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Abstract This study traces dissolved organic matter (DOM) in different water masses of the Arctic Ocean 
and its effect on the distributions of trace elements (TEs; Fe, Cu, Mn, Ni, Zn, Cd) using fluorescent properties 
of DOM and the terrigenous biomarker lignin. The Nansen, Amundsen, and Makarov Basins were characterized 
by the influence of Atlantic water and the fluvial discharge of the Siberian Rivers with high concentrations 
of terrigenous DOM (tDOM). The Canada Basin and the Chukchi Sea were characterized by Pacific water, 
modified through contact with productive shelf sediments with elevated levels of marine DOM. Within the 
surface layer of the Beaufort Gyre, meteoric water (river water and precipitation) was characterized by low 
concentrations of lignin and tDOM fluorescence proxies as DOM is removed during freezing. High-resolution 
in situ fluorescence profiles revealed that DOM distribution closely followed isopycnals, indicating the 
strong influence of sea-ice formation and melt, which was also reflected in strong correlations between 
DOM fluorescence and brine contributions. The relationship of DOM and hydrography to TEs showed that 
terrigenous and marine DOM were likely carriers of dissolved Fe, Ni, Cu from the Eurasian shelves into the 
central Arctic Ocean. Chukchi shelf sediments were important sources of dCd, dZn, and dNi, as well as marine 
ligands that bind and carry these TEs offshore within the upper halocline in the Canada Basin. Our data suggest 
that tDOM components represent stronger ligands relative to marine DOM components, potentially facilitating 
the long-range transport of TE to the North Atlantic.

Plain Language Summary The Arctic Ocean receives a disproportionate large amount of global 
river discharge and has limited but well-constrained exchanges with other oceans. This makes the Arctic Ocean 
unique in terms of dissolved organic matter (DOM) and trace element (TE) sources and distribution. We used 
data collected during two expeditions spanning the entire Arctic Ocean to characterize the unique distribution 
of DOM and to study its potential as a water mass tracer and its role in the transport of TE. While the 
Atlantic-dominated Nansen Basin was characterized by low levels of the DOM and TE, the central Arctic was 
dominated by the Transpolar Drift, a current that connects the Eurasian shelves to the Fram Strait and transports 
DOM from the Siberian Rivers toward the North Atlantic. In contrast, the Chukchi shelf-Canada Basin region 
was characterized by the dominance of Pacific water that is enriched by marine DOM from the shallow and 
productive Chukchi shelf. The distribution of DOM from these different sources was affected by freezing and 
thawing processes and, therefore, can be used to study water mass transformations and pathways in the Arctic 
Ocean.
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Key Points:
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and melt processes
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reveals its potential as a tracer for 
halocline formation and freshwater 
source assignments

•  Terrigenous and marine DOM are 
carriers of trace elements from 
shelves to the open Arctic Ocean, but 
terrigenous DOM represent stronger 
ligands
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1. Introduction
Shifts in circulation regimes (Proshutinsky & Johnson, 1997), changes in the freshwater budget due to sea ice 
decline (Li et al., 2021), and increasing fluvial discharge (Ahmed et al., 2020; Fichot et al., 2013) in the Arctic 
Ocean are believed to influence the strength of the Atlantic Meridional Overturning Circulation and can have 
global impacts (Bruhwiler et al., 2021; Jiang et al., 2021; Zhang et al., 2021). State-of-the-art climate models 
(e.g., Jiang et al., 2021; Proshutinsky et al., 2020), remote sensing (e.g., Fichot et al., 2013), and observations 
(e.g., Guay et al., 2009; Polyakov et al., 2013; Rabe et al., 2014; Yamamoto-Kawai et al., 2009) have focused on 
the freshwater balance in the Arctic Ocean. In particular, studies have concentrated on the expanding Beaufort 
Gyre, an anticyclonic system in the Canada Basin that maintains the largest oceanic freshwater reservoir in the 
Arctic Ocean (Proshutinsky et  al.,  2019). Freshwater sources include fluvial discharge, Pacific water (which 
is less saline than Atlantic water), net precipitation, and sea ice melt (Carmack et al., 2008; Haine et al., 2015; 
Proshutinsky et al., 2019; Yamamoto-Kawaii et al., 2008). Environmental variability is imprinted in the chemical 
and optical properties of the omnipresent DOM, which makes dissolved organic matter (DOM) a tracer of fresh-
water sources as well as mixing processes in the ocean.

For example, we use lignin phenols, unique biomarkers of terrigenous DOM (tDOM) in the ocean (Benner 
et al., 2005; Kaiser et al., 2017; Opsahl & Benner, 1997; Opsahl et al., 1999; Williford et al., 2021), as a tracer 
of fluvial DOM in the Arctic Ocean. In addition to this terrigenous biomarker (lignin), we use the optical prop-
erties of chromophoric DOM (CDOM), including Parallel Factor Analysis (PARAFAC) of fluorescent DOM 
(Gonçalves-Araujo et al., 2016; Stedmon et al., 2021). Besides the characterization of surface waters of the Arctic 
Ocean, we are interested in the halocline layers with respect to DOM. In particular, we are interested how DOM 
can inform about the sources, distribution, and generation mechanisms of Arctic halocline layers and how that 
affects TE transport.

The Arctic Ocean is an ideal place to study metal-DOM interactions because it has limited exchanges with 
other oceans and has abundant sources of DOM and trace elements (TEs) in the upper water column, including 
fluvial discharge and input from productive shelf regions. Arctic rivers are an important source of both DOM 
and dissolved trace metals on the shelves and in the central basins of the Arctic Ocean (Amon, 2004; Amon 
et al., 2012; Benner, 2011; Benner et al., 2005; Charette et al., 2020; Jensen et al., 2020; Klunder et al., 2012; 
Krachler et al., 2012; Opsahl et al., 1999; Williford et al., 2021). Climate change-induced permafrost thaw, tundra 
greening, and coastal erosion enhance the mobilization of carbon from terrestrial Arctic ecosystems (Berner 
et al., 2020; Fritz et al., 2017), with a cascading effect on the supply of tDOM and TEs (Berner et al., 2020; 
Pokrovsky et al., 2012). Poor understanding of the complex relationships among organic ligands and dissolved 
trace metals in seawater has limited our ability to predict the magnitude of certain metal fluxes, the spatial 
extent of their transport away from their source, and the rate of metal scavenging and biological uptake to the 
particulate phase across a range of metals. In addition to the geochemical and biological factors, other factors 
like the electron configuration of a trace metal also affect ligand preference through the spatial arrangement of 
binding sites. For example, iron-ligand associations can range from monodentate to hexadentate complexation 
(Butler & Theisen, 2010; Williford et al., 2021). Molecular size also impacts the binding strength of ligands, with 
higher-molecular-weight molecules typically having a greater number of binding sites, more flexible molecular 
geometries, and greater binding strength (Laglera & van den Berg, 2009; Williford et al., 2021).

In this study, we explore the potential of DOM as a tracer of river discharge, freezing/thawing processes, and 
water mass pathways using biomarker lignin and examining the optical properties of CDOM. We characterize 
prominent Arctic features like the Beaufort Gyre, Transpolar Drift (TPD), upper and lower haloclines (UHC, 
LHC) in terms of DOM concentration and origin. Additionally, we examine potential links between hydrography, 
diverse groups of DOM molecules and several dissolved trace metals (dFe, dMn, dNi, dCu, dZn, dCd) across the 
breadth of the Arctic Ocean.

2. Materials and Methods
2.1. Hydrographic Context

Discrete water samples, in situ CDOM fluorescence, and hydrographic data were collected in the summer of 2015 
during the U.S. Arctic GEOTRACES (GN01) cruise aboard the USCGC Healy (HLY1502) and the GEOTRACES 
TransARC II cruise (PS94) on the German research icebreaker Polarstern (Figure 1; Rabe et al., 2016a, 2016b; 
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Schauer, 2016). The GN01 cruise track (9th August–12th October 2015; Kadko & Landing, 2015) consisted 
of a “northbound” transect along ∼170°–180°W stretching through Bering Strait and across the Canada and 
Makarov Basins to the North Pole (GN01 stations 1–32), and the “southbound” transect returning southward 
along ∼150°W across the Makarov and Canada Basins back into Chukchi shelf waters (GN01 stations 33–57). 
The PS94 cruise track (17th August–15th October; Schauer, 2016) consisted of two transects extending from 
the Barents Sea and the Gakkel Ridge, respectively, into the Makarov Basin. The CTD data can be found at 
the PANGAEA data archive (https://www.pangaea.de: https://doi.org/10.1594/PANGAEA.859558), the British 

Figure 1. The U.S. GEOTRACES Arctic GN01 transect cruise track (triangles) and the TransARCII PS94 cruise track (squares). The approximate locations of major 
upper ocean circulation features are shown in gray, red (Transpolar Drift), and magenta (Beaufort Gyre). Surface in situ chromophoric DOM (CDOM) fluorescence 
(Fl.) in surface waters is shown in color (in nm −1), extrapolated out to 100 km for visualization purposes. The gray dotted line indicates the sea ice edge at the time 
of sampling (August 2015, NSIDC database, 2015). Section A is shown in white symbols; Section B is shown in black symbols. In situ CDOM fluorescence was 
not measured along most of the Amerasian Basin portion of Section B. This figure and section plots in the manuscript were generated using Ocean Data View 
(Schlitzer, 2020).
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Oceanographic Data Center (http://www.bodc.ac.uk/geotraces), and Biological and Chemical Oceanography 
Data Management Office (Landing et al., 2017, 2019).

The U.S. GEOTRACES GN01 and the TransARCII PS94 missions included two inter-calibration stations. Data 
from the North Pole station were collected synchronously (PS94 station 87, corresponding to GN01 station 32), 
while those from the deep Makarov Basin at 87°30’N 180°E (PS94 station 101, corresponding to GN01 station 
30) were collected two weeks apart.

Here we define Section A (white symbols, Figure 1) as stretching from the Chukchi Sea shelf, across the North 
Pole (GN01 stations), and through the Amundsen and Nansen Basins to the Barents Sea (PS94 stations). The 
following hydrographic distinctions of water masses were assigned. The thickness of the relatively fresh polar 
mixed layer (PML, S < 31) is conventionally defined by the temperature minimum (Rudels et al., 1996). However, 
in cases where the temperature minimum cannot be identified with certainty, the rapid change in magnitude of the 
salinity gradient may be used (Korhonen et al., 2013). For example, the Chukchi Sea and southern Canada Basin 
are strongly influenced by seasonal sea ice melt, resulting in a near-surface temperature maximum from radiative 
warming of surface waters during summer (Jackson et al., 2010; Shimada et al., 2001). The average depth of 
winter convection is about 45 m in the northern Canada Basin and 35 m in the southern Canada Basin (Korhonen 
et al., 2013). In the Amundsen and Makarov basins, the PML deepens to about 55 m, becomes shallower, and 
occupies a depth of 40–50 m in the Nansen Basin (Korhonen et al., 2013; Rudels, 2009).

In the Canada Basin, underneath PML lies the upper halocline (UHC), in the Canada Basin largely derived from 
Pacific water. Because of its origin, the boundary between the upper and the LHCs is roughly defined by the 
isohaline of S = 34 (Korhonen et al., 2013). The Beaufort Gyre is a large anticyclonic system in the surface layer 
of the Canada Basin, marked by low salinity and low in situ CDOM fluorescence (Figure 1). Shelf-waters within 
the UHC and LHC are pushed downward by convergence associated with Ekman forcing in the surface Beaufort 
Gyre (Watanabe, 2013). According to climatology (Korhonen et al., 2013), the UHC is the thickest (180–200 m) 
in the southern Canada Basin. In the Makarov and Amundsen Basins, the thickness decreases to 40 and 30 m, 
respectively, and in the Nansen Basin, the UHC is generally absent (Korhonen et al., 2013). The LHC thickness 
in the Canada Basin varies between 60 and 70 m and increases toward the central Arctic Basins (∼80 m in the 
Amundsen and Makarov Basins) and becomes thinner, <50 m, in the Nansen Basin (Korhonen et al., 2013). The 
Atlantic Water (AW; S > 34.7; Rudels, 2001) beneath the haloclines transitions into dense (σ > 28 kg/m 3) deep 
water below 1,000 m depth.

Section B (black symbols, Figure 1) is closer to the Eurasian slope and consists of the “northbound” leg of the 
GN01 cruise and the PS94 cruise transect between stations 117 and 134. Unfortunately, in situ CDOM fluores-
cence was not measured along most of the Amerasian Basin portion of Section B (Figure 1). Like Section A, 
Section B crossed the Amundsen and Makarov Basins, where the TPD can be observed by elevated surface in 
situ CDOM fluorescence.

2.2. Optical Properties of DOM

Water samples collected for absorption and fluorescence analyses were filtered through a 0.2 μm Millipore filter 
cartridge attached to Niskin bottles mounted on a CTD rosette. CDOM fluorescence was measured by two inde-
pendent approaches. An in situ approach using backscatter fluorescence sensors with a broadband excitation of 
350–460 nm and 550 ± 20 nm emission. The two instruments used on the ships were intercalibrated using the 
method introduced and discussed in Stedmon et al. (2021). The fluorescence intensities at excitation 350 and 
emission 450 nm measured in the water samples collected onboard at the same time were used to calibrate the 
voltage signal from the CTD-mounted Dr. Haardt fluorometers.

The second approach to determine CDOM fluorescence was a laboratory measurement of collected water samples 
using a bench-top spectrofluorometer. For the PS94 portion of the samples, Horiba Aqualog spectrofluorometer 
was used, and the details for the fluorescence measurements are described in Stedmon et al. (2021). For the GN01 
portion, 132 samples were collected for DOM fluorescence measured using a Photon Technologies International 
spectrofluorometer (Quanta Master-4 SE) with a 1 cm quartz cuvette. Excitation-emission matrix scans (EEMs) 
for each sample covering emission from 280 to 600 nm (2 nm increment) and excitation wavelengths ranging from 
220 to 450 nm (5 nm increment). Daily pure water (Milli-Q®) blanks were obtained and subtracted to remove 
water scattering peaks. Data were spectrally corrected for instrument bias, and subsequently, Raman calibrated 
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(excitation 350 nm) using the pure water blanks and the drEEM toolbox (version 0.2.0, Murphy et al., 2013). The 
Dr. Haardt signal was linearly correlated to the excitation 350 nm and emission 450 nm signal measured by the 
laboratory spectrofluorometer (Figure S1 in Supporting Information S1) to correct for the offset between the two 
sensors as described in Stedmon et al. (2021).

Studies show that not all of the instrument bias is removed using the manufacturer's spectral correction proce-
dures (Cory et al., 2010). This problem is particularly important when multivariate data analyses will be applied. 
To circumnavigate the potential minor spectral differences, the datasets collected using different instruments 
were analyzed separately. Excitation below 250 nm was not included due to excessive instrument noise resulting 
from poor lamp output.

Two PARAFAC models were developed for the EEMs data: a four-component model was developed for the 
GN01 data set (C1) and a six-component model for the PS94 data set (C2). The four-component model (C1) was 
optimized based on spectral loadings, residual examination, and split-half validation using a convergence crite-
rion of 1e −8 (Figure S2a in Supporting Information S1). The components were labeled based on their emission 
maxima: C1482, C1428, C1402, C1348. For the EEMs from the PS94 cruise, a six-component model (C2) was opti-
mized based on spectral loadings, residual examination, and split-half validation using a convergence criterion of 
1e −8 (Figure S2b in Supporting Information S1). The components were labeled based on their emission maxima: 
C2411, C2456, C2404, C2492, C2338, and C2302.

The spectral characteristics of each component were compared to those from several previous studies using the 
OpenFluor database (Murphy et al., 2014; Table S1, S2 in Supporting Information S1).

2.3. Lignin Phenols Analysis

The sum of concentrations of nine lignin phenols (TDLP9) is reported in this study, including p-hydroxyls 
(p-hydroxybenzaldehyde, p-hydroxy acetophenone, p-hydroxybenzoic acid), vanillyls (vanillin, acetovanillone, 
vanillic acid), and syringyls (syringaldehyde, acetosyringone, syringic acid). To measure the lignin phenols, unfil-
tered seawater samples containing 30 μg of DOC were acidified to pH 2.5 using concentrated HCl (reagent grade) 
and extracted onto 1 g reversed-phase (C18) sorbent cartridges using a Dionex Autotrace 280 Solid-Phase Extrac-
tion instrument. Lignin phenol analysis was performed following the method of Yan and Kaiser (2018a, 2018b). 
It allows the quantification of dissolved lignin phenols in small volumes of seawater (<200 mL) using alkaline 
CuSO4 at 150°C. Ultra-high performance liquid chromatography with mass spectrometry detection in dynamic 
Multiple Reaction Monitoring mode and isotopically labeled surrogate standards were used for the detection and 
quantification of monomeric lignin phenols.

2.4. Dissolved Organic and Inorganic Carbon

DOC concentrations were determined using a Shimadzu TOC-L, according to Halewood et al. (2010); all samples 
were filtered at the time of collection using 0.2 μm pore size. The data are available online (Hansell, 2017, 2021). 
The accuracy was confirmed by measuring deep-water standards from the Consensus Reference Waters 
(Hansell, 2005). DOC measurements from both cruises (GN01 and PS94) were done at the Rosenstiel School of 
Marine and Atmospheric Sciences, University of Miami; they were consistent at the crossover stations.

Dissolved inorganic carbon (DIC) concentrations were measured using the methods of Woosley et al. (2017) and 
Ulfsbo et al. (2018). A description of the two cruises and the uncertainty analyses were discussed in Charette 
et al. (2020).

2.5. Trace Metal Data

Dissolved Fe and other TE data were obtained from Jensen et al. (2019) for GN01 Zn, Zhang et al. (2020) for 
GN01 Cd, Jensen, et al. (2019, 2020, 2022) for GN01 Fe and Mn, Gerringa et al. (2021) for GN04 trace metals, 
and Jensen et al. (2022) for GN01 Cu and Ni. Sample collection and analyses followed GEOTRACES protocols 
(Cutter et al., 2010, 2014; Rijkenberg et al., 2018).
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2.6. Linear Mixing Model

To study the pathways of DOM and TEs in the Arctic Ocean, the fractions of 
seawater with Pacific (fPac) and Atlantic (fAtl) origin, sea ice melt (fSIM), and 
meteoric water (fMet) were determined based on the salinity (S), δ 18O-H2O 
(stable oxygen isotope ratio in water), and the Arctic N-P tracer (ANP, 
Newton et al., 2013). Mass balance for total mass and these four tracers are 
combined into the following system of linear equations, which is solved for 
each sample:

𝑓𝑓Pac + 𝑓𝑓Atl + 𝑓𝑓SIM + 𝑓𝑓Met = 1 (1)

�Pac[�Pac] + �Atl[�Atl] + �SIM[�SIM] + �Met[�Met] = [�]measured (2)

�Pac
[

�18�Pac
]

+ �Atl
[

�18�Atl
]

+ �SIM
[

�18�SIM
]

+ �Met
[

�18�Met
]

=
[

�18�
]

measured (3)

�Pac[ANPPac] + �Atl[ANPAtl] + �SIM[ANPSIM] + �Met[ANPMet] = [ANP]measured (4)

“Meteoric” water is a combination of runoff and in situ precipitation. “Sea ice melt” is the net meltwater fraction, 
and does not distinguish between sequential passage into and out of the solid phase. Negative SIM is associ-
ated with net sea ice formation (i.e., the fraction of freshwater extracted from a seawater parcel into the solid 
phase). The end-member (water sources) values used in the calculations are presented in Table 1. The isotope 
data were from Pasqualini et al. (2017) and Paffrath et al. (2021). The limitations of the method and choices of 
end-members are discussed in detail in Newton et al. (2013) and Charette et al. (2020). We note here that the most 
significant errors in the method are known to be in the separation of Atlantic and Pacific water masses, which rely 
on nutrient combinations that are only quasi-conserved in the near-surface ocean. Current discussions of these 
issues, and novel suggestions for improvement, can be found in Alkire et al. (2019), Paffrath, et al. (2021), and 
Whitmore et al. (2020). High fractions of Pacific water in the TPD may actually originate from within the Chuk-
chi and Siberian shelves instead (Bauch et al., 2011). Novel results based on rare earth elements concentrations 
and Nd isotopes confirm this assumption (Paffrath et al., 2021) and show that high Pacific water fractions in the 
TPD (Figure 2) can be an error of the method.

3. Results
3.1. Water Fractions

The four basic water fractions identified for the Arctic Ocean (Atlantic water, Pacific water, meteoric water, and 
sea-ice melt water), based on salinity, δ 18O, and the ANP (Newton et al., 2013), indicated that up to 95% of the 
water in the central Nansen Basin originated from the Atlantic Ocean (Figure 2). In the Canada, Makarov and 
Amundsen Basins, AW occupied depths underneath the Pacific Water (PW) layer, while PW dominated the 
top 100–250 m (Figure 2). The distribution of AW and PW in the TPD was not correctly reflected by the ANP 
method alone and erroneously overrepresented the Pacific component (Paffrath et al., 2021). The Beaufort Gyre 
convergence results in a deepening of the upper boundary of the AW in the Canada Basin and its shoaling in 
the Makarov Basin (Zhong & Zhao, 2014). The border between the UHC and LHC roughly corresponded to the 
isopycnal of 27 kg/m 3 (where fPac and fAtl each account for ∼50% of water), which was also the density surface of 
the in situ CDOM fluorescence maximum (Figure 3, Figure S3 in Supporting Information S1).

Sea-ice melt water (fSIM) constituted 5% of the PML in the Canada and Nansen Basins. A brine signal (negative 
fSIM) was detected within the TPD system and the upper 100 m of the Makarov and Amundsen Basins. According 
to the computed fractions, the halocline layers were also affected by brine formation. The PML shows great vari-
ation in the sea-ice meltwater fraction (fSIM), along sections A and B, and between the two, with fSIM ranging from 
−8% to +7%. In both the UHC and LHC waters sea-ice formation (brine enrichment, negative fSIM) dominated, 
with fSIM being more negative in the upper than the lower layer (Figure 2). The PML in the Canada, Makarov, 
and Amundsen Basins exhibited a significant (up to ∼22%) contribution of meteoric water (fMet). The surface 
waters of these basins are strongly influenced by the TPD, which carries freshwater from the Siberian shelves. In 
addition to river discharge, the water mass calculations indicated that these waters had experienced ice melt, ice 
formation, and brine rejection.

Water mass Salinity δ 18O [‰] Arctic N:P (ANP)

Atlantic (Atl) 34.92 0.3 0

Pacific (Pac) 32.5 −1.1 1

Meteoric (Met) 0 −19 0

Sea-ice melt (SIM) 4 Surface +2.6 Surface

Table 1 
End-Member Values Used in Mass Balance Calculations (From Newton 
et al., 2013)
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Figure 2. Calculated fractions of fAtl (a, e), fPac (b, f), fSIM (c, g) and fMet (d, h) for Sections A and B, respectively. The white line represents the isohaline of S = 31, 
which is the border of the polar mixed layer (PML) in the Canada Basin. Black dashed isopycnal of σ = 27 kg/m 3 represents the lower/upper halocline (LHC/UHC) 
border. The LHC is bordered at the bottom by the isopycnal of σ = 27.6 kg/m 3. The color bar scales are different in each Panel.
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Figure 3. In situ chromophoric DOM (CDOM) fluorescence (Fl.; (a, b), dissolved organic carbon (DOC; (c, d), dissolved inorganic carbon (DIC, (e, f) and lignin 
phenols (TDLP9; (g, h) concentrations for sections A (a, c, e, g) and B (b, d, f, h) in the upper 400 m. The white line represents the isohaline of S = 31, which is the 
border of the polar mixed layer (PML) in the Canada Basin. Black dashed isopycnal of σ = 27 kg/m 3 represents the upper/lower halocline (LHC/UHC) border in the 
Canada Basin. The LHC is bordered at the bottom by the isopycnal of σ = 27.6 kg/m 3 in the Canada Basin. The silicate maximum (X) marks the core of the UHC 
according to Anderson et al. (2013). The color bar scales are different in each panel.
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3.2. CDOM Fluorescence

In situ CDOM fluorescence was highly variable in the different Arctic Ocean basins (Figure 3), especially within 
the upper 400 m of the water column, but showed a very distinct pattern. Starting from the east, CDOM was 
consistently low throughout the water column of the Nansen Basin (<0.01 nm −1; Figure 3). In the Central Arctic, 
the hydrography of the surface waters are governed by the TPD circulation, and the upper 70 m are characterized 
by very high in situ CDOM fluorescence (∼0.08 nm −1; Charette et al., 2020). The elevated fluorescence signal 
can be traced to a depth of 210 m in the Makarov and Amundsen Basin and to about 180 m above the Lomonosov 
ridge (Figure 3).

In contrast, in the Western Arctic, the in situ CDOM fluorescence was very low in surface waters of the Canada 
Basin (<0.01 nm −1), but elevated deeper in the UHC and LHC, consistent with previous studies (e.g., Gao & 
Guéguen, 2018; Shen et al., 2016). A maximum in in situ CDOM fluorescence was detected at the UHC/LHC 
interface (roughly corresponding to the isopycnal σ = 27 kg/m 3, Figure 3), about 50 m below the UHC core as 
defined by the depth of the nutrient maximum (Figure 3, Figure S3e in Supporting Information S1). The LHC was 
also characterized by elevated in situ CDOM fluorescence compared to the underlying AW (Figures 3a and 3b). 
The in situ CDOM fluorescence signal closely follows the density structure in the water column, e.g., isopycnal 
of σ ∼ 27.6 kg/m 3 coincided with the lower border of the CDOM trace (Figure 3).

3.3. Dissolved Organic Carbon

Similar to in situ CDOM fluorescence, total DOC concentrations were low throughout the water column 
(48–63 μmol/L) in the Nansen Basin (Figure 3). Within the TPD region, DOC concentrations were higher (up 
to 138 μmol/L) but limited to <170 m in the Amundsen Basin. In the Canada Basin, the distribution of DOC 
concentrations was different from CDOM. The former was enriched in the surface of the central Canada Basin 
(42–73 μmol/L) and decreased with depth. In contrast to CDOM, the DOC concentration was not elevated within 
the halocline. Below the halocline, AW had low CDOM and low DOC. Surface waters of the Canada Basin in 
Section B (which is closer to the Eurasian shelves) had more DOC than Section A by ∼7 SμM.

3.4. Dissolved Inorganic Carbon

DIC concentrations were very low at the surface (<1950 μM; Figure 3), similar to in situ CDOM fluorescence 
(except without the TPD maximum), and enriched in the UHC (up to ∼2300 μM). The maximum concentrations 
of DIC generally coincided with the nutrient maximum marking the core of the UHC (Figure 3). Within the TPD, 
the trend was the opposite to in situ CDOM fluorescence, as the surface of the Makarov and Amundsen Basins 
was depleted in DIC (∼1960 μM). The Atlantic inflow in the eastern Arctic had higher DIC than the Pacific 
inflow at the Chukchi shelf (Figure 3).

3.5. Lignin Phenols

The high salinity (>34.7) waters of Atlantic origin dominating the eastern Arctic's Nansen Basin were charac-
terized by low concentrations of lignin phenols (<3 nmol/L; Figure 3). In the Central Arctic, the importance of 
tDOM within the TPD was confirmed by the high lignin phenol concentrations (up to 21 nmol/L). In the Canada 
Basin, the vertical gradient was different for the distributions of DOM fluorescence and total DOC concentra-
tions. Lignin phenol concentrations reached 5 nmol/L at the surface of the Canada Basin, decreased within the 
UHC, and were slightly enriched at the UHC/LHC interface. In general, Section B was characterized by higher 
lignin concentrations than Section A (Figure 3); overall, lignin phenol concentrations were ∼5 nmol/L higher in 
Section B, closer to the Eurasian shelves.

3.6. Fluorescent Components of DOM

Based on the laboratory spectrofluorometric measurements, two PARAFAC models were developed: a 
four-component model for the GN01 data set (Canada Basin, C1) and a six-component model for the PS94 data 
set (Amundsen, Makarov and Nansen Basins, C2). Of all the fluorophores observed in the Canada Basin in this 
study, component C1482 was earlier described as an ideal terrigenous tracer, for example, in Arctic boreal lakes 
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(Kothawala et al., 2014) and the Arctic Ocean (Walker et al., 2009; Williford et al., 2021). In the Canada Basin, 
C1482 had the strongest correlation with lignin phenol concentrations, confirming its terrigenous origin. The 
maximum C1482 fluorescence was observed at the very surface of the Canada Basin and in the UHC. Component 
C1434 previously identified as marine humic (Kothawala et al., 2014), was highly correlated with DOC and lignin 
phenol concentrations (Figure 4).

C1402, another humic-like component, has been observed spreading from the Chukchi Sea shelf to the core of the 
UHC in the Canada Basin and likely originates from marine organic matter decomposition in surface sediments 
on the shelf (Chen et al., 2018). The distribution of the only protein-like component C1348 in the Canada Basin 
was like that of C1402, but with a more pronounced fluorescence signal closer to the Chukchi Sea shelf.

Among all the fluorophores identified in the Nansen, Amundsen, and Makarov Basins, components C2411, C2456, 
C2404, and C2492 were humic-like, while C2338 and C2302 had a protein-like signature. C2411 had the highest 
fluorescence intensity and is usually suggested to be produced in the water column (Yamashita et al., 2013). 
The two fluorescent components, C2456 and C2492, are usually described to be of terrigenous origin (Kothawala 
et  al., 2014; Williford et  al., 2021; Yamashita et  al., 2013). These components had the strongest correlations 
with lignin phenol concentrations (Figure 4). C2456 is commonly found in the Arctic Ocean and was reported 
in surface waters of the central Arctic, close to the Mackenzie River mouth and the Amundsen Gulf (Guéguen 
et al., 2015), and in the Lena River (Gonçalves-Araujo et al., 2015). C2492 has a longer emission wavelength 
than C2456, indicating molecules with higher molecular weight and higher hydrophobicity (Helms et al., 2008). 
Relative to C2456, C2492 has a higher molecular weight and therefore is more prone to flocculation, and its fluo-
rescence intensity in the TPD region and the LHC was lower but relatively higher on the shelf. C2492 fluorescence 
co-varied with dFe in boreal lakes (Kothawala et al., 2014). Similar to C1402, the fourth humic component (third 
by intensity), C2404, resembled a fluorescence signal that had been observed near the Chukchi Sea shelf and in 
the core of the UHC in the Canada Basin (Chen et al., 2018; Williford et al., 2021). The tryptophan-like C2338 
and the tyrosine-like C2302 components have been reported in Arctic surface waters (Chen et al., 2018; Stedmon, 
Thomas, et al., 2011; Williford et al., 2021). Previously, C2338 was reported as related to sea-ice CDOM and brine 
concentration (Stedmon, Thomas, et al., 2011). The tyrosine-like C2302 was reported to be derived partly from the 
shelf and slope sediments (Chen et al., 2018).

In the Amundsen and Makarov basins, PARAFAC components C2411 and C2456 dominated the fluorescence 
signal in the PML and the UHC, LHC of the Makarov basin. C2338 and C2492 were slightly elevated in the PML 
and the halocline. C2411 and C2338 had the highest fluorescence intensity in the PML, while terrigenous C2456 and 
C2492 were most elevated at about 20 m depth at the upper boundary of the UHC.

The fluorescence intensity of all PARAFAC components was low in the Nansen Basin. The protein-like compo-
nents were slightly elevated at the surface of the northern Nansen Basin (Amundsen Basin side). The Svalbard 
slope was also characterized by a slight increase in the fluorescence intensity of all the components.

3.7. Trace Metals

The TE distributions in the GN01 and GN04 Arctic GEOTRACES sections have been presented previously 
(Gerringa et al., 2021; Jensen et al., 2019, 2020; Zhang et al., 2019)). In this manuscript, we focus on potential 
relationships between the TEs and the various types of DOM indicators. The dFe, dNi, and dCu, concentrations 
in the surface waters of the TPD region were high compared to those in the Canada BasinsBasin (Figure 5)), and 
they showed strong to moderate correlations with lignin phenol concentrations, as well as optical indicators of 
tDOM (C1482, C2492; Figure 4, Figure S7 in Supporting Information S1). Other trace metals (dZn, dMn, dCd) did 
not exhibit correlations with the tDOM indicators.

In the Canada Basin, the PML was enriched in dNi, dCu, dCd, and dMn (Figure S7 in Supporting Informa-
tion S1). Dissolved Cu was the only trace metal to show a significant correlation with DOC concentrations and 
protein-like fluorescence in the topupper 300 m of the Canada Basin (Figure S7 in Supporting Information S1). 
Interestingly, the correlation between fMet and dCu was strong, but there was no significant correlation between 
dCu and CDOM.

The UHC waters were enriched in the dZn, dNi, dCu and dCd. These metals showed moderate correlations with 
optical sediment signal. The scavenging-prone dFe and dMn are rapidly lost, moving away from the continental 
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Figure 4. Correlation plots between the lignin phenol concentrations and C1 Parallel Factor Analysis (PARAFAC) components (a), C2 PARAFAC components, and 
in situ chromophoric DOM (CDOM) fluorescence (Fl.) (b), in the top 300 m of the Arctic Ocean. Scatterplots between the dMn (c, d), dFe (e, f), and C2 PARAFAC 
components and in situ CDOM fluorescence (CDOMF; c, e), lignin phenols (TDLP9) and dissolved organic carbon (DOC; d, f), in the top 300 m of the Arctic Ocean. 
Only significant correlations (p < 0.001 are shown).
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Figure 5. Concentrations of dFe, dMn, dNi, dCu, dZn, dCd in surface sample. The trace element (TE) distributions data for the GN01 and GN04 Arctic GEOTRACES 
sections have been published previously (Gerringa Loes et al., 2018, Gerringa et al., 2021; Jensen et al., 2019, 2020; Zhang et al., 2019).
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slope (Figures S5 and S6 in Supporting Information S1, Jensen et al., 2020). Dissolved Fe exhibited weak to 
absent complexation to degraded UHC marine DOM in the UHC.

4. Discussion
We characterize the surface Arctic Ocean into three geographic regions based on the distribution of DOC, lignin, 
and optical properties. These three regions are physically separated by circulation and experience different 
sources of organic matter. The Eastern Arctic's Nansen Basin/Atlantic Eurasian shelf region is strongly influ-
enced by AW and north-flowing Eurasian shelf waters carrying significant quantities of freshwater, nutrients, 
DOM, and sediments into the Arctic Ocean (Holmes et al., 2019; Rudels, 2015; Sholkovitz & Copland, 1981; 
Walker et al., 2013). The buoyant, low-salinity fluvial discharge mixed with the Atlantic water creates an upper 
ocean flow from the shelves to the central Arctic Ocean (Rennermalm et  al.,  2006). Arctic shelf waters are 
diverted by the Coriolis force to form a circumpolar anti-clockwise current shaped by coastal geometry resulting 
in multiple branches (Carmack et al., 2016; Horner-Devine et al., 2015). Below these upper waters is the LHC, 
which is believed to be formed via two mechanisms: a convective formation implying salinification of cold and 
fresh surface water and melting of sea ice as Atlantic water enters the ice-covered Arctic shelves, and an advective 
formation involving the cold and saline shelf water spreading into the deep Arctic basins (Kikuchi et al., 2004; 
Metzner et al., 2020).

The second region is the central Arctic that consists of the Amundsen and Makarov basins. In these basins, DOM 
distributions are influenced by the TPD, which connects the Eurasian shelves to the Fram Strait through surface 
advection (Charette et al., 2020). A clear tDOM signature is known to characterize the TPD region (Amon, 2004; 
Opsahl et al., 1999; Paffrath et al., 2021; Slagter et al., 2019; Williford et al., 2021).

On the Western Arctic's side of the TPD, the Chukchi shelf and Canada Basin are influenced by the advection of 
the relatively fresh (S < 33) nutrient-rich waters from the Pacific (Woodgate et al., 2012), which are modified on 
the shallow Chukchi shelf by the exchange with sediments (Kondo et al., 2016; Nakayama et al., 2011; Nishimura 
et al., 2012). Concentrations of tDOM and CDOM are much lower compared to the Eurasian Arctic and the TPD 
(Figure 3). The UHC is derived from PW inflow, and it lies on top of the LHC, with its core identified by high 
silicate concentration (Jones & Anderson, 1986; Figure S3 in Supporting Information S1). Atmospheric forcing 
creates the anticyclonic (i.e., convergent) Beaufort Gyre in the Canada Basin (Figure 1; Morison et al., 2021), 
deepening the nutricline and chlorophyll maximum in the Canada Basin interior (McLaughlin & Carmack, 2010). 
This anticyclonic circulation of surface waters is also found in the UHC of the Canada Basin, while the LHC 
seems to share a cyclonic circulation pattern with the Atlantic layer (Paqualini, 2021).

4.1. Distribution of Terrigenous DOM (tDOM)

Fluvial discharge is an important source of DOM to the Arctic Ocean (Amon, 2004; Anderson & Amon, 2015; 
Holmes et al., 2019; Opsahl et al., 1999; Walker et al., 2013). In the Amundsen and Makarov Basins, the concen-
trations of tDOM indicators were elevated in the upper 70 m, the waters most heavily influenced by the TPD 
(Figure 3). Besides the humic-like components of terrigenous and marine origin, the protein-like fluorescence 
exhibited a high correlation with the lignin concentration (Figure 4). This is explained by the fact that tannins 
and lignins, known for their protein-binding capability, can contribute to the protein-like fluorescence signature 
(Maie et al., 2008).

The terrigenous contribution to DOM distinguishes the Arctic Ocean from other oceans (Anderson & 
Amon, 2015), as reflected in the strong correlation between DOC and lignin phenols (rr = 0.91, p < 0.001). In 
situ CDOM fluorescence had a similar correlation with lignin phenol concentrations as with DOC (Figure 4b). 
The correlation between lignin phenols and fMet was weaker in the Canada Basin than in the Amundsen, Makarov 
and Nansen Basins (Figures 4a and 4b), indicating that fluvial discharge plays a more prominent role in the DOM 
pool within the TPD and on the Eurasian side of the TPD. In situ CDOM fluorescence is a powerful, high vertical 
resolution and real-time indicator of the TPD location. The broad distribution of this current feature between 
the Lomonosov and Alpha Ridges shown here was also observed in 1998, 2005 (unpublished data), and 2007 
(Williford et al., 2021).
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The Arctic shelves, particularly the Chukchi shelf, are characterized by elevated seasonal primary productivity 
where sediments can serve as a source of diagenetically altered DOM (Cooper et  al., 2005). The water frac-
tions combined with the fluorescent components of DOM indicate to lateral shelf—basin transport. The UHC 
contains up to 100% of fPac, and the LHC contains up to 85% of fAtl (Figure  2). The UHC exhibits a higher 
brine content (up to 5% negative SIM, indicative of excess brine) than the LHC, but both have a more negative 
fSIM  compared to the PML and the AW. Elevated concentrations of the sediment-derived fluorophores C1402 and 
C2404 (Chen et al., 2018; Williford et al., 2021) were observed in the UHC. This signal likely originates from 
marine organic matter decomposition in surface sediments on the shelf, consistent with a significant correlation 
between C1402 fluorescence intensity and DIC concentration in the Canada Basin (r = 0.7, p < 0.001). The UHC 
showed a pronounced CDOM signature but low lignin and other tDOM proxy concentrations and high nutrient 
and DIC concentrations (Figure 3), the latter two indicating organic matter degradation in source waters. The 
depth-integrated levels of in situ CDOM fluorescence and DOC concentration are lower in the LHC than in the 
UHC, but they are high compared to AW. The concentration of marine component C2411 was higher in the UHC 
compared to the LHC, but the concentration of the terrigenous component C2456 was higher in the LHC relative 
to the UHC.

The terrigenous signal in the LHC and the LHC/UHC interface suggests lateral transport of organic matter from 
the Eurasian shelves into the interior Arctic via the LHC formation process. Lignin phenol concentrations and in 
situ CDOM fluorescence peaked at the UHC/LHC interface (σ = 27.6 kg/m 3). The in situ CDOM fluorescence 
signal closely follows the density structure in the water column (Figure 3), indicating that physical processes 
(e.g., sea ice formation/melt processes) have a major effect on the DOM distribution in the Arctic Ocean.

In the Western Arctic, the PML of the Canada Basin was depleted in tDOM indicators. The Beaufort Gyre alters 
the biogeochemical conditions of the PML layer in the Canada Basin. The layer contains up to 5% of ice melt 
but is dominated by the fPac (McLaughlin et al., 2004). According to the oxygen isotope and salinity calculations, 
the Canada Basin PML also contained up to ∼16% of meteoric water, often explained by river discharge (Jensen 
et al., 2019; Jones et al., 2008; Proshutinsky et al., 2019; Yamamoto-Kawai et al., 2008, 2009). However, a direct 
riverine source is not supported, given the low concentrations of lignin phenols and fluorescent terrigenous prox-
ies. The river water must have undergone at least one sea-ice formation/melting cycle that diminished the tDOM 
signal. The Mackenzie River input is mostly exported to the Archipelago, only entering the central Arctic occa-
sionally (approximately once every 4 years; Fichot et al., 2013). The DOC concentrations were relatively high in 
the PML compared to halocline waters, but in situ CDOM fluorescence was very low (Figure 3), indicating the 
presence of non-fluorescent substances in surface waters of the Canada Basin, which are mostly of marine origin 
(Shen et al., 2016; Wang et al., 2006).

4.2. Processes Affecting the Distribution of DOM in the Arctic Ocean

We consolidated data from all water masses, and the in situ CDOM fluorescence correlates better with fSIM 
than with fMet (r = −0.6, r = 0.5, respectively, p < 0.001, Figure 5), despite the fact that fluvial discharge is 
the largest source of CDOM to the Arctic Ocean (Amon, 2004; Anderson & Amon, 2015; Stedmon, Amon, 
et al., 2011, 2011b; Walker et al., 2009; Williford et al., 2021). The correlation between fSIM and in situ CDOM 
shows that sea ice formation/melt processes largely control the distribution of DOM in the Arctic Ocean, consist-
ent with a recent study by Hölemann et al. (2021) who demonstrate that fluvial discharge is rapidly diluted by the 
melting of land fast ice during the spring freshet. In addition, river water undergoes at least one freeze-melt cycle 
on the Arctic shelf seas before entering the TPD. The mean residence time of river-runoff on the Siberian shelves 
is about 5 ± 2 years (Schlosser et al., 1994). During the shelf transition, the water is imprinted with a specific 
oxygen isotope and salinity signature that is later carried into the central basins of the Arctic Ocean, mostly in 
the TPD region. The difference in negative fSIM between section A, crossing the Arctic Ocean at the North Pole, 
and section B, situated closer to the Eurasian shelves, is likely due to the pulsed release of shelf water within the 
TPD system (Bauch et al., 2011; Kaiser et al., 2017; Karcher et al., 2012; Thibodeau & Bauch, 2015; Thibodeau 
et al., 2014).

The strongest correlation between fMet and lignin phenol concentrations was observed in the TPD region of the 
Amundsen and Makarov Basins (r = 0.96, r = 0.92, respectively; p < 0.001; Figure 6). A weaker correlation was 
found between lignin phenols and fMet in the Nansen Basin (Figure S4 in Supporting Information S1). No corre-
lations between these parameters were observed in the Chukchi Sea and the Canada Basin. The strong negative 
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correlation between the fSIM and lignin phenols in the central Arctic basins (Makarov and Amundsen) indicates 
substantial modification of river discharge on the Eurasian shelves during the freezing/melting/mixing processes 
before entering the open Arctic Ocean. This modification of Eurasian shelf water during sea-ice formation is 
reflected in elevated brine fractions (negative fSIM values) along with high CDOM concentrations in the TPD 
(Figures 2, 3 and 5) and the halocline layers. Due to the very low salinity (high buoyancy) of the PML over the 
shelves, most of the tDOM-enriched brine is advected above the Atlantic layer. The general overlap of the in situ 
CDOM trace with the iso-contour lines of brine enrichment (fraction of sea ice) is a strong testament that the 
distribution of DOM, originating on the Arctic shelf seas, is at least partially controlled by sea ice formation and 
results in lateral advection of shelf DOM to the central Arctic Ocean. Such a mechanism has been suggested by 
Hölemann et al. (2021), who demonstrated that typical river signals on the Eurasian shelf are diluted and over-
layered by freshwater from melting fast ice. All these processes on Arctic shelves also influence the distribution 
of trace metals that are complexed with dissolved organic ligands. As the Arctic warms, the sea-ice cycle over 
the shelves has already begun to change dramatically (Li et al., 2021). In the near term, the amplitude of the 
annual sea-ice freeze/melt cycle might increase along with brine formation. The impacts of these changes on 
Arctic productivity, carbon dioxide sequestration, and TE transport need to be monitored with repeat sampling 
campaigns.

4.3. Trace Metals in Relation to DOM and Hydrographic Features

The external sources controlling the TE distributions in the GN01 and GN04 Arctic GEOTRACES sections have 
been presented previously (Jensen et al., 2019, 2020; Zhang et al., 2019; Gerringa et al., 2021, Figure 5, Figures 
S5, S6 in Supporting Information S1). Nonetheless, one of the goals of this study was to compare the distribu-
tions of TEs with those of DOM components in order to understand how organics might control TE distributions 

Figure 6. Top panel: relationship (Pearson correlation) of the in situ chromophoric DOM (CDOM) fluorescence (Fl.), with fSIM and fMet in the top 400 m of the 
Chukchi Sea, Canada, Makarov, Amundsen, and Nansen Basins. Only significant (p < 0.001) correlations are shown. Bottom panel: the in situ CDOM fluorescence for 
section A in the upper 400 m. The light gray dotted lines represent the fMet isolines, and the solid black lines represent fSIM isolines.
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in the Arctic Ocean. Several factors are known to control the relationship between DOM and TE distributions. 
First, the long-distance transport of low-solubility trace metals, for example, Fe(III), heavily depends on compl-
exation with organic ligands (Gledhill & Buck, 2012). In other cases, high correlation of the trace metal and 
DOM indicators can point to a common source and transportation mechanisms, for example, Mn(II) is present in 
free form in seawater (Byrne, 2002; Jensen et al., 2020), so it does not depend on binding to organic ligands to 
maintain solubility. Weak correlations between DOM and dissolved metals do not necessarily mean weak trace 
element-organic ligands associations, as, for example, the concentration of available ligands can greatly exceed 
the concentration of TEs. In addition, processes such as biological uptake and remineralization may affect the 
correlations between DOM and dissolved metals concentrations.

In the Central Arctic (TPD waters), lignin phenol concentrations, as well as optical indicators of tDOM (C1482, 
C2492), showed strong correlations with dFe and dCu (Figure 4, Figure S7 in Supporting Information S1) and a 
moderate correlation with dNi (Figure S7 in Supporting Information S1) due either to strong binding to terrige-
nous ligands within the DOM pool or a common point of origin and co-transport mechanisms.

The dFe correlation with DOC was lower than that with lignin (Figure 4), indicating preferential binding of dFe 
with tDOM. Previous studies have shown the association of dFe with humic-like terrigenous organic ligands, 
particularly in the TPD, and humic-like marine ligands (Laglera et al., 2019). Slagter et al. (2019) reported that 
humic substances are, in fact, the dominant type of Fe-binding organic ligand in the surface of the Arctic Ocean. 
While dFe and divalent dCu are known to be organically complexed in natural waters (Laglera et  al.,  2019; 
Semeniuk et al., 2015; Shank et al., 2004; Slagter et al., 2017, 2019; Williford et al., 2021), the organic chela-
tion of dNi is less well understood (Vraspir & Butler, 2009). It appears that dNi can be partially complexed by 
strong organic ligands (logK = 17–19; Van den Berg & Nimmo, 1987; Morel & Price, 2003). Terrestrial humic 
substances have been suggested as the likely source of high-affinity, low abundance ligands for dCu (Muller & 
Batchelli, 2013). Another study reported that fluvial allochthonous organic matter dominated the strong compl-
exation capacity of dCu in the Cape Fear River estuary (Shank et al., 2004). Indeed, compared to Fe and Ni, Cu 
likely prefers sulfur-containing ligands of lower molecular weight (Zhengbin & Liansheng, 1982). While we 
cannot know for sure that the correlations between the TEs and the organic compounds mean organic compl-
exation, their strong correlations certainly warrant further investigation of the organic ligand binding of these 
riverine-derived metals as well as their behavior during sea ice formation. Other trace metals (dZn, dMn, dCd) 
did not appear to be transported across the TPD by tDOM binding.

The optical sediment signal (C1402) showed moderate correlations with dFe, dNi, and dCu (Figure S8 in Support-
ing Information S1). The former, dFe, dissipated rapidly within the UHC moving offshore, while dNi, dCu, and 
C1402 concentrations persisted in the central Canada Basin (Figures S5, S6 in Supporting Information S1). In the 
Chukchi Sea, brine rejection drives convection, creating dense, metal- and organic-rich bottom waters, which 
detrain from the shelf, feed the UHC, and spread along isopycnals across the Canada Basin (Mathis et al., 2007). 
The degraded shelf-derived DOM serves as a source of ligands to the UHC. The dZn (Jensen et al., 2019), dCd 
(Zhang et al., 2019), dCu, dNi (Jensen et al., 2022), and dMn (Jensen et al., 2020) have elevated concentrations 
throughout the UHC in the Canada Basin water column (Figures S5 and S6 in Supporting Information S1). The 
strong correlation of dCd, dZn, and dNi with C1402 in the Canada Basin suggests the Chukchi shelf sediments are 
an important source of trace metals (Figure S8 in Supporting Information S1) as well as a source of strong organic 
ligands that bind to them and carry them offshore within the UHC. Indeed, in previous studies, dZn was shown 
to be strongly complexed (>95%) by organic ligands (Jakuba et al., 2012), especially sedimentary humic acids 
(Raspor et al., 1984; Sohn & Hughes, 1981) and low-molecular-weight thiols (Dupont & Ahner, 2005). Less is 
known about the potential organic ligands that bind to dCd, but prior studies have found that ∼70% of the dCd in 
surface waters was strongly complexed (Bruland, 1992).

Dissolved Cu was the only trace metal to exhibit a significant correlation with DOC concentrations and protein-like 
fluorescence in the upper 300 m of the Canada Basin (Figure S7 in Supporting Information S1) and a negative 
correlation with DIC (Figure S8 in Supporting Information S1), suggesting dCu is likely complexed with marine 
DOM in the Canada Basin, consistent with previous findings that DOM derived from marine phytoplankton and 
cyanobacteria could be an important source of Cu ligands (Laglera & van den Berg, 2003; Nixon et al., 2019). 
Coccolithophorids release thiols in response to Cu addition (Croot et al., 2000), and thiol-like levels were asso-
ciated with the chlorophyll-a maximum in the Canadian Archipelago and Canada Basin (Gao & Guéguen, 2018; 
Nixon et al., 2019). The high correlation between fMet and dCu, but not between dCu and CDOM, is evidence 
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that the river water had been through at least one freezing cycle before reaching the Beaufort Gyre (there was no 
correlation between the lignin phenols concentrations and the fMet in the Canada Basin). That is to say that the 
sea-ice formation/melting cycle in the Canada Basin strips out the tDOM signal, but the dCu content seems to be 
conserved due to the availability of algal-derived ligands, as indicated by the high correlation with DOC.

The scavenging-prone dFe and dMn are rapidly lost, moving away from the continental slope (Figures S5 and 
S6 in Supporting Information S1, Jensen et al., 2020). Dissolved Fe exhibits weak to absent complexation to 
degraded UHC marine DOM molecules, as opposed to a strong correlation to tDOM within the TPD current 
(Williford et al., 2021). Besides scavenging, dFe concentrations in the Canada Basin are moderated by light- and 
nitrate-limited biological uptake (Aguilar-Islas et al., 2013). Dissolved Mn shares common sources and sinks 
with dFe but has a different redox reactivity and speciation (Jensen et al., 2020; Middag et al., 2011). The corre-
lations of dMn with in situ CDOM fluorescence, DOC, and lignin phenols were positive but statistically insig-
nificant. As mentioned above, in contrast to dFe, whose solubility depends on organic complexation, most dMn 
in seawater is considered to exist in the free form (Byrne, 2002). In estuaries, dMn does not undergo significant 
salt-initiated coagulation or precipitation (Sholkovitz & Copland, 1981), but it is subject to bacterial precipitation 
(Sunda, 2012). Recent studies, however, show that humic ligands may play a greater role in dMn transport from 
coastal areas to the ocean than previously thought (Oldham et al., 2017, 2020).

The LHC exhibits relatively low concentrations of TEs (Figures S5 and S6 in Supporting Information  S1; 
Gerringa et al., 2021) and similarly had low concentrations of DOM (Figure 2). The Eurasian shelves are gener-
ally deeper and less biologically productive than the Chukchi Sea shelf, reducing the amount of remineralized 
and diagenetically altered organic matter released from sediments (Jones & Anderson, 1986; Sakshaug, 2004). 
However, these shelves receive large amounts of tDOM, which might mask autochtonous DOM release from the 
sediments (Rijkenberg et al., 2018).

5. Conclusions
DOM is a valuable tracer of water masses and features of the Arctic Ocean. In the Amundsen and Makarov Basins, 
the concentration of tDOM was elevated in the upper 70 m of the water column due to the TPD. In contrast to the 
central Arctic basins, the PML of the Canada and Nansen Basins was depleted in tDOM. Underneath the PML, 
the UHC in the Canada Basin was marked by high DIC concentrations and a Chukchi-shelf-sediment-derived 
signature. The terrigenous signal found in the LHC and LHC/UHC interface demonstrates the lateral transport of 
organic matter from the Eurasian shelves into the Arctic interior via an advective LHC formation process. Sea-ice 
formation and melting processes shape the patterns of DOM distributions relative to hydrography and water mass 
tracers by separating DOM from river water. This has consequences for the interpretation of coupled physical/
biogeochemical driving factors influencing source assignments for freshwater, DOM, carbon, as well as trace 
metal/DOM interactions.

The distributions and co-variation of TEs and DOM indicators in the Arctic Ocean provided novel insights 
about the complex interactions of marine biogeochemical cycles, potential metal-ligand interactions, and sea-ice 
formation and melting. Chukchi shelf sediments were the most important sources of dCd, dZn, and dNi, as well 
as sediment-derived organic ligands that bind and carry them offshore within the UHC in the Canada Basin. In 
contrast, dCu was associated with marine DOM in the PML and the UHC of the Canada Basin. Sediment-derived 
DOM did not appear to facilitate the long-range spreading of dFe into the UHC in the Canada Basin. On the other 
hand, tDOM molecules were found to be strong ligands for dFe, dNi, and dCu, facilitating their long-range trans-
port from the Eurasian shelves to the central Arctic Ocean via the TPD system and eventually the East Greenland 
Current and the North Atlantic as suggested by the distribution of terrigenous CDOM in these waters (Amon 
et al., 2003) and a recent study in the Fram Strait (Krisch et al., 2022).

Qualitative DOMstudies, for example, nuclear magnetic resonance, coupled with hydrography and trace metal 
distributions are necessary to further constrain biological utilization and growth as well as physical processes, 
such as freezing/thawing, advection, and particle scavenging. This study highlights the importance of under-
standing the biogeochemistry of DOM and its potential to provide insights about water mass transformations, 
freshwater sources, and the fate of TEs in the Arctic Ocean.
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Data Availability Statement
The data collected during the U.S. Arctic GEOTRACES (GN01; Kadko & Landing, 2015) cruise are available 
in a consolidated form as part of the GEOTRACES Intermediate Data Product 2021, at https://www.geotraces.
org/geotraces-intermediate-data-product-2021/. The data collected during the GEOTRACES TransARC II 
cruise (PS94; Rabe et al., 2016a, 2016b; Schauer, 2016) can be found at the PANGAEA data archive (https://
www.pangaea.de: https://doi.org/10.1594/PANGAEA.859558), the British Oceanographic Data Centre (http://
www.bodc.ac.uk/geotraces), and Biological and Chemical Oceanography Data Management Office (Landing 
et al., 2017, 2019). The dissolved organic carbon data are available online (Hansell, 2017, 2021). Dissolved Fe 
and other TE data were obtained from Jensen et al. (2019) for GN01 Zn, Zhang et al. (2020) for GN01 Cd, Jensen 
et al. (2019, 2020, 2022) for GN01 Fe and Mn, Gerringa et al., and Jensen et al. (2022) for GN01 Cu and Ni. The 
isotope data were from Pasqualini et al. (2017) and Paffrath et al. (2021).
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