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A B S T R A C T   

To guide both environmental and public health policy, it is important to assess the degree of antibiotic resistance 
selection pressure under measured environmental concentrations (MECs), and to compare the efficacy of 
different mitigation strategies to minimize the spread of resistance. To this end, the resistance selection and 
enrichment potential due to antibiotic emissions into the environment must be analysed from a life cycle 
perspective, for a wide range of antibiotics, and considering variations in the underlying fitness costs between 
different resistance mutations and genes. The aim of this study is to consistently derive fitness cost-dependent 
minimum selective concentrations (MSCs) from readily available bacterial inhibition data and to build MSC- 
based species sensitivity distributions (SSDs). These are then used to determine antibiotic-specific resistance 
selection concentrations predicted to promote resistance in 5% of exposed bacterial species (RSC5). Using a 
previously developed competition model, we provide estimated MSC10 endpoints for 2,984 antibiotic and 
bacterial species combinations; the largest set of modelled MSCs available to date. Based on constructed SSDs, we 
derive RSC5 for 128 antibiotics with four orders of magnitude difference in their ‘selective pressure potential’ in 
the environment. By comparing our RSC5 to MECs, we highlight specific environmental compartments (e.g. 
hospital and wastewater effluents, lakes and rivers), as well as several antibiotics (e.g. ciprofloxacin, norfloxacin, 
enrofloxacin, and tetracycline), to be scrutinized for their potential role in resistance selection and dissemination. 
In addition to enabling comparative risk screening of the selective pressure potential of multiple antibiotics, our 
SSD-derived RSC5 provide the point of departure for calculating new life cycle-based characterization factors for 
antibiotics to compare mitigation strategies, thereby contributing towards a ‘One-Health’ approach to tackling 
the global antibiotic resistance crisis.   

1. Introduction 

Antibiotic-resistant bacterial infections have exceeded both malaria 
and HIV/Aids as a leading cause of death worldwide, directly respon
sible for 1.27 million deaths in 2019 (Murray et al., 2022). Bacteria 
develop resistance through spontaneous mutations, or acquire antibiotic 
resistance genes (ARGs) via horizontal gene transfer (Aminov, 2011; 
Davies, 1996). A large body of experimental and epidemiological evi
dence finds the acquisition of resistance to be associated with a small, 
yet significant, fitness cost (Bengtsson-Palme et al., 2021; Hughes & 
Andersson, 2017; Luangtongkum et al., 2012; Melnyk et al., 2015; 

Millan et al., 2015; Smani et al., 2012), expressed in terms of e.g., 
reduced reproductive ability relative to a susceptible ancestor (Martinez 
& Baquero, 2000). This cost of resistance and the strength of selection 
pressure – partly in function of antibiotic exposure – are believed to be 
the most important parameters shaping the evolution, persistence and 
dissemination of ARGs, both in host populations as well as natural en
vironments (Bengtsson-Palme et al., 2021; Hughes & Andersson, 2017). 

Antibiotic pollution in aquatic and terrestrial environments has 
repeatedly been shown to exert sufficient selection pressure to enrich 
resistance determinants (Bengtsson-Palme & Larsson, 2016; Darlica, 
2003; Gullberg et al., 2011, 2014; Liu et al., 2011; Tello et al., 2012). 
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Recognizing the environment as the single largest reservoir of mobiliz
able ARGs (Finley et al., 2013; Gaze et al., 2013) thus places it at the 
heart of tackling clinical drug resistance and associated human health 
morbidity and mortality (Surette & Wright, 2017). To guide both envi
ronmental and public health policy it is therefore important to assess the 
degree of selection pressure under current antibiotic pollution, and to 
develop and compare the efficacy of different mitigation strategies tar
geted at taming the risk of resistance selection, enrichment and trans
mission from the environment to humans (Finley et al., 2013; Gaze et al., 
2013; Le Page et al., 2017). 

Life cycle assessment (LCA) is an increasingly used standardized 
methodology that allows quantifying the potential environmental im
pacts of product life cycles, as well as comparing between e.g., product 
alternatives and intervention strategies. Nyberg et al. (2021) recently 
developed a characterization model to express the potential resistance 
enrichment in the environment due to life cycle emissions of antibiotics. 
The authors derive minimum selective concentrations (MSCs), defined as 
the lowest concentration of antibiotic at which a resistant strain begins 
having a survival advantage over its sensitive ancestor, from minimum 
inhibitory concentrations (MICs) using a fixed assessment factor of 10, 
representing approximately the median MIC/MSC ratio reported by 
Gullberg et al. (2011). Based on constructed species sensitivity distribu
tions (SSDs), Nyberg et al. (2021) then derive the antibiotic concentra
tion that will promote resistance in 50% of exposed bacteria, the 
hazardous concentration or HC50. Combining their HC50 estimates with 
the fate of antibiotics emitted into water compartments, and subsequent 
exposure of the bacterial community, the authors determine ‘antibiotic 
resistance enrichment potentials’ or so-called ‘characterization factors’ 
(CFs) for 14 antibiotics. The authors’ approach to extrapolate MSCs from 
MICs is commonly used to predict MSCs (Bengtsson-Palme & Larsson, 
2016; Rico et al., 2017) and was shown for specific antibiotics to lie close 
to empirically determined MSCs (Lundström et al., 2016; Stanton et al., 
2020). Nevertheless, this generic assessment factor fails to account for 
mutation/ARG-specific differences in underlying fitness costs and in 
relative fitness levels of resistant vs. sensitive strains, which can signif
icantly affect MSC-to-MIC ratios (Greenfield et al., 2018; Gullberg et al., 
2011; Liu et al., 2011). Furthermore, Nyberg et al. (2021) rely on the 
concentration below the lowest MIC of an antibiotic-species combina
tion (resembling a ‘no-observed effect concentration’, NOEC) to 
extrapolate towards MSCs, which is often argued to be less suitable for 
comparative assessments of ecological effects in the context of e.g., 
comparative risk screening or life cycle impact assessment (LCIA) 
(Fantke et al., 2018; Owsianiak et al., 2023). This is because (1) NOECs 
are likely more affected by the tested concentrations than the shape of 
the curve, and (2) they are ‘no-effect’ oriented, which is more applicable 
in deriving protective thresholds than species sensitivities that can later 
be linked to damage at the endpoint level (Kosnik et al., 2022; Carney 
Almroth et al., 2022; Oginah et al., 2023). 

To address these research gaps, the present study aims to enable a 
more consistent and comprehensive assessment of potential resistance 

selection in the environment, allowing comparison between the selec
tive pressure potential of different antibiotics, as well as between the 
contribution of whole product life cycles to resistance selection and 
enrichment. To achieve this goal, we specifically aim to (1) develop and 
apply an integrated methodological framework to consistently derive 
fitness cost-dependent MSCs and construct MSC-based bacterial selec
tion sensitivities from bacterial inhibition data, (2) determine for a va
riety of antibiotics multi-species, antibiotic-specific resistance selection 
concentrations that are predicted to promote resistance in 5% of species 
types in an exposed bacterial community (RSC5), and (3) quantify the 
uncertainty around all relevant calculated endpoints (MIC, MSC and 
RSC) to enable more accurate predictions of potential resistance selec
tion under ambient antibiotic concentrations and related confidence 
intervals. 

Our predicted RSC5 can firstly be used in combination with measured 
environmental concentrations (MECs) to estimate the potential of se
lection under current antibiotic pollution and prioritize environmental 
compartments with likely high selection pressure (Ashbolt et al., 2013; 
Lundström et al., 2016). More importantly, they can be used in the 
context of LCIA as points of departure to define new CFs for antibiotics 
reflective of their selective pressure potential in the environment. This 
will enable a variety of stakeholders (e.g., pharmaceutical companies, 
farmers, policymakers) to assess the resistance selection potential 
associated with their activities, as well as compare the efficacy of life 
cycle-based solutions to the resistance problem (Fantke & Illner, 2019; 
Persson et al., 2022). The developed RSC5 can thus contribute towards a 
‘One-Health’ approach to tackling the global antibiotic resistance crisis 
(Larsson and Flach, 2022; Puyvelde et al., 2018). 

2. Methods 

Fig. 1 summarizes the proposed methodological framework devel
oped in the present study to link bacterial inhibition data (MIC distri
butions) on a variety of antibiotic-species combinations (called 
hereinafter ‘combinations’) to environmental RSC5, and provides in
formation on the number of antibiotics, species or combinations thereof 
included at each step of the analysis. 

Using a previously developed model of competition between sensi
tive and resistant bacterial strains, called hereinafter ‘competition 
model’, that accounts for the key factors favouring growth of resistant 
strains at concentrations far below those used in clinical settings 
(Greenfield et al., 2018), we calculate combination-specific MSC-to-MIC 
ratios for 2, 984 antibiotic-species combinations present in the database 
of the European Committee on Antimicrobial Susceptibility Testing 
(EUCAST) (EUCAST, 2020). To determine the ratio of MIC for resistant 
isolates (MICr) to that for sensitive isolates (MICs) of a given combina
tion or the ‘fold-increase in MIC’ required within the applied competi
tion model, we derived fitted MIC distributions for both sensitive and 
resistant bacterial isolates of a given species from the EUCAST MIC 
distribution data. We then determined the corresponding 
MIC10,r/MIC10,s ratio, representing the 10th percentile of the relation 
between the resistant strains’ inhibition level and that of the sensitive 
strains across a large number of resistant isolates with different under
lying resistance mechanisms against a respective antibiotic. Using the 
competition model’s results, we constructed MSC10-based SSDs for a 
total of 128 antibiotics and derived antibiotic-specific RSC5, reflecting 
their comparative selective pressure potential. . 

All methodological decisions and assumptions made at the different 
stages of the proposed framework (Fig. 1) are discussed in more detail in 
the appendix, Table A1 (appendix, Section A-1). 

For estimated key parameters, we additionally quantified uncer
tainty and calculated the associated 95% confidence interval (CI) limits. 
A detailed step-by-step guide of the uncertainty analysis is presented in 
the appendix, Section A-3. 

All analyses were carried out using R, the software environment for 
statistical computing (R version 4.1.0) (R Core Team, 2021). all 

Table 1 
Default values used in the estimation of the ratio of minimum selective con
centration (MSC) to minimum inhibitory concentration (MIC) for the sensitive 
population based on the competition model developed by Greenfield et al. 
(2018) (see Eq. 3).  

Parameter Description Default value 
(95% CI) 

Nint,r/

− Nmin 

Ratio of the intrinsic net growth rate of the 
resistant/sensitive strain, in the absence of the 
antibiotic, to the minimum possible growth rate 
after accounting for the growth-limiting activity 
of the antibiotic 

0.38 (0.01–10.2) 

Nint,s/

− Nmin 

0.4 (0.01–10.6) 

sc Relative selection coefficient 0.04 (0.008–0.2) 
κ Hill-coefficient of the antibiotic dose-response 

curve in the sensitive strain 
1.8 (0.5–6.6)  
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subsequent figures were generated using ggplot2 version 3.3.6 (Wick
ham, 2016). 

2.1. Deriving minimum selective concentrations 

Greenfield et al. (2018) provide an analytical solution to the MSC, 
defining the MSC-to-MIC ratio as: 

Fig. 1. Proposed methodological framework to link bacterial growth inhibition data (MIC distributions) to antibiotic-species combination-specific minimum selective 
concentrations (MSCs), and further to antibiotic-specific resistance selection concentrations (RSC5), at which resistance is promoted in 5% of bacterial species in the 
environment. 
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[1]  

where MSCx/MICx,s is the ratio of the minimum selective concentration 
for x % of exposed bacteria to the minimum inhibitory concentration in 
the sensitive (s) ancestor [dimensionless], sc is the relative selection 
coefficient, describing fitness differences between the sensitive and 
resistant strain [dimensionless] and obtained by reversing the sign of the 
reported absolute selection coefficient (σ) and dividing this value by the 
net growth rate of the sensitive strain, Nint,r and Nint,s are the intrinsic net 
growth rates of the resistant and sensitive strain, respectively, in the 
absence of the antibiotic [per hour], calculated as the difference be
tween the intrinsic growth rate and the intrinsic loss due to mortality 
(or, in continuous cultures, dilution), Nmin is the minimum possible 
growth rate after accounting for the growth-limiting activity of the 
antibiotic, MICr

MICs 
is the ratio of the inhibitory concentration of the resistant 

mutant to that of its sensitive counterpart (or the fold-increase in MIC), 
and κ describes the shape (‘sigmoidicity’) of the antibiotic dose-response 
curve in the sensitive ancestor. 

The presented competition model was developed for conspecific 
bacteria and aims to enable, where data is available, a mutation-/ARG- 
specific, fitness cost-dependent estimate of the MSC-to-MIC ratio, while 
assuming that κ and Nmin are the same for sensitive and resistant strains 
(for more details, see the full derivation of the model in Greenfield et al. 
(2018)). However, since mutation-/ARG-specific data (e.g. on Nint,s, 
Nint,r, sc) are only available for a limited number of combinations, we 
apply this model to literature-derived distributions of the model’s pa
rameters (see details below) in order to reflect possible variations in the 
combinations present in the EUCAST database, as well as calculate 
combination-specific distributions of the fold-increase in MIC. Details 
for deriving the fold-increase in MIC or MIC10,r/MIC10,s are given in the 
appendix, Section A-2. 

With regard to the fitness costs, the distribution of the sc was derived 
based on a meta-analysis of 77 competition experiments (Vogwill & 
Maclean, 2015) with a 95% confidence interval between 0.008 and 0.2 
and a geometric mean of 0.04, selected as the lower end of the average 
costs of plasmid-borne mutations (see appendix, Table A1). The choice 
to model low-cost, (plasmid-borne) mutations by default was informed 
by (1) the knowledge that the most likely origin of resistance in path
ogens today is low-cost resistance present on mobile genetic elements 
(MGE) in human-associated or environmental bacteria (Bengtsson-
Palme et al., 2021), (2) the fact that only MGE-borne resistance can 
move between species and is, thus, more likely to spread and be trans
mitted to human pathogens, and (3) the repeatedly evidenced negative 
correlation between measured fitness costs and resistance prevalence in 
clinical settings (Dunai et al., 2019; Hughes & Andersson, 2017). 
Low-cost, MGE-borne resistance thus represents a more relevant sce
nario in terms of resistance dissemination and human health risks. 

As for the other model parameters, the ratio of Nint,r or Nint,s to − Nmin 
and κ, we determined their distributions based on literature data from in 
vitro time-kill curve experiments and pharmacokinetic- 
pharmacodynamic modelling of the growth and killing kinetics of bac
teria exposed to antibiotics. The variability analysis of the four param
eters in 34 collected studies (list in appendix, Section A-4) enabled us to 
set their geometric mean and 95% confidence interval (see appendix, 
Table A1 and Section A-3). 

Using the distributions of all model parameters, summarized in 
Table 1, we predict based on the MSC10/MIC10,s endpoint, lying at the 
lower end (10th percentile) of the distribution of MSC-to-MICs ratios 

across various mutations/ARGs in a given antibiotic-species combina
tion. Based on the estimated MSC10/MIC10,s ratios, we ultimately derive 
a distribution of MSC10 values, representing the range of antibiotic 
concentrations that is likely to select for resistance among low-cost 
(‘potent’) resistance mutations. By modelling this specific and realistic 
‘cost scenario’, we are able to make early useful predictions of the po
tential for human health-relevant resistance selection in the 
environment. 

2.2. Deriving SSDs and resistance selection concentrations (RSCs) 

Following the same mathematical approach as for the fitted MIC 
distributions, we derived an SSD for each antibiotic by fitting a log- 
normal model to its pooled MSC10 thresholds. We included all species 
on which an antibiotic had been tested into its respective SSD (Rico 
et al., 2017) as opposed to focusing on a pre-selection of pathogenic 
bacteria with evidence of their growth in the natural environment (see 
appendix, Table A1). The SSD curve, defined via its fitted distribution 
parameters μ and σ, expresses the selection sensitivity of exposed bac
teria in potentially affected fraction of bacterial species (PAFspecies) at 
gradient exposure concentrations of an antibiotic. In this context, 
‘exposed bacteria’ describes the diversity of species within the envi
ronmental microbiome without including their respective abundance. 
Based on a minimum of 10 species, we construct the MSC-based SSDs to 
represent the bacterial community as a whole. How far data on patho
genic bacteria from the EUCAST data can be used for modelling the 
community’s response is discussed in Section 4.2. For data-poor anti
biotics (nMSC < 10), we imputed a default σ equal to the average σ across 
all ‘data-rich’ antibiotics (Posthuma et al., 2019) (see appendix, 
Table A1 and Section A-5). 

Based on the fitted SSDs, we finally determined the antibiotic 
‘resistance selection concentration’ (RSC5), at which 5% of bacterial 
species are exposed above their MSC, leading to potential positive se
lection of resistance and enrichment in the environment. We quantified 
the uncertainty around the RSC5 estimates, while transparently attrib
uting it to the underlying inter- and intra-species variability. This helps 
differentiate between the uncertainty in the SSD’s shape parameter (σ), 
as well as in the underlying effect data (here: MSC10) and the resulting 
location parameter (μ), and allows future reduction and re-evaluation of 
the uncertainty when data quality is improved (Section A-3, appendix). 
The choice of RSC5 as working point on the SSD maintains the balance 
between predicting a threshold with relatively low uncertainty using a 
minimum of ten data points per SSD and an effect level signalling 
potentially dangerous and irreversible resistance selection in the 
environment. 

2.3. Comparing RSCs with measured environmental concentrations 
(MECs) 

To determine whether a potential for resistance selection is currently 
present in the environment and assess the role of different compartments 
in fuelling resistance, we compared our RSC5 estimates with MECs 
extracted from the German Environment Agency’s ‘Pharmaceuticals in 
the Environment database’ (PiE) (Beek et al., 2016; UBA, 2021). We 
only included MECs from the PiE database that were measured in μg/L 
to allow comparison with our RSC5 (measured in mg/L). This comprised 
aquatic samples taken from surface water (river/stream), surface water 
(lake), surface water (sea or ocean), groundwater, drinking water, 
wastewater treatment plant (WWTP) effluent, and treated hospital 
sewage. Comparison to MECs in other matrices (soils and sediments) – 
while relevant for the environmental dimension of the resistance prob
lem – would require extrapolation of our RSC5 to corresponding selec
tion concentrations in such matrices. Due to the lack of a coherent & 
statistically robust method to extrapolate towards corresponding RSC5 
in terrestrial environments (Fantke et al., 2018; Golsteijn et al., 2013; 
Owsianiak et al., 2023), we have focused on deriving RSC5 for aquatic 
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environments. As for manure and sludge, their composition, specific 
bacterial communities and antibiotic pollution levels make these 
matrices less representative of natural environments, and our RSC5 re
sults more difficult to directly extrapolate towards such settings. Other 
data curation steps to filter for relevant records in the PiE (e.g. filtering 
out entries ‘below detection’) are described in the appendix, Section A-6. 

3. Results 

3.1. Minimum selective concentrations 

Maximum-likelihood estimates of the distribution parameters, μ and 

σ, of the fitted MIC distributions and corresponding MIC10 thresholds 
were determined for 2, 984 sensitive and 811 resistant bacterial isolates 
in the EUCAST database (see Table A4). Distribution plots for the fitted μ 
and σ of the MIC distributions are presented in Figure A9. The log- 
normal distribution model was retained for all raw MIC distributions, 
after comparing four different distributions (‘log-normal’, ‘normal’, 
‘Weibull’ and ‘gamma’) and finding that for a majority of selected sen
sitive and resistant strain distributions (71.5% and 69.5%, respectively), 
the log-normal model was associated with the lowest AIC score (i.e. 
providing the best fit). A more detailed discussion on the ‘goodness-of- 
fit’ test is in the appendix, Section A-8. 

The MIC10,r/ MIC10,s ratios varied across all antibiotic-species com

Fig. 2. Original (points) and fitted (curves) minimum 
inhibitory concentration (MIC) distributions for a 
selected subset of environmentally- and clinically- 
relevant bacterial species in the EUCAST database 
and the antibiotics to which they developed a (a) 
high, (b) median and (c) low fold-increase in MIC. 
The size of the points reflects the aggregate number of 
clinical isolates, whose growth had been inhibited at 
each concentration. 95% confidence intervals (CI) 
around the fitted curves have been determined via 
parametric bootstrapping. The estimated minimum 
selective concentrations for each antibiotic-species 
combination, at which 10% of resistant isolates are 
preferentially selected for (MSC10), along with their 
95% CI, are also plotted.   
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binations between 1.1 and >3800 (see Figure A13). The ten antibiotic- 
species combinations with the lowest estimated fold-increase in MIC are 
presented in Table A2, along with eight combinations with an estimated 
MIC10,r/ MIC10,s > 1,000. Combination-specific MSC10/MIC10,s ratios 
and, finally, MSC10 endpoints (with respective 95% CI) were also 
determined for a total of 2,984 antibiotic-species combinations. The 
MSC10/MIC10,s ratios varied between 0.14 - 0.19 across the 2,984 
combinations included in our analysis. This means that – assuming low 
fitness costs by default – MSCs can be one order of magnitude below the 
MIC in the sensitive wild-type. The central tendency of our results is 
consistent with the previously suggested assessment factor of 10 (MIC- 
to-MSC) (Bengtsson-Palme & Larsson, 2016; Nyberg et al., 2021; Rico 
et al., 2017), while providing a consistent rationale for and quantifying 
the distribution of this factor. How sensitive the MSC-to-MICs ratio is to 
changes in fitness costs or the sc, as well as to other model parameters, is 
presented in more detail in the appendix, Section A-11. 

Fig. 2 presents for a selected subset of antibiotic-species combina
tions the raw MIC distribution data as extracted from the EUCAST 
website, the fitted MIC distributions, and finally, the derived MSC10 
endpoints. The five presented bacterial species had been suggested as 
bacterial indicators for assessing the status of human-relevant antibiotic 
resistance under environmental settings (Berendonk et al., 2015). We 
include those antibiotic agents to which these species had developed 
high (Fig. 2a), median (Fig. 2b) and low (Fig. 2c) MIC10,r/ MIC10,s. 

The highest fold-increase in MIC among the presented examples 
(MIC10,r/ MIC10,s = 308) was observed for ceftobiprole-resistant Kleb
siella pneumoniae with an MSC/ MICs = 0.14 and an MSC10 ≈ 0.002 mg/ 
L (95%CI: 3 × 10− 6 to 0.007 mg/L) vs. a MICs ≈ 0.012 mg/L (95%CI: 
0.0119 to 0.013 mg/L). In contrast, the lowest fold-increase in MIC of 
approximately 3, which was found for linezolid-resistant Enterococcus 
faecium, was associated with an MSC/ MICs = 0.15 at an MSC10 ≈ 0.11 
μg/mL (95% CI: 0.002 to 0.5 mg/L) vs. a MICs ≈ 0.77 mg/L (95%CI: 
0.75 to 0.79 mg/L). Uncertainties around the estimated MSC10 level are 
larger at the lower end, where smaller differences in fitness between the 
sensitive and resistant strain lead to higher variability in the estimation 
of the MSC (Murray et al., 2018) (see sensitivity analysis in Section 
A-11). Data underlying Fig. 2 are available in the appendix (Table A3). 

The two described examples from Fig. 2 highlight how, based on the 
way we build the present framework, a low fold-increase in MIC does not 
necessarily translate into low predicted MSC10. This model design 
deliberately decouples the ‘degree of resistance’ from fitness costs, 
which is often the case when e.g., compensatory mutations ameliorate 
costs while maintaining resistance levels (Dunai et al., 2019), or when 
ARGs are co-selected (Hernando-Amado et al., 2017). Assuming default 

low costs (sc), the MSCx level in our model is additionally determined 
predominantly by (a) the shape of the antibiotic-dose response curve in 
the susceptible strain (κ), and (b) the MICs (see appendix, Section A-11). 
This specifically places the focus on competition between the sensitive 
and resistant strain as a determinant in the trajectory of resistance, as 
opposed to characteristics of the resistant mutant alone. Thus, high-cost 
mutations and ARGs may also be selected for and enriched under 
environmental antibiotic pressure, if for example the respective sus
ceptible strain is already inhibited at very low antibiotic concentrations, 
giving way to the resistant strain to flourish. 

Results of the MIC10 thresholds, the fold-increase in MIC and the final 
MSC10 values (and 95% CI) for the 2, 984 modelled combinations are 
provided in Table A5. 

3.2. Species sensitivity distributions (SSDs) 

We derived maximum-likelihood estimates of the distribution pa
rameters, μ and σ, for the SSDs of 128 antibiotics. Histograms of the 
distribution parameters across the dataset are available in Figure A16. 
Fig. 3 illustrates the MSC10-derived SSDs for four selected antibiotics 
with the highest and lowest σ in the dataset (Fig. 3a and Fig. 3b), as well 
as the highest and lowest predicted RSC5 (Fig. 3c and Fig. 3d). The 
steeper the SSD (e.g. Fig. 3b), the more sensitively exposed bacteria 
respond to marginal increases in antibiotic exposure concentrations 
around the RSC5. 

Full results at the SSD-level are reported in Table A6, along with the 
predicted RSC5 values for 128 antibiotics and their 95% CI limits. 

3.3. Resistance selection concentrations and comparison with measured 
environmental concentrations 

Based on the fitted μ and fitted or imputed σ describing each SSD, we 
finally derived respective RSC5 values for the 128 antibiotics included in 
our analysis. We derived 1, 000 RSC5 values per antibiotic from a log- 
normal distribution, where the median (50th percentile) estimate of 
the 5th percentile is consistently below the ‘deterministic’ RSC5 (i.e. the 
point value determined based on the single fit to predicted MSC10 per 
antibiotic) (see Figs. 3 and 4a). This is the result of accounting for the 
‘intra-species’ variability, where the uncertainty and therefore the fre
quency of sampled MSC10 values on the lower end is higher than on the 
upper end (see Section A-3). Both the deterministic RSC5, as well as the 
median RSC5, are reported in Table A6. For use in LCIA or comparative 
risk screening, we recommend use of the median RSC5, as it better 
captures the underlying uncertainty in each predicted MSC. Therefore, 

Fig. 3. Species sensitivity distributions for four 
selected antibiotics built from their pooled minimum 
selective concentrations (MSC10) for each species that 
they had been tested on in the EUCAST data. The 
SSDs with (a) the highest and (b) lowest σ are plotted, 
as well as the two antibiotics with the (c) highest and 
(d) lowest predicted resistance selection concentra
tion, at which resistance is promoted in 5% of envi
ronmental bacteria (RSC5). For antibiotics tested on 
less than ten species, the standard deviation of their 
SSD curve (σ) was imputed by a default σ equal to the 
average σ across all ‘data-rich’ antibiotics (Imputa
tion = TRUE).   
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we only discuss results of the median RSC5 in the following sections. 
The five lowest predicted RSC5, indicating the antibiotics with the 

highest ‘selective pressure potential’, were estimated for delamanid (2×
10− 5 mg/L; 95% CI: 4.8 × 10− 7 - 0.00023 mg/L), rifampicin (3.8× 10− 5 

μg/mL; 95% CI: 1 × 10− 5 - 0.00013 mg/L), gemifloxacin (8.3× 10− 5 μg/ 
mL; 95% CI: 2.210− 5 - 0.00031 mg/L), ertapenem (9.3× 10− 5 mg/L; 
95% CI: 3 × 10− 5 - 00027 mg/L), anidulafungin (9.5 × 10− 5 mg/L; 95% 
CI: 8.6 × 10− 6 - 0.0008 mg/L). An analysis of estimated RSC5 per anti
biotic class (see Figure A15 in the appendix) highlights some classes that 
comprise predominantly antibiotics with relatively higher RSC5 esti
mates (i.e. lower selective pressure potential), such as aminoglycosides 
and combinations of beta lactam - beta lactamase inhibitors, while other 
classes appear to predominantly compromise antibiotics with relatively 
higher selective pressure potential (e.g. carbapenems, cephalosporins, 
and fluoroquinolones). Nevertheless, variation in RSC5 levels within 
single antibiotic classes is quite high (e.g up to 3 orders of magnitude for 
penicillins). The relatively small number of antibiotics available per 
class renders a differentiated comparison between the selective abilities 
of different classes difficult. As more RSC5 estimates are derived in the 
future, we might be able to better understand inter- and intra-class 
differences in selection ability. 

Whether potential resistance selection and enrichment is actually 
present in the environment can only be determined in relation to MECs 
of these antibiotics. In Fig. 4a, we present the resulting RSC5 for 128 
antibiotics (deterministic, median and the range of 1, 000 RSC5 values 
per antibiotic), and, where available (n = 45), respective MECs 
extracted from the PiE database (UBA, 2021). 

For 11 (out of 45) antibiotics, all MECs are below the predicted RSC5 
(median). However, considering the uncertainty around the RSC5, rep
resented as boxplots with outliers, as well as the uncertainty around 
reported MECs, for which no information is given in the PiE, it is not 
possible to entirely exclude the potential for resistance selection and 

dissemination even for some of the antibiotics with MEC < median 
RSC5. For some other notable examples, e.g., ciprofloxacin, ofloxacin, 
norfloxacin, and tetracycline, a considerable number of MECs exceeds 
the estimated RSC5, highlighting the role these antibiotics play in both 
medicine, as well as in potentially fuelling antibiotic resistance in the 
environment. 

A refined evaluation of potential resistance selection in the envi
ronment, where MECs are broken down by environmental compartment, 
allows us to compare the degree to which different compartments may 
contribute to the increased prevalence of resistance. In Fig. 5, MECs per 
compartment are compared to the estimated RSC5 (median) per anti
biotic. Each tile in the heat map represents the fraction of MECs in a 
given compartment above the respective antibiotic’s RSC5, as well as the 
number of underlying MECs. Fig. 5 enables a comparison of the selection 
pressure potential in different environmental compartments, and allows 
prioritizing them for intervention strategies. Highest selection pressures 
(i.e. MECs exceed RSC5 in >50% of samples) are observed in treated 
hospital sewage, followed by wastewater effluent and lakes, and finally 
rivers. The degree to which certain environmental matrices retain higher 
antibiotic concentrations is affected by a variety of factors including 
photolysis, temperature, pH and dilution factors (Liu et al., 2021). The 
observed differences in antibiotic concentrations between environ
mental compartments, and in the resulting selection potential, further 
highlights the importance of examining synergies between antibiotics in 
different compartments and quantifying their potential combined se
lection pressure, along with co-selection effects by other contaminants 
(Ye et al., 2017). 

Most data on antibiotic pollution in the PiE database are available for 
WWTP effluent and surface water (river/stream) and, hence, these 
compartments paint the most diverse picture in terms of the degree of 
resistance selection and enrichment under current antibiotic pressure. In 
WWTP effluents, six antibiotics, such as clarithromycin, ciprofloxacin, 
and amoxicillin, are detected in 20% - 50% of the samples at concen

Fig. 4. Comparison of the resistance selection concentrations (RSC5) for 128 antibiotics calculated in this study to (a) measured environmental concentrations 
(MECs) in eight different environmental matrices (surface water (river/stream), surface water (lake), surface water (sea or ocean), groundwater, drinking water, 
wastewater treatment plant effluent and treated hospital sewage), extracted from the German Environment’s Agency (UBA) “Pharmaceuticals in the Environment” 
database (UBA, 2021), and (b) predicted no-effect concentrations (PNECs) for resistance selection in the environment, and hazardous concentrations (HCx), pro
moting resistance in 5% or 50% of bacterial genera, reported in other risk assessment/LCIA studies. In (a) and (b) the uncertainty around our RSC5 estimates is also 
presented. The full list of antibiotic names is available in the appendix (Section A-18, Table A7). 
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trations high enough to select for resistance. Gatifloxacin and vanco
mycin, as well as minocycline, indicate higher potential of resistance 
selection (50% - 75% and 75%, respectively), albeit based on fewer data 
points. Notably, sulfamethoxazole was measured in 619 effluent sam
ples, of which only 1% - 3% exceed its estimated RSC5. This is owed to 
sulfamethoxazole’s relatively high RSC5 of 0.16 mg/L (95% CI: 0.04 - 
0.45), marking it as a ‘safe’ antibiotic in terms of its selective pressure 
potential in the environment. 

While antibiotic concentrations in rivers are expectedly less likely to 
exert selection pressure beyond the RSC5, for several antibiotics (e.g., 
ciprofloxacin, amoxicillin, doxycycline, tetracycline), 10% - 20% of 
samples still indicate a potential for selection. Despite lower data 
availability, 50% - 75% of samples taken from lake water indicate 
concentrations for norfloxacin and enrofloxacin that surpass critical 
exposure levels for selection. These results direct the focus of resistance 
selection, transmission and mitigation strategies on surface waters 
alongside the often-discussed wastewater/hospital effluents. Especially 
notable is the indication of selection pressure in groundwater, here 
detected for ciprofloxacin in 3% - 10% of samples, and for erythromycin 
and tetracycline in 1% - 3% of samples. 

Aside from identifying ‘priority environmental compartments’ to 
address the spread of resistance, these results underline several antibi
otics that, either because of their high predicted selective potential or 
their high concentrations in the environment (or both), seem to be 
driving resistance selection in several environmental compartments (e. 
g., ciprofloxacin, norfloxacin, enrofloxacin, tetracycline). Nevertheless, 
the lack of available MECs data on many antibiotics makes it hard to 
determine the current selection pressure potential in the environment 
due to the presence of these antibiotics, and limits a full assessment of 
the potential resistance selection and enrichment. 

4. Discussion 

4.1. Comparison with previous studies 

We compared our SSD-derived RSC5 to different previously pub
lished environmental selection thresholds (e.g. HCx and predicted no- 
effect concentrations, PNECs). In the majority of cases, PNECs lie 
below or within the lower 95% CI of our predicted RSC5 concentrations, 
underlining the different interpretation and application of each 
endpoint. PNECs are to be understood as protective selection thresholds 
intended for use in e.g., risk assessment, while our RSC5 estimates are 
intended to express a potential ecological effect and to enable compar
isons between the effect pressure (here: selection) of different antibi
otics, as well as between the resistance enrichment potential of whole 

product systems when applied in the context of LCIA. Despite the ex
pected relation of RSC5 > PNEC holding in most cases, there are a few 
antibiotics where both values are similar or where the PNEC is higher (e. 
g., benzylpenicillin and clindamycin). These differences may arise due 
to differences in the applied approach such as the choice of MICs 
threshold at the start of the analysis (MIC1% in Bengtsson-Palme & 
Larsson (2016) vs. MIC10% in the present study). Most importantly, 
though, our choice of default fitness costs with an sc = 0.04 led to 
MSC-to-MICs ratios that are very similar to the assessment factor of 10 
used by Bengtsson-Palme & Larsson (2016). By modelling this specific 
cost scenario, the herein predicted RSC5 values are expected to be sta
tistically very similar to PNECs. These RSC5 results can be further 
tailored when mutation-/ARG-specific data is used within the compe
tition model to build SSDs from predicted, cost-dependent MSC 
thresholds. Lower fitness costs would thus drive our RSC5 closer to the 
PNECs and vice versa, if everything else in Eq. (1) was kept constant (see 
sensitivity analysis in Section A-11). 

In comparison to the HCx estimates by Rico et al. (2018) or Nyberg 
et al. (2021), results divert in some cases from the expected relation to 
our RSC5, i.e. RSC5 ≈ HC5 and RSC5 < HC50.This is, again, most likely 
the result of using varying MICs thresholds as a starting point. Both Rico 
et al. (2017) and Nyberg et al. (2021) build their SSDs from MSCNOEC as 
opposed to an MSC10 as in the present study. With regard to Murray et al. 
(2020), the authors derive PNECs based on experimentally measured 
lowest observed concentrations, at which growth of the entire bacterial 
community is significantly reduced. These differences in the underlying 
approach to derive selection thresholds may explain the variations seen 
in Figure 4b. 

Nevertheless, the relatively good overall agreement between our 
RSC5 and different selection thresholds in other studies supports the 
preliminary use of default parameter values within the proposed 
approach to model a relevant and representative scenario, namely low- 
cost resistance mutations/ARGs, based on which predictions of selection 
potentials and targeted mitigation strategies can already be assessed and 
compared. Experimental studies, especially those that are more closely 
resembling environmental settings (e.g. using species assemblages), will 
be required to (1) empirically evaluate the performance of the proposed 
‘simpler model’ (i.e. using default values), (2) understand how MSC 
levels relate to selection at the community level and which ecological 
interactions are likely to affect outcomes (Durão et al., 2018), and (3) 
validate the different selection thresholds proposed in different studies 
and determine the degree to which they are more or less conservative. 

Fig. 5. Heat map indicating the fraction of measured environmental concentrations (MECs) of a given antibiotic in different environmental compartments above its 
predicted resistance selection concentration (RSC5 – median). The underlying number of MECs is written inside the tiles. MECs were extracted from the ‘Pharma
ceuticals in the Environment’ database of the German Environment’s Agency (UBA, 2021). Cases with 1 MEC to compare against the RSC5 have been excluded from 
the plot. 
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4.2. Limitations of the proposed appraoch 

Our proposed methodological framework to link bacterial growth 
inhibition data to fitness cost-dependent MSCs, and further to antibiotic- 
specific RSC5 is limited by a number of factors. Some are embedded in 
our model assumptions and some are related to the use of experimental, 
in vitro bacterial inhibition data on pathogenic bacteria to extrapolate 
towards selection potential in environmental settings and in complex 
bacterial communities. The latter limitations have been discussed in 
detail in previous risk assessment studies of environmental resistance 
selection also relying on MIC distribution data from the EUCAST data
base as a starting point for their assessment (Bengtsson-Palme & Lars
son, 2016; Nyberg et al., 2021; Rico et al., 2017; Tello et al., 2012). The 
most important of these limitations are:  

1. The different exposure timeframes between MIC tests (acute) and 
chronic selective pressures in the environment (Kümmerer, 2009). 
This is closely related to the question of how long selection pressures 
must be sustained for resistance to be ‘significantly’ enriched.  

2. The use of exclusively clinical data on pathogenic bacteria to model 
selection sensitivities of the environmental bacterial community as a 
whole. For lack of better data, use of widely abundant clinical data is 
accepted to represent the environmental microbiome, because (1) 
several ARGs have their origins in non-infectious environmental 
bacteria (Finley et al., 2013), and (2) several pathogens are closely 
related to environmental bacteria. To reduce uncertainties, a mini
mum number of 10 species was used in the present study to construct 
respective SSDs. However, the phenotypic and genetic diversity of 
the environmental microbiome remains poorly captured by clinical 
data, and several resistance mechanisms in the environment may not 
yet be detected in clinical settings.  

3. Exclusion of bioavailability of antibiotics in the environment, which 
were found to e.g., sorb to particles, influencing their bioactivity 
(Chander et al., 2005; Córdova-Kreylos & Scow, 2007)  

4. Exclusion of synergistic interactions between antibiotic mixtures 
(Gullberg et al., 2014) 

5. Exclusion of additional effects taking place at sub-inhibitory anti
biotic concentrations that will likely have an impact on overall 
prevalence and persistence of resistance. These include increased 
mutation rates (Cortes et al., 2008; Gutierrez et al., 2013), increased 
rates of horizontal gene transfer between often 
phylogenetically-distant bacteria and between non-pathogenic bac
teria and pathogens (Johnson et al., 2015; Lerminiaux & Cameron, 
2019; Prudhomme et al., 2006), co-selection by e.g., heavy metals 
and cross-selection (Melnyk et al., 2015; Seiler & Berendonk, 2012), 
and finally biofilm formation that can protect bacteria from the im
pacts of antibiotic pressure (Balaji et al., 2013; Serwecí, 2020). 

Due to these limitations, there are high uncertainties associated with 
using environmental resistance selection concentrations derived from 
bacterial inhibition data on pathogenic bacteria, which must be taken 
into consideration when using the predicted RSC5 estimates to assess the 
resistance selection and enrichment potential in the environment. 

With regards to our specific methodological assumptions (Table A1), 
it is important to highlight several aspects increasing the uncertainty of 
our results. First, due to the lack of comprehensive mutation-/ARG- 
specific data on e.g., the intrinsic net growth rates of sensitive and 
resistant strains (Nint,s or Nint,s), the minimum possible growth rate 
(Nmin), κ, and most importantly, fitness costs or the sc, we relied on 
relatively large distributions of the parameter values in the competition 
model to predict MSCs (Eq. (1)) for all antibiotics-species combinations. 
At current model assumptions, we may thus be under- or overestimating 
MSC levels for a variety of antibiotic-species combinations. Neverthe
less, we have attempted to capture the possible variability of each 
parameter as found in the literature within the uncertainty analysis, 
which led to relatively large 95% CI around the predicted MSC10 

thresholds representing the range of possible MSC values for a 
combination. 

Finally, an important limitation is the use of the EUCAST data for 
sensitive and resistant isolates of different bacterial strains across various 
mutations/ARGs to determine one representative MICr/ MICs , and the 
choice of a single endpoint (MSC10) along the MSC distribution of a 
given antibiotic-species combination. This pools inhibition data on all 
thus far detected mutation mechanisms (chromosomal or MGE-borne) in 
a given species into one group instead of predicting mutation/ARG- 
specific MSC s for which the competition model was originally devel
oped. Given that it is relatively expensive and time-intensive to generate 
mutation/ARG-specific data and given the abundance of data on clinical 
isolates, modelling one representative MSC for each antibiotic-species 
combination across a variety of mutations/ARGs (here MSC10) repre
sents a realistic and consistent way forward to predict MSCs and make 
use of currently available clinical inhibition data. If mutation-/ARG- 
specific data becomes available in the future, our approach will enable 
practitioners to model a ‘full’ distribution of MSC-to-MIC ratios to 
represent the various mutations and ARGs within the same species 
against a given antibiotic; a complex task if comprehensiveness is 
desired. 

4.3. Applicability of our results and future research needs 

Despite the above-mentioned limitations, our RSC5 can guide re
searchers and decision-makers in assessing the potential for resistance 
selection and enrichment in the environment with possible implications 
for human health. Additionally, RSC5 may be used by antibiotic- 
producing companies or farmers, seeking to assess the potential for 
resistance enrichment in the environment due to their respective eco
nomic activities (e.g., effluent discharge, use of manure on agricultural 
soils). Finally, our RSC5 estimates provide the point of departure for 
deriving new characterization factors for antibiotic emissions to be used 
in LCIA. Our RSC5 (measured in mg/L) indicate a selection potential in 
aquatic environments only. We propose new effect factors (EFs) for 
resistance selection to then be calculated as EF = 0.05/ RSC5, and to be 
combined with fate and exposure factors from USEtox (Fantke et al., 
2021; Owsianiak et al., 2023) to express comparative ‘resistance selec
tion potentials’ (RSPs) in potentially affected fractions of bacterial 
species, integrated over the exposed water volume (m3) and time (d), 
PAFbacteria m3 d per kg emitted into freshwater. The resulting RSPs will 
enable evaluating and comparing e.g., wastewater treatment technolo
gies with regard to their potential contribution to selection and spread of 
resistance, and help identify effective life-cycle based mitigation stra
tegies. Due to the importance of other environmental compartments (e. 
g. soils and sediments) in the selection and transmission of resistance, 
consistent methods to extrapolate towards corresponding RSC5 in these 
matrices will need to be developed to further enable evaluation of e.g. 
different manure and sludge treatment technologies in mitigating the 
resistance problem. 

Future research will be needed to understand and model the link 
between resistance selection in the environment and human health 
impacts. This would require generating a variety of data on e.g. transfer 
rates of resistance from environmental to new hosts, including patho
genic bacteria, and exposure of humans to resistant bacteria/ARGs in the 
environment, as well as the infective dose (Martinez, 2009; Martínez, 
2012; Vikesland et al., 2017). Based on such a framework, we can begin 
to understand the environmental dimension of clinical resistance. 

Additionally, future research would greatly benefit from (a) better 
data availability to refine the methodological framework proposed in 
the present study (especially by replacing default values for κ and the 
sc), and (b) development of models that include aspects of the ‘real’ 
circumstances in the environment (e.g. co-selection, horizontal gene 
transfer, direct flows of resistant bacteria/ARGs into the environment, 
antibiotic bioavailability, and species assemblages). 

Y. Emara et al.                                                                                                                                                                                                                                  



Environmental Pollution 318 (2023) 120873

10

5. Conclusions 

In the present study, we proposed a novel methodological framework 
to consistently derive MSCs from readily available bacterial inhibition 
data (MIC distributions). MSCs provide a relevant effect endpoint to 
evaluate the extent to which selection for resistance may occur under 
environmental antibiotic pressure. Based on our proposed framework, 
we provide estimated MSC10 endpoints for 2, 984 antibiotic-species 
combinations; the largest set of modelled MSCs available to date. Our 
modelled MSCs can be used next to experimentally determined MSCs to 
drive early predictions of environmental selection pressure, as compe
tition essays continue to be expensive and complex to perform, thereby 
limiting data availability. The utility of our methodological framework 
lies in the following: (1) it establishes a semi-mechanistic framework to 
predict MSCs, providing an understanding of the factors affecting the 
MSC and differentiating between antibiotics; (2) this framework can 
later be used in predicting more accurate mutation/ARG-specific and 
cost-dependent MSCs as more data becomes available; and (3) it high
lights the most important knowledge gaps, where data are most needed 
(especially fitness costs and κ) to help understand and better model se
lection and dissemination of resistance in the environment. 

We further derived MSC10-based species sensitivity distributions and 
predict for the largest number of antibiotics to date (n = 128) 
antibiotic-specific resistance selection concentrations (RSC5) that are 
predicted to promote resistance in 5% of environmental bacterial spe
cies. By comparing our predicted RSC5 values to measured environ
mental concentrations, we highlight specific environmental 
compartments (e.g. wastewater effluents, lakes and rivers), as well as 
several antibiotics (e.g. ciprofloxacin, norfloxacin, enrofloxacin, and 
tetracycline), to be further scrutinized for their role in resistance selec
tion and dissemination. Even though a long list of antibiotics were 
associated with a stronger selective pressure potential (i.e. lower RSC5) 
than those above, the lack of MECs for these antibiotics limits our ability 
to evaluate the degree to which they are responsible for resistance se
lection and enrichment in the environment. Monitoring programs 
should be extended to include those antibiotics with low RSC5 so that we 
can begin to understand the role of the environment and other vectors, 
such as microplastics (Zhu et al., 2022), in the spread of resistance. Our 
comprehensive quantification of the relatively large uncertainty around 
all relevant endpoints for addressing resistance selection and potential 
dissemination in the environment (MIC10, MSC10 and RSC5) reflects the 
variability in the ‘real-world’, enables a more accurate assessment of 
current selection pressure, and underlines the continued need for 
research to improve our predictions on the environmental dimension of 
resistance as well as evaluate the efficacy of our mitigation actions. 
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