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ABSTRACT
Recently, a systematic approach for the design of lattice materials with extreme buckling strength has led to optimized hierarchical lattice
materials with unprecedented load carrying capacity. This is obtained at the cost of a small decrease in linear stiffness. However, the superior
buckling resistance of such optimized hierarchical lattice materials has so far only been predicted numerically. In fact, concerns have been
raised regarding the validity of the employed linear buckling analysis and potential risk of catastrophic failure due to the coalescence of
multiple critical buckling modes. This work aims at refuting these concerns by designing and testing manufacturable novel hierarchical
lattice materials with superior buckling strength. Thereby, the basis is provided for wide applications of these high-performing materials in
mechanical design. A novel hierarchical material is generated for this work by combining the mentioned design procedure with a requirement
on the minimum feature size to ensure manufacturability. For addressing the raised concerns, the optimized material design, together with a
reference material, is realized with the help of additive manufacturing and experimentally tested in uniaxial compression. The obtained results
are compared to numerical simulations considering geometrical and material nonlinearities, and an overall good agreement is found between
experimental and numerical results. This confirms an increase in buckling resistance and post-buckling load carrying capacity by a factor of
more than three compared to the regular reference lattice structure. Hence, the buckling superiority of this novel type of architected materials
is clearly demonstrated.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0101390

I. INTRODUCTION

Architected periodic materials have been extensively studied
and developed for numerous applications due to their favorable and
tunable material properties. Within the scope of mechanical proper-
ties, examples have, among others, been shown for programmable
and optimal linear elastic properties,1–6 energy absorption,7–9

resilience of hierarchical materials,10–12 auxetic behavior,13–16 and
desired nonlinear load–displacement relations.17–19

Recently, 2D periodic materials have been systematically
designed for enhanced buckling resistance using topology optimiza-
tion based on linear buckling analysis and Floquet–Bloch wave
theory, as initially introduced by Neves et al.20 and much refined
by Thomsen et al.21 In this approach, the unit cell is optimized
in an iterative procedure. For every optimization iteration, the
strength of the current design is evaluated using linear finite element

buckling analysis together with Floquet–Bloch boundary condi-
tions to capture all possible buckling modes. By sweeping over
the wavevectors k along representative lines of the irreducible
Brillouin zone, the buckling band diagram is obtained and the
material buckling strength is determined by the smallest buckling
factor in the band diagram. Subsequently, the material distribution
is updated based on gradient information to maximize the strength
of the design. This results in a material design, which is resistant
to buckling across all wavelengths. For illustration, Fig. 1 shows the
material buckling evaluation of two lattice materials considered in
this study.

In the work of Thomsen et al.,21 it was numerically predicted
that the buckling strength can be significantly improved at the cost
of a comparably small stiffness degradation by the resulting hierar-
chical microstructure. However, concerns were expressed about the
validity of the employed linear buckling theory and the danger of
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FIG. 1. Linear material buckling evaluation (a) including the three lowest buckling modes along the symmetry lines of the first irreducible Brillouin zone (c) for the regular and
hierarchical lattice materials (b). k represents the wavevector and λ is the buckling stress, normalized by Young’s modulus of the base material (E). Experimental results
in Fig. 9 are related by σc = F/(LTE). The periodic unit cells are highlighted by the red rhombus.

catastrophic failure and unpredictable post-buckling deformations
due to multiple critical or near-critical buckling modes, spanning
over a large range of wavelengths. This phenomenon is illustrated
by the buckling band diagram in Fig. 1 exemplarily showing the
three lowest buckling modes of an infinite periodic reference tri-
angular material structure as well as the corresponding optimized
hierarchical microstructure. Besides the significantly enhanced
buckling resistance of the hierarchical lattice, the curves represent-
ing the critical modes show flat plateaus along K −M −H − Y lines,
indicating simultaneous buckling modes with multiple different
wavelengths and orientations. As speculated above, such behav-
ior may introduce unpredictable and catastrophic post-buckling
response for realized finite structures.

In the following years, these issues were numerically addressed
by Bluhm et al.22 and Wang and Sigmund23 by nonlinear analy-
ses of a representative hierarchical square lattice from the work of
Thomsen et al.,21 where the buckling and post-buckling perfor-
mances of the hierarchical lattices were compared against a corre-
sponding regular lattice. However, experimental confirmations and
accurate physical modeling of the constituent materials have been
lacking.

For the first time, physical specimens of hierarchical lat-
tices systematically optimized for buckling resistance are manufac-
tured and evaluated experimentally under uniaxial compression. A
realizable design of an initially isotropic, hierarchical triangular
lattice is obtained by combining the material design method of
Thomsen et al.21 with a minimum length scale control to ensure
manufacturability using a single-case robust formulation as in Ref. 6.
In addition to the experimental testing of the optimized hierarchical
lattice, the regular 2D periodic triangular lattice is tested to provide
a baseline at a theoretical volume fraction of 0.3.

The experimental evaluation is complemented by a series of
nonlinear finite element analyses, based on the 3D geometry of the
tested specimens. In contrast to previous numerical analyses of an
orthotropic hierarchical square lattice material,22,23 the numerical
results of this work account for the specific, finite number of unit
cells in the physical specimens. Also, a more specific material model

fitted to the actually tested material and 3D effects are included. In
order to facilitate direct comparisons with earlier studies, numer-
ical and experimental results for the orthotropic square unit cell
materials, both regular and optimized (for equi-biaxial loading), are
provided in the Appendix.

II. METHODS
A. Design and manufacturing of test specimens

In the material optimization procedure presented by Thomsen
et al.,21 a minimum length scale was intrinsically imposed due to
the discretization and filtering. Nevertheless, some of the obtained
designs include very fine features that challenge the manufactur-
ing and structural integrity of a corresponding mold. In order to
ensure manufacturability, a new design has been generated specif-
ically for the present work by extending the buckling optimization
with a minimum length scale control using a single-case robust for-
mulation.24 This results in a minimum feature size, both in the solid
structure and the enclosed holes of ∼0.02 times the unit cell width.
The material usage was constrained to a volume fraction (V∗) of 0.3.
The optimized material design for uniaxial compression and the
corresponding linear material buckling evaluation are presented in
Fig. 1, also including a comparison to a regular reference lattice
material. Photographs of the actual specimens of both the opti-
mized hierarchical microstructure and the regular counterpart are
shown in Fig. 2.

In order to prevent any material failure prior to buckling, the
test specimens for the experiments were made of silicone rubber,
a material that allows for the required large elastic deformations.
The complex geometries were realized in a hybrid process by cast-
ing the specimens using 3D-printed molds of PLA (polylactic acid).
As an example, Fig. 3 shows the lower and upper parts of the mold,
manufactured in an FDM (fused deposition modeling) printer,
for the hierarchical triangular lattice material. Since the aim is to
obtain a perfect extrusion of the 2D material design, all molds were
designed with no taper angle. For this reason, the molds had to be
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FIG. 2. Photographs of the investigated specimens. The dashed boxes indicate the
unit cells. (a) Regular triangular lattice (4 × 2 unit cells). (b) Hierarchical triangular
lattice (4 × 2 unit cells).

removed destructively from the specimens after the material was
solidified. Total dimensions, number of unit cells in the specimen,
and minimum feature size are limited by the printing area and the
required precision for the 3D-printed molds. These restrictions led
to the choice of specimens composed of 4 × 2 unit cells (rectangular
representation) with a height of h = 82 mm and a width of

FIG. 3. 3D-printed mold for the hierarchical triangular lattice material. (a) Lower
part of the mold. (b) Upper part of the mold.

l = h tan(30○) ≈ 47.34 mm. In order to support the lattice struc-
ture and distribute the applied load, solid blocks with a height of
10 mm were added both at the top and the bottom of the spec-
imens. To avoid out-of-plane buckling during the experiments,
a relatively large thickness of T = 45 mm was chosen for the
specimens.

For the hierarchical specimen, the 3D printed lower part of
the mold was filled with a condensation cure silicon rubber com-
pound and then closed with the upper half of the mold. The
filled mold was shaken and knocked against a tabletop to help
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trapped air bubbles from the mixing procedure to escape before
the silicone rubber solidified. The cast was left to cure for at least
24 h before removing it from the mold. Especially for the two hier-
archical lattice specimens, removal of the mold was only possible
with breaking some of their thin members; hence, these molds were
not reusable.

The cast specimens turned out to be of good quality based on
visual inspections, as shown in Fig. 2. The specimens were weighed,
and their real volume was estimated based on a specific mass of
1.1 g/cm3 for the base material. The regular lattice specimen was
very close to the nominal volume fraction of 0.3. In contrast, the
hierarchical lattice specimen exhibited a weight that corresponds to a
volume fraction of ∼0.33 rather than 0.3 due to manufacturing errors
in the complex mold for the hierarchical case. In order to compen-
sate for this discrepancy, the geometry of the hierarchical structure
used in the numerical analysis was also dilated uniformly to match
the estimated volume fraction of 0.33. Simulation results for a dilated
specimen of the regular lattice at V∗ = 0.33 are included as well for
comparisons.

B. Experimental setup
The specimens were tested under uniaxial compression. For

this purpose, they were placed between lower and upper rigid
plates mounted on an electromechanical MTS test machine, and the
experiment was performed in displacement control mode. Friction
between the plates and the specimens prevented sliding perpendic-
ular to the loading direction. No further fixation of the specimens
or guidance in the out-of-plane direction was enforced. The rel-
atively large thickness of the specimens (45 mm) was sufficient
to ensure that in-plane buckling modes of the structures are the
critical ones.

The uniaxial testing machine was equipped with a load cell with
a nominal maximum capacity of 1 kN. The displacement controlled
compression was performed with a constant rate of 5 mm/min for all
tests. This low rate was chosen in order to minimize the influence of
rate dependent viscous effects of the silicone rubber material. Multi-
ple experimental runs were carried out on a single specimen for each
of the different lattice materials.

C. Nonlinear numerical analysis
Preliminary comparisons between a plane strain, a plane stress,

and a 3D model for one of the specimens revealed that none of
the two 2D simplifications can reproduce the force-displacement
response of the 3D geometry satisfactorily as shown in Fig. 4.
In the pre-buckling regime, the plane stress model slightly underesti-
mates the reaction force, while the plane strain model overestimates
it significantly for the same compression. Also, both 2D simulations
underestimate the buckling strain and the remaining post-buckling
stiffness. The invalidity of both 2D assumptions is related to the
significant thickness, compared to the in-plane feature size, as well
as the non-uniform stress states. Based on these observations, all
numerical analyses were carried out using 3D models to ensure
comparability with the experimental tests.

To mitigate the higher computational cost of the 3D models,
symmetry in the out-of-plane direction was exploited, and thereby,
only half of each specimen geometry was modeled. Each structure
was sliced at the half thickness plane, as illustrated in Fig. 5 for the

FIG. 4. Load–displacement curves for the regular lattice based on a 3D model and
2D simulations.

regular lattice, with the slicing plane highlighted in green. Symmetry
was imposed by prescribing zero z-displacements on the symmetry
plane.

Perfectly sticking boundary conditions were assumed at the
top and bottom interfaces between the specimen and the rigid
plates mounted to the test machine. Accordingly, both y- and
z-displacements at the relevant faces were fixed. At the bottom face,
colored blue in Fig. 5, the displacements in the x-direction were
fixed as well. At the top face, colored red in Fig. 5, a prescribed
x-displacement was imposed on all finite element nodes. The pre-
scribed displacement value, in the following referred to simply as u,
was incremented in several quasi-static load steps in order to
simulate the experimental procedure.

FIG. 5. Schematic of the 3D model. Symmetry plane shown in green (uz = 0),
fully fixed boundary in blue (ux = uy = uz = 0), and compression boundary in red
(uy = uz = 0, ux ≠ 0).
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The regular lattice specimen was discretized with 27-node
hexahedral elements, while the hierarchical specimen was dis-
cretized with a mixture of 18-node prisms for the internal unit cells
and 27-node hexahedrons for the supporting structure at the top
and bottom. Each internal strut in the regular lattice was discretized
with eight second-order elements across its in-plane thickness. The
in-plane mesh used for the hierarchical structure is shown in Fig. 6.
In the out-of-plane direction z, all structures were modeled with
three second-order elements spanning the half-thickness T/2. This
means effectively six elements for the entire thickness if symme-
try was not exploited. Furthermore, a variable element size was
used in the z-direction with smaller elements close to the free front
surface of the structure. The non-uniformly spaced node coordi-
nates between elements are at z = 0, 10, 17.5, and 22.5 mm, with the
symmetry plane located at z = 0 mm.

The silicone rubber material was modeled using the hypere-
lastic Mooney–Rivlin material law25 in compressible form with the
following strain energy density function:

W = K
2
(J − 1)2 + C10(Ī1 − 3) + C01(Ī2 − 3), (1)

where J = ∣F∣ is the determinant of the deformation gradient,
and Ī1 = tr (B̄) and Ī2 = 1

2(tr (B̄)
2 − tr (B̄ 2)) are the first and

second invariants of the isochoric part B̄ = J−2/3FTF of the left
Cauchy–Green strain tensor. The bulk modulus is denoted K, and
C10 and C01 are material coefficients of the Mooney–Rivlin mate-
rial. These material properties were determined experimentally as
described in Sec. II D.

The numerical model was implemented using the finite ele-
ment library GetFEM26 and meshes were generated using GMSH.27

For capturing relevant buckling modes in the nonlinear analysis,
the otherwise geometrically perfect structures need to be perturbed
appropriately. In this work, random geometric perturbations cov-
ering multiple length scales were applied based on the method
presented in Bluhm et al.22 This ensures a level of continuity in the
otherwise random perturbation. For every length scale, a 2D grid
of control points is defined on top of the in-plane geometry of the
given specimen, equally spaced according to the length scale. Each
control point is assigned a random perturbation, and the nodes in
the actual mesh are displaced using linear interpolation between the

FIG. 6. Front view of a representative cutout of the mesh for the hierarchical
material.

FIG. 7. Exaggerated perturbation fields for control point grids with different length
scales given by the number of control points n in both directions (a)–(c) and the
total perturbation (d). Length scales, relative to the specimen size, are related to
the number of control points by 1/(n − 1). The magnitudes are scaled by a factor
of 10 compared to the ones used in this work.

surrounding control points. The magnitude for the control points at
the interface to the supporting material is set to zero for maintaining
parallel and aligned faces at the top and bottom. The final perturba-
tion of the mesh is given by the superposition of the perturbation at
every length scale with the maximum magnitude of every individ-
ual contribution scaled relative to the length scale. This concept is
illustrated in Fig. 7 showing an exemplary perturbation magnitude
of three grids with different length scales.

Including several length scales is especially important for mul-
tiscale structures in order to facilitate buckling modes at different
levels in the hierarchy of the structure. The following results are
based on stochastic perturbations imposed on three length scales of
1/2, 1/4, and 1/8 of the total dimension. The theoretical maximum
amplitude is 0.04l, where l is the unit cell length. This value can only
be reached if all random values assigned to the control grids take
their maximum value at a specific point.

D. Material properties
In order to determine the material properties of the silicone

rubber for the numerical analysis, a uniaxial compression test of
a solid cube with a side length of 30 mm was performed. From
manual model calibration using a 3D finite element analysis of
the same cube, a set of parameters was obtained. Based on the
strain energy density function [Eq. (1)], a well-suited set of para-
meters that captures both the initial stiffness and the characteristic
stiffening at higher compression was found as K = 7.407 MPa,
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FIG. 8. Load–displacement response of a solid material cube (side length
d = 30 mm) under uniaxial compression.

C10 = 0.030 03 MPa, and C01 = 0.1201 MPa. These parameters cor-
respond to an initial shear modulus G = 2(C10 + C01) = 0.3003 MPa
and an initial Poisson’s ratio ν = 0.48. The measured load responses
as a function of the normalized compression displacement for mul-
tiple experimental runs on the same specimen are shown in Fig. 8. In
addition, the figure presents the simulation results for the estimated
material properties.

III. RESULTS AND DISCUSSION
Figure 9 shows load–displacement curves from both numer-

ical simulations and experiments for the investigated specimens.

The nonlinear analysis of the regular specimen at the nominal
volume fraction (red dashed line) shows a good agreement with the
experimental data, represented by the thinner solid lines. The pre-
buckling stiffness is predicted accurately, while the post-buckling
response is slightly more compliant compared to the experimen-
tal data, and the buckling load is overestimated by 9%. Figure 10
illustrates the structural deformations at different compression lev-
els from the experiments and nonlinear analysis. It can be seen that
the predicted buckling mode is the same as experimentally obtained.
This shows the capability of the numerical model to describe the
behavior of the triangular periodic lattice specimen accurately. Based
on this validation, simulations of the same, but uniformly dilated
geometry, are included in the figure as well (blue dashed line) in
order to provide a fair comparison to the slightly heavier realization
of the hierarchical microstructure. As expected, the initial stiffness
of the dilated geometry with V∗ = 0.33 is increased by ∼10%, in
accordance with the change in volume fraction. However, the buck-
ling load is increased significantly more, as the bending stiffness
is proportional to the cube of the in-plane-thickness, according to
linear theory.

Results for the critical buckling from a linear buckling analy-
sis of the same finite 3D geometries are included in Fig. 9 as gray
crosses. When compared to the nonlinear simulations, they are
∼10% lower for both regular lattices. The experimentally obtained
buckling point was predicted well by the linear buckling estimate
for the case of 0.3 volume fraction. For the hierarchical struc-
ture, linear analysis underestimates the buckling limit significantly
by 23%, which is noteworthy. The importance of nonlinearities,
such as beam thickening,28 for the optimized hierarchical struc-
tures was already recognized in Ref. 22, but now it is also validated
experimentally.

A linear buckling 3D analysis of the specimen with optimized
structure at 0.33 volume fraction suggests that the hierarchical
structure should buckle at almost three times the buckling load

FIG. 9. Load–displacement curves for the considered lattice structures. The right axis shows the corresponding stress, allowing for comparisons with specimens of different
dimensions. Buckling is identified as the point of maximum curvature along the load–displacement paths. Note the different scaling of the axes. (a) Regular triangular lattice
structure. (b) Hierarchical triangular lattice structure.
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FIG. 10. Numerically obtained lattice deformations at moderate compression (I) and post-buckling state (II), pictures of post-buckling state from the experiment (III), and
buckling modes from the linear analysis (IV).

of the corresponding volume-corrected regular lattice (gray crosses
in Fig. 9). According to the nonlinear simulations of the same
structures, the hierarchical structure is 3.5 times stronger than the
regular lattice. Also, buckling of the hierarchical structure occurs at
a much larger strain level, 15% instead of 3.7% for the regular lattice.
Keeping in mind that the nonlinear simulation tended to overesti-
mate the strength of the regular lattice, this increase in the buckling
strength is a conservative estimate and still remarkable. In gen-
eral, both experimental results and numerical simulations validate
the superior load carrying capacity of the optimized hierarchical
structure.

For the optimized hierarchical structure, the nonlinear numer-
ical analysis exhibits a slightly higher stiffness in the initial
pre-buckling phase compared to the experimental results. For fur-
ther compression, the structure shows a softening behavior in the
numerically obtained load–displacement curve, which is not present
in the experimental results. Ultimately, both methods show very
similar buckling limits, with less than 2% relative error.

Apart from the mentioned deviations, it is remarkable that the
nonlinear numerical analyses can actually reproduce the experimen-
tally observed buckling modes as precisely as shown in Fig. 10 only
based on random perturbations of the geometry. From the deformed
structures shown in Fig. 10 at different loading states, it is evi-
dent that the numerical simulations predict the same post-buckling
deformations as obtained experimentally. Both specimens undergo
local buckling with conceptually different buckling patterns, which,
however, share some local similarities between the hierarchical

and regular variants. It should also be noted that the buckling
modes predicted by the linear buckling analysis also match well
with the experimentally observed post-buckling deformations, as
shown in Fig. 10.

In defiance of the anticipated unpredictable post-failure behav-
ior of such hierarchical material designs, the tested hierarchical
specimen maintains a load carrying capacity, which even after buck-
ling still is a multiple of the buckling limit of the regular lattices.
The measured reaction force drops for the hierarchical structure just
after the point of buckling. Nevertheless, the drop in load carrying
capacity of the hierarchical lattice is rather small compared to the
large strength gain compared to the regular lattices. The experimen-
tally tested hierarchical structure could after buckling sustain a load
of 120 N, which still is more than three times larger than the load sus-
tained by the regular triangular lattice with the same volume fraction
(V∗ = 0.33). This result addresses the posed question about the pos-
sibility of a catastrophic buckling. Despite the slight drop in load at
the buckling point, the structure has a remarkably high load carrying
capacity even in the post-buckling state. Moreover, buckling occurs
for the hierarchical structure at such high deformation levels that
internal contact between the structure’s finest members is imminent.
Shortly after buckling, an additional strengthening can be expected
due to internal contact. In total, a catastrophic collapse does not turn
out to be a concern for the optimized hierarchical structure of this
study, suggesting that these structures are excellent candidates for
manufacturing high strength architected materials, especially with
base materials that can undergo large strains, such as elastomers.
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FIG. 11. Photographs of the investigated specimens. The dashed boxes indicate
the unit cells. (a) Regular square lattice (4 × 4 unit cells). (b) Hierarchical square
lattice (4 × 4 unit cells).

IV. CONCLUSIONS
Experimental testing and nonlinear numerical 3D simula-

tions were performed in order to evaluate the performance of an
optimized hierarchical lattice material, designed by density-based
topology optimization,21 compared to a corresponding regular lat-
tice of a similar volume fraction. Although the hierarchical lattice
was optimized for plane stress conditions using linear buckling
theory, and for an infinite periodic material, it proved to perform
excellently, in terms of compressive load capacity, in a real 3D
structure with a finite number of unit cells and with nonlinearities
included. In fact, due to nonlinear effects, the attained load carry-
ing capacity for the structures was found to be 30% higher than the
linear buckling limit estimate.

The nonlinear numerical analyses match the experiments
reasonably well with an error of less than 10%. They are capable of
predicting the experimentally observed buckling modes remarkably
accurately both for regular and hierarchical lattices. Predicted buck-
ling strains were only slightly overestimated and the same applies to
predicted buckling loads for the regular lattice. The critical load for
the hierarchical lattice is predicted very accurately.

It should be noted that due to manufacturing inaccuracies, the
hierarchical lattice structure had a slightly higher volume fraction of
0.33 instead of 0.3 for the regular one. This is compensated by pro-
viding numerical results for a dilated version of the regular lattice,
leaving no doubt about the superior buckling strength of the hier-
archical lattices compared to their regular counterparts. The load
carrying capacity is higher by a factor of ∼3.5.

Overall, this work has demonstrated the following:

● Hierarchical architected materials, obtained with topology
optimization, linear buckling, and Floquet–Bloch theory
in 2D, are realizable and actually deliver the expected
outstanding compressive strength.

● The hierarchical lattice structure, unlike the regular one,
exhibits a notable additional strengthening effect due to

FIG. 12. Front view of a representative cutout of the mesh for the hierarchical
square lattice specimen.
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nonlinearities, and the gain is thereby even larger than
predicted by linear buckling theory.

● The post-buckling load carrying capacity of the hierarchical
material remains at a significantly higher level compared to
the regular lattice, despite the discussed clustering of critical
buckling modes.

● Three-dimensional modeling is required to accurately pre-
dict the experimental response of the specimens in the
present setup, as neither plane strain nor plane stress
assumptions have proven to be valid.

● Nonlinear finite element modeling is essential for improv-
ing the accuracy of the numerical analysis, especially for
hierarchical structures.
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APPENDIX: RESULTS FOR SQUARE UNIT CELL
MATERIALS

This appendix presents equivalent results for a square unit cell
hierarchical microstructure, taken directly from the work of Thom-
sen et al.,21 together with its regular counterpart. In contrast to the
uniaxially optimized triangular lattice structure from the main text,
it was optimized for an equi-biaxial compressive loading and has
been used as a test candidate for numerical studies of hierarchical
materials.22,23 The provided data are aimed to serve as a reference.

The specimens are shown in Fig. 11 and consist of 4 × 4 unit
cells of size hs = ls = 41 mm, resulting in the same total height as the
triangular lattice specimens. Similar to the case of the triangular lat-
tice, an increase in the nominal volume fraction was observed for
the hierarchical lattice. Hence, the numerical simulations were per-
formed for the volume fraction of 0.3 and 0.33 for the regular lattice
and 0.33 for the hierarchical lattice. The modeling and discretization
of the 3D geometries were as described above, and the mesh for the
hierarchical specimen is illustrated in Fig. 12.

The results are shown in terms of load–displacement curves
in Fig. 13 and deformed structures in Fig. 14. The additional sec-
ondary axis shows the reaction load in stress units and serves for
better comparison with the shown results of the triangular lattice
specimens.

FIG. 13. Load–displacement curves for the square unit cell lattices. Respective lattice microstructures are shown in the figures. (a) Regular square lattice structure.
(b) Hierarchical square lattice structure.
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FIG. 14. Numerically obtained lattice deformations at moderate compression (I) and post-buckling state (II), pictures of post-buckling state from the experiment (III), and
buckling modes from the linear analysis (IV).
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