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Session HOC
NEW APPROACHES IN COMPUTATIONAL MAGNETISM

Michael Joseph Donahue, Chair
National Institute of Standards and Technology, Gaithersburg, MD, United States

INVITED PAPER

HOC-01. Generative deep learning for permanent magnet 
microstructures. A. Kovacs1,2, A. Kornell1,2, Q. Ali1,2, J. Fischbacher1,2, 
M. Gusenbauer1,2, H. Oezelt1,2, M. Yano3, N. Sakuma3, A. Kinoshita3, 
T. Shoji3, A. Kato3 and T. Schrefl1,2 1. Christian Doppler Laboratory 
for Magnet design through physics informed machine learning, Wiener 
Neustadt, Austria; 2. Department for Integrated Sensor Systems, University 
for Continuing Education Krems, Wiener Neustadt, Austria; 3. Advanced 
Materials Engineering Div., Toyota Motor Corporation, Mishuku Susono, 
Japan

Traditionally, imaging, magnetic measurements, and micromagnetic simu-
lations have been applied to understand the impact of microstructure on 
the magnetic properties. Here, we apply a data-driven approach to map the 
microstructure of a nano-crystalline permanent magnet to its demagnetiza-
tion curve. We represent the demagnetization curve by a few discrete anchor 
points and train a neural network regressor to predict these points from the 
granular structure. Once the model is trained, hysteresis properties can be 
estimated without the need of time-consuming simulation. To reduce the 
required number of micromagnetic simulations, we combine unsupervised 
and supervised learning. In a first step, we learn low-dimensional represen-
tations of the grain structures. This can be done in an unsupervised fashion. 
In a second step, we learn the mapping from a low-dimensional latent code 
that represents a grain structure to anchor points of the demagnetization 
curve. Through the dimensionality reduction step, we can reduce the number 
of trainable parameters in the neural network for prediction of the hyster-
esis properties. Therefore, less training data is needed. Fig. 1 compares the 
predictions the demagnetization curve for previously unseen granular struc-
tures with the ground truth. The mean absolute errors are 0.015Ms (magneti-
zation) and 0.02HA (anisotropy field) for the remanence and coercivitiy. For 
dimensionality reduction, we apply a variational autoencoder. It maps a 2D 
image of the grain structure to a latent code. Hereby we achieve a compres-
sion rate of 98 percent. Variational autoencoders are generative models 
which can generate new samples within the input space which differ from 
the original training set. Like face morphing, we generate new magnets by 
linear interpolation between two points in the latent space. Fig. 2 shows the 
generation of new magnet microstructures through morphing. The financial 
support by the Austrian Federal Ministry for Digital and Economic Affairs, 
and the Christian Doppler Research Association is gratefully acknowledged.

Fig. 1. Predictions of demagnetization properties from the granular 
structure.

Fig. 2. The structure in the center was generated by morphing from the 
two other structures shown.

CONTRIBUTED PAPERS

HOC-02. Transformer Neural Networks for Predicting Magnetization 
Dynamics. S. Pollok1, S.T. Kotewitz1, N.M. Lassen1 and R. Bjørk1 
1. Department of Energy Conversion and Storage, Technical University of 
Denmark, 2800 Kgs. Lyngby, Denmark

For modern applications, e.g., magnetic storage devices [1], we need to 
describe magnetic effects inside material on a nanometer length scale. Using 
a continuum approach, the micromagnetic formalism [2] allows exactly for 
this. Within this formalism, a material is modeled with local magnetization 
vectors m, resolving magnetic structures, e.g., domain walls. Existing simu-
lation frameworks, e.g., MagTense [3], are validated by solving standardized 
benchmarks, e.g., µMAG Standard Problem #4 [4]. In this work, we present 
a data-driven approach for predicting magnetization dynamics, and validate 
it on exactly this standard problem. We create a large dataset of magneti-
zation dynamics using MagTense [3], and by optimizing the parameters of 
a neural network, we are able to generalize dynamics across the physical 
setup, and subsequently, to ask for solutions of the whole parameter space. 
We use convolutional neural networks to embed m into a low-dimensional 
latent space. Here, time evolution is then performed with the recent Trans-
former [5] architecture, which allows for overcoming memory constraints 
and computational limitations of numerical approaches. As shown in Fig. 1, 
we embed the external magnetic field Hext, the exchange interaction constant 
Aexch, and the anisotropy constant K along with the local magnetization 
vectors (mx, my, mz) into latent space. From the obtained 128-dimensional 
vector, we can then reconstruct the global sample magnetization M with a 
mean error of 5 mT per time step, as depicted in Fig. 2. Previously, Kovacs 
et al. [6] have similarly modeled magnetization dynamics in latent space. In 
contrast to that approach, we are able to represent a spatially varying external 
magnetic field of increased range, and to include crystal anisotropy and 
exchange interaction into our model.

[1] S. Tehrani et al., Proceedings of the IEEE, Vol. 91, no. 5, pp. 703–714 
(2003). [2] W. F. Brown Jr., Journal of Applied Physics, Vol. 30, no. 4, pp. 
S62–S69 (1959). [3] R. Bjørk et al., Journal of Magnetism and Magnetic 
Materials, Vol. 535, p. 168057 (2021). [4] B. McMichael et al., μMAG 
Standard Problem #4. URL: https://www.ctcms.nist.gov/~rdm/mumag.org.
html (2000). [5] A. Vaswani et al., Advances in Neural Information Process-
ing Systems, Vol. 30 (2017). [6] A. Kovacs et al., Journal of Magnetism and 
Magnetic Materials, Vol. 491, p. 165548 (2019).
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Fig. 1: Deep learning architecture for modeling magnetization dynamics. 
Using a Transformer [5], the low-dimensional embedding of all contri-
butions is integrated in time before it is mapped back to the original 
physical domain.

Fig. 2: Reconstruction of the normalized global sample magnetization M 
from latent space. The reconstructed spatial components Mx, My, and Mz 
are compared to the published solution of Bjørk et al. [3].

HOC-03. Artificial Neural Networks for the Analysis of Ferromagnetic 
Resonance Spectra. D.W. Slay1 and M. Charilaou1 1. Physics, University 
of Louisiana at Lafayette, Lafayette, LA, United States

Magnetic nanoparticles and nanostructures are important elements in a wide 
range of applications, and the key properties that determine their perfor-
mance is the saturation magnetization and the magnetic anisotropy, which 
in turn determine the internal anisotropy fields. Quantifying these internal 
anisotropy fields is key for understanding nanomagnetic phenomena and 
for developing novel materials for applications. Ferromagnetic Resonance 
spectroscopy (FMR) is a powerful technique for quantifying internal anisot-
ropy fields. The interpretation of FMR spectra, however, requires the use 
of an appropriate model and forward calculations; no inverse methods are 
available to extract internal fields from FMR spectra. We will present the 
use of artificial neural networks for spectral recognition, i.e., to identify the 
internal magnetic anisotropy fields from the FMR spectrum, as illustrated in 
the figure. We have trained two different types of networks, a convolutional 
neural network and a multi-layer perceptron, by feeding the networks with 
FMR spectra that were pre-computed based on a Stoner-Wohlfarth-type 
model [1] and labeled with the corresponding anisotropy fields. We tested 
the trained networks with unseen FMR spectra and found that they success-
fully predict the correct anisotropy fields with a precision of a few militesla. 
Surprisingly, the neural networks performed well for data that was beyond 
their training range [2]. These results demonstrate the potential benefit of 
using artificial neural networks for accelerated high-throughput analysis of 
magnetic materials and nanostructures.

[1] M. Charilaou: Ferromagnetic resonance of biogenic nanoparticle chains. 
J. Appl. Phys. 122, 063903 (2017) [2] D. Slay and M. Charilaou: Spectral 
Recognition of Magnetic Nanoparticles with Artificial Neural Networks. 
arXiv 2022 (DOI: 10.48550/arXiv.2206.00166)

Figure 1

HOC-04. Finite Element Solver for Harmonic Linearized Landau-
Lifshitz-Gilbert Equation. Z. Lin1 and V. Lomakin1 1. University of 
California, San Diego, San Diego, CA, United States

We present a numerical formulation for a linearized Landau-Lifshitz-Gilbert  
equation (LLGE) based on the finite element method (FEM) for the study 
of the magnetization dynamics in nanomagnetic structures under weak 
time-harmonic (given frequency) excitations. The linearized LLGE is 
obtained by assuming small magnetization deviations around the equilibrium 
state. Assuming an excitation by an AC field or current at a given frequency, 
the linearized LLGE is manipulated into a harmonic linearized LLGE for 
complex magnetization deviation amplitude, which is transverse to the equi-
librium state. The resulting linear system of equations is solved by an iter-
ative linear solver. A preconditioner is constructed based on the exchange 
stiffness matrix and incomplete LU decomposition, which significantly 
improved the convergence of the linear iterations. The formulation was 
implemented as a module of the FastMag micromagnetic simulator where 
all the fields and operators are computed as outlined in [1]. The validity, 
effectiveness, speed, and scalability of the linear solver are demonstrated by 
numerical simulations in Figs. 1 and 2. Figure 1 shows the magnetization 
states obtained by using the introduced harmonic LLGE solver and the full 
time-domain LLGE solver. The figure shows the magnetization state snap-
shots at different times. The results show good agreement, but the harmonic 
LLGE solver is much faster and allows handling complex frequencies, which 
may be important for understanding the solution behavior. Figure 2 shows 
the number of linear iterations as a function of the structure size for using 
different types of the ILU preconditioners. Using the preconditioners signifi-
cantly reduces the number of iterations and the computational time.

[1] R. Chang, S. Li, M. Lubarda et al. Journal of Applied Physics, 109(7): 
07D358 (2011).

Fig. 1 Magnetization snapshot at t=17.4, 42.8, and 58.9 ns from top 
to bottom obtained via (a) harmonic linearized LLG solver and (b) 
non-linear time domain LLGE for a 5×30×100 nm stripe with an exci-
tation field in the middle at 20 GHz frequency and 50 Oe magnitude in 
the y-direction. The mesh edge length is 2 nm. The material parameters 
are Ms = 800 emu/cm3, Aex = 10-6 erg/cm, α = 0.01.




