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Abstract—Quantum computing has the potential to solve
many computational problems exponentially faster than classical
computers. The high shares of renewables and the wide deploy-
ment of converter-interfaced resources require new tools that
shall drastically accelerate power system computations, including
optimization and security assessment, which can benefit from
quantum computing. To the best of our knowledge, this is the
first paper that goes beyond quantum computing simulations and
performs an experimental application of Quantum Computing
for power systems on a real quantum computer. We use five dif-
ferent quantum computers, apply the HHL quantum algorithm,
and examine the impact of current noisy quantum hardware on
the accuracy and speed of an AC power flow algorithm. We
perform the same studies on a 3-bus and a 5-bus system with
real quantum computers to identify challenges and open research
questions related with the scalability of these algorithms.

Index Terms—power grids, power system security, quantum
computing, quantum power flow

I. INTRODUCTION

The increasing penetration of distributed renewable energy
sources (RES) brings a number of challenges when it comes
to ensuring a secure operation of power systems. With tradi-
tional synchronous generation being replaced by thousands of
converter-interfaced generation sources, the complexity of the
power system greatly increases, its natural inertia decreases,
and the dynamics of the system change. This means tradi-
tional offline methods for security assessment are expected
to become insufficient as more detailed, and computationally
demanding, simulations are required to capture the faster
dynamics of RES. Additionally, the operating state of the
system becomes subject to the prevailing weather conditions,
making it difficult to predict hours ahead of time. The un-
certainties introduced by RES can lead to exponentially more
contingency scenarios needed to be considered to ensure N-
x security. These challenges drive the need for new real-time
and offline tools for security analysis. Assessing large complex
systems for millions of contingency scenarios can be very
computationally demanding and is currently one of the major
challenges that utilities are expected to face in the future.

Over the last few years there has been a great leap in the area
of Quantum Computing (QC), bringing us into the so called
Noisy Intermediate-Scale Quantum (NISQ) era [1] of quantum
computing, where real quantum computers are already contain-
ing over 100 qubits. According to roadmaps of vendors such as

IBM [2], there is ambitious development in building scalable
quantum computers, with the aim of creating large-scale and
noise-free devices in the near future. However, the current
technology readiness level (TRL) of the NISQ-era quantum
computers is still rather low and only very basic applications
can be implemented. The use of quantum computations for
power system applications is very new. Quantum power flow
algorithms have been proposed to solve DC power flow [3] and
AC power flow [4], and were tested with simulated quantum
computers. The use of QC for contingency assessment was
introduced in [5] and for performing EMT simulations in [6].
A common feature of these papers is the use of the HHL
quantum algorithm for solving linear equations [7], as this
promises exponential speedup compared to classical methods.

To the best of our knowledge, this paper presents the
first implementation of an AC power flow on real Quantum
Computers. The intention with this paper is to explore the
current capabilities of QC for power flow studies, which
challenges we need to address, and to investigate the foreseen
future capabilities and practical implications of QC for power
systems. We test our power flow algorithm for a simple 3
bus system on four of IBM’s publicly available quantum
computers to investigate the impact of noisy hardware. For a
5 bus system we use one of IBM’s larger quantum computers
to investigate how the method scales with increasing system
size. This is important for future implementations of full-
scale power systems since the benefits of the computational
power of quantum computing will be more apparent for large
power systems. Larger systems exceed the current hardware
capabilities of real quantum computers and are not tested in
this paper.

This paper is organized as follows. Section II provides
an overview of quantum computing and its potential for
power systems. Section III describes the quantum power flow
method and its implementation. In Section IV, we describe
the simulation setup and the quantum hardware requirements.
Section V provides the results of the power flow on both real
and simulated quantum computers. In Section VI, we discuss
potential issues with the scalability of the method. Section VII
concludes.
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II. THE POTENTIAL OF QUANTUM COMPUTING FOR POWER
SYSTEMS

The way quantum computers function is fundamentally
different from classical computers. Instead of using classical
bits, which can only be in the states 0 and 1, quantum
computers use quantum bits (qubits) which, in addition to
being in states 0 and 1, can form a linear combination of
states, i.e. have a certain probability to be measured either
as 0 or 1. This state is referred to as superposition. While
in superposition, they can also be said to be in all states
simultaneously, i.e. both 0 and 1 or somewhere in-between,
and only when measured do they collapse to 1 or 0 with some
probability. An important feature of this is that the information
contained in a quantum register grows exponentially for every
qubit which is added [8]. That is, one could say that as a rule
of thumb, instead of requiring 2n bits for a computing process
with classical computing, quantum computing requires only n
qubits. For example, if a process would require 1024 bits in a
classical computer, a quantum computer would aprroximately
only need 10 qubits. Please bear in mind that currently publicly
available quantum computers do not exceed 7 qubits. Currently
existing Quantum Computers (but not publicly available), on
the other hand, go up to 100 qubits. That is a 30 orders of
magnitude more powerful computer, while we have increased
the number of qubits by only 1 order of magnitude.

With qubits being able to be in superposition, i.e. 0 or 1
or somewhere in-between, quantum states can also be used
to evaluate functions for multiple values simultaneously. In a
power systems context, such a feature can become extremely
valuable for power flow analysis of multiple scenarios. Instead
of sequentially solving multiple power flows to assess a large
number of generation and demand scenarios, theory suggests
that future QC infrastructure can deliver the solution for
many scenarios simultaneously, drastically accelerating e.g.
the security assessment. This, and other special features of
QC, allows them to solve certain problems exponentially faster
than classical computers. Theoretically, Quantum Computers
can solve all the same problems as classical computers; not
all problems, though, allow for exponential speedups and in
some cases QC are even slower than classical computers.
QC is therefore seen as a supplement to classical computing
for solving specific problems in a hybrid quantum-classical
computation.

In the next sections, we present the formulation of the
quantum power flow algorithm and the results we obtain after
testing it on real quantum computers. Considering that the
quantum computers that were accessible at the time of this
paper only have 7 qubits, the application of our quantum power
flow algorithm on real quantum computers is limited to a 5-bus
system.

III. QUANTUM POWER FLOW METHOD

The implementation of the quantum power flow method we
follow in this paper is based on the Fast Decoupled Load
Flow (FDLF) method, which is a commonly used adaptation

of the Newton Raphson Power Flow (NRPF). It exploits inter-
dependence between P −θ and Q−|V | to create two constant
Jacobian sub-matrices B

′
and B

′′
. This replaces one of the

most computationally heavy parts of NRPF i.e. updating the
Jacobian matrix in every iteration. FDLF converges to the
same solution as NRPF since the mismatch functions are the
same, but it usually requires more iterations than NRPF [9].
On the other hand, each iteration of FDLF is much faster,
meaning that the overall computation time of FDLF can often
be quite faster, especially for large systems. In each iteration,
we solve equations (1)-(3) for ∆θ and ∆Vm until the norm of
∆P and ∆Q is less than the chosen tolerance ξ.

∆S = (Sbus − V ◦ (Y bus · V ))⊘ Vm (1)

∆P = ℜ(∆Spv+pq) = B
′
∆θ (2)

∆Q = ℑ(∆Spq) = B
′′
∆Vm (3)

In (1)-(3), V = Vm∠θ is a vector collecting the voltage
phasors for all buses, ◦ and ⊘ denote the element-wise
product and division respectively, and pv and pq are indices
corresponding to the set of PV and PQ buses respectively. The
structure of FDLF makes it very suitable for hybrid classical-
quantum computing since we can easily replace the numerical
algorithm solving equations (2) and (3) with a method which is
capable of running on a quantum computer. HHL is probably
the most popular quantum algorithm for solving a set of linear
equations at the moment, with a runtime of O(log(N) s

2κ2

ϵ )
[7]; here, N is the number of equations, s is the sparsity and
κ the condition number of the system matrix, and ϵ is the
solution accuracy. In theory, HHL can achieve an exponential
speedup over the fastest classical algorithm, the conjugate
gradient method, which has a runtime of O(Nsκlog( 1ϵ )).

A system of linear equations is usually given in the form:

Ax = b, (4)

where, given a known matrix A and vector b, we solve for x.
For quantum systems we use the Dirac (or bra-ket) notation,
where we denote a vector with a ket which has the form |v⟩
and represents the state of a quantum system. We also denote
a bra with the form ⟨v|, where bra is the conjugate transpose
of ket. Quantum vectors are often very sparse, i.e. with most
amplitudes equal to zero, and this notation makes it much
simpler to represent values of interest. A single qubit system
can be described as a combination of the two states |0⟩ and
|1⟩:

|q⟩ = α |0⟩+ β |1⟩ , (5)

where the probability of it being measured as 0 is |α|2 and the
probability of it being measured as 1 is |β|2. The combined
probability amplitudes must satisfy that |α|2 + |β|2 = 1. As
also mentioned earlier, this is one of the key strengths of
quantum computing: as qubits can be in both states at the
same time, they can represent multiple variables. For a single
qubit, for example, we can associate one variable with state 0
and one variable with state 1. The probability of the qubit to be
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measured as 1 corresponds to the amplitude of that variable.
Let us assume we encode ∆θ1 to the qubit state |0⟩ and ∆θ2
to the qubit state |1⟩. The value of ∆θ1 is then equal to C ·α,
where C is a scaling factor. As we will see in Section V and
(17), the scaling factor C depends on how we have normalized
our input to be between 0 and 1.

Going back to the solution of a linear system with the HHL
algorithm, we rescale the system in (4) by normalizing x and
b, and we can then map them to the quantum states |x⟩ and
|b⟩.

A |x⟩ = |b⟩ (6)

Portraying equation (2) in this form we get:

B
′
|∆θ⟩ = |∆P ⟩ (7)

If we express the right hand side in the eigenbasis of the
B

′
matrix, we can write it as:

|∆P ⟩ =
N−1∑
j=0

∆Pj |u
′

j⟩ (8)

The HHL method requires matrix A to be Hermitian, that is
equal to its conjugate transpose. For non-hermitian matrices,
a hermitian matrix can be constructed from A such that:[

0 A
A† 0

] [
0
x

]
=

[
b
0

]
(9)

However, B
′

and B
′′

of FDLF happen to be hermitian.
And since the matrices are Hermitian, they have a spectral
decomposition:

B
′
=

N−1∑
j=0

λ
′

j |u
′

j⟩ ⟨u
′

j | (10)

B
′−1 =

N−1∑
j=0

λ
′−1
j |u

′

j⟩ ⟨u
′

j | (11)

Where λ
′

j and u
′

j are the jth eigenvalue and eigenvector of
the B

′
matrix. Putting (7), (8) and (11) together we then get:

|∆θ⟩ = B
′−1 |∆P ⟩ =

N−1∑
j=0

λ
′−1
j ∆Pj |u

′

j⟩ ⟨u
′

j | |u
′

j⟩ (12)

As the scalar product ⟨u′

j | |u
′

j⟩ = 1, (12) simplifies to:

|∆θ⟩ =
N−1∑
j=0

λ
′−1
j ∆Pj |u

′

j⟩ (13)

And following the same procedure for ∆Vm and B
′′

we get:

|∆Vm⟩ = B
′′−1 |∆Q⟩ =

N−1∑
j=0

λ
′′−1
j ∆Qj |u

′′

j ⟩ (14)

To solve (13) a quantum circuit is implemented as shown in
Fig. 1. This circuit is for solving a 2x2 system of equations,

i.e., N = 2. It consists of three registers, nb, nl, na, which are
all initialized as |0⟩. nb is the data register where we load the
data vector b (here b ≡ ∆P onto log2(N) = 1 qubits):

|0⟩ 7→ |∆P ⟩ (15)

Next, we apply quantum phase estimation to estimate the
eigenvalues of the B matrix. The nl register consists of 3
qubits where we store the approximation of the eigenvalues
|λ̃j⟩. The more qubits used in nl, the more accurately we can
estimate the eigenvalues of B. The last register, na, consists
of a single auxiliary qubit. The output auxiliary qubit indicates
if we can obtain a binary estimation of the eigenvalues and
the data vector, i.e. if we can trust their numerical result when
we measure them, or not. To get the output of the auxiliary
qubit, we perform a rotation conditioned on |λ̃j⟩, and finally
an inverse phase estimation. When we measure the output of
the auxiliary qubit as 1, then the registers nb, nl are in the
post measurement state; this means that the phase estimation
outputs a binary estimation of the eigenvalues of the B matrix,
and after an inverse phase estimation, the nb register contains
the solution |∆θ⟩. If the auxiliary qubit is 0, then the states are
considered to contain no useful information and are, therefore,
discarded. For more information about the steps of the HHL
algorithm, the interested reader can refer to [7].

Fig. 1: Quantum HHL circuit used for solving a Quantum
Power Flow (QPF) on a 3-bus system. The blocks shown in the
circuit are: Preparation of the data vector (Load b), Quantum
Phase Estimation (QPE), conditioned rotation (1/x) and inverse
QPE (QPE dg). Finally, each qubit is measured and the result
is stored in a classical 5 bit register where “meas 0” is the
least significant bit and “meas 4” is the most significant bit.

The implemented Quantum Power Flow (QPF) algorithm is
shown in Algorithm 1.

Algorithm 1 Quantum Power Flow

Input Ybus, B
′
, B

′′
, V0, Sbus

Update ∆P , ∆Q
while ∥∆P∥ ≥ ξ AND ∥∆Q∥ ≥ ξ do

∆θ = HHL(B
′
,∆P )

∆Vm = HHL(B
′′
,∆Q)

Update Vm∠θ
Update ∆P , ∆Q

end while
return Vm∠θ
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Fig. 2: Systems for testing Quantum Power Flow (QPF).

IV. SIMULATIONS

The capabilities of both real and simulated Quantum Com-
puters are still limited. Some simplifications must therefore
be made to run the power flow algorithm on a real quantum
computer. If each of the eigenvalues of the system matrix
cannot be exactly represented by the same number of classical
bits as there are qubits in the nl register, the quantum phase
estimation will only give an approximation of the eigenvalues
λj of the B′ and B′′ matrices; this introduces an error in the
results. In order to investigate the performance of real quantum
computers, at this stage, we select the parameters of the test
systems so that each of the eigenvalues of the B matrices can
be closely represented by 3 bits. This will correspond to the
need of nl = 3 qubits in our quantum circuit. As our focus is
to test a simple system on a real QC, for the purpose of the
investigations in this paper we also consider only slack and
PQ buses, and no phase-shifting transformers. This means that
B

′
= B

′′
, and we can use the same HHL circuit for both (13)

and (14) only with a different vector b loaded onto the nb
register (i.e., ∆θ or ∆V ). The two power systems considered
for this paper are shown in Fig. 2 and the parameters of the
3-bus system are shown in Table I.

TABLE I: Three bus system parameters

Bus Type PMW QMVAr Vpu θ◦

1 Slack 5 6.9 1.03 0
2 PQ 10 0 1.012 2.109
3 PQ -15 -5 0.985 -4.996

Line From To Rpu Xpu

1 1 2 0 1j
2 1 3 0 1j
3 2 3 0 2j

The parameters in Table I give the B matrices:

B
′
= B

′′
=

[
−1.5 0.5
0.5 −1.5

]
(16)

The eigenvalues of matrices B
′

and B
′′

are {−1,−2}.

A. Quantum hardware requirements

The number of qubits (circuit width) required for the
HHL circuit depends on the required accuracy of the phase
estimation and the number of variables in the data vector
(plus the auxiliary qubit that we always need to indicate if
we have obtained a binary estimation or not). For example,
the 3-bus system has 2 variables for ∆P which are encoded

in 1 qubit (#qubits = log2N , where N is the number of
variables, as mentioned in Section II) and we use a 2-bit
estimation of the eigenvalues of B

′
. Another qubit is needed

for the phase estimation in case the system matrix has negative
eigenvalues. Including the auxiliary qubit, this gives a total
of 5 qubits required for the 3-bus system. The qubit for
negative eigenvalues could be eliminated if we can assume all
eigenvalues have the same sign. This is, however, not always
the case for larger power systems which could for example
include capacitive branches.

We shall note here that the true benefits of Quantum
Computing emerge in large systems, since the number of
required qubits have a sublinear increase with larger system
sizes (logarithmic to be precise). This means that we can
represent very large systems with only a few qubits. For
example, applying the log2(N) rule for the required number
of qubits, we can represent the data vector of a 500’000-bus
system with only 20 qubits (220 = 1’048’576 ≈ 2× 500’000
values).

Currently, however, the major issue with scalability is not as
much the circuit width, i.e. the number of qubits, but the circuit
depth; that is, the number of gates in the quantum circuit,
as shown in Fig. 1 . The current general implementation of
the HHL algorithm uses methods which scale exponentially
with the number of qubits, and, so far, no algorithm exists
for preparing the HHL circuit with polynomially increasing
resources for an arbitrary matrix. Table II shows how the
circuit sizes grow with the matrix size.

TABLE II: Quantum Circuit Sizes

3 bus 5 bus 9 bus 17 bus
B

′
matrix size 2x2 4x4 8x8 16x16

Circuit Width 5 7 9 11
Circuit Depth 336 3528 76876 802737
CNOT Gates 108 1181 28956 298594

V. SIMULATION RESULTS

A. 3-bus system on real Quantum Computers
The power flow application is implemented with IBM’s

qiskit (0.34.1). The 3-bus system is tested on 4 of IBM’s
open access quantum computers [10] listed in Table III:
ibmq lima, ibmq belem, ibmq quito, and ibmq bogota. The
quantum computers listed in Table III have different sizes,
configurations and error rates. The Quantum Volume (QV)
is a measure of the device’s performance regardless of the
underlying technology or the number of qubits.

TABLE III: Quantum Computers used for testing Quantum
Power Flow (values taken on 23.02.2022)

QC Qubits QV avg. CNOT error
ibmq lima 5 8 9.996e-3
ibmq belem 5 16 1.363e-2
ibmq quito 5 16 1.135e-2
ibmq bogota 5 32 1.206e-2
ibm perth 7 32 1.006e-2

The results of the 3-bus power flow on ibmq quito are
shown for each iteration of the power flow calculation in
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Table IV. The rest of the quantum computers we used,
i.e. ibmq lima, ibmq belem, and ibmq bogota give similar
results. The Quantum Power Flow converges to the same
solution as the classical FDLF but, due to the noisy hardware
available at the moment, it requires a much larger number
of iterations. With the tolerance set to 10−5, the classical
method converges in 5 iterations while the Quantum Power
Flow (QPF) takes around 32-38 iterations.

The available quantum software (qiskit 0.34.1) does not
allow us to implement if-loops, for-loops, and while-loops
within a real quantum algorithm at the moment (March 2022).
As a result, implementing a numerical solution algorithm
requires us to extract the value of the quantum data vector in
every iteration, perform the logical operations (e.g. is ∆P ≥ ξ,
see Algorithm 1) and plug ∆P back in the quantum circuit
again for the next iteration. Considering that the data vector
is in a quantum state, we need to ”probe” ∆P multiple
times to measure the probability distribution of the solution.
This requires time of at least O(N) (see also the Discussion
in Section VI). Obviously, this slows down our quantum
algorithm considerably at the moment. The next qiskit version,
which is expected around August 2022, is expected to allow
for extended functionality; this will unleash a wide range of
opportunities, including if-clauses, for-loops, and while-loops
inside the quantum algorithm which could eliminate the need
for measuring the data vector in each iteration of the QPF.

Going back to the currently possible implementation of our
QPF, where the data vector ∆P needs to be measured in every
iteration, Fig. 3 shows the measurement from the first iteration
with and without noise. The derivation of (13) assumes perfect
phase estimation. Based on the HHL circuit, that means that
qubits in the nl register will be in the state |0⟩ after the
inverse phase estimation, and the result state is conditioned
on seeing the auxiliary qubit in register na, as 1. In that case,
the normalized values of ∆θ can be read from the nb register,
i.e. the states “10000” and “10001” in the histogram in Fig. 3.

The quantum circuit in Fig. 1 is executed 1024 times to
retrieve a probability distribution of the quantum states as
shown in Fig. 3. The probabilities shown in the histogram sum
up to 1 where the amplitudes of the quantum state coefficients
satisfy |a|2+|b|2+... = 1. To get an estimate of the amplitudes
of ∆θ, as we also explained in Section III, we must therefore
take the square root of the probability and scale it with the
norm of the input ∆P .

∆θ ≈ ∥∆P∥ ∗
√
probability (17)

For the first iteration of the noise free simulation, this gives:[
∆θ2
∆θ3

]
≈ 0.1803 ∗

[√
0.045√
0.229

]
≈

[
0.03824
0.08628

]
(18)

Where ∥∆P∥ = 0.1803. We can see that the result of the
noise-free quantum simulation is very close to the result for
the first iteration of the classical computing algorithm, which
is ∆θ = [0.0375, 0.0875] rad. On the contrary, for noisy
quantum computations, which are based on real quantum

(a) Without noise

(b) With noise

Fig. 3: Histogram showing measurements of |∆θ⟩ in the first
iteration. The values of ∆θ are estimated from the probability
distribution of the data read in register nb (see Fig. 1), when
the auxiliary bit na = 1 i.e. from the states “10000” and
“10001”

computers, the output is ∆θ = [0.0526, 0.0748] rad after
the first iteration. This is the reason why noise-free quantum
computing converges almost equally fast as classical com-
puting (same number of iterations, see Fig. 4), while the
algorithms implemented on actual quantum computers require
at the moment a significantly larger number of iterations.

A comparison between the convergence of the classical
method, the 4 physical QC devices and a simulated noise-free
QC is shown in Fig. 4. It shows how a simulated noise-free
QC gives close to identical results with a classical computer,
while the real noisy QCs converge much slower. As the
reader observes, there is no notable difference between the
implementations on the 4 real QCs.

B. 5-bus system

We also test our QPF on a 5-bus system. Our goal is to
investigate how current noisy hardware impact the Quantum
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TABLE IV: Iterations of Classical FDLF vs QPF on
ibmq quito

FDLF
iteration V2 θ2 V3 θ3

1 1.01750000 2.14859173 0.99250000 -5.01338071
2 1.01198104 2.08682333 0.98513520 -4.94593291
3 1.01210909 2.10823443 0.98510531 -4.99645096
4 1.01200181 2.10832465 0.98496362 -4.99531212
5 1.01200181 2.10872362 0.98496362 -4.99629051

QPF
iteration V2 θ2 V3 θ3

1 1.00602829 2.05419579 0.99405120 -1.77164967
2 1.00937372 3.12147980 0.99099606 -2.73581045
3 1.01129425 2.50579482 0.04373437 -3.30344432
...

...
...

...
34 1.01200263 2.10882674 0.98496970 -4.99558292
35 1.01200492 2.10901696 0.98496697 -4.99577486

Fig. 4: Power flow convergence of the 3-bus system

Power Flow solution as we scale to larger systems. As shown
in Table II, a QPF for a 5-bus system requires 7 qubits and
a much larger number of gates. We therefore use the 7 qubit
machine ”ibm perth”, shown in Table III, to test the 5 bus
system.

Similar to the 3-bus system, the line parameters of the 5
bus system are chosen so the eigenvalues of the B matrices
can be closely represented by 3 bits, as our primary focus
is to examine the impact of the noisy quantum hardware.
The B matrices are presented in (19). Fully acknowledging
though that the characteristics of real power systems can vary
significantly, in our experiments we also perturb the system
characteristics (and the B matrices shown in (19)) to explore
cases where B matrices result to eigenvalues that cannot be
accurately represented by 3 bits (see Fig. 5).

B
′
= B

′′
=


−4 0.03 0 0
0.03 −3 0.02 0
0 0.02 −1.55 0.5
0 0 0.5 −1.45

 (19)

The eigenvalues of B
′

and B
′′

in this case are
{−1,−2,−3,−4}.

Figure 5 shows the iterations of the 5-bus power flow. As
with the 3-bus system, it converges to the correct solution and
the noise-free simulation is very close to the classical one.
When we alter the line parameters, so that the eigenvalues of
the B matrices cannot be represented exactly by 3 bits, we
observe that this introduces a small delay in the convergence
(red line in Fig. 5) and if the eigenvalues vary greatly then
the QPF will not converge at all without using more qubits.
The major difference in convergence speed emerges when we
add the noise characteristics in the computation (green line in
Fig. 5).

As before, the presence of noise in the real hardware greatly
impacts the number of iterations required. The larger number
of gates required for the circuit compared to the 3-bus system
also means greater impact from the noise, as each gate adds
noise to the result. The 5-bus system therefore requires much
larger number of iterations to converge on real hardware. Our
simulations show that unless we develop low-noise quantum
hardware, it would be challenging to perform computations
for larger systems.

Fig. 5: Power flow convergence of the 5-bus system
Based on the findings from our experiments, in the next

section, we discuss opportunities and challenges arising from
the development of quantum algorithms for power system
applications.

VI. DISCUSSION

The result given by the HHL algorithm is encoded as a
quantum state. If we want to extract the full state vector from
the quantum state we need time of at least O(N). Therefore,
if we do this in every iteration of our power flow we lose
any benefit of the quantum speedup [11]. For an HHL-based
AC QPF to achieve quantum advantage, the whole iteration
process would need to be performed by the QC, so that
we only extract the final result. To do that, we need some
form of quantum memory in order to be able to perform
logical operations such as if-then-else clauses, for-loops and
while-loops. The quantum memory will allow us to store
the quantum state between iterations so we can update our
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power mismatches and perform the logical operations (e.g. is
∆P ≥ ξ, see Algorithm 1) inside the QC algorithm, without
requiring us to extract e.g. the ∆P in every iteration, check if
it is greater than the defined tolerance ξ and plug it back to the
QC algorithm. Note here that every time we have to extract a
quantum state, e.g. determine the value of ∆P outside the QC
algorithm, we need to ”probe” ∆P multiple times to measure
the probability distribution of the solution. This requires time
of at least O(N), which slows down our quantum algorithm
considerably at the moment. The functionality that will allow
the logical operations inside the QC algorithms is not yet
available in current real QC machines. The next release of
qiskit, probably in August 2022, is expected to include some
form of looping capabilities which will greatly improve what
we are capable of doing with our quantum algorithms.

Even when we have some form of quantum memory, the
process of extracting the final results can still reduce the
speedup of QC, as we need to probe the output register several
times to extract accurately the probability distributions (see
e.g. Fig. 3 for an example of the extracted histogram for the
∆P output of the 3-bus system). Still, however, it is possible
to obtain some limited statistical information, such as the
presence of very high values, from the HHL algorithm without
extracting the full solution vector, i.e. without requiring us
to probe the output register too many times. This could be
useful for contingency assessment where we have a large
number of scenarios and only want to identify the ones that are
unstable or overloaded. More research is necessary to identify
the opportunities of such approaches.

A further discussion point that is often raised relates to the
number of qubits required for larger systems. Indeed, a larger
number of qubits will be required to implement a more general
QPF method capable of accurately representing both real and
complex eigenvalues of the system matrices of real power
systems. However, the number of required quantum states
scale only logaritmically with the number of variables, i.e.
#qubits = log2(N), where N is the number of variables. For
example, as mentioned in Section IV, applying the log2(N)
rule for the required number of qubits, we can represent the
data vector of a 500’000-bus system with only 20 qubits
(220 = 1’048’576 ≈ 2×500’000 values). Same is the case for
the accuracy of the eigenvalues of the system matrices. Every
qubit we add increases the accuracy of the eigenvalues by one
order of magnitude. With the rapid development in quantum
hardware, we expect that this will not be the limiting factor
for the QPF.

For the HHL algorithm to be efficient, the B matrix should
be well-conditioned. As B is Hermitian, the condition number
is given by the ratio between the largest and smallest eigen-
value κ = |λmax|

|λmin| . If κ grows significantly with the size of B,
then the exponential speedup of HHL is lost [11]. As shown
in Fig. 6, the condition number seems to grow exponentially
for larger test cases. This means that there is a need to design
a preprocessing procedure for the system matrices to reduce
their condition number while maintaining their characteristics,
before plugging them in a Quantum Computer, if we wish to

maintain the quantum advantage. Further research is required
on how to achieve that in order to enable efficient quantum
computations.

Fig. 6: Condition number κ of B
′

for 6 IEEE test systems (3
- 300 buses) and the 2736-bus Polish system.

The quantum power flow converges to the correct solution
even with current noisy hardware. However, the high number
of iterations required could make it challenging to achieve
quantum advantage while quantum computers have a high
level of noise. We expect that applications of quantum com-
puting will become attractive when the noise levels decrease.
A growing number of scientists and engineers are currently
working on reducing the noise level, as this will enable a
wide range of new applications. This is expected to happen
in the following years. Meanwhile, power system researchers
can focus on inventing the methods that can adapt existing
algorithms and processes to take advantage of the emerging
quantum computing capabilities.

The implementation of QPF, as presented in this paper, aims
to adapt the classical FDLF method to run on a quantum
computer. As we showed, there is a number of challenges with
current available hardware and the lack of quantum memory.
However, since quantum computers are fundamentally differ-
ent from classical computers, future implementations of QPF
might even take a different approach in order to better utilize
the unique capabilities of QC of evaluating multiple values
simultaneously and possibly avoid the iterative process alto-
gether. We identify here two key opportunities. First, the abil-
ity to drastically accelerate approaches that require some form
of probability distribution, e.g. Monte-Carlo methods. The fact
that quantum states can encode a probability distribution could
for example significantly accelerate the computation of the
mean and value-at-risk [12]. This can help accelerate, for ex-
ample, N-1 computations and help assess whether a probability
distribution of generation profiles (due to e.g. uncertain wind
power and solar PV infeed) leads to N-1 violations. We plan
to investigate this in our future work. Another opportunity
relates to the Power Flow computation itself, which belongs
to the wider family of numerical algorithms for non-linear
systems. Designing a method that can efficiently implement
the equivalent of a Newton-Raphson algorithm in a Quantum
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Computing environment can unleash opportunities not only
for power systems for a very large family of problems in
analysis, optimization, and control. Intensive research efforts
are required towards these directions to uncover the still
unexplored potential of quantum computing.

Last but not least, the new capabilities that QC brings
along require us to think differently. QC has been shown to
solve problems that have so far been impossible with classical
computing; such an example is the creation and observation of
a new phase of matter, popularly known as time crystals [13].
Pursuing an out-of-the-box thinking, where instead of replicat-
ing existing power system algorithms from the classical com-
puting domain to the QC domain, could uncover opportunities
for power system computation, assessment, and control that
have so far been impossible with classical computing. Here,
we need to stress that as QC researchers say, we talk about
“quantum advantage” and not about “quantum supremacy”.
Our goal is not to completely replace classical computing
and high performance computing (HPC). On the contrary,
our goal shall be to identify which are the processes that
Quantum Computing can do well and deliver new capabilities,
by complementing the strengths offered by HPC.

VII. CONCLUSION

In this paper, we have successfully implemented and tested,
for the first time to our knowledge, a quantum AC power
flow application on real Noisy-Intermediate-Scale-Quantum-
era (NISQ-era) quantum computers. We have shown that
current hardware is capable of performing a power flow for
small test systems, but scalability is currently a major issue.

There are still several challenges to be resolved before prac-
tical quantum power flow applications can achieve quantum
advantage. But this also creates room for major opportunities.
In our paper, we try to identify potential directions for future
research that can reap the benefits of quantum computing. With
further development and increasing capabilities of quantum
computers, quantum applications for power systems could
become extremely useful for future power system analysis,
control, and optimization. An increased focus by the power
system researchers on this area can lead to the development
of the necessary quantum computing methods that can exploit
these benefits as soon as they become available.
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