatin-based hydrogel 

Figure 1. Illustrative image of the latest advances in the design process of gelatin-based sys-
tems. Reprinted from International Journal of Pharmaceutics, 562, Echave et al. [30,40]. Enzy-
matic crosslinked gelatin 3D scaffolds for bone tissue engineering, 151–161, copyright 2019, with
permission from Elsevier; Acta Biomaterialia, 94, Tygtal et al. [30,40]. Additive manufacturing of
photo-crosslinked gelatin scaffolds for adipose tissue engineering, 340–350, copyright 2019, with
permission from Elsevier.

3.1. Technological Progress
3.1.1. Bioprinting

High-precision 3D printing permits the design of gelatin-based systems that mimic
a tissue-like environment accurately and extends its use in complex applications, such as
adipose, blood vessels, skeletal muscle or for wound dressing [28,40–42]. For instance, in
the search to find an alternative for adipose tissue regeneration, Daikuara et al. designed
a simple yet effective gelatin-based hydrogel using the bioprinting technique. This emerg-
ing technique enabled the design of adipose tissue by simply varying the gelatin concentra-
tion and printing conditions, without the need to combine it with other materials [40].
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In addition, adding the variable of time to 3D bioprinting facilitates the adjustment
and application of gelatin directly to the injured site (Figure 2a). An enlightening study
described the 4D bioprinting of gelatin by combining a 3D printed gelatin-based hydrogel
with electrical stimuli. The system responded to electrical changes, and cells were lined
to form fibrous structures that simulated skeletal muscle (Figure 2b). Since this tissue
is based on aligned cell constructs, printing allows for inducing electrically engineered
hydrogel to rearrange its composition. This method represents a promising development
in achieving complex tissues, such as muscle-like enrollment where cell proliferation is
linked to electrical stimulation [43]. Within this framework, gelatin is classified as a smart
biomaterial, owing to its ability to reshape itself in changing physical conditions such
as wettability, or electric or magnetic field. The latter holds great promise in bone tissue
engineering applications as it is a stimuli-responsive polymer, which can lead to rigorous
drug delivery as well as opening up the opportunity for biosensing and monitoring [44,45]
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Figure 2. Gelatin-based 4D-printed hydrogel: (a) manufacturing process of 4D-printed hydrogel;
(b) DAPI/MHC cross-sectional images of fibers after 21 days. Adapted with permission from Yang
et al. [43]. Theranostics, published by Ivyspring International Publisher, copyright 2021.

Another strategy to improve bone tissue regeneration is the incorporation of inor-
ganic molecules within gelatin using different approaches and technologies such as 3D
bioprinting [19,46,47]. In this way, it is possible to merge the latest technological advances,
which provides homogeneity and accuracy to the system, with gelatin and inorganic
molecules present in the mineralized part of the bone [22]. For example, Jeong et al.
engineered various scaffolds composed of different gelatin and β-tri-calcium phosphate
concentrations. In the study, printing technology demonstrated its accuracy in spreading
calcium phosphate nanoparticles uniformly throughout gelatin-based scaffold. Further-
more, scaffolds with the highest amount of gelatin and inorganic molecules allowed for
higher bone tissue formation in vivo [19,46].

Printing techniques have also fueled the use of nanoparticles such as nanoclays when
using gelatin as a biomaterial. Nanoclays are silicate-derived multilayers that have been
shown to play a key role in the physiology of a wide range of tissues such as bone [48].
Several studies have proved that these nanoparticles are able to complement the already
adequate properties of gelatin hydrogels for bone tissue regeneration [16,49–51]. One of
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the main advantages of nanoclays consists in improving the gelatin’s poor mechanical
properties. In addition, the multilayer structure can facilitate the release of biological
agents, and the combination of 3D printing leads to new configurations that better mimic
the tissue of origin [52]. As a proof of concept, Quint et al. engineered VEGF-releasing
gelatin methacrylol-based scaffolds including embedded laponite nanoparticles [16]. This
approach presented several advantages, including the facility of gelatin to crosslink quickly
and the use of 3D printers to create blended scaffolds. The addition of nanoclay resulted in
a steadier release of the growth factor [16]. These results were in accordance with other
studies that demonstrated the great ability of nanoclays to absorb proteins as well as to
form tighter hydrogels [49–51].

3.1.2. Freeze-Drying Technique

The porous three-dimensional structure of gelatin allows the diffusion of nutrients and
oxygen for cell survival and higher cell adhesion rates. However, its porosity is always
desirable for regenerative medicine approaches [53]. The freeze-drying technique enables
modification of the pore diameter, the result being a reorganized permeable structure capable
of improving cell adhesion and the regenerative capacity of gelatin as a biomaterial [18,30].
Therefore, the freeze-drying process could help to produce highly porous and mechanically
stable gelatin-based structures (Figure 3).
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Figure 3. Effect of freeze-drying technique in gelatin-based systems: (a) macroscopic and microscopic
(SEM) images of freeze-drying effect in gelatin-based hydrogels and viability assay of the cells within
gelatin-based hydrogels; (b) SEM images and quantitative analysis of the effect of different tempera-
tures and polymer concentration on pore size. ** p ≤ 0.01, **** p ≤ 0.0001. Adapted with permission
from (a) Yuan et al. [47]. Small, published by John Wiley and Sons, copyright 2021; (b) Singh et al. [12].
Biomacromolecules 2019, 20 (2), 662–673. Copyright 2022, American Chemical Society.

Recently, Echave et al. developed an enzymatically cross-linked gelatin-based scaffold.
The freeze-drying technique enabled gelatin to form a porous hydrogel, which helped
to attract cells responsible for osteogenesis [18,30]. In other tissues, such as neural ones,
the challenge lies in finding the proper alignment of pores. In that case, temperature
cooling helps gelatin to form porous structures and thus better mimic tissue and promote
nerve regeneration [12]. Furthermore, this technique has become widespread, as it has
also proven to be advantageous for cell protection as well as for the release of biologically
active agents [17,36,54,55].
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3.2. Functionalization

A noteworthy drawback of gelatin is the need to crosslink its chains in order to gain
stability performance. This determines the in situ use of this polymer, which is a highly
desirable property when treating inaccessible areas [56,57]. One interesting alternative
consists of functionalizing and modifying gelatin with the methacryloyl group, which
is able to crosslink gelatin amino acids in mild circumstances in terms of temperature
and pH [58].

The chance to merge photosensitive groups with gelatin generates the opportunity to
design injectable hydrogels that rapidly crosslink and gelify in the damaged tissues. For
example, Quint et al. engineered a transportable printer capable of printing a gelatin-based
hydrogel straightaway in the injured skeletal muscle (Figure 4). Combining gelatin with
a methacrylol group allowed for photocrosslinking of the hydrogel within seconds once it
was injected into the damaged tissue [16].
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(a) graphic diagram; (b) images of GelMA-based hydrogel implantation; (c) in vivo results of fibrosis
in nontreated and treated groups. Adapted with permission from Quint et al. [16]. Advanced
Healthcare Materials, published by John Wiley and Sons, copyright 2021.

Tang et al. went a step further and designed a sprayable hybrid hydrogel based on
methacrylated gelatin. The rapid crosslinking under visible light permitted the placement
of the hydrogel directly into the damaged cardiac tissue, with no need to inject it, acting as
a network to release extracellular vesicles in a constant manner (Figure 5) [59]. These new
systems make it possible to extend the use of gelatin to tissues that are difficult to access
and treat, and accelerating the direct administration of the hydrogel into the injured site.
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Functionalization of gelatin improves the versatility of the hydrogel and its applica-
bility, but the weak mechanical properties of gelatin-based systems remain a problem. To
address this, recent advances have combined methacrylated gelatin (GelMA) hydrogels
with nanocomposites. The addition of nanocomposites includes materials that extend con-
ductivity (carbon-based materials, metals) and even minerals such as hydroxyapatite [60].
Lately, an exciting approach to regenerate electrically active tissues (skeletal muscle, neural)
based on blending polymer with highly conductive materials has been reported. Xu et al.
engineered a conductive system based on GelMA with biodegradable black phospho-
rous nanomaterial. The electroactive hydrogels showed enhanced ability to differentiate
mesenchymal stem cells to neural cells [61].

In the case of bone tissue regeneration, functionalized gelatins have been reinforced
with minerals, such as xonotlite (calcium silicate derivative) or nanohidroxyapatite
(an abundant material in the inorganic part of bone) [62,63]. The latter allows GelMA
hydrogels to improve their mechanical properties and osteoconductivity as well as to
approximate the native composition of bone. For example, Li et al. designed and devel-
oped nanohydroxyapatite-reinforced GelMA-based hydrogels with enhanced mechanical
properties and improved osteogenic ability in guided bone regeneration in vivo [63].

The adding of methacrylol groups has resulted in important progress, but recent
studies suggest a new trend in the use thiol-ene photocrosslinked hydrogels [64–66]. Unlike
gelatin metachrylol, thiol-ene- and norbornene-modified gelatin hydrogels use a lower
photoinitiator concentration. Furthermore, norbornen’s high selectivity towards thiols
significantly improves cell survival [64]. One interesting example is the norbornene- and
thiol-ene-based gelatin system designed by Göckler et al., which demonstrated a fast
photocrosslinking process with barely any side reaction, and it enabled a cell survival
rate above 80% regardless of the degree of cross-linking. This is particularly important
as methacrylate-gelatin-based hydrogels are totally dependent on the level of function-
alization [64]. Another interesting approach is the fabrication of active gelatin scaffolds
with tailored RGD motifs employing a site-specific enzymatic reaction. This approach
facilitated the recruitment of host cells mediated by the specific RGD–integrin interactions
and promoted osteogenic differentiation [67].
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In summary, functionalization of gelatin may address an important technological and
medical need: that is, the rapid use of hydrogels in emergency situations, as it allows the
design of systems that can be implemented in a fast and efficient way in the injured site.
Nonetheless, much work lies ahead, since most groups that functionalize gelatin have
a chemical origin, and thus could lead to undesired side effects.

4. State of the Art in Gelatin-Based Systems

Technological advances have introduced numerous gelatin-based systems that range
from the ability to regenerate tissue per se to serve as an evaluation-platform for agent
delivery. Here, we address the role of gelatin in recent systems that have been designed in
the field of tissue regeneration.

4.1. Gelatin as Tissue Regenerating Intermediary

One of the purposes of tissue engineering is to create a scaffolding system for cells to
provide a suitable environment that ensures tissue repair and healing. In this regard, as
gelatin has good biocompatibility, biodegradability and low toxicity, it has been incorpo-
rated into some scaffolding systems [68,69]. For instance, Yao and colleagues confirmed
the ability of gelatin-based scaffolds to promote osteogenesis both in vivo and in vitro by
activating osteoclasts. To that aim, they relied on previously tested, electrically responsive
gelatin-based scaffolds. Yet in this study, scaffolds were subjected to an extra electrical
stimulus that resulted in osteoclast activation that led to osteoblast differentiation and
maturation. In the same tissue, vascularization may play an important role when it comes
to regeneration. An elegant study has gone a step further and designed a gelatin-based
microspheres scaffold. In vitro results showed the ability to assemble a bone-like endothe-
lial structure, which was subsequently translated as an osteoinductive capacity in vivo.
Unlike the vast majority of scaffolds, this forefront macroporous approach could address
conventional rigid scaffold limitations, as it is a movable structure with abundant RGD
motifs that allows for the formation of capillaries for tissue regeneration [69].

Another strategy that has gained importance recently relies on designing self-healing
hydrogels. The latter reveals itself to be an interesting alternative in highly loaded tissues,
such as bone, owing to their properties of regeneration after collapse [70–72]. In this process,
gelatin’s characteristics support formulating hydrogels that are dynamically bonded, which
give rise to systems that can be recomposed upon their breakup. Particularly, aromatic
molecules of this polypeptide allow for the generation of dynamic bonds, by means of
host–guest physical interactions [73]. Likewise, gelatin amino groups permit interaction
with aldehyde groups and, therefore, form dynamic bonds [70–72]. Based on the latter,
Vahedi et al. engineered a gelatin-based self-healing and injectable hydrogel. Specifically,
gelatin amino groups were combined with amylopectin aldehyde groups that resulted in
hydrogels capable of recovering their shape and maintaining their rheological properties.
Along with that, they confirmed their applicability in bone tissue regeneration as scaffolds
presenting osteoinductive properties [70].

Much consideration has also been directed towards the development of hydrogels that
can adhere to damaged tissues and/or have conductive properties. Since gelatin has the
ability to enhance cell adhesion, it may serve as a platform to integrate adhesive hydrogels
into the tissue [74]. Similarly, gelatin’s tertiary structure enhances the mechanical properties
in adhesive hydrogels [75,76]. As an example, Cao et al. designed an organic hydrogel with
high adhesiveness, stretchability and mechanical properties. In that instance, they took
advantage of the complex structure of gelatin to crosslink within organic materials in order
to improve the mechanical properties of the hydrogel [76].

Despite the fact that gelatin is not a conductive material, it has also been part of
conductive hydrogels. As it is a naturally derived material, it confers highly desirable
improvements in electrically active elements such as biocompatibility or cell adhesion,
which otherwise are lacking in these hydrogels [77,78]. For instance, Hu et al. designed
a conductive hydrogel for peripheral nerve reconstruction. Conductivity was achieved by
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using graphene oxide, while biocompatibility and cell adhesion properties were improved
by gelatin. A further advantage was the steady release of growth factors that enhanced
cell growth [77].

In summary, gelatin is a biomaterial that remains very present today, as it has been
proven to be part of promising hydrogels such as self-healing, adhesive or conductive
hydrogels. This biomaterial can be implanted into self-healing hydrogels since it provides
hydrogels with a proper structure with which to design dynamic hydrogels. Altogether,
its complex structure may help to achieve complex adhesive hydrogels that attach to
tissues and ensure regeneration. Finally, gelatin may support conductive systems with cell
improvement properties such as biocompatibility or cell adhesion.

4.2. Gelatin in Drug Delivery Systems

Since gelatin can degrade in the presence of the body’s enzymes, it allows for the
release of biological agents over time. Notably, depending on the subdued treatment,
gelatin will be positively or negatively charged, resulting in interactions between electrically
charged compounds that lead to a controlled delivery [79]. As a result, this biomaterial
has been widely employed in different drug delivery systems including microparticles,
scaffolds, and more recently, nanofibers [80–82].

4.2.1. Tissue Regeneration

Gelatin-based drug delivery systems for tissue regeneration date back to the 2000s.
These constructs were simple and yet effective hydrogels that allowed for the controlled
release of growth factors such as BMP-2 or TGF-β1 for bone regeneration [24,83–85]. Sub-
sequently, these biomaterial-derivative platforms were widely employed for the renewal
of a myriad of tissues such as myocardial, nerve or wounds because of gelatin’s abil-
ity to release diverse biological elements [77,86–88]. Nonetheless, in the search to find
a synergistic effect, a forefront strategy relies on combining different therapeutic agents in
the same delivery system (known as dual delivery platforms) [89]. This technique enables
better mimicking of living conditions and the opportunity to interact with more biologically
active molecules.

Gelatin-Based Microparticles

Microparticles have been demonstrated to be effective drug carriers, either to enhance
tissue regeneration or to emulate in vitro performance [80] (Figure 6). Within this frame-
work, the latest technologies have permitted a blending of dual liberation systems within
injectable hydrogels [72,83,90]. Mitsui and coworkers recently designed a gelatin-based
injectable hydrogel with embedded gelatin microspheres loaded with growth factors. These
microparticles were responsible for releasing growth factors into the injectable hydrogel
in order to promote cell growth and differentiation of the cells embedded there, which
otherwise might have been reduced. Such a combination endorses taking advantage of
the benefits of growth factors (such as cell proliferation or differentiation capacity) in
a synergistic approach to guarantee the survival of the injected cells. In addition, the ability
of the outer hydrogel to degrade in the presence of the enzyme collagenase helped to
control the release of cells at the injured site [90].

Gelatin-Based Nanofibers

On the lookout for personalized medicine, nanofibers happen to be a candidate struc-
ture, since they bear a resemblance to an extracellular matrix [82,91]. Therefore, these
particles have been part of a myriad of systems, ranging from drug delivery systems to
scaffolding.

In this context, gelatin nanofibers have been employed in tissues such as tendon, carti-
lage and skin. Overall, supplementing scaffolding systems with gelatin-based nanofibers
has addressed the lack of cell attraction and differentiation in comparison to other bio-
materials. Likewise, it also serves as a platform for releasing biologically active agents
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(anti-inflammatory, antioxidants) that promote tissue regeneration [92–96]. In this sense,
Nazarnezhad et al. developed a gelatin-based nanofiber skin substitute and it proved to
be beneficial for re-epithelialization. The system showed prolonged degradation for up
to 28 days and no cell toxicity. The addition of biological agents—blood derivatives rich
in growth factors—increased cell viability and proved to provide a protective response
against bacteria, which may help to prevent infections [94]. Similarly, in another recent
study, gelatin-based nanofibers incorporated antioxidant agents to promote wound healing.
As nanofibers mimic ECM structure, the complex demonstrated in vitro its capacity for cell
adhesion and proliferation. Together with this, in vivo collagen formation was increased in
the test group, which might be attributed to nanofiber’s drug delivery capacity [95]. In brief,
gelatin-based nanofibers demonstrated in vitro ability to be considered as a scaffolding
system as well as a drug delivery device. However, increased efforts are required to achieve
efficient crosslinking methods for nanofibers, especially because conventional crosslink-
ing methods applied to bulk gelatin materials would not be good enough to crosslink
nanofibers with a higher surface area and consequently larger amounts of water, which
may require pretreatment steps or crosslinking in a vacuum chamber [97].
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4.2.2. Immune Control for Tissue Engineering

Some recent studies have focused on analyzing the role of the immune system and
inflammation in tissue regeneration, particularly, the regulation of macrophages [98,99].
A noteworthy study engineered BMP-2 loaded gelatin microspheres for bone regeneration.
These systems responded to degradation enzymes expressed by M1 macrophages. Results
show that microspheres were degraded over time and simultaneously BMP-2 was released
to healing bone. This approach may be a possible strategy to control the release of growth
factors, especially in the inflammatory phase of tissue regeneration [100].
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The merging of the latest technologies using gelatin to build smart drug delivery
systems has allowed a further step: to monitor migration from M1 to M2, bringing about
a more detailed examination of the inflammatory process. For example, Yoshimoto et al. de-
signed gelatin composite nanospheres as delivery systems, which allowed for the imaging
of macrophage miRNA in the inflammatory process. The systems were complemented with
imaging agents (molecular beacons) to detect miRNA in M1 macrophages, as it emits fluo-
rescence without degrading the cell. The constructs were also immobilized by antibodies to
be internalized in macrophages exclusively. The results showed that the nanospheres could
be introduced into M1s and degraded over time, releasing fluorophores that underwent
structural changes after interacting with miRNA. The latter enabled the detection of the
proinflammatory phase of macrophages. This method represents a promising advance in
better controlling the inflammation mechanism in tissue regeneration as it would permit at
any time a vision of these immune system cells [101].

4.2.3. In Vitro 3D Tissue Engineering

Despite the fact that gelatin has therapeutic properties for tissue regeneration or drug
delivery, it also plays an important role in drug research. Specifically, since it has the ability
to create 3D porous structures in which cells can grow, this biomaterial can imitate in vivo
microenvironment conditions. In fact, gelatin has been used to culture different cancer and
stromal cells [80,102,103].

Recent progress in this field has enabled the use of gelatin-based systems for drug-
delivery purposes in in vitro 3D environments [104–106]. In this regard, Nii and co-workers
designed chemically crosslinked, gelatin-based microspheres loaded with adenosine or
Pifithrin-α drugs. These systems were embedded within tumor-cell aggregates. On the one
hand, in both studies gelatin microspheres were shown to serve as a platform to enhance
the long-term cell viability of the aggregates, given their ability to supply oxygen and
nutrients [104,105]. On the other hand, the intricate 3D coculture of the tumor environment
was further simulated by the controlled drug release. The constant release of adenosine
resulted in the activation of tumor-associated macrophages, whereas that of Pifithrin-α
proved to be effective in activating cancer-associated fibroblasts [104,105].

In short, gelatin may serve as an effective platform to deliver biological factors in
culture systems, which is a step towards the design of more accurate 3D in vitro tumor-like
models and it paves the way for investigating the performance of a wide range of cancer
cells in the future.

4.3. Gelatin as Bioink for 3D Printing

As mentioned above, 3D printing has paved the way towards clinical use by designing
high-precision and sophisticated systems, alongside high cost-effectiveness. Since gelatin
is able to crosslink in situ as well as to provide biologically suitable properties (ability to
promote cell adhesion, proliferation and differentiation), gelatin-based inks or its deriva-
tives (for instance, GelMA) have been extensively exploited in several tissues such as bone,
skin and cornea [107–110].

In the field of bone regeneration, Pu X and colleagues have recently designed a hy-
drogel derived from a gelatin-based bioink—composed of methacrylated gelatin and 80%
hydroxyapatite—to insert in a rigid net. The high content of an inorganic component
demonstrated good printability and improved the mechanical properties of the natural
polymer, obtaining high rates of osteoconductivity. The printable hydrogel, in comparison
to empty scaffolds, also prolonged degradation time and demonstrated its ability to pro-
mote cell adhesion, proliferation and differentiation in vitro as well as to regenerate bone
tissue in vivo by attracting endogenous stem cells and creating vascular constructs [108].
Gelatin-derived ink also permits the integration of patient-derived stimulating compounds
such as platelet-rich plasma or platelet-rich growth factors [109,111]. The addition of stimu-
lating agents to bioinks may accelerate the regeneration process, since it provokes growths
factor release and thus attracts more cells.
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Gelatin-based ink has been exploited to regenerate cornea tissue. He B and coworkers
designed a GelMA derivative ink. As the latter is photocrosslinkable and attracts cells, the
3D construct showed good cell attachment and differentiation. In vitro cell viability was
not reduced either after seeding cells onto the surface of hydrogel or after printing cells
within the gelatin-based ink. In addition, animal tests proved that 3D hydrogel was able to
regenerate the cornea by stromal generation and re-epithelization [110].

As this natural polymer provides a suitable environment for cell growth, inks com-
posed of such material have been employed to design several tissue-like systems or models
(tumor, skin, muscle) [112–114]. A noteworthy example developed a heterogeneous tu-
mor system based on a composite ink consisting of gelatin, alginate and cellulose. The
construction demonstrated that the gelatin-based ink was suitable for printing various cell
types within different shapes of the 3D system in vitro. Specifically, alginate and gelatin
were responsible for biocompatibility and adhesion, respectively, while cellulose provided
mechanical strength [114].

In summary, gelatin-based bioinks provide 3D systems with the potential to attract,
attach and differentiate cells, resulting in complex structures capable of either promoting
damaged tissue regeneration or designing cellular models.

4.4. Gelatin as Theranostic Agent

Theragnosis concentrates on finding materials that can be used to diagnose diseases
while applying a therapy [115]. In this case, gelatin has shown that it can be part of different
systems, some of which are focused on finding early markers for an early diagnosis, but
others have proven to be effective for disease monitoring or evaluation.

One exciting area of research involves cancer therapy. Recently, gelatin has been
blended with several signal-emitting materials (such as inorganic particles), to obtain
an imaging of the disease course [116]. In this regard, Yadah et al. designed a blend of
gelatin and inorganic particles. Therapy consisted of hepatoma ablation via NIR radiation,
and imaging of the complex was obtained by functionalizing the system surface with
indocyanine green, as it emitted optical signals upon stimulation. In this system, gelatin
improves biocompatibility and biodegradability properties as the system is degraded in
the presence of matrix metalloproteinases (abundant enzymes in the tumor environment),
preventing the accumulation of inorganic particles in the body, which may become toxic in
the long term [116].

Moreover, gelatin has also exhibited a role in cancer biomarker detection platforms.
Recent studies have designed gelatin-containing systems that permit capturing blood
circulating tumor cells (an early cancer biomarker). Entrapped cells, afterwards, are released
steadily from the platform owing to the ability of gelatin to respond to physical stimuli
(such as temperature). This gelatin-based platform allows for cancer cell isolation and
posterior analysis as well as ensuring the encapsulated cells’ viability at all times, as a result
of the biocompatibility provided by this biomaterial [117,118]. This novel system that traps
cells and allows analyzing them in detail is a significant breakthrough in personalized
medicine, as it would allow accurate diagnosis together with specific treatments for each
case of tumor.

The field has branched out into other areas in order to detect biomarkers of certain
diseases, such as psoriasis. Qiao et al. designed a gelatin-based microneedle patch to
detect psoriasis-related RNA placed in the interstitial fluid. The study concluded that these
systems could effectively detect biomarkers through a minimally invasive and automated
approach. This forefront procedure may allow early diagnosis as well as imminent treat-
ment in several diseases in the future [119]. Finally, the evaluation of the curing process
is the focus in multiple systems. Gelatin has been involved in numerous devices that are
capable of monitoring the course of the disease [76,120]. Mainly, these systems are designed
to trace the wound healing process. In this line, Zheng et al. designed a gelatin-derived sys-
tem able to respond to electrical stimuli, resulting in accelerated tissue regeneration, while
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at the same time, as it was able to control all the movements of the skin, the gelatin-based
system improved the repair process [120].

5. Conclusions

Gelatin has been a widely explored biomaterial in multiple systems (hydrogels, scaf-
folds, drug delivery systems) and for extended applications in the field of tissue engineering.
Despite this extensive use, several limitations remain to be addressed. For instance, the
need to crosslink their chains forces them to be used in combination with other com-
pounds, which, in turn, hinders the handling. Nonetheless, new technologies together
with advanced techniques are providing interesting and emerging opportunities for this
biomaterial, making gelatin a very versatile tool. First, simply being able to use this bio-
material suitable for 3D equipment has simplified its manipulation and has expanded
its use to more complex tissues such as nerve or adipose. In parallel, functionalization
has provided a synergistic effect in gelatin-based hydrogels, especially those designed
by 3D printers, since it allows the material to be adapted to the injured tissue. These
developments are opening new windows for gelatin in terms of therapeutic applications.
Second, systems that are currently in the spotlight (drug delivery systems, self-healing,
conductive or adhesive hydrogels) have taken advantage of gelatin’s characteristics as
a means to improve their properties. A novel approach has also advocated the use of
gelatin as a material to investigate new drugs or new therapeutic pathways in vitro. The
latter may be useful in future trends that are shifting towards a new era that will focus
not only on therapy, but also on disease diagnosis. In brief, gelatin’s potential to adapt to
different environments, along with the timing, makes it a promising biomaterial for future
therapeutic and theranostic approaches.
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