Technical Notes on the Proof of a Stutter Trace Inclusion Theorem

Haxthausen, Anne Elisabeth; Fantechi, Alessandro

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Haxthausen, A. E., \& Fantechi, A. (2021). Technical Notes on the Proof of a Stutter Trace Inclusion Theorem. Technical University of Denmark.

[^0]
Technical Notes on the Proof of a Stutter Trace Inclusion Theorem

July 16, 2021

Anne E. Haxthausen ${ }^{1}$ and Alessandro Fantechi ${ }^{2}$
${ }^{1}$ DTU Compute, Technical University of Denmark, Lyngby, Denmark
${ }^{2}$ DINFO, University of Florence, Via S. Marta 3, Firenze, Italy

Abstract

This document provides internal technical notes on our proof of a theorem about stutter trace inclusion stated in our manuscript entitled Compositional verification of railway interlocking systems. These notes are not standalone and rely on definitions given in that manuscript.

1 Introduction

Thoughout these notes, assume given a network N and two subnetworks N_{1} and N_{2} that have been created by a single cut through N according to our compositional method. Let m, m_{1} and m_{2} be models generated for these networks using the RobustRails tools for interlocking systems with the option without overlaps and without flank and front protection. Let $\overline{\left.m\right|_{i}}$ be the reduced projection of m on network N_{i} and let $\overline{m_{i}}$ be the reduced model of m_{i}, for $i=1,2$.

In these notes we explain how we have proved the following theorem that is used for proving that our compositional verification method is sound.

1.1 The theorem

Theorem 1 (Reduced subnetwork model stutter trace includes reduced projection). $\left.m\right|_{i} \unlhd \overline{m_{i}}$, for $i=1,2$.
(which means $\forall \overline{\left.\pi\right|_{i}} \in \operatorname{Paths}\left(\overline{m_{i}}\right) \quad \exists \overline{\pi_{i}} \in \operatorname{Paths}\left(\overline{m_{i}}\right)$ such that $\overline{\left.\pi\right|_{i}}$ and $\overline{\pi_{i}}$ are stutter equivalent).

1.2 Proof overview

We can prove Theorem 1 by proving that for an arbitrary path π in $\operatorname{Paths}(m)$, it is possible to find a path π_{i} in $\operatorname{Paths}\left(m_{i}\right)$, such that $\left.\pi \mid, 1\right]$ and π_{i} are stutter equivalent wrt. the labeling functions of $\overline{\left.m\right|_{i}}$ and $\overline{m_{i}}$, respectively. This approach is valid as by definition of the model projection and reduction operators, we have $\operatorname{Paths}\left(\overline{m_{i}}\right)=\operatorname{Paths}\left(\left.m\right|_{i}\right)=\left\{\left.\pi\right|_{i} \mid \pi \in \operatorname{Paths}(m)\right\}$ and Paths $\left(\overline{m_{i}}\right)=\left\{\pi_{i} \mid \pi_{i} \in\right.$ $\left.\operatorname{Paths}\left(m_{i}\right)\right\}$.

[^1]In Sec. 2 we will describe how to construct π_{i} from an arbitrary path π in Paths (m) step by step by applying transition rules for m_{i}. At the same time we argue why the the applied transition rules are enabled. In order to argue for that some lemmas concerning properties of projected network elements and some theorems about relations between states in π and π_{i} are needed. These lemmas and theorems are defined in Sec. 3 and Sec. 4 .

In Sec. 5 and Sec. 6 the path construction and state correspondence theorems are generalised to the case where several through routes are allowed through a cut.

In Sec. 7 we prove that $\left.\pi\right|_{i}$ and π_{i} are stutter equivalent wrt. the labeling functions of $\left.m\right|_{i}$ and $\overline{m_{i}}$, respectively.

2 Construction of π_{i}

Given an arbitrary path π in $\operatorname{Paths}(m), \pi_{i}$ is constructed as follows:

- The first state of π_{i} is chosen to be the initial state $q_{i_{0}}$ of m_{i}.
- Then π_{i} is obtained by adding more and more states to its path by considering the transitions in π, one by one, in the order they appear. Each transition from a state q to a state q^{\prime} in π, leads to the addition of 0,1 or more states to π_{i}. What exactly should be added depends on the transition rule r that caused the state change from q to q^{\prime} in π. Below we will explain this by case over various classes of rules.

We have the following classes of transition rules:

1. Some transition rules in m have no counterpart in m_{i} as they concern network elements in N for which the projection to N_{i} is undefined. A transition from a state q to a state q^{\prime} in π caused by such a rule should not lead to any state change in π_{i} (so no state is added to π_{i} in our construction process). These rules include:
(a) Rules for switching points p (i.e. changing $p . P O S$) that are outside N_{i}.
(b) Rules for switching signals s (i.e. changing $s . A C T$) that are outside N_{i}, except if s is an entry signal for a through route and thereby is projected to the added entry signal in N_{i}. For the exceptional case, see item 3a Note that there is no exception, if s is an exit signal for a through route, even that it is mapped to the added exit signal in N_{i}, as that added exit signal is a border exit signal for which there are no transition rules.
(c) Rules for train movements that only involve sections t outside N_{i}.
(d) Rules for controllers of routes that are completely outside N_{i}.
2. Some transition rules in m also exist in m_{i} (with the same guards and same variable updates) as they only concern network elements in N for which the projection to N_{i} is the identity. A transition from a state q to a state q^{\prime} in π caused by such a rule should lead to a state change in π_{i} obtained by applying the same rule to the last added state q_{i}. As the guard of such rule
was true for state q in π, it is also true for state q_{i} in π_{i} due to the fact that the guard only refers to variables for which there is a state correspondence according to Theorems 2, 3and 4 (shown further below). These rules include:
(a) Rules for switching points p (i.e. changing $p . P O S$) that are inside N_{i} (i.e. $p \in \operatorname{points}\left(N_{i}\right)$)
(b) Rules for switching signals s (i.e. changing $s . A C T$) that are inside N_{-i} (i.e. $\left.s \in \operatorname{signals}\left(N_{-i}\right)^{2}\right)$
(c) Rules describing the train movement of the head or tail of a train from a section t to a neighbouring section t^{\prime}, both inside $N_{i}\left(t, t^{\prime} \in \operatorname{sections}\left(N_{i}\right)\right)$.
(d) Rules describing how the head or tail of a train enters/leaves the network at a border which is also in N_{i}.
(e) Rules for changing the mode of routes r completely inside N_{i}, except the allocate rule for the case where the route r is in conflict with one or several through routes cr . (This is an exeption, as the guard of the allocate rule for r will in that case have conditions on the states of conflicting through routes $c r$, but proj_{i} is not the identity for such routes $c r$. Instead there is a corresponding rule, see item 3d.)
3. Some rules in m have a corresponding rule for m_{i}. A transition from a state q to a state q^{\prime} in π caused by such a rule usually leads to a state change in π_{i} obtained by applying the corresponding rule to the last added state in π_{i}, however, in a few cases the application of the corresponding rule is deferred to a later step (where that rule is applied right after another rule in π_{i}).
The rules having a corresponding rule include:
(a) Rules for switching an entry signal s (changing $s . A C T$) of a through route for which s is outside N_{i} and therefore is mapped by the projection to an added entry signal $s_{\text {entry }}^{i}$ in N_{i} : The corresponding rule is the one switching the added entry signal $s_{\text {entry }}$. If $s . A C T$ is changed to OPEN in π then the corresponding rule for opening the added entry signal $s_{\text {entry }}$ should be applied in π_{i} (below we will explain that this is possible as the truth of its guard follows from the truth of the guard of the rule applied in π), but if the signal s is changed to CLOSED in π, the corresponding rule for closing the added entry signal $s_{\text {entry }}$ should not be applied now (but later, see item 3i) in π_{i}. So when s is OPEN in the last considered state q of π, the added entry signal in N_{i} is also OPEN in last added state q_{i} of π_{i}.

- Guards comparison: In the first case, we had that $C L O S E D=$ $s . A C T \neq s . C M D=O P E N$ in q (as the guard for opening the signal s was true in q). Let r be the route for which the $\operatorname{lock}(r)$ rule had previously set $s . C M D=O P E N$ and $r . M O D E=L O C K E D$. r.MODE must still be LOCKED as $s . A C T$ needs to be changed to $O P E N$ by the signal switching rule for s, before r.MODE can be changed to $O C C U P I E D$ by the allocate (r) rule (otherwise a train can't enter the route and enable the allocate (r) rule). The guard

[^2]$s_{\text {entry }_{i}} \cdot A C T \neq s_{\text {entry }_{i}} \cdot C M D$ of the corresponding rule applied in π_{i} is also true for state q_{i} in π_{i} as $s_{\text {entry }} . C M D=s . C M D$ and $s_{\text {entry }}^{i}$. $A C T=s . A C T$ when $r \cdot M O D E=L O C K E D$, cf. Theorem 6 formulas (3.0) and (4.0) for the case where there is only one through route and Theorem 10 formulas (3.0) and (4.0) for the case where there is several through routes.
(b) Any rule for rule for m describing the movement of the head or tail of a train passing a cut from t to t^{\prime}, where $t \in \operatorname{sections}\left(N_{i}\right)$ and $t^{\prime} \in \operatorname{sections}(N) \backslash \operatorname{sections}\left(N_{i}\right)$ is similar to the train movement rule for m_{i} describing the head or tail leaving the network N_{i} via t :
i. The guards are the same, except for the movement of the head in the case where there is already a signal s in N protecting the entrance of t^{\prime}. In this case there is an extra guard condition in m requiring this signal to be OPEN. (There is no such condition on the projected signal $\operatorname{proj}_{i}(s)$ in m_{i} as this is an exit signal in N_{i} and its state is hence ignored by the exit rule for m_{i}.) When the guard of such rule is true for state q in π, the corresponding guard is also true for state q_{i} in π_{i} due to the fact that the corresponding guard is weaker and the common guard condition only refers to variable t for which there is a state correspondence according to Theorem 2 .
ii. Their updates are the same, except that in m_{i} there is no update of the occupancy status of t^{\prime}. This also holds for $\left.m\right|_{i}$ as t^{\prime} is removed by the projection proj_{i}.
(c) Any rule for m describing the movement of the head or tail of a train passing a cut from t^{\prime} to t, where $t \in \operatorname{sections}\left(N_{i}\right)$ and $t^{\prime} \in \operatorname{sections}(N) \backslash$ sections $\left(N_{i}\right)$ is similar to the train movement rule for m_{i} describing the head or tail entering the network N_{i} via t :
i. Comparison of guards: (1) Such a rule for m has a guard condition on the occupancy status of the section t^{\prime} that the train is leaving. That is not present in the guard of the corresponding rule for m_{i} and t^{\prime} is removed by the projection. (2a) For head movements, if there is a signal s in N protecting the entrance of t, then there is an additional a guard condition in both rules requiring s to be OPEN. (2b) For head movements, if there is no signal in N protecting the entrance of t (so the train is using a through route r), then there is an extra guard condition in the corresponding rule for m_{i} requiring the added entry signal in N_{i} to be OPEN. Note that this added entry signal was opened when the entry signal of the through route was opened, cf. item 3a, and will first be closed in m_{i} when the element_in_use $\left(r, \operatorname{first}\left(\operatorname{proj}_{i}(r)\right)\right)$ rule is applied in m, cf. item 3i, and that happens after the current step we are considering. So this extra guard condition in the corresponding rule requiring the added entry signal in N_{i} to be OPEN will be true. (3) For tail movements, in the corresponding rule for m_{i} there is extra guard condition on the occupancy status of t. The truth of that follows from the truth of the extra guard condition on the occupancy status of t^{\prime} of the
rule for m, and train integrity (expressing reachable combinations of occupancy status of neighbouring sections).
Hence, when the guard of any rule for passing the cut in N is true for state q in π, the corresponding guard is also true for state q_{i} in π_{i}.
ii. Their updates are the same, except that in m_{i} there is no update of the occupancy status of t^{\prime}. This also holds for $\left.m\right|_{i}$ as t^{\prime} is removed by the projection proj_{i}.
(d) The allocate rule for any route r which is totally inside N_{i} and which is in conflict with one or several through routes $c r$ is similar to the allocate rule for r in m_{i}. When the former is applied in π, the latter should be applied in π_{i}. The guards of these rules are the same (r.MODE $=$ MARKED and some conditions on the track sections of the route), except that conditions $($ cr. $M O D E \neq A L L O C A T I N G) \wedge(c r . M O D E \neq L O C K E D)$ for conflicting through routes $c r$ of r in the former rule are replaced in the latter rule with conditions $\left(c r^{\prime} \cdot M O D E \neq A L L O C A T I N G\right) \wedge$ $\left(c r^{\prime} \cdot M O D E \neq L O C K E D\right)$, where $c r^{\prime}=\operatorname{proj}_{i}(c r)$ is the projection of cr in N_{i}, as the set of conflicting rules of $\operatorname{proj}(r)=r$ is exactly the set of projections of the conflicting routes $c r$ of r, cf. Lemma 4. When the guard of the former rule is true in q, the guard of the latter rule is true in q_{i} due to the state correspondence stated in Theorems 2, 3and 5. The variable updates of the two rules are exactly the same.
In the following, it is assumed that two through routes are not projected to the same route. This assumption will be removed in Sec. 5 , Without loss of generality, assume that the through route r has direction UP, starts at a signal s_{1} in N_{-1} and ends at a signal s_{2} in N_{-2}, and let the first track section of the route path be t_{1}, as shown in Fig. 1

Fig. 1. A cut through a through route r in a network N.
(e) When the dispatch rule for a through route r is applied in π, the dispatch rule for $\operatorname{proj}_{i}(r)$ should be applied in π_{i}. The guards of the two rules are the same modulo route renaming (they both require the route mode to be FREE). When the guard of the former rule is true in q, the guard

Fig. 2. Projected route r_{2} of route r in Fig. 1 .
of the latter rule is true in q_{i} due to the state correspondence stated in Theorem 5 Update of route modes are the same, modulo route renaming by proj_{i}.
(f) When the allocate rule for a through route r is applied in π, the allocate rule for $\operatorname{proj}_{i}(r)$ should be applied in π_{i}. The conditions (on $e \in \operatorname{sections}(r)$) in the guard of the former rule constitute a superset of the conditions in the guard of the latter rule and the conditions on the route modes are the same modulo renaming of routes (they both require the route mode to be MARKED). When the guard of the former rule is true in q, the guard of the latter rule is true in q_{i} due to the state correspondence stated in Theorem 2 (for sections and points) and Theorem 5 (for through routes). Update of route modes are the same, modulo renaming by proj_{i}. The updates of states of sections and points of the path in the rule for $\operatorname{proj}_{i}(r)$ is a subset of the updates in the rule for r due to Lemmas 1 and 3. The additional updates in the rule for r are of sections and points that are removed by the projection.
(g) When the lock rule for a through route r is applied in π, the lock rule for $\operatorname{proj}_{i}(r)$ should be applied in π_{i}. The conditions (on $e \in \operatorname{sections}(r)$ and $p \in \operatorname{points}(r))$ in the guard of the former rule constitute a superset of the conditions in the guard of the latter rule due to Lemmas 1 and 3, and the condition that the route mode is ALLOCATING is the same modulo route renaming. When the guard of the former rule is true in q, the guard of the latter rule is true in q_{i} due to the state correspondence stated in Theorems 2 (for sections and points), and 5 (for through routes). Updates of route mode and commanded setting (OPEN) of entry signals are the same, modulo route and signal renaming by proj_{i}.
(h) When the route_in_use rule for a through route r is applied in π, then, the route_in_use rule for $r_{1}=\operatorname{proj}_{1}(r)$ should be applied in π_{1} (this rule is exactly the same modulo route and signal renaming by proj_{1}), while no state should be added to π_{2}. In the first case when the guard of the former rule is true in q, the guard of the latter rule is true in q_{1} due to the state correspondence stated in Theorems 2 (for sections) and 5 (for through routes), and the updates of the route MODE (to OCCUPIED) and the route entry signals CMD variable $s_{1} \cdot C M D$ (to CLOSED) are the same. $t_{1} \cdot M O D E$ is updated to the same (USED).
(i) When the element_in_use (r, e) rule for a through route r and a section e in the path of r (which is not the first section in the path) is applied in π, then, (1) if e is inside N_{1} (and is not the first section t_{1}), then
the element_in_use $\left(r_{1}, e\right)$ rule for $r_{1}=\operatorname{proj}_{1}(r)$ and e should be applied in π_{1}, but no state should be added to π_{2}; (2) else, if e is inside N_{2} and is the first section t_{2} in the path of $r_{2}=\operatorname{proj}_{2}(r)$, then first the route_in_use $\left(r_{2}\right)$ rule for $r_{2}=\operatorname{proj}_{2}(r)$ and e should be applied and then the signal rule closing the (added) entry signal $s_{\text {entry }}^{2}$ of r_{2} should be applied in π_{2}, and (3) otherwise (i.e. e is inside N_{2} and is not the first section t_{2} of r_{2}) then the element_in_use $\left(r_{2}, e\right)$ rule for $r_{2}=\operatorname{proj}_{2}(r)$ and e should be applied in π_{2}, but no state should be added to π_{1}.

Guard comparisons: The guard of the element_in_use (r, e) has conditions on e (incl. e.MODE $=E X C L K$ and $\neg \operatorname{vacant}(e)$) and its neighbour sections and requires $r . M O D E=O C C U P I E D$.
Case (1): The element_in_use $\left(r_{1}, e\right)$ rule has the same conditions on e and requires $r_{1} \cdot M O D E=O C C U P I E D$. When the guard of the former rule is true in q, the guard of the latter rule is true in q_{1} due to the state correspondence stated in Theorems 2 (for sections) and 5 formula (1.1) (for through routes) as $q\left(\operatorname{last}\left(r_{1}\right)\right) \neq F R E E$ as $e . M O D E=E X C L K$ is true in q as the guard is true (which means that all sections after e, including last $\left(r_{1}\right)$ have MODE EXCLK).
Case (2): The guard of the route_in_use (r_{2}) rule has conditions: \neg vacant (e) and $r_{2} \cdot M O D E=L O C K E D$. When the conditions of the guard of the rule applied in π are true in q, the former conditions are true in q_{2} due to the state correspondence stated in Theorems 2 (for sections) and Theorem 5 formula (2.1) for through routes. After that rule has been applied the next rule can be applied because the commanded signal state now differs from the actual signal state.
Case (3): The guard of the element_in_use $\left(r_{2}, e\right)$ rule has the same conditions on e and requires $r_{2} \cdot M O D E=O C C U P I E D$. When the guard of the element_in_use (r, e) is true in q, the guard of element_in_use $\left(r_{2}, e\right)$ is true in q_{2} due to the state correspondence stated in Theorems 2 (for sections) and Theorem 5 formula (2.2) for through routes as $q\left(\operatorname{first}\left(r_{2}\right)\right) \neq$ $E X C L K$ as the train has passed $\operatorname{first}\left(r_{2}\right)$.

In all cases $e . M O D E$ is updated to $U S E D$. In Case (2) the route_in_use $\left(r_{2}\right)$ rule additionally updates $r_{2} \cdot M O D E$ to $O C C U P I E D$ and commands the source signal $s_{\text {entry }}^{2}$ to be $C L O S E D$. The second rule application then changes the actual signal $s_{\text {entry }}^{2} . A C T$ to $C L O S E D$.
(j) When the sequential_release_e rule for a through route r and section e (which is not the last section in the path of r) is applied in π, then (1) if e is not in N_{i} then no rule should be applied in $\pi_{i},(2)$ else if e is in N_{i} and is not the last element in the projected route $r_{i}=\operatorname{proj}_{i}(r)$, then the sequential_release_e rule for r_{i} and section e should be applied in π_{i}, and (3) otherwise (e is in N_{1} and is the last element in the projected route $r_{1}=\operatorname{proj}_{1}(r)$), then the release rule for r_{1} should be applied in π_{1}. In cases (2) and (3), the guards of the two rules are identical modulo naming of routes, and when the guard of the former is true in q, it is
also true in q_{i} due to the state correspondence rules. Both rules update e.MODE to FREE. In case (3) the second rule additionally updates $r_{1} \cdot M O D E$ to FREE in π_{1}, while r.MODE stays OCCUPIED in π.
(k) When the release rule for a through route r is applied in π, then, no rule should be applied in π_{1} (as the last section of r is not in r_{1} - the release rule for r_{1} was already applied at the time where the sequential_release_e rule was applied in π for r and the last section in r_{1}, cf. the item above), while the release rule for $r_{2}=\operatorname{proj}_{2}(r)$ should be applied in π_{2}. In the latter case, the guards of the two rules are identical modulo naming of routes, and when the guard of the former is true in q, it is also true in q_{2} due to the state correspondence rules.

The constructed state sequence π_{i} is a path of m_{i} as any path in $\operatorname{Paths}\left(m_{i}\right)$ should start with $q_{i_{0}}$ which is the case for π_{i}, and each time we added a new state q_{i}^{\prime} to π_{i} as explained above we obtained that by applying a state transition rule of m_{i} to the latest added state q_{i} in π_{i}, and therefore $\left(q_{i}, q_{i}^{\prime}\right) \in R_{i}$, where R_{i} is the transition relation of m_{i}.

3 Lemmas about projection of network elements

In the following, let r be a route, sections (r) be the set of sections in the path of r, points (r) be the set of points in the path of r, first $(r) / l a s t(r)$ be the first/last section in the path of $r, \operatorname{src}(r) / d s t(r)$ be the entry/exit signal of $r, r e q(r, p)$ be the required position of a point p in points (r), and conflicts (r) be the set of conflicting routes of r.

Lemma 1 (projection gives subsets of network elements). $\left.\operatorname{sections(proj} j_{i}(r)\right) \subseteq$ sections (r) and points $\left(\operatorname{proj}_{i}(r)\right) \subseteq \operatorname{points}^{(r) w h e n ~} \operatorname{proj}_{i}(r)$ is defined.

Lemma 2 (projection of entry/exit signals of a route). $\operatorname{scr}\left(\operatorname{proj}_{i}(r)\right)=$ $\operatorname{proj}_{i}(\operatorname{src}(r))$ and $\operatorname{dst}\left(\operatorname{proj}_{i}(r)\right)=\operatorname{proj}_{i}(\operatorname{dst}(r))$ when $\operatorname{proj}_{i}(r)$ is defined.

Lemma 3 (projection preserves required point settings). Assume $\operatorname{proj}_{i}(r)$ is defined. The required point setting for any point $p \in \operatorname{points}\left(\operatorname{proj}_{i}(r)\right)$ in the path of $\operatorname{proj}_{i}(r)$ in N_{i} is the same as for p in the path of r in $N: \operatorname{req}\left(p r o j_{i}(r), p\right)$ $=r e q(r, p)$.

Lemma 4 (projection preserves and reflects conflicts).
$\operatorname{proj}_{i}(c r) \in \operatorname{conflicts}\left(\operatorname{proj}_{j}(r)\right)$ in N_{i} if and only if cr $\in \operatorname{conflicts(r)~in~} N$, when $\operatorname{proj}_{i}(r), \operatorname{proj}_{i}(c r)$ are defined and $\operatorname{proj}_{i}(c r) \neq \operatorname{proj}_{i}(r)$.

The lemmas follow from the definition of the projection function on network elements.

4 State correspondence theorems

Theorem 2 (State correspondence for track sections). At any point in the construction process of π_{i}, it holds that $\overline{L_{i}}\left(q_{i}\right)=\overline{\left.L\right|_{i}}\left(\left.q\right|_{i}\right)$, where q is that last considered state in π and q_{i} is the last state added to π_{i}. Note that this also means that $q_{i}(t)=q(t)$ for sections $t \in \operatorname{sections}\left(N_{i}\right)$.

Proof by induction:
Base case: $\bar{L}_{i}\left(q_{i_{0}}\right)=\overline{\left.L\right|_{i}}\left(\left.q_{0}\right|_{i}\right)$, as the initial states of $\overline{m_{i}}$ and $\overline{\left.m\right|_{i}}$ are the same, i.e. $q_{i_{0}}=\left.q_{0}\right|_{i}$.

Induction step:

Assume that in the construction process of π_{i} we have considered state changes up to state q in π, and let the last state added to π_{i} be q_{i}. The induction hypothesis is that $\overline{L_{i}}\left(q_{i}\right)=\overline{\left.L\right|_{i}}\left(\left.q\right|_{i}\right)$. Now consider the next state transition in π from state q to a state q^{\prime}. For that either no state is added to π_{i} or a state q_{i}^{\prime} is added. In the first case it should be shown that $\overline{L_{i}}\left(q_{i}\right)=\overline{\left.L\right|_{i}}\left(\left.q^{\prime}\right|_{i}\right)$, and in the second case it should be proved that $\overline{L_{i}}\left(q_{i}^{\prime}\right)=\overline{\left.L\right|_{i}}\left(\left.q^{\prime}\right|_{i}\right)$.

For the three classes of transition rules we have.

1. The rule makes no changes to variables v for which $\operatorname{proj}_{i}(v)$ is defined, so $\left.q\right|_{i}=\left.q^{\prime}\right|_{i}$ and therefore $\overline{\left.L\right|_{i}}\left(\left.q\right|_{i}\right)=\left.\bar{L}\right|_{i}\left(\left.q^{\prime}\right|_{i}\right)$. By the induction hypothesis we have $\overline{L_{i}}\left(q_{i}\right)=\overline{\left.L\right|_{i}}\left(\left.q\right|_{i}\right)$, so $\overline{L_{i}}\left(q_{i}\right)=\overline{\left.L\right|_{i}}\left(\left.q^{\prime}\right|_{i}\right)$. Hence, this represents a stutter step and this case is proved.
2. The rule makes changes to variables v for which $\operatorname{proj}_{i}(v)$ is defined, i.e. $\underline{\left.q\right|_{i}} \neq\left. q^{\prime}\right|_{i}$. The rule applied to π_{i} make the same changes to variables. As $\overline{L_{i}}\left(q_{i}\right)=\overline{\left.L\right|_{i}}\left(\left.q\right|_{i}\right)$ according to the induction hypothesis and the same changes are made to the same variables, it must also hold that $\overline{L_{i}}\left(q_{i}^{\prime}\right)=\overline{\left.L\right|_{i}}\left(\left.q^{\prime}\right|_{i}\right)$.
3. (a) As $\overline{L_{i}}\left(q_{i}\right)=\overline{\left.L\right|_{i}}\left(\left.q\right|_{i}\right)$ according to the induction hypothesis, it must also hold that $\overline{L_{i}}\left(q_{i}^{\prime}\right)=\overline{\left.L\right|_{i}}\left(\left.q^{\prime}\right|_{i}\right)$ as the two rules are only changing signals and these are removed by the reduction operation.
(b) As $\overline{L_{i}}\left(q_{i}\right)=\overline{\left.L\right|_{i}}\left(\left.q\right|_{i}\right)$ according to the induction hypothesis and the same variable changes are made from q_{i} to q_{i}^{\prime} as from $\left.q\right|_{i}$ to $\left.q^{\prime}\right|_{i}$, (the variable t is changed in the same way and the variable t^{\prime} that was changed from q to q^{\prime} is removed by the projection $\left.\right|_{i}$), it must also hold that $\overline{L_{i}}\left(q_{i}^{\prime}\right)=\overline{\left.L\right|_{i}}\left(\left.q^{\prime}\right|_{i}\right)$.
(c) As $\overline{L_{i}}\left(q_{i}\right)=\overline{\left.L\right|_{i}}\left(\left.q\right|_{i}\right)$ according to the induction hypothesis and the same variable changes are made from q_{i} to q_{i}^{\prime} as from $\left.q\right|_{i}$ to $\left.q^{\prime}\right|_{i}$, (the variable t is changed in the same way and the variale t^{\prime} that was changed from q to q^{\prime} is removed by the projection $\left.\right|_{i}$), it must also hold that $\overline{L_{i}}\left(q_{i}^{\prime}\right)=\overline{\left.L\right|_{i}}\left(\left.q^{\prime}\right|_{i}\right)$.
(d) allocate for non through route: ok, as same changes of same section variables.
(e) dispatch for through route: ok as there are no changes in section variables.
(f) allocate for through route: ok as the section state updates are the same modulo sections removed by the projection.
(g) lock for through route: ok as there are no changes in section variables
(h) route_in_use for through route: For $\mathrm{i}=1$: Same argument as for item 2. For $\mathrm{i}=2:$: Same argument as for item 1.
(i) element_in_use for through route: Ok in all cases: either the changes of section variables are the same or the section variable changed in m is removed by the projection and there is no corresponding rule applied in m_{i}.
(j) sequential_release_e for through route: ok, same argument as above.
(k) release for through route: ok.

Theorem 3 (State correspondence for routes totally inside N_{i}). At any point in the construction process of $\pi_{i}, q_{i}(r)=q(r)$ for those routes $r \in$ routes (N) that are completely inside N_{i}, where q is the last considered state in π and q_{i} is the last state added to π_{i}.

Proof by induction: Consider a route $r \in \operatorname{routes}(N)$ that is completely inside N_{i}.
Base case: The desired property holds for the intial states as in these all routes are in the same mode (FREE): $q_{i_{0}}(r)=q_{0}(r)$.

Induction step:

Assume that in the construction process of π_{i} we have considered state changes up to state q in π, and let the last state added to π_{i} be q_{i}. The induction hypothesis is that $q_{i}(r)=q(r)$. Now consider the next state transition in π from state q to a state q^{\prime}. That will give rise to the addition of zero, one or more states in π_{i}. Let q_{i}^{\prime} be the last added state by that. We want to prove that $q_{i}^{\prime}(r)=q^{\prime}(r)$. We only need to consider cases where the state transition in π is caused by a rule that changes the state (MODE) of r, (otherwise, the result is obvious). Such a rule belongs to one of the rule classes 2 e and 3 d . As $q_{i}(r)=q(r)$ according to the induction hypothesis and the same variable changes are made by these rules from q_{i} to q_{i}^{\prime} as from q to q^{\prime}, it must also hold that $q_{i}^{\prime}(r)=q^{\prime}(r)$.

Theorem 4 (State correspondence for signals that are not entry signals of through routes). At any point in the construction process of π_{i}, $q_{i}(s)=q(s)$ for those signals $s \in \operatorname{signals}(N)$ that are completely inside N_{i} and are not an entry signal of a through route, where q is the last considered state in π and q_{i} is the last state added to π_{i}.

Proof by induction: Consider a signal s that is completely inside N_{i} and is not an entry signal of a through route.
Base case: The desired property holds for the intial states as in these all signals' commanded and actual settings are CLOSED: $q_{i_{0}}(s)=q_{0}(s)$.

Induction step:

Assume that in the construction process of π_{i} we have considered state changes up to state q in π, and let the last state added to π_{i} be q_{i}. The induction hypothesis is that $q_{i}(s)=q(s)$. Now consider the next state transition in π from state q to a state q^{\prime}. We want to prove that $q_{i}^{\prime}(s)=q^{\prime}(s)$. We only need to consider cases where the state transition in π is caused by a rule that changes the state of $s . A C T$ or $s . C M D$, (otherwise, the result is obvious). The only rule that can change the state of $s . A C T$ in π belongs to class 2 b . When that rule is
applied in π, the same rule is applied in π_{i}, so the changes to $s . A C T$ are the same in π and π_{i}. The only rules that can change s.CMD in π are the lock and the route_in_use rules for routes r having s as entry signal (they will set $s . C M D$ to OPEN and CLOSED, respectively). For the two rules, r can't be a through route according to the assumption about s and is therefore totally inside N_{i}. Hence, these two rules will belong to class 2 e and when these rules are applied in π, the same rules are applied in π_{i}, so the changes to $s . C M D$ are the same in π and π_{i}.

Hence, the only variables v for which $q_{i}\left(\operatorname{proj}_{i}(v)\right)$ and $q(v)$ can differ, are variables for through routes and added entry signals. For these, we have the following state correspondence theorems.
Theorem 5 (State correspondence for through routes). Letr $\in \operatorname{routes}(N)$ be a through route and $r_{i}=\operatorname{proj}_{i}(r)$ be its projection in N_{i} for $i=1,2$, where N_{1} / N_{2} is the network that is on the same side of the cut as the first/last part of the route. It is assumed that r_{1} and r_{2} are not also equal to the projection of any other (through) route. (In later theorems, we drop these conditions.)

At any point in the construction process of π_{i}, the following holds, where q is that last considered state in π and q_{i} is the last state added to π_{i}.
$(1.0) q_{1}\left(r_{1} \cdot M O D E\right)=q(r . M O D E)$ when $q(r . M O D E) \neq O C C U P I E D$
(1.1) $q_{1}\left(r_{1} \cdot M O D E\right)=O C C U P I E D$ when $q(r . M O D E)=O C C U P I E D$ and $q\left(\operatorname{last}\left(r_{1}\right) \cdot M O D E\right) \neq F R E E$ (the condition expresses that r is occupied (partly of fully) by a train in N_{1}.)
(1.2) $q_{1}\left(r_{1} \cdot M O D E\right)=F R E E$ when $q(r \cdot M O D E)=O C C U P I E D$ and $q\left(\right.$ last $\left.\left(r_{1}\right) \cdot M O D E\right)=F R E E$ (the condition expresses that r is occupied by a train which is not in N_{1}).
(2.0) $q_{2}\left(r_{2} \cdot M O D E\right)=q(r . M O D E)$ when $q(r . M O D E) \neq O C C U P I E D$
(2.1) $q_{2}\left(r_{2} . M O D E\right)=L O C K E D$ when $q(r . M O D E)=O C C U P I E D$ and $q\left(\right.$ first $\left.\left(r_{2}\right) \cdot M O D E\right)=E X L C K$ (the condition expresses that r is occupied by a train which is not yet in N_{2}).
(2.2) $q_{2}\left(r_{2} \cdot M O D E\right)=O C C U P I E D$ when $q(r . M O D E)=O C C U P I E D$ and $q\left(\right.$ first $\left.\left(r_{2}\right) \cdot M O D E\right) \neq E X L C K$ (the condition expresses that r is occupied by a train which is (partly or fully) in N_{2}).

Proof by induction:
Base case: The desired property holds for the intial states as in these all routes are in the same mode (FREE): $q_{i_{0}}\left(r_{i}\right)=q_{0}\left(r_{i}\right)=F R E E$. Actually, it is state relations (1.0) and (2.0) that hold.

Induction step:

Assume that in the construction process of π_{i} we have considered state changes up to state q in π, and let the last state added to π_{i} be q_{i}. The induction hypothesis is that the stated property holds between q and q_{i}. Now consider the next state transition in π from state q to a state q^{\prime}, and let q_{i}^{\prime} be the resulting last added state to π_{i} due to that step. We want to prove that the stated property holds between q^{\prime} and q_{i}^{\prime}. We only need to consider cases where the state transition in π is caused by a transition rule that changes the values of r.MODE, $\operatorname{last}\left(r_{1}\right) \cdot M O D E$ or $\operatorname{first}\left(r_{2}\right) \cdot M O D E$, or the associated state transition in π_{i} is caused by a transition rule that changes $r_{i} \cdot M O D E$, (otherwise, the result is obvious).

As the application of any of the dispatch (r), allocate (r), and lock (r) rules in π leads to the application of $\operatorname{dispatch}\left(r_{i}\right)$, allocate $\left(r_{i}\right)$, and $\operatorname{lock}\left(r_{i}\right)$, respectively, in π_{i}, and these rules are applied in states for which $q_{i}\left(r_{i} \cdot M O D E\right)=$ $q(r . M O D E) \neq O C C U P I E D$ (i.e. state relations (1.0) and (2.0) hold) and they make the same state changes of route modes in π and π_{i}, modulo route renaming by the projection functions, and the new route modes are still different from OCCU PIED, the state relations (1.0) and (2.0) are preserved for these applications.

Now we should consider cases where the application of the route_in_use (r, e), element_in_use (r, e), sequential_release_e (r, e) and release (r, e) rules in π together with associated changes in π_{i} make changes to the state relations.
π_{1} : When the route_in_use $(r$, first $(r))$ rule is applied in π, the route_in_use $\left(r_{1}\right.$, first $\left.(r)\right)$ is applied in π_{1} and both routes change mode to OCCUPIED, while $q\left(\operatorname{last}\left(r_{1}\right) \cdot M O D E\right)$ is still EXCLK - so now state relation (1.1) holds. In the step where the last section last (r_{1}) of r_{1} is released (i.e. last (r_{1}).MODE becomes FREE) by sequential_release_e $\left(r, l a s t\left(r_{1}\right)\right)$ in π and by release $\left(r_{1}, \operatorname{last}\left(r_{1}\right)\right)$ in $\pi_{1}, r_{1} . M O D E$ becomes FREE in π_{1}, but r.MODE is still OCCUPIED in π (so the state relation becomes (1.2)). r.MODE will first become FREE later when release $(r, \operatorname{last}(r))$ is applied in π and nothing in π_{1} (so the state relation becomes (1.0)).
π_{2} : When the route_in_use $(r, f i r s t(r))$ rule is applied in π (because a train had entered the first section first (r) of r) r.MODE will be changed from $L O C K E D$ to $O C C U P I E D$ and $\operatorname{first}(r) . M O D E$ from EXLCK to USED in π, but no rule is applied in π_{2}, so $r_{2} \cdot M O D E$ stays $L O C K E D$ - so now relation (2.1) holds. First when element_in_use(r, first $\left(r_{2}\right)$) is applied in π and route_in_use $\left(r_{2}\right.$, first $\left.\left(r_{2}\right)\right)$ followed by the closing of the entry signal is applied in the same step in π_{2} (because a train had entered the first section first $\left(r_{2}\right)$ of r_{2} in both paths), $r_{2} \cdot M O D E$ will be changed from $L O C K E D$ to $O C C U P I E D$ in π_{2} and $\operatorname{first}\left(r_{2}\right)$.MODE will be changed to $U S E D$ both in π and π_{2} - so now relation (2.2) holds. When release (r) is applied in π and release(r) in π_{2}, the state relation will change back to (2.0).

The following theorem states that the state of signals in N and their projection in N_{1} are the same thoughout the construction process, while this is not always the case for their projection in N_{2}, as the closing of the added entry signal is delayed.
Theorem 6 (State correspondence for entry signals of through routes). Let s_{1} be the entry signal of a through route r (as in Fig. 1), and let $s_{1}=$ $\operatorname{proj}_{1}\left(s_{1}\right)$ and $s_{\text {entry }}^{2}=\operatorname{proj}_{2}(s)$ be its projections in N_{1} and N_{2}, respectively, where N_{1} / N_{2} is the network that is on the same side of the cut as the first/last part of the route. Also assume that $s_{\text {entry }}^{2}$ is not the projection of any other signal. (In a later theorem, we drop that assumption.) Let $r_{2}=\operatorname{proj}_{2}(r)$ and t_{2} be the first section in r_{2} (as in Fig.1).

At any point in the construction process of π_{i}, the following holds, where q is that last considered state in π and q_{i} is the last state added to π_{i}.
$(1.0) q_{1}\left(s_{1} . C M D\right)=q\left(s_{1} . C M D\right)$
(2.0) $q_{1}\left(s_{1} . A C T\right)=q\left(s_{1} . A C T\right)$

$$
\begin{equation*}
q_{2}\left(s_{\text {entry }}^{2} \text {.CMD }\right)=q\left(s_{1} \cdot C M D\right) \text { when } q(r \cdot M O D E) \neq O C C U P I E D \tag{3.0}
\end{equation*}
$$

(3.1) $q_{2}\left(s_{\text {entry }}^{2}\right.$.CMD $)=O P E N$
when $q(r \cdot M O D E)=O C C U P I E D$ and $q\left(f i r s t\left(r_{2}\right) \cdot M O D E\right)=E X L C K$
(the condition expresses that r is occupied by a train which is not yet in N_{2}) (note that for this combination one can derive $\left.q\left(s_{1} . C M D\right)=C L O S E D\right)$
(3.2) $q_{2}\left(s_{\text {entry }}^{2}\right.$.CMD $)=q\left(s_{1} \cdot C M D\right)(=C L O S E D)$
when $q(r \cdot M O D E)=O C C U P I E D$ and $q\left(\operatorname{first}\left(r_{2}\right) \cdot M O D E\right) \neq E X L C K$
(the condition expresses that r is occupied by a train which is (partly or fully) in N_{2})
(4.0) $q_{2}\left(s_{\text {entry }_{2}} \cdot A C T\right)=q\left(s_{1} \cdot A C T\right)$ when $q(r . M O D E) \neq O C C U P I E D$
(4.1a) $q_{2}\left(s_{\text {entry }_{2}} \cdot A C T\right)=q\left(s_{1} \cdot A C T\right)(=O P E N)$ when $q(r . M O D E)=O C C U P I E D$ and $q\left(\operatorname{first}\left(r_{2}\right) \cdot M O D E\right)=E X L C K$, and $q\left(s_{1} \cdot A C T\right)=O P E N$
(4.1b) $q_{2}\left(s_{\text {entry }}^{2} \cdot(A C T)=O P E N\right.$
when $q(r . M O D E)=O C C U P I E D, q\left(f i r s t\left(r_{2}\right) \cdot M O D E\right)=E X L C K$, and $q\left(s_{1} \cdot A C T\right)=C L O S E D$
(the condition expresses that r is occupied by a train which is not yet in N_{2} and the entry signal s_{1} of r has been closed)
(4.2) $q_{2}\left(s_{\text {entry }}^{2}\right.$.ACT $)=q\left(s_{1} \cdot A C T\right)(=C L O S E D)$
when $q(r \cdot M O D E)=O C C U P I E D \wedge q\left(f i r s t\left(r_{2}\right) \cdot M O D E\right) \neq E X L C K$
(the condition expresses that r is occupied by a train which is (partly or fully) in N_{2})

Proof by induction:

Base case: The desired property holds for the initial states. That follows from the following facts: In $q_{0}: s_{1} \cdot C M D=s_{1} \cdot A C T=C L O S E D$ and $r \cdot M O D E=$ $F R E E \neq O C C U P I E D$. In $q_{1_{0}}: s_{1} \cdot C M D=s_{1} \cdot A C T=C L O S E D$. In $q_{2_{0}}:$ $s_{\text {entry }}^{2}$. $C M D=s_{\text {entry }}^{2}$. $A C T=C L O S E D$.

Induction step:

Assume that in the construction process of π_{i} we have considered state changes up to state q in π, and let the last state added to π_{i} be q_{i}. The induction hypothesis is that the stated relation holds between q and q_{i}. Now consider the next state transition in π from state q to a state q^{\prime}, and let q_{i}^{\prime} be the resulting last added state to π_{i} due to that step. We want to prove that the stated relation holds between q^{\prime} and q_{i}^{\prime}.

The proof of the preservation of two first sub-relations (relating q_{1} with q) is similar to the proof of the state correspondende for signals that are not entry signals of through routes. The only difference is that the lock and the route_in_use rules belong to classes 3 g and 3 h , respectively, and not to class 2 e , but the conclusion for these rules is the same.

The proof for the remaining sub-relations (relating q_{2} with q) is explained by considering the concurrent state transitions in π and π_{2} that make changes to variables in subrelations (3.0-4.2). These will come in the order of the route life cycle for r :

1. Initially the conditions in (3.0) and (4.0) hold.
2. After concurrent dispatching/allocation of r and r_{2}, still the conditions in (3.0) and (4.0) hold.
3. When $\operatorname{lock}(r)$ is applied in π and the concurrent $\operatorname{lock}\left(r_{2}\right)$ is applied in π_{2}, $r . M O D E$ is changed to LOCKED $(\neq O C C U P I E D)$, first $\left(r_{2}\right) . M O D E$ to $E X C L K$ and $s_{1} \cdot C M D$ to $O P E N$ in q, and $s_{\text {entry }}^{2}$. $C M D$ is also changed to $O P E N$ in q_{2}. So still the conditions in (3.0) and (4.0) hold.
4. When $s_{1} \cdot A C T$ is switched to OPEN in $q, s_{\text {entry }_{2}} \cdot A C T$ is also switched to OPEN in q_{2}. So still the conditions in (3.0) and (4.0) hold.
5. When the route_in_use (r) is applied in π and nothing in $\pi_{2}, r . M O D E$ is changed to OCCUPIED and $s_{1} . C M D$ to $C L O S E D$ in q. So now the conditions for (3.1) and (4.1a) hold.
6. When $s_{1} \cdot A C T$ is switched to CLOSED in $q, s_{\text {entry }}^{2}$. $A C T$ is not changed. Now conditions in (3.1) and (4.1b) hold.
7. When element_in_use(r, first $\left(r_{2}\right)$) is applied in π and the concurrent route_in_use $\left(r_{2}\right)$ followed by switching rule for $s_{\text {entry }}^{2} . A C T$ are applied in π_{2}, first $\left(r_{2}\right) \cdot M O D E$ is changed to $U S E D(\neq E X C L K)$ in q and in q_{2}, and first $s_{\text {entry }}^{2} . C M D$ and then $s_{\text {entry }} . A C T$ are both changed to $C L O S E D$ in q_{2}. Now conditions in (3.2) and (4.2) hold.
8. When the train has left first $\left(r_{2}\right)$ and the section is concurrently relased in π and π_{2}, first $\left(r_{2}\right) . M O D E$ is changed to $F R E E$. The conditions in (3.2) and (4.2) still hold.
9. When release (r) is applied in π and the concurrent release $\left(r_{2}\right)$ is applied in $\pi_{2}, r . M O D E$ is changed to $F R E E(\neq O C C U P I E D)$ and the conditions in (3.0) and (4.0) hold again.

Consequences of the theorem are:
$q_{2}\left(s_{\text {entry }}^{2} . C M D\right)=O P E N$ when $q\left(s_{1} . C M D\right)=O P E N$
$q_{2}\left(s_{\text {entry }}^{2}\right.$. $\left.A C T\right)=O P E N$ when $q\left(s_{1} \cdot A C T\right)=O P E N$.
In section 6, the state correpondence theorems for through routes and their entry signals will be generalised to cases where there are more than one through route.

5 Generalisation of the construction of π_{i}

We now generalise the rules for constructing π_{i} to cases where several $(n>1)$ through routes r^{1}, \ldots, r^{n} are mapped to the same route by a projection.

Case 1 First we consider the case where several routes, r^{1}, \ldots, r^{n}, are mapped to the same route r_{1} in N_{1} by $\operatorname{proj}_{1}\left(r_{1}=\operatorname{proj}_{1}\left(r^{j}\right)\right.$ for $\left.j=1, \ldots, n\right)$ as shown in Fig. 3 for $n=2$. .

Fig. 3. Two up routes, r^{1} and r^{2}, having the same projection r_{1} in the down (left) subnetwork N_{1}.

For this case item 3 e for dispatching of through routes must be adapted: When the dispatch $\left(r^{j}\right)$ rule for a through route r^{j} is applied in π, the $\operatorname{dispatch}\left(r_{1}\right)$ rule for $r_{1}=\operatorname{proj}_{1}\left(r^{j}\right)$ should only be applied in π_{1}, if there is no other through route r^{k} that is in mode MARKED, ALLOCATED, LOCKED, or OCCUPIED with a train inside N_{1} (i.e. r^{k} must be FREE or OCCUPIED with a train outside N_{1}), otherwise the application of the dispatch $\left(r_{1}\right)$ rule should be deferred: it is added to a queue of deferred route dispatchings.

Item 3j for sequential release of sections in through routes must be adapted for case (3):
When sequential_release_e($\left.r^{j}, e\right)$ is applied in π for some through route r^{j} and the last element e in the projected route $r_{1}=\operatorname{proj}_{1}(r)$, then first the release $\left(r_{1}\right)$ rule should be applied in π_{1} and then, if there is any deferred route dispatching rule in the queue then that should be removed from the queue and applied as well in π_{1} (which is possible as its guard requires the route mode to be FREE and the route mode was set to FREE by the previous step).

Fig. 4. Two up routes, r^{1} and r^{2}, having the same projection r_{2} in the up (right) subnetwork N_{2}.

Case 2 Then consider the case where several routes, r^{1}, \ldots, r^{n}, are mapped to the same route r_{2} in N_{2} by $\operatorname{proj}_{2}\left(r_{2}=\operatorname{proj}_{2}\left(r^{j}\right)\right.$ for $\left.j=1, \ldots, n\right)$ as shown in Fig. 4 for $n=2$.

For this case item 3 e for dispatching of through routes must be adapted: When the dispatch $\left(r^{j}\right)$ rule for a through route r^{j} is applied in π, the $\operatorname{dispatch}\left(r_{2}\right)$ rule for $r_{2}=\operatorname{proj}_{2}\left(r^{j}\right)$ should only be applied in π_{2}, if all other through route r^{k} are in mode FREE, otherwise the application of the $\operatorname{dispatch}\left(r_{2}\right)$ rule should be deferred: it is added to a queue of deferred route dispatchings.

Item 3 k for sequential release of the last section in through routes must be adapted: When release $\left(r^{k}\right)$ is applied in π for some through route r^{k}, then first the release $\left(r_{2}\right)$ rule should be applied in π_{2} and then, if there is any deferred route dispatching rule in the queue then that should be removed from the queue and applied as well in π_{2} (which is possible as its guard requires the route mode to be FREE and the route mode was set to FREE by the previous step).

6 Generalised state correspondence

We now generalise the state correspondence theorems to cases where several $(n>1)$ through routes r^{1}, \ldots, r^{n} are mapped to the same route by a projection.

6.1 Case 1

First we consider case 1 where several routes, r^{1}, \ldots, r^{n}, are mapped to the same route r_{1} in N_{1} by proj_{1} as shown in Fig. 3 for $n=2: r_{1}=\operatorname{proj}_{1}\left(r^{j}\right)$ for $j=1, \ldots, n$. Let $r^{j}{ }_{2}=\operatorname{proj}_{2}\left(r^{j}\right)$ and $s_{\text {entry }}^{2}=\operatorname{proj}_{2}\left(s_{1}\right)$. Let $t_{2}=\operatorname{first}\left(r^{j}{ }_{2}\right)$ for $j=1, \ldots, n$ (they all share the same first section.). Let $q s=\left\{q\left(r^{j} . M O D E\right) \mid r^{j} \in\right.$ $\left.\left\{r^{1}, \ldots, r^{n}\right\} \wedge q\left(r^{j} . M O D E\right) \neq O C C U P I E D\right\}$ be the set of states of those routes that are not OCCUPIED.

Theorem 7 (State correspondence for multiple through routes, case 1). At any point in the construction process of π_{i}, the following holds, where q is that last considered state in π and q_{i} is the last state added to π_{i}.
q_{1} is generalised:
(1.0) $q_{1}\left(r_{1} \cdot M O D E\right)=\max \left\{q\left(r^{k} \cdot M O D E\right) \mid r^{k} \in\left\{r^{1}, \ldots, r^{n}\right\}\right\}$, when $q\left(r^{j} . M O D E\right) \neq$ OCCUPIED for all $r^{j} \in\left\{r^{1}, \ldots, r^{n}\right\}$ (the condition expresses that no routes are OCCUPIED).
(1.1) $q_{1}\left(r_{1} \cdot M O D E\right)=O C C U P I E D$, when there exists a route $r^{j} \in\left\{r^{1}, \ldots, r^{n}\right\}$ for which $q\left(r^{j} . M O D E\right)=O C C U P I E D$ and $q\left(\operatorname{last}\left(r_{1}\right) . M O D E\right) \neq F R E E$ (the condition expresses that on Φ^{3} of the routes r^{1}, \ldots, r^{n} is occupied (partly of fully) by a train in N_{1}.)
(1.2) $q_{1}\left(r_{1} \cdot M O D E\right)=F R E E$, when qs is empty and $q\left(\operatorname{last}\left(r_{1}\right) \cdot M O D E\right)=$ FREE (the condition expresses that all the routes r^{1}, \ldots, r^{n} are OCCUPIED and no train is (anymore) in N_{1}).
(1.3) $q_{1}\left(r_{1} \cdot M O D E\right)=\max (q s)$, when some routes, but not all routes are in mode OCCUPIED and $q\left(\operatorname{last}\left(r_{1}\right) \cdot M O D E\right)=F R E E$ (the last condition expresses that no train is in N_{1}).
q_{2} is defined as before, now for each of the through routes $r^{j} \in\left\{r^{1}, \ldots, r^{n}\right\}$.
(2.0) $q_{2}\left(r^{j}{ }_{2} \cdot M O D E\right)=q\left(r^{j} . M O D E\right)$ when $q\left(r^{j} . M O D E\right) \neq O C C U P I E D$.
(2.1) $q_{2}\left(r^{j}{ }_{2} \cdot M O D E\right)=L O C K E D$ when $q\left(r^{j} \cdot M O D E\right)=O C C U P I E D$ and $q\left(\operatorname{first}\left(r^{j}{ }_{2}\right) \cdot M O D E\right)=E X L C K$.
(2.2) $q_{2}\left(r^{j}{ }_{2} \cdot M O D E\right)=O C C U P I E D$ when $q\left(r^{j} . M O D E\right)=O C C U P I E D$ and $q\left(\operatorname{first}\left(r^{j}{ }_{2}\right) \cdot M O D E\right) \neq E X L C K$.

The new case (1.3) expresses that in the case where trains on all occupied routes have left N_{1}, and there are some remaining routes that are not in mode OCCUPIED, $r_{1} \cdot M O D E$ is the maximum mode of these unoccupied routes.

Proof: The proof is made by induction just as for Theorem 5 i.e. it is checked that the initial state satisfies the property and that the property is preserved by those transitions that change the variables used in the property.

Theorem 8 (State correspondence for the common entry signal of multiple through routes in case 1). At any point in the construction process of π_{i}, the following holds, where q is that last considered state in π and q_{i} is the last state added to π_{i}.
q_{1} is unchanged:
(1.0) $q_{1}\left(s_{1} . C M D\right)=q\left(s_{1} . C M D\right)$
(2.0) $q_{1}\left(s_{1} . A C T\right)=q\left(s_{1} . A C T\right)$

[^3]q_{2} is generalised:
(3.0) $q_{2}\left(s_{\text {entry }}^{2}\right.$. $\left.C M D\right)=q\left(s_{1} . C M D\right)$ when $\forall j \in\{1, \ldots, n\}: q\left(r^{j} . M O D E\right) \neq$ OCCUPIED (i.e. no routes are occupied)
(3.1) $q_{2}\left(s_{\text {entry }_{2}} . C M D\right)=O P E N$ when $\exists j \in\{1, \ldots, n\}: q\left(r^{j} . M O D E\right)=$ OCCUPIED and $q\left(t_{2} . M O D E\right)=E X L C K$ (the condition expresses that some route r^{k} (note this need not to be the same as r^{j}) which is occupied by a train which has not yet entered N_{2}).
(3.2) $q_{2}\left(s_{\text {entry }}^{2}\right.$. $\left.C M D\right)=q\left(s_{1} . C M D\right)(=C L O S E D)$ when $\exists j \in\{1, \ldots, n\}$ $: q\left(r^{j} . M O D E\right)=O C C U P I E D$ and $q\left(t_{2} \cdot M O D E\right) \neq E X L C K$ (the condition expresses that at least one route is occupied by a train and all trains have (partly or fully) entered N_{2}).
(4.0) $q_{2}\left(s_{\text {entry }_{2}} . A C T\right)=q\left(s_{1} . A C T\right)$ when $\forall j \in\{1, \ldots, n\}: q\left(r^{j} . M O D E\right) \neq$ OCCUPIED
(4.1a) $q_{2}\left(s_{\text {entry }}^{2} \cdot A C T\right)=q\left(s_{1} \cdot A C T\right)(=O P E N)$ when $\exists j \in\{1, \ldots, n\}:$ $q\left(r^{j} \cdot M O D E\right)=O C C U P I E D$ and $q(t 2 \cdot M O D E)=E X L C K$, and $q\left(s_{1} \cdot A C T\right)=$ OPEN
(4.1b) $q_{2}\left(s_{\text {entry }}^{2}\right.$. $\left.A C T\right)=O P E N$ when $\exists j \in\{1, \ldots, n\}: q\left(r^{j} . M O D E\right)=$ $O C C U P I E D$ and $q\left(t_{2} \cdot M O D E\right)=E X L C K$ and $q\left(s_{1} \cdot A C T\right)=C L O S E D$ (the conditions express that some route is occupied by a train which has not yet entered N_{2} and the entry signal s_{1} of that route has been closed)
(4.2) $q_{2}\left(s_{\text {entry }_{2}} . A C T\right)=q\left(s_{1} \cdot A C T\right)(=C L O S E D)$ when $\exists j \in\{1, \ldots, n\}$ $: q\left(r^{j} \cdot M O D E\right)=O C C U P I E D \wedge q\left(t_{2} \cdot M O D E\right) \neq E X L C K$ (the condition expresses that at least one route is occupied by a train and all trains have (partly or fully) entered N_{2})

Proof: The proof is made by induction just as for Theorem6, i.e. it is checked that the initial state satisfies the property and that the property is preserved by those transitions that change the variables used in the property.

6.2 Case 2

Then consider case 2 where several routes, r^{1}, \ldots, r^{n}, are mapped to the same route r_{2} in N_{2} by proj_{2} as shown in Fig. 4 for $n=2: r_{2}=\operatorname{proj}_{2}\left(r^{j}\right)$ for $j=1, \ldots, n$. Let $r^{j}{ }_{1}=\operatorname{proj}_{1}\left(r^{j}\right)$. For this case we have $\operatorname{proj}_{1}\left(s_{1}^{j}\right)=s_{1}^{j}$.

Note that at most one of the routes r^{1}, \ldots, r^{n} can go through the states ALLOCATING, LOCKED and OCCUPIED at the same time.

Theorem 9 (State correspondence for multiple through routes, case 2). At any point in the construction process of π_{i}, the following holds, where q is that last considered state in π and q_{i} is the last state added to π_{i}.
q_{1} is defined as before for each through route $r^{j} \in\left\{r^{1}, \ldots, r^{n}\right\}$:
(1.0) $q_{1}\left(r^{j}{ }_{1} \cdot M O D E\right)=q\left(r^{j} . M O D E\right)$ when $q\left(r^{j} . M O D E\right) \neq O C C U P I E D$
(1.1) $q_{1}\left(r^{j}{ }_{1} \cdot M O D E\right)=O C C U P I E D$ when $q\left(r^{j} . M O D E\right)=O C C U P I E D$ and $q\left(\operatorname{last}\left(r^{j}{ }_{1}\right) \cdot M O D E\right) \neq F R E E$ (the condition expresses that r^{j} is occupied (partly of fully) by a train in N_{1}.)
(1.2) $q_{1}\left(r^{j}{ }_{1} \cdot M O D E\right)=F R E E$ when $q\left(r^{j} \cdot M O D E\right)=O C C U P I E D$ and $q\left(\right.$ last $\left.\left(r^{j}{ }_{1}\right) \cdot M O D E\right)=F R E E$ (the condition expresses that r^{j} is occupied by a train which is not in N_{1}).
q_{2} is generalised:
(2.0) $q_{2}\left(r_{2} . M O D E\right)=\max \left(\left\{q\left(r^{j} . M O D E\right) \mid r^{j} \in\left\{r^{1}, \ldots, r^{n}\right\}\right\}\right)$ when $\forall j \in$ $\{1, \ldots, n\}: q\left(r^{j} . M O D E\right) \neq O C C U P I E D$ (i.e. no routes are occupied)
(2.1) $q_{2}\left(r_{2} \cdot M O D E\right)=L O C K E D$ when $\exists j \in\{1, \ldots, n\}: q\left(r^{j} \cdot M O D E\right)=$ $O C C U P I E D$ and $q\left(\operatorname{first}\left(r_{2}\right) \cdot M O D E\right)=E X L C K$
(the condition expresses that r^{j} is occupied by a train which has not yet entered N_{2}).
(2.2) $q_{2}\left(r_{2} \cdot M O D E\right)=O C C U P I E D$ when $\exists j \in\{1, \ldots, n\}: q\left(r^{j} . M O D E\right)=$ $O C C U P I E D$ and $q\left(\operatorname{first}\left(r_{2}\right) \cdot M O D E\right) \neq E X L C K$
(the condition expresses that r^{j} is occupied by a train which has (partly or fully) entered N_{2}).

Proof: The proof is made by induction just as for Theorem 5, i.e. it is checked that the initial state satisfies the property and that the property is preserved by those transitions that change the variables used in the property.

In the case where several signals are projected to the same added entry signal, the theorem for state correspondence of signals must be updated:

Theorem 10 (Generalised state correspondence for entry signals of through routes in case 2).

Let $s_{1}^{1}, \ldots, s_{1}^{n}$ be the entry signals in N_{1} of the through routes r^{1}, \ldots, r^{n} and $s_{\text {entry }}^{2}$ $=\operatorname{proj}_{2}\left(s_{1}^{j}\right)$ for $j=1, \ldots, n$ be their common projection in N_{2}. By definition we have $\operatorname{proj}_{1}\left(s_{1}^{j}\right)=s_{1}^{j}$ for $j=1, \ldots, n$.

At any point in the construction process of π_{i}, the following holds, where q is that last considered state in π and q_{i} is the last state added to π_{i}.
q_{1} is defined as before for each signal $s_{1} \in\left\{s_{1}^{1}, \ldots, s_{1}^{n}\right\}$:
$(1.0) q_{1}\left(s_{1} . C M D\right)=q\left(s_{1} . C M D\right)$
(2.0) $q_{1}\left(s_{1} \cdot A C T\right)=q\left(s_{1} . A C T\right)$
q_{2} is generalised:
(3.0) $q_{2}\left(s_{\text {entry }}^{2} . C M D\right)=\max \left(\left\{q\left(s_{1}^{j} \cdot C M D\right) \mid s_{1}^{j} \in\left\{s_{1}^{1}, \ldots, s_{1}^{n}\right\}\right\}\right)$ when $\forall j \in$ $\{1, \ldots, n\}: q\left(r^{j} . M O D E\right) \neq O C C U P I E D$ (i.e. no routes are occupied)
(3.1) $q_{2}\left(s_{\text {entry }}^{2}\right.$.CMD $)=O P E N$ when $\exists j \in\{1, \ldots, n\}: q\left(r^{j} . M O D E\right)=$ OCCUPIED and $q\left(\right.$ first $\left.\left(r_{2}\right) \cdot M O D E\right)=E X L C K$ (the condition expresses that r^{j} is occupied by a train which has not yet entered N_{2}).
(3.2) $q_{2}\left(s_{\text {entry }_{2}} \cdot C M D\right)=q\left(s_{1}^{j} \cdot C M D\right)(=C L O S E D)$ when $q\left(r^{j} . M O D E\right)=$ OCCUPIED and $q\left(\right.$ first $\left.\left(r_{2}\right) . M O D E\right) \neq E X L C K$ (the condition expresses that r^{j} is occupied by a train which has (partly or fully) entered N_{2}).
(4.0) $q_{2}\left(s_{\text {entry }}^{2} . A C T\right)=\max \left(\left\{q\left(s_{1}^{j} \cdot A C T\right) \mid s_{1}^{j} \in\left\{s_{1}^{1}, \ldots, s_{1}^{n}\right\}\right\}\right)$ when $\forall j \in$ $\{1, \ldots, n\}: q\left(r^{j} . M O D E\right) \neq O C C U P I E D$ (i.e. no routes are occupied)
(4.1a) $q_{2}\left(s_{\text {entry }_{2}} \cdot A C T\right)=q\left(s_{1}^{j} \cdot A C T\right)(=O P E N)$ when $q\left(r^{j} \cdot M O D E\right)=$ $O C C U P I E D$ and $q\left(\right.$ first $\left.\left(r_{2}\right) \cdot M O D E\right)=E X L C K$, and $q\left(s_{1}^{j} \cdot A C T\right)=O P E N$
(4.1b) $q_{2}\left(s_{\text {entry }_{2}} . A C T\right)=O P E N$ when $\exists j \in\{1, \ldots, n\}: q\left(r^{j} \cdot M O D E\right)=$ $O C C U P I E D$ and $q\left(f i r s t\left(r_{2}\right) \cdot M O D E\right)=E X L C K$ and $q\left(s_{1}^{j} \cdot A C T\right)=C L O S E D$ (the conditions express that r^{j} is occupied by a train which has not yet entered N_{2} and the entry signal s_{1}^{j} of that route has been closed)
(4.2) $q_{2}\left(s_{\text {entry }}^{2} \cdot A C T\right)=q\left(s_{1}^{j} \cdot A C T\right)(=C L O S E D)$ when $q\left(r^{j} \cdot M O D E\right)=O C C U P I E D \wedge q\left(\operatorname{first}\left(r_{2}\right) \cdot M O D E\right) \neq E X L C K$ (the condition expresses that r^{j} is occupied by a train which is (partly or fully) in N_{2})

Proof: The proof is made by induction just as for Theorem6, i.e. it is checked that the initial state satisfies the property and that the property is preserved by those transitions that change the variables used in the property. The proof utilises the fact that at most one of the signals s^{1}, \ldots, s^{n} can have their CMD/ACT variable to be OPEN at the same time, as at most one of the routes r^{1}, \ldots, r^{n} can go through the states ALLOCATING, LOCKED and OCCUPIED at the same time.

Note that a consequence of this theorem is:

$$
\begin{aligned}
& q_{2}\left(s_{\text {entry }}^{2} . C M D\right)=O P E N \text { when } \exists s \in\left\{s_{1}{ }^{1}, \ldots, s_{1}{ }^{n}\right\}: q(s . C M D)=O P E N \\
& q_{2}\left(s_{\text {entry }}^{2} \text {. } A C T\right)=O P E N \text { when } \exists s \in\left\{s_{1}{ }^{1}, \ldots, s_{1}{ }^{n}\right\}: q(s . A C T)=O P E N
\end{aligned}
$$

7 Proof of stutter equivalence

We have now proved that for an arbitrary path $\pi \in \operatorname{Path}(m)$, we can construct paths $\pi_{i} \in \operatorname{Path}\left(m_{i}\right)$ for $i=1,2$ such that they satisfy Theorem 2, i.e. $\overline{L_{i}}\left(q_{i}\right)=$
$\overline{\left.L\right|_{i}}\left(\left.q\right|_{i}\right)$, in any step of the construction process. Note that usually q has one corresponding state, but in a few cases (when deferred transitions are applied for examples, see Sec. 6) two consecutive corresponding states. Similarly, several states q can have the same corresponding state.

Hence, the reduced (section) labels of states q in π are maintained by their corresponding states q_{i} in π_{i} and therefore the paths are stutter equivalent.

[^0]: General rights
 Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal

 If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

[^1]: ${ }^{1}$ Here the projection operator on states has been lifted to paths in the obvious way.

[^2]: ${ }^{2}$ Note that $\operatorname{signals}\left(N_{-i}\right)$ does not include any added border signal present in N_{i}.

[^3]: ${ }^{3}$ The formula just says that at least one route is occupied, but since there is a train in N_{1} (on the common path of all the routes), only one route can be OCCUPIED).

