Unified Framework for Photophysical Rate Calculations in TADF Molecules

de Sousa, Leonardo Evaristo; de Silva, Piotr

Published in:
Journal of Chemical Theory and Computation

Link to article, DOI:
10.1021/acs.jctc.1c00476

Publication date:
2021

Document Version
Peer reviewed version

Citation (APA):
A unified framework for photophysical rate calculations in TADF molecules

Leonardo Evaristo de Sousa and Piotr de Silva*

Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej 301, 2800 Kongens Lyngby, Denmark
E-mail: pdes@dtu.dk

Abstract

One of the challenges in organic light emitting diodes research is finding ways to increase device efficiency by making use of the triplet excitons that are inevitably generated in the process of electroluminescence. One way to do so is by thermally activated delayed fluorescence, a process in which triplet excitons undergo up-conversion to singlet states, allowing them to relax radiatively. The discovery of this phenomenon has ensued a quest for new materials that are able to effectively take advantage of this mechanism. From a theoretical standpoint, this requires the capacity to estimate the rates of the various processes involved in the photophysics of candidate molecules, such as intersystem crossing, reverse intersystem crossing, fluorescence and phosphorescence. Here we present a method that is able to, within a single framework, compute all these rates and predict the photophysics of new molecules. We apply the method to two TADF molecules and show that results compare favorably with other theoretical approaches and experimental results. Finally, we use a kinetic model to show how the calculated rates act in concert to produce different photophysical behavior.

Introduction

Organic light emitting diodes (OLEDs) have found commercial use in the last decade thanks to features such as mechanical flexibility, low production costs and tunability of its luminescence properties.1–4 However, due to spin-statistics, charges injected into the active layer of an OLED tend to generate triplet and singlet excitons in a 3:1 ratio.5 Given that the efficiency of emission from triplet states is usually low, as it requires high spin-orbit couplings between triplet and ground states to occur, a cap is put on the internal efficiency of fluorescent OLED devices at 25%.

In this sense, strategies to circumvent this deficiency have been developed. One approach, for instance, aimed at increasing phosphorescence efficiency by employing metal-organic complexes and taking advantage of the heavy atom effect on the spin-orbit couplings.6,7 This procedure has been able to raise internal quantum efficiencies, however applications in the blue region of the spectrum become problematic due to degradation issues8 and the use of expensive materials increases the cost of device production.9 Alternatively, the phenomenon of thermally activated delayed fluorescence (TADF) has been identified in the last years as a powerful means to increase the efficiency of OLED devices.10–13 At the heart of this phenomenon is a monomolecular up-conversion mechanism called reverse intersystem crossing (rISC) in which triplets convert into singlet states with the aid of the available thermal energy. Evidently, the opposite intersystem crossing (ISC) – from singlet to triplet state – also takes place and more efficiently so, since it is energetically more favorable. However, if phosphorescence and non-radiative decay channels are much less efficient in comparison to rISC, the T_1 states keep converting back into S_1 until they eventually recom-
bine either radiatively or non-radiatively. As such, a continuous recycling of triplet excitons is possible, increasing the device’s quantum efficiency significantly. More recently, the combination of TADF molecules with efficient organic emitters has also been proposed, giving rise to the so-called hyperfluorescence-based devices.14,15

To achieve efficient rISC, it is necessary that the energy gap between singlet and triplet states be small and that the corresponding spin-orbit coupling be non-zero. Such combination was obtained successfully in an OLED device using pure organic molecules in 201216 by employing a molecular design strategy consisting on spatially separated donor-acceptor units, which result in excited states with charge transfer character and reduced exchange interaction. However, such charge transfer excited states usually present low oscillator strengths,17 which hinders the molecule’s fluorescence rate. This trade-off demonstrates that new design strategies are required.

Following these results, the search for new materials that may take advantage of the TADF mechanism has become an important field of research. In this context, computational approaches play an important role, both serving as means to aid the interpretation of experimental results, but also as a tool in the development of new molecules by evaluating a compound’s potential prior to synthesis.18–20 To fulfill these roles, the capacity of estimating the rates of the relevant processes is essential from a theoretical point of view.

One particular important factor to consider when estimating rates for (r)ISC is the role of molecular vibrations. For instance, it has been experimentally demonstrated that intersystem crossing processes can be greatly affected by suppressing vibrational modes,21 suggesting that vibronic effects must be taken into account in the description of the phenomenon. These observations have also been corroborated by different theoretical works,22–25 which have suggested that vibronic couplings between different singlet and triplet states may be responsible for rISC rates that are greater than those predicted by standard first-order perturbation theory. For this reason, different methods have been used to estimate (r)ISC rates that include vibrational effects (see, for instance, Refs. 26,27 for comprehensive reviews). Among the most popular is the Marcus-Levitch-Jortner (MLJ) formalism, that has been widely employed for such calculations15,28,29 with mixed results. Also worth mention are methods that rely on the Franck-Condon or Herzberg-Teller approximations30,31 to estimate ISC rates, also including anharmonic effects.32 More computationally demanding approaches that involve higher order Taylor expansions of the spin-orbit coupling have also been developed33 as well as time dependent34 and quantum dynamics methods.23 In spite of these various efforts, methods that are able to combine accurate results with reasonable computational cost and ease of applicability to different compounds are still wanted for.

In this work we present a temperature dependent Monte Carlo approach to rate calculations that goes beyond the Condon approximation and takes into account effects stemming from molecular vibrations. This method is based on a combination of electronic structure calculations and sampling of hundreds of molecular geometries, which helps us circumvent the calculation of vibrational overlap integrals. A similar approach has been successfully used in the past in the context of simulating absorption and emission spectra35,36 and for the estimation of singlet exciton transfer rates and diffusion lengths.37 This provides us with a unified theoretical framework that allows us to calculate at once both ISC and rISC rates, as well as fluorescence and phosphorescence rates consistently within the same set of approximations applied to the same calculation results. As such, the method gives us the capacity to predict the photophysics of a system and the corresponding lifetimes and relative contributions of each process to the overall time-dependent decay curves.

To demonstrate the method, we apply it to two TADF molecules for which experimental rates are available: a donor-acceptor complex composed of a phenothiazine donor and a dibenzothiophene-S,S-dioxide acceptor (PTZ-DBTO\textsubscript{2}, shown in Figure 1-a) and 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN, shown in Figure 1-b). We compare our results with other theoretical calculations, demonstrating, in particular, how the MLJ formalism fails to treat these cases. We also show that overall the different rate estimates produced with the method developed here are
in agreement with experimental results. Importantly, we apply the calculated rates to a kinetic model which is able to predict the experimentally observed photophysical behavior of these molecules, highlighting the usefulness of a unified approach to rate calculations in the context of TADF molecules.

![Figure 1: Molecules analyzed in this work. a) PTZ-DBTO2 and b) 4CzIPN.](image)

Methods

Rate calculations

Here we outline the method employed for the rate calculations. A full derivation can be found in the Supporting Information (SI) file.

In general, the rate of transfer between electronic states \(i \) and \(f \) as a result of a perturbation term \((V) \) applied to the Hamiltonian can be obtained by means of Fermi’s Golden Rule

\[
k_{i \rightarrow f}(E) = \frac{2\pi}{\hbar} \sum_{\nu,\mu} P_{\nu\mu}(T)|\langle \Psi_{\nu\mu}|V|\Psi_{f\mu} \rangle|^2 \times \delta(E + E_{\nu\mu} - E_{f\mu}),
\]

(1)

In this expression, \(i (f) \) and \(\nu (\mu) \) index electronic and vibrational levels of the initial (final) states, respectively. In addition, \(P_{\nu\mu}(T) \) is the Boltzmann weighed probability of state \((i,\nu) \) being populated. The energy \(E \) dependence of this expression refers, for instance, to photon or phonon energies that are required to ensure energy conservation in the transition process.

By recasting the above expression in the time domain and employing a set of approximations, we are able to write the rate expression as an expectation value, which can be evaluated by means of a Monte Carlo procedure as follows

\[
k_{i \rightarrow f}(E) = \frac{2\pi}{\hbar} \frac{1}{M} \sum_{k=1}^{M} V^2(\vec{R}_k)N(\Delta E_{fi}(\vec{R}_k) - E, \sigma).
\]

(2)

In this expression, \(M \) molecular geometries with nuclear normal coordinates \(\vec{R}_k \) are sampled from a distribution. From these geometries, values of \(V(\vec{R}_k) \) and \(\Delta E_{fi}(\vec{R}_k) \) are obtained and used to calculate each argument of the summation above, in which \(N(\Delta E_{fi}(\vec{R}_k) - E, \sigma) \) refers to a normalized gaussian function with mean \(\Delta E_{fi}(\vec{R}_k) - E \) and standard deviation \(\sigma \). The distribution used to sample molecular geometries is that for a set of harmonic oscillators at temperature \(T \):

\[
\rho(\vec{R},T) = \prod_{i=1}^{3N-6} \left(\frac{\mu_i \omega_i}{2\pi\hbar \sinh(\hbar \omega_i/k_b T)} \right) \times \exp \left(-\frac{\mu_i \omega_i}{\hbar} R_i^2 \tanh \left(\frac{\hbar \omega_i}{2k_b T} \right) \right).
\]

(3)

In this expression, \(\mu_i \) and \(\omega_i \) correspond to the reduced mass and angular frequency of the \(i \)th normal mode, \(k_b \) is the Boltzmann constant and \(R_i \) are the normal coordinates. This distribution is the product of the distributions for each normal mode. To generate a geometry from this distribution, a random displacement \(R_i \) is sampled from each of the \(3N-6 \) individual distributions, result-
ing in a displacement vector \vec{R} that is added to the molecule’s equilibrium geometry and takes into account properly weighted contributions from all normal modes. These normal modes must be obtained from frequency calculations on the initial state, that is, from S_1 optimized geometries in the case of ISC and fluorescence rate calculations and from T_1 optimized geometries in the case of rISC and phosphorescence rate estimations.

To obtain the differential emission rate for fluorescence or phosphorescence, we substitute the perturbation V in Equation 2 with 39,40

$$V_{emi} = \frac{n^2 E^3 M^2_{if}}{3\pi h^3 c^3 \varepsilon_0},$$

(4)

in which n is the refractive index of the medium, ε_0 is the vacuum permittivity, c is the speed of light and M_{if} is the transition dipole moment between states i and f. Importantly, as shown in the SI, computation of the transition dipole moments for phosphorescence requires the consideration of mixing between singlet and triplet states coupled by the spin-orbit perturbation.

Equation 2 provides us the fluorescence and phosphorescence spectra. The total emission (k_{emi}) rate for each phenomenon is obtained by integrating the corresponding spectrum

$$k_{emi} = \frac{1}{\hbar} \int_0^{\infty} I_{emi}(E) dE$$

(5)

In the cases of ISC and rISC, the perturbation V is given by the spin-orbit coupling element $< S_1 | H_{SO} | T_1 >$. Equation 2 provides then an expression for the (r)ISC rate as a function energy E. Unlike emission processes, this energy does not correspond to photon energies, but rather to phonons that can be either absorbed or emitted by the molecule. To account for this, we consider the system to be immersed in a harmonic bath that may either provide or receive the excess energy necessary for a (r)ISC process. As such, the actual rate can be obtained by means of the following convolution 41,42

$$k_{(r)ISC} = \int I_s(E) k_{i \rightarrow f}(\Delta E - E) dE,$$

(6)

in which $I_s(E)$ is the line shape function for the low frequency solvent modes. Under the classical approximation, this term is a gaussian 43

$$I_s(E) = \sqrt{\frac{\pi}{\lambda kT}} \exp \left(-\frac{(\lambda + E)^2}{4\lambda kT} \right),$$

(7)

where λ is the reorganization energy.

Performing the integration in Equation 6 finally yields

$$k_{(r)ISC}(E) = \frac{2\pi}{\hbar} \frac{1}{M} \sum_{k=1}^{M} H_{SO}^{\{\vec{R}_k\}^2}$$

$$\times N(\lambda + \Delta E_{fi}(\vec{R}_k), \sqrt{2\lambda kT + \sigma^2}),$$

(8)

Computational Details

Geometry optimizations and normal mode analyses were performed for both molecules in the S_1 and T_1 states. A total of 500 geometries were sampled from Equation 3 for each state. A $\sigma = kT$ factor was used for all rates and temperature was set to 300 K. Excited state calculations were then run on all sampled geometries, from which excitation energies, transition dipole moments and spin orbit couplings were obtained. A total of 10 singlet and 10 triplet states were taken into account. The Tamm-Dancoff approximation 47 (TDA) was employed throughout, as it has been demonstrated to both improve the accuracy of the excitation energies of triplet states 48 and to be able to produce reliable emission spectra. 49 Furthermore, all calculations made use of the polarizable continuum model 50 (PCM) with toluene as the solvent and were performed with the M062X functional 51 along with the 6-31G(d,p) basis set. Importantly, this functional has been shown provide a good description of the excited state properties of the molecules under analysis in this work. 21,45,46 The Gaussian 16 52 program suite was employed for geometry optimizations and normal mode analyses whereas the QChem 5.0 53 software was used for all remaining calculations.

Results

The calculated values of ISC and rISC rates for PTZ-DBTP2 and 4CzIPN are shown in Table 1. These are compared with experimental val-
and Huang-Rhys factor we used typical values for the effective frequency associated with this mode. Following previous work, \(\omega \) is an effective frequency representative of the nonclassical high frequency molecular modes and \(S \) is the Huang-Rhys factor associated with this mode. Following previous work, we used typical values for the effective frequency and Huang-Rhys factor, \(\omega_{\text{eff}} = 1200 \text{ cm}^{-1}, S = 0.336 \). The remaining parameters are taken from calculations performed on the optimized \(S_1 \) and \(T_1 \) geometries in the cases of ISC and rISC, respectively. The other theoretical approach shown in Table 1 (denoted by Avg) consists in applying the MLJ rate equation to all 500 sampled geometries and taking the mean of the results.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Process</th>
<th>NEM</th>
<th>MLJ</th>
<th>Avg</th>
<th>Exp</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTZ-DBTO2</td>
<td>(k_{\text{ISC}}) (s(^{-1}))</td>
<td>(1.6 \times 10^8)</td>
<td>(2.3 \times 10^8)</td>
<td>(1.9 \times 10^8)</td>
<td>(1.0 \times 10^7)</td>
<td>44,45</td>
</tr>
<tr>
<td></td>
<td>(k_{\text{rISC}}) (s(^{-1}))</td>
<td>(4.5 \times 10^5)</td>
<td>(1.4 \times 10^{-26})</td>
<td>(5.4 \times 10^4)</td>
<td>(1.4 \times 10^6)</td>
<td>44,45</td>
</tr>
<tr>
<td>4CzIPN</td>
<td>(k_{\text{ISC}}) (s(^{-1}))</td>
<td>(5.8 \times 10^7)</td>
<td>(8.2 \times 10^7)</td>
<td>(1.2 \times 10^8)</td>
<td>(5.1 \times 10^7)</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>(k_{\text{rISC}}) (s(^{-1}))</td>
<td>(3.3 \times 10^4)</td>
<td>(1.1 \times 10^{-1})</td>
<td>(1.5 \times 10^4)</td>
<td>(2.7 \times 10^6)</td>
<td>46</td>
</tr>
</tbody>
</table>

Comparison between the various rates in Table 1 shows that for ISC, there is overall agreement between all the theoretical methods. The same cannot be said when considering the rISC process, for which the MLJ method is shown to predict near zero values. The averaging of the MLJ rates over the sampled geometries appears to resolve this issue, raising rISC rates. These, however, still fall short of the rISC rates calculated with the method developed in this work denoted by NEM on Table 1, for nuclear ensemble method. More importantly, comparison between the theoretical methods and experimental results shows that the rates predicted by the our method are, in all cases, closer to the experimental values.

In the particular case of PTZ-DBTO2, the predicted ISC rate is roughly one order of magnitude greater than its experimental counterpart, while the calculated rISC rate underestimates the experimental value by a factor of 3. These results also compare favorably with those from quantum dynamics calculations, which, taking into account the vibronic coupling between two triplet states with localized and charge transfer character, produce an ISC rate of \(5 \times 10^5 \text{ s}^{-1} \) and a rISC rate of \(7 \times 10^4 \text{ s}^{-1} \). This comparison prompts the question of how the ensemble approach deals with the observed role played by triplet charge transfer and localized excited states in (r)ISC. The answer lies in the fact that the sampling procedure produces conformations that display \(T_1 \) states with various different mixtures of charge transfer and localized characters. An extreme example of this variability in PTZ-DBTO2 is shown in Figure 2, which presents two sample conformations whose natural transition orbitals (NTOs) for the \(T_1 \) state display completely different electronic character. Whereas the first triplet state of configuration 1 has strong charge transfer character, the one for configuration 2 is seen to correspond to a localized excitation in the donor fragment. This goes to show that the ensemble approach we propose here naturally accounts for contributions to the rates stemming from both charge transfer and localized excited states which can be found on the same \(T_1 \) adiabatic potential energy surface. This suggests
that non-adiabatic effects are not necessary for efficient rISC as non-Condon effects may be more pronounced. In this sense, the role of the mixing of diabatic configurations has been proposed as an important mechanism associated to changes in the rates of ISC. \(^{25,55}\)

![Figure 2: Natural transition orbitals (NTOs) for the \(T_1\) state of two sampled geometries of PTZ-DBTO2. Configuration 1 presents strong charge transfer character, whereas \(T_1\) is a localized excitation at configuration 2.](image)

For the 4CzIPN molecule, great agreement is found between predicted and experimental ISC rates. The calculated rISC rate, however, is seen to underestimate the experimental value by two orders of magnitude. This rate has also been the object of investigation in a previous work, \(^{28}\) which, based on the MLJ rate expression, estimated it to lie in a range from \(4.92 \times 10^6\) to \(1.83 \times 10^7\). This was due to the very low singlet-triplet gap found (0.01 eV), which resulted from a long range corrected functional tuning procedure performed with PCM. This procedure leads to very low values for the range separation parameter, which, in addition to producing low singlet-triplet gaps, also severely underestimates excitation energies. \(^{56}\)

We may understand better the relationship between the different methods of calculation shown here by looking into the distribution of the two relevant parameters for (r)ISC rate calculations: singlet-triplet gaps and spin-orbit couplings. These distributions are shown in Figure 3 for each molecule and each excited state (\(S_1\) and \(T_1\)). It can be noted that in the case of PTZ-DBTO2 (Figure 3-a to d) the distributions for both features change considerably depending on the state from which geometries are sampled. In particular, the range of spin-orbit coupling values becomes much more expanded in the case of \(T_1\) geometries. However, this is also followed by a displacement in the average values of the singlet-triplet gap (shown by the green dashed line) towards higher energies, which helps explain the lower rISC rate. This is in contrast to the results for 4CzIPN (Figure 3-e to h), which present similar distributions for geometries from the two states. In this case, the offset between ISC and rISC predicted rates comes from the larger reorganization energies obtained for 4CzIPN (0.1 – 0.2 eV, as seen in Table 2), an order of magnitude greater than those found for PTZ-DBTO2 (0.025 eV).

The singlet-triplet gap distributions also explain the reason why MLJ rates seem to provide correct rates for ISC, but fail in the case of rISC. As seen in Figure 3-c and g, the gaps calculated for the optimized \(S_1\) geometries (marked in the figure by the red vertical dashed line) are situated at the left of the corresponding distributions. The opposite behavior is verified in the case of \(T_1\) geometries (Figure 3-d and h), which has the optimized values closer to the average of the distributions. This discrepancy is not observed in the distribution of spin-orbit couplings, but it can be seen that the average coupling may differ importantly when compared to those obtained from optimized geometries. In particular for PTZ-DBTO2 \(T_1\) and 4CzIPN \(S_1\) states, this difference amounts to a factor of 2, whereas for the remaining cases the optimized couplings are comparable to the average ones. This points to the importance of sampling in the estimation of couplings, as concluded in previous studies. \(^{57–59}\)

![Table 2: Reorganizations energies (eV) for the two processes relevant for ISC and rISC.](image)

We now turn to the method’s prediction concerning emission rates. The simulated fluorescence and phosphorescence spectra for both molecules are shown in Figure 4. In the case of PTZ-DBTO2, the fluorescence spectrum peaks at 454 nm, be-
The same issue concerning the charge transfer character of the donor moiety (PTZ, whose fluorescence spectrum peaks at 454 nm). This can be explained by the S_1 state displaying considerable stabilization in solution. In contrast, the simulation, captures the contributions around 400 nm from a localized singlet state observed in zeonex (which has a similar dielectric constant to toluene). Similarly, the experimental phosphorescence peak is found to be around 500 nm in zeonex, in agreement with the results seen in Figure 4-b. The better agreement results also from the localized character of the T_1 state, which manages to be well described by PCM calculations.

A similar situation is observed for 4CzIPN (Figure 4-c and d). The calculated fluorescence spectrum peaks at 436 nm, whereas the experimental one peaks at around 500 nm in toluene. The same issue concerning the charge transfer character of the S_1 state applies here. The calculated phosphorescence spectra for 4CzIPN is broad, with a peak at 516 nm. The actual differential emission rate for phosphorescence, however, can be seen to be three orders of magnitude inferior to those found for PTZ-DBTO2, meaning that room temperature phosphorescence should not be observed for this molecule.

By means of Equation 5, we are able to calculate the total fluorescence and phosphorescence rates for these molecules. Results are shown in Table 3 along with experimental estimates for fluorescence rates. It can be seen that calculated values show agreement with experiment within around one order of magnitude. Phosphorescence rates, in turn, are negligible for 4CzIPN, but are still significant for PTZ-DBTO2, as expected from the spectra.

Finally, we may investigate the joint effect of these various rates and processes in the kinetics of the population of the different states. To do so we resort to a set of differential equations governing the population of each state

$$\frac{dS_1}{dt} = -(k_F + k_{ISC} + k_{nr})S_1 + k_{rISC}T_1 \quad (10)$$
$$\frac{dT_1}{dt} = k_{ISC}S_1 - (k_P + k_{rISC})T_1 \quad (11)$$
$$\frac{dS_0}{dt} = (k_F + k_P + k_{nr})S_1 \quad (12)$$
where we have included a rate for non-radiative decay from the S_1 state (k_{nr}). This follows an experimental estimation of a 1.5×10^6 s$^{-1}$ non-radiative decay rate for 4CzIPN in toluene.46 In contrast, no significant non-radiative loss was observed for PTZ-DBTO2 solutions.44 We have also calculated ISC rates from T_1 to S_0 with the method presented here and found them to be practically zero for both molecules due to the comparatively higher energy gaps involved when compared to S_1 to T_1 ISC.

The solution to these equations provide us with the time-dependent photophysical behavior of the system. Figure 5-a and b show the temporal evolution of the S_1 and T_1 states of both molecules for an initial S_1 population of 100%. In the case of PTZ-DBTO2, the initial depopulation of S_1 coincides with an increasing population of the T_1 state due to the high ISC rate in comparison to k_F. Low phosphorescence and rISC contribute to the maintenance of an S_1 population which decays again in a second moment, along with the triplet state. This behavior is in qualitative agreement with experimental results.

The dynamics in 4CzIPN, however, differs by a strong depopulation of S_1 following its high fluorescence rate. The triplet state experiences a less steep population change and takes much longer to decrease again, as rISC rates are not particularly high and the phosphorescence channel is practically unavailable.

Comparison with experiment is made easier by considering the time-resolved photoluminescence decay, which can be simulated from the kinetic
Table 3: Calculated fluorescence (k_F) and phosphorescence (k_P) rates for PTZ-DBTO2 and 4CzIPN. Experimental fluorescence rates (Exp. k_F) are also shown.

<table>
<thead>
<tr>
<th>Molecules</th>
<th>k_F (s$^{-1}$)</th>
<th>k_P (s$^{-1}$)</th>
<th>Exp. k_F (s$^{-1}$)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTZ-DBTO2</td>
<td>4.0×10^6</td>
<td>3.1×10^3</td>
<td>6.0×10^7</td>
<td>44,45</td>
</tr>
<tr>
<td>4CzIPN</td>
<td>9.3×10^7</td>
<td>1.7×10^4</td>
<td>1.7×10^7</td>
<td>46</td>
</tr>
</tbody>
</table>

equations by splitting the S_0 state in three artificial states, each one being individually populated by fluorescence, phosphorescence and the non-radiative decay. In this sense, simulated time-resolved fluorescence and phosphorescence decays are shown in Figure 5-c and d for both molecules.

For PTZ-DBTO2, two aspects are noteworthy: first, the contribution from prompt fluorescence can be seen by the small vertical line in the initial times, followed by the delayed fluorescence that results from rISC. Second, we see significant contributions from phosphorescence (represented by the red curve). In fact, the calculations predict that 79% of the emission stems from fluorescence, with the remaining 21% being due to phosphorescence. Fitting the fluorescence curve with a biexponential function provides us with an estimated lifetime of 67 µs for the delayed component. This overestimates experimental lifetimes for the delayed component in about an order of magnitude, which is a result of the differences between calculated and experimental estimates for the rISC rate.

In contrast to these results, the 4CzIPN simulated time-resolved decay shows no contribution from phosphorescence, as expected. It does show a strong prompt component with a 6 ns lifetime, close to the experimental value of 14 ns. The prompt intensity is 1.6 times higher than the delayed one, in qualitative agreement with experimental results. The delayed component, on the other hand, has an estimated lifetime of 45 µs, again overestimating the experimental value of almost 2 µs for the same reason as mentioned above in the case of PTZ-DBTO2. Interestingly, the simulated results appear to better match the experimental time-resolved decay produced at 200 K, which displays much longer delayed lifetimes. One rationalization for this observation is the possibility that the harmonic approximation that is behind the procedure of geometry sampling may overlook important anharmonic contributions that are relevant at higher temperatures, making results resemble more lower temperature experimental behavior. It is also worth mention that the non-radiative decay plays a minor role in the simulation, reducing the quantum yield in only 3%, versus 6% in the experiment.

The overall results for the predicted time-dependent photophysical properties of these two molecules are very positive, especially by taking into account the fact that a precise agreement with experimental results requires the simultaneous precise estimation of four different rates. In this sense, it is clear that the method presented here is very powerful as it is able to, in a single framework, provide adequate qualitative and quantitative estimations for several properties of interest.1 Further improvement of the method can be achieved, for instance, by focusing on obtaining higher precision from the electronic structure calculations. The calculations of singlet-triplet gaps, i.e. the key parameter for TADF efficiency, has been shown to be sensitive to the electronic structure method.60–62 Also, the results may be improved by considering state-specific solvation methods63,64 which better account for the stabilization of charge transfer states. Incidentally, if we were to offset our calculated 4CzIPN singlet energies by 0.3 eV, roughly the amount by which the simulated fluorescence spectra is blue shifted with respect to experiment, rISC rates would increase to 4.9×10^7 s$^{-1}$, making it approach the experimental value. A similar calculation holds also for PTZ-DBTO2. This ad hoc shifting of energy levels, however, is a crude approximation, as it fails to take into account the possibility of geometries for which the S_1 state displays not a charge transfer character, but rather a localized one, in which case its energy should not be expected to
change under solvation. As such, the distribution of singlet-triplet gaps is not only expected to shift, but also change in shape.

Conclusions

In summary, we have presented a theoretical approach that goes beyond the Condon approximation and is able to, within a unified framework, provide rate estimates for intersystem crossing, reverse intersystem crossing, fluorescence and phosphorescence.

We show that the proposed method produces estimates in overall good agreement with experimental results, although it underestimates rISC rates due to an overestimation of singlet energies in solution. Results, however, compare favorably with the usually employed MLJ formula and also with other previous calculations available in the literature without the need to account explicitly for higher order effects such as vibronic couplings to higher lying excited states.

Once the rate estimates were obtained, we were able to show how these different processes affect the photophysical behavior. This was done by looking into the calculated time evolution of the population of singlet and triplet states and by comparing simulated time-resolved photoluminescence decay curves with experimental results. We observed that kinetics differed significantly for both molecules analyzed here. Whereas for PTZ-DBTO2 the delayed component of fluorescence is responsible for most of the luminescence, for 4CzIPN the prompt component has much higher intensity. Furthermore, we observed a significant contribution from phosphorescence for PTZ-DBTO2, which is not present in the results for 4CzIPN. Inclusion of non-radiative decay rates also allowed the prediction of fluorescence quantum yields in agreement with experiments.
The method developed here may be further improved by increasing the accuracy of the electronic structure methods upon which it depends. We also observe that the underestimation of rISC rates and consequential overestimation of delayed fluorescence lifetimes leads to results that more closely resemble experiments performed at lower temperatures. This also suggests that improving geometry sampling beyond the harmonic approximation may partially correct this issue.

In conclusion, our approach may be valuable to the development of new TADF materials, providing a framework upon which all the processes of interest can be analyzed, quantified, and assembled together to provide predictions for actual photophysical behavior.

Acknowledgments

The authors acknowledge support by a research grant (00028053) from VILLUM FONDEN.

Supporting Information

A supporting information file containing the detailed derivation of the rate calculation method is available.

References

(52) Frisch, M. J. et al. Gaussian16 Revision C.01. 2016; Gaussian Inc. Wallingford CT.

