

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 17, 2024

Configuration and Evaluation of Multi-CQF Shapers in IEEE 802.1 Time-Sensitive
Networking (TSN)

Alexandris, Konstantinos; Pop, Paul; Wang, Tongtong

Published in:
IEEE Access

Link to article, DOI:
10.1109/ACCESS.2022.3214007

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Alexandris, K., Pop, P., & Wang, T. (2022). Configuration and Evaluation of Multi-CQF Shapers in IEEE 802.1
Time-Sensitive Networking (TSN). IEEE Access, 10, 109068-109081.
https://doi.org/10.1109/ACCESS.2022.3214007

https://doi.org/10.1109/ACCESS.2022.3214007
https://orbit.dtu.dk/en/publications/73e80bb7-aa2b-4809-aa23-2bf8573252c4
https://doi.org/10.1109/ACCESS.2022.3214007

Received 16 September 2022, accepted 4 October 2022, date of publication 12 October 2022, date of current version 18 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3214007

Configuration and Evaluation of Multi-CQF
Shapers in IEEE 802.1 Time-Sensitive
Networking (TSN)
KONSTANTINOS ALEXANDRIS 1, PAUL POP 2, (Member, IEEE), AND TONGTONG WANG3
1Huawei Technologies Duesseldorf GmbH, 40549 Munich, Germany
2Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
3Huawei Technologies Company Ltd., Beijing 100015, China

Corresponding author: Paul Pop (paupo@dtu.dk)

ABSTRACT Time-Sensitive Networking (TSN) is a task group of the IEEE 802.1 standardization working
group (WG) developing the IEEE 802.1 TSN communication standards. TSN is developing a ‘‘toolbox’’
of many standards to provide support for enabling the separation of critical and non-critical traffic, the
timeliness and dependability, i.e., reliability, fault-tolerance, and security, of critical traffic. In this paper
we focus on the Cyclic Queuing and Forwarding (CQF) traffic shapers, such as the original CQF, the Cycle
Specified Queuing and Forwarding (CSQF) and an extension of those, the so-called Multi-CQF shaper.
We define formally the problem of configuring CQF-based networks. We have developed a Constraint
Programming (CP) formulation for Multi-CQF, as well as a Simulated Annealing (SA)-based metaheuristic
solution. These solutions can also obtain results for CQF and CSQF, which can be seen as a special case
of Multi-CQF. The CQF configuration problem is NP-hard. We evaluate our solutions on several test cases
and scenarios. The CP formulation can find optimal solutions for small problem sizes but does not scale for
realistic test cases. However, SA is able to handle large test cases and to find good quality solutions, making it
suitable for both design-time and runtime network configuration. We also present comprehensive evaluation
results comparing the CQF-based variants (CQF, CSQF, Multi-CQF) on industrial use cases, contrast them
to the Time Aware Shaper (TAS, 802.1Qbv), and discuss their advantages and disadvantages.

INDEX TERMS IEEE 802.1 time-sensitive networking (TSN), cyclic queuing and forwarding (CQF), cycle
specified queuing and forwarding (CSQF), multi-CQF, network configuration, routing, queue assignment,
combinatorial optimization, simulated annealing, constraint programming.

I. INTRODUCTION
We are at the beginning of a new industrial revolution
(Industry 4.0), which has several benefits, such as, increased
productivity and flexibility, mass customization, improved
product quality, reduced waste and emissions, and will lead
to increased innovation and new business models. Indus-
try 4.0 architectures consist of distributed interconnected
cyber-physical systems (CPS) that monitor and control phys-
ical processes that manage, e.g., automated manufacturing,
critical infrastructures, smart buildings and smart cities. The
applications in these areas are typically safety-critical and

The associate editor coordinating the review of this manuscript and

approving it for publication was Huaqing Li .

real-time, requiring guaranteed non-functional properties,
such as, real-time behavior, reliability, availability, safety, and
security.

Regarding the communication infrastructure, today, indus-
try uses mostly proprietary protocols [1] that lock customers
into the product portfolio of individual product vendors,
impairing interoperability. The well-known networking stan-
dard IEEE 802.3 Ethernet [2] meets the emerging bandwidth
requirements for safety-critical networks, besides remaining
scalable and cost-effective. However, Ethernet is unsuitable
for real-time and safety-critical applications [3]. Many exten-
sions, such as EtherCAT [4], Profinet [5], ARINC 664p7 [6],
and TTEthernet [7], have been developed and used in the
industry. Although they satisfy the timing requirements, they

109068 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-7315-7584
https://orcid.org/0000-0001-9981-1775
https://orcid.org/0000-0001-6310-8965

K. Alexandris et al.: Configuration and Evaluation of Multi-CQF Shapers in IEEE 802.1 TSN

are mutually incompatible, and hence, they cannot operate
on the same physical links in a network without losing real-
time guarantees. However, industry is moving towards using
standardized solutions such as IEEE 802.1 Time-Sensitive
Networking (TSN) [8], upcoming 5G wireless standards [9]
and services [10], see [11] for a broader context, as well
as interoperability standards such as OPC Unified Architec-
ture (OPC UA) [12]. The IEEE 802.1 TSN Task Group [8]
has been working since 2012 to standardize the real-time
and safety-critical enhancements for Ethernet. TSN primarily
consists of amendments to the IEEE 802.1Q standard. TSN is
quickly becoming the de facto standard in several areas, e.g.,
industrial, automotive, avionics, space, with a wide industry
adoption and several vendors developing TSN switches.

In this paper we are interested in cyber-physical sys-
tems implementing Industry 4.0 applications, which use
TSN for communication, see [13] for a high-level pre-
sentation of TSN. TSN is developing several standards,1

such as, for timing and synchronization, 802.1AS-2020,
for supporting bounded low latency, e.g., Scheduled Traf-
fic (802.1Qbv), Asynchronous Traffic Shaping (802.1Qcr),
Credit Based Shaper (802.1Qav), Cyclic Queuing and For-
warding (802.1Qch) and Frame Preemption (802.1Qbu), for
high reliability, e.g., Frame Replication and Elimination
(802.1CB), Per-Stream Filtering and Policing (802.1Qci),
Path Control and Reservation (802.1Qca) and for resource
management, e.g., Stream Reservation Protocol Enhance-
ments and Performance Improvements (802.1Qat) dealing
also with configuration (802.1Qcc, 802.1Qcp) and Link-local
Registration Protocol (802.1CS). TSN-based systems are
composed of end stations (ESes) interconnected by switches
(SWs) and full-duplex physical links, see subsection II-A for
the model of a TSN network.

TSN supports the convergence of multiple traffic types,
i.e., safety critical, real-time, and regular ‘‘best-effort’’ traf-
fic within a single network, and hence, is suitable for
mixed-criticality industrial applications. Depending on the
application requirements, different traffic types are operating
and different combinations of TSN features have to be used.
These combinations will determine how messages are sched-
uled andwill require specific approaches for providing timing
guarantees. Messages that require low latency and jitter typi-
cally use the Time-Triggered (TT) traffic type, implemented
via IEEE 802.1Qbv Enhancements to Traffic Scheduling:
Time-Aware Shaper (TAS), which relies on schedule tables,
called Gate Control Lists (GCLs). These define the exact
queue transmission times of frames on every egress port along
the route of the respective streams. The schedule tables are
synchronized to a global notion of time via clock synchro-
nization IEEE 802.11AS Clock synchronization. The worst-
case end-to-end delays (WCDs) of TT streams are determined
by the GCLs. If the WCD of a stream is smaller or equal to
its deadline, we say that the stream is schedulable.

1The references for all standards can be found based on their names.

However, other traffic types can also be bounded in latency,
such as IEEE Audio-Video-Bridging (AVB). AVB [14] intro-
duces two new shaped traffic classes (AVB Class A and B)
and uses the Credit-Based Shaper (CBS) defined in
IEEE 802.1BA to prevent the starvation of lower priority
streams. The WCDs of AVB streams can be bounded by,
e.g., Network Calculus-based timing analyses [15]. Besides
802.1Qbv, 802.1Qav, other shapers such as IEEE 802.1Qcr
Asynchronous Traffic Shaper (ATS) can be used for applica-
tions that require timing guarantees.

For the industrial domain, which is the focus of this paper,
TSN has developed the Cyclic Queuing and Forwarding
(CQF) standard IEEE 802.1Qch-2017 that introduces a ‘‘peri-
staltic shaper’’, see [13] for an introduction. CQF is useful for
applications that do not require very small latencies and jitter,
but which are still real-time and require bounded worst-case
latencies. CQF divides the time in cycles, and in each cycle
it guarantees the transmission of frames from one hop to the
next. The end-to-end delay of a stream is then dependent on
the number of hops it traverses, and the routing of streams has
to be done such that the bandwidth per cycle is not exceeded.
Its shortcomings [16], [17] are that (i) it is difficult to decide
on a good cycle time (long cycles lead to long latencies
and short cycles lead to higher bandwidth requirements),
(ii) it uses two buffers (one receiving, one transmitting) and
they cannot be filled and emptied at the same time. Hence,
researchers have proposed extensions to CQF, such as Cycle
Specified Queuing and Forwarding (CSQF) [18], which con-
siders three buffers instead of two. A combination of layer 2
local area CQF and layer 3 wide area CSQF has been pro-
posed in [19]. Furthermore, Finn [16] has recently proposed
Multiple Cyclic Queuing and Forwarding (Multi-CQF) as an
extension of CQF (IEEE Std 8021Q—2018 Annex T) and has
discussed the advantages and disadvantages of several CQF
variants.

A. RELATED WORK
There has been a lot of work on the analysis and configu-
ration of TSN networks. For surveys, the reader is directed
to [20], [21]. The problem of finding the routes for AVB
flows over TSN-based networks has been addressed in [22].
In [23], the authors propose a solution to determine the routes
of TT traffic for TSN-based networks using Integer Linear
Programming (ILP). The routing of TT traffic for TSN-based
networks was also addressed in [24] and solved using a Tabu
Search metaheuristic.

The configuration issues of TAS (IEEE 802.1Qbv), e.g.,
related to the routing and synthesis of GCLs, have been
extensively studied in the literature [20], [21]. For example,
the problem of scheduling TT traffic has been first addressed
by [25] using Satisfiability Modulo Theories (SMT).
The same problem has been solved using metaheuristics
[26], [27].

The joint problem of routing and scheduling has also been
investigated for TSN networks. For example, the routing and
scheduling for TT traffic has been considered in [23] and [28]

VOLUME 10, 2022 109069

K. Alexandris et al.: Configuration and Evaluation of Multi-CQF Shapers in IEEE 802.1 TSN

using ILP. [29]. The combination of TT and AVB traffic
types has been addressed in [30], which solves the problem
of jointly routing and scheduling for both TT an AVB, i.e.,
it searches for the network configuration where the timing
requirements of both TT and AVB messages are satisfied.

However, there have been no systematic investigation on
the configuration of CQF shapers. With CQF, SWs are for-
warding messages from their input (ingress) ports to their
output (egress) ports. Each egress port has a number of CQF
priority queues, where messages are placed before transmis-
sion. The most general of the CQF shapers, i.e., Multi-CQF,
uses two or more queues per priority to forward the messages,
and the each priority level can have its own cycle length, see
subsection II-B for an explanation on how Multi-CQF func-
tions. In our work, themixed-criticality real-time applications
are modeled as a set of periodic streams. For each stream,
we know its source and destination ESes, its period and its
deadline. See subsection II-C for the details of the application
model.

The configuration problem for Multi-CQF can be formu-
lated as follows, see its formal definition in section III. As an
input to the problem we have a TSN topology and a set of
applications modeled as periodic streams. For each stream,
we are interested to determine (i) its route from source to
the destination and (ii) the assignment of the stream to the
CQF queues in each SW along its route. We are interested
in solutions such that all the streams are schedulable (their
deadlines are satisfied), the link capacities are not exceeded,
and the mean worst-case end-to-end latencies of streams is
minimized.

We are the first to investigate the configuration of
Multi-CQF shapers. The only works so far addressing CQF
configuration are: [31], which proposes an ILP formulation
for the routing and queue assignment configuration problem
in CSQF, and [32], which considers that the routes are given
and focuses on the assignment of streams to queues in CQF.

The advantages and disadvantages of CQF shaper variants
have been discussed in [16] and contrasted to ATS. The
authors of [17] present a qualitative comparison of CQF,
TAS, ATS and CBS in the context of large-scale determin-
istic networks. However, none of the works so far present
quantitative evaluations for CQF. The only work [33] that
has a systematic quantitative evaluation of shapers, both in
isolation and in combination, does not address CQF shapers.

B. CONTRIBUTIONS
We propose several optimization strategies to solve this
Multi-CQF intractable configuration optimization problem:
Constraint Programming (CP), which can obtain optimal
results but has exponential running times, as well as a Sim-
ulated Annealing (SA)-based metaheuristic solution, which
does not guarantee finding the optimal solution but in practice
has been shown to obtain good quality results in a reasonable
time. These solutions can also obtain results for CQF and
CSQF, which can be seen as a special case of Multi-CQF.

We present comprehensive evaluation results compar-
ing TAS and several CQF-based variants (CQF, CSQF,
Multi-CQF) on industrial use cases. We consider that the
cycle lengths, queue and bandwidth allocation to priority lev-
els is given.We assume that the total bandwidth allocated over
all CQF priorities cannot exceed the link capacity. In addition,
we assume that every cycle is an integer multiple of the next-
faster cycle [16].

We conclude with a discussion of the quantitative results
and a qualitative evaluation the advantages and disadvantages
of CQF shaper variants, contrasting them to TAS. The results
and discussion are intended to inform and help practitioners
and researchers to select the appropriate shapers for their
application area and uses cases.

The paper makes the following contributions:

• We formally define the Multi-CQF configuration prob-
lem, covering also the CQF and CSQF variants.

• We propose several solutions to the problem of config-
uring Multi-CQF (and its variants, CQF and CSQF).

• We present, for the first time to our knowledge, a sys-
tematic quantitative and qualitative evaluation of CQF
shaper variants.

• We show that Multi-CQF can handle well streams with
tight timing constraints, but it leads to large latencies for
networks with over 1,500 devices with realistic loads.
We advocate for a combination of TAS and Multi-
CQF shapers, using TAS only for the most demanding
streams.

• Finally, we discuss the importance of optimizing the
switch configuration of Multi-CQF, i.e., the cycle
lengths and the allocation of priority levels and
bandwidth.

II. SYSTEM MODEL
The system model consists of an architecture model, a Multi-
CQF switch model, and an application model described in
subsection II-A, subsection II-B and subsection II-C, respec-
tively. Table 1 summarizes the notations.

A. ARCHITECTURE MODEL
The network contains several ESes that are connected to each
other via network switches SWs and physical links. An ES
is either the source (talker) or the destination (listener) of an
application stream, whereas a switch forwards the frames of
streams.

We model the architecture as a directed graphG = {V ,E},
where V is the set of vertices. A vertex v ∈ V represents
a node in the architecture which is either an ES or a SW.
E ⊆ V × V is the set of links. Nodes have input (ingress)
and output (egress) ports. We denote the set of egress ports of
a node with v.P. A port p ∈ v.P is linked to at most one other
node. The set of edges E represents bi-directional full-duplex
physical links. Thus, a full-duplex link between the nodes u
and v is denoted with both εu,v ∈ E and εv,u ∈ E ; a link is
attached to one port of the node u and one port of the node v.

109070 VOLUME 10, 2022

K. Alexandris et al.: Configuration and Evaluation of Multi-CQF Shapers in IEEE 802.1 TSN

TABLE 1. Summary of notations.

Each link εu,v is characterized by the tuple 〈s, d〉 denoting
the bandwidth εu,v.s of the link in Mbit/s and the propagation
delay εu,v.d of the link in µs, which depends on the physical
medium and the link length.

B. MULTI-CQF SWITCH MODEL
In the introduction we have motivated the use of
Multi-CQF [16]. Here we model the details of a Multi-CQF
switch needed to formulate our problem. For further details
on how Multi-CQF works, the reader is directed to [16]
and the relevant standards. CQF is the original peristaltic
shaper and uses only two queues. All CQF variants operate
based on cycles of fixed length. In odd-numbered cycles,
one queue buffers the frames received by the input port,
and the other queue transmits the frames buffered in the
queue of the last even cycle. In the even cycles, the roles
of the queues are reversed. CQF has to account for an end
of cycle ‘‘buffer dead time’’. This is a time when no frames

should be transmitted to guarantee that the last frame can be
received before the cycle’s end, see [16] for details. CSQF
introduces a third queue, called a ‘‘tolerating queue’’, besides
transmitting and receiving queues. The tolerating queue is
used for receiving the packets that arrive early due to delay
variations. Multi-CQF goes one step further and introduces
queues for each stream priority, and each such group of
queues can have their own different cycle length, see the
following discussion for details.

An example Multi-CQF switch architecture is depicted in
Figure 1, where we have 8 queues, from queue 7 to queue
0. Each port p ∈ v.P is attached to a link originating from
the node v. Thus, the link can also be used alternatively to
point out the specific port. Each egress port of a Multi-CQF
switch has a set ofN priority queues (typically 8) out of which
N0 queues are reserved for CQF traffic and form a set K of
priority groups. A priority group k ∈ K , {1, . . . , |K |} is a
grouping of CQF queues that share the same cycle length and
are assigned a bandwidth fraction of the total link bandwidth.
Formally, each priority group k ∈ K , {1, . . . , |K |} consists
of number |Qk | of CQF queues Qk (at least two, where∑

k∈K |Qk | = N0 holds) and is assigned a bandwidth Qk .b
and cycle length ||ck ||.

FIGURE 1. Example TSN switch internals with Multi-CQF.

Let us consider the example in Figure 1, where we have
8 queues. Queues 7 to 1 are CQF queues and queue 0 is used
for Best Effort (BE) traffic. With our notations, N0 = 7, the
number of queues used by CQF out of the total of N = 8. In
Figure 1 we have three priority groups, i.e., K = {1, 2, 3}.
Priority group 1 has three queues (Q1 = {7, 6, 5}) and a
cycle length ||c1|| = 10 µs, priority group 2 has two queues
(Q2 = {4, 3}) and a cycle length ||c2|| = 40 µs and priority
group 3 has two queues (Q3 = {2, 1}) and a cycle length
||c3|| = 80 µs.

We define the length of the hypercycle H as the time
period after which the network behavior is cyclic, i.e., the
network behavior is repeated, typically, the least common
multiple (LCM) of the stream periods. For each priority group
k , we split the hypercycle into several cycles ck ∈ Ck =
{1, . . . , |Ck |} with the same length ||ck ||. We denote with Ck
the set of all cycles in a hypercycle for the priority group k
and with |Ck | the number of such cycles in a hypercycle.

VOLUME 10, 2022 109071

K. Alexandris et al.: Configuration and Evaluation of Multi-CQF Shapers in IEEE 802.1 TSN

FIGURE 2. Multiple cycles example for Figure 1; the timeline depicts a hypercycle of 320 µs.

The CQF queues in each priority group are controlled by a
port control function2 and are served in a round-robin fashion.
Thus, one active queue q ∈ Qk is open for transmission
and closed for reception, and the |Qk | − 1 inactive queues
are only open for reception. The switching fabric receives
streams from the ingress ports and forwards each stream to the
corresponding egress port and queue, which are decided by
our configuration approaches. The number of cycles a stream
waits in a queue is relative to the cycle it has been received
and the cycle it will be forwarded.

However, to simplify the modeling, we use an equiva-
lent absolute model, where we assume that the cycle table
specifies how many cycles (considering its priority group)
each stream should be delayed for transmission relative to
the time it has been received in the queue. In our model,
we assign a fixed number of cycles to the queues of a priority
group, i.e., the queue number 1 is assigned with one cycle,
the queue number 2 is assigned with two cycles and the
queue number 3 is assigned with three cycles, etc. More
generally, the streams assigned to queue q are delayed q
cycles. This means that we have to apply a straightforward
post-processing step to our absolute queue configuration to
transform it to a relative CQF model that can be loaded in a
switch.

Without loss of generality, we assume that (i) the total
bandwidth allocated to all priority groups cannot exceed
the link bandwidth, (ii) the higher priority groups have a
smaller cycle length, and (iii) the starting of cycles at the
different nodes is the same and there is no offset. Under these
assumptions, every CQF queue will empty before the end of
its cycle.3

Let us consider an example with 3 streams, with the periods
of 80, 160 and 320 µs. In this example the hypercycle length
H is the LCM these values, which is 320 µs. Figure 2 shows
an example with 3 priority levels, 1 (highest) to 3 (lowest),
inspired by [16]. The figure shows a timeline illustrating the
cycles. Priority group 1 has a set Q1 of three queues, 7, 6 and
5 and a cycle length ||c1|| = 10µs. Then, there are |C1| = 32
cycles which have the same length of ||c1|| = 10 µs in the
hypercycle vector C1 for priority group k = 1. Priority group
2 has a set Q2 of two queues, 4 and 3 and their cycle length
is ||c2|| = 40 µs. Similarly, we have two queues, 2 and 1 at
priority group 3, operating with a cycle length ||c3|| = 80 µs,

2The reader interested in the Per-Stream Filtering and Policy (PSFP)
applied to CQF is redirected to Annex T.3 in [34].

3See the slides that accompany [16], https://www.ieee802.org/
1/files/public/docs2019/df-finn-multiple-CQF-slides-0919-v01.pdf.

double of ||c2||. The hypercycle with a length of H = 320 µs
is depicted in the figure.

C. APPLICATION MODEL
Our applicationmodel consists of a set S of real-time streams.
Each stream si ∈ S is responsible for sending the frames
that encapsulate the data and it is characterized by the
tuple 〈k, vs, vd , b, t, d〉 denoting the priority group k of the
stream, the source node vs ∈ V , the destination node vd ∈ V ,
the size in bytes, the period inµs and the stream deadline, i.e.,
the maximum allowed end-to-end delay in µs, respectively.

A stream s is transmitted via a route rs ∈ Rs, whereRs is the
set of all possible routes that the stream can take in the topol-
ogy graph G from its source to its destination. The route rs
is an ordered list of link assignments, where we denote the
l th link assignment with r ls , i.e., rs , [r1s , . . . , r

|rs|
s]T . The

number of link assignments in the route rs is denotedwith |rs|,
and it starts from 2 since we assume there is at least one
switch in the route. Each route starts with a link assignment
originating from the talker s.vs, and ends with a link to the
listener s.vd .
Each link assignment r ls is characterized by the

tuple 〈εu,v, k, q〉 denoting the corresponding link, the pri-
ority group in the link, and the queue in the priority group,
respectively. For example, the second link assignment in the
route r3 is denoted with r23 and characterized by 〈ε5,8, 1, 2〉
which are the corresponding link ε5,8 ∈ E , the priority
group 1 ∈ K , and the queue 2 ∈ ε5,8.Q1.

D. CYCLE DOMAIN TRANSFORMATION
Since Multi-CQF is operating using cycles, for modeling
purposes, we transform from the time domain into a cycle
domain to be able to express, in section III, the governing
constraints and objective function. Hence, for a link in a cycle,
we define the cycle-domain propagation delay εu,v.Dk which
is equivalent to the propagation delay εu,v.d of a link εu,v,
and the cycle-domain bandwidthQk .B, which is equivalent to
the bandwidth Qk .b of the queues Qk at the priority group k .
The delay εu,v.Dk specifies the link delay in cycles of length
||ck || at priority group k and is calculated using εu,v.Dk ,
dεu,v.d/||ck ||e,∀k ∈ K . The cycle-domain bandwidth Qk .B
specifies the data size in bytes that the queues Qk at the
priority group k can use to transfer data in a cycle ck and
is defined as Qk .B , Qk .b × ||ck ||. Note that all switches
and links use the same queue configuration, hence the afore-
mentioned properties of priority groups and their queues are
system-wide and not link-dependent.

109072 VOLUME 10, 2022

K. Alexandris et al.: Configuration and Evaluation of Multi-CQF Shapers in IEEE 802.1 TSN

Similarly, we define in Equation 1 the arrival pattern A,
which is equivalent to the size and period of a stream, and
cycle-domain deadline s.D which is equivalent to the dead-
line s.d of a stream s. The arrival pattern A specifies the data
in bytes that is sent from the talker in each cycle, considering
the cycle length ||ck || of the stream s priority group k:

s.A(ck) =

{
s.b for ck × ||ck || mod s.t = 0,
0 for ck × ||ck || mod s.t 6= 0.

(1)

The cycle-domain deadline s.D specifies the maximum
allowed end-to-end delay in cycles and is defined as s.D ,
s.d/||ck ||.

III. PROBLEM FORMULATION
Using the models introduced in the previous section, our
problem is formulated as follows.

min
rs∈Rs

1
|S|

∑
s∈S

E2E (rs) , (2)

s.t. C1 :E2E (rs) ≤ s.D, (3)

C2 :BU (rs) ≤ Qk .B, (4)

∀ rs ∈ Rs, ck ∈ Ck , k ∈ K , s ∈ S.

Given the set of all streams S in the system, the network
graph G, we are interested in the routing of streams, the
assignment of streams to queues, such that all the streams in
the system are schedulable, i.e., their deadlines are satisfied
(C1 captured by Equation 3), the link capacity constraints are
satisfied (C2 given by Equation 4) and the mean end-to-end
delay of all streams as defined by Equation 2 is minimized.
Let us now present in detail the optimization problem.

A. OBJECTIVE FUNCTION
The objective function is to minimize the mean end-to-end
delay of all streams, see Equation 2. The E2E notation rep-
resents the worst-case end-to-end delay4 of each stream and
is captured by Equation 5:

E2E (rs) ,
|rs|∑
l=1

(r ls .ε.Dk + r
l
s .q). (5)

The end-to-end delay is the sum of the cycle-domain prop-
agation delay (how many cycles it takes to propagate the
stream bits along the link medium) and the cycle shift (how
many cycles the stream is delayed in the source node of the
link). Assuming that each stream s will be transmitted via the
route rs, each link assignment r ls carries link delay r ls .ε.Dk
and the associated queue r ls .q ≡ q ∈ r ls .Q ≡ Qk , which
captures the number of cycles the stream is delayed. Note that
a stream s has an associated priority group s.k and hence it can
only be assigned the set of queuesQk of that priority group k .
In addition, all queues q ∈ Qk have the same cycle length ck .
Thus, using the cycle shift and delay for each link assignment
in rs, we determine the worst-case end-to-end delay E2E(rs)
of the stream s.

4We use the terms ‘‘delay’’ and ‘‘latency’’ interchangeably in the paper.

B. CONSTRAINTS
The constraints are defined as follows.
C1: This constraint imposes the restriction that all streams

in the application model must meet their deadlines. This con-
straint iterates over all streams s ∈ S, determines the end-to-
end delay of each stream (denoted with E2E(rs), considering
the route rs of the stream) and checks that this delay does
not exceed the stream deadline s.D, all defined in the cycle
domain.
C2: This constraint enforces solutions to meet the prior-

ity groups’ cycle-domain bandwidth limits. Each queue at
a priority group in the architecture must only transmit less
amount of data than its bandwidth in each cycle. For each
priority group, the constraint is imposed on the streams that
are transmitted via routes that include the link and the priority
group. Furthermore, the arrival function of these streams
should be shifted to the time when they are queued.
In more detail, this constraint computes the consumed

bandwidth of each priority group k ∈ K in each link εu,v ∈
E in each cycle ck ∈ Ck , which is denoted with BU (rs)
and checks for the consumed bandwidth not to exceed the
assigned priority group cycle-domain bandwidth Qk .B, all in
the cycle domain:

BU (rs) ,
∑
s∈Pm

s.A (ck − T (rs)) , (6)

Pm ,
{
S | rms .ε ≡ εu,v ∧ r

m
s .Q ≡ Qk

∧rms .q ≡ q ∈ Qk ∧ u, v ∈ V
}
, (7)

T (rs) ,
m−1∑
l=1

(r ls .ε.Dk + r
l
s .q)+ r

m
s .q, (8)

∀ rs ∈ Rs, ck ∈ Ck , ∀k ∈ K , m ∈ M , {1, . . . , |rs|} .

The consumed bandwidth BU (rs) in each cycle ck con-
sidering a priority group k is defined as the sum of sizes of
streams in the set Pm that are passing through a particular
link in the cycle ck via the priority group queues. To this
end, first we find the streams that are using specific priority
group queues in a link for transmission and then determine the
latency T (rs) that takes for each stream s start its transmission
on the considered link within its route rs. We use the arrival
pattern function s.A(ck) and the latency T (rs) for shifting the
pattern to find the stream size at the cycle ck .

IV. OPTIMIZATION STRATEGIES FOR MULTI-CQF
The problem defined in section III is NP-hard, as proven
in [31]. In this section we present the optimization strate-
gies we have developed to determine configuration solutions.
We start with a Constraint Programming (CP) formula-
tion that is able to determine an optimal solution, see
subsection IV-A. For NP-hard problems, such as our con-
figuration optimization, researchers have also proposed the
use of problem-specific heuristics and metaheuristics [35],
as an alternative to exact optimization methods such as
CP that have exponential running times. Hence, we also

VOLUME 10, 2022 109073

K. Alexandris et al.: Configuration and Evaluation of Multi-CQF Shapers in IEEE 802.1 TSN

present a Simulated Annealing-based metaheuristic in
subsection IV-B.

A. CONSTRAINT PROGRAMMING FORMULATION
In this section we present the CP formulation that is used to
optimize the configuration for Multi-CQF. Such an optimiza-
tion strategy, let us call it CP-MCQF, takes as the inputs the
architecture and application models and outputs a set of the
best solutions found during search.

CP is a declarative programming paradigm that has been
widely used to solve a variety of optimization problems such
as scheduling and routing [36]. With CP, a problem is mod-
eled through a set of variables and a set of constraints. Each
variable has a finite set of values, called domain, that can be
assigned to it. Constraints restrict the variables’ domains by
bounding them to a range of values and defining relations
between the domains of different variables.

CP-MCQF visits solutions that satisfy the constraints
defined in section III and evaluates them using the objective
function defined in Equation 2 to check if the solution is an
improving solution, i.e., better than the best solutions found
so far. By default, the CP solver systematically performs an
exhaustive search by exploring all the possibilities of assign-
ing different values to the variables. Although such a search is
intractable for NP-complete problems, it guarantees that the
solution is optimal if the search terminates.

We define two sets of decision variables for the CP model,
which are associated with the stream routes and the stream
queue assignments, respectively. Each decision variable is
associated with a domain from which the CP solver decides
the variable’s value. The mapping function M captures the
mapping of streams to the relative routes from their talker
nodes to the listener nodes and the assignment to queues.
The domain and the co-domain of the function are defined in
Equation 9, where the function domain is the set of all streams
in the application model and the function co-domain is the
set of all routes from the streams’ talker nodes to the listener
nodes, captured by the set Rs, which includes all the queues
considering the streams’ priority group.

M : X −→ Y ,

where X = {s|s ∈ S}, Y = {rs|rs ∈ Rs}. (9)

The decision variables for stream route and queue assign-
ments, and their domains are defined as ∀ rs ∈ Rs, r ls .Q ≡
Qk , r ls .q ≡ q ∈ Qk .

B. SIMULATED ANNEALING METAHEURISTIC
Several metaheuristic approaches have been presented in the
literature [35], and the challenge is to identify the right meta-
heuristic for our problem. Metaheuristics aim to find a good
quality solution in a reasonable time but do not guarantee that
an optimal solution will be found. Based on the review of
the related work, we have decided to implement a Simulated
Annealing (SA) metaheuristic that has been shown in the
literature to be a promising approach for routing problems.

Algorithm 1 SA-MCQF(G, S, sol0, t0, cr, kpaths)
1: t ← t0
2: sol∗← sol ← sol0
3: while termination criteria not satisfied do
4: sol ′← GenerateNeighbor(G, S, sol, kpaths)
5: if Obj(sol ′) < Obj(sol) then
6: sol ← sol ′

7: if Obj(sol ′) < Obj(sol∗) then
8: sol∗← sol ′

9: end if
10: else if e

Obj(sol)−Obj(sol′)
t > rnd[0, 1] then

11: sol ← sol ′

12: end if
13: t ← t · (1− cr)
14: end while
15: return sol∗

SA-MCQF is presented in 1, and it takes as input the
topology graph G, the streams S, the initial solution sol0 that
acts as the starting point of the search, the initial temperature
t0, the cooling rate cr that controls the temperature decay, and
a parameter kpaths that specifies how many ‘‘shortest paths’’
according to Yen’s algorithm [37] to be considered for routing
each stream s. That is, Rs is restricted to these shortest paths
for s instead of considering all possible paths between the
talker and listener of s. SA-MCQF outputs the best solution
sol∗ found once a termination condition has been reached
(line 3).

For the initial solution sol0 we use the shortest path for
each stream (using Dijkstra’s algorithm) and we assign the
streams randomly to queues in their priority group. We use
a time limit as the termination criterion. SA is a variant
of the neighborhood search technique [35], where the local
search space is explored via the generation of a new solution
sol ′ starting from the current one sol (line 4). The neighbor
solutions sol ′ are generated through performing design trans-
formations (also called moves) on sol. In general, the new
solution is accepted if it is improving the objective function
(line 6). SA records the best-so-far solution found (line 8)
to return it at the end (line 15). However, the key aspect of
SA, which helps it to avoid getting stuck into local optima,
is that a worse solution can also be accepted with a certain
probability (line 10, where rnd returns a random number in
[0, 1], with a uniform distribution). The basic concept of
SA is inspired by the slow cooling of solid material in a
heat bath, known as annealing. The cooling rate affects the
properties of the cooled material. Hence, the probability of
accepting a worse solution depends on the deterioration of
the objective function and on a cooling scheme captured by
a control parameter called initial temperature, t0, which is
analog to the temperature concept of the physical annealing
process and a cooling rate cr , which is the rate at which the
temperature drops with time.

109074 VOLUME 10, 2022

K. Alexandris et al.: Configuration and Evaluation of Multi-CQF Shapers in IEEE 802.1 TSN

We use the objective function from Equation 2 in our SA,
with the difference that we normalize the worst-case end-
to-end delays and we penalize unschedulable and invalid
solutions. We allow SA to visit unschedulable and invalid
solutions, i.e., solutions where constraints C1 in Equation 3
(meeting all deadlines) and C2 in Equation 4 (meeting the
bandwidth limits) are not satisfied. This is to allow SA to
explore areas of the search space that may lead to improved
solutions. Thus, in case a solution sol ′ is not schedulable,
i.e., the constraint in Equation 3 is not satisfied, we add
a ‘‘penalty’’ value of 2. In case a solution is invalid, i.e.,
a link capacity constraint from Equation 4 is not satisfied,
we penalize the objective function value by adding a penalty
value of 3. Since, we are adding the penalties to the objective
function for invalid solutions, we normalize Obj(·) to bring
it in a similar range as the penalties [38]. Thus, our Obj(·) is
the sum of all stream latencies, divided by the total number of
streams, where each latency value is normalized by dividing
it with the stream’s deadline. Note thatObj is smaller or equal
to 1 if all streams meet their deadlines.

The GenerateNeighbor function performs moves that
change the routing and queue assignment of a stream, return-
ing a neighboring solution sol ′. GenerateNeighbor selects
randomly with a uniform distribution between two moves (1)
change route and (2) change queue. For the change route
move, GenerateNeighbor picks a random stream and then
picks a random path out of the k-shortest-paths generated by
Yen’s algorithm [37]. For the change queue move, Gener-
ateNeighbor, we have the route and we want to modify a
queue assignment for one of the links in the route. Hence,
we pick a random stream to apply this move and then we
pick a random link along its current route. For the egress port
corresponding to that link, we change randomly the queue
assignment of the stream, keeping the stream in the same
priority group.

V. EVALUATION
We have performed several experiments, see the following
subsections. The CP formulations have been implemented
in C# using Google OR-Tools [39] as the CP solver. The
SA for TAS was implemented in C++, whereas the SA for
Multi-CQF (SA-MCQF) was done in Python. The termina-
tion criteria for both SA implementations were time limits,
see respective sections for each experiment. Both the SA
parameters and time limits have been determined such that
no improvement is seen for longer periods of time. The longer
time limit for SA-MCQF has been set to compensate for the
slower Python implementation.

We have considered industrial ring topologies that are
typical for industrial networks (cf. IEC/IEEE 60802), with
8 to 512 switches, see Table 2. We consider that links have
a rate of 1 Gbps and that the propagation delay in the switch
is zero. To each switch we connect two end systems, result-
ing in 16 to 1024 end systems for each test case, respec-
tively. The test cases have an increasing number of streams,
from 29 to 1,844, respectively.

We have considered timing constraints which are
‘‘relaxed’’ (corresponding to priority levels 6 and 5 in
IEC/IEEE 60802), ‘‘tight’’ (corresponding to priority 7) and
‘‘mixed’’ (a mixture of the relaxed and tight constraints).
Thus, for the relaxed test cases we have used periods of 1,000,
2,000, 5,000, and 10,000µs and randomly generatedmessage
sizes between 50–500 bytes (B). For the tight test cases we
have used periods of 100, 500, 1,000, 1,500 and 2,000 µs
and sizes between 30–100 B. The mixed test cases have half
of the streams as tight and the other half as relaxed. For all
streams, the deadlines are equal to the periods.

We have used ParamILS [40] to determine the SA parame-
ters, i.e., the initial temperature t0 and the cooling rate cr . For
all SA implementations, the values for t0 for the different test
cases are presented in Table 2, where we also show the time
limits in seconds. We have used a value of kpaths = 10 for
all SA runs. All algorithms were run on a MacBook Pro with
an ARM-based Apple M1 Pro processor, with 6 performance
cores and 2 efficiency cores, and with 32 GB of RAM.

A. COMPARISON OF SA AND CP
In the first experiment we were interested to determine the
scalability of our CP and SA implementations for CSQF, and
the ability of SA to find good quality solutions. To gener-
ate the configurations for TAS we have used the CP-based
approach from [41] (let us call it CP-TAS) and the SA-based
approach from [30] (let us call it SA-TAS). The CSQF config-
urations have been obtained with the Multi-CQF approaches
we have developed in this work, namely the CP-based
approach presented in subsection IV-A and the SA-based
approach presented in subsection IV-B, considering the par-
ticularities of the three-queue CSQF shaper. These CSQF
variants are denoted by CP-CSQF and SA-CSQF.

We have considered test cases number 1 to 3 from Table 2.
A cycle length ||c|| = 20 µs is used. The CP has been run
until completion, which guarantees that the obtained solution
is optimal. The first observation is that the CP approach is not
scalable, i.e., it can only handle test cases up to 24 switches,
and does not terminate (even after running for two days)

TABLE 2. Test cases for the first and second experiments and SA
parameters.

VOLUME 10, 2022 109075

K. Alexandris et al.: Configuration and Evaluation of Multi-CQF Shapers in IEEE 802.1 TSN

FIGURE 3. Evaluation of SA for TAS and CSQF compared to CP optimal results.

for larger test cases. The CP-CSQF runtime was on average
1,564 s for the three test cases. Therefore, we use CP here only
as a way to obtain optimal solutions in terms of mean end-to-
end latency, to be used as a baseline for the comparison with
the SA approaches, and we do not advocate for its use on
realistic test cases.

Figure 3 reports the results obtained. On the y-axis we have
the mean worst-case end-to-end latency (henceforth called
Mean E2E) in µs. On the x-axis we have the three sizes
of test cases, with 8, 16 and 24 switches. For each size,
we consider relaxed, mixed and tight test cases. The CP-TAS
results are plotted with bars using shades of red, and are used
as a baseline. We do not plot the SA-TAS results because
they are identical to CP-TAS (both algorithms have obtained
the optimal results). The CP-CSQF results are depicted with
shades of purple and the SA-CSQF with shades of blue.

As expected, TAS always obtains the smallest latencies.
TAS has been evaluated in the literature and compared to
other shapers [33], and the conclusion is that it provides the
lowest latency, jitter and bandwidth usage. This can be seen in
the figure, where the red bars (CP-TAS) are smaller than the
purple and blue bars. Compared to the optimal CSQF results
obtained with CP-CSQF, TAS is able to reduce the mean E2E
latencies by 2.69 to 9.99 times. The lowest difference is for
relaxed test cases, the largest for tight and the difference for
mixed test cases is in-between. In the figure, the darker the
shade of color the tighter is a test case in terms of timing con-
straints. Note that TAS meets all deadlines, whereas CSQF
misses a few deadlines due to the larger latencies, see the
numbers on top of the bars, which denote the deadline misses.
All these deadline misses with CSQF can be avoided by using
a cycle length of 10 µs instead of 20, see the next section for
a discussion, with the exception of the tight test case with
24 switches, which will still have two missed deadlines out
of 87 streams, see Figure 4.

As a final observation for this experiment, we can see
that SA-CSQF (blue) is able to obtain results that are not
too far from the optimal result, as obtained with CP-CSQF
(purple), i.e., they are only 1.01 to 1.97 times larger. This
shows that our SA-CSQF can obtain good quality results

within a reasonable time, see the time limits in Table 2.
This means that SA-CSQF if preferred for configuring CSQF
shapers, compared to CP-CSQF, which is not scalable. The
near-optimal results obtained by our SA implementation have
been determined using the time limits from Table 2. Note that
good quality results can be obtained in much shorter times
with SA compared to the time limits Table 2, which allows
the handling very large realistic test cases.

B. EVALUATION OF CSQF COMPARED TO TAS
In the second experiment, we were interested to evaluate the
CSQF shaper behavior as the size of the test cases is increas-
ing. Hence, we have used test cases of increasing size as
presented in Table 2. We have used two cycle lengths ||c|| of
10 and 20 µs. The results are depicted in Figure 4, where we
have a similar setup as in the previously discussed Figure 3.
All the CSQF results have been obtained with SA-CSQF and
the all the TAS results with SA-TAS. With red bars we depict
the TAS mean E2E latencies, with purple those for CSQF
considering a ||c|| of 20 and with blue a ||c|| of 10 µs. The
darker the color, the tighter the timing constraints; each size
of test cases considers three variants: relaxed, mixed and tight
test cases.

As we can see from the figure, SA-CSQF is able to handle
large test cases, with topologies of up to 1,536 devices and
1,844 streams. As in the previous experiment, CSQF results
in larger latencies. As mentioned, this may lead to deadline
misses. Hence, on top of each CSQF bar we also denote
the number of missed deadlines, out of the total number of
streams, see Table 2, in the respective test case size.

TAS can handle tight streams with no deadline misses.
CSQF has larger latencies than TAS because it has to wait 1,
2 or 3 cycle lengths (depending on the queue assignment) to
push data to the next hop. Therefore, as expected, if the cycle
length decreases from 20 µs to 10 µs, the CSQF latencies
are also decreasing, from 9.34 times on average longer than
TAS to only 4.85 larger than TAS on average. This means
that CSQF can handle small to medium test cases, and can
even handle large test cases if the cycle length is small. In the
figure, the number of missed deadlines is a more important

109076 VOLUME 10, 2022

K. Alexandris et al.: Configuration and Evaluation of Multi-CQF Shapers in IEEE 802.1 TSN

FIGURE 4. Evaluation of CSQF compared to TAS for increasing test case size.

metric than the mean E2E latency, which depends on the
characteristics of the streams and the network size, i.e., longer
routes will lead to larger latencies. CSQF handles better more
relaxed test cases, but the size of the test case is a more impor-
tant factor. Our SA-CSQF approach optimizes the routing of
streams and their assignment to queues such that streams with
tighter deadlines will use shorter routes and ‘‘faster’’ queues,
whereas streams with more relaxed deadlines may end up
being placed in ‘‘slower’’ queues and use longer routes.

As the test case size increases, the network load also
increases, from a 1% to 104% maximum link utilization.
If a link is over 100% capacity it means that the capacity
constraint is not satisfied. That was the case in the relaxed
test cases for 256 and 512 switches for ||c|| = 20 µs and
for 128, 256 and 512 switches for ||c|| = 10. For the mixed
test cases, the test cases with 64, 128, 256 and 512 switches
were infeasible for ||c|| = 10 and only those with 256 and
512 switches remained infeasible when ||c|| was increased to
20, since increasing the cycle length makes it easier to fulfill
the link capacity constraint. For the tight test cases, only the
largest test case with 512 switches was infeasible, for both
cycle lengths.

For smaller network loads, CSQF can work with small
cycle lengths, which reduce the latencies, since the bandwidth
capacity constraint in a cycle (see Equation 4) is easier to
satisfy. Note that the results in Figure 4 depend on the test
cases used for the experiments. In our setup, as mentioned,
we have used demanding timing constraints, i.e., periods and
deadlines from 100 to 2,000 µs (tight test cases and half of
the mixed) and from 1,000 µs to 10,000 µs (relaxed test
cases and the other half of the mixed). CQF and its variants
are intended to handle streams with more relaxed timing
constraints compared to TAS, which is intended for streams
that require very low latencies and jitter. Our investigation
was aiming to show the limits of CQF, which, as expected,
has difficulties with long routes and overloaded networks,
since the latencies depend on the number of hops and the
cycle length. We explore in the next experiment the impact
of the network load on the CSQF ability to handle industrial
streams.

C. EVALUATION OF CSQF FOR INCREASING
NETWORK LOAD
Our next experiment investigates the ability of CSQF to han-
dle situations, where the network load is increasing. Hence,
we have used a topology with 8 switches, and we have
increased the number of streams from 29 to 864 streams, see
Table 3 for the details, including the SA parameters used.
We have considered ‘‘mixed’’ timing constraints for these test
cases.

We depict the results in Figure 5 similarly to the previous
graphs. We denote SA-TAS mean E2E latency with red and
the results of SA-CSQF with purple. We have also obtained
results for CQF, which are denoted with a gray bar. The
CQF results have been obtained by configuring SA-MCQF to
consider only two queues and a ‘‘dead buffer time’’ of 25% of
the cycle length, see [16] for a discussion on how ‘‘2-buffer
CQF’’ works. For each test case, we have tried cycle lengths
from 10 to 120 µs.

As the load increases, it is not possible to obtain feasible
solutions that satisfy the capacity constraint in Equation 4,
which means that there will be cycles when at least one link
is overloaded, that is, the link should carry more than 100%
its capacity, which is not possible. Therefore, for each test
case, we have identified that cycle length which satisfies the
capacity constraint, see the three numbers on the x-axis on
top of the number of flows in Figure 5. Determining the
cycle length that minimizes the worst-case E2E latencies
and at the same time satisfies the capacity constraint is an
optimization problem in itself. For our optimization problem

TABLE 3. Test cases for the third experiment, mean link utilization, and
time limits. The time limits for SA-CQF are the same as for SA-CSQF.

VOLUME 10, 2022 109077

K. Alexandris et al.: Configuration and Evaluation of Multi-CQF Shapers in IEEE 802.1 TSN

FIGURE 5. Evaluation of CSQF and CQF compared to TAS for increasing network load. The three numbers on the
x-axis on top of the number of flows are the cycle lengths ||c|| that have to be used to obtain a feasible solution for
the test case, for TAS (NA, because it is not cycle-based), CSQF and CQF, respectively.

FIGURE 6. Evaluation of Multi-CQF compared to CSQF for ring topologies of increasing size.

we consider that the ‘‘switch configuration’’ is given, i.e.,
the priority groups, the number of queues in a group, the
bandwidth allocations, and the cycle lengths. We leave the
optimization of such switch configurations to future work.
For the evaluations in this section, we have determined the
cycle lengths manually such that the capacity constraints are
satisfied (otherwise the solution is invalid) and the mean
E2E delay is minimized. Note that for these cycle lengths,
although the link capacity constraint is satisfied, not all the
deadlines are satisfied in the respective test case. We can
see that because of the need to increase the cycle length
with CSQF, the mean E2E latencies are also increasing.
However, CSQF, which uses three queues, outperforms CQF,
which uses only two queues. Thus, CQF results in mean E2E
delays that are between 1.35 and 2.10 times larger than those
of CSQF. Also, CQF is leading to more deadline misses,
see the numbers on top of the gray bars, e.g., deadlines
missed for 190 flows out 864 total for the most loaded test
case.

The conclusion is that as the load of a network increases,
CSQF has to accommodate the increase in bandwidth require-
ments by increasing the cycle length, leading, therefore, to an
increase in latencies and deadline misses, see the numbers on
top of the purple bars in Figure 5. CQF experiences larger
mean E2E delays compared to CSQF, resulting also in more
deadline misses.

D. COMPARISON OF CSQF WITH MULTI-CQF
In this experiment we were interested to evaluate Multi-CQF
and contrast it with CSQF. Thus, we have used the ‘‘mixed’’
test cases from Table 2 that were feasible (the bandwidth
constraint is satisfied) with a cycle length of 20 µs using
CSQF, i.e., from 8 to 128 switches. Larger ‘‘mixed’’ test
cases did not have feasible results for ||c|| = 20 µs, i.e.,
the link capacity constraint was not satisfied. As mentioned,
these test cases use a mixture of priority 7, 6 and 5 streams
from IEC/IEEE 60802. Hence, we have designed a switch
configuration to assign these two stream priorities to two

109078 VOLUME 10, 2022

K. Alexandris et al.: Configuration and Evaluation of Multi-CQF Shapers in IEEE 802.1 TSN

FIGURE 7. Evaluation of Multi-CQF compared to CSQF for Erdős-Rényi topologies of increasing size.

different priority groups. Thus, priority group 1, correspond-
ing to stream priority 7, uses three queues, has a cycle
length of 10 µs and an allocated bandwidth of 50%. Priority
group 2, used for stream priorities 6 and 5, also has three
queues, and 50% allocated bandwidth, but uses a cycle length
of 20 µs.

Figure 6 shows the results, where we use purple for CSQF
and green for Multi-CQF. The setup is similar to the previous
graphs that showed the mean end-to-end latencies. In the
figure, we show separately the latencies and missed deadlines
for the two stream priorities (priority 7, a higher priority with
smaller periods and deadlines, and priorities 6 and 5). As we
can see from the figure,Multi-CQF is able to reduce the laten-
cies compared to CSQF. This is because it can tailor the cycle
length and bandwidth to the particularities of the streams, i.e.,
it can use a smaller cycle length for the priority 7 streams with
smaller periods and deadlines. Also, the Multi-CQF switch
configuration we considered is using more queues compared
to CSQF.

In Figure 7 we have done the same evaluation as in
Figure 6, but instead of the ring topologies used in Table 2,
we have used Erdős-Rényi graph topologies. We have used
the same SA parameters as in the previous experiments. The
same conclusion holds for these topologies, i.e., Multi-CQF
is able to produce solutions where the deadlines are satisfied,
compared to CSQF, which misses deadlines. Multi-CQF is
able to meet the deadlines of the tight streams (priority 7)
at the expense of slightly larger latencies for the relaxed
streams (priorities 6 and 5), which however, are still meeting
their deadlines. By optimizing the switch configuration, e.g.,
giving more bandwidth to the relaxed streams, it is possible
to trade-off the latencies of tight vs. relaxed streams to tailor
their requirements. Note that the Erdős-Rényi graphs are
easier to solve, since they have shorter routes on average
between talkers and listeners compared to the ring topologies
used in Figure 6.

This shows that when carefully deciding on the cycle
lengths, number of queues and bandwidth allocation for the
priority groups, Multi-CQF is capable of handling indus-
trial streams of mixed requirements. However, as the net-
work diameter increases, all the peristaltic shapers (CQF,
CSQF, Multi-CQF) experience increase latencies because the

latency of a stream depends on the number of hops and cycle
length. For realistic network loads, the cycle lengths cannot
be reduced too much because this leads to situations, where
the link capacities are not satisfied (they are used over 100%
capacity). Only Multi-CQF has the option to allocate more
bandwidth for the demanding streams that require smaller
latencies, at the expense of the other, less demanding, streams
in the network. And, even for small cycle lengths, if the
routes are long, the latencies will be long. This shows that a
combination of shapers, e.g., TAS for streams that require low
latencies andMulti-CQF for the other streams is the best com-
bination in practice. Using TAS for only the streamswith tight
timing constraints will reduce the search space for GCLs,
improving the scalability of the configuration solutions.

The CQF, CSQF and Multi-CQF results have been vali-
dated using a simulator developed in Python.

VI. CONCLUSION AND FUTURE WORK
In this paper we have evaluated several CQF traffic shapers,
such as the original CQF, the CSQF and the Multi-CQF
shapers. We have considered industrial systems where end
stations are interconnected via physical links and switches
and use IEEE 802.1 TSN.

We have formulated the network configuration problem for
these CQF variants and we have developed several solutions,
based on CP and SA. The CP formulation can find the optimal
solution but does not scale. The SA metaheuristic is able to
find good quality solutions in a reasonable time even for large
test cases.

We have evaluated CQF, CSQF and Multi-CQF and com-
pared it to TAS. We have used randomly generated test
cases following the IEC/IEEE 60802 profile, which were
purposely created such that the timing constraints are very
tight, to investigate the limits of CQF shapers.

The conclusion is that Multi-CQF can handle well streams
even with tight timing constraints. However, as the network
size increases, all the peristaltic shapers will lead to larger
latencies because the latency of a stream depends on the
number of hops and cycle length. In such situations, TAS can
be used for the most demanding streams, in combination with
CQF shapers.

VOLUME 10, 2022 109079

K. Alexandris et al.: Configuration and Evaluation of Multi-CQF Shapers in IEEE 802.1 TSN

CSQF, which uses three queues, outperforms CQF, which
uses only two queues. They are both outperformed by
Multi-CQF if the switch configuration is adequately selected.
Determining the switch configuration is an optimization
problem, i.e., deciding the priority groups, their number of
queues in a group, cycle lengths and bandwidth allocations.
However, this optimization problem has not been addressed
in this paper and it is left for future work.

In our work we have considered the TAS and CQF shapers
in isolation. However, as [33] shows, there are advantages
to use combinations of shapers. For example, it is very
interesting to combine TAS and CQF in the same switch,
such that TAS handles streams with low latency require-
ments and CQF handles streams that do not have very
tight constraints. In our future work we will (i) com-
pare CQF with other shapers besides TAS, e.g., ATS and
CBS, and (ii) consider the combination of TAS and CQF,
which requires a joint optimization of TAS and CQF con-
figuration, which is different and interesting optimization
problem.

REFERENCES
[1] P. Gaj, J. Jasperneite, and M. Felser, ‘‘Computer communication within

industrial distributed environment—A survey,’’ IEEE Trans. Ind. Infor-
mat., vol. 9, no. 1, pp. 182–189, Feb. 2013.

[2] IEEE 802.3 Standard for Ethernet, Standard 802.3, May 2015.
[3] J. D. Decotignie, ‘‘Ethernet-based real-time and industrial communica-

tions,’’ Proc. IEEE, vol. 93, no. 6, pp. 1102–1117, Jun. 2005.
[4] D. Jansen and H. Buttner, ‘‘Real-time Ethernet: The ethercat solution,’’

Comput. Control Eng., vol. 15, no. 1, pp. 16–21, Feb. 2004.
[5] J. Feld, ‘‘PROFINET—Scalable factory communication for all applica-

tions,’’ in Proc. IEEE Int. Workshop Factory Commun. Syst., Aug. 2004,
pp. 33–38.

[6] Aircraft Data Network, Part 7, Avionics Full-Duplex Switched Ethernet
Network, Standard ARINC 664P7, Airlines Electronic Engineering Com-
mittee, 2009.

[7] Time-Triggered Ethernet, Standard SAE AS6802, SAE International,
2011.

[8] (2016). Official Website of the 802.1 Time-Sensitive Networking Task
Group. [Online]. Available: http://www.ieee802.org/1/pages/tsn.html

[9] E. Dahlman, G.Mildh, S. Parkvall, J. Peisa, J. Sachs, Y. Selén, and J. Sköld,
‘‘5G wireless access: Requirements and realization,’’ IEEE Commun.
Mag., vol. 52, no. 12, pp. 42–47, May 2014.

[10] N. Nikaein, C.-Y. Chang, and K. Alexandris, ‘‘Mosaic5G: Agile and
flexible service platforms for 5G research,’’ ACM SIGCOMM Comput.
Commun. Rev., vol. 48, no. 3, pp. 29–34, Sep. 2018.

[11] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,
M. Reisslein, and H. ElBakoury, ‘‘Ultra-low latency (ULL) networks: The
IEEE TSN and IETF DetNet standards and related 5G ULL research,’’
IEEE Commun. Surveys Tuts., vol. 21, no. 1, pp. 88–145, 1st Quart.,
2018.

[12] W. Mahnke, S.-H. Leitner, and M. Damm, OPC Unified Architecture.
Heidelberg, Germany: Springer, 2009.

[13] O. Kleineberg and A. Schneider, Time-Sensitive Networking for Dummies,
Belden/Hirschmann Special Edition. Hoboken, NJ, USA: Wiley, 2018.

[14] (2011). 802.1BA—Audio Video Bridging (AVB) Systems. [Online]. Avail-
able: https://standards.ieee.org/ieee/802.1BA/4396/

[15] L. Zhao, P. Pop, Z. Zheng, and Q. Li, ‘‘Timing analysis of AVB traffic in
TSN networks using network calculus,’’ in Proc. IEEE Real-Time Embed-
ded Technol. Appl. Symp. (RTAS), Apr. 2018, pp. 25–36.

[16] N. Finn. (Oct. 26, 2021). Multiple Cyclic Queuing and Forward-
ing. [Online]. Available: https://www.ieee802.org/1/files/public/docs2021/
new-finn-multiple-CQF-0921-v02.pdf

[17] A. Nasrallah, V. Balasubramanian, A. S. Thyagaturu, M. Reisslein, and
H. ElBakoury, ‘‘Cyclic queuing and forwarding for large scale determin-
istic networks: A survey,’’ 2019, arxiv:1905.08478.

[18] M. Chen, X. Geng, and Z. Li, ‘‘Segment routing (SR) based bounded
latency,’’ Internet Eng. Task Force, May 2019. [Online]. Available:
https://datatracker.ietf.org/doc/draft-chen-detnet-sr-based-bounded-
latency/01/

[19] Y. Huang, S. Wang, T. Huang, and Y. Liu, ‘‘Cycle-based time-sensitive and
deterministic networks: Architecture, challenges, and open issues,’’ IEEE
Commun. Mag., vol. 60, no. 6, pp. 81–87, Jun. 2022.

[20] V. Gavriluţ, A. Pruski, and M. S. Berger, ‘‘Constructive or optimized: An
overview of strategies to design networks for time-critical applications,’’
ACM Comput. Surv., vol. 55, no. 3, pp. 1–35, Apr. 2023.

[21] Y. Seol, D. Hyeon, J. Min, M. Kim, and J. Paek, ‘‘Timely survey of time-
sensitive networking: Past and future directions,’’ IEEE Access, vol. 9,
pp. 142506–142527, 2021.

[22] S. M. Laursen, P. Pop, and W. Steiner, ‘‘Routing optimization of AVB
streams in TSN networks,’’ SIGBED Rev., vol. 13, no. 4, pp. 43–48,
Nov. 2016.

[23] N. G. Nayak, F. Dürr, and K. Rothermel, ‘‘Routing algorithms for
IEEE802.1Qbv networks,’’ ACM SIGBED Rev., vol. 15, no. 3, pp. 13–18,
Jun. 2018.

[24] M. A. Ojewale and P. M. Yomsi, ‘‘Routing heuristics for load-balanced
transmission in TSN-based networks,’’ ACM SIGBED Rev., vol. 16, no. 4,
pp. 20–25, Jan. 2020.

[25] S. S. Craciunas, R. S. Oliver, M. Chmelík, and W. Steiner, ‘‘Scheduling
real-time communication in IEEE 802.1Qbv time sensitive networks,’’ in
Proc. 24th Int. Conf. Real-Time Netw. Syst. (RTNS), 2016, pp. 183–192.

[26] P. Pop, M. L. Raagaard, S. S. Craciunas, and W. Steiner, ‘‘Design opti-
misation of cyber-physical distributed systems using IEEE time-sensitive
networks,’’ IET Cyber-Phys. Syst., Theory Appl., vol. 1, no. 1, pp. 86–94,
Dec. 2016.

[27] F. Dürr and N. G. Nayak, ‘‘No-wait packet scheduling for IEEE time-
sensitive networks (TSN),’’ in Proc. 24th Int. Conf. Real-Time Netw. Syst.
(RTNS), May 2016, pp. 203–212.

[28] E. Schweissguth, P. Danielis, D. Timmermann, H. Parzyjegla, andG.Mühl,
‘‘ILP-based joint routing and scheduling for time-triggered networks,’’ in
Proc. 25th Int. Conf. Real-Time Netw. Syst., Oct. 2017, pp. 8–17.

[29] M. Pahlevan, N. Tabassam, and R. Obermaisser, ‘‘Heuristic list scheduler
for time triggered traffic in time sensitive networks,’’ ACM SIGBED Rev.,
vol. 16, no. 1, pp. 1–6, Feb. 2018.

[30] V. Gavriluţ, L. Zhao, M. L. Raagaard, and P. Pop, ‘‘AVB-aware routing
and scheduling of time-triggered traffic for TSN,’’ IEEE Access, vol. 6,
pp. 75229–75243, 2018.

[31] J. Krolikowski, S. Martin, P. Medagliani, J. Leguay, S. Chen,
X. Chang, and X. Geng, ‘‘Joint routing and scheduling for large-
scale deterministic IP networks,’’ Comput. Commun., vol. 165, pp. 33–42,
Jan. 2021.

[32] J. Yan, W. Quan, X. Jiang, and Z. Sun, ‘‘Injection time planning: Making
CQF practical in time-sensitive networking,’’ in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Jul. 2020, pp. 616–625.

[33] L. Zhao, P. Pop, and S. Steinhorst, ‘‘Quantitative performance
comparison of various traffic shapers in time-sensitive networking,’’
IEEE Trans. Netw. Serv. Manag., early access, Jun. 3, 2022, doi:
10.1109/TNSM.2022.3180160.

[34] (2020). IEEE Standard for Local and Metropolitan Area Networks—
Bridges and Bridged Networks—Amendment 34: Asynchronous Traf-
fic Shaping. [Online]. Available: https://standards.ieee.org/ieee/802.1Qcr/
7420/

[35] E. K. Burke and G. Kendall, Search Methodologies. New York, NY,
USA: Springer, 2005.

[36] K. Apt, Principles of Constraint Programming. Cambridge, U.K.:
Cambridge Univ. Press, 2003.

[37] J. Y. Yen, ‘‘An algorithm for finding shortest routes from all source nodes
to a given destination in general networks,’’ Quart. Appl. Math., vol. 27,
no. 4, pp. 526–530, 1970.

[38] H. Mausser, ‘‘Normalization and other topics in multi-objective optimiza-
tion,’’ in Proc. Fields-MITACS Ind. Problems Workshop, Sep. 2006, p. 89.

[39] Google. Accessed: Mar. 22, 2022. [Online]. Available: https://
developers.google.com/optimization

[40] F. Hutter, H. H. Hoos, L. B. Kevin, and T. Stützle, ‘‘ParamILS: An auto-
matic algorithm configuration framework,’’ J. Artif. Intell. Res., vol. 36,
no. 1, pp. 267–306, May 2009.

[41] M. Barzegaran and P. Pop, ‘‘Communication scheduling for control per-
formance in TSN-based fog computing platforms,’’ IEEE Access, vol. 9,
pp. 50782–50797, 2021.

109080 VOLUME 10, 2022

http://dx.doi.org/10.1109/TNSM.2022.3180160

K. Alexandris et al.: Configuration and Evaluation of Multi-CQF Shapers in IEEE 802.1 TSN

KONSTANTINOS ALEXANDRIS received the
Diploma and M.Sc. degrees (Hons.) in elec-
tronic and computer engineering from the Tech-
nical University of Crete (TUC), Greece, in
2012 and 2014, respectively, and the Ph.D. degree
in communications and electronics from Télé-
com Paris, France, in 2018. In parallel with his
M.Sc. degree, he joined the Telecommunications
Circuits Laboratory (TCL), EPFL, Switzerland.
From 2014 to 2019, he worked as a Research

and Development Engineer from EURECOM in the field of 5G networks.
Since 2019, he has been a Senior Research and Development Engineer
at Huawei Technologies Duesseldorf GmbH, where he has been working
on projects for time-sensitive/deterministic networking and data centers.
Specifically, he was involved in several H2020/FP7 collaborative research
projects. He contributed to the development of the Mosaic5G initiative and
the OpenAirInterface 5G platform features. His research interests include
Industry 4.0, Future Internet, and 5G networks. He was a recipient of the
2012–2013 IEEE VTS/AESS Joint Greece Chapter Best Diploma Thesis
Award.

PAUL POP (Member, IEEE) received the Ph.D.
degree in computer systems from Linköping Uni-
versity, in 2003. He is currently a Professor of
cyber-physical systems with the DTU Compute,
Technical University of Denmark (DTU). He is
also a Coordinator of the Nordic University Hub
on Industrial the Internet of Things. He has coor-
dinated the European Training Network on fog
computing for robotics and industrial automation.
His research interest includes developing methods

and tools for the analysis and optimization of networked dependable cyber-
physical systems. In this area, he has published over 150 peer-reviewed
papers, three books, and seven book chapters. He has served as a Technical
Program Committee Member for several conferences, such as DATE and
ESWEEK. He received the Best Paper Award from DATE 2005, RTIS 2007,
CASES 2009,MECO2013, DSD2016, and ETFA2020, and theOutstanding
Paper Award from RTNS 2022.

TONGTONG WANG received the B.S. degree
in computer science from the Beijing University
of Posts and Telecommunications and the M.S.
degree in electrical engineering from Linköping
University. She is currently an IP Network Expert
at the Wired Network Research Department,
Huawei Technologies Company Ltd. After seven
years in IEEE 802 Ethernet Standard Research
and Development, her current research interest
includes network latency guarantee and optimiza-

tion. She is an Editor of IEEE P802.1DF TSN profile for service provider
networks.

VOLUME 10, 2022 109081

