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Abstract
Spatially incoherent light sources, such as spontaneously emitting atoms, naively require Maxwell’s equations to be solved 
many times to obtain the total emission, which becomes computationally intractable in conjunction with large-scale optimi-
zation (inverse design). We present a trace formulation of incoherent emission that can be efficiently combined with inverse 
design, even for topology optimization over thousands of design degrees of freedom. Our formulation includes previous 
reciprocity-based approaches, limited to a few output channels (e.g., normal emission), as special cases but generalizes to a 
continuum of emission directions by exploiting the low-rank structure of emission problems. We present several examples 
of incoherent-emission topology optimization, including tailoring the geometry of fluorescent particles, a periodically emit-
ting surface, and a structure emitting into a waveguide mode, as well as discussing future applications to problems such as 
Raman sensing and cathodoluminescence.

Keywords  Incoherent emission · Topology optimization · Inverse design

1  Introduction

Incoherent emission (light emission from random cur-
rent sources) arises in many problems in optics: sponta-
neous emission (fluorescence) (Milonni 1976; Kim 1986; 
Polimeridis et al. 2015), thermal emission in both far (Carey 
et al. 2008) and near (Basu et al. 2009; Rodriguez et al. 
2013) fields, scintillation (Brenny et al. 2014; Roques-Car-
mes et al. 2021), Casimir and van der Waals forces (Gong 
et al. 2021), Raman scattering in fluid suspensions (Pilot 
et al. 2019), incoherent incident waves (Wolf 2007) (which 

can be transformed to random sources via the equivalence 
principle Harrington 2001), and even scattering from sur-
face roughness via a Born approximation (Johnson et al. 
2005). However, accurate modeling of such spatially random 
sources can pose severe computational challenges, because a 
direct approach would involve averaging the results of many 
simulations over an ensemble of sources (Rodriguez et al. 
2011; Luo et al. 2004; Bao et al. 2019); the statistics (corre-
lation functions) of the sources are known, but the difficulty 
is converting this into statistics (e.g., average power) of the 
resulting fields. In the cases of fluorescence (Polimeridis 
et al. 2015), near-field thermal radiation (Rodriguez et al. 
2013), and Casimir forces (Gong et al. 2021), for exam-
ple, tractable methods for arbitrary geometries were only 
obtained recently. This challenge is compounded when one 
wishes to perform inverse design (Molesky et al. 2018)—
large-scale optimization of emission over many geometric 
parameters, perhaps even over “every pixel” of a design 
region via topology optimization (TopOpt) (Jensen and Sig-
mund 2011)—because one must then repeat the computation 
10–1000 s of times as the design evolves, e.g., to maximize 
spontaneous emission (Rogobete et al. 2003; Liang and 
Johnson 2013; Wang et al. 2018; Yao et al. 2020) or Raman 
emission (Christiansen et al. 2020) from a single molecule, 
much less a distribution of sources.
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In this paper, we present a unified framework for inverse 
design of incoherent emission, combining a trace formu-
lation adapted from recent work (Rodriguez et al. 2013; 
Polimeridis et al. 2015; Reid et al. 2017) (Sect. 2) with a 
new algorithm to simultaneously optimize the geometry 
and evolve to an accurate estimate of the average emission/
trace (Sect. 2.5). We apply this framework to perform den-
sity-based TopOpt (Jensen and Sigmund 2011) on several 
example problems in two dimensions: fluorescence from an 
optimized nanoparticle (Sect. 4.1), enhanced emission from 
a corrugated surface analogous to a light-emitting diode 
(Erchak et al. 2001) (Sect. 4.2), and optimized emission into 
a waveguide (Sect. 4.3). In each case, the emission is not 
from a single molecule, but the average power produced by 
an ensemble of incoherent emitters at every point in some 
material. We show that this emission can be computed by a 
small number of “eigen-sources” of a Hermitian operator, 
which can be determined by a Rayleigh-quotient optimiza-
tion (Li 2015) that is combined with the inverse-design (geo-
metric) optimization. In the special case of emission into a 
small number K of channels, such as K far-field directions, 
K waveguide modes, or K points in space, we show that a 
simple algebraic manipulation transforms the problem into K 
simulations (Sect. 2.3)—this unifies and generalizes known 
results based on Kirchhoff’s law of thermal radiation (Reif 
1965; Greffet et al. 2018) or (more generally) reciprocity 
(Roques-Carmes et al. 2021; Janssen et al. 2010) for com-
puting emission into a single planewave direction—but our 
alternative approach (Sect. 2.5) yields a small number of 
solves even for K → ∞ . The other well-known special case 
is that of a single-emitter location with a random orienta-
tion, which reduces to the local density of states (LDOS) via 
three Maxwell solves (Milonni 1976; Oskooi and Johnson 
2013), and this appears as another low-rank special case in 
our formulation (Sect. 2.4). We believe that this computa-
tional framework will enable many future developments in 
the computational design of complex optical devices involv-
ing a wide variety of incoherent processes (Sect. 5).

Density-based TopOpt has attracted increasing interest 
over the last few decades because of its ability to reveal sur-
prising high-efficiency designs by optimizing over thousands 
or even millions of design degrees of freedom (Jensen and 
Sigmund 2011). It parameterizes a structure by an artificial 
“density” �(�) ∈ [0, 1] at every point (or every “pixel”) in a 
design region, which is typically passed through smooth-
ing and threshold steps to yield a physical “binary” design 
consisting of one of two materials at every point. We apply a 
damped-diffusion filter (Lazarov and Sigmund 2011), which 
regularizes the problem by setting a minimum length scale 
on the design. (Additional manufacturing constraints can be 
imposed by well-known techniques Hammond et al. 2021, 
but in the present work, we focus on the fundamental algo-
rithms and not on experimental realization.) Once a scalar 

objective function (to be optimized) is defined, such as the 
emitted power (e.g., the new formulation in this paper), 
its derivatives (sensitivities) with respect to all the design 
parameters can be efficiently computed with a single addi-
tional simulation via adjoint methods (Molesky et al. 2018; 
Tortorelli and Michaleris 1994). Given the objective func-
tion and its derivatives, a variety of large-scale optimization 
algorithms are available; we use the CCSA/MMA method 
(Svanberg 2002). We employ a recent free/open-source 
finite-element method (FEM) package, Gridap.jl (Badia 
and Verdugo 2020), in the Julia language (Bezanson et al. 
2017), which allows us to efficiently code highly customized 
FEM-based trace formulations in a high-level language, with 
the construction of the adjoint problem aided by automatic-
differentiation (AD) tools (Revels et al. 2016; Innes 2018).

2 � Trace formulation

In this section, we first review the formulation of the fre-
quency-domain Maxwell equations as a linear equation, 
discretized for numerical computation, with physical quan-
tities like power as quadratic forms. Then we show how the 
ensemble average of such an expression over a distribution 
of random current sources can be rewritten as a deterministic 
trace formula. Finally, we explain how such a trace formula 
can be evaluated efficiently in the context of photonics opti-
mization, both in the “easy” cases of coupling to a small 
number of output/input channels as well as in the more gen-
eral cases of a continuum of outputs.

2.1 � Wave sources and quadratic outputs

In the frequency domain, the linear Maxwell equations for 
the electric field � in response to a time-harmonic current 
source at a frequency � are (Jin 2014)

where �(�,�) is the relative electric permittivity, � is the 
relative magnetic permeability, ( � ≈ 1 for most materials 
at optical and infrared wavelengths, so we assume � = 1 
throughout this work), c is the speed of light in vacuum, 
and � = i�� is a current-source term.

Numerically, one discretizes the problem (e.g., using 
finite elements Jin 2014) into a linear equation:

where � is a matrix representing the Maxwell operator on 
the left hand of Eq. (1), � is a vector representing the dis-
cretized electric (and/or magnetic) field, and � is a vector 
representing the discretized source term. In the following, it 

(1)
[
∇ ×

1

�
∇ × −

(
�

c

)2

�

]
� = � ,

(2)�� = �,
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is algebraically convenient to work with such a discretized 
(finite-dimensional) form, to avoid cumbersome infinite-
dimensional linear algebra, but one could straightforwardly 
translate to the latter context as well (Joannopoulos et al. 
2008).

Most physical quantities P of interest in photonics—such 
as power (via the Poynting flux), energy density, and force 
(via the Maxwell stress tensor)—can be expressed as quad-
ratic functions of the electromagnetic fields � . Since these 
are real-valued quantities, they correspond in particular to 
Hermitian quadratic forms:

where † denotes the conjugate transpose (adjoint) and 
� = �† is a Hermitian matrix/operator. In this paper, we 
are mainly concerned with computing emitted power P, 
which is constrained by the outgoing boundary conditions 
to be non-negative, in which case � must furthermore be 
a positive semidefinite Hermitian matrix (i.e., non-negative 
eigenvalues) in the subspace of permissible � , a property 
that will be useful in Sect. 2.5.

2.2 � Trace formula for random sources

Now, consider the case where one has an ensemble of ran-
dom current sources � drawn from some statistical distribu-
tion with zero mean and a known correlation function (e.g., a 
known mean-square current at each point if they are spatially 
uncorrelated). In this case, we wish to compute the ensemble 
average, denoted by ⟨⋯⟩ , of our quadratic form Eq. (3):

where �−† denotes (�−1)† = (�†)−1 . Note that only � is ran-
dom in the right-hand expression.

Naively, this average could be computed by a brute-force 
method in which one explicitly solves the Maxwell equa-
tions ( � = �−1� ) for many possible sources � and then 
integrates over the distribution, perhaps by a Monte Carlo 
(random-sampling) method. That approach is possible and 
has been accomplished, e.g., for evaluating thermal radiation 
(Rodriguez et al. 2011; Luo et al. 2004), but is computa-
tionally expensive. Worse, such a direct approach quickly 
becomes prohibitive in the context of inverse design, where 
the averaging must be repeated for many geometries over the 
course of solving an optimization problem using an iterative 
algorithm.

Instead, we adapt “trace formula” techniques that have been 
developed for similar problems in thermal radiation (Rodri-
guez et al. 2013) and spontaneous emission (Polimeridis et al. 
2015), where one must compute the average effect of many 
random current sources distributed throughout a volume. The 
basic trick (as reviewed in yet another related setting in Reid 

(3)P = �
†
��,

(4)⟨P⟩ = �
�
†
��

�
=
�
�
†
�

−†
��

−1
�
�
,

et al. 2017) is to write the scalar ⟨P⟩ as a 1 × 1 “matrix” trace 
and then employ the cyclic-shift property (Lax 2013) to group 
the � terms together:

Here, the ensemble average is now confined to the ⟨��†⟩ 
term, which is just the correlation matrix � (Johnson and 
Wichern 2018) of the currents; such a matrix is positive 
semidefinite, so it can be factorized (Trefethen and Bau 
1997) (for convenience below) as follows:

for some known matrix � . Further information about con-
structing the matrix � or its factorization � is given in 
“Appendix 1.” (For the case of finite-element discretiza-
tions, we show that � is a sparse matrix that is straightfor-
ward to assemble and � is, for example, a sparse Cholesky 
factor Davis 2006.) Algebraically, expressing our results in 
terms of � below leads to convenient Hermitian matrices, 
but we show in “Appendix 2” that the final algorithms can 
easily employ � directly to avoid the computational cost of 
an explicit factorization. In the simple case where random 
currents are spatially uncorrelated, which holds for spon-
taneous emission and thermal emission in local materials 
(Landau et al. 1980), � and � are conceptually diagonal 
linear operators whose diagonal entries are the mean-square 
and root-mean-square currents, respectively, at each point 
in space. Whether this leads to a strictly diagonal matrix 
depend on the discretization scheme as explained in “Appen-
dix 1.” For instance, in the case of thermal and quantum 
fluctuations, the mean-square currents are given by the 
fluctuation–dissipation theorem (FDT; Landau et al. 1980), 
while for spontaneous emission, one can use the FDT with a 
“negative temperature” determined by the population inver-
sion (Pick et al. 2015; Patra 2015).

Inserting Eq. (6) into Eq. (5), we obtain our objective as the 
trace of a deterministic Hermitian matrix � (which is positive-
semidefinite if � is, as for power), given by

The challenge now is to efficiently compute such a matrix 
trace. Evaluating a trace is easy once the matrix elements 
are known—it is the sum of the diagonal entries—but the 
difficulty in Eq. (7) is the computation of �−1� . Recall that 
the N × N matrix � is a discretized Maxwell operator where 
N is the number of grid points (or basis functions), a huge 
matrix (especially in 3D). There are fast methods to solve for 
�−1(��) for any single right-hand side � , typically because 
the matrix � is sparse (mostly zero) as in finite-element 

(5)
⟨P⟩ = �

�
†
�

−†
��

−1
�
�
= tr

�
�
†
�

−†
��

−1
�
�
= tr

�
�

−†
��

−1⟨��†⟩�.

(6)⟨��†⟩ = � = ��
†,

(7)
⟨P⟩ = tr

�
(�−1

�)†�(�−1
�)

�
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

�

.
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methods (Jin 2014), but computing the whole matrix �−1� 
corresponds to solving N right-hand sides. Equivalently, 
computing explicit (dense) matrix inverses �−1 is typically 
prohibitively expensive (in both time and storage) for matri-
ces arising in large physical systems (Davis 2006). Fortu-
nately, a large number of “iterative” algorithms have been 
proposed for estimating matrix traces to any desired accu-
racy using relatively few matrix–vector products (Hutchin-
son 1989; Ubaru et al. 2017), and what remains is to find a 
method well-suited to inverse design.

2.3 � Trace computation: few output channels

In the important special cases where the desired output is 
the power in a small number (K) of discrete directions/chan-
nels/ports, or perhaps the intensity at a few points in space, 
we show in this section that the trace computation equation 
(7) simplifies to only K scattering problems. This fact is 
a generalization of earlier results commonly derived from 
electromagnetic reciprocity (Chew 2008), such as the well-
known Kirchhoff’s law of thermal radiation (reciprocity of 
emission and absorption) (Reif 1965) or analogous results 
for scintillation (Roques-Carmes et al. 2021). More gener-
ally, this simplification arises whenever the matrix � in Eq. 
(3) is low rank.

For example, suppose that the objective function is the 
electric-field intensity ‖�(�1)‖2 at a single point �1 in space, 
which is the case for “metalens” optimization problems in 
which one is maximizing intensity at a focal spot (Bayati 
et al. 2021). In matrix notation for a discretized problem, 
this quantity corresponds to

where �1 is the unit vector with a nonzero entry at the loca-
tion (“grid point”) corresponding to �1 . We then have a 
rank-1 (Lax 2013) matrix � = �1�

†

1 , and the trace equation 
(7) simplifies to ⟨P⟩ = �∗

1
�1 = ‖�1‖2, where

and �−†�1 corresponds to solving a (conjugate-) transposed 
Maxwell problem with a “source” �1 at the output loca-
tion, which is closely related to electromagnetic reciprocity 
(Chew 2008).

Another important example where � is low rank arises 
when the output P is the power in one (or more) orthogonal 
“wave channels” (Snyder and Love 1983), such as waveguide 
modes, planewave directions (e.g., diffraction orders), or 
spherical waves. In such cases, the power in a given channel 
can be computed by squaring a mode-overlap integral (e.g., 
a Fourier component for planewaves) of the form ‖�†

1
�‖2 

(8)
P = ‖�(�1)‖2 = ‖�†

1
�‖2 = �

†
�1�

†

1
⏟⏟⏟

�

�,

(9)�1 = �
†
�

−†
�1

(Snyder and Love 1983). Exactly as in the single-point case 
above, this corresponds to a rank-1 matrix O = �1�

†

1
 and one 

must solve only a single “reciprocal” scattering problem to 
obtain the trace, where the “source” term is the (conjugated) 
output mode �1 . This is precisely the situation in Kirchhoff’s 
law, where in order to compute the average thermal radia-
tion (emissivity) in a given direction, one solves a recipro-
cal problem for the absorption of an incident planewave in 
the opposite direction (the absorptivity) (Reif 1965; Greffet 
et al. 2018; Janssen et al. 2010). A similar technique was 
recently applied to optimize the average power emitted in 
the normal direction from a scintillation device (Roques-
Carmes et al. 2021).

More generally, such cases correspond to an output quad-
ratic form � that takes a low-rank (Lax 2013) form:

where K is the number of rank-1 terms �i�
†

i
 (e.g., output 

channels/ports, output points, or other “overlap integrals”). 
Substituting Eq. (10) into Eq. (7) and applying the cyclic-
trace identity, we obtain

where

corresponds to a single “reciprocal” Maxwell solve 
�−†�i = (A−T�∗

i
)∗ (a single scattering problem) for each i. 

(Electromagnetic reciprocity simply corresponds to the fact 
that AT = A for reciprocal materials Chew 2008.) Hence, the 
full trace—the average emission into K channels—can be 
computed with only K solves, and in many such cases K = 1.

2.4 � Trace computation: few input channels

One trivial special case in which the trace computation dras-
tically simplifies is that of only a few sources or a few input 
channels, most famously in the case of the local density of 
states (LDOS): emission by a molecule at a single location in 
space but with a random polarization (Milonni 1976; Oskooi 
and Johnson 2013). In the case of LDOS, this reduces the 
trace computation to three Maxwell solves, one per principal 
polarization direction, making the problem directly tractable 

(10)� =

K∑
i=1

�i�
†

i
,

(11)

⟨P⟩ =
K�
i=1

tr
�
(�−1

�)†�i�
†

i
�

−1
�

�

=

K�
i=1

�
†

i
�

−1
�(�−1

�)†�i

=

K�
i=1

�
†

i
�i =

K�
i=1

‖�i‖2,

(12)�i = �
†
�

−†
�i
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for topology optimization (Liang and Johnson 2013; Wang 
et al. 2018; Yao et al. 2020). More generally, this situation 
corresponds to the correlation matrix � being low-rank: if � 
is rank K, we can compute the trace in K solves.

In particular, suppose that the currents � are of the form 
� =

∑K

i=1
�i�i where the �i are “input channel” basis func-

tions (e.g., a point source with a particular orientation, or 
an equivalent-current source for a waveguide mode Oskooi 
and Johnson 2013) and �i are uncorrelated random numbers 
with zero mean and unit mean-square. Then the correlation 
matrix � = ⟨��†⟩ is simply the rank-K matrix � =

∑
i �i�

†

i
 . 

In this case, the trace simplifies to

where computing �i = �−1�i again requires only K solves, 
one per source �i.

2.5 � Trace computation: many output channels

In general, neither the matrix � nor the matrix � are low 
rank—for example, one may be interested in the total power 
radiated into a continuum of angles above a surface, or some 
other infinite set of possible far-field distributions, from 
sources distributed over a continuous spatial region. For-
tunately, it turns out that there is another structure we can 
exploit: the Hermitian matrix � = (�−1�)†�(�−1�) from 
Eq. (7) is itself typically approximately low rank (“numeri-
cally low rank” Markovsky 2012) even if � is not: the trace, 
which is equal to the sum of the eigenvalues of � (Lax 
2013), is dominated by a few of � ’s largest eigenvalues. In 
this section, we first explain why that is the case, and then 
show how it can be exploited to efficiently estimate the trace 
during optimization.

There are two reasons to expect approximate low-rank 
structure of � (which we illustrate with numerical examples 
in Sect. 4). First, on physical grounds, emission enhance-
ment arises due to resonances (via the Purcell effect) (Agio 
and Cano 2013), but in any finite volume there is some limit 
to the number of resonances that can interact strongly with 
emitters in a given bandwidth, related to an average density 
of states (Yu et al. 2010). The traditional definition of reso-
nant modes corresponds to poles of �−1 at complex resonant 
frequencies, which are (linear or nonlinear) eigenvalues � 
satisfying detA(�) = 0 (Nussenzveig 1972); analogously, 
Eq. (7) decomposes the total power into a sum of eigen-
values corresponding to “resonant current” sources which 
diagonalize � at a given frequency. More explicitly, if �−1� 
can be accurately approximated by the action of K reso-
nances of � (a quasinormal mode expansion Lalanne et al. 
2018; Ge et al. 2014), so that �−1 can be replaced by a rank-
K matrix, it follows that � is also approximately rank ≤ K 

(13)tr� =

K∑
i=1

�
†

i
��i,

(since it is a product of rank-deficient matrices Lax 2013). 
Moreover, geometric optimization to maximize the emitted 
power modifies the structure to further enhance one or more 
resonances (Liang and Johnson 2013), and we observe that 
this sometimes increases the concentration of the trace into 
a few eigenvalues of � ; that is, optimized structures tend to 
be even lower rank. Second, in a more general mathematical 
sense, the matrix � is built from off-diagonal blocks of the 
Green’s function matrix �−1 , connecting sources (at the the 
support of � ) to emitted power at some other location (the 
support of � , e.g., where the Poynting flux is computed), 
and off-diagonal blocks of Green’s functions are known to be 
approximately low-rank (Hackbusch 2015). This is closely 
related to fast methods for integral equations, such as the 
fast-multipole method and others (Gibson 2021); essentially, 
far fields mostly depend on low-order spatial moments of the 
near fields/currents.

If tr� is dominated by K ≪ N  the largest eigenvalues 
of the N × N matrix � , then one merely needs a numerical 
algorithm to compute the K extremal (largest magnitude) 
eigenvalues using only a sequence matrix–vector products 
�� (corresponding to individual scattering problems). For-
tunately, there are many such algorithms, especially for 
Hermitian � (Lanczos 1950; Knyazev 2001), and one can 
simply increase K until the trace converges to any desired 
tolerance. We argue here that methods based on Rayleigh-
quotient maximization are particularly attractive for inverse 
design because they can be combined with geometric/topol-
ogy optimization. The key fact is that one can express the 
sum of the largest K eigenvalues as the maximum of a block 
Rayleigh quotient (Li 2015; Johnson and Joannopoulos 
2001; Knyazev 2001; Kokiopoulou et al. 2011), and for posi-
tive semidefinite � ( = positive semidefinite � ) this sum is a 
lower bound on the trace (Kokiopoulou et al. 2011):

where � represents any K-dimensional subspace basis, so 
that one is maximizing the trace over all possible subspaces. 
This ≥ becomes equality for N = K , but in many problems 
(below), we find that K < 10 suffices for < 1% error in the 
trace (and, as expected from the arguments above, we find 
in Sect. 4.1 that the required K increases with the diameter 
of the emission region).

Computationally, one can maximize the right-hand 
side of Eq. (14) by some form of gradient ascent (Li 2015; 
Knyazev 2001), each step of which only requires the evalua-
tion of �−1�� for a N × K matrix � . That is to say, one only 
needs K Maxwell solves at each step (instead of N for the 
full matrix � ), which vastly reduces the computational cost.

Moreover, this Rayleigh-quotient maximization formula 
is especially attractive in the context of inverse design, 
because it can be combined with the geometric optimization 

(14)tr� ≥ max
�∈ℂN×K

tr
[
(�−1

��)†�(�−1
��)(�†

�)−1
]
,
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itself. That is, instead of “nesting” the trace computation 
inside a larger geometric optimization procedure, we can 
simply add � to the geometry degrees of freedom and opti-
mize over both � and the geometry simultaneously. The full 
inverse-design problem with incoherent emission can now 
be bounded by a single optimization problem:

where the geometric parameters (e.g., material densi-
ties Jensen and Sigmund 2011 or level sets van Dijk et al. 
2013) only affect � and (perhaps) � , and may be subject to 
some geometric and/or material constraints. The gradient 
of the right-hand side with respect to the geometry can be 
computed efficiently with adjoint methods (Molesky et al. 
2018; Tortorelli and Michaleris 1994), whereas the gradient 
with respect to � has a simple analytical formula (John-
son and Joannopoulos 2001) (“Appendix 3”), so a variety 
of gradient-based optimization algorithms (Chong and Zak 
2001) can be applied to simultaneously evolve both � and 
the geometry. Furthermore, the Rayleigh quotient has the 
nice property that, since we are maximizing a lower bound 
on the full trace, the actual performance ⟨P⟩ is guaranteed 
to be at least as good as the estimated performance at every 
optimization step.

3 � Topology‑optimization formulation

In this section, we briefly review the density-based TopOpt 
formulation (Jensen and Sigmund 2011) that we employ for 
our example applications in Sect. 4. The key idea of TopOpt 
is that an “artificial density” field, �(�) ∈ [0, 1] , is defined 
on a spatial “design” domain. This field is then filtered (to 
impose a non-strict minimum length scale) and thresholded 
(to mostly “binarize” the geometry, resulting in a physically 
admissible geometry). The resulting smoothed and thresh-
olded field is then used to control the spatial material distri-
bution, constituting the structure under design. The design 
field, � , is discretized into a finite number of design degrees 
of freedom, which constitutes the design variables in the 
inverse-design problem to be solved, e.g., Eq. (15), using a 
finite-element method (FEM) on a triangular mesh (Badia 
and Verdugo 2020; Jin 2014), and the geometry is optimized 
using a well-known gradient-based algorithm that scales to 
high-dimensional problems with thousands or millions of 
degrees of freedom (Svanberg 2002).

Given a density �(�) ∈ [0, 1] , one should first regular-
ize the optimization problem by setting a non-strict mini-
mum length scale rf , as otherwise one may obtain arbitrarily 
fine features as the spatial resolution is increased. This is 
achieved by convolving � with a low-pass filter to obtain a 

(15)

⟨P⟩optimum ≥ max
geometry,�∈ℂN×K

tr
�
(�−1

��)†�(�−1
��)(�†

�)−1
�
,

smoothed density 𝜌̃ (Jensen and Sigmund 2011). There are 
many possible filtering algorithms, but in an FEM setting 
(with complicated nonuniform meshes), it is convenient to 
perform the smoothing by solving a simple “damped dif-
fusion” PDE, also called a Helmholtz filter (Lazarov and 
Sigmund 2011):

where rf is the length scale design parameter and � is the 
normal vector at the boundary ��D of the design domain 
�D . This damped-diffusion filter essentially makes 𝜌̃ a 
weighted average of � over a radius of roughly rf (Lazarov 
and Sigmund 2011). (In addition to this filtering, it is possi-
ble to impose additional fabrication/length scale constraints, 
for example to comply with semiconductor-foundry design 
rules Hammond et al. 2021.)

Next, one employs a smooth threshold projection on 
the intermediate variable 𝜌̃ to obtain a “binarized” density 
parameter ̃̃𝜌 that tends towards values of 0 or 1 almost eve-
rywhere (Wang et al. 2010):

where � is a steepness parameter and � = 0.5 is the thresh-
old. During optimization, one begins with a small value of 
� (allowing smoothly varying structures) and then gradually 
increases � to progressively binarize the structure (Christian-
sen and Sigmund 2021); here, we used � = 5, 10, 20, 40, 80 , 
similar to previous authors (Christiansen et al. 2020).

Finally, one obtains a material, described by an electric 
relative permittivity (dielectric constant) �(�) in Eq. (1), 
given by

where �1 is the background material (usually air, �1 = 1 ) 
and �2 is the design material (we use dielectric of �2 = 12 
throughout this work).

Equation (18) includes an optional “artificial loss” term 
∼ 1∕Q , which effectively smooths out resonances to have 
quality factors ≤ Q (fractional bandwidth ≥ 1∕Q ) (Liang and 
Johnson 2013). Such an artificial loss is useful in single-� 
emission optimization in order to set a minimum band-
width of enhanced emission, rather than obtaining diverging 
enhancement over an arbitrarily narrow bandwidth as is pos-
sible with lossless dielectric materials (Liang and Johnson 
2013). Also, optimizing low-Q resonances often leads to 
better-behaved optimization problems (less “stiff” problems 
with faster convergence), so during optimization we start 

(16)
−r2

f
∇2𝜌̃ + 𝜌̃ = 𝜌,

𝜕𝜌̃

𝜕�

||||𝜕𝛺D

= 0,

(17)̃̃𝜌 =
tanh(𝛽𝜂) + tanh (𝛽(𝜌̃ − 𝜂))

tanh(𝛽𝜂) + tanh (𝛽(1 − 𝜂))
,

(18)𝜀(�) =
[
𝜀1 + (𝜀2 − 𝜀1) ̃̃𝜌(�)

](
1 +

i

2Q

)
,
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with a low Q = 5 and geometrically increase it (to Q = 1000 ) 
as the optimization progresses (Liang and Johnson 2013).

The details of the FEM discretization are described in 
“Appendix 3,” but it is essentially a standard triangular mesh 
with first-order Lagrange elements (Jin 2014) and perfectly 
matched layers (PMLs) for absorbing boundaries (Oskooi 
and Johnson 2011). We discretized � and {𝜌̃, ̃̃𝜌} with piece-
wise-constant (0th-order) and first-order elements, respec-
tively. During optimization, one must ultimately compute the 
sensitivity of the objective function (the trace from Sect. 2) 
with respect to the degrees of freedom �—for each step out-
lined above (smoothing, threshold, PDE solve, etcetera) we 
formulate a vector–Jacobian product following the adjoint 
method for sensitivity analysis (Molesky et al. 2018; Tor-
torelli and Michaleris 1994) with some help from automa-
tion (Revels et al. 2016), and then these are automatically 
composed (“backpropagated”) by an automatic-differentia-
tion (AD) system (Innes 2018). In this way, the gradient with 
respect to all of the degrees of freedom ( � at every mesh ele-
ment) can be computed with about the same cost as that of 
evaluating the objective function once (Molesky et al. 2018).

4 � Numerical examples

In this section, we present three example problems in 2D 
illustrating how our trace-optimization procedure works in 
practice for typical problems involving ensembles of spa-
tially incoherent emitters. We start in Sect. 4.1 with a general 

case where we are maximizing the total emitted power from 
many emitters distributed throughout a “fluorescent” dielec-
tric material. Next, in Sect. 4.2, we study the enhanced emis-
sion from a corrugated surface, analogous to a light-emitting 
diode (Erchak et al. 2001), showing how the trace formula-
tion can be applied to a periodic structure with aperiodic 
emitters. Both of these examples are based on the general 
algorithm from Sect. 2.5, which can handle emission into a 
continuum of possible angles. Finally, in Sect. 4.3, we apply 
the more specialized algorithm from Sect. 2.3 to optimiz-
ing emission from a fluorescent material into a single-mode 
waveguide. Since Maxwell’s equations are scale invariant 
(Joannopoulos et al. 2008), the same optimal designs will be 
obtained for any wavelength � if the geometry (thickness and 
period) is scaled with � (for the same dielectric constants).

4.1 � Fluorescent particle

In this example, illustrated in Fig. 1a, we optimize the shape/
topology of a 2D fluorescent dielectric ( � = 12 ) particle con-
strained to have a given area lying within a circular design 
domain of radius r, maximizing the total power P radiated 
outwards in any direction at a wavelength � . The emitters are 
distributed uniformly within the dielectric material. Further 
computational details can be found in “Appendix C.1.”

Because this is a non-convex optimization problem, topol-
ogy optimization can converge to different local optima from 
different initial geometries (Molesky et al. 2018). Figure 1b 
shows multiple local-optima geometries for a design radius 

Fig. 1   a A 2D fluorescent 
particle (of dielectric � = 12 ) 
with a circular design domain 
of radius r. The emitters are 
distributed uniformly within 
the dielectric material. The 
total power P radiated outwards 
in any direction (integral of 
Poynting flux over �

out
 ) at a 

wavelength � is optimized. b 
Typical local optima found for 
design radius r = 0.5� with 
filling ratio R

f
= 0.5 and band-

width quality factor Q = 1000 . 
The numbers above denote the 
optimized emitting (average) 
power in arbitrary unit. c Emit-
ted power of a disk as a function 
of the disk radius r for different 
bandwidth quality factors Q. d 
The number of eigenvalues that 
contribute 99% of the trace as 
a function of the disk radius r 
for different bandwidth quality 
factors Q 
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r = 0.5� with filling ratio Rf = 0.5 and bandwidth quality 
factor Q = 1000 (artificial loss, from Sect. 3), obtained from 
different initial geometries (disks of different radii and/or � ). 
The numbers above the geometries denote the corresponding 
emitted (average) power P in arbitrary units. In this particu-
lar case, after examining a large number of local optima 
(not shown), we found that the best local optimum is simply 
a circular disk with a particular radius. The existence of 
many local optima with performance varying by factors of 
2–5 is not unusual in wave problems (Yao et al. 2020; Diaz 
and Sigmund 2010; Bermel et al. 2010), and while various 
heuristic strategies have been proposed to avoid poor local 
minima (Mutapcic et al. 2009; Aage and Egede Johansen 
2017; Bermel et al. 2010; Schneider et al. 2019) beyond sim-
ply probing multiple random starting points, the only way 
to obtain rigorous guarantees is to derive theoretical upper 
bounds (Miller et al. 2016; Yao et al. 2020) as discussed fur-
ther in Sect. 5 (purely numerical global search can generally 
provide practical guarantees only for very low-dimensional 
Maxwell optimization Azunre et al. 2019).

Whether the best optimum is a disk changes with the 
design-domain radius and appears to depend on whether 
there is a nearby radius with a high-Q resonance at the 
design � . (In fact, for this particular case, the locally optimal 
disk has an area slightly less than our upper bound, mean-
ing that the area constraint is not active. In consequence, 
this particular disk remains a local optimum even if the 
design domain is enlarged, and apparently remains a global 
optimum until the design domain is sufficiently enlarged to 
admit a stronger resonance. Although the area constraint 
is not active at this particular local optimum, it is active 
at intermediate points during the optimization process, and 
there are many other local optima that would also be found 
if the area constraint were not present. Physically that emit-
ted power can increased simply by adding more fluorescent 
material; correspondingly, without an area constraint we 
often find a local optimum in which the design region is 
almost entirely filled with dielectric.) In Fig. 1c, we show 
how the average power radiated by a circular disk varies 
with radius r∕� and clearly exhibits a series of sharp peaks 
correspond to radii which support high-Q resonances at � : 
the familiar whispering-gallery resonant modes (Yang et al. 
2015).

The key assumption of our algorithm in Sect. 2.5 was that 
only a small number of eigenvalues would contribute to the 
trace, and this assumption clearly holds here. In Fig. 1d, we 
plot the number of eigenvalues that contribute 99% of the 
trace as a function of the disk radius. We can see that only 
a small number of eigenvalues is required to obtain a good 
estimate of the trace; we find similar results for other shapes. 
Naively, one might expect that the number of contributing 
eigenvalues would scale with the area (or volume in 3d), cor-
responding to the number of resonances per unit bandwidth 

from the density of states (DOS) (Yu et al. 2010). However, 
we find that the scaling is nearly linear with the disk radius; 
the reason the simple DOS argument fails is that it does  not 
take into account the variable loss (radiation) rates of the 
modes, which causes most of the resonances to contribute 
weakly even if the real part of their frequency is close to the 
emission frequency. In fact, we have found similar linear 
scaling of the number of contributing eigenvalues for many 
other shapes, including other locally optimized shapes, and 
it appears to be an interesting open theoretical question to 
prove (or disprove) asymptotic linear scaling.

4.2 � Periodic emitting surface

In this example, we enhance the emission from a thin “emit-
ting layer” by optimizing a periodically patterned surface sit-
uated on top of the layer—this is inspired by a light-emitting 
diode (LED) with a patterned surface above an active emit-
ting layer, where it is well known that a periodic pattern can 
enhance emission via guided-mode resonances (Erchak et al. 
2001; Noda and Fujita 2009). As illustrated in Fig. 2a, the 
design domain consists of dielectric material ( � = 12 ) in air 
with a period L and thickness Hd = 0.5� , the spontaneous-
emission current sources are uniformly distributed on an 
horizontal line (“active layer”) inside a lower-index substrate 
( � = 2.25 ) a distance Hs = 0.1� below the design domain. 
The objective, here, is the total power emitted upwards, inte-
grated over all angles (i.e., the total Poynting flux) using 
the methods of Sect. 2.5. (Emission purely into the normal 
direction could be optimized much more efficiently using the 
methods of Sect. 2.3.) Further computational details can be 
found in “Appendix C.2”.

Fig. 2   a Unit cell of a 2D periodic emitting surface with period L. 
The design domain consists of dielectric material ( � = 12 ) in air 
with thickness H

d
= 0.5� , the spontaneous-emission current sources 

are uniformly distributed on an horizontal line (purple line) inside 
a lower-index substrate ( � = 2.25 ) a distance H

s
= 0.1� below the 

design domain. The objective is the total power emitted upwards, 
integrated over �

out
. b Optimized geometry with period L = 0.6� . c 

The eigenvalue distribution of the average power for the optimized 
geometry
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Even though the dielectric structure is periodic (the 
design domain is a single unit cell of � ), the emitters are not 
periodic—they are independent random currents at every 
point in the active layer. Computationally, however, we can 
still reduce the simulation of non-periodic sources in a peri-
odic medium to a set of small unit-cell simulations, using 
the “array-scanning method” (Capolino et al. 2007). An arbi-
trary aperiodic source current can be Fourier decomposed 
into a superposition of Bloch-periodic sources 
( �k(x + L) = eikL�k(x) ), each of which can be simulated with 
a single unit cell and Bloch-periodic boundary conditions in 
x. The total power is then simply obtained from an integral 
( ∫ �∕L

−�∕L
dk) ) over the Bloch wavevector k in the Brillouin 

zone. For incoherent aperiodic random sources, each of 
these Bloch-periodic unit-cell calculations is an operator 
trace (over random currents in the unit cell only) computed 
by the methods of Sect. 2. (Unit-cell calculations for differ-
ent k values are completely independent and can be per-
formed in parallel.) Further details of this formulation are 
described in “Appendix C.2.” (Moreover, the array-scanning 
method can be viewed as a special case of a reduction using 
symmetry: for any symmetry group, sources can be decom-
posed into a superposition of “partner functions” of the irre-
ducible representations of the symmetry group Inui et al. 
2012, thus, reducing the simulation domain even for asym-
metrical random sources.)

The optimized structures for the design parameter 
Hd = 0.5� , Hs = 0.1� are shown in Fig. 2b. Note that we 
have also optimized over the period L (here, simply by 
repeating the optimization for different values of L) to find 
an optimized period L = 0.6� . The eigenvalue distribution 
of the average power is given in Fig. 2c: again, we observe 
that only the first few eigenvalues contribute significantly to 
the trace, as conjectured in Sect. 2.5.

4.3 � Emission into a waveguide

This example considers a fluorescent dielectric ( � = 12 ) 
medium in air, similar to Sect. 4.1, but in this case, we are 
maximizing the power coupled into a single-mode dielec-
tric waveguide ( � = 12 , width �∕2

√
12 ) rather than into 

radiation (Fig. 3a). Since the output is a single channel (O 
is rank 1), this allows us to apply the method of Sect. 2.3 
to perform only a single “reciprocal” Maxwell solve per 
optimization step. Since the waveguide breaks the rota-
tional symmetry of the problem, the optimum structure is 
now very different from a circular disk, and must somehow 
redirect light emitted anywhere in the fluorescent mate-
rial into the waveguide. This task is made more difficult 
by the fact that we employ a design domain of which size 
is only 1.5� × 0.5� , so the optimization cannot simply 
surround the emitters with a multi-layer Bragg mirror to 
confine the radiation (as occurs when optimizing LDOS 
in a large design domain Liang and Johnson 2013; Wang 
et al. 2018). Further computational details can be found 
in “Appendix C.3.”

Figure 3b shows the optimized geometry with a design 
domain of height Hd = 1.5� and width Ld = 0.5� . The 
material is constrained to fill at most half of the design 
domain (to illustrate that we can independently constrain 
the design region and the design volume); unlike for the 
disk optimum in Sect. 4.1, this area constraint was active 
at the optimum shown here. The corresponding averaged 
field intensity ⟨�Hz�2⟩ is displayed in Fig. 3c. We found that 
64% of the power is coupled into the desired waveguide 
mode. In comparison, only 4% of the power is coupled to 
the waveguide mode for a trivial rectangular design where 
the the whole design domain is filled with � = 12 fluores-
cent material.

Fig. 3   a A 2D fluorescent dielectric ( � = 12 ) medium coupling to a 
waveguide ( � = 12 , width �∕2

√
12 ). The design domain is of height 

H
d
= 1.5� and width L

d
= 0.5� , the power coupled into a single-

mode dielectric waveguide (mode overlap integral at �
out

 ) is opti-

mized. b Optimized shape with a filling ratio R
f
= 0.5 . c Averaged 

field intensity ⟨�Hz�2⟩ distribution. About 64% of the power is coupled 
into the waveguide mode
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5 � Conclusion

We presented a trace formulation and accompanying algo-
rithms for topology optimization of incoherent emitters, 
which unify and generalize earlier work, and in particu-
lar provide the first tractable optimization algorithms for 
the challenging case of many random emitters and many 
output channels. Looking forward, we believe that there 
are many potential applications of these ideas, as well as 
further algorithmic improvements and generalizations.

We are already preparing to use these techniques to 
optimize Raman sensing in fluid suspensions of many 
Raman molecules, in contrast to previous work that only 
considered a single-molecule location (Christiansen et al. 
2020; Pan et al. 2021)—it will help us to answer the inter-
esting open question of the optimal spatial density of “hot 
spots” where light is concentrated to enhance Raman emis-
sion. Another application is enhancing cathodolumines-
cence or other forms of scintillation detectors, which were 
previously optimized only for normal emission (Roques-
Carmes et al. 2021). In contrast to spontaneous emission, 
where the light is emitted by spatially uncorrelated point 
sources, one can instead consider incoherent beams of 
light consisting of uncorrelated random planewave ampli-
tudes—this corresponds to spatially correlated random 
currents (Wolf 2007), and we are investigating the result-
ing trace formulation to design metalenses for incoherent 
focusing. Other applications include the study of radia-
tion loss due to surface roughness, which can be modeled 
via random sources with a prescribed correlation func-
tion related to the manufacturing disorder and may naively 
require a large number of Maxwell solves (Johnson et al. 
2005; Kita et al. 2018; Payne and Lacey 1994). Nor is our 
approach limited to Maxwell’s equations—it is applicable 
to any linear system where one wishes to optimize quad-
ratic functions of random source terms.

Algorithmically, we are investigating ways to apply 
more sophisticated algorithms to the joint structure/trace-
optimization problem equation (15). When solving the 
eigenproblem alone (maximizing over � to obtain extre-
mal eigenvalues), it is well known that one can greatly 
improve upon straightforward gradient ascent by Krylov 
algorithms such as Arnoldi (Trefethen and Bau 1997) or 
LOBPCG (Knyazev 2001), and we would like to incor-
porate Krylov acceleration into to joint problem as well. 
Recent techniques to accelerate frequency domain solves 
for multiple sparse inputs and outputs (Lin et al. 2022) 
may also be applicable to accelerate our trace optimiza-
tion (since we have multiple sources in a sparse subset of 
the domain, and objective functions like the power only 
involve sparse outputs). Similar to the stochastic Lanczos 
algorithm (Ubaru et al. 2017), one could further exploit 

the fact that we are computing the trace of a function f (�) 
of the Maxwell operator � in order to relate the trace more 
efficiently to Krylov subspaces of � . More generally, there 
are other applications where one is maximizing trf (�(p), p) 
for some f and some parameters p, and it seems similarly 
beneficial to combine the trace estimation with the param-
eter optimization in such problems.

Theoretically, it is desirable to complement improved 
numerical optimizations with new rigorous upper bounds on 
incoherent emission. Significant progress has already been 
made on bounding thermal-emission processes (Miller et al. 
2015; Molesky et al. 2020) as well as to absorption (Kuang 
and Miller 2020; Miller et al. 2016) (related to emission via 
reciprocity), and many of these techniques should be adapt-
able to other forms of random emission.

Appendix 1: Correlation matrix

In this section, we show how to compute the correlation 
matrix � corresponding to random current sources � dis-
cretized in a finite-element basis. One can express the fre-
quency-domain Maxwell equations either in terms of the 
electric field � , in which case the source term is proportional 
to � , or in terms of the magnetic field � , in which case the 
source term is proportional to ∇ × � (Jin 2014). These two 
formulations lead to different � correlation matrices.

In particular, we consider the case where the currents � 
(at a frequency � ) are spatially uncorrelated with a given 
correlation function:

where � is a given 3 × 3 Hermitian positive-semidefinite cor-
relation matrix. For example, in 2D with in-plane electric 
currents, as in the examples of Sect. 4, one has

where J2
0
(�) is the mean-square current at � . For isotropic 

random currents, � = J2
0
� where � is the identity matrix.

In a finite-element method, the source vector � is con-
structed by taking inner products of the source current with 
real vector-valued basis “element” functions �̂n (Nedelec ele-
ments in 3D, or v̂n�̂ with scalar Lagrange elements v̂n in 2D 
for z-polarized fields) (Jin 2014). That is, the components 
of � are

(19)
⟨
�(�)�(��)†

⟩
= �(�)�(� − �

�),

(20)� =

⎛⎜⎜⎝

J2
0

J2
0

0

⎞⎟⎟⎠
,

(21)bn = ∫ �̂n ⋅ (source current) d𝛺.
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For an electric-field formulation with a source current � , we 
obtain the correlation function:

For localized basis functions (as in a finite-element method), 
this results in an extremely sparse matrix �—it is zero if 
�̂m and �̂n do not overlap, or in regions where the mean-
square current � is zero. (If � is the identity, � is equal to the 
Gram matrix of the basis.) Note also that, by construction, 
� is a Hermitian semidefinite matrix, so it has factorization 
� = ��† , such as a Cholesky factorization (Trefethen and 
Bau 1997).

For a magnetic-field formulation, � is replaced by ∇ × � 
above, but we can simply integrate by parts (Joannopoulos 
et al. 2008) to move the ∇ × curl operation to act on the basis 
functions, yielding

Again, this yields a sparse Hermitian semidefinite matrix �.
In the 2D examples of Sect. 4, we employed a mag-

netic-field formulation with an out-of-plane magnetic field 
� = Hz�̂ and corresponding basis functions v̂n�̂ , along with 
in-plane current sources corresponding to Eq. (20). In this 
case, Eq. (23) simplifies to

Appendix 2: Factorization‑free trace 
formulation

Although it is conceptually attractive to use a trace formula-
tion equation (7) in terms of the Hermitian matrix � , this 
formulation required a factorization � = ��† of the cor-
relation matrix � . Computationally, it is desirable to avoid 
this factorization, especially if the current distribution 
(and hence � ) depends on the geometric degrees of free-
dom � (which would require us to differentiate through the 
matrix factorization in our adjoint calculation). Instead, it 
is straightforward to reformulate our optimization problem 
equations (11) and (15) in terms of � alone using a change 
of variables.

(22)

Bmn = ⟨bmb∗n⟩,
=

�
∬ �̂m(�)

T
�(�)�(��)†�̂n(�

�) d𝛺d𝛺�

�
,

= ∬ �̂m(�)
T
�
�(�)�(��)†

�
�̂n(�

�) d𝛺d𝛺�,

= ∫ �̂
T
m
��̂n d𝛺.

(23)Bmn = ⟨bmb∗n⟩ = ∫ (∇ × �̂m)
T
�(∇ × �̂n) d𝛺.

(24)Bmn = ∫𝛺

J2
0

(
∇v̂m ⋅ ∇v̂n

)
d𝛺.

For the few-output-channel case in Sect. 2.3, one can sim-
ply start with Eq. (7) and rewrite it as ⟨P⟩ = tr[�−†��−1�] , 
which for a low-rank � simplifies, similar to Eq. (11), to

where �†�i = �i , and we have defined the parameter � 
dependence (which can effect both � and � ) as a function 
g(�) for use in the adjoint formulation of “Appendix 3”.

For the many-channel case of Eq. (15), the key point is 
that we can choose � to be orthogonal to the nullspace N(�) 
of � , as any nullspace component would contribute nothing 
to the trace ( �� projects it to zero). Equivalently, we can 
choose � = �†W ( ⟂ N(D) (Lax 2013) for any N × K matrix 
� , and this change of variables yields a new optimization 
problem:

where again we have defined the function g(�,�) for the 
parameter and � dependence, along with � = �−1�� , for 
use in the adjoint formulation of “Appendix 3”.

Appendix 3: Numerical formulation

In this section, we provide details of the mathematical for-
mulation and numerical implementation of the examples in 
Sect. 4, including the adjoint analysis.

We employ the frequency-domain Maxwell equations for 
the magnetic field � arising from an electric current � with 
a dielectric function (relative permittivity) � and a relative 
magnetic permeability �:

For 2D (z-invariant) problems, we chose in-plane currents 
� , so that the resulting magnetic fields � = Hz�̂ are polar-
ized purely in the z-direction (Joannopoulos et al. 2008). In 
this case, Eq. (27) simplifies to a scalar Helmholtz equation:

Note that, for the correlation functions in the previous dis-
cussion, we simplified the right-hand side by absorbing the 
1∕� scaling into �.

(25)g(�) = ⟨P⟩ =
K�
i=1

�
†

i
��i,

(26)
g(�,�) = tr

⎡
⎢⎢⎢⎣

�
�

−1
��

�†
�
�
�

−1
��

�
⏟⏞⏞⏟⏞⏞⏟

�

(�†
��)−1

⎤⎥⎥⎥⎦
= tr

�
�

†
��(�†

��)−1
�
,

(27)
[
∇ ×

1

�
∇ × −

(
�

c

)2

�

]
�(�) = ∇ ×

[
1

�
�(�)

]
.

(28)
[
−∇ ⋅

1

𝜀
∇ −

(
𝜔

c

)2

𝜇

]
Hz =

(
∇ ×

[
1

𝜀
�(�)

])
⋅ �̂.
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We employ perfectly matched layers (PMLs) for absorbing 
boundaries, with Dirichlet ( u = 0 ) boundary conditions behind 
the PML. The implementation of the “stretched-coordinate” 
PML is simply a replacement ∇ → �∇ in Eq. (28) (Oskooi 
and Johnson 2011; Jin 2014):

where

The PML conductivity �
�
(�) , � = x, y, z function is used 

to gradually “turn on” the PML to compensate for dis-
cretization errors (Oskooi and Johnson 2011), and we 
use a quadratic profile �

�
(�) = �0(xPML∕dPML)

2 (where 
xPML ∈ [0, dPML] is the distance inside the PML).

C.1: Fluorescent particle

For the problem of Sect. 4.1, the governing equation is exactly 
Eq. (29) with � = 1 , whose weak form is (Jin 2014):

where k0 = �∕c is the free-space wave number, 
f = (∇ × �) ⋅ �̂ is the source term, and ∇� denotes the linear 
operator ∇�u = ∇(�u) . The matrix � and the source vector 
� for the discretized Maxwell equation (2) are obtained by 
replacing u and v with the finite-element basis functions ûn 
and v̂n , using first-order Lagrange elements on a triangular 
mesh (Jin 2014). The mesh was generated with Gmsh (Geu-
zaine and Remacle 2009), corresponding to a spatial resolu-
tion of roughly �∕40 in the air and �∕80 in the design region.

Notice that in Eq. (26), only � (via � ) and � (describing 
emission only in the dielectric) depend on the design param-
eters � . We have now the optimization problem as follows:

where Rf is the area-filling ratio.

(29)
[
−𝛬∇ ⋅

1

𝜀
𝛬∇ −

(
𝜔

c

)2

𝜇

]
Hz =

(
∇ ×

[
1

𝜀
�(�)

])
⋅ �̂,

(30)� =

⎛
⎜⎜⎜⎝

1

1+i�x(�)∕�
1

1+i�y(�)∕�
1

1+i�z(�)∕�

⎞
⎟⎟⎟⎠
.

(31)

a(u, v) =b(v),

a(u, v) =∫�

(∇�v ⋅
1

�
�∇u − k2

0
vu)d�,

b(v) =∫�

vfd�,

(32)

g(𝜌,�) =max
𝜌,�

tr
[
�(𝜌)†��(𝜌)(�†

�(𝜌)�)−1
]
,

�(𝜌) =�(𝜌)−1�(𝜌)�,

0 ≤𝜌 ≤ 1,

� 𝜌d𝛺d <� Rf d𝛺d,

Applying adjoint-method analysis (Molesky et al. 2018; 
Tortorelli and Michaleris 1994), we obtain the partial 
derivatives:

where � is the result of an adjoint solve:

The partial derivative with respect to � is simply obtained 
via matrix (Petersen and Pedersen 2012) CR calculus 
(Kreutz-Delgado 2009):

We validated the derivatives from the adjoint method against 
finite differences at random points, and found that the rela-
tive error was only about 10−6 or less, which is not a problem 
for the CCSA algorithm when converging the optimum to 
only a few decimal places.

The analysis workflow for this example is shown in 
Fig.  4. This CCSA update is implemented with NLopt 
in Julia (Johnson 2021) for an increasing series of 
� = 5, 10, 20, 40, 80 . And for each � , the loop is termi-
nated either a relative difference of 10−8 is achieved or the 
maximum iteration reaches 200. The design parameter � is 
bounded from 0 to 1.

C.2: Periodic emitting surface

For the problem of Sect. 4.2, we simulate a single unit cell 
with Bloch-periodic boundary conditions in x. Since Gridap 
only supports periodic boundary conditions in its current 
version, we make a change of variables Hz → Hze

ikx so that 

(33)

�g

��
= −tr

[
�

†
��(�†

��)−1
(
�

† ��

�p
�

)
(�†

��)−1
]

− 2Re

{
tr

[
�
†

(
��

��
� −

��

��
�

)]}
,

(34)�
†
� = ��(�†

��)−1.

(35)

�g

��
=
[
� − ��(�†

��)−1�†
]
(�−1

�)†��(�†
��)−1.

Fig. 4   Flowchart of the optimization steps for the fluorescent particle 
and periodic emitting surface examples



Trace formulation for photonic inverse design with incoherent sources﻿	

1 3

Page 13 of 16  336

Hz is the periodic “Bloch envelope” function (Joannopoulos 
et al. 2008). In comparison to Eq. (28) in “Appendix C.1,” 
this corresponds to the transformation ∇ → ∇ + ik�̂ (Joan-
nopoulos et al. 2008):

with periodic boundaries in x, of which weak form (includ-
ing PML in y) can then be obtained via integration by parts:

where � is the diagonal PML “stretching” matrix equation 
(C12).

The objective (average power) is then constructed by 
a Brillouin-zone integration over the Bloch wavevector k 
(Capolino et al. 2007):

where L is the period of the unit cell and �k is assembled 
using Eq. (37). Since this integrand is a periodic function of 
k, the integral can be approximated by a simple trapezoidal 
sum over equally spaced points k with exponential accuracy 
(Trefethen and Weideman 2014); we used 100 k points in 
order to resolve sharp resonances.

Commuting the integral and the trace in Eq. (38), simi-
larly to “Appendix 2” (noting that ∫ tr = tr ∫  ), we obtain

The adjoint analysis for Eq. (39) is almost the same as in 
“Appendix C.1,” except for the additional integration over k. 
Also, it shares the same analysis workflow as in “Appendix 
C.1.”

C.3: Emission into a waveguide

For the problem of Sect. 4.3, the governing equation and the 
weak form are identical to “Appendix C.1.” The main dif-
ference is our objective function, which is now the power in 
a waveguide mode, computed via an overlap integral using 
mode orthogonality (Snyder and Love 1983), rather than a 

(36)
[
−(∇ + ik�̂) ⋅

1

𝜀
(∇ + ik�̂) − k2

0

]
Hz = f ,

(37)

a(u, v) =b(v),

a(u, v) =∫𝛺

[
(∇𝛬 − ik�̂)v ⋅

1

𝜀
⋅ (𝛬∇ + ik�̂)u − k2

0
vu
]
d𝛺,

b(v) =∫𝛺

vfd𝛺,

(38)g(�) =
L

2� ∫
�∕L

−�∕L

tr
[(
�

−1
k
�
)†
�
(
�

−1
k
�
)]
dk,

(39)

g(�,�) =max
�,�

L

2� �
�∕L

−�∕L

tr
[
�k(�)

†
��k(�)(�

†
�(�)�)−1

]
dk,

�k(�) =�k(�)
−1
�(�)�,

0 ≤� ≤ 1.

total Poynting flux. Here, we briefly review how this overlap 
integral is implemented in the finite-element method.

For a propagating waveguide mode with electric and 
magnetic fields �i and �i , the modal-expansion coefficient 
�i of that mode for a total magnetic field � is given by the 
overlap integral (Snyder and Love 1983):

where we have assumed an x-oriented waveguide in 2D and 
an in-plane electric-field polarization. The power carried by 
this mode is then simply |�i|2 . In Sect. 4.3, our objective is 
the power |�0|2 in a single mode:

where N0 is the normalization (which can be omitted for 
optimization) from Eq. (40). If Hz is expressed as a linear 
combination 

∑
n unûn of finite-element basis functions ûn , 

Eq. (41) becomes ‖�†�‖2 as in Eq. (10), where � has com-
ponents on given by the linear functional:

Computationally, the assembly of � in finite-element soft-
ware is equivalent to constructing a right-hand-side (source) 
vector �.

The optimization becomes

By the adjoint method, for any K, we obtain the derivatives:

(40)�∗
i
=

∫ �i ×�∗
⋅ d�

∫ �i × �∗
i
⋅ d�

=
∫ eyiH

∗
z
dy

∫ eyih
∗
zi
dy

,

(41)⟨P⟩ = ��0�2 =
����
1

N0
∫ ey0H

∗
z
dy
����
2

,

(42)on = o(ûn) =
1

N0
∫ ey0ûndy.

(43)

g(�) =max
�

[
�(�)†�(�)�(�)

]
,

�(�) =�(�)−†�,

0 ≤� ≤ 1.

(44)
dg

dp
=

K∑
i=1

{
�
†

i

d�

dp
�i − 2Re

[
�

†

i

(
d�†

dp
�i

)]}
,

Fig. 5   Flowchart of the optimization steps for the emission into a 
waveguide example
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where �i solves ��i = ��i and �i solves the reciprocal prob-
lem �†�i = �i from Eq. (25). This derivative is also com-
pared with the finite difference method and a difference of 
about 10−6 is observed. The analysis work flow is provided 
in Fig. 5.
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