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Abstract
Purpose  Existing emission and toxicity characterization models in life cycle assessment are currently not suitable for assess-
ing pesticide-related impacts of crop cultivation in tropical regions. This study aims to parameterize the scientific consensus 
model USEtox for Thai environments to derive toxicity characterization factors of pesticide emissions from agricultural 
systems in Thailand. Potential human toxicity and ecotoxicity impacts and related damage costs of pesticides used on nine 
crops cultivated in Thailand are quantified.
Methods  Considering country-specific conditions, USEtox was adapted by applying the landscape and consumption param-
eters specific to Thailand. Related Thai-specific characterization factors of identified pesticides used in Thai agriculture were 
quantified. Four emission inventory models were applied to determine pesticide emission fractions in different environmen-
tal compartments. The consistent combination of pesticide emission mass and associated characterization factors yielded 
potential toxicity impact scores. Pesticide impact-related damage costs (external costs) on human health and ecosystem 
quality were quantified using valuation factors for Thailand. The crops with the highest total damage costs were selected 
and compared with the annual net incomes of the respective crop production systems.
Results and discussion  Pesticide toxicity impacts assessed by using Thai-specific factors were different from the use of global 
average factors ranging from 1 to 169% (human toxicity) and from 0.1 to 3587% (ecotoxicity). Our results indicated the vari-
ability in impact scores influenced by emission modeling choices. Following PestLCI consensus emission estimation model, 
mango cultivation showed the highest human toxicity impacts of 0.07 DALY/ha, resulting in high human health damage 
costs mainly caused by Propineb (93%). Rice cultivation with a dry direct-seeded system exhibited the highest ecotoxicity 
impacts (3934 PDF m3 day/ha) and associated damage costs mainly caused by Oxadiazon (92%). Pesticides used in cultiva-
tion of nine crops resulted in total damage costs of 7188 and 3.01 million THB/crop-year for human health and ecotoxicity, 
respectively. Mango and rice production accounted for 70% and 17% of the total damage costs, which were 36% and 20% of 
the respective crops’ annual net income.
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Conclusions  Our study illustrates the ranking of pesticides applied throughout the crop calendar causing toxicological impact 
and related damage costs on human health and ecosystem quality. This helps identify crops and the main contributors to 
pesticide-related toxicity impacts in Thailand. Our study highlights the need for proper emission quantification and for the 
use of characterization factors locally parameterized to increase accuracy. Our results will be useful for future improvement 
toward more sustainable pesticide use.

Keywords  PestLCI · USEtox · Characterization factor · Human toxicity · Ecotoxicity · Life cycle impact assessment

Abbreviations
BAHY	� Biodiversity adjusted hectare year
CF	� Characterization factor
CVC	� Current value of cost
DALY	� Disability-adjusted life year
FVC	� Future value of cost
PAF	� Potentially affected fraction of species
PDF	� Potentially disappeared fraction of species
Rice-DD	� Rice cultivation with a dry direct-seeded 

system
Rice-PD	� Rice cultivation with a pre-germinated direct-

seeded system
THB	� Thai baht

1  Introduction

Pesticide use remains a challenging issue for many countries 
to handle. The global goal of reducing the negative impacts 
of chemicals and waste by 2020 has not been accomplished 
(UNEP 2021). Asia is the world’s leading user of pesti-
cides, accounting for more than half of global use in 2018 
(FAO 2021). Thailand plays a significant role in the total 
consumption between 98 and 198 million kilograms of pes-
ticides during the period 2011 to 2020 (DOA 2020). Since 
Thailand is a global producer and exporter of agricultural 
products. Half of the total area in Thailand is agricultural 
land (LDD 2019). To supply local and global demand, Thai 
farmers usually use pesticides and other agrochemicals to 
ensure high productivity (Wanwimolruk et al. 2017). Vari-
ous pesticides (e.g., insecticides, herbicides, fungicides) are 
mainly applied in Thailand using a knapsack sprayer and a 
high-pressure pump sprayer for a high crop (PPRD 2020), 
and more than 80% used a motorized backpack sprayer in 
rice farming (Sombatsawat et al. 2022). However, many 
farmers in Thailand used pesticides over existing guidelines 
such as Good Agricultural Practices (GAP) (Grovermann 
et al. 2013; Laohaudomchok et al. 2020). In this regard, 
numerous studies reported pesticide residues in fruits and 
vegetables distributed in Thailand’s markets (Wanwimolruk 
et al. 2015a, b, 2016, 2017, 2019; Phopin et al. 2017; Thai-
PAN 2019).

The use of pesticides is a global concern due to adverse 
effects on human health and the environment (Kosnik 

et al. 2022; Persson et al. 2022). Ordinarily, agricultural 
workers and (residential) bystanders are showing higher 
health risks because of their vicinity to pesticide sprayed 
areas (Ryberg et  al.  2018). Sombatsawat et  al. (2022) 
reported that some Thai farmers still lack the use of personal 
protective equipment such as masks, gloves, shoes, and gog-
gles during pesticide application. Therefore, many studies 
demonstrated a wide range of adverse health issues caused 
by agricultural pesticides used in Thailand (Nankongnab 
et al. 2020; Sapbamrer et al. 2020, 2019; Sapbamrer and 
Nata 2014). Nonetheless, available health effect studies  
in Thailand have primarily focused on a single substance 
as a biomarker of pesticide exposure, despite the fact that 
many pesticides are applied throughout the crop calendar 
depending on pest species and crops (Laohaudomchok 
et al. 2020; Wongta et al. 2018). Pesticides sprayed in Thai 
agricultural areas are then contaminating the soil and water 
environments (Jaipieam et al. 2009; Kruawal et al. 2005;  
Aungudornpukdee 2019). Pesticide use on a large scale can 
reduce biodiversity and cause bioaccumulation in the food 
chain (Carvalho 2017; Chagnon et al. 2015; Gilbert 2016). 
Multi-disciplinary organizations in Thailand have worked 
to reduce the usage of pesticides in the country. Paraquat 
(herbicide) and chlorpyrifos (insecticide), two key pesticides  
used in Thailand (accounted for 30% of the total mass of 
pesticides imported to Thailand in 2018 (DOA 2020), were 
banned in 2020 (Laohaudomchok et  al. 2020; Ministry  
of Industry 2020). The potentially harmful effects of any 
possible replacements are currently unclear. To address 
Thailand’s use of improper pesticides, policymakers require 
proper information to make better decisions and provide rec-
ommendations for reducing the impacts of pesticides.

Modeling pesticide distribution in plants is a key tool 
for limiting pesticide overuse and quantifying human expo-
sure (Jacobsen et al. 2015). Life cycle assessment (LCA) 
is a standardized tool that aims to quantify the potential 
environmental impacts of a product throughout its life 
cycle, including the application of toxic compounds (ISO-
14040 2006). USEtox is a scientific consensus model devel-
oped under the UNEP-SETAC Life Cycle Initiative to char-
acterize human toxicological and ecotoxicological impacts 
of chemical emissions in LCA (Rosenbaum et al. 2008; 
Westh et al. 2015). This model is recommended in vari-
ous methods for human toxicity and freshwater ecotoxicity 
characterization (Hauschild et al. 2013). In order to model 
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toxicity impacts from pesticide use, it is important to iden-
tify the emission compartments for each applied substance. 
Different approaches are available to estimate the emission 
fractions of sprayed pesticides into environmental media. 
For example, in the Ecoinvent database, the most widely 
used background life cycle inventory (LCI) database, 100% 
of the applied dose is assumed to be emitted to the agricul-
tural soil (Fantke 2019). In contrast, the PestLCI Consensus 
model (https://​pestl​ciweb.​man.​dtu.​dk) is a state-of-the-art 
pesticide emission model whose input parameters can be 
defined according to pesticide application characteristics 
(Rosenbaum et al. 2015). However, Gentil et al. (2020b) 
highlighted that existing emission inventory and characteri-
zation models are not completely appropriate for evaluat-
ing pesticide emission distributions and related impacts for 
crops cultivated in tropical regions (e.g., Thailand). Under 
tropical conditions, environmental processes related to pes-
ticide emission distributions illustrate an increase in deg-
radation and volatilization rates due to high temperatures, 
and high rainfall and loose soils typically increase runoff 
and leaching behavior (Sanchez‐Bayo and Hyne 2011; Daam 
et al. 2019). Considering LCI models adapting to tropical 
conditions, there are many specific features that have to deal 
with including tropical cropping systems (i.e., soil types, 
climate conditions, crops, and adding active ingredients of 
pesticides), tropical pesticide application techniques (i.e., 
drift curves), and better address leaching rates in tropical 
systems (Gentil-Sergent et al. 2021). Nevertheless, existing 
studies related to pesticide dissipation in the field in Thai-
land are limited (Ciglasch et al. 2006; Abdullah et al. 2001). 
Pesticide emission patterns under the tropics and their 
impacts are not as well known or verified by observations 
as in temperate regions causing data and model parameters 
for the assessment to be limited (Sanchez‐Bayo and Hyne 
2011; Fantke et al. 2017a). Models should hence be adapted 
and parameterized using the best available data and knowl-
edge before application because they are usually designed 
based on temperature conditions associated with the envi-
ronmental mechanisms of the substances (Gentil-Sergent 
et al. 2021). Moreover, although USEtox is capable of high-
throughput simulations of impact scores for pesticides, it is 
based on default or generic global/continent-level inputs, 
such that regional-specific (e.g., tropical regions) applica-
tions are currently not available. In addition, more spatial-
ized approaches, such as Pangea (Wannaz et al. 2018a, b), 
can provide impact scores with high spatial resolutions. 
However, intensive calculations are required, which are not 
easily performed by many users (e.g., regulators). Therefore, 
a user-friendly, high-throughput, regional-specific modeling 
approach is a useful intermediate solution.

Hence, the present study aims (1) to parameterize the 
existing toxicity characterization model USEtox for the Thai 
environment to derive Thai-specific toxicity characterization 

factors of pesticide emissions from agricultural systems in 
Thailand, and (2) to quantify and compare the potential 
human toxicity and ecotoxicity impacts and the related 
damage costs (so-called external costs, which are costs that 
are not included in market prices of products) of pesticide 
application during food crop cultivation in Thailand. Nine 
crops (rice, cabbage, chili, cucumber, tomato, watermelon, 
tangerine, durian, and mango) were considered based on 
high consumption in Thailand (ACFS 2016), high pesticide 
residues reported (Thai-PAN 2019), and existing pesticide 
application data. Different existing emission inventory 
approaches were used to determine the pesticide emission 
distribution. These were then coupled to the life cycle impact 
assessment (LCIA) model USEtox based on broad recom-
mendations (Gentil et al. 2020a; Nemecek et al. 2022), and 
related characterization factors (CFs) of pesticides param-
eterized for Thai environmental conditions were derived 
by adapting relevant landscape parameters. Following this 
approach, the most important substances contributing to the 
impacts of pesticide applications were identified. Quanti-
fying the damage costs of pesticides used in crop cultiva-
tion will ultimately help to identify which crops may have 
a greater impact on the overall impacts in the country’s 
context.

2 � Methodology

2.1 � Quantifying toxicological impacts

The toxicological impacts of agricultural pesticides on 
human health and ecosystem can be characterized in terms 
of impact scores for an impact category (Fantke et al. 2018a; 
Fantke 2019; Juraske et al. 2009; Juraske and Sanjuán 2011; 
Peña et al. 2019, 2018) as shown in Eq. 1.

where mi,j is the emission mass of pesticide j from crop 
cultivation into a given environmental compartment i per 
unit area treated (kgemitted/ha), and CFi,j is the respective 
CFs for human health damages (DALY/kgemitted) or for eco-
system quality damages (PDF m3 day/kgemitted). The human 
toxicity CFs (cancer and non-cancer) at damage level are 
expressed as disability-adjusted life years (DALY) per kilo-
gram (kg) pesticide emitted into any environmental compart-
ment (Fantke et al. 2021, 2018b). The ecotoxicity CFs at 
the damage level are expressed as a potentially disappeared 
fraction (PDF) of ecosystem species integrated over the 
exposed environmental compartment and time per kg pesti-
cide emitted into any environmental compartment (Fantke 
et al. 2018a). Impact scores, IS (DALY/ha for human health, 

(1)IS =
∑

i,j
(mi,j × CFi,j)
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and PDF m3 day/ha for ecotoxicity) resulting from all pes-
ticides applied throughout a crop round are quantified from 
the summation in relation to 1 hectare (ha) treated.

2.2 � Pesticide emission quantification

The emission mass can be derived from the mass of a pes-
ticide active ingredient applied to a crop cultivation, mapp,j 
(kgapplied/ha) and the emission fraction into a particular envi-
ronmental compartment i, fi,j (kgemitted/kgapplied) (Fantke 2019) 
as shown in Eq. 2.

2.2.1 � Pesticide application dose derivation

Nine food crops cultivated in Thailand were considered, 
including rice (two cultivation methods), four vegetables 
(cabbage, chili, cucumber, and tomato), and four fruits 
(watermelon, tangerine, durian, and mango). Rice is a 
major economic crop in Thailand. Rice cultivation with a 
dry direct-seeded system (Rice-DD) and a pre-germinated 
direct-seeded system (Rice-PD) are the most popular prac-
tices in Thailand, representing 40% of total agricultural land 
in 2018 (OAE 2020a). Pesticide application data in Thailand 
were obtained from Bayer Crop Science Thailand (Bayer 
Crop Science Thailand 2019a, b). The data source provided 
the characteristics of individual pesticides (e.g., trade name, 
formula, target class, amount of active ingredient), and the 
guidelines for pesticide application, such as application 
doses, application methods, and application frequencies fol-
lowing the plant growth calendar. Additional guidelines of 
sprayed volumes for pesticide preparation specifically with 
a crop type and/or growth stages published by Plant Protec-
tion Research and Development Office (PPRD), Department 
of Agriculture (DOA), Thailand, were applied to correctly 
derive the mass of pesticide active ingredients applied per 
cultivated area in Thailand (PPRD 2020). The mass of pes-
ticide active ingredients applied to crop cultivation in Thai-
land is calculated as shown in Eq. 3.

where Dapp,j,x is the pesticide application dose (kgapplied/ha), 
Ax is the treated area (ha), and their product is summed over 
x treatments in cases when dosage and treated areas might 
vary. The derivation of individual pesticide application 
doses is detailed in the Electronic Supplementary Material-1 
(ESM1), Section S-1.

(2)mi,j = mapp,j × fi,j

(3)mapp,j =
∑

x
(Dapp,j,x × Ax)

2.2.2 � Pesticide emission fractions

Four emission inventory models were applied to determine 
the consequences of different choices in modeling initial pes-
ticide dispersion into different environmental compartments. 
Three generic approaches widely used in LCA according to 
World Food LCA Database (WFLDB) (Nemecek et al. 2019) 
and Fantke (2019) are Ecoinvent ((Nemecek and Kägi 2007; 
Nemecek and Schnetzer 2011), US LCI (USDE 2012), and 
Neto et al. (2013). The respective assumptions of emission 
fractions after applied pesticide are 100% emitted to agricul-
tural soil in the Ecoinvent database: 95% and 5% emitted to 
air and surface water in US LCI; 75% and 25% emitted to 
agricultural soil and air in the study of Neto et al. The emission 
fractions into different environmental compartments can, how-
ever, vary with crop and application method, and are hence 
further derived using the PestLCI Consensus model (Nemecek 
et al. 2022). This model determines the pesticide emission 
dispersions into different environmental compartments at two 
levels including primary distribution (some minutes after pes-
ticide application) and secondary emission (1 day after pes-
ticide application) when additional transport and degradation 
processes of the substances after application have been con-
sidered (Gentil et al. 2020a). The specific information on crop 
cultivation and pesticide application within the country (e.g., 
climate, soil types, pesticide application methods, crop sea-
sons, the months of application) was additionally sought from 
relevant official documents in Thailand and applied as model 
inputs. More details on inputs for the PestLCI Consensus web 
tool (https://​pestl​ciweb.​man.​dtu.​dk) are shown in the ESM1, 
Section S-2. Emissions to off-field surfaces are expressed in 
the fraction area of Thailand (e.g., agricultural soil, natural soil 
(including urban areas and miscellaneous land), freshwater 
area) to consistently combine with the CFs for environmental 
emissions from USEtox (see details of emission fraction con-
version to fraction area of Thailand in the ESM1, Section S-3).

2.3 � Toxicological characterization factors

USEtox version 2.12 (https://​usetox.​org) was applied to quan-
tify the CFs for human toxicity and ecotoxicity of the pes-
ticides used in Thai agriculture. The endpoint CFs, CFi,j of 
pesticide j are derived by combining four terms (Fantke 2019; 
Gentil et al. 2020a; Rosenbaum et al. 2008) as shown in Eq. 4.

where FFi,j (kgin compartment per kgemitted/day) is the fate factor 
linking the increase of pesticide mass in a given environ-
mental compartment due to emission in any compartments, 

(4)CFi,j = FFi,j × XFi,j × EFj × SFj
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XFij, is the exposure factor linking pesticide mass taken in via 
human exposure routes (e.g., inhalation, ingestion) (kgintake/day 
per kgin compartment) or dissolved pesticide mass in the receiv-
ing exposure compartment (kgdissolved/kgin compartment), EFj is 
the effect factor linking the exposure to human toxicological  
effect (disease cases/day per kgintake/day) or to ecotoxico-
logical effect for determining potentially affected fraction  
(PAF) of species (PAF m3/kgdissolved), and SFj is the severity  
factor linking toxicological effects to human health dam-
age (DALY/day per disease cases/day) or ecosystem quality  
damage (PDF/PAF).

2.4 � Parameterization for Thai environmental 
conditions

Up to now, the USEtox model contains the dataset of default 
settings, 16 sub-continents, and 8 continental regions. Any 
of the regions belonging to the USEtox model can be inde-
pendently selected by a user, but are primarily intended as 
a sensitivity analysis of the global default values (Fantke 
et al. 2017b). For users who aim to introduce their own 
regions, it can be challenging to provide the related param-
eterized input data.

2.4.1 � Thai‑specific data into the USEtox model

Consequently, the USEtox model version 2.12 was adapted 
by applying the landscape and consumption parameters to 
Thailand conditions according to parameterization methods 
guided by Fantke et al. (2017b), to obtain Thai-specific CFs 
used for the impact assessment. The parameters have been 
adjusted and calculated at different scales (e.g., urban, con-
tinent, and global) relying on available state-of-the-art data 
and previous studies in Thailand. It is necessary to recalcu-
late global parameters in context of the differences between 
the values for the new region and the global average (Fantke 
et al. 2017b; Bratec et al. 2019). The description and calcula-
tion methods of all parameters are shown in Table S1 of the 
Electronic Supplementary Material-2 (ESM2). In the USE-
tox model, a parameterized region named “Thailand” was 
created by adding a new row in the “Landscape & indoor 
data” sheet, which was populated with Thai-specific data 
based on the values provided in Table S1, ESM2. Eventually, 
executing USEtox calculations for Thailand by entering the 
respective region row number in the “Run” sheet yielded 
Thai-specific results. More details on how to recalculate 
global parameters and to incorporate the Thai-specific data 
into the USEtox model are provided in the ESM1, Section 
S-10.

2.4.2 � Identification of pesticides used in Thailand

Pesticides used in Thai agriculture were identified from vari-
ous sources including the pesticides imported in 2018 (DOA 
2020), pesticides used in the cultivation processes of oil palm 
(Silalertruksa et al. 2017) and kale (Thai-PAN 2013), pesticide 
residues in fruits and vegetables distributed within Thailand’s 
markets (cabbages, tomatoes (Wanwimolruk et al. 2017); 
watermelon, durian (Wanwimolruk et al. 2015a); Chinese kale 
(Wanwimolruk et al. 2015b); mangosteen (Phopin et al. 2017); 
Chinese kale, pakchoi, morning glory (Wanwimolruk 
et al. 2016); guava (Wanwimolruk et al. 2019)), and also the 
survey report of pesticide residues monitored by the Thailand 
Pesticide Alert Network (Thai-PAN) (Thai-PAN 2019). The 
CAS Registry Numbers (CAS-RN) of the identified pesticides 
were then searched from the list of hazardous substances in 
2013 published in the Notification of the Ministry of Industry 
in 2013, Thailand (Ministry of Industry 2013).

2.4.3 � Updating the degradation rate parameters in USEtox

The half-life value of pesticides in the environment is one of 
the important parameters used in the quantification of CFs 
factors derived from USEtox (Fantke et al. 2014, 2012b). 
The half-life values in the water phase of the identified 
pesticides were updated by obtaining values from relevant 
databases such as the Pesticide Properties Database (PPDB) 
(University of Hertfordshire 2020b), Bio-Pesticides Database 
(BPDB) (University of Hertfordshire 2020a), and CompTox 
Chemicals Dashboard, US EPA (US EPA 2021). The updated 
water degradation rate constant, kdeg,w (s−1), of pesticides is 
calculated from the corresponding reported half-life value, t1/2 
(d) as shown in Eq. 5.

with cs-to-d as unit conversion factor of 86,400 s/day. The 
updated water degradation rate constants of the pesticides 
and their difference with default values are shown in the 
ESM1, Section S-4.

2.4.4 � Characterization factors derivation

Matching tests with CAS-RN between the identified pes-
ticides and the organic substances database underlying the 
USEtox 2.12 model were done to calculate the CFs. Thus, 
157 pesticides were matched, accounting for 92% of the total 
mass of pesticides imported to Thailand in 2018 (DOA 2020). 
However, 65 out of the 157 matched pesticides do not have 

(5)kdeg,w = (ln(2)∕t 1
2

)∕Cs−to−d
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the human toxicity CFs due to the absence of the human 
toxicological effect factors (EFhuman) in the default USEtox 
model. These missing data were hence derived in our study 
using the toxicological data from the CompTox Chemicals 
Dashboard, US EPA. The methodology for EFhuman quanti-
fication relies on USEtox (Fantke et al. 2017b) (see ESM1, 
Section S-5). From these matched pesticides, we identified 
the important pesticides used in Thailand to evaluate the  
difference between obtained endpoint CFs from adapted 
and default USEtox. There were 15 pesticides consisting  
of the top five in each pesticide target class (herbicides, 
fungicides, and insecticides) representing 70% of the total 
pesticide mass imported to Thailand in 2018 (DOA 2020). 
More details of the percent difference in each pesticide and 
calculation methods are shown in the ESM1, Section S-6. 
However, based on the case study in this work, the USEtox 
inputs for missing substances were additionally derived for 
nine pesticides used in food crop cultivation in Thailand  
according to Bayer Crop Science Thailand’s recommenda-
tions, as indicated in the ESM1, Section S-7.

2.5 � Damage cost assessment

Damage cost, DC in Thai baht (THB) per crop year, are 
derived by multiplying a toxicity impact score from Eq. (1) 
by the valuation factor, VF, and the treated area per year, A 
(ha/crop-year) as shown in Eq. 6.

where DC, IS, and VF are different for human health and 
ecosystem quality. The total treated area for a specific crop  
in Thailand in 2018 was primarily based on the Office  
of Agricultural Economics (OAE) (OAE 2020a), and the 
Department of Agriculture Extension (DOAE) (DOAE 
2019a, b) (see the total treated area of each crop in the 
ESM1, Section S-9). The valuation factor of 591,788 (THB/
DALY) for human health and 1.02 (THB/PDF m2 year) for 
ecosystem quality was projected due to inflation according 
to Haputta et al. (2020) as shown in Eq. 7.

where current value of cost, CVC2011, is the Thai people’s 
budget to pay for avoiding 1 DALY of 512,000 THB in 2011 
and in 1 PDF in m2 during 1 year of 0.88 THB in 2011 
(derived from 8800 THB/BAHY, and 1 BAHY =  − 10,000 
PDF m2 year) estimated by Kaenchan and Gheewala (2017), 
r is the average inflation rate of Thailand between 2011 and 
2019 relying on the obtained inflation rate (GDP deflator) 
from The World Bank Group (2021), that is 1.83%, and t 
is the reference year of currency used in the valuation (i.e., 
2019). Eventually, in ecosystem quality damage cost assess-
ment, applying a conversion factor of 1 year is 365.25 day 

(6)DC = IS × VF × A

(7)FVC = CVC
2011

× (1 + r)(t−2011)

(NASA Official. (n.d.).) and dividing the PDF m2 year with 
mean of mean depth of thirty-three large water resources in 
Thailand of 19.05 m (Department of Fisheries 2016).

3 � Results and discussion

3.1 � Pesticide emission distributions

Table 1 shows the average emission fractions of multiple 
pesticides applied in the cultivation of nine food crops mod-
elled by using the PestLCI Consensus model. For the pri-
mary distribution (some minutes after pesticide application), 
all food crops show that the main fractions are emitted to 
field soil and field crop surface. Six crops, namely rice, cab-
bage, cucumber, tomato, watermelon, and tangerine, show 
a similar trend with pesticides being mainly emitted to the 
agricultural soil (53% to 84%) followed by the crop surface 
(9% to 40%). Three other crops including chili, durian, and 
mango show that the main emission compartments of pes-
ticides are the crop surface (48% to 61%) followed by the 
agricultural soil (33% to 45%). Similarly, for the second-
ary emission (1 day after pesticide application), agricultural 
soil and crop uptake compartments are the main distribution 
channels of pesticides applied to all food crops. Removal 
through degradation shows a wide range from 2 to 21% in 
the secondary emissions. The results indicate that the emis-
sion fractions varied widely for emissions to agricultural 
soil and crop compartments. On the other hand, the small 
emission fractions to air and off-field surfaces are slightly 
different. The dominant compartments in pesticide emis-
sion distributions found in this study are agricultural soil 
and crops which is consistent with previous studies (Fantke 
et al. 2012a; Fantke and Jolliet 2016).

The primary distribution process determines the frac-
tion deposited on leaves and soil, and the emission frac-
tions to air and off-field surfaces by wind drift. After that, 
secondary emission processes take place on leaves and in 
soil (Birkved and Hauschild 2006; Dijkman et al. 2012). 
Hence, to carry out the PestLCI Consensus model, the frac-
tion of pesticide intercepted by leaves is a significant fac-
tor in determining the main distribution compartments for 
sprayed pesticides. This study defines the fraction of pes-
ticide intercepted by leaves (range 0–1) following the crop  
growth stages recommended by Linders et al. (2000) and in 
relation to the cultivation process provided by Bayer Crop 
Science Thailand. The crop growth stages of fruits and veg-
etables mainly include leaf development, flowering, fruit 
development, and ripening/senescence, depending on the 
crop types (Linders et al. 2000). The variability of primary 
distribution depends on application time during crop growth 
stages (Gentil et al. 2020a). Consequently, pesticides that 
are applied throughout the crop growth stages result in high 
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crop deposition due to the pesticide intercepted by leaves. 
For example, pesticides such as insecticides and fungicides 
are sprayed through the growth stages from leaf develop-
ment until the ripening stage in chili cultivation. Likewise, 
several pesticides (including insecticides and fungicides) are 
applied from new leaf development until the flowering stage 
in durian and mango cultivation. On the other hand, some 
pesticides are mainly applied to soil causing high field soil 
deposition. Examples include herbicide application against 
weeds at the beginning of cultivation and insecticide appli-
cation against soil insects. An insecticide (imidacloprid) is 
applied for seed protection from soil pests in the cultivation 
process of cucumber, watermelon, and Rice-DD. Some her-
bicides are applied for weed control at the beginning of rice 
cultivation. More details on individual pesticide emission 
fractions are shown in the ESM1, Section S-3.

3.2 � Characterization factors for Thai environmental 
conditions

This study provides the human toxicity and ecotoxicity CFs 
of 166 pesticides used in Thailand including 48 herbicides, 
49 fungicides, 57 insecticides, and 12 pesticides in other  
target classes (e.g., acaricide, molluscicide, fumigant, and 
plant growth regulator) in the ESM1, Section S-4. Table 2 
shows the endpoint (i.e., damage-level) CFs for human toxic-
ity and ecotoxicity of important pesticides used in Thai agri-
culture. The endpoint human toxicity CFs of the important 
pesticides indicate a wide range from 10−12 to 10−2 DALY/ 
kgemitted. The pesticide emissions to freshwater compart-
ments exhibit the highest endpoint ecotoxicity CFs in the 
range of 91 to 1.5 × 106 PDF m3 day/kgemitted. A regional-
ized assessment considers geographical differences using 
parameters related to pesticide emission conditions such as 
territory, wind speed, temperature, runoff, rain rate, etc. that 
are generally considered to present the sensitivity of pesti-
cides in the environment or refer to pesticide residues in the 
crops (Fantke 2019; Giusti et al. 2022). To quantify the sen-
sitivity of important pesticides in environments associated 
with spatial parameters of Thailand, the obtained endpoint 
CFs from the adapted USEtox with Thailand-specific data 
illustrate the differences when compared with the global 
average factors, ranging from 1 to 169% for human toxicity 
CFs and from 0.1 to 3587% for ecotoxicity CFs (Table 2). 
Additionally, updated degradation rates in the water phase 
of 105 out of 157 pesticides are calculated. The difference 
between default and updated degradation rates ranges from 
0 to 3 orders of magnitude (see the percent difference of 
each pesticide in the ESM1, Section S-4). CFs describe the 
expected impacts due to environmental emissions of toxic 
compounds. Pesticides with lower potential toxicity effects 
were hence identified by ranking endpoint CFs for emissions  

to agricultural soil in the ESM1, Section S-4 as an illustra-
tive case.

3.3 � Toxicological impacts on humans 
and ecosystems

Pesticide emission fractions and CFs in a given environmen-
tal compartment are combined to quantify potential impact 
scores. Four emission inventory models are applied to deter-
mine the pesticide emission distribution. PestLCI Consensus 
model is the only LCI approach considering an emission 
fraction that reaches the crop which will be consumed and 
lead to additional human impacts. The emissions to crops 
have not been considered in the other three approaches 
(Ecoinvent, US LCI, Neto et al.). LCA practitioners can 
define the parameter values specifically with the character-
istics of the country’s agriculture and pesticide application 
related to time and growth stages in the PestLCI Consen-
sus model. Primary emission fractions from the PestLCI 
Consensus model are fully consistent with USEtox applied 
for impact calculations (Gentil et al. 2020a). Therefore, the 
PestLCI Consensus model is chosen as the main emission 
inventory approach to illustrate the obtained impact scores 
compared with three fixed approaches widely used in LCA.

Seventeen pesticide types are distributed across nine 
crops during the cultivation processes of rice, vegetables, 
and fruits, with application rates ranging from 0.01 to 0.50, 
0.01 to 14.44, and 0.02 to 21.88 kg per hectare, respectively. 
The combination of emitted mass and CFs yields potential 
toxicity impact scores, plotted along diagonal equi-impact 
lines in Fig. 1. The equal impact is indicated by data points 
on the same diagonal line, which can be influenced by emis-
sion mass, CFs, or a combination of both.

3.3.1 � Impacts on human health and related substance 
contributors

Figure 1a indicates that a large pesticide emission to crops, 
along with a high CF, results in the highest human health 
impact scores for Propineb used in mango, chili, and tan-
gerine cultivation. This demonstrates an important consid-
eration of the fraction of pesticide emissions to crop com-
partments in LCA. Based on the results from the PestLCI 
Consensus model in Fig. 2a, all food crops show total human 
health impact scores in the range of 5.2 × 10−5 to 6.9 × 10−2 
DALY/ha. Mango has the highest human health impact 
scores of 6.9 × 10−2 DALY/ha, followed by chili (3.7 × 10−2 
DALY/ha) and tangerine (1.5 × 10−2 DALY/ha) at the 
same order of magnitude. High amounts of several pesti-
cides are applied to mango cultivation in the range of 1.6 to 
21.9 kgapplied/ha. Pesticides are sprayed using a high-pressure 
knapsack sprayer through the mango’s seasonal fruit devel-
opment, which generally contains a lot of crop leaves (PPRD 
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2020). Mango thus shows the highest pesticide emission 
fractions to the crop leaf surface (61% as shown in Table 1) 
in the primary distribution process. Moreover, 3 of the 5 
pesticides used in mango cultivation show higher endpoint 
human toxicity CFs in the crop compartment (i.e., emis-
sion to archetype crop as apple) than other environmental 

compartments (e.g., air, soil, water) in the range of 3 to 6 
orders of magnitude, since crop residues reach humans more 
efficiently as compared to environmental emissions (shown 
in the ESM1, Section S-8). Propineb (> 90% share) is the 
largest contributor to the potential human health impacts 
on these three crops (mango, chili, and tangerine), as stated 

Table 2   Characterization factors of important pesticides used in Thai agriculture

a There are the top five of each main pesticide target class imported to Thailand in 2018 including 73% herbicides (Her), 12% fungicides (Fun), 
and 10% insecticides (Ins) (DOA 2020)
b See more details of characterization factors for human toxicity (cancer and non-cancer) and ecotoxicity at midpoint and endpoint levels of 166 
pesticides in the Electronic Supplementary Material-1 (ESM1), Section S-4
c Percent difference ranging between obtained endpoint characterization factors from adapted and default USEtox model except for the three pes-
ticides ( −) whose characterization factors are derived in this study
d All endpoint human toxicity characterization factors of these pesticides are presented for non-cancer effects except for Atrazine and Captan for 
which total values (cancer and non-cancer) are shown

Pesticidesa Emission tob % different 
rangingc

CAS-RN Common name Target 
class

Rural air Freshwater Sea water Nat soil Agri soil

Adapted-Endpoint human health characterization factor (DALY/kgemitted)d

38,641–94-0 Glyphosate-isopropylammonium Her 1.5E-04 3.6E-04 1.5E-07 1.5E-04 1.5E-04 -
1910–42-5 Paraquat dichloride Her 4.4E-07 1.3E-06 3.8E-09 1.0E-07 1.0E-07 9–93
2008–39-1 2,4-D-dimethylammonium Her 9.9E-02 3.5E-04 2.2E-07 1.6E-04 2.1E-04 -
834–12-8 Ametryn Her 1.4E-04 7.0E-04 7.0E-06 4.3E-05 8.4E-05 -
1912–24-9 Atrazine Her 3.2E-06 1.2E-05 4.0E-08 1.1E-06 3.0E-06 49–78
12,071–83-9 Propineb Fun 2.6E-07 2.3E-07 4.2E-10 6.6E-09 2.2E-07 57–84
8018–01-7 Mancozeb Fun 7.2E-08 6.8E-09 3.4E-12 3.2E-10 1.4E-07 57–84
10,605–21-7 Carbendazim Fun 5.3E-08 1.8E-07 2.1E-10 1.1E-08 7.9E-08 57–83
57,837–19-1 Metalaxyl Fun 1.6E-07 4.5E-07 4.3E-10 1.3E-07 2.7E-07 57–79
133–06-2 Captan Fun 8.2E-08 2.9E-08 5.0E-10 3.7E-10 6.8E-09 47–94
65,195–55-3 Abamectin Ins 1.4E-04 1.7E-04 4.7E-06 6.5E-08 7.8E-08 57–96
2921–88-2 Chlorpyrifos Ins 4.2E-06 4.6E-05 1.4E-06 3.8E-07 4.9E-07 34–98
55,285–14-8 Carbosulfan Ins 2.9E-06 4.8E-05 1.5E-06 3.2E-07 3.8E-07 44–109
120,068–37-3 Fipronil Ins 6.9E-06 1.2E-04 3.8E-06 3.8E-06 4.2E-06 1–93
52,315–07-8 Cypermethrin Ins 1.0E-06 1.4E-07 9.5E-09 2.6E-09 5.0E-09 57–169
Adapted-Endpoint ecotoxicity characterization factor (PDF m3 day/kgemitted)
38,641–94-0 Glyphosate-isopropylammonium Her 7.4E + 01 3.0E + 02 4.5E-07 1.3E + 02 1.3E + 02 1–105
1910–42-5 Paraquat dichloride Her 7.6E + 01 1.2E + 03 2.4E-08 9.5E + 01 9.5E + 01 7–470
2008–39-1 2,4-D-dimethylammonium Her 2.1E + 02 8.6E + 02 9.3E-10 4.0E + 02 4.0E + 02 1–101
834–12-8 Ametryn Her 2.3E + 03 4.8E + 04 5.6E-02 2.9E + 03 2.9E + 03 25–221
1912–24-9 Atrazine Her 3.7E + 03 5.7E + 04 8.9E-02 5.2E + 03 5.2E + 03 30–218
12,071–83-9 Propineb Fun 3.0E + 00 9.1E + 01 3.7E-08 2.6E + 00 2.6E + 00 0.1–145
8018–01-7 Mancozeb Fun 1.4E + 01 1.9E + 02 6.8E-14 9.1E + 00 3.1E + 01 0.1–200
10,605–21-7 Carbendazim Fun 4.8E + 03 1.0E + 05 1.6E-04 6.4E + 03 6.2E + 03 5–183
57,837–19-1 Metalaxyl Fun 1.4E + 02 8.3E + 02 3.6E-03 2.4E + 02 2.4E + 02 31–187
133–06-2 Captan Fun 1.1E + 01 6.8E + 02 8.7E-06 8.3E + 00 8.3E + 00 0.4–159
65,195–55-3 Abamectin Ins 4.4E + 02 3.3E + 04 6.4E-22 1.3E + 01 1.3E + 01 2–381
2921–88-2 Chlorpyrifos Ins 2.9E + 02 3.6E + 05 6.6E-01 2.4E + 03 2.4E + 03 3–472
55,285–14-8 Carbosulfan Ins 8.0E + 00 3.7E + 03 1.1E-03 2.4E + 01 2.4E + 01 2–535
120,068–37-3 Fipronil Ins 1.8E + 04 5.7E + 05 1.1E-01 1.7E + 04 1.7E + 04 6–266
52,315–07-8 Cypermethrin Ins 8.1E + 03 1.5E + 06 1.2E + 00 2.0E + 04 2.0E + 04 9–3587
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in Table 3. This is due to the high doses of Propineb used 
in the cultivation process (21.9, 1.75, and 3.94 kgapplied/ha 
in mango, chili, and tangerine, respectively), causing high 
emissions. Propineb is also the predominant substance con-
tributor (> 70% share) in the cultivation processes of cab-
bage and cucumber. This is the main fungicide used in Thai  

agriculture that shows the highest import mass annually 
(DOA 2020). Dominating pesticides related to human health 
impacts from the fruit and vegetable cultivation (e.g., cab-
bage, chili, cucumber, tangerine, durian, mango) and Rice-
DD method are fungicides such as Propineb and Tebucona-
zole. Insecticides (e.g., Ethiprole and Imidacloprid) also 

Fig. 1   Characterization factors (left-side y-axis) for (a) human tox-
icity (DALY/kgemitted) and (b) ecotoxicity (PDF m3 day/kgemitted) for 
emitted mass of pesticides applied to different food crop cultivation in 

Thailand (x-axis) (kgemitted/ha) with diagonal equi-impact lines (right-
side y-axes), respectively illustrating impact scores for human toxicity 
(DALY/ha) and ecotoxicity (PDF m3 day/ha)
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Fig. 2   (a) Total human health impact scores (DALY/ha) and (b) total ecotoxicity impact scores (PDF m3 day/ha) of pesticides applied to different 
food crop cultivation in Thailand based on various assumptions for emission distributions
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contribute to the impacts from the cultivation processes of 
Rice-PD, tomato, and watermelon (Table 3). The results 
show a trend of fungicides and insecticides having a greater 
overall impact on human health.

3.3.2 � Impacts on ecosystem and related substance 
contributors

Figure 1b shows that the ecotoxicity impact scores are 
mainly associated with high pesticide emission fractions 
to agricultural soil coupled with high CFs resulting in the 
maximum impact scores for Oxadiazon used in Rice-DD 
cultivation. Agricultural soil is the main channel of pesti-
cide release into the environment contributing to ecotox-
icity impact scores. Small amounts of other pesticide use 
(e.g., Betacyfluthrin) are compensated by higher CFs emis-
sion to freshwater channels. Based on the results from the 
PestLCI Consensus model in Fig. 2b, all food crops show 
total ecotoxicity impact scores in the range of 31 to 3934 
PDF m3 day/ha. Rice-DD method illustrates that the high-
est ecotoxicity impact scores are mainly caused by Oxadi-
azon (92% share) (Table 3). This cultivation method con-
fronts a weed problem after sowing the rice seeds directly 
in dry soil and waiting for the rainy day to germinate (Rice 
Department 2016). On the other hand, Rice-PD method 
has ecotoxicity impact scores (138 PDF m3 day/ha) that are 
lower than Rice-DD method by one order of magnitude. 
Tebuconazole is the predominant substance contributor to 

the ecotoxicity impacts with a 93% share (Table 3). The 
rice seed is allowed to germinate before planting on wet 
soil in the Rice-PD method causing problems related to 
microorganisms (Rice Department 2016). Rice cultivation 
indicates the highest pesticide emission fractions to agri-
cultural soil compared with other crops: 84% for Rice-DD 
and 81% for Rice-PD methods in the primary distribution 
process (shown in Table 1). The endpoint ecotoxicity CFs 
of Oxadiazon in agricultural soil and other compartments 
(e.g., air, freshwater, natural soil) are higher than for Tebu-
conazole (shown in the ESM1, Section S-8). Furthermore, 
in the fruit group, mango cultivation shows the highest eco-
toxicity impact scores of 1803 PDF m3 day/ha (Fig. 2b). The 
three main pesticides contributing to the ecotoxicity impacts 
are Imidacloprid (38% share), Trifloxystrobin (29% share), 
and Tebuconazole (29% share) (Table 3). Mango cultiva-
tion uses a higher amount of Imidacloprid at 2.19 kgapplied/
ha than other fruits (including watermelon, tangerine, and 
durian) which is in the range of 0.07 to 0.54 kgapplied/ha. In 
the vegetable group, the highest ecotoxicity impact score of 
1002 PDF m3 day/ha is from tomato cultivation (Fig. 2b). 
Betacyfluthrin (41% share) and Metribuzin (37% share) are 
the main substance contributors to ecotoxicity impacts from 
tomato cultivation. Additionally (Table 3), Betacyfluthrin is 
also the major contributor to the ecotoxicity impacts in the 
cultivation process of cabbage and chili. USEtox shows the 
maximum endpoint ecotoxicity CFs of Betacyfluthrin com-
pared with all pesticides applied through the four vegetables 

Table 3   The most important substances contributing (% share) to potential toxicological impact scores from different food crop cultivation in Thailand 
based on four emission approaches

Symbols refer to a pesticide target class including (#) herbicide, (&) fungicide, and (*) insecticide
a Most substance contributors are shown with a pesticide name’s code as follow as A (Metribuzin: 21,087–64-9), B (Oxadiazon: 19,666–30-
9), C (Fluopyram: 658,066–35-4), D (Propamocarb HCL: 25,606–41-1), E (Propineb: 12,071–83-9), F (Tebuconazole: 107,534–96-3), G (Tri-
floxystrobin: 141,517–21-7), H (Betacyfluthrin: 68,359–37-5), I (Ethiprole: 181,587–01-9), J (Imidacloprid: 138,261–41-3), K (Spiromesifen: 
283,594–90-1) 
b Only imidacloprid is used throughout the cultivation process

Crop Most substance contributor (% share)a

Human health impact score (DALY/ha)  Ecotoxicity impact score (PDF m3 day/ha)

Ecoinvent US LCI Neto et al. PestLCI Ecoinvent US LCI Neto et al. PestLCI

Rice-DD B (96)# G (50)& G (45)& F (85)& B (91)# B (83)# B (89)# B (92)#

Rice-PD I (85)* I (95)* I (95)* I (64)* F (94)& F (72)& F (90)& F (93)&

Cabbage D (100)& D (94)& D (96)& E (72)& H (95)* H (99)* H (98)* H (97)*

Chili K (56)* K (91)* K (91)* E (98)& F (49)& H (89)* H (61)* H (68)*

Cucumber C (49)& G (55)& G (54)& E (91)& F (74)& F (86)& F (77)& F (74)&

Tomato A (68)# G (98)& G (94)& J (37)* A (39)# H (91)* H (56)* H (41)*

Watermelonb J (100)* J (100)* J (100)* J (100)* J (100)* J (100)* J (100)* J (100)*

Tangerine K (47)* K (100)* K (99)* E (99)& J (94)* J (64)* J (92)* J (95)*

Durian K (73)* K (87)* K (86)* F (64)& F (80)& F (91)& F (82)& F (83)&

Mango C (45)& G (85)& G (83)& E (93)& F (59)& F (74)& G (39)& J (38)*
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in this study. Consequently, the toxicity impacts on ecosys-
tems from the fruit and vegetable cultivation (e.g., cabbage, 
chili, tomato, watermelon, tangerine, and mango) are mainly 
caused by insecticides such as Betacyfluthrin and Imidaclo-
prid (Table 3). This demonstrates that, despite using lower 
insecticides in crop cultivation, it has a significant impact 
on overall ecotoxicity. Fungicide as Tebuconazole is con-
tributed to the cultivation processes of some crops such as 
Rice-PD method, cucumber, and durian. Herbicide such as 
Oxadiazon contributes to the potential impacts of the Rice-
DD method. For overall impact reduction, the main sub-
stance contributors should be considered when identifying 
possible substitutes with lower toxicity.

3.3.3 � Influence of modeling choices on impact score results

The results indicate a high difference between varied and 
fixed inventory modeling for human toxicity impact assess-
ment in the range of 1 to 4 orders of magnitude (Fig. 2a). 
PestLCI Consensus model provides the highest total human 
health impact scores for all food crops except for rice culti-
vation when compared with generic emission distributions. 
Various pesticides applied to crop cultivation illustrate the 
highest endpoint CFs for human toxicity in the archetype 
crop compartment in the USEtox. On the other hand, the 
lowest total human health impact scores are found when the 
Ecoinvent assumption is applied for all food crops except for 
watermelon. However, when more environmental compart-
ments are considered according to Neto et al. and US LCI 
assumptions, then additional impact scores are obtained. 
Total human health impact scores based on different emis-
sion approaches are compared with Ecoinvent in percent 
relative comparison as shown in Fig. S1(A) in the ESM2.

The higher estimated emission to soil and water shows 
higher ecotoxicity impacts. Figure 2b illustrates a trend of 
obtained ecotoxicity impact scores from various emission 
approaches at the same order of magnitude in six crop culti-
vation (Rice-DD, Rice-PD, cucumber, tomato, watermelon, 
tangerine, and mango). US LCI shows significant highest 
ecotoxicity impact scores compared with other approaches at 
1 to 2 orders of magnitude in all crops except for watermelon 
and tangerine. The endpoint CFs for ecotoxicity of several 
pesticides applied to crop cultivation show the highest val-
ues when they are emitted to the freshwater channels. The 
fixed model US LCI has defined 5% of applied pesticides 
emitted to the freshwater compartment while not exceeding 
0.1% average are emitted to the freshwater evaluated by the 
PestLCI Consensus model (shown in Table 1). The ecotoxic-
ity impact scores based on different emission approaches are 
compared with Ecoinvent in percent relative comparison as 
shown in Fig. S1(B) in the ESM2.

3.4 � Total damage costs on human health 
and freshwater quality

Since variability in toxicological impact scores is based on 
emission inventory approaches, we follow the PestLCI Con-
sensus model to demonstrate our results (Table 4). Total 
damage costs on human health and freshwater ecotoxicity 
of numerous pesticides applied during nine crop cultiva-
tion in Thailand are 7188.37 and 3.01 million THB/crop-
year, respectively. The total damage costs for human health 
are two thousand times higher than total damage costs for 
freshwater ecotoxicity. Mango cultivation shows the high-
est human health damage costs of 5005.13 million THB/
crop-year with a 70% contribution to the total damage costs. 
Meanwhile, Rice-DD method shows the highest freshwater 
ecotoxicity damage costs of 2.87 million THB/crop-year 
with a 95% contribution to the total damage costs. The 
results indicate that the relevance of higher impact scores 
is resulting in high damage costs. Mango and Rice-DD cul-
tivation have the highest impact scores for human toxicity 
and ecotoxicity, respectively (shown in Fig. 2). Furthermore, 
higher damage costs are influenced by the cultivation area. 
For example, Rice-PD method shows a 15% contribution to 
total human health damage costs even though it has lower 
human health impacts than chili and tangerine by two orders 
of magnitude. This is due to large cultivation areas of Rice-
PD method with 4.63 million hectares accounting for 19% of 
the total agricultural area in Thailand in 2018 (OAE 2020a). 
On the other hand, chili and tangerine cultivation accounted 
for less than 1% of Thailand’s total agricultural area in 2018 
(OAE 2020a).

The damage cost assessment of pesticide applications 
during cultivation on human health and freshwater ecotox-
icity is quantified for a crop round per total treated area per 
year. As a result, the damage costs at the national level are 
represented. According to the highest damage costs found 
in mango and rice cultivation, these crops are then cho-
sen to demonstrate how total pesticide application damage 
costs are related to annual net incomes from the specific 
crop production. Mango is a crop growing across Thailand 
due to suitable circumstances. Thailand can produce mango 
throughout the year including out of the season (June to Feb-
ruary) (DOA 2018). Thailand intends to enhance the mango 
production procedures in order to achieve high quality and 
safety, as well as to satisfy the market, have less environmen-
tal impacts, and have an increased net income (DOA 2018). 
Meanwhile, rice is a major crop in Thailand with the largest 
cultivation area of around 68.5 million rais or 11 million ha 
during the crop year 2019/2020, ranked as one of the top ten 
countries of global producers and exporters (OAE 2021).
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Based on the existing data of Nam Dok Mai production, 
a mango species mainly planted in Thailand (accounted for 
39% of the total area of mango cultivation in 2020), annual 
production costs, prices at farm gate, and net incomes of 
mango cultivation in 2020 were 6696, 20793, and 14096 
million THB/crop-year, respectively (OAE 2020b; DOAE 
2022). Mango cultivation results in total damage costs from 
human toxicity and ecotoxicity impacts of 5005 million 
THB/crop-year. As a consequence, total damage costs from 
the pesticides used in mango cultivation are 36% of the total 
net incomes. In the crop year 2018/2019, annual production 
costs, prices at farm gate, and net incomes of rice cultiva-
tion (all systems) were 294,103, 300,358, and 6,255 million 
THB/crop-year, respectively (OAE 2021). The total damage 
costs from human toxicity and ecotoxicity impacts caused 
by two main rice cultivation systems in this study (Rice-DD 
and Rice-PD) are 1238 million THB/crop-year, accounting 
for 20% of the annual net incomes of rice cultivation (all 
systems) in Thailand. More details on the derivation and 
reference of the annual production costs, prices at farm gate, 
and net incomes are documented in the ESM1, Section S-9.

Pesticides used in these two crops are showing high envi-
ronmental costs, requiring suitable actions to limit the toxicity 
impacts. These are external costs associated with the impact 
of pesticides on health and the environment that should be 
minimized to ensure more sustainable and economically via-
ble crop production systems. To debate the net benefits pro-
vided by pesticides used, the internal costs (e.g., purchase and 
application of pesticides) and external costs (e.g., potential 
impacts on human health and the environment) should both 
be consistently considered (Bourguet and Guillemaud 2016). 
Hence, the current study substantially supports a thorough 
evaluation comparing the external costs with the annual net 
revenue (divergence of production costs and price at the farm 
gate) of each crop. Currently, to develop relevant pesticide 
policies, Laohaudomchok et al. (2020) suggested to include 
information on the economic impacts of workers’ injuries and 
illnesses, and the ecological consequences of pesticide use. 
Since toxicity impacts related to damage costs can be consid-
erably influenced by the choice of pesticides, further pesticide 
guidelines should recognize the damage costs of exposure to 
multiple pesticides for decision-making.

Table 4   Total damage costs to 
human health and freshwater 
quality of pesticides applied 
throughout the treated area per 
year based on four emission 
approaches

Crop Emission models and % share of total damage costs

Ecoinvent % share US LCI % share Neto et al. % share PestLCI % share

Human health damage costs (million THB/crop-year)
Rice-DD 9.85 13.6 204.97 2.8 59.04 3.0 178.68 2.5
Rice-PD 60.12 83.1 7029.33 95.0 1888.72 94.9 1055.88 14.7
Cabbage 1.17 1.6 2.93 0.0 1.33 0.1 6.86 0.1
Chili 0.02 0.0 5.58 0.1 1.46 0.1 670.57 9.3
Cucumber 0.0014 0.0 0.17 0.0 0.05 0.0 6.80 0.1
Tomato 0.0016 0.0 0.085 0.0 0.023 0.0 2.38 0.0
Watermelon 0.0002 0.0 0.00013 0.0 0.00015 0.0 0.19 0.0
Tangerine 0.02 0.0 4.03 0.1 1.06 0.1 140.66 2.0
Durian 0.19 0.3 70.43 1.0 18.35 0.9 121.21 1.7
Mango 0.96 1.3 78.80 1.1 21.20 1.1 5005.13 69.6
Total 72.33 7396.34 1991.23 7188.37
Freshwater ecotoxicity damage costs (THB/crop-year)
Rice-DD 3,009,427 93.6 3,852,736 86.7 2,569,597 91.2 2,866,734 95.1
Rice-PD 111,539 3.5 360,075 8.1 118,838 4.2 93,678 3.1
Cabbage 504 0.0 11,663 0.3 1035 0.0 559 0.0
Chili 2379 0.1 28,029 0.6 3530 0.1 1704 0.1
Cucumber 158 0.0 335 0.0 157 0.0 124 0.0
Tomato 1077 0.0 10,358 0.2 1472 0.1 855 0.0
Watermelon 34 0.0 21 0.0 30 0.0 28 0.0
Tangerine 435 0.0 392 0.0 391 0.0 298 0.0
Durian 29,170 0.9 62,847 1.4 29,075 1.0 17,972 0.6
Mango 59,538 1.9 116,473 2.6 93,913 3.3 32,526 1.1
Total 3,214,261 4,442,929 2,818,036 3,014,478
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4 � Conclusions

Our study illustrates the ranking of toxicological impact 
scores and related damage costs on human health and fresh-
water quality resulting from pesticides applied during the 
cultivation processes of nine food crops according to exist-
ing guidelines in Thailand. The differences in the toxicity 
impacts of important pesticides in Thailand when using 
Thai-specific factors in comparison with the global average 
factors are ranged from 1 to 169% (for human toxicity) and 
from 0.1 to 3587% (for ecotoxicity).

Our results indicate that the variability in toxicologi-
cal impact scores is influenced by emission inventory 
approaches. Mango cultivation shows the highest human 
health impact scores of 0.07 DALY/ha mainly caused by 
Propineb, while rice cultivation with a dry direct-seeded 
system shows the highest ecotoxicity impact scores of 3934 
PDF m3 day/ha mainly caused by Oxadiazon. Pesticides-
related total damage costs across nine food crops cultivated 
in Thailand amounted to 7.2 billion THB/crop-year, with 
mango cultivation contributing 70% to total human health 
damage costs, and rice cultivation contributing 98% to total 
ecotoxicity damage costs. Mango and rice cultivation were 
chosen to demonstrate how damage costs from pesticide 
use correlate with the annual net incomes from the respec-
tive crop production systems. Total external costs due to 
the toxicity impacts from pesticide use in mango and rice 
cultivation are, respectively, 36% and 20% of the annual net 
income.

More detailed statistics on the pesticide used in the field 
throughout the crop calendar are required to monitor and 
assess related toxic impacts and to evaluate relevant national 
pesticide policies. Pesticides that were identified in our study 
as predominant contributors to impacting human health and/
or ecosystem quality should be prioritized for substitution 
with less toxic agents or practices. Such alternatives are in 
an ideal case not just less toxic but are within any carry-
ing capacities for toxicity in humans and in ecosystems to 
achieve overall sustainability (Fantke and Illner 2019; Kosnik 
et al. 2022). Our study constitutes a valuable starting point 
to achieve this goal by identifying possible pesticide candi-
dates for substitution, as input for policy improvement and 
recommendations toward better decision making regarding 
sustainable pesticide use.
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