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Abstract 

The aim of this work is to define profiles of the indoor 

climate in Danish multifamily residential buildings. 

Measurements of indoor temperature, relative humidity 

and CO2 concentration were conducted every five minutes 

for more than a year in 45 apartments using internet of 

things sensing devices. Cluster analysis was employed to 

derive the indoor climate profiles. The relationship 

between indoor and outdoor climate was analysed through 

piecewise linear regression. Three different profiles of 

indoor climate were identified, as well as heating schedule 

and setpoint temperatures, which may be considered 

when modelling occupant behaviour and performing 

building energy simulation. 

Key Innovations 

 Internet of things (IoT) sensing devices 

employed to acquire high temporal resolution 

measurements 

 Piecewise linear regression analysis performed 

in clusters of the data to extract useful 

information for building simulation 

Practical Implications 

Use of hourly data to build indoor climate profiles. Avoid 

using only one profile of indoor climate, heating setpoint 

temperature or heating schedule. 

 

Introduction 

Building simulation relies on realistic input data of high 

quality in order to provide high quality and realistic 

results. No matter how good the simulation software and 

the modelling capabilities, the simulation results will not 

be realistic if the occupancy profiles, setpoints, loads etc. 

are not realistic. Understanding occupancy patterns and 

occupants' control of the indoor climate is crucial to 

perform accurate and realistic building simulations 

(Yoshino et al., 2017; Yan et al., 2017; O’Brien et al., 

2020). Testing different design scenarios in a building 

performance simulation software can significantly 

contribute to the design of buildings with good indoor 

environment and low energy use. Building simulation can 

be used in an optimisation process aimed at maximising 

comfort, health and productivity conditions and 

minimising energy use. But if the optimisation process is 

based on unrealistic conditions in terms of occupancy and 

heating setpoints, the building will end up being 

optimised for unrealistic conditions and may not work 

optimally, once built. As a consequence, there is a need 

for realistic occupancy patterns and realistic temperature 

setpoints that are easy to implement in existing simulation 

software. Some authors provided stochastic models of 

occupants’ heating setpoints based on measurements e.g. 

in 15 Danish dwellings (Fabi, Andersen, and Corgnati 

2013; D’Oca et al. 2014). While these may be capable of 

replicating the diversity amongst occupants and the 

temporal variation in the occupants’ behaviour due to the 

stochastic nature, they are difficult to implement and 

require expert knowledge. Since the models are 

stochastic, the simulation results are harder to interpret 

and they require several simulations, resulting in longer 

simulation times.  

In this work, data from a large field campaign in 

residential buildings in Denmark using IoT sensing 

devices was used in order to acquire information on 

indoor environmental quality. To our knowledge, the 

database is the most detailed Danish sample of indoor 

environment data in residential buildings. Other databases 

from commercial stakeholders exist, but the data come 

from sensors installed by the users themselves with risk 

of placing them in unsuitable places – e.g. in direct 

sunlight or close to a heating source. The aim of this work 

was to define profiles of the indoor climate in Danish 

multifamily residential buildings. However, in this work, 

we analysed data only from a residential building in 

Copenhagen. The high temporal resolution of the 

measurements may provide a better understanding of the 

link between indoor and outdoor temperatures at different 

seasons. Results may be used to better understand 

residents’ domestic temperature preferences and guide 

building simulation practitioners towards more realistic 

simulation results.  

 

Method 

Field data collection was performed in a multifamily 

residential building in Copenhagen, Denmark, totalling 

45 apartment units. Cluster analysis was used for 

discovering distinct apartment groups characterized by 

different indoor profiles, encompassing air temperature, 

relative humidity, and CO2 concentration. In our 

empirical setup, the main advantage of cluster analysis 

lies in its ability to account for different occupancy 

patterns and bridge the gap between predicted and actual 

building energy performance. Furthermore, the derived 
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indoor profiles were used to investigate the relationship 

between indoor and outdoor temperature by employing 

piecewise linear regression. This approach allowed us to 

identify a threshold for temperature for each cluster based 

on the apartments’ operation mode (heating and non-

heating periods). 

The surveyed building 

The 3-storey building chosen as a case study for this work 

is a typical multifamily residential building in 

Copenhagen with brick wall façade and ceramic roof tiles. 

Most of the 45 apartment units have a floor area of 66 m2 

with few larger units up to 93 m2. All apartments are 

heated by radiators/convectors connected to a central 

water-based heating system and equipped with operable 

windows. The temperature is controlled using 

thermostatic radiator valves and by opening windows. 

Data collection 

Internet of things (IoT) sensing devices were installed in 

a central corridor of each apartment to record the indoor 

air temperature, relative humidity and CO2 concentration. 

The standardization of the location of the devices in each 

apartment has the benefit of avoiding installing the 

equipment in unsuitable places, but it may not accurately 

represent the indoor climate of a specific room. 

Measurements were conducted every five minutes from 

April 2019 to November 2020. Hourly outdoor air 

temperature and relative humidity were taken from the 

Norwegian Meteorological Institute (2020). 

Data analysis 

Rigorous data cleansing and processing were carried out 

for the statistical analysis. Data analysis was conducted in 

R (R Core Team, 2021). The relation between indoor and 

outdoor temperature and humidity was investigated. 

Cluster analysis was employed in order to derive the 

indoor climate profiles. The idea was to group the 

different apartments based on the indoor temperature and 

estimate different indoor climate profiles for each cluster. 

The hierarchical cluster analysis technique was employed 

using the Euclidean distance as similarity measure and the 

Ward method as the linkage function. The hierarchy tree 

was represented by a dendrogram. The number of clusters 

was determined by analysing the growth of within-cluster 

variance according to the number of clusters – the so-

called elbow method. 

Daily profiles of indoor climate were derived for each 

cluster in different seasons. Profiles were built separately 

for weekdays and weekends. We also investigated the 

influence of using data at 5-min intervals and its hourly 

mean (average of 5-min data for each hour) on the 

determination of daily indoor climate profiles. 

Piecewise regression analysis was conducted between the 

hourly indoor and outdoor temperature for each 

apartment. The data is composed of temperature 

measurements during the heating and non-heating 

periods, where the apartments were free running, i.e. the 

indoor temperatures are likely to be disconnected from 

outdoor temperatures during the heating operation; indoor 

temperatures tend to fluctuate according to the outdoor 

temperatures during the free-running mode. For this 

situation, fitting a linear regression model to the data 

(indoor vs. outdoor air temperature) would not describe 

the data very well. Piecewise regression allows fitting two 

linear models to the data for different ranges of the 

explanatory variable (outdoor air temperature). 

Piecewise regression has been applied by Rasmussen et 

al. (2020) to analyse the relationship between heating 

consumption and outdoor air temperature and by Nguyen 

et al. (2014) to analyse the relationship between the 

indoor and outdoor air temperature in homes located in 

Boston, USA. The point (i.e. the value of outdoor air 

temperature) where a change in the slope of the linear 

models occurs, is called a breakpoint. In this work, the 

breakpoint is an indication of the apartments’ operation 

mode: heating mode below the breakpoint (lower outdoor 

air temperatures) and free-running mode above the 

breakpoint. 

 

Results 

Almost 7 million measurements of environmental 

parameters were collected in the multifamily residential 

building in Copenhagen.  

Outdoor and indoor climate 

Table 1 presents a summary of the indoor thermal 

environment in the surveyed building. Overall, the 

environmental variables were normally distributed. 

However, considerable discrepancies in indoor 

environmental parameters were observed across the 

apartments, especially concerning the CO2 concentration 

(high values above 1,000ppm). 
 

Table 1: Summary of the indoor environment parameters 

in the surveyed building. 

Parameter 

Number 

of data 

points 

Mean S.D. 

Indoor air temperature (ºC) 6,845,774 22.7 1.9 

Relative humidity (%) 6,845,774 45 9 

CO2 concentration (ppm) 6,819,208 838 453 
 

Figure 1 shows the hourly outdoor and indoor air 

temperatures for the entire measurement period for the 45 

apartments in the residential building. The hourly indoor 

air temperature ranged from 16.7 ºC in winter to 28.8 ºC 

in summer, while the hourly outdoor air temperature 

varied between -2.3 ºC and 30.0 ºC, respectively. The 

distribution of indoor air temperatures was marked by two 

periods: the heating period and the non-heating period. It 

is interesting to note the fluctuations of indoor air 

temperature according to the outdoor temperature, when 

the building was in the free-running mode, noticeably in 

summer (June to August).  
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Figure 1: Hourly outdoor and indoor air temperatures 

for the surveyed building. 

 

 

Figure 2: Hourly outdoor and indoor relative humidity 

for the surveyed building. 

 

The hourly outdoor and indoor relative air humidity in the 

surveyed building is shown in Figure 2. The hourly indoor 

relative humidity varied from 17.1% to 74.7%. The hourly 

outdoor relative air humidity oscillated widely, ranging 

from 16.3% to 99.1%. The period from October 2019 to 

February 2020 was humid outdoors, but higher 

temperature indoors caused a lower stable indoor 

humidity. It is clear from Figures 1 and 2 that the building 

envelope and heating system played a strong role in 

maintaining both indoor air temperature and humidity 

within a narrower range than outdoors. 

Cluster analysis 

The outcome of the hierarchical cluster analysis can be 

seen in Figure 3. In Figure 3, the y-axis presents the 

dissimilarity between elements/clusters (i.e. a low value 

indicates similar elements). The x-axis in Figure 3 

displays the 45 apartments, which were combined 

according to their similarities. Figure 3 shows the 

formation of three clusters. The dendrogram also shows 

that cluster #2 and cluster #3 were more similar to each 

other than to cluster #1. 

 
 

Figure 3: Dendrogram output for the hierarchical 

clustering of indoor air temperature for the different 

apartments. 

Indoor climate profiles 

Figures 4 to 9 present the daily indoor climate profiles for 

each cluster during weekdays in summer and winter. The 

differences in air temperature, relative humidity and CO2 

concentration between summer and winter were rather 

clear.  

In summer, the air temperature followed the outdoor 

conditions, rising in the morning until midday (peak) and 

lowering afterwards (Figure 4). The curves also 

corroborate the findings from the cluster analysis pointing 

out that cluster #2 and cluster #3 were more similar 

compared with cluster #1. In winter, the indoor air 

temperature did not vary over time as much as in summer 

(Figure 7). It also diverged more between clusters than in 

summer, which indicates different occupant behaviour 

towards the setpoint of the heating system (the setpoint 

appeared to be around 20.5ºC for cluster #1, 21.5ºC for 

cluster #2 and ≈23.0ºC for cluster #3). The distinct 

patterns of heating use may be triggered by several 

factors. Residential space heating demand is typically 

price and income inelastic and mainly associated with 

dwelling attributes, such as dwelling age, tenure, floor 

area, but also with socio-demographic characteristics such 

as household size and composition (e.g., Salari and Javid, 

2016; Brounen et al., 2012; Alberini et al., 2011; Braun, 

2010). Another strand of literature points to the role of 

everyday practices and perceived comfort in shaping 

space heating demand (e.g., Gram-Hanssen, 2010). 

No major differences between the clusters were observed 

when analysing only the daily relative humidity profiles 

(Figures 5 and 8). Again, the thermal conditions (relative 

humidity) were more stable during winter than in summer 

partly due to the heating system, since raising the indoor 

temperature decreases the relative air humidity. The 

hourly mean relative humidity values were close to 40% 

in winter, while they were close to 50% in summer.  

 

 

H
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g
h

t 

Cluster #1 Cluster #2 Cluster #3 
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Figure 4: Daily indoor air temperature profile for each 

cluster - weekdays in summer. 

 

Figure 5: Daily relative humidity profile for each cluster 

- weekdays in summer. 

 

Figure 6: Daily CO2 concentration profile for each 

cluster - weekdays in summer. 

 

Table 2: Mean±S.D. of differences of indoor climate 

profiles between weekdays and weekends. 

Season Cluster Ta (ºC) RH (%) CO2 (ppm) 

S
u

m
m

er
 #1 -0.03±0.05 -2.5±1.0 -1.7±5.8 

#2 -0.02±0.05 -2.0±0.8 -6.9±17.3 

#3 -0.01±0.04 -1.8±0.7 -12.8±11.5 

W
in

te
r #1 0.04±0.05 0.0±0.2 -17.2±31.9 

#2 0.06±0.02 0.1±0.3 -20.7±43.7 

#3 -0.10±0.03 0.0±0.2 -37.1±41.4 

 
Figure 7: Daily indoor air temperature profile for each 

cluster - weekdays in winter. 

 

Figure 8: Daily relative humidity profile for each cluster 

- weekdays in winter. 

 

Figure 9: Daily CO2 concentration profile for each 

cluster - weekdays in winter. 

 

We suppose that occupant behaviour towards the opening 

of windows in summer, increasing the air exchange rate, 

provided lower levels of CO2 concentration, in 

comparison with the winter, when windows were 

potentially kept closed. In winter, higher values of the 

CO2 concentration could be seen (above 1,000ppm, the 

threshold adopted by the Danish building regulations, 

2018), which is concerning since such values are the mean 

of the hour. This indicates an inefficient removal of 

pollutants (and moisture) through ventilation. 

The CO2 concentration values provided a possibility to 

make an overall assessment of the occupancy. Occupants 
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typically left the home in the morning and returned in the 

late afternoon, but dissimilar profiles were identified in 

the database. Lower CO2 concentration values were 

measured in cluster #1 than in the other groups for both 

seasons. We do not have available evidence to explain it; 

we can only speculate that, probably, this was caused by 

a higher ventilation/infiltration rate (the indoor air 

temperature was lower) or less occupants/occupancy 

(which would help to explain the flat pattern over time in 

winter). 

We also built profiles of indoor climate for the weekends. 

Table 2 shows the differences between weekdays and 

weekends for each environment variable, season and 

cluster. Overall, the differences in indoor air temperature 

and relative humidity were not considerable. On the other 

hand, the CO2 concentration values during weekends 

differed considerably from the weekdays – the only 

exception being cluster #1 in summer. The higher CO2 

levels during weekends could be caused by occupants 

spending more time at home, particularly in winter. These 

well-defined patterns of CO2 levels with respect to 

seasons, weekdays, and weekends are similar to those 

found in residential electricity use (Trotta, 2020). 

Finally, we assessed the influence of data resolution on 

the daily profiles of indoor climate. The overall 

mean±S.D. of the difference between the hourly and 5-

min measurement values are -0.01±0.01 for air 

temperature, -0.01±0.03 for relative humidity and -

1.72±1.81 for CO2 concentration. This way indicating that 

it is not necessary to use data at 5-min intervals in order 

to build daily indoor climate profiles, i.e. the hourly mean 

data provided similar results. The required computation 

time did not change considerably between each other due 

to the size of the database used in this work (6,845,774 

datasets, ≈ 900MB). However, when working with larger 

datasets it is recommended to use the hourly mean of the 

5-min data to derive daily indoor climate profiles. 

The relationship between indoor and outdoor climate 

Figures 10 to 12 show the relationship between the hourly 

indoor air temperature and the outdoor air temperature for 

three apartments (one per cluster). Overall, our 

assumptions regarding the different relations between 

indoor and outdoor climate depending on the operation 

mode are confirmed by the results of the piecewise 

regression analysis.  

During the heating period, the slopes of the (blue) linear 

models were close to zero (0), indicating a weak 

association between the indoor and the outdoor air 

temperature, as expressed by the low values of the 

correlation coefficient (r). In contrast, the slopes of the 

(orange) linear models were around 0.32-0.38 during the 

free-running mode and both variables were highly 

correlated (r > 0.7) - it is evident that indoor temperatures 

increased with increasing outdoor air temperature. Similar 

results were found for the piecewise regression analysis 

when considering the 45 apartments - Table 3 presents the 

mean ± S.D. of the slopes for the heating and the free-

running mode. 

 

 

Figure 10: Piecewise regression between hourly indoor 

and outdoor air temperature for an apartment - Cluster 

#1. Model intercept=20.44, R2=0.65, N=13,992. Dashed 

line (y = x).

 

Figure 11: Piecewise regression between hourly indoor 

and outdoor air temperature for an apartment - Cluster 

#2. Model intercept=22.28, R2=0.50, N=14,035.

 

Figure 12: Piecewise regression between hourly indoor 

and outdoor air temperature for an apartment - Cluster 

#3. Model intercept=21.25, R2=0.55, N=11,937. 

 

Slope = 0.032 

r = 0.06 

p <0.001 

Slope = 0.382 

r = 0.79 

p <0.001 

Slope = 0.008 

r = 0.02 

p >0.050 

Slope = 0.356 

r = 0.72 

p <0.001 

Slope = 0.037 

r = 0.10 

p <0.001 

Slope = 0.320 

r = 0.72 

p <0.001 
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Table 3: Summary of the piecewise regression analysis 

for the 45 apartment units. 

Condition Cluster Mean S.D. 

Heating slope 

#1 0.033 0.107 

#2 0.001 0.045 

#3 0.043 0.070 

Free-running slope 

#1 0.354 0.108 

#2 0.324 0.038 

#3 0.343 0.048 

Breakpoint 

#1 11.1 2.8 

#2 13.6 2.0 

#3 12.5 2.3 

 

Our results are comparable to the ones found for the 

heating period (slope = 0.04, r = 0.40) and the free-

running mode (slope = 0.41, r = 0.91) by Nguyen et al. 

(2014) in homes located in Greater Boston (USA). 

However, they used the daily means of indoor and 

outdoor air temperature and obtained a higher correlation 

between the indoor and outdoor air temperature than in 

our study. 

The piecewise regression analysis identified the mean 

breakpoints as 11.1ºC, 13.6ºC and 12.5ºC for cluster #1, 

#2 and #3, respectively (Table 3). This might illustrate the 

different behaviours taken regarding the heating system: 

some people use heating earlier (e.g. cluster #2, Figure 11, 

breakpoint = 13.4ºC) than others (e.g. cluster #1, Figure 

10, breakpoint = 10.6ºC). Such behaviours could be 

related to their individual thermal preferences, with 

cluster #2 occupants preferring a higher indoor 

temperature than the others – the mean ± S.D. of indoor 

air temperatures was 20.6ºC ± 1.3 (cluster #1), 22.3 ºC ± 

1.2 (cluster #2) and 21.5 ºC ± 1.1 (cluster #3), when 

considering the data below the breakpoint in Figures 10-

12. The different indoor temperatures could also be a 

consequence of the temperatures in the adjacent 

apartments (Calì et al., 2016), the thermal inertia of the 

building, the window orientation, and other internal loads. 

However, we do not have this information about the 

apartments. These findings are consistent with the daily 

profiles of indoor air temperature, as already shown in 

Figures 4 and 7. The mean values of indoor air 

temperature (i.e. 20.6-22.3 ºC) may be used as the heating 

setpoint for building energy simulations. The breakpoints 

may be used as a reference for the modelling of the 

operation (schedule) of heating systems within the context 

of residential buildings in Denmark, i.e. the apartments 

operate in heating mode when the outdoor temperature is 

below the breakpoint (range between 11.1 and 13.6 ºC).   

For the free-running mode, the dashed line (y = x) in 

Figures 10-12 shows that most indoor temperature values 

were higher than the outdoor temperature. If we consider 

26ºC of indoor air temperature as the overheating 

threshold, the measured indoor thermal conditions were 

above the threshold 7.6% (cluster #1), 15.5% (cluster #2) 

and 6.5% (cluster #3) of the time (Figures 10-12). Again, 

cluster #2 occupants tended to experience higher indoor 

temperatures than the others.  

 

Conclusion 

A comprehensive database on indoor environmental 

quality was built and analysed in this work, which 

provided a better understanding of the indoor climate in 

multifamily residential buildings. Some degree of 

overheating and high CO2 concentration (above 

1,000ppm in winter) were observed in the apartments. 

Cluster analysis indicated three different profiles of 

indoor climate. One should consider different profiles 

when modelling occupant behaviour. No considerable 

differences in the profiles were found between weekdays 

and weekends considering the indoor air temperature and 

the relative humidity. However, CO2 concentration values 

during weekends were higher than during weekdays. We 

found that it was sufficient to build daily indoor climate 

profiles based on hourly data rather than 5-minute values. 

Further studies should be conducted to analyse the need 

for high temporal resolution measurements for other 

applications, such as to estimate occupancy and/or air 

change rates. 

In the apartment, the transition between the heating 

operation and the free-running mode happened between 

11.1 to 13.6 ºC of outdoor air temperature. The heating 

setpoints were around 20.6-22.3 ºC. These values are 

useful to feed building simulations in order to achieve 

more realistic predictions of energy use and indoor 

environmental conditions. Examination of these transition 

values and relationships between indoor and outdoor 

temperature using a larger and representative sample 

could allow the generalization of the results. 
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