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Abstract. Recent years have seen a growing interest in methods for
predicting a variable of interest, such as a subject’s age, from individ-
ual brain scans. Although the field has focused strongly on nonlinear
discriminative methods using deep learning, here we explore whether
linear generative techniques can be used as practical alternatives that
are easier to tune, train and interpret. The models we propose consist of
(1) a causal forward model expressing the effect of variables of interest
on brain morphology, and (2) a latent variable noise model, based on
factor analysis, that is quick to learn and invert. In experiments esti-
mating individuals’ age and gender from the UK Biobank dataset, we
demonstrate competitive prediction performance even when the number
of training subjects is in the thousands – the typical scenario in many
potential applications. The method is easy to use as it has only a single
hyperparameter, and directly estimates interpretable spatial maps of the
underlying structural changes that are driving the predictions.

1 Introduction

Image-based prediction methods aim to estimate a variable of interest, such as
a subject’s diagnosis or prognosis, directly from a medical scan. Predicting a
subject’s age based on a brain scan – the so called brain age – in particular has
seen significant interest in the last decade [12], with the gap between brain age
and chronological age being suggested as a potential biomarker of healthy aging
and/or neurological disease [12, 25].

Methods with state-of-the-art prediction performance are currently based
on discriminative learning, in which a variable of interest x is directly predicted
from an input image t. Although there are ongoing controversies in the literature
regarding whether nonlinear or linear discriminative methods predict better [23,
⋆ Corresponding author. Email address: cmau@dtu.dk
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32, 28], recent years have seen a strong focus on nonlinear variants based on deep
learning (DL), with impressive performances especially when the training size
is very large [28]. Nevertheless, these powerful methods come with a number of
potential limitations:

The available training size is often limited: While methods for predicting
age and gender can be trained on thousands of subjects using large imaging
studies [4, 21, 24, 14, 16], in many potential applications the size of the train-
ing set is much more modest. In a recent survey on single-subject prediction
of brain disorders in neuroimaging, the mean and median samples size was
only 186 and 88 subjects, respectively [5]. Even in such ambitious imaging
projects as the UK Biobank [4], the number of subjects with diseases such
as multiple sclerosis is only projected to be in the hundreds in the coming
years.

Discriminative methods are hard to interpret: As opposed to generative
methods that explicitly model the effect a variable of interest x has on a sub-
ject’s image t, correctly interpreting the internal workings of discriminative
methods is known to be difficult [22, 6, 20, 3]. Whereas the spatial weight
maps of linear discriminative methods, or more generally the saliency maps
of nonlinear ones [35, 8, 17, 34, 38, 37, 33, 36], are useful for highlighting which
image areas are being used in the prediction process [20, 29], they do not ex-
plain why specific voxels are given specific attention: Amplifying the signal of
interest, or suppressing noninteresting noise characteristics in the data [22].

DL can be more difficult to use: Compared to less expressive techniques,
DL methods are often harder to use, as they can be time consuming to train,
and have many more “knobs” that can be turned to obtain good results
(e.g., the choice of architecture, data augmentation, optimizer, training loss,
etc. [28]).

In this paper, we propose a lightweight generative model that aims to be eas-
ier to use and more straightforward to interpret, without sacrificing prediction
performance in typical sample size settings. Like in the mass-univariate tech-
niques that have traditionally been used in human brain mapping [7, 13, 11, 18],
the method has a causal forward model that encodes how variables of interest
affect brain shape, and is therefore intuitive to interpret. Unlike such techniques,
however, the method also includes a linear-Gaussian latent variable noise model
that captures the dominant correlations between voxels. As we will show, this
allows us to efficiently “invert” the model to obtain accurate predictions of vari-
ables of interest, yielding an effective linear prediction method without externally
enforced interpretability constraints [9, 39].

The method we propose can be viewed as an extension of prior work demon-
strating that naive Bayesian classifiers can empirically outperform more pow-
erful methods when the training size is limited, even though the latter have
asymptotically better performance [15, 27]. Here we show that these findings
translate to prediction tasks in neuroimaging when the strong conditional inde-
pendence assumption of such “naive” methods is relaxed. Using experiments on
age and gender prediction in the UK Biobank imaging dataset, we demonstrate
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empirically that, even when the number of training subjects is the thousands,
our lightweight linear generative method yields prediction performance that is
competitive with state-of-the-art nonlinear discriminative [28], linear discrimi-
native [31], and nonlinear generative [40] methods.

2 Method

Let t denote a vectorized version of a subject’s image, and ϕ = (x,ϕT
\x)

T a
vector of variables specific to that subject, consisting of a variable of interest
x (such as their age or gender), along with any other known5 subject-specific
covariates ϕ\x. A simple generative model is then of the form

t = Wϕ+ η, (1)

where η is a random noise vector, assumed to be Gaussian distributed with zero
mean and covariance C, and W = (wx W\x) is a matrix with spatial weight
maps stacked in its columns. The first column, wx, expresses how strongly the
variable of interest x is expressed in the voxels of t; we will refer to it as the
generative weight map. Taking everything together, the image t is effectively
modeled as Gaussian distributed:

p(t|ϕ,W ,C) = N (t|Wϕ,C).

Making predictions

When the parameters of the model are known, the unknown target variable x∗

of a subject with image t∗ and covariates ϕ∗
\x can be inferred by inverting the

model using Bayes’ rule. For a binary target variable x∗ ∈ {0, 1} where the two
outcomes have equal prior probability, the target posterior distribution takes the
form of a logistic regression classifier:

p(x∗ = 1|t∗,ϕ∗
\x,W ,C) = σ

(
wT

Dt∗ + wo

)
,

where
wD = C−1wx

are a set discriminative spatial weights, σ(·) denotes the logistic function, and
wo = −wT

D(W\xϕ
∗
\x+wx/2). The prediction of x∗ is therefore 1 if wT

Dt∗+wo > 0,
and 0 otherwise.

For a continuous target variable with Gaussian prior distribution p(x∗) =
N (x∗|0, σ2), the posterior distribution is also Gaussian with mean

σ2
x(w

T
Dt∗ + b0), (2)

where b0 = −wT
DW\xϕ

∗
\x and σ2

x =
(
σ−2 +wT

xC
−1wx

)−1. The predicted value
of x∗ is therefore given by (2), which again involves taking the inner product of
the discriminative weights wD with t∗.
5 For notational convenience, we include 1 as a dummy “covariate”.
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Model training

In practice the model parameters W and C need to be estimated from train-
ing data. Given N training pairs {tn,ϕn}Nn=1, their maximum likelihood (ML)
estimate is obtained by maximizing the marginal likelihood

p
(
{tn}Nn=1|{ϕn}Nn=1,W ,C

)
=

N∏
n=1

N (tn| Wϕn,C) (3)

with respect to these parameters. For the spatial maps W , the solution is given
in closed form:

W =

(
N∑

n=1

tnϕ
T
n

)(
N∑

n=1

ϕnϕ
T
n

)−1

. (4)

Obtaining the noise covariance matrix C directly by ML estimation is problem-
atic, however: For images with J voxels, C has J(J + 1)/2 free parameters –
orders of magnitude more than there are training samples. To circumvent this
problem, we impose a specific structure on C by using a latent variable model
known as factor analysis [10]. In particular, we model the noise as

η = V z + ϵ,

where z is a small set of K unknown latent variables distributed as p(z) =
N (z|0, IK), V contains K corresponding, unknown spatial weight maps, and ϵ
is a zero-mean Gaussian distributed error with unknown diagonal covariance ∆.
Marginalizing over z yields a zero-mean Gaussian noise model with covariance
matrix

C = V V T +∆,

which is now controlled by a reduced set of parameters V and ∆. The number
of columns in V (i.e., the number of latent variables K) is a hyperparameter in
the model that needs to be tuned experimentally.

Plugging in the ML estimate of W given by (4), the parameters V and ∆
maximizing the marginal likelihood (3) can be estimated using an Expectation-
Maximization (EM) algorithm [30]. Applied to our setting, this yields an iterative
algorithm that repeatedly evaluates the posterior distribution over the latent
variables:

p(zn|tn,W ,V ,∆) = N (zn|µn,Σ)

where µn = ΣV T∆−1(tn −Wϕn) and Σ = (IK + V T∆−1V )−1, and subse-
quently updates the parameters:

V ←

(
N∑

n=1

(tn −Wϕn)µ
T
n

)(
N∑

n=1

(
µnµ

T
n +Σ

))−1

∆← diag

(
1

N

N∑
n=1

(tn −Wϕn)(tn −Wϕn)
T − V

1

N

N∑
n=1

µn(tn −Wϕn)
T

)
.
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3 Experiments

In our implementation, we initialize the EM algorithm by using a matrix with
standard Gaussian random entries for V , and a diagonal matrix with the sam-
ple variance in each voxel across the training set for ∆. For continuous target
variables, we de-mean the target and use the sample variance as the prior vari-
ance σ2. Convergence is detected when the relative change in the log marginal
likelihood is smaller than 10−5.

The method has a single hyperparameter, the number of latent variables K,
that we set empirically using cross-validation on a validation set, by optimizing
the mean absolute error (MAE) for regression and the accuracy for classification.
Running times vary with the size of the training set N , which also influences
the selected value of K – in our implementation, typical training runs in the
full-brain experiments described below took between 2.8 and 16.3 minutes for
N = 200 and N = 1000, respectively (CPU time for a single selected value of
K; Matlab on a state-of-the-art desktop). Once the model is trained, testing is
fast: typically 0.01 seconds per subject when trained on N = 1000.

Comparing performance of an image-based prediction method with state-
of-the-art benchmark methods is hampered by the dearth of publicly available
software implementations, and the strong dependency of attainable performance
on the datasets that are used [12]. Within these constraints, we conducted the
following comparisons of the proposed linear generative method:

Nonlinear discriminative benchmark: As the main benchmark method,
we selected the convolutional neural network SFCN proposed in [28], which
is, to the best of our knowledge, currently the best performing image-based
prediction method. The paper reports performance for age and gender pre-
diction over a wide range of training sizes in preprocessed UK Biobank data
(14,503 healthy subjects, aged 44-80 years), using a validation set of 518
subjects and a test set of 1036 subjects. For a training size of 12,949 sub-
jects, the authors report a training time of 65 hours on two NVIDIA P100
GPUs [28]. Although the method uses affinely registered T1-weighted scans
as input (“affine T1s”), these are in fact skull-stripped and subsequently bias-
field-corrected based on deformable registrations that are also available [4].
Because of this reason, and because the authors report only very minor im-
provements of their method when deformable T1s are used instead (∼ 2.5%
decrease in MAE for age prediction on 2590 training subjects), we com-
pared our method using both affine and deformable T1s, based on a set-up
that closely resembles theirs (validation set of 500 subjects, test set of 1000
subjects).

Linear discriminative benchmark: In order to compare against a state-of-
the-art linear discriminative method, we selected the RVoxM method [31]
because its training code is readily available [1] and its performance is com-
parable to the best linear discriminative method tested in [28]. RVoxM regu-
larizes its linear discriminant surface by encouraging spatial smoothness and
sparsity of its weight maps, using a regularization strength that is the one
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hyperparameter of the method. In our experiments, we selected the optimal
value of this hyperparameter in the same way as we do it for the proposed
method, i.e., by cross-validation on our 500-subject validation set. Typical
training times were between 66 and 122 minutes for N = 200 and N = 1000,
respectively (CPU time for a single selected value of the model’s hyperpa-
rameter; Matlab on a state-of-the-art desktop).

Nonlinear generative benchmark: As a final benchmark, we compared against
a variational auto-encoder (VAE) [40] that was recently proposed for age pre-
diction, and that has training code publicly available [2]. It is based on a
generative model that is similar to ours, except that its latent variables are
expanded (“decoded”) nonlinearly using a deep neural network, which makes
the EM training algorithm more involved compared to our closed-form ex-
pressions [26]. In [40], the authors use T1 volumes that are cropped around
the ventricular area (cf. Fig. 1 right), and they train their method on ∼200
subjects. We closely follow their example and train both the VAE and the
proposed method on similarly sized training sets of warped T1 scans from the
UK Biobank, cropped in the same way. There are two hyperparameters in
the VAE model (dropout factor and L2 regularization), which we optimized
on our validation set of 500 subjects using grid search. The training time for
this method was on average 9.40 minutes for N=200 with the optimal set of
hyperparameters, using a NVIDIA GeForce RTX 2080 Ti GPU.

For each training size tested, we trained each method three times, using
randomly sampled training sets, and report the average test MAE and accu-
racy results. For gender classification, we used age as a known covariate in ϕ\x,
while for age prediction no other variables were employed. All our experiments
were performed on downsampled (to 2mm isotropic) data, with the exception
of RVoxM where 3mm was used due to time constraints – we verified experi-
mentally that results for RVoxM nor the proposed method would have changed
significantly had the downsampling factor been changed (max difference of 0.32%
in MAE between 2mm and 3mm across multiple training sizes between 100 and
1000). Since training code for SFCN is not publicly available, we report the re-
sults as they appear in [28], noting that the method was tuned on a 518-subject
validation set as described in the paper.

4 Results

Fig. 1 shows examples of the generative spatial map wx estimated by the pro-
posed method, along with the the corresponding discriminative map wD. The
generative map shows the direct effect age has on image intensities, and reflects
the typical age-related gray matter atrophy patterns reported in previous stud-
ies [19]. The discriminative map, which highlights voxels that are employed for
prediction, is notably different from the generative map and heavily engages
white matter areas instead. This illustrates the interpretation problem in dis-
criminative models: the discriminative weight map does not directly relate to
changes in neuroanatomy, but rather summarizes the net effect of decomposing
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the signal as a sum of age-related changes and a typical noise pattern seen in
the training data (1), resulting in a non-intuitive spatial pattern [22].

Fig. 2 shows the performances obtained by the proposed method, compared
to the discriminative benchmarks RVoxM and SFCN, for age and gender predic-
tion. Both our method and RVoxM achieve clearly worse results when they are
applied to affine T1s compared to deformable T1s, whereas SFCN’s performance
is virtually unaffected by the type of input data (at least for age prediction with
2590 training subjects – the only available data point for SFCN with deformable
T1s [28]). These results are perhaps not surprising, since both our method and
RVoxM are linear predictors that do not have the same capacity as neural net-
works to “model away” nonlinear deformations that have not been removed from
the input images (even though these are actually known and were used for gen-
erating the affine T1s).

Comparing the performances of the different methods, our generative model
generally outperforms the linear discriminative RVoxM for both age and gender
prediction, except when using very large training sets of affine T1s. For nonlinear
discriminative SFCN, the situation is more nuanced: For age prediction, SFCN
starts outperforming our method for training sets larger than 2600 subjects,
while for more moderate training sizes our method achieves better performances
when deformable T1s are used. For gender prediction, our method based on
deformable T1s is competitive with SFCN even on the biggest training set sizes,
although it should be noted that SFCN’s results are based on affine T1s as its
performance on deformable T1s for gender prediction was not tested6 in [28].

Finally, Fig. 3 compares the age prediction results of our linear generative
model with the nonlinear generative VAE, both trained on cropped deformable
T1s. Our method clearly outperforms the VAE for all the considered training
sizes, suggesting that, at least when only a few hundred training subjects are
available, adding nonlinearities in the model is not beneficial.

5 Discussion

In this paper, we have introduced a lightweight method for image-based predic-
tion that is based on a linear generative model. The method aims to be easier
to use, faster to train and less opaque than state-of-the-art nonlinear and/or
discriminative methods. Based on our experiments in predicting age and gender
from brain MRI scans, the method seems to attain these goals without sacrific-
ing prediction accuracy, especially in the limited training size scenarios that are
characteristic of neuroimaging applications.

Although the method presented here is linear in both its causal forward model
and in its noise model, it would be straightforward to introduce nonlinearities in
the forward model while still maintaining numerical invertibility. This may be
beneficial in e.g., age prediction in datasets with a much wider age range than the
UK Biobank data used here. The method can also be generalized to longitudinal
6 Nevertheless, SFCN’s gender prediction, based on affine T1s, is reported by its au-

thors to be the best in the literature.
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Fig. 1: Examples of generative maps wx encoding age effects vs. the correspond-
ing discriminative maps wD predicting age, obtained on deformable T1s from
300 subjects and overlaid on the average T1 volume. Voxels with zero weight are
transparent. Left: results on whole T1 images (used for comparing the proposed
method with SFCN and RVoxM). Right: results on cropped T1s (used for com-
paring with VAE).

Fig. 2: Comparison of the proposed method, RVoxM and SFCN on an age pre-
diction task (left) and on a gender classification task (right). For each method,
results are shown for both affine and deformable T1 input data – except for
SFCN for which the result for deformable T1s is only known for age prediction,
in a single point (indicated by an arrow at 2590 subjects).

Fig. 3: Test MAE for age predic-
tion obtained by the proposed
method and VAE on cropped,
deformable T1s.
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data, where addressing the intersubject variability in both the timing and the
number of follow-up scans is well suited for generative models such as the one
proposed here.
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