Proof of Completeness of Compositional Verification of Interlocking Systems

Haxthausen, Anne Elisabeth; Fantechi, Alessandro

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Haxthausen, A. E., \& Fantechi, A. (2022). Proof of Completeness of Compositional Verification of Interlocking Systems. Technical University of Denmark.

[^0]
Proof of Completeness of Compositional Verification of Interlocking Systems

April 1, 2022
Anne E. Haxthausen ${ }^{1}$ and Alessandro Fantechi ${ }^{2}$
${ }^{1}$ DTU Compute, Technical University of Denmark, Lyngby, Denmark
${ }^{2}$ DINFO, University of Florence, Via S. Marta 3, Firenze, Italy

Abstract

This document outlines a proof demonstrating completeness of a compositional method presented in our manuscript HF22] entitled Compositional verification of railway interlocking systems.

1 Introduction

In [HF22] we presented a compositional method for verification of interlocking systems using the RobustRailS method and tools VHP17b|VHP17a|Vu15 VHP14 for automated formal verification of interlocking system. The idea of this compositional method is that safety verification of an interlocking systems controlling a network N can be made by dividing the network into two subnetworks N_{1} and N_{2} and then verify safety of interlocking systems controlling N_{1} and N_{2}, respectively. In HF22 it is proved that the compositional method is sound.

In these notes we outline a proof demonstrating that the compositional verification method presented in HF22 is also complete.

These notes are not standalone, but rely on definitions and theorems given in HF22.

Throughout these notes, assume given a network N and two subnetworks N_{1} and N_{2} that have been created by a single cut through N according to our compositional method. Let $m=\left(S, q_{0}, R, A P, L\right)$ and $m_{i}=\left(S_{i}, q_{0_{i}}, R_{i}, A P_{i}, L_{i}\right)$ for $i=1,2$ be models generated for these networks using the RobustRails tools for interlocking systems with the option without overlaps and without flank and front protection. Let $\overline{\left.m\right|_{i}}$ be the reduced projection of m on network N_{i} and let $\overline{m_{i}}$ be the reduced model of m_{i}, for $i=1,2$.

1.1 Changes needed in section 2 of HF22]

In order to make the proof of completeness, in the Background section of HF22 we first need to generalise Definition 2.4 (Simulation relation) and Theorem 2.5 (Simulation preserves invariants) so they can be used not only for the proof of soundness, but also for the proof of completeness. The new version of Theorem 2.5 is needed in the proof of Corollary 1 shown further below in these notes. (Corollary 1 is reverse of Corollary 4.8 in [HF22.)

Definition 2.4 should be generalised to the following (by replacing the condition $A P_{2} \subseteq A P_{1}$ with the condition $A P_{1} \cap A P_{2} \neq \emptyset$ and changing the third bullet) as we are focusing on common labels of the two transitions systems:

Definition 1 (Simulation Relation). Given two transition systems $T S_{1}=$ $\left(S_{1}, q_{0_{1}}, R_{1}, A P_{1}, L_{1}\right)$ and $T S_{2}=\left(S_{2}, q_{0_{2}}, R_{2}, A P_{2}, L_{2}\right)$, with $A P_{2} \cap A P_{1} \neq \emptyset, T S_{1}$ is simulated by $T S_{2}$ (or, equivalently, $T S_{2}$ simulates $T S_{1}$), denoted $T S_{1} \preceq T S_{2}$, if there exists a simulation relation $\mathcal{R} \subseteq S_{1} \times S_{2}$ such that:

```
\(-\left(q_{0_{1}}, q_{0_{2}}\right) \in \mathcal{R}\)
- for all \(\left(q_{1}, q_{2}\right) \in \mathcal{R}\) it holds that if \(\left(q_{1}, q_{1}^{\prime}\right) \in R_{1}\), then \(\exists q_{2}^{\prime}:\left(q_{2}, q_{2}^{\prime}\right) \in R_{2}\) and
    \(\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in \mathcal{R}\)
- for all \(\left(q_{1}, q_{2}\right) \in \mathcal{R}\) it holds that \(L_{1}\left(q_{1}\right) \cap A P=L_{2}\left(q_{2}\right) \cap A P\), where \(A P=\)
        \(A P_{1} \cap A P_{2}\)
```

Throughout these notes, this definition of simulation relation will be used.
Consequently, Theorem 2.5 about invariant preservation by simulations needs then to be changed by removing the condition $A P_{2} \subseteq A P_{1}$ and let the invariant be defined over $A P_{1} \cap A P_{2}$ instead of over $A P_{2}$:

Theorem 1 (Simulation preserves invariants). Given two transition systems as before, let $\mathbf{G} \phi$ be an invariant defined over $A P=A P_{1} \cap A P_{2}$, then: $T S_{1} \preceq T S_{2}$ and $T S_{2} \models \mathbf{G} \phi$ implies $T S_{1} \models \mathbf{G} \phi$

Proof. The proof of this theorem is directly derived by Corollary 7.68 of BK08], by considering that invariants belong to the class of properties to which the corollary refers.

2 Proof overview

The proof of completeness is very similar to the proof of soundness. An overview of the two proofs are given in Fig. 1 and Fig. 2.

In the proof of completeness, Theorem 4.7, Corollary 4.8, Theorem 4.9 and Corollary 4.16, and Corollary 4.18, that were used in the proof of soundness in HF22, are replaced by "reverse" theorems and corollaries as explained in the following.

Theorem 4.7 is replaced by:
Theorem 2 (Model simulates its reduced projection). For $i=1,2, \overline{\left.m\right|_{i}}$ is simulated by $\left.m \overline{\left(\left.m\right|_{i}\right.} \preceq m\right)$ using the simulation relation $\mathcal{R} \subseteq S_{i} \times S$ defined by: $\left(q_{i}, q\right) \in \mathcal{R}$ iff $q_{i}=\left.q\right|_{i}$.

Proof. $\overline{\left.m\right|_{i}}=\left(\left.S\right|_{i},\left.q_{0}\right|_{i},\left.R\right|_{i}, \overline{\left.A P\right|_{i}}, \overline{\left.L\right|_{i}}\right)$ for $m=\left(S, q_{0}, R, A P, L\right)$, by the definition of model projection and model reduction. We must prove:
$-\left(\left.q_{0}\right|_{i}, q_{0}\right) \in \mathcal{R}$, i.e. $\left.q_{0}\right|_{i}=\left.q_{0}\right|_{i}$: which is true.

Fig. 1. Proof steps flow in soundness proof in HF22.

Fig. 2. Proof steps flow in completeness proof in these notes.

- for all $\left(q_{i}, q\right) \in \mathcal{R}$ it holds that if $\left.\left(q_{i}, q_{i}^{\prime}\right) \in R\right|_{i}$, then $\exists q^{\prime}:\left(q, q^{\prime}\right) \in R$ and $\left(q_{i}^{\prime}, q^{\prime}\right) \in \mathcal{R}:\left.R\right|_{i}$ is defined to be the least relation satisfying that if $\left(q, q^{\prime}\right) \in R$ then $\left.\left(\left.q\right|_{i},\left.q^{\prime}\right|_{i}\right) \in R\right|_{i}$. Therefore, as $\left.\left(q_{i}, q_{i}^{\prime}\right) \in R\right|_{i}$, there must exist a q^{\prime} such that $\left(q, q^{\prime}\right) \in R$ and $q_{i}^{\prime}=\left.q^{\prime}\right|_{i}$, i.e. $\left(q_{i}^{\prime}, q^{\prime}\right) \in \mathcal{R}$, (and $q_{i}=\left.q\right|_{i}$ we already know as $\left.\left(q_{i}, q\right) \in \mathcal{R}\right)$.
- for all $\left(q_{i}, q\right) \in \mathcal{R}$ it holds that $\overline{\left.L\right|_{i}}\left(q_{i}\right) \cap \overline{\left.A P\right|_{i}} \cap A P=L(q) \cap \overline{\left.A P\right|_{i}} \cap A P$: $\left(q_{i}, q\right) \in \mathcal{R}$ means (0) $q_{i}=\left.q\right|_{i}$.
By definition of $\overline{\left.A P\right|_{i}}$ we have: $\overline{\left.A P\right|_{i}} \subseteq A P$. So (1) $\overline{\left.A P\right|_{i}} \cap A P=\overline{\left.A P\right|_{i}}$.
By definition of labelling functions for models we have: $\overline{\left.L\right|_{i}}\left(q_{i}\right) \subseteq \overline{\left.A P\right|_{i}}$.
So (2) $\overline{\left.L\right|_{i}}\left(q_{i}\right) \cap \overline{\left.A P\right|_{i}}=\overline{\left.L\right|_{i}}\left(\underline{q_{i}}\right)$.
By (1), (2) and (0) we get: $\overline{\left.L\right|_{i}}\left(q_{i}\right) \cap \overline{\left.A P\right|_{i}} \cap A P=\overline{\left.L\right|_{i}}\left(q_{i}\right) \cap \overline{\left.A P\right|_{i}}=\overline{\left.L\right|_{i}}\left(q_{i}\right)=$ $\overline{\left.L\right|_{i}}\left(\left.q\right|_{i}\right)$.
By (1) we get: $L(q) \cap \overline{A P \underline{\underline{i}}_{i}} \cap A P=L(q) \cap \overline{\left.A P\right|_{i}}$.
So we should prove that $\overline{\left.L\right|_{i}}\left(\left.q\right|_{i}\right)=L(q) \cap \overline{\left.A P\right|_{i}}$. This holds as the atomic propositions in $\overline{\left.L\right|_{i}}\left(\left.q\right|_{i}\right)$ are of the form $t=q(t)\left(\right.$ as $\left.\left(\left.q\right|_{i}\right)(t)=q(t)\right)$, where $t \in \operatorname{sections}\left(N_{i}\right)$, and that is also the case for all atomic propositions in $L(q) \cap \overline{\left.A P\right|_{i}}$.

Corollary 4.8 is replaced by the following and the arrow from Corollary 2.8 is replaced by a direct arrow from Theorem 1 (that is replacing Theorem 2.1) to this new Corollary.
Corollary 1 (Safety preserved in reduced projection). $\overline{\left.m\right|_{i}} \models \phi_{i}$ if $m \models$ ϕ_{i}, for safety properties (invariants) $\phi_{i}, i=1,2$.

Proof. Follows from the new version of Theorem 2.5 ($=$ Theorem 1 in these notes) and Theorem 2 .

Theorem 4.9 is replaced by:
Theorem 3 (Reduced projection stutter trace includes reduced subnetwork model). $\overline{m_{i}} \unlhd \overline{\left.m\right|_{i}}$, for $i=1,2$.
which means $\forall \overline{\pi_{i}} \in \operatorname{Paths}\left(\overline{m_{i}}\right) \quad \exists \overline{\left.\pi\right|_{i}} \in \operatorname{Paths}\left(\overline{\left.m\right|_{i}}\right)$ such that $\overline{\left.\pi\right|_{i}}$ and $\overline{\pi_{i}}$ are stutter equivalent, for $i=1,2$.

Proof. See Sect. 3 .
Corollary 4.16 is replaced by:
Corollary 2 (Safety of submodels derived from full model). $m_{i} \models \phi_{i}$ if $m \vDash \phi_{i}$, for $i=1,2$.

Proof. The proof is similar to that for Corollary 4.3 just with the implications A, B and C in the opposite direction:

For $i=1,2: m_{i} \models \phi_{i} \xlongequal{\wedge} \overline{m_{i}} \models \phi_{i} \stackrel{B}{\left.\Longleftarrow\right|_{i}} \models \phi_{i} \xlongequal{\varrho} m \models \phi_{i}$

- A - From Corollary 4.5;
- B - From Theorems 2.12 and 3 , and noting that $\overline{A P_{i}}=\overline{\left.A P\right|_{i}}$;
- C - From Corollary 1.

Corollary 4.18 is replaced by:

Corollary 3 (Completeness).

$m_{i} \models \phi_{i}$ for $i=1,2$, if $m \models \phi$.
Proof. Follows from Corollary 2 and Theorem 4.17.

3 Proof of Theorem 3

We can prove Theorem 3 by proving that for an arbitrary path π_{i} in $\operatorname{Paths}\left(m_{i}\right)$, it is possible to find a path π in $\operatorname{Path} s(m)$, such that $\pi \mid, 1]$ and π_{i} are stutter equivalent wrt. the labelling functions of $\overline{\left.m\right|_{i}}$ and $\overline{m_{i}}$, respectively. This approach is valid as by definition of the model projection and reduction operators, we have $\operatorname{Paths}\left(\overline{m_{i}}\right)=\operatorname{Paths}\left(\left.m\right|_{i}\right)=\left\{\left.\pi\right|_{i} \mid \pi \in \operatorname{Paths}(m)\right\}$ and Paths $\left(\overline{m_{i}}\right)=\left\{\pi_{i} \mid \pi_{i} \in\right.$ $\left.\operatorname{Paths}\left(m_{i}\right)\right\}$.

3.1 Construction of $\boldsymbol{\pi}$

Given an arbitrary path π_{i} in $\operatorname{Paths}\left(m_{i}\right)$, for a given $i=1$ or $i=2$, a corresponding path π is constructed incrementally as follows:

- The first state of π is chosen to be the initial state q_{0} of m.
- Then π is obtained by adding more and more states to its path by considering the states in π_{i}, one by one, in the order they appear. Each transition from a state q_{i} to a state q_{i}^{\prime} in π_{i}, leads to the addition of 0,1 or more states to π. What exactly should be added depends on the transition rule r_{i} that caused the state change from q_{i} to q_{i}^{\prime} in π_{i}. Below we will explain this systematically by case over various classes of transition rules. As it will be seen, usually one new state q^{\prime} is added to π - this state is obtained by applying r_{i} or a rule corresponding to r_{i} to the latest added state q in π. However, in some cases more than one state is added to π_{i} by applying several transition rules in m, and in a few cases no state is added.

Case 1: Some transition rules for m_{i} also exist for m (with the same guards and same variable updates) as they only concern network elements in N for which the projection to N_{i} is the identity. These rules include:

1. Rules for switching points $p \in$ points $\left(N_{i}\right)$ (i.e. changing $p . P O S$).
2. Rules for switching signals s (i.e. changing $s . A C T$) that are inside N_{-i} (i.e. $\left.s \in \operatorname{signals}\left(N_{-i}\right){ }^{2}\right)$
3. Rules describing the train movement of the head or tail of a train from a section t to a neighbouring section t^{\prime}, both inside $N_{i}\left(t, t^{\prime} \in \operatorname{sections}\left(N_{i}\right)\right)$.

[^1]4. Rules describing how the head or tail of a train enters/leaves the network at a border which is also in N (i.e. it is not the border that was achieved due to the cut).
5. Rules for controlling routes r_{i} that are projections of routes $r\left(r_{i}=\operatorname{proj}_{i}(r)\right)$ in N that are (1) completely inside N_{i} (so $\operatorname{proj}_{i}(r)=r$ and therefore $\left.r=r_{i}\right)$ and (2) not ending at a signal in front of the cut.

A transition from a state q_{i} to a state q_{i}^{\prime} in π caused by such a rule should lead to the same state change in π, here from the last added state q to a new state q^{\prime} that is obtained by applying the same rule to q (so q^{\prime} is added to π).

Case 2: For routes r_{i} that are projections of routes $r\left(r_{i}=\operatorname{proj}_{i}(r)\right)$ in N that are (1) completely inside N_{i} (so $\operatorname{proj}_{i}(r)=r$ and therefore $r=r_{i}$) and (2) end at a signal in front of the cut:

1. Rules for controlling r in m and r_{i} in m_{i} are the same and when applied in π_{i} they should also be applied in π, with the following exception, see next item.
2. When release $\left(r_{i}\right)$ is applied in π_{i}, first release $\left(r_{i}\right)$ should applied in π_{i} and then a whole sequence of rules should be applied to move the train that is now positioned at the first section on the other side of the cut through the other part of the network and out of the network.

Case 3: The remaining transition rules for m_{i} concern (1) train movements where the head or tail of a train is entering or leaving N_{i} at the border that was achieved by the cut, and (2) routes r_{i} that are projections of one or several through routes r in $N: r_{i}=\operatorname{proj}_{i}(r)$ as illustrated in Figs. 3, 4, and 5. If r_{i} is the projection of several routes, one of these is chosen as its corresponding route r in N. (It is not important which one is chosen, but it should be the same all the time.) Without loss of generality, we assume that the through route r has direction UP, starts at a signal s_{1} in N_{-1} and ends at a signal s_{2} in N_{-2}, as shown in Fig. 3.

Fig. 3. A cut through a through route r in a network N.

Fig. 4. Projected route r_{1} of route r in Fig. 3.

Fig. 5. Projected route r_{2} of route r in Fig. 3.

1. When the dispatch $\left(r_{i}\right)$ is applied in π_{i}, the corresponding dispatch (r) rule should be applied in π.
2. When the allocate $\left(r_{i}\right)$ is applied in π_{i}, the corresponding allocate (r) rule should be applied in π.
3. When the $\operatorname{lock}\left(r_{i}\right)$ is applied in π_{i}, first, for all points p of r that are outside $r_{i}\left(p \in \operatorname{points}(r) \backslash\right.$ points $\left.\left(r_{i}\right)\right)$, the rules for switching the actual position of p to the commanded position of p should be applied in π, and then the corresponding $\operatorname{lock}(r)$ rule should be applied in π.
4. For $i=1$: When the entry signal s_{1} is opened in π_{1}, the same rule for opening s_{1} (changing s_{1}. ACT to OPEN) should be applied in π.
5. For $i=2$: When the added entry signal $s_{\text {entry }}^{2}\left(=\operatorname{proj}_{2}\left(s_{1}\right)\right)$ is opened in π_{2}, the corresponding rule for opening s_{1} (changing $s_{1} . A C T$ to OPEN) should be applied in π.
6. For $i=1$: When the route_in_use $\left(r_{1}\right)$ rule is applied in π_{1}, the corresponding rule route_in_use (r) should be applied in π.
7. For $i=2$: When the route_in_use $\left(r_{2}\right)$ rule is applied in π_{2}, then element_in_use $\left(r, t_{2}\right)$ should be applied in π, where t_{2} is the first section in r_{2}.
8. For $i=1$: When the entry signal s_{1} is closed in π_{1}, the same rule for closing s_{1} (changing $s_{1} . A C T$ to CLOSED) should be applied in π.
9. For $i=2$: When the added entry signal $s_{\text {entry }}^{2}$ is closed in π_{2}, the corresponding rule for closing s_{1} (changing $s_{1} . A C T$) should NOT be applied in π (as it has already been applied).
10. When the element_in_use $\left(r_{i}, e\right)$ rule for a section e in the path of r_{i} (which is not the first section in the path of r_{i}) is applied in π_{i}, then the corresponding element_in_use (r, e) rule should be applied in π.
11. When the sequential_release_e $\left(r_{i}, e\right)$ rule for a section e (which is not the last section in the path of r_{i}) is applied in π_{i}, then the corresponding sequential_release_e (r, e) rule should be applied in π.
12. For $i=1$: When the release $\left(r_{1}\right)$ rule is applied in π_{1}, then in π first the sequential_release_e $\left(r, \operatorname{last}\left(r_{1}\right)\right)$ rule should be applied in π, and then a whole sequence of rule applications should take place, dispatching, allocating, locking and opening a sequence of routes out to an exit border in $N_{-2}{ }^{3}$ and moving the train along r and these routes and leaving N, while releasing r and the other routes one by one after use. (So this sequence of events will in particular include release (r).)

Train movements passing a cut where there was no signal in N, for $i=1$:

1. For $i=1$: When the train movement rule for the head leaving the network N_{1} via section t at the cut border is applied in π_{1}, then in π, first the rule describing the movement of the head of the train passing a cut from section t in sections $\left(N_{1}\right)$ to section t_{2} in $\operatorname{sections}\left(N_{2}\right)$ should be applied, and then the element_in_use $\left(r, t_{2}\right)$ rule should be applied.
2. For $i=1$: When the train movement rule for the tail leaving the network N_{1} via section t at the cut border is applied in π_{1}, then the rule describing the movement of the tail of train passing a cut from section t in $\operatorname{sections}\left(N_{-1}\right)$ to section t_{2} in sections $\left(N_{-2}\right)$ should be applied in π.

Train movements passing a cut where there was no signal in N, for $i=2$:

1. For $i=2$: When the train movement rule for the head entering the network N_{2} via section t_{2} at the cut border is applied in π_{2}, then first a whole sequence of rule applications should take place in π, dispatching, allocating, locking and opening a sequence of routes from an entry border in the down end of N_{-1} up to $\left.s_{1}\right]^{4}$ and entering a train N from that border and moving it along these routes (and releasing them one by one after use) and r down to the section t just before the cut (note that these steps include the application of route_in_use (r) and close $\left(s_{1}\right)$), and finally the rule describing the movement of the head passing the cut from section t in $\operatorname{sections}\left(N_{1}\right)$ to section t_{2} in sections $\left(N_{2}\right)$ should be applied in π.
2. For $i=2$: When the train movement rule for the tail entering the network N_{2} via section t_{2} at the cut border is applied in π_{2}, then in π, first the rule describing the movement of the tail of train passing a cut from section t in sections $\left(N_{1}\right)$ to section t_{2} in sections $\left(N_{2}\right)$ should be applied, and then sequential_release_e (r, t) should be applied.

Train movements passing a cut where there was a signal in N : see handwritten notes.

[^2]Validity of $\boldsymbol{\pi}$ For $i=1,2$, it should then be demonstrated that the constructed path π is a path of m. For this to hold, the first state in π should be q_{0}, and each time a state transition rule for m should be applied to a state q in the construction of π, it should be ensured that the rule was actually applicable in q, i.e. its guard was true in q.

The first is clearly the case. In order to prove the latter, some state correspondence lemmas are needed expressing relations $\rho\left(q, q_{i}\right)$ that at any point in the construction process hold between the last considered state q_{i} in π_{i} and the last added state q in π. Furthermore, some more lemmas and corollaries about projection of network elements and about network traversability are needed. Examples of such lemmas and corollaries are presented in the next subsections.

Here is an example of how we have proved rule applicability for the case considered in item 12 of Case 3 in Sec. 3.1. (This is one of the more complicated cases.)
Example 1. Let q_{1} is that last considered state in π_{1} and q is the last state added to π.

First it should be proved that when the transition rule release $\left(r_{1}\right)$ is applicable in q_{1} then sequential_release_e $\left(r, \operatorname{last}\left(r_{1}\right)\right)$ is applicable in q. I.e. we should prove that r.MODE $=O C C U P I E D$ and $t . M O D E=U S E D$ and $\operatorname{vacant}(t)$ in q, where $t=\operatorname{last}\left(r_{1}\right)$ is the last section of r_{1} in N_{1} (i.e., in N, t is the last section of r before the cut). This follows from (1) the corresponding properties in $q_{1}: r_{1} \cdot M O D E=O C C U P I E D$ and $t \cdot M O D E=U S E D$ and $\operatorname{vacant}(t)$ that hold as release $\left(r_{1}\right)$ was applicable, and (2) the state correspondence Lemma 9 and Lemma 12 .

Let q^{\prime} be the state in π that is achieved by applying sequential_release_e(r,last $\left.\left(r_{1}\right)\right)$ in q. It should now be proved that we can prepare routes in N_{2} and move a train present on t_{2} through r and these routes out of the network. This is possible due to Corollary 7 and state correspondence Lemma 14 .

3.2 Lemmas about projection of network elements

In the following, let r be a route, $\operatorname{sections}(r)$ be the set of sections in the path of r, points (r) be the set of points in the path of r, first $(r) /$ last (r) be the first/last section in the path of $r, \operatorname{src}(r) / d s t(r)$ be the entry/exit signal of $r, r e q(r, p)$ be the required position of a point p in points (r), and $\operatorname{conflicts}(r)$ be the set of conflicting routes of r.

Lemma 1 (projection gives subsets of network elements). $\operatorname{sections(\operatorname {proj}_{i}(r))\subseteq }$ sections (r) and points $\left(\operatorname{proj}_{i}(r)\right) \subseteq \operatorname{points}^{(r) w h e n ~} \operatorname{proj}_{i}(r)$ is defined.

Lemma 2 (projection of entry/exit signals of a route). $\operatorname{scr}\left(\operatorname{proj} j_{i}(r)\right)=$ $\operatorname{proj}_{i}(\operatorname{src}(r))$ and dst($\left.\operatorname{proj}_{i}(r)\right)=\operatorname{proj}_{i}(\operatorname{dst}(r))$ when $\operatorname{proj}_{i}(r)$ is defined.

Lemma 3 (projection preserves required point settings). Assume proj ${ }_{i}(r)$ is defined. The required point setting for any point $p \in \operatorname{points}\left(\operatorname{proj}_{i}(r)\right)$ in the path of $\operatorname{proj}_{i}(r)$ in N_{i} is the same as for p in the path of r in $N: \operatorname{req}\left(\operatorname{proj}_{i}(r), p\right)$ $=r e q(r, p)$.

Lemma 4 (projection preserves and reflects conflicts).
$\operatorname{proj}_{i}(c r) \in \operatorname{conflicts}\left(\operatorname{proj}_{j}(r)\right)$ in N_{i} if and only if $c r \in \operatorname{conflicts}(r)$ in N, when $\operatorname{proj}_{i}(r), \operatorname{proj}_{i}(c r)$ are defined and $\operatorname{proj}_{i}(c r) \neq \operatorname{proj}_{i}(r)$.

The lemmas follow from the definition of the projection function on network elements.

3.3 Network Traversability

In RobustRailS, any legal railway network N has the following properties:
Lemma 5 (Network traversability).
Any internal signal s of a network N is reachable along some consecutive routes from some entrance of the network, and from s some exit of the network is reachable along some consecutive routes.

Proof. This lemma follows from the fact that any entrance/exit to/from the network is covered by an entry/exit signal, and for any internal signal s in direction UP/DOWN, there exists a path from at least one entry signal in the DOWN/UP end of the network to s, and there exists a path from s to at least one exit signal in the UP/DOWN end of the network. Since we in this work include all possible elementary signal-to-signal routes in a network, each of these paths are made of one or several consecutive routes (going from one signal along the path to the next signal along the path).

The model m generated for network N has the following route traversability properties:

Lemma 6 (Route traversability 0).

If a route r has an open entry signal s, but is not yet occupied, and a train in the direction of the route is present on the last section before the entry signal s, it is possible for the train to traverse the route up to any section t in the route: it can enter the route, and then the route_in_use event followed by the closing of the entry signal will take place, whereupon a series of train movement events and (element_in_use and sequential_release) reactions to these by the route controller can take place, until the train is on section t.

Proof. Inspecting the guards of transition rules for these events, it is easy to see that the suggested sequence of events is actually possible.

Lemma 7 (Route traversability 1).

If a route r is occupied by a train going along the route and those sections of the route that are in front of the train are vacant, then the train can move to the last section of the route.

Proof. It is easy to see that the train movement rules for bringing the train to the end of the route (and the corresponding reactions by the route controller) can be applied.

Lemma 8 (Route traversability 2).

If a route r with entry signal s is in mode FREE and all its track elements are vacant and in mode FREE and the same holds for all routes cr that are in conflict with r, it is possible to make a sequence of events preparing r for being used (i.e. dispatching r, allocating r, switching the points in the route as commanded in allocation step, locking r, and finally opening the entry signal s of r as commanded in locking step). Then, if a train in the direction of the route is present on the last section before the entry signal s of r, it is possible for the train to traverse the route: it can enter the route, and then the route_in_use event followed by the closing of the entry signal will take place, whereupon a series of train movement events and (element_in_use and sequential_release) reactions to these by the route controller can take place, until the train is on the last section of the route. If that section is at a border, the train can then leave the network and the route will be released.

Proof. Inspecting the guards of transition rules for these events, it is easy to see that the suggested sequence of events is actually possible.

The following corollary expresses that under certain conditions it is possible to let a train enter a network N and move along some routes to the front of an internal signal s :

Corollary 4. For any internal signal s of a network N, consider a sequence of consecutive routes from some entrance of the network up/down to s (note such a sequence exists according to Lemma 5). If these routes are in mode FREE and all their track elements are vacant and in mode FREE and the same holds for all routes cr that are in conflict with these route, then it is possible to let a train traverse from the entrance along the routes up/down to the last section before s.

Proof. Follows from Lemma 8: One by one each of the routes are first being prepared for being used and then the train is traversing that route until its last section.

Similarly, the following corollary expresses that under certain conditions it is possible to move a train from the section before an internal signal s to an exit and let it leave the network:

Corollary 5. For any internal signal s of a network N, consider a sequence of consecutive routes from s up/down to an exit of the network N (note such a sequence exists according to Lemma 5). If these routes are in mode FREE and all their track elements are vacant and in mode FREE and the same holds for all routes cr that are in conflict with these route, then it is possible to let a train present at the last section before s traverse the routes one by one and leave the network.

Proof. Follows from Lemma 8. One by one each of the routes are first being prepared for being used and then the train is traversing that route until its last section.

The following corollary expresses conditions under which it is possible to let a train enter a network N and move up the last section before the cut in N :

Corollary 6 (Moving a train through opposite network up to the cut). Given a through route r (passing a cut) from one signal s_{1} to another signal s_{2} in a network N. Let R_{1} be a sequence of consecutive routes from some entrance of the network up/down to s_{1}. (Note that such a sequence exists according to Lemma 5.)

If (1) the routes in R_{1} are in mode FREE and all their track elements are vacant and in mode FREE and the same holds for all routes cr that are in conflict with these routes, and (2) r has an open entry signal s_{1}, but is not yet occupied, it is possible to let a train enter the network and go along the routes in R_{1} and r up to the last section before the cut.

Proof. Follows from Corollary 4 and Lemma 6.
The following corollary expresses conditions under which it is possible to move a train from the first section after a cut through routes leading it out of the network:

Corollary 7 (Moving a train in opposite network out of N). Given a through route r (passing a cut) from one signal s_{1} to another signal s_{2} in a network N. Let R_{2} be a sequence of consecutive routes from s_{2} up/down to an exit border of N. (Note that such a sequence exists according to Lemma 5.)

If r is occupied by a train going along the route and (1) the train has reached the first section t_{2} after the cut and those sections of the route r that are in front of the train are vacant and (2) the routes of R_{2} are in mode FREE and all their track elements are vacant and in mode FREE and the same holds for all routes cr that are in conflict with these routes, then it is possible to let a train go along the rest of r and the routes in R_{2} and leave the network.

Proof. Follows from Lemma 7 and Corollary 5

3.4 State correspondence lemmas

Lemma 9 (State correspondence for track sections in N_{i}). At any point in the construction process of π from π_{i}, it holds that $\overline{L_{i}}\left(q_{i}\right)=\overline{\left.L\right|_{i}}\left(\left.q\right|_{i}\right)$, where q_{i} is that last considered state in π_{i} and q is the last state added to π. Note that this also means that $q_{i}(t)=q(t)$ for sections $t \in \operatorname{sections}\left(N_{i}\right)$.

Proof. This can be proved by induction. It is easy to see that the relation holds for the initial states. It is also easy to see that any step in the construction process of π from π_{i} preserves this relation: Either a concurrent step makes the same changes to variables for sections in N_{i} or they make no changes to these variables. (Note that the state changes made in a step from q to q^{\prime} in π may change variables for sections outside N_{i}, but these variables are removed by the projection to $\left.q\right|_{i}$ and $\left.q^{\prime}\right|_{i}$.)

Lemma 10 (State correspondence for routes totally inside N_{-i}). At any point in the construction process of π from $\pi_{i}, q(r)=q_{i}(r)$ for those routes $r \in \operatorname{routes}(N)$ that are completely inside N_{i}, where q_{i} is that last considered state in π_{i} and q is the last state added to π.

Proof. This can be proved by induction: It is easy to see that the relation holds for the initial states. It is also easy to see that any step in the construction process of π from π_{i} preserves this relation.
Lemma 11 (State correspondence for signals totally inside N_{-i}). At any point in the construction process of π from $\pi_{i}, q(s)=q_{i}(s)$ for those signals $s \in \operatorname{signals}(N)$ that are completely inside N_{-i} (and are especially not an entry signal of a through route), where q_{i} is that last considered state in π_{i} and q is the last state added to π.

Proof. This can be proved by induction: It is easy to see that the relation holds for the initial states. It is also easy to see that any step in the construction process of π from π_{i} preserves this relation.

For any route r_{i} in N_{i} that is the projection of one or more through routes in N, let r be the chosen corresponding through route in N. The state correspondence between r and r_{i} is as described in the following lemma.
Lemma 12 (State correspondence for through routes). If the through route starts in N_{-i} : At any point in the construction process of π from $\pi_{i}, q(r)=$ $q_{i}\left(r_{i}\right)$, where q_{i} is that last considered state in π_{i} and q is the last state added to π.
If the through route ends in N_{-i} : See hand-written notes.
Proof. This can be proved by induction: It is easy to see that the relation holds for the initial states. It is also easy to see that any step in the construction process of π from π_{i} preserves this relation.

For any route r_{i} in N_{i} that is the projection of one or more through routes in N and for which its entry signal s_{i} is an added entry signal, let r be the chosen corresponding through route in N and let s be the entry signal of r. (I.e. $\operatorname{proj}_{i}(s)=s_{i}$ and $\operatorname{proj}_{i}(r)=r_{i}$.) The state correspondence between s and s_{i} is as as described in the following lemma.
Lemma 13 (State correspondence for added entry signals). See handwritten notes.

Proof. This can be proved by induction: It is easy to see that the relation holds for the initial states. It is also easy to see that any step in the construction process of π from π_{i} preserves this relation.

Let $\operatorname{opposite}(1)=2$ and opposite $(2)=1$.
Lemma 14 (States of track sections and routes in opposite subnetwork). At any point in the construction process of π from π_{i}, it holds for the last added state q in π after a step in $\pi_{i}{ }^{5}$;

[^3]$-\operatorname{vacant}(t)=$ true and $t . M O D E=F R E E$ for sections $t \in \operatorname{sections}(N)$ that are in the opposite subnetwork (i.e. $t \in \operatorname{sections}\left(N_{\text {opposite }(i)}\right)$), except if t is neighbour to the cut.
$-r . M O D E=F R E E$ for those routes $r \in \operatorname{routes}(N)$ that are completely inside the opposite subnetwork $N_{\text {opposite(i) }}$.

Proof. This can be proved by induction: It is easy to see that the relation holds for the initial states. It is also easy to see that any step in the construction process of π from π_{i} preserves these properties.

3.5 Proof of stutter equivalence

We have now proved for $i=1,2$ that for an arbitrary path $\pi_{i} \in \operatorname{Path}\left(m_{i}\right)=$ $\operatorname{Path}\left(\overline{m_{i}}\right)$, we can construct a path $\pi \in \operatorname{Path}(m)$ such that it satisfies Lemma 9 , i.e. $\overline{L_{i}}\left(q_{i}\right)=\overline{\left.L\right|_{i}}\left(\left.q\right|_{i}\right)$, in any step of the construction process. Hence, π_{i} and $\left.\pi\right|_{i}$ are stutter equivalent (as $\pi \in \operatorname{Path}(m)$ implies $\left.\pi\right|_{i} \in \operatorname{Path}\left(\overline{m_{i}}\right)$).

References

BK08. Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
HF22. Anne E. Haxthausen and Alessandro Fantechi. Compositional verification of railway interlocking systems. Submitted for publication, 2022.
VHP14. Linh H. Vu, Anne E. Haxthausen, and Jan Peleska. A Domain-Specific Language for Railway Interlocking Systems. In Eckehard Schnieder and Géza Tarnai, editors, FORMS/FORMAT 2014-10th Symposium on Formal Methods for Automation and Safety in Railway and Automotive Systems, pages 200-209. Institute for Traffic Safety and Automation Engineering, Technische Universität Braunschweig, 2014.
VHP17a. Linh H. Vu, Anne E. Haxthausen, and Jan Peleska. A domain-specific language for generic interlocking models and their properties. In Alessandro Fantechi, Thierry Lecomte, and Alexander Romanovsky, editors, Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification: Second International Conference, RSSRail 2017, Pistoia, Italy, November 14-16, 2017, Proceedings, pages 99-115, Cham, 2017. Springer International Publishing.
VHP17b. Linh Hong Vu, Anne E. Haxthausen, and Jan Peleska. Formal modelling and verification of interlocking systems featuring sequential release. Science of Computer Programming, 133, Part 2:91 - 115, 2017. http://dx.doi.org/10.1016/j.scico.2016.05.010.
Vu15. Linh Hong Vu. Formal Development and Verification of Railway Control Systems - In the context of ERTMS/ETCS Level 2. PhD thesis, Technical University of Denmark, DTU Compute, 2015.

[^0]: General rights
 Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal

 If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

[^1]: ${ }^{1}$ Here the projection operator on states has been lifted to paths in the obvious way.
 ${ }^{2}$ Note that $\operatorname{signals}\left(N_{-i}\right)$ does not include any added border signal present in N_{i}.

[^2]: ${ }^{3}$ Such a sequence of routes exist according to Lemma 5
 ${ }^{4}$ Such a sequence of routes exist according to Lemma 5 .

[^3]: ${ }^{5}$ This does not necessarily hold for intermediate states in cases where a step in π_{i} leads to several added states in π.

