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On Verified Automated Reasoning in
Propositional Logic

Simon Tobias Lund and Jørgen Villadsen[0000−0003−3624−1159]

Technical University of Denmark, Kongens Lyngby, Denmark

Abstract. As the complexity of software systems is ever increasing, so
is the need for practical tools for formal verification. Among these are
automatic theorem provers, capable of solving various reasoning prob-
lems automatically, and proof assistants, capable of deriving more com-
plex results when guided by a mathematician/programmer. In this paper
we consider using the latter to build the former. In the proof assistant
Isabelle/HOL we combine functional programming and logical program
verification to build a theorem prover for propositional logic. Finally, we
consider how such a prover can be used to solve a reasoning task without
much mental labor.

Keywords: Logic · Automated Reasoning · Isabelle Proof Assistant

1 Introduction

Today’s information systems must be not only intelligent but also trustworthy.
Our contribution is two-fold. First, we program a basic theorem prover and
discuss the solution to a riddle. Second, we verify the prover with the purpose
of presenting modern automated reasoning tools to a wider audience.

The formal verification of a modern prover for full first-order logic is a major
undertaking [16]. However, many natural language arguments can be handled
in classical propositional logic, and using the Isabelle/HOL proof assistant [11]
we have previously formally verified a number of such provers for formulations
based on various sets of logical operators [20]. Recently we have obtained short
formal soundness, completeness and termination proofs using the NAND or NOR
operators [7]. However, the necessary translations of natural language statements
into the modest logical language of NAND or NOR are problematic for efficiency
as well as explainability reasons.

In the present work we consider a more traditional formulation of proposi-
tional logic based on falsity and implication while still obtaining short formal
proofs similar to the formal proofs obtained using the NAND or NOR operators.
The prover can be automatically exported to Haskell and several other functional
programming languages. The prover implements a deterministic algorithm for
the sequent calculus proof system [10]. In order to obtain self-contained func-
tional programs we code a few auxiliary list programs ourselves. We rely on a
deep embedding of propositional logic such that we can reason in Isabelle/HOL
about the syntax and semantics of propositional logic.
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The aim of the prover is not to be as efficient as possible. We could, for ex-
ample, decrease the computational complexity of checking whether a sequent is
a tautology in the last step of the algorithm by representing the lists of atomic
propositions as binary search trees. However, the aim of our development is clar-
ity and quick development, to showcase how Isabelle can be used for prototyping
and achieving very dependable results without much extra work.

We have developed the prover and its verification in such a way that a skilled
programmer without knowledge of Isabelle and with only a basic knowledge of
proof theory can understand the development described in this paper. Related to
this, we have recently found the tool useful when teaching computational logic
and formal methods to BSc and MSc students in computer science [23].

The entire prover as well as the solution to a riddle have been formally verified
in Isabelle/HOL [11] and the formalizations are available online:

https://hol.compute.dtu.dk/Scratch.thy

Table 1 gives an overview of the file. We explain the name Scratch in the
beginning of Sect. 4 and the riddle is considered in Sect. 6. Logically there is
no difference in Isabelle between a theorem, corollary, lemma or proposition.
Normally one would add a name to all results but we have left a few unnamed.

Name Description
′a form data type Propositional formulas with atomic propositions of type ′a

semantics function Evaluates a formula under an interpretation

sc function Evaluates a sequent under an interpretation

member function Checks membership of element in list

member-iff lemma Equality between member and set-membership

common function Checks if lists share common element

common-iff lemma Equality between common and non-empty set-intersection

mp function Definition of the micro prover for use on a sequent

main theorem The sequent micro prover is sound and complete

prover function Abbreviates the micro prover for use on a single formula

(unnamed) corollary The formula micro prover is sound and complete

neg function Abbreviates negation

con function Abbreviates conjunction

bii function Abbreviates bi-implication

one function Abbreviates ternary exclusive disjunction

people data type The type of atomic propositions in the riddle

riddle formula The propositional formula describing the riddle

(unnamed) proposition Ann is shown to be a knave

(unnamed) proposition Cat is shown to be a knight

(unnamed) proposition Bob cannot be shown to be a knave

(unnamed) proposition Bob cannot be shown to be a knight

Table 1. Overview of the contents of the Scratch.thy file.
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The paper is organized as follows. We first discuss related work (Sect. 2) and
present the sequent calculus underlying the prover (Sect. 3). After this follows the
definition of the prover, focused on functional programming in Isabelle (Sect. 4).
Then comes the verification of the prover, focused on proving in Isabelle (Sect. 5).
With the prover implemented and verified, we show how it can be used to solve
a riddle (Sect. 6). Finally, we conclude with reflections (Sect. 7).

2 Related Work

Our work focuses on a formally verified micro prover based on the operator set
containing falsity and implication. We have elsewhere implemented and verified
several micro provers based on different operator sets [21]. Most recently, we
made two based on just NAND and NOR, respectively. The verification of the
prover in this paper is more succinct than the other provers, except the verifi-
cation of the NAND and NOR provers. There are multiple reasons to prefer the
operator set of implication and falsity. First, it is easier to understand the under-
lying sequent calculus as reasoning with implication and falsity is more intuitive
than reasoning with NAND and NOR. Second, the prover in this paper is much
more efficient for many problems than the NAND and NOR provers, since the
translation of a natural language problem into a formula based on implication
and falsity is likely much smaller than the translations into formulas based on
NAND or NOR.

Shankar [17] and Michaelis and Nipkow [10] have made and verified provers
for propositional logic, but for other operator sets. We focus on reasoning tools
and development assisted by theorem provers and proof assistant. When it comes
to theorem provers for propositional logic in general, we should mention SAT
solving [2], which is much more efficient than our prover.

Blanchette [3] has made an overview of provers in Isabelle. This and our
previous work is part of the IsaFoL (Isabelle Formalization of Logic) project for
organizing and comparing various logics, proof systems and provers in Isabelle.
For first-order logic there is leanTaP [1, 6]: a small, unverified prover in Prolog.
Larger and verified provers for first-order logic also exist [15,16,19,22,24].

3 Sequent Calculus for Propositional Logic

We start with a summary of the sequent calculus for propositional logic. In the
following sections we show how to program and verify a prover based on the
sequent calculus.

Formulas p, q, . . . in classical propositional logic are built from propositional
symbols, falsity (⊥) and implications (p → q).

We introduce the rest of the usual operators as abbreviations:

¬p ≡ p → ⊥ p ∧ q ≡ ¬(p → ¬q) p ∨ q ≡ ¬p → q

p ↔ q ≡ (p → q) ∧ (q → p)
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We will use some terminology that might not be widely known with regards
to the calculus. An interpretation is an assignment of a truth value to each of
the atomic propositions. A formula is valid if it evaluates to true under every
interpretation. A sequent is two sets of formulas written as Γ ⊢ ∆. Informally,
a sequent expresses that if we assume all the formulas in Γ then at least one
of the formulas in ∆ is true. If this property holds for a sequent, then we call
it valid. In Γ ⊢ ∆, we refer to Γ as the antecedents and ∆ as the consequents.
Assuming the antecedents means that if we consider some interpretation where
a formula in the antecedents is false, then the sequent becomes true by default.
Using the rules that follow we can construct valid sequents from other valid
sequents using rules of inference. In the rules there are a few formulas changed
in the transformation happening from premise to conclusion, and the rest of the
formulas remain unaffected. We will call these unaffected formulas “passive”.

The sequent calculus consists of two axiom schemas and two inference rules:

Let Γ and ∆ be finite sets of formulas.

The axiom schemas of the sequent calculus are of the form:

Γ ∪ {p} ⊢ ∆ ∪ {p} Γ ∪ {⊥} ⊢ ∆

The rules of the sequent calculus are the left and right introduction rules:

Γ ⊢ ∆ ∪ {p} Γ ∪ {q} ⊢ ∆

Γ ∪ {p → q} ⊢ ∆

Γ ∪ {p} ⊢ ∆ ∪ {q}
Γ ⊢ ∆ ∪ {p → q}

In the following explanation of the inferences, we write about the affected
formulas as if they were the only ones present in the sequents. The explana-
tions and arguments we provide for this special case also generalize to situations
where there are passive formulas. For example, if a sequent is made true in
some interpretation because the formula p is an antecedent and its truth value
is false, then the sequent will also be made true by p → q being a consequent.
If, on the other hand, a sequent is made true in an interpretation because of the
truth value of a passive formula, then that passive formula will still make the
derived sequent true. Similar arguments can be applied for the impossibility of
introducing invalid sequents from valid ones.

The right introduction rule follows directly from the semantics (the truth of
all formulas on the left-hand side imply the truth of at least one of the formulas
on the right-hand side). If we can show q assuming p, then p implies q.

The left introduction rule is slightly harder to interpret. Consider that if
Γ ⊢ ∆ can be shown, then for any interpretation either a formula in Γ is false
or a formula in ∆ is true. Showing the validity of a sequent with the empty set
for ∆ therefore amounts to showing that Γ is contradictory. Thus, if we can
show that p is valid and that q is contradictory, we can also show that p → q is
contradictory.
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4 Programming the Prover

To begin the work in Isabelle we need to declare the name of our theory, import
the other theories we will use, and create an Isabelle environment. The name of
the theory needs to match the name of the file we are working in. Because of
that we have given our theory the name Scratch so it can be copied and pasted
into the default file displayed when starting Isabelle. Main is the core theory of
Isabelle/HOL and contains everything necessary for implementing and verifying
the prover.

theory Scratch imports Main begin

We start by defining the type of formulas. This takes a type variable, ’a,
which represents the type of atomic propositions (strings, natural numbers, and
so on). A formula is one of three things: an atomic proposition of type ’a, falsity,
or an implication from one formula to another. We can observe that formulas
are thus represented by binary trees, where the leafs are either propositions or
falsity and parent nodes are implications from the left sub-tree to the right.

datatype ′a form
= Pro ′a (⟨ · ⟩) | Falsity (⟨ ⊥ ⟩) | Imp ⟨ ′a form ⟩ ⟨ ′a form ⟩ (infixr ⟨→ ⟩ 0 )

The interpretation of a formula is defined as a function from the type of
atomic propositions to booleans. We can define the semantics of a formula by a
function taking a formula and an interpretation, and returning the truth value of
the formula under that interpretation. The function is defined by pattern match-
ing on the formula: an atomic proposition gives its value in the interpretation,
falsity always gives False, and implication is defined in terms of Isabelle’s built-in
implication.

primrec semantics where
⟨ semantics i (·n) = i n ⟩ |
⟨ semantics - ⊥ = False ⟩ |
⟨ semantics i (p → q) = (semantics i p −→ semantics i q) ⟩

We can convert lists to sets and use logical quantifiers on their elements.
This allows us to express the semantics of sequents through the following one-
line definition. It expresses that a sequent is true under an interpretation if all
the antecedents imply at least one of the consequents.

abbreviation
⟨ sc X Y i ≡ (∀ p ∈ set X . semantics i p) −→ (∃ q ∈ set Y . semantics i q) ⟩

So that our theory is self-contained to the largest extent possible, and so
that a translation of the prover to another programming language is as easy
as possible, we define some functions for set operations on lists. These could
be defined directly by translating the lists to sets, but then the program would
not be directly translatable. Alternatively, we could have used the operations
provided by Isabelle, but then the prover would not be as self-contained.
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The first such function we define is member, which returns true if a given
element exists in a list:

primrec member where
⟨ member - [] = False ⟩ |
⟨ member m (n # A) = (m = n ∨ member m A) ⟩

We can then prove that it is equivalent to the set-membership operator ∈.
First, we define the lemma we want to show, then we give the proof. The proof
is done by induction on the list. This is done by applying induct A to the proof
state. This then creates two proof obligations; we need to show that the lemma
holds for the empty list and for x # A (an arbitrary element x added to the
front of A) if we assume it holds for A. By performing induction on A we obtain
proof obligations matching the cases of the function. Since the function calls
reduce nicely and the lemma is simple, we can solve both proof obligations with
Isabelle’s simple prover for logical rewriting: simp. To apply simp to both goals
in the proof state we need to use simp-all.

lemma member-iff [iff ]: ⟨ member m A ←→ m ∈ set A ⟩

by (induct A) simp-all

Usingmember, we can define a function for checking whether two lists contain
a common element:

primrec common where
⟨ common - [] = False ⟩ |
⟨ common A (m # B) = (member m A ∨ common A B) ⟩

The desired property can be expressed using set operators as the intersection
of the two lists not being the empty set:

lemma common-iff [iff ]: ⟨ common A B ←→ set A ∩ set B ̸= {} ⟩

by (induct B) simp-all

In the later proofs Isabelle will automatically use the above translations to
sets since we annotated the lemmas with [iff ]. There is significant advantage
to having the later proofs rely on these translations, as opposed to the actual
definitions of member or common. We might at some point in the development
change the implementation of these functions, for example by having the lists
be binary search trees. It would then only be necessary to change the proofs
of these two lemmas; the rest of the theory would still succeed. Thus, one can
do modular development in Isabelle, with lemmas of the main properties of the
different functions providing the static interfaces.

The following function (mp) is the core of the prover. It works by splitting
implication-formulas up into their left- and right-sides at the appropriate sides
of the sequents. Atomic propositions are moved into separate lists (A and B),
so we can terminate when the lists containing non-atomic formulas (C and D)
are empty. The inferences of the calculus are implemented quite directly, taking
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a conclusion and attempting to show the premise. The left implication rule,
which uses two premises, calls the prover on both premise-sequents and conjuncts
the result. Thus, the prover constructs the proof tree by recursive calls on the
premises which could show the given sequent. If all of these calls lead to axioms,
the proof succeeds. We attempt to use the propositional axiom (utilizing the
common function from above) when all formulas are decomposed, while the
falsity axiom can be used immediately when we obtain falsity on the left-hand
side of a sequent. Falsity on the right-hand side of a sequent can never be used
to show validity, so it is just removed in the recursive call.

function mp where
⟨ mp A B (·n # C ) [] = mp (n # A) B C [] ⟩ |
⟨ mp A B C (·n # D) = mp A (n # B) C D ⟩ |
⟨ mp - - (⊥ # -) [] = True ⟩ |
⟨ mp A B C (⊥ # D) = mp A B C D ⟩ |
⟨ mp A B ((p → q) # C ) [] = (mp A B C [p] ∧ mp A B (q # C ) []) ⟩ |
⟨ mp A B C ((p → q) # D) = mp A B (p # C ) (q # D) ⟩ |
⟨ mp A B [] [] = common A B ⟩

by pat-completeness simp-all

To be able to perform structural induction on the function, and because it is
a nice result in itself, we show termination of the prover. We do this by defining
a notion of size of a sequent which decreases in each recursive call. A notion
of size that works is the combined size of formulas in C and D. This obviously
works for the recursive calls involving atomic propositions and falsity, as they are
removed from either C or D. In the calls involving implication we always remove
an operator, thereby reducing the size of a formula. With this size definition,
the goal produced for each recursive call can be solved by simp. Thus, we finish
the proof by applying simp-all.

termination
by (relation ⟨ measure (λ(-, -, C , D).

∑
p ← C @ D . size p) ⟩) simp-all

Showing termination also makes automatic export to languages like Haskell
possible through Isabelle’s code generation (see end of Sect. 6).

5 Verifying the Prover

After constructing the prover, the big question is whether we did so correctly.
In regards to this, there are really two properties that are important. Arguably
the most important is soundness. We want to be sure that if our prover can
construct a proof of a formula then the formula must also be valid. A property
that is often harder to prove (and unattainable for some logics) is completeness,
which expresses that any valid formula can be proven. The following theorem,
which is the main result of our theory, shows both soundness and completeness.
We do this by proving that a sequent is valid with regards to the semantics –
i.e. true under every interpretation – if and only if our prover returns true.
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The proof is done by structural induction on the cases of the function. This is
initiated by (induct rule: mp.induct) which tells Isabelle to transform the main
proof goal (the theorem itself) into inductive proof goals matching the cases
of mp. Each of these goals are harder to prove than what we have considered
up until this point, but still within the grasp of Isabelle’s proof methods. We
apply the proof methods simp, blast, meson, and fast, which is enough to solve all
goals. Finding the right proof methods for a problem might seem like a challenge,
but it is easy enough with Isabelle’s proof-finding tool Sledgehammer [4]. When
applying Sledgehammer to the proof state, it tries various theorem provers and
returns the method capable of solving the current goal if it finds one. Thus, the
proof methods can be found one by one, and then compacted to the one-line
style we have applied.

theorem main: ⟨ (∀ i . sc (map · A @ C ) (map · B @ D) i) ←→ mp A B C D ⟩

by (induct rule: mp.induct) (simp-all , blast , meson, fast)

When we have a sound and complete prover for sequents, we can derive one
for formulas. This is done using the fact that a formula can be proven by proving
the sequent containing it on the right-hand side and nothing else.

definition ⟨ prover p ≡ mp [] [] [] [p] ⟩

We can then show soundness and completeness of the prover for formulas by
using the soundness and completeness of the prover for sequents plus simp.

corollary ⟨ prover p ←→ (∀ i . semantics i p) ⟩

unfolding prover-def by (simp flip: main)

Showing completeness is in general a daunting task. One can show sound-
ness by induction on the structure of proofs, which means that the rules being
independently sound is sufficient. Completeness is achieved when all the rules
together are enough to prove any valid formula. This implication from the valid-
ity of a formula to the existence of a proof cannot be done by naive induction, as
not all valid formulas are constructed from other valid formulas (as is the case
for proofs).

In Isabelle we are able to show both soundness and completeness in one line!
This is partly because of Isabelle’s intelligent proof methods, which are able to
prove many theorems automatically, and partly because we couple the calculus
with a proof technique by defining it as a function which can be executed. Tech-
nically, this works because completeness is now achievable by induction. In the
function, the relation between premise and conclusion in each rule is equality.
Thus, completeness can be shown by induction on the implications from conclu-
sions to premises. Equivalently, we need only prove that any formula for which
our prover returns true is valid, and that any formula for which our prover re-
turns false is not valid. In this case completeness is no more complicated than
soundness.
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6 Using the Prover

We will use the prover to solve a riddle based on one from What is the Name
of this Book [18] by Raymond Smullyan, which itself is a (more interesting)
variation of an older riddle. It is as follows:

You find yourself on a desert island inhabited by knights and knaves.
Knights only ever tell the truth and knaves only ever tell lies. In a clear-
ing, you come upon three islanders: Ann, Bob, and Cat. You ask Bob
how many knights there are among them. Bob answers something in a
foreign language. You then ask Ann what Bob said. Ann answers: “He
said there is one knight among us.” Cat then reacts: “Don’t listen to
Ann, for she is a knave!” Who, if any, among them are knights?

We translate the riddle to propositional logic. First, we create the following
atomic propositions: A for “Ann is a knight”, B for “Bob is a knight”, and C
for “Cat is a knight”. Next we observe that a statement is true if and only if
the person who said it is a knight. It becomes clear that it would be useful to
have more propositional constructs than → and ⊥. Thus, we define the operators
from the start of Section 3 plus the ternary exclusive disjunction one(p, q, r),
which is true when exactly one of the three arguments is true. A discussion on
how to construct these operators comes later. We can sum up what we learn
from Bob’s and Ann’s statements as “if Ann is a knight, then Bob is a knight
if and only if there is exactly one knight”, or in propositional logic: A → (B ↔
one(A,B,C)). We can see from the structure that we will not learn anything
if Ann is a knave, which makes sense since we will then not know what Bob
said. Cat’s statement can be captured by “Cat is a knight if and only if Ann is
a knave”, or in propositional logic: C ↔ ¬A.

To utilize our prover we first need the operators used above. We implement
them as abbreviations in Isabelle. The definition of ¬ (neg) is straightforward:

abbreviation ⟨ neg a ≡ (a → ⊥) ⟩

p → ¬q is true exactly when either p or q is false. Thus, p∧ q can be defined
as ¬(p → ¬q):

abbreviation ⟨ con a b ≡ neg (a → neg b) ⟩

p ↔ q is also straightforward:

abbreviation ⟨ bii a b ≡ con (a → b) (b → a) ⟩

one (one) is defined as three bi-implications, where each one expresses that
a formula is true if and only if the other two are not:

abbreviation ⟨ one a b c ≡
con

(bii a (con (neg b) (neg c)))
(con

(bii b (con (neg a) (neg c)))
(bii c (con (neg a) (neg b)))) ⟩
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It is now possible to define the riddle itself.
First, we make a people data type, which is a union type of Ann (A), Bob

(B), or Cat (C). This will be the type of atomic propositions in the formulas.

datatype people = Ann | Bob | Cat

We then put the facts learned from the islanders in the abbreviation riddle.
It contains the formulas described previously, connected by a conjunction.

abbreviation ⟨ riddle ≡ (
con

(·Ann → bii (·Bob) (one (·Ann) (·Bob) (·Cat)))
(bii (·Ann) (neg (·Cat)))) ⟩

Now we use the prover to solve the riddle. In the following lines we write
statements about the riddle, and prove them using the proof method eval. This
will export the prover to Standard ML and execute it with the given formula
as input. As this relies on the correctness of the code generator and the Stan-
dard ML compiler, the result is less trust-worthy than those obtained purely
by Isabelle. We could use code-simp instead of eval to make sure all evaluation
stays within Isabelle, but this comes at a considerable cost to performance.

First, we can show that Ann is a knave, as riddle implying her not being a
knight is shown valid by the prover:

proposition ⟨ prover (riddle → neg (·Ann)) ⟩ by eval

Next, we show that Cat is a knight by proving that riddle implies Cat :

proposition ⟨ prover (riddle → ·Cat) ⟩ by eval

Finally, we show that Bob can be either knight or knave. This follows quite
trivially from Ann being a knave, as it means Bob might have said anything
(except for “there is one knight”). For Bob, both knighthood and knavehood is
unprovable. Since we have shown that the prover is complete, one of these would
have succeeded if we could be sure of either.

proposition ⟨ ¬prover (riddle → neg (·Bob)) ⟩ by eval

proposition ⟨ ¬prover (riddle → ·Bob) ⟩ by eval

We finalize the theory in Isabelle:

end

The lines examining the riddle could also be done in the environment of
another programming language by exporting the prover using Isabelle’s code
generation. The supported languages are Haskell, OCaml, Scala and Standard
ML. In this way Isabelle’s code generation can be used to incorporate the verified
prover into a larger project in one of these programming languages. In general,
one can have a project where only important core elements are verified. Thus,
verification does not need to happen all at once; one can start with the most
important or difficult parts.



On Verified Automated Reasoning in Propositional Logic 11

7 Concluding Remarks

We have developed a tool for automatic reasoning in propositional logic and ver-
ified it in Isabelle/HOL. We have also shown how to use it to solve a problem of
reasoning, in our case a riddle. Many problems can be modelled in propositional
logic, and many more in the higher-order logic of Isabelle/HOL. Each part of our
development was accompanied by machine-checked proofs, which provide very
high confidence while remaining easy to write up and quick to verify. We believe
that most algorithmic challenges are solvable within the framework of proof as-
sistants, with clear advantages gained from the confidence of machine-checked
proofs, and often with not much added labor.

The abbreviation feature in Isabelle/HOL is convenient, but our prover solv-
ing the riddle works on the expressions of the formula data type, cf. Table 2.
Nevertheless, the execution time in Isabelle/HOL for the file is around a second.

Count for formula: riddle → ¬ Ann

Proposition Ann 16

Proposition Bob 14

Proposition Cat 14

Falsity (⊥) 77

Implication (→) 120

Table 2. Counting atomic propositions and operators in a formula.

One of the benefits of working with a proof assistant like Isabelle/HOL is
that appropriate changes can be made and the theory is automatically verified
again. For example, the soundness and completeness theorems can be verified
in Isabelle/HOL if falsity is omitted from the syntax of propositional logic, in
the semantics and in the sequent calculus. Of course we can no longer define
negation, conjunction, disjunction and the riddle. In fact we obtain the so-called
implicational propositional logic [5, 14,25].

We should ask the question: How can we trust Isabelle? After all, it is a
program and could have bugs. This has been a challenge for more than 50
years since the first proof assistant SAM (Semi-Automated Mathematics) [9].
For decades, proof assistants like HOL4 and Isabelle have relied on the so-called
LCF approach: a relatively small proof kernel, using abstract data types in the
programming language Standard ML to ensure soundness, only assuming that
the proof kernel is soundly implemented [8, 12, 13]. In addition, proof assistants
are thoroughly tested and they are more and more considered practical tools for
programmers, mathematicians and scientists in general.
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