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Abstract

We study groups acting vertex-transitively and non-discretely on connected, cu-
bic graphs (regular graphs of degree 3). Using ideas from Tutte’s fundamental
papers in 1947 and 1959, it is shown that if the action is edge-transitive, then the
graph has to be a tree. When the action is not edge-transitive Tutte’s ideas are still
useful and can, amongst other things, be used to fully classify the possible two-ended
graphs. Results about cubic graphs are then applied to Willis’ scale function from
the theory of totally disconnected, locally compact groups. Some of the results in
this paper have most likely been known to experts but most of them are not stated
explicitly with proofs in the literature.

Mathematics Subject Classifications: 05E18, 05C63, 20B27, 22D05, 20E08

1 Introduction

Tutte’s papers on cubic graphs in 1947, [27], and 1959, [28], are rightly regarded as the
starting point of the study of group actions on graphs as a separate discipline. In these
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papers, he investigates arc-transitive group actions on finite, connected, cubic (3-regular)
graphs. In many of his results the assumption that the graph is finite can be dropped
and replaced with the assumption that the action is discrete, see e.g. [10]. Here, discrete
means that vertex stabilisers are finite after dividing out the kernel of the action. For
instance, it follows from Tutte’s work that if Γ is a connected cubic graph and G acts
arc-transitively and discretely on Γ, then G acts regularly on the set of s-arcs for some
s 6 5.

The present work is a study of the “other” case, i.e. of vertex-transitive actions on
infinite, connected, cubic graphs that are non-discrete. Suppose we have such an action.
What can be said about the graph? What can be said about the group?

If we, like Tutte did, restrict ourselves to arc-transitive actions, it turns out that the
graph is completely determined: It is the cubic tree (the 3-regular tree), and assuming
additionally that the group is closed in the permutation topology, the action is even 2-
transitive on the set of ends (Theorem 8). Even in the case where the group acts vertex-
and edge-transitively, but not arc-transitively, the graph has to be isomorphic to the cubic
tree, but then the group fixes an end of the tree. If, in addition, it is assumed that the
group is closed in the permutation topology, then it acts transitively on the remaining
ends (Theorem 12).

The idea at the heart of Tutte’s papers is to look at the action on s-arcs. This is
also fundamental in our investigation of the case with infinite stabilisers. Many of our
arguments are based directly on arguments from Tutte’s two papers cited above and his
later book [29]. If the action is not edge-transitive, then a simple argument shows that
there can be only two orbits on the arcs (Section 3). We prove that in this case, the
group acts transitively on the set of s-arcs starting with an arc from a given orbit and
then visiting the two orbits alternatingly (Theorem 21). There are many more graphs
than just the cubic tree that fall under this case, and their classification seems almost
hopeless. However, in Theorem 26 we do classify all such graphs that have precisely two
ends. This classification is already implicit in Trofimov’s paper [25] (in Russian).

We give applications of our results: one in the theory of totally disconnected, locally
compact groups (a brief introduction to the topic of totally disconnected, locally compact
groups can be found at the start of Section 7) and one in graph theory, reproving a
theorem of Trofimov, [25, Theorem 3.1].

It was shown by Abels in [1] that every compactly generated, totally disconnected,
locally compact group acts vertex-transitively on a connected graph of finite degree such
that the stabilisers of vertices are compact, open subgroups. Such a graph is commonly
called a Cayley–Abels graph since it is clearly a generalisation of the Cayley graph of a
finitely generated group. It is natural to ask about the relationship between the degree
of a Cayley–Abels graph, in particular the minimal degree, and various properties of the
group. In particular one can ask if there is something special about groups that have
Cayley–Abels graphs with low degree. If the minimal degree of a Cayley–Abels graph is
2 then the structure of the group can be described, see [2, Theorem 4.1]. The results in
Section 7 describe special properties of groups that have a Cayley–Abels graph of degree
3. We show that if a compactly generated, totally disconnected, locally compact group
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with a cubic Cayley–Abels graph has the property that every group element normalises a
compact, open subgroup, then the group has a compact, open, normal subgroup (Corollary
35). This property was previously known for p-adic Lie groups, see [11], but is not true
in general as shown in [3].

For a graph Γ we let Γ2 denote the graph obtained by adding to Γ as edges all pairs
{α, β} of vertices such that dΓ(α, β) = 2. The graph theoretic application is a short proof
of a result by Trofimov [25, Theorem 3.1] saying that every connected, cubic graph Γ with
vertex-transitive automorphism group and infinite vertex stabilisers is two-ended or the
graph Γ2 has a subgraph isomorphic to the cubic tree (Theorem 38).

Apart from Trofimov’s paper [25], the only other paper directly treating vertex-
transitive, cubic graphs such that vertex-stabilisers are infinite is the paper [22] by Nebbia.
There, Nebbia only considers actions on the cubic tree but with that assumption he derives
results similar to some of the results in Sections 3 and 4.

Many of the results in Sections 3, 4, 5 and Appendix A will doubtlessly be known
to experts in the area of group actions on graphs, but these don’t seem to be explicitly
stated with proofs in the literature. Originally the results in Section 7 were intended
for the paper [2] on Cayley–Abels graphs, but the authors found that a reasonably self-
contained and detailed presentation would be too long to be included there. This gave rise
to the present article. The authors hope that their work will attract readers interested in
group actions on graphs as well as readers interested in the study of totally disconnected,
locally compact groups. In order to accommodate both of these groups, this paper is
written in an expository style. Therefore, arguments that might otherwise have been left
out are presented in full details. Every effort has also been made to make the paper as
self-contained as possible: Apart from basic theory of graphs and permutation groups,
the only results used in an essential way in the proofs are the classification of two-ended,
highly arc-transitive digraphs with prime in- and out-degrees from [21] and a formula
from [19] for the scale function on a totally disconnected, locally compact group.

2 Notation and preliminary remarks

2.1 Graphs

The graphs we consider have neither loops nor multiple edges. Thus a graph Γ (undi-
rected) is defined as a pair (VΓ,EΓ), where VΓ is the set of vertices and EΓ, the set of
edges, is a set of two element subsets of VΓ. A graph Γ′ is a subgraph of Γ if VΓ′ ⊆ VΓ
and EΓ′ ⊆ EΓ. An arc in a graph Γ is an ordered pair (α, β) such that {α, β} ∈ EΓ.
The set of all arcs in Γ is denoted by AΓ. Two vertices α and β are said to be adjacent,
or neighbours, if {α, β} is an edge. The set of neighbours of a vertex α ∈ VΓ is denoted
by Γ(α). The degree of a vertex in a graph is the cardinality of its set of neighbours. A
graph is said to be regular if all vertices have the same degree d, and we say that d is the
degree of the graph. If the degree of every vertex is finite, then the graph is said to be
locally finite.

We also consider digraphs (directed graphs). A digraph consists of a vertex set VΓ and
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a subset AΓ ⊆ VΓ× VΓ that does not intersect the diagonal. Elements of VΓ are called
vertices and elements of AΓ are called arcs. The underlying undirected graph of a digraph
Γ has the same vertex set as Γ and the set of edges is the set of all pairs {α, β}, where
(α, β) or (β, α) is an arc in Γ. For a vertex α in a digraph Γ we define the sets of in- and
out-neighbours as in(α) = {β ∈ VΓ | (β, α) ∈ AΓ} and out(α) = {β ∈ VΓ | (α, β) ∈ AΓ},
respectively. The cardinality of in(α) is the in-degree of α and the cardinality of out(α) is
the out-degree of α. A digraph is regular if any two vertices have the same in-degree and
also the same out-degree.

For an integer s > 0 an s-arc in Γ (here Γ can be an undirected graph or a digraph) is
an (s+ 1)-tuple (α0, . . . , αs) of vertices such that for every 0 6 i 6 s− 1 the ordered pair
(αi, αi+1) is an arc in Γ, and αi−1 6= αi+1 for all 1 6 i 6 s− 1. Infinite arcs come in three
different shapes: There are 1-way ∞-arcs, (. . . , α−1, α0) and (α0, α1, . . .), and then there
are 2-way ∞-arcs (. . . , α−1, α0, α1, . . .). In all cases we insist that (αi, αi+1) is an arc in
Γ, and αi−1 6= αi+1 for all i.

A path of length s > 0 in a graph Γ is a subgraph with vertex set {α0, . . . , αs} and
edge set {{α0, α1}, . . . , {αs−1, αs}} such that the vertices α0, . . . , αs are distinct. The
vertices α0 and αs are called the end-vertices of the path and we speak of an α0 − αs
path. Paths can also be infinite. A ray in a graph Γ is a subgraph with vertex set
{α0, α1, . . .} and edge set {{α0, α1}, {α1, α2}, . . .} such that all the vertices α0, α1, . . .
are distinct. A line is a subgraph with vertex set {. . . , α−1, α0, α1, . . .} and edge set
{. . . , {α−1, α0}, {α0, α1}, {α1, α2}, . . .} such that all the vertices . . . , α−1, α0, α1, . . . are
distinct. We will refer to paths, rays and lines by listing the vertices in the natural order.
A path P with vertex set {α0, . . . , αs} and edge set {{α0, α1}, . . . , {αs−1, αs}} will thus
be denoted by P = α0, . . . , αs and similarly for rays and lines. A sequence α0, . . . , αs is a
path in a digraph Γ if and only if it is a path in the underlying undirected graph. Rays
and lines in digraphs are defined analogously.

A cycle in a graph is a subgraph with vertex set {α0, . . . , αs−1} such that α0, . . . , αs−1

is a path and in addition it contains the edge {αs−1, α0}. A cycle is often denoted with
a sequence α0, . . . , αs−1, αs such that αs = α0. A cycle in a digraph is a subdigraph such
that the corresponding subgraph in the underlying undirected graph is a cycle.

A graph Γ is said to be connected if for every two distinct vertices α and β in Γ there
exists an α − β path in Γ. The graph theoretical distance between vertices α and β in a
connected graph is defined as the length of a shortest α − β path and is denoted with
dΓ(α, β). A digraph is connected if its underlying undirected graph is connected and the
distance between two vertices in a connected digraph is the same as the distance between
the corresponding vertices in the underlying undirected graph.

An end of a graph Γ is an equivalence class of rays: Two rays R1 and R2 are said to
be equivalent if there is a third ray R3 that intersects both R1 and R2 in infinitely many
vertices. (For further information about ends of graphs, in particular in relation to the
automorphism group, the reader is referred to [17].) In the special case when the graph
Γ is a tree, two rays belong to the same end if and only if their intersection is a ray. The
set of ends of Γ is denoted with ΩΓ. When Γ is a digraph we define the ends of Γ in terms
of the ends of the underlying undirected graph.
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An alternative way to describe the ends of a graph Γ is to look at connected components
of graphs of the type Γ\Φ, where Φ is a finite set of vertices (the graph you get by removing
all the vertices in Φ and all edges incident with them). If R = α0, α1, . . . is a ray in Γ, then
we say that a set B of vertices in Γ contains a subray of R if there is a number N such
that αN , αN+1, . . . ∈ B. Now it is easy to see that two rays R1 and R2 belong to the same
end if and only if for every finite set Φ of vertices there is a connected component C of
Γ \Φ that contains a subray of both R1 and R2. If the rays R1 and R2 belong to different
ends of Γ, then there is a finite set of vertices Φ such that there are distinct components
C1 and C2 of Γ \ Φ containing subrays of R1 and R2, respectively. In that case we say
that Φ separates the ends that R1 and R2 belong to. When the graph Γ is connected and
locally finite then Γ has just one end if and only if Γ \ Φ has just one infinite component
for every finite subset Φ ⊆ VΓ. A connected, locally finite graph has precisely two ends
if and only if whenever Φ is a finite subset of VΓ then the number of infinite components
of Γ \Φ is at most 2 and there is a finite subset Φ0 ⊆ VΓ such that Γ \Φ0 has two infinite
components.

2.2 Groups

Let G be a group acting (from the right) on a set Ω. Denote the image of a point α ∈ Ω
under an element g ∈ G by αg. The orbit of an element α ∈ Ω is the set αG = {αg |
g ∈ G}. The action is said to be transitive if αG = Ω for one, and hence every, α ∈ Ω
or, in other words, for any two points α, β in Ω there exists an element g ∈ G such that
αg = β. The stabiliser of α ∈ Ω is the subgroup Gα = {g ∈ G | αg = α}. For a set A ⊆ Ω
the pointwise stabiliser of A is the subgroup G(A) = {g ∈ G | αg = α for all α ∈ A}. The
kernel of the action is the subgroup K = G(Ω). When K = {1} we say that the action
is faithful and then we can think of G as a permutation group of Ω, i.e. a subgroup of
Sym(Ω) (the group of all permutations of the set Ω).

An action of a group G on a set Ω is called semi-regular (or free) if Gα = {1} for all
points α ∈ Ω and regular if it is semi-regular and transitive. An action of a group G on a
set Ω is said to be discrete if for every α ∈ Ω the image of Gα in Sym(Ω) is finite. If the
action is discrete, it is possible to find a finite subset A ⊆ Ω such that G(A) = K, where
K is the kernel of the action.

When Γ and ∆ are graphs, or digraphs, a graph morphism from Γ to ∆ is a map
ϕ : VΓ → V∆ such that if (α, β) ∈ AΓ, then (ϕ(α), ϕ(β)) ∈ A∆. If Γ is a graph or a
digraph and ϕ : VΓ→ VΓ is a bijective map, then ϕ is an automorphism of Γ if ϕ induces
a bijection AΓ → AΓ. The set of all automorphisms of Γ is a group, the automorphism
group of Γ, denoted by Aut(Γ). We will think of Aut(Γ) and subgroups of Aut(Γ) as
permutation groups on VΓ.

A graph or a digraph Γ is vertex-transitive if its automorphism group acts transitively
on the vertex set. Vertex-transitive graphs are always regular and it is well-known that a
connected, vertex-transitive graph either has no ends, one end, two ends or uncountably
many ends, see [7, Corollary 4]. We say that Γ is edge-transitive or arc-transitive if the
automorphism group acts transitively on the edge set or the arc set, respectively. If the
automorphism group of Γ acts transitively on the set of s-arcs in Γ, then we say that Γ
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is s-arc-transitive. When the automorphism group is s-arc-transitive for all s, it is said
that Γ is highly arc-transitive.

Consider now a group G that acts vertex-transitively on a graph Γ of degree d. Let
α ∈ VΓ. The stabiliser Gα clearly leaves Γ(α), the set of neighbours of α, invariant and
thus induces an action on Γ(α). The kernel of this action is Kα = Gα ∩ G(Γ(α)) and the
quotient Gα/Kα embeds as a subgroup into Sym(d), the symmetric group on a set with
d elements. Let now α′ be another vertex of Γ. By assumption there exists g ∈ G with
αg = α′. The actions of Gα on Γ(α) and Gα′ on Γ(α′) are conjugate via g. Thus, the
following definition is independent of the choice of α.

Definition 1. Let Γ be a graph of degree d on which a group G acts vertex-transitively.
Let α ∈ VΓ. The local action of G on Γ is the conjugacy class of the finite group Gα/Kα,
seen as a subgroup of Sym(d).

Usually we will say that the local action is the subgroup Gα/Kα of Sym(d), or that G
acts locally like Gα/Kα, and omit the mention of the conjugacy class.

When σ is an equivalence relation on the vertex set of a graph Γ we can form the
quotient graph Γ/σ. Its vertex set is the set of σ-classes, and if A and B are distinct
σ-classes, then {A,B} is an edge in Γ/σ if and only if there is a vertex α ∈ A and a
vertex β ∈ B such that {α, β} is an edge in Γ. If G is a subgroup of Aut(Γ), then Γ/G
denotes the quotient graph of Γ with respect to the equivalence relation whose classes are
the G-orbits on the vertex set. If σ is a G-congruence (i.e. for every g ∈ G it holds that
αg is equivalent to βg if and only if α is equivalent to β), then G has a natural action on
the σ-classes and thus an action on the quotient graph Γ/σ by automorphisms.

It is easy to see directly from the definitions that if g is an automorphism of a graph
Γ, then two rays R1 and R2 belong to the same end if and only if the rays R1g and R2g
belong to the same end. Therefore the relation of being in the same end is an Aut(Γ)-
congruence on the set of rays in Γ and the automorphism group of Γ acts on the set of
ends of Γ. We also see that if a finite set Φ of vertices separates some two ends ω1 and
ω2, then the set Φg separates the ends ω1g and ω2g.

2.3 Convergent sequences of permutations

In this section the notions of convergence of sequences of permutations and closed groups
of permutations are introduced. Here we avoid introducing a topology, but in Section 7
a topology on a permutation group is described and the convergence introduced here is
convergence in that topology.

Definition 2. Let {gi} be a sequence of permutations of some set Ω. We say that the
sequence converges to a permutation g of Ω if for every point α ∈ Ω there exists a number
Nα > 0 such that αgi = αg for all i > Nα.

A group G of permutations of some set Ω is said to be a closed permutation group
(or a closed subgroup of Sym(Ω)) if, whenever {gi} is a sequence of permutations in G
converging to a permutation g of Ω, then g ∈ G.
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It is easy to show that the automorphism group of a graph (or a digraph) Γ is closed.
It is also easy to see that if the action is discrete, then every convergent sequence is
eventually constant. The following lemma will be used in Sections 4 and 5 and is the
reason why these terms are introduced here.

Lemma 3. (Cf. [18, Lemma 1]) Let Γ be a connected, locally finite graph (or digraph).
Let G 6 Aut(Γ) be a closed subgroup such that its action on Γ is highly arc-transitive.
If (. . . , α−1, α0, α1, . . .) and (. . . , β−1, β0, β1, . . .) are 2-way ∞-arcs in Γ, then there is an
element g ∈ G such that αig = βi for all i. In particular, the action of G on the set of 1-
way∞-arcs of Γ of type (. . . , α−1, α0), and on the set of 1-way∞-arcs of type (α0, α1, . . .)
is transitive.

Proof. Let (. . . , α−1, α0, α1, . . .) and (. . . , β−1, β0, β1, . . .) denote 2-way∞-arcs in Γ. Since
G acts highly arc-transitively on Γ, there is for each i > 0 an element gi such that
(α−i, . . . , αi)gi = (β−i, . . . , βi). Let Bi(α) denote the set of all vertices in Γ at distance
at most i from the vertex α. Because the graph Γ is assumed to be locally finite, the
sets Bi(α) are all finite. All elements in the sequence {gi} map the vertex α0 to the
vertex β0 and thus map Bi(α0) to Bi(β0). Since B1(α0) is finite, there are only finitely
many possibilities for the maps we get by restricting the gi’s to B1(α0). Hence there
is a subsequence C1 of the sequence {gi} such that the restriction of all the elements
in this subsequence to B1(α0) is the same. Let i1 be a number such that gi1 is in C1.
There are also only finitely many possibilities for the restriction of the permutations in
the sequence {gi} to B2(α0) and thus we get a subsequence C2 of C1 such that restrictions
of the elements in C2 to B2(α0) are all identical. Choose i2 such that i2 > i1 and gi2 is in
C2. Continuing in this way we get a subsequence {gij} of our original sequence so that if
j, j′ > i and α is a vertex in Bi(α0) then αgij = αgij′ . Hence we can define a permutation
g of the vertex set of Γ by saying that αg is equal to αgij for j equal to the distance in
Γ between α0 and α. One easily sees that g is well-defined and is an automorphism of Γ.
Clearly the sequence {gij} converges to g and αig = βi for all i. The assumption that G
is a closed permutation group guarantees that g ∈ G. This shows that G acts transitively
on the set of 2-way ∞-arcs.

In a connected highly arc-transitive graph a 1-way∞-arc of either type can always be
extended to a 2-way∞-arc and thus the statement about the transitivity of the action on
the sets of 1-way ∞-arcs follows from the transitivity of the action on 2-way ∞-arcs.

3 Three cases

Our exploration starts with the use of the local action and the action on the edges and
arcs to divide vertex-transitive, non-discrete group actions on cubic graphs into three
separate cases.

Suppose G acts vertex-transitively on a connected cubic graph Γ. The local action of
G on Γ is a conjugacy class of subgroups of the symmetric group Sym(3). There are four
possibilities: the trivial group, the cyclic group of order 2, the cyclic group of order 3,
and the whole group Sym(3). First note that if the stabiliser of a vertex acts locally like
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the trivial group, then, since Γ is connected, we see that the stabiliser of a vertex acts
trivially on the graph. In the case where the stabiliser of a vertex acts locally like a cyclic
group of order 3 we see similarly that the subgroup fixing some pair of adjacent vertices
is trivial. In both cases the action is discrete.

If the action of G is non-discrete, we are left with the possibilities that the group acts
locally either like the cyclic group of order 2 or like the full symmetric group. In the
second case it is clear that the group acts both edge- and arc-transitively on Γ.

Assume that G acts locally like a cyclic group of order 2. It is possible that the group
G acts edge-transitively, and then its action is not arc-transitive, but it is also possible
that G has two orbits on the edges of Γ. Let us briefly analyse the latter case.

Let α be a vertex of Γ and let β denote the neighbour of α that is fixed by Gα. Colour
the edges in the orbit {α, β}G red and the edges in the other edge orbit are coloured blue.
Each vertex in Γ is therefore the end-vertex of precisely one red edge and precisely two
blue edges and this colouring is preserved by the action of G. We let arcs in Γ inherit the
colour from the edge that gives rise to them.

Definition 4. Let Γ denote a connected, cubic graph. Suppose a group G acts vertex-
transitively on Γ, but has two orbits on the edges of Γ. The colouring of the edges and
arcs of Γ described above is called expedient.

Remove all the blue edges from Γ. As each vertex is the end vertex of only one red
edge, we get a vertex-transitive graph of degree 1. Let {α, β} be a red edge. If g ∈ G
and αg = β, then βg = α. From this it is apparent that G must act transitively on the
red arcs. Removing the red edges from Γ we get a vertex-transitive graph of degree 2.
Each connected component is therefore either a finite cycle or a line, and the connected
components are all isomorphic. Since the graph is vertex-transitive and the stabiliser of a
vertex acts locally like the cyclic group of order 2, we see that G acts transitively on the
blue arcs. Hence the group has two orbits on the arcs of Γ.

The outcome of the above discussion is that when we have a connected, cubic graph
Γ and a subgroup G acting vertex-transitively and non-discretely, then there are three
possible cases:

Case A: The stabiliser of a vertex is infinite and the group acts locally like the sym-
metric group on three elements. The group G acts transitively on both the set of edges
and the set of arcs of Γ.

Case B: The stabiliser of a vertex is infinite and acts locally like a cyclic group of
order two. The group G acts transitively on the edges, but not on the arcs.

Case C: The stabiliser of a vertex is infinite and acts locally like a cyclic group of
order two, and the group has two orbits on the edges and two orbits on the arcs. When
discussing Case C we will use an expedient colouring of the edges.

We say that a cubic graph Γ satisfies the conditions in one of the cases, if Γ and the
action of Aut(Γ) satisfy the conditions.
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Remark 5. In [22] Nebbia studies faithful, vertex-transitive group actions with infinite
vertex stabilisers on the cubic tree and describes the same division into cases as above.

Let us start by looking at examples.

Example 6.

1. The cubic tree T3 satisfies the conditions in Case A. It is shown in the next section
that in Case A the graph must be the cubic tree.

2. Let Γ = T3. Define Γ+ as the digraph we get by orienting the edges of Γ so that at
each vertex there is one incoming arc and two outgoing arcs. The graph Γ and the
action of Aut(Γ+) on Γ satisfy the conditions in Case B. In the next section it is
shown that in Case B the graph is equal to T3.

3. Colour each edge in T3 either red or blue so that each vertex is adjacent to one red
edge and two blue edges. Let G denote the subgroup of the automorphism group
of T3 that preserves this colouring. The stabiliser in G of a vertex α is infinite and
the action of G on T3 satisfies the conditions in Case C.

4. The arc-graph A(Γ) of a graph Γ (undirected) has as its vertex set the set of arcs
of Γ and two arcs (α, β) and (γ, δ) are adjacent in A(Γ) if and only if β = δ or
(γ, δ) = (β, α). Considering the case Γ = T3 we see that each vertex in T3 gives rise
to a triangle in A(T3) and the triangles for a pair of adjacent vertices are joined by a
single edge. This graph is cubic and satisfies the conditions in Case C. If we colour
the edges in the triangles blue and the other edges red, then we have an expedient
colouring. One can also describe this graph as the graph one gets by replacing
each vertex with a triangle and then putting in edges between triangles representing
adjacent vertices. Clearly it is also possible to replace each vertex in the n-regular
tree by an n-gon in this way to get a cubic graph such that the conditions in Case
C are satisfied.

5. Start with a 2n-gon. For each pair α, β of opposite vertices in that 2n-gon take a
new 2n-gon, select some pair δ, γ of opposite vertices in the new 2n-gon and add
edges {α, δ} and {β, γ}. Then look at pairs of opposite vertices in the new 2n-gons,
where the vertices have degree 2. For each such pair get a new 2n-gon and join some
pair of opposite vertices in the new 2n-gon to the pair in the old 2n-gon by a pair
of edges as above. Continue like this ad infinitum until you have a cubic graph (see
Figure 1). The stabiliser of a vertex in the automorphism group of this new graph
is clearly infinite and the conditions in Case C are satisfied. Contracting each and
everyone of the 2n-gons leaves us with the n-regular tree.

6. Let Γ be a connected quartic graph (i.e. a regular graph of degree 4). Suppose G
is a subgroup of Aut(Γ) acting vertex-transitively and locally like D4, the dihedral
group with 8 elements, in its natural action on a 4 element set. For a vertex α there
is a natural Gα-congruence σα on Γ(α) with two classes Σα,1 and Σα,2.
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Figure 1: A partial picture of a graph satisfying the conditions in Case C, see Part 5 of
Example 6 with n = 3.

We use Γ to construct a new cubic graph Γ′ that G acts on such that the conditions
in Case C are satified. Informally one can say that we get Γ′ by splitting each
vertex in Γ into two vertices and putting in a new edge between the two halves.
Formally, the construction is as follows: The vertex set of Γ′ is the indexed set
{Σα,i | α ∈ VΓ, i ∈ {1, 2}}. For each α ∈ VΓ the pair {Σα,1,Σα,2} is an edge in Γ′.
If α, β are adjacent vertices in Γ such that β ∈ Σα,i and α ∈ Σβ,j, then {Σα,i,Σβ,j}
is an edge in Γ′. This construction gives us a connected, cubic graph. The action
of G on Γ induces an action of G on Γ′. Clearly G has precisely two orbits on the
edges of Γ′ and if stabilisers in G of vertices in Γ are infinite, then the action of G
on Γ′ will satisfy the conditions in Case C.

Conversely, start with a connected cubic graph and a subgroup G of its automor-
phism group so that the conditions in Case C are satisfied. Take an expedient
colouring of the edges and contract each red edge. Then we get a quartic graph and
the local action of G on this graph is D4.

An example of a quartic graph Γ like the one described above is the graph with
vertex set {1, 2} × Z, and the edge set is the set of all pairs {(i, j), (i′, j′)} with
j′ = j + 1. The construction then gives the graph Γ′ in Figure 2. This graph has
two ends.

Figure 2: A two-ended graph satisfying the conditions in Case C, see Part 6 of Example 6.
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The connection described above between cubic graphs with a group action satisfying
the conditions in Case C and quartic graphs that have a vertex-transitive group
action such that the local action is D4 is further explored in the following example,
the proof of Theorem 26 and in Appendix A.

7. Take Γ to be the Diestel-Leader graph DL(2, 2); for a a description of this graph see
Appendix B or e.g. [8] and [36]. This is a one-ended quartic graph such that the
local action is D4 and stabilisers in the automorphism group of vertices are infinite.
The cubic graph constructed by the method above satisfies the conditions in Case
C and the graph has only one end. The underlying undirected graph of the digraph
in Example 1 in [18] is the graph DL(2, 2). The construction in [18] can be adapted
to provide more examples of cubic graphs satisfying the conditions in Case C, see
Appendix B.

The following proposition provides further examples of graphs and groups satisfying
the conditions in Case C. The construction is similar to the construction used in Example
6(4), but instead of a regular tree we start with a graph that has a suitable group action.

Proposition 7. Let G be a group acting vertex-transitively on a connected, locally finite
graph Γ of degree d. Suppose that the local action of G on Γ is the dihedral group Dd, i.e.
with 2d elements, in its usual action on a set with d elements. Then, there is a connected
cubic graph ∆ satisfying the following.

1. The group G has a vertex-transitive action on ∆.

2. If the action of G on Γ is not discrete, then the action on ∆ is not discrete and the
conditions of Case C are satisfied.

3. There is a G-congruence σ on V∆ such that Γ = ∆/σ and the subgraph in ∆ spanned
by each σ-class is a d-gon with blue edges.

Proof. Define the graph ∆ as follows: The vertex set is the set of arcs of Γ. Two vertices
in ∆ (i.e. arcs in Γ) are connected by a red edge if they are reverse to each other (as arcs
in Γ). For a fixed vertex α in Γ we choose an element rα ∈ Gα so that rα acts on Γ(α) as
a d-cycle. If a vertex β is adjacent to α, then we say that {(α, β), (α, βrα)} is a blue edge
in ∆ and so are all the elements in the G-orbit of {(α, β), (α, βrα)}. (Loosely speaking
we can say that ∆ is the graph we get if we replace each vertex in Γ with a d-cycle with
blue edges, and then connect the d-cycles corresponding to a pair of adjacent vertices in
Γ with a single red edge.)

Clearly the graph ∆ we constructed is a cubic graph on whichG acts vertex-transitively.
If the action on Γ is not discrete, then the action of G on ∆ is not discrete and the con-
ditions in Case C are satisfied.

The classes of the equivalence relation σ in Part 3 are just the blue d-cycles.

The construction in the proof of Proposition 7 is “reversible”: Suppose G acts vertex-
transitively on a cubic graph ∆ such that the conditions in Case C are satisfied. Consider
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the “blue subgraph” we get by removing all the red edges from Γ. This subgraph is
2-regular, so either there is a number d > 3 such that each connected component is a
d-gon or every component is a line. In the first case, by contracting in Γ each connected
component of the blue subgraph to a vertex, we get a graph on which G acts vertex-
transitively and its local action is the dihedral group with 2d elements. In the second
case we could also contract each blue line to a vertex and get a graph on which G acts
vertex-transitively. But in this case the graph would not be locally finite and the group
would act locally like the infinite dihedral group D∞ (the automorphism group of the
graph that has Z as vertex set and edges {i, i+ 1} for all i).

4 Vertex- and edge-transitive actions

In this section we show that in Cases A and B the graph Γ is the cubic tree.
In [28] Tutte proves that if a group acts vertex- and arc-transitively on a connected,

cubic graph that is s-arc-transitive, but not (s + 1)-arc-transitive, then the group acts
regularly on the set of s-arcs. If stabilisers of vertices are infinite, then Tutte’s result
implies that the group acts highly arc-transitively on the graph, which in turn implies
that the graph must be the cubic tree. This is known to people working on group actions
on graphs and is for instance mentioned in the introduction of [10]. For the readers’
convenience a full proof is included below.

Theorem 8. Let G be a group acting vertex- and arc-transitively and non-discretely on
a connected cubic graph Γ. Then Γ is a tree. Moreover, for all s > 1, the action of G
on the set of s-arcs is transitive. If, in addition, the image of G is a closed subgroup of
Aut(Γ), then the action of G on the ends of Γ is 2-transitive (i.e. G acts transitively on
the set of ordered pairs of distinct ends).

The proof follows the proof of the main theorem in [28]. First we introduce some
notation.

Definition 9. An s-arc S ′ is a predecessor of an s-arc S if there exists an (s + 1)-arc
(α0, . . . , αs+1) with S = (α0, . . . , αs) and S ′ = (α1, . . . , αs+1). We also say that S is a
successor of S ′.

An s-arc S is said to be accessible from an s-arc S ′ if there exists a finite sequence
S0, . . . , Sn of s-arcs such that S = S0, S ′ = Sn and for all 0 6 i 6 n− 1 the s-arc Si+1 is
a predecessor or a successor of Si.

Then we prove a preliminary lemma.

Lemma 10. Let Γ be a connected graph such that each vertex has degree at least 2 and let
S be an s-arc in Γ. Every vertex of Γ is contained in some s-arc that is accessible from
S.

Proof. Define A ⊆ VΓ as the set of vertices that are contained in an s-arc accessible from
S. Suppose α is a vertex in Γ that is adjacent to some vertex β in A. By assumption β
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is contained in some s-arc S ′ that is accessible from S. We can assume without loss of
generality that β is the initial vertex of S ′, since otherwise we can achieve this by taking
predecessors of S ′ repeatedly (note that every s-arc accessible from S ′ is also accessible
from S). If α is not in S ′ then α is clearly contained in an successor of S ′. Thus α is in
A. Therefore every neighbour of a vertex in A is in A and since Γ is a connected graph
we conclude that every vertex of Γ is in A.

And finally we prove the theorem.

Proof of Theorem 8. We start by showing that G acts transitively on the set of s-arcs for
all s > 1. The assumptions say that G acts transitively on the set of 1-arcs. Suppose
there is a number s such that G acts transitively on the set of s-arcs but does not act
transitively on the set of (s+ 1)-arcs.

Let S = (α0, . . . , αs) be an s-arc. Then there are exactly two (s + 1)-arcs S1 =
(α0, . . . , αs, αs+1) and S2 = (α0, . . . , αs, α

′
s+1) that contain both S and a predecessor of S.

By assumption, if (β0, . . . , βs, βs+1) is an (s + 1)-arc, then there exists an element g ∈ G
with (β0, . . . , βs)g = S. Then g maps the (s+ 1)-arc (β0, . . . , βs, βs+1) to either S1 or S2.
Thus every (s + 1)-arc lies in the orbit of one of S1 and S2. Since the action of G is not
transitive on the set of (s + 1)-arcs, we see that G has 2 orbits on the set of (s + 1)-arcs
and the stabiliser of the s-arc S must fix both S1 and S2, and thus fix both αs+1 and
α′s+1. Thus the stabiliser of S fixes both predecessors of S. In the same way we see that
the stabiliser of S also fixes both successors of S.

Since S was arbitrary, we just showed that the stabiliser of an s-arc is contained in
the stabilisers of its predecessors and successors. Iterating this argument, we get that
the stabiliser of an s-arc is contained in the stabiliser of every s-arc that is accessible
from it. Now Lemma 10 shows that the stabiliser of an s-arc fixes every vertex of Γ
and is therefore trivial. Now recall that the orbit-stabiliser theorem says that |Gα0/K| =
|GS/K| · |S · Gα0/K|, where K is the kernel of the action of G on Γ. This shows that
Gα0/K has to be finite.

It is now easy to conclude that Γ is a tree. First observe that, since the valency of
the graph is bigger than 2, every s-arc can be extended to an (s + 1)-arc that is not a
cycle. In particular, for every s > 1 there exists an s-arc that is not a cycle. Now by
s-arc-transitivity, no s-arc can be a cycle.

From Lemma 3 it follows that if G is closed, then G acts transitively on the set of all
2-way ∞-arcs in Γ. That in turn implies that G acts 2-transitively on the set of ends of
Γ.

Remark 11. There are infinitely many simple groups having a vertex- and arc-transitive
action on the cubic tree, see Remark A4 in the paper [4] by Caprace and Radu.

Next we consider Case B. We would like to point out that while usually in the present
article it is an assumption that the action is non-discrete, here, it is a conclusion.
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Theorem 12. Suppose Γ is a connected cubic graph and G acts on Γ vertex- and edge-
transitively, but not arc-transitively. Then Γ is a tree and the action of G on Γ is non-
discrete. Moreover, G fixes an end ω of Γ and, if G is a closed subgroup of Aut(Γ), then
G acts transitively on ΩΓ \ {ω}.

In particular, let Γ+ denote one of the two digraphs that has the same vertex set as Γ
and the set of arcs is one of the arc-orbits of G on Γ. Then G acts highly arc-transitively
on Γ+.

Proof. Clearly G has two orbits on the arcs of Γ. Let Γ+ be one of the two digraphs that
has the same vertex set as Γ and has one of the arc-orbits as a set of arcs. Namely, we
choose the orbit so that the in-degree is 1 and the out-degree is 2. Any cycle in Γ+ would
have to be a directed cycle, since otherwise we would have a vertex with in-degree 2. If
α is a vertex in a directed cycle in Γ+, then an automorphism fixing α and taking one
of the outgoing arcs of α to the other will move our directed cycle to a different directed
cycle that also includes α. This leads to a contradiction because the finite subdigraph
consisting of these two cycles would have a vertex with in-degree 2. Thus Γ cannot contain
a cycle and Γ is therefore a tree.

Suppose (α0, . . . , αs) and (β0, . . . , βs) are s-arcs in Γ+ with s > 2. Since G acts arc-
transitively on Γ+ there is g ∈ G such that (αs−1, αs)g = (βs−1, βs). But the in-degree of
Γ+ is 1 and therefore (α0, . . . , αs)g = (β0, . . . , βs). Hence G acts highly arc-transitively
on Γ+. In particular we see that the action of G on Γ is non-discrete.

From Lemma 3 it follows that G acts transitively on the set of 2-way ∞-arcs in the
digraph Γ+. Given a vertex α0 there is a unique ∞-arc of the type (. . . , α−1, α0) and the
end ω that contains the ray α0, α−1, . . . is fixed by the automorphism group. Thus G fixes
an end ω and acts transitively on ΩΓ \ {ω}.

The following corollary sums up Theorems 8 and 12.

Corollary 13. Suppose Γ is a connected, cubic graph. Suppose there exists a group G
acting vertex- and edge-transitively and non-discretely on Γ. Then Γ is the 3-regular tree.

Remark 14. In his study of faithful, vertex-transitive actions with infinite vertex stabilis-
ers on the regular cubic tree Nebbia gets the same conclusions about the action on the
ends as in the above theorems, but he assumes from the start that the graph is a tree, see
[22, Proposition 3.1].

A transitive action of a group G on a set Ω is said to be primitive if there is no
non-trivial, proper equivalence relation on Ω that is preserved by G.

Corollary 15. Let Γ be a connected, cubic graph. Let G be a group acting vertex-
transitively and non-discretely on Γ. Then the action of G on the vertex set is not
primitive.

Proof. From Theorems 8 and 12 it follows that if the action of G on Γ satisfies the
conditions in Cases A or B, then Γ is a tree and the natural bipartition of Γ gives an
equivalence relation on the vertex set of Γ that is preserved by G. If the conditions in
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Case C are satisfied, then we can define a G-congruence on the vertex set of Γ by saying
that α and β are related if and only if {α, β} is a red edge. Hence the action is not
primitive.

5 The non-edge-transitive case

Now we turn our attention to Case C, i.e. Γ is a connected cubic graph and G acts on
Γ vertex-transitively and non-discretely with two orbits on the edges. The arguments
presented here are similar to arguments in the proof Theorem 8 and are based on Tutte’s
paper [28]. The assumptions about Γ and the action of G on Γ guarantee that we have an
expedient colouring of the edges of Γ, see Definition 4. In particular, adjacent to a vertex
α ∈ VΓ are two blue edges and one red edge. The stabiliser of the vertex α transposes
the two blue edges but fixes the red edge.

Definition 16. Let S = (α0, . . . , αs) be an s-arc in Γ. We call S alternating if consecutive
arcs are in different G-orbits, i.e. the arcs in S are alternatively red and blue. If {α0, α1}
is red and {αs−1, αs} is blue, we call S an rb-alternating s-arc; rr-alternating s-arcs,
br-alternating s-arcs and bb-alternating s-arcs are then defined in the obvious way.

Note that rr-alternating and bb-alternating arcs have odd length and rb-alternating
and br-alternating arcs have even length. The partition of the set of alternating s-arcs
into rr-, rb-, br- and bb-alternating s-arcs is invariant under elements in G.

The following definition takes after Definition 9, but here we restrict our attention to
alternating arcs.

Definition 17. An alternating s-arc S ′ is an alt-predecessor of an alternating s-arc S
if there exists an alternating (s + 1)-arc (α0, . . . , αs+1) with S = (α0, . . . , αs) and S ′ =
(α1, . . . , αs+1). We also say that S is an alt-successor of S ′.

An alternating s-arc S is said to be alt-accessible from an alternating s-arc S ′ if there
exists a finite sequence S0, . . . , Sn of alternating s-arcs such that S = S0, S ′ = Sn and for
all 0 6 i 6 n− 1 the s-arc Si+1 is an alt-predecessor or an alt-successor of Si.

Similarly, an alternating s-arc S ′ is a 2-alt-predecessor of an alternating s-arc S if
there exits an alternating (s + 2)-arc (α0, . . . , αs+2) with S = (α0, . . . , αs) and S ′ =
(α2, . . . , αs+2). In this situation we also say that S is a 2-alt-successor of S ′.

An alternating s-arc S is said to be 2-alt-accessible from an alternating s-arc S ′ if
there exists a finite sequence S0, . . . , Sn of alternating s-arcs such that S = S0, S ′ = Sn
and for all 0 6 i 6 n− 1 the s-arc Si+1 is a 2-alt-predecessor or a 2-alt-successor of Si.

It is not difficult to see that alt-accessibility and 2-alt-accessibility are equivalence
relations. Note that, by definition, every alternating predecessor of an alternating arc is
an alt-predecessor as soon as s > 2, similarly for successors. Also, for alternating 2-alt-
predecessors and 2-alt-successors of alternating arcs, the requirement that the (s+2)−arc
is alternating is automatic unless s 6 2 and S contains a blue arc. The following lemma
is an analogue of Lemma 10.
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Lemma 18. Let Γ be a connected, cubic graph. Assume that the edges are coloured so
that each vertex is incident with two blue edges and one red edge.

1. Let S be an alternating s-arc. Every vertex of Γ is contained in an alternating s-arc
that is alt-accessible from S.

2. Let S be an rr-alternating s-arc with s > 3. Every vertex of Γ is contained in an
rr-alternating s-arc that is 2-alt-accessible from S.

Proof. 1. Define A as the set of all the vertices in Γ that are contained in some alternating
s-arc that is alt-accessible from S.

Assume that α is a vertex in Γ that is adjacent to some vertex β in A. Since β ∈ A
we know that β is contained in some alternating s-arc S ′ that is alt-accessible from S and
we can assume that β is the initial vertex of S ′ (if needed, we can repeatedly replace S ′

with an alt-predecessor). If α is in S ′ then α ∈ A. So we assume that α is not in S ′.
Say the edge {β, δ} belongs to S ′. If the edges {α, β} and {β, δ} have different colours,
then the vertex α clearly belongs to an alt-successor of S ′ and is thus in A. Suppose now
that the edges {α, β} and {β, δ} have the same colour, i.e. both are blue. Say {β, γ} is
the red edge incident with β. Then γ belongs to an alt-successor of S ′ and we can find
an alternating s-arc S ′′ in W that has β as its terminal vertex and contains the vertex
γ. Clearly α belongs to an alt-predecessor of S ′′ and hence α ∈ A. Since the graph Γ is
connected, every vertex in Γ belongs to A.

2. In Part 1 we saw that if α is a vertex in Γ then it is contained in some alternating
s-arc S ′ that is alt-accessible from S. If S ′ is a bb-alternating s-arc then its alt-predecessor
and its alt-successor are both rr-alternating s-arcs and we can be sure that at least one
of them includes α and both are alt-accessible from S. Thus we may assume that S ′ is
an rr-alternating s-arc.

Since S ′ is alt-accessible from S, there is a sequence of alternating s-arcs S0, . . . , Sn
such that S0 = S and Sn = S ′ and for all i = 0, . . . , n− 1 either Si+1 is an alt-predecessor
or it is an alt-successor of Si. Note also that taking alt-successors and alt-predecessors
change rr-alternating s-arcs into bb-alternating s-arcs and vice versa. Thus the number
n is even. If it so happens that S2i+1 is an alt-predecessor of S2i and S2i+2 is an alt-
predecessor of S2i+1, then S2i+2 is a 2-alt-predecessor of Si and, similarly, if S2i+1 is an
alt-successor of S2i and S2i+2 is an alt-successor of S2i+1, then S2i+2 is a 2-alt-successor
of S2i. In this case we can delete S2i+1 from the sequence. If S2i+1 is an alt-predecessor
of S2i and S2i+2 is an alt-successor of S2i+1, then we let S ′2i+1 be an alt-predecessor of
S2i+1 and note that then S ′2i+1 is a 2-alt-predecessor of S2i and S2i+2 is a 2-alt-successor
of S ′2i+1. In the case that S2i+1 is an alt-successor of S2i and S2i+2 is an alt-predecessor
of S2i+1 can be handled similarly. In these cases we replace S2i, S2i+1 in our sequence
with S2i, S

′
2i+1, S2i+1. Thus we can construct a sequence of s-arcs starting with S and

ending with S ′ such that each alternating s-arc in this sequence, except the first one, is
the 2-alt-predecessor or 2-alt-successor of the previous one. Hence S ′ is 2-alt-accessible
from S and every vertex in Γ is contained in an rr-alternating s-arc that is 2-alt-accessible
from S.
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The following is now proved in the same way as Theorem 8.

Lemma 19. Let Γ be a connected cubic graph. Assume that G acts on Γ such that the
conditions in Case C are satisfied. Then G acts transitively on the set of rr-alternating
s-arcs for every s > 0.

Proof. Since G acts transitively on the set of blue arcs, we see that G acts transi-
tively on the set of rr-alternating 3-arcs. Assume G acts transitively on the set of rr-
alternating s-arcs, but not on the set of rr-alternating (s + 2)-arcs. Let S = (α0, . . . , αs)
be an rr-alternating s-arc. Then there are exactly two rr-alternating (s + 2)-arcs S1 =
(α0, . . . , αs, αs+1, αs+2) and S2 = (α0, . . . , αs, α

′
s+1, α

′
s+2) that contain both S and the 2-

alt-predecessors of S. For every rr-alternating (s + 2)-arc (β0, . . . , βs, βs+1, βs+2) there
exists an element g ∈ G such that (β0, . . . , βs)g = S. Then g maps the (s + 2)-arc
(β0, . . . , βs, βs+1, βs+2) to either S1 or S2. Thus (β0, . . . , βs, βs+1, βs+2) lies in the orbit
of one of S1 and S2. Since the action of G is not transitive on the set of rr-alternating
(s + 2)-arcs we see that G has 2 orbits on the set of rr-alternating (s + 2)-arc and the
stabiliser of the rr-alternating s-arc S must fix both 2-alt-predecessors of S. In the same
way we see that the stabiliser of S also fixes both 2-alt-successors of S.

We have now shown that an element of G fixing an rr-alternating s-arc S has to fix all
the vertices in its rr-alternating 2-alt-predecessors and 2-alt-successors. Using induction
we see that the stabiliser of S has to fix all the vertices that are contained in any rr-
alternating s-arc that is 2-alt-accessible from S. By Lemma 18 every vertex in Γ is
contained in a s-arc that is 2-alt-accessible from S and thus the pointwise stabiliser of S
fixes every vertex in the graph and is trivial. Hence the action of G is discrete. We have
reached a contradiction and conclude that G acts transitively on the set of rr-alternating
s-arcs for every s > 0.

This paper is mainly about infinite cubic vertex-transitive graphs such that the ac-
tion of the automorphism group is non-discrete, but the arguments used in the proof of
Lemma 19 can be applied to cubic vertex-transitive graphs such that the automorphism
group acts discretely.

Corollary 20. Let Γ be a connected cubic graph. Let G act on Γ vertex-transitively,
with two orbits on the edges and two orbits on the arcs. Assume that the edges in Γ are
coloured red or blue according to an expedient colouring. Furthermore, assume the action
of G on Γ is discrete. Then there is an odd number s such that G acts regularly on the
sets of rr-alternating s-arcs, bb-alternating (s − 2)-arcs, rb-alternating (s − 1)-arcs and
br-alternating (s− 1)-arcs.

Proof. Clearly G acts transitively on the set of rr-alternating 3-arcs. Since the action is
discrete, there is an odd number s such that G acts transitively on the set of rr-alternating
s-arcs, but does not act transitively on the set of rr-alternating (s + 2)-arcs. Now the
result follows from the proof of Lemma 19.

Lemma 19 implies the following theorem.
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Theorem 21. Let Γ be a connected cubic graph. Suppose G acts vertex-transitively and
non-discretely, but not edge-transitively, on Γ. Then, for every s > 1, the action of G on
the set of all alternating s-arcs that start with an edge of a given colour is transitive.

Proof. By Lemma 19 the group G acts transitively on the set of rr-alternating and the
set of bb-alternating s-arcs for all odd s > 1. Then it also acts transitively on the set of
all rb-alternating and the set of br-alternating arcs s-arcs for all even s > 2.

We also want to consider the action of the group on infinite alternating arcs, but first
we must show that such arcs actually exist. This is done in the next two corollaries.

Corollary 22. Suppose Γ is a connected cubic graph and G acts on Γ vertex-transitively
and non-discretely, but not edge-transitively. Let (α0, . . . , αs) be an alternating s-arc and
s > 2. Then α0 6= αs and α0 and αs are not neighbours.

Proof. Clearly s > 3.
Suppose first that α0 = αs. At least one of the edges {α0, α1} and {αs−1, αs} is blue,

say it is the edge {αs−1, αs}. Let β be a vertex such that β 6= αs and {αs−1, β} is a blue
edge. There is g ∈ G such that g takes the alternating s-arc (α0, . . . , αs−1, αs) to the
alternating s-arc (α0, . . . , αs−1, β), but this is clearly impossible, because α0 = αs. The
case where {α0, α1} is a blue edge is similar.

Suppose now that (α0, . . . , αs) is an alternating s-arc such that α0 and αs are neigh-
bours. By the above the vertices α0, . . . , αs are all distinct. If the edge {α0, αs} is red, then
(αs, α0, . . . , αs) would be an alternating (s + 1)-arc contradicting what is shown above.
Thus the edge {α0, αs} must be blue. If the edge {α0, α1} is red, then (αs, α0, . . . , αs)
would be an alternating (s + 1)-arc and that is impossible, and if the edge {αs−1, αs} is
red, then (α0, . . . , αs, α0) would be an alternating (s + 1)-arc. Hence we see that both
the edges {α0, α1} and {αs−1, αs} must be blue. Let β be a vertex, distinct from αs, such
that {αs−1, β} is a blue edge. Note that, by the above αs 6= α1 and β 6= α1. Let g be
an element in G taking the alternating s-arc (α0, . . . , αs−1, αs) to the alternating s-arc
(α0, . . . , αs−1, β). Then {α0, αs}g = {α0, β} is a blue edge and α0 is the end-vertex of 3
distinct blue edges {α0, α1}, {α0, αs} and {α0, β}, which is impossible. We have reached
a contradiction and our proof is complete.

Corollary 23. Suppose Γ is a connected cubic graph. Let G be a group acting on Γ vertex-
transitively and non-discretely, but not edge-transitively. Then Γ contains an infinite
alternating line and every alternating s-arc is a part of such a line.

Proof. It is clear that every alternating s-arc can be extended to a 2-way infinite alternat-
ing arc. By Corollary 22 all the vertices in this infinite alternating arc must be distinct
and thus we have an infinite alternating line.

The argument used to prove Lemma 3 can be adapted to show the following.

Corollary 24. Let Γ be a connected, cubic graph. Let G be a group acting on Γ vertex-
transitively and non-discretely, but not edge-transitively. If . . . , α−1, α0, α1, α2, . . . and
. . . , β−1, β0, β1, β2, . . . are two infinite alternating lines such that the edges {α0, α1} and
{β0, β1} have the same colour, then there exists g ∈ G such that αig = βi for all i.
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6 Two-ended cubic graphs

Our next task is to classify connected, vertex-transitive, cubic graphs with two ends such
that the automorphism group acts non-discretely. To do so we use the classification of
highly arc-transitive digraphs with two ends and prime in- and out-degrees from [21,
Corollary 16]. To describe the classification we need the concept of an arc-digraph.

Construction 25. (See [12, Section 4.2]) The arc-digraph of Γ, where Γ denotes an undi-
rected graph or a digraph, is denoted with Arc(Γ). The set of vertices is the set of arcs
in Γ; and if (α, β), (γ, δ) are arcs in Γ, then ((α, β), (γ, δ)) is an arc in Arc(Γ) if and only
if β = γ and α 6= δ (i.e. (α, β, δ) is a 2-arc in Γ). The s-arc-digraph Arcs(Γ) is defined
such that the vertex set of Arcs(Γ) is the set of s-arcs of Γ and the arcs in Arcs(Γ) are
pairs ((α0, . . . , αs), (α1, . . . , αs+1)), where (α0, . . . , αs+1) is an (s+1)-arc in Γ. (Sometimes
the digraph Arc(Γ) is called the line graph or the partial line graph. In our context the
emphasis is on the fact that the vertex set of the arc-digraph is the set of arcs of Γ and
the vertex set of the s-arc-digraph is the set of s-arcs in Γ. Thus the names arc-digraph
and s-arc-digraph seem more appropriate.)

It is easy to see that the map

VArcs(Γ)→ VArc(Arcs−1(Γ)); (α0, . . . , αs) 7→ ((α0, . . . , αs−1), (α1, . . . , αs))

is a graph isomorphism (cf. [23, Lemma 3.2]). Thus the graph Arcs(Γ) is isomorphic
to Arc(Arcs−1(Γ)). It is not hard to see that if Γ is a connected digraph such that if
(α, β) is an arc then (β, α) is not an arc and in addition every vertex has non-zero in-
and out-degree, then the same is true for Arc(Γ) and by induction one sees that Arcs(Γ)
is connected.

For a prime p, let ∆p be the digraph with vertex set {1, . . . , p}×Z and arc set the set
of all pairs ((i, j), (i′, j + 1)) with i, i′ ∈ {1, . . . , p} and j ∈ Z. In [21, Corollary 16] the
authors show that any highly arc-transitive digraph with two ends and in- and out-degree
equal to p is isomorphic to ∆p or one of its s-arc-digraphs Arcs(∆p) for some s > 1. These
digraphs bear a close resemblance to the finite graphs defined by Praeger and Xu in [24],
as remarked in [21]. (The authors thank the referees for pointing out that in [21] the
arc-digraph is defined slightly differently as s-arcs in loc. cit. are allowed to backtrack.
This does not make any difference here since there are no back-tracking arcs in ∆p.)

Let ∆ be a vertex- and arc-transitive digraph so that the in- and out-degrees are both
equal to 2 and the degree of the underlying undirected graph is 4. Set G = Aut(∆) and
let Γ denote the underlying undirected graph of ∆. The reverse digraph ∆R has the same
vertex set as ∆ and (α, β) is an arc in ∆R if and only if (β, α) is an arc in ∆. Suppose ∆
is isomorphic to its reverse digraph ∆R via some digraph isomorphism f : ∆→ ∆R. The
group 〈G, f〉 acts vertex- and arc-transitively on Γ and acts locally as D4, the dihedral
group with 8 elements. The construction described in Part 6 of Example 6 now produces
a cubic graph that 〈G, f〉 acts on such that the conditions in Case C are satisfied.

The digraphs ∆2 and Arcs(∆2) have the property that they are isomorphic to their
reverse digraph. Thus we can apply the construction described above and obtain from ∆2
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a cubic graph Θ0 (depicted in Figure 2) and from Arcs(∆2) a cubic graph Θs satisfying
the conditions in Case C. These graphs have precisely two ends.

Theorem 26. Let Γ be a connected, cubic graph with two ends. Suppose Aut(Γ) acts on
Γ vertex-transitively and non-discretely. Then Γ is isomorphic to Θs for some s > 0.

Remark 27. In Section 8 we prove Theorem 3.1 from Trofimov’s paper [25]. Trofimov
remarks at the end of his proof that his argument contains a description of all connected,
vertex-transitive, cubic graphs with two ends such that stabilisers in Aut(Γ) of vertices
are infinite.

Before embarking on the task of proving Theorem 26 we have to prove a technical
lemma. This lemma concerns ends of graphs and the action of the automorphism group
on the ends (see the final paragraphs of Section 2.1 and the final paragraph of Section 2.2).

Lemma 28. Let Γ be a connected, cubic graph with two ends. Suppose Aut(Γ) acts on Γ
vertex-transitively and non-discretely.

1. The graph Γ satisfies the conditions in Case C.

2. Let . . . , α−1, β−1, α0, β0, α1, β1, . . . be an infinite alternating line such that the edges
of type {αi, βi} are red and edges of the type {βi, αi+1} are blue. Then the rays
α0, β0, α1, . . . and α0, β−1, α−1, . . . belong to different ends of Γ.

Proof. The first part follows from Corollary 13 and the fact that the 3-regular tree has
infinitely many ends.

Suppose that the rays R1 = α0, β0, α1, . . . and R2 = α0, β−1, α−1, . . . belong to the
same end of Γ. Let Φ be a finite set of vertices such that the graph Γ \ Φ has precisely
two infinite components B and B′. Because Γ is locally finite the graph Γ \ Φ has only
finitely many components. By “adding” all the finite components to Φ we may assume
that Φ is connected and that VΓ = B ∪ Φ ∪B′. Transitivity implies that we can assume
that α0 ∈ Φ. Suppose that B contains a subray of R1 and as R1 and R2 are in the same
end then B will also contain a subray of R2. Let R be a ray in Γ that does not belong
to the same end as R1 and R2. We can assume that the initial vertex in R is α0 and
that R contain no vertices from B. The set Φ separates the two ends of Γ and so will
every translate of Φ. By Corollary 24 there exists an automorphisms g of Γ such that
αig = αi+1 and βig = βi+1 for all i. Then dΓ(αi, αj) depends only on |i− j| and since the
graph Γ is locally finite we see that for every number c there is a number K such that if
|i − j| > K, then dΓ(αi, αj) > c. Since the set Φ is finite we see that there is a number
j such that Φgj ⊆ B and Φgj contains none of the vertices α0, β−1, α−1, . . .. Then the
rays R and R2 both belong to the same component of Γ \Φgj. The set Φgj does thus not
separate the two ends of Γ. Now we have reached a contradiction and conclude that the
rays R1 and R2 can not belong to the same end.

Proof of Theorem 26. Continue with the setup in the proof of the previous lemma. We
aim to construct on the basis of Γ a connected highly arc-transitive digraph with two ends
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such that the in- and out-degrees of every vertex are both equal to 2 and the degree of
the underlying undirected graph is 4.

From the above lemma we see that each end contains an alternating ray. Since
G = Aut(Γ) acts transitively on the set of alternating rays that start with an edge of
a given colour, we see that G acts transitively on the set of ends of Γ. Let G0 de-
note the subgroup of G that fixes both ends. This subgroup G0 has index 2 in G. Let
{α0, β0} and {α′0, β′0} be two red edges in Γ. These two edges are parts of alternating
lines . . . , α−1, β−1, α0, β0, α1, β1, . . . and . . . , α′−1, β

′
−1, α

′
0, β

′
0, α

′
1, β

′
1, . . ., respectively. By

renumbering if necessary we can assume that the alternating rays R1 = α0, β0, α1, β1, . . .
and R2 = α′0, β

′
0, α

′
1, β

′
1, . . . belong to the same end of Γ. Corollary 24 says that Aut(Γ)

contains an element g taking R1 to R2 and this element belongs to G0 since it fixes the
end that R1 and R2 belong to and {α0, β0}g = {α′0, β′0}. Thus G0 acts transitively on the
set of red edges and in the same way we see that G0 acts transitively on the set of blue
edges. But G0 does not act transitively on the set of blue arcs. Suppose g ∈ G0 reverses
the the blue arc (β0, α1). Then . . . , α2g, β1g, β0, α1, . . . is an alternating line. (The vertices
are distinct by Corollary 22.) By Lemma 28 the rays α1, β1, . . . and α1, β0, β1g, . . . belong
to different ends of Γ. But g maps the first one to the other contradicting the assumption
that g fixes both ends of Γ. Similarly, we find that G0 does not act transitively on the set
of red arcs.

Let A be one of the G0-orbits on the blue arcs in Γ and let A′ be one of the G0-orbits
on the red arcs in Γ. Consider the digraph that has the same vertex set as Γ and A ∪ A′
as arc set. Contract now all the red arcs in this digraph. We get a digraph ∆ with two
ends where the in- and out-degrees of every vertex are 2. By Theorem 21 this digraph is
highly arc-transitive and thus isomorphic to ∆2 or Arcs(∆2) for some s > 1. Then Γ is
isomorphic to Θ0 or Θs.

More is to be said about these graphs since they all have the same (abstract) auto-
morphism group, as we will show below.

We start by looking at the relationship between the automorphism group of a digraph
and its arc-digraph and the relationship between the automorphism groups of the graphs
in Part 6 in Example 6.

Lemma 29. 1. (See [21, Lemma 15]) Let Γ be a digraph such that every vertex α is
contained in an arc (α, β) and such that, for all arcs (α, β) and (α, β′) of Γ, there
exists γ ∈ VΓ such that both (γ, α, β) and (γ, α, β′) are 2-arcs. Then, the identity
map AΓ→ VArc(Γ) induces a group isomorphism Aut(Γ)→ Aut(Arc(Γ)).

2. Let Γ be a connected quartic graph such that Aut(Γ) acts vertex-transitively, non-
discretely and locally like D4. Then the graph Γ′ constructed in Part 6 of Example 6
has the same automorphism group as Γ.

Proof. 1. Clearly, if g ∈ Aut(Γ) and (α0, α1, α2) is a 2−arc, then (α0g, α1g, α2g) is a 2-arc
as well. Thus the action of Aut(Γ) on AΓ = VArc(Γ) gives us an action of Aut(Γ) by
automorphisms on Arc(Γ).
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On the other hand, if h ∈ Aut(Arc(Γ)) and α ∈ VΓ are such that (α, β) is an arc, we
can simply define αh to be the vertex γ such that there is β1 ∈ VΓ with (γ, β1) = (α, β)h.
We have to check that this definition of αh is independent of β; it is then obvious that it
is a graph automorphism and by the conditions on Γ, we have defined h on all of VΓ.

Consider any vertex β′ such that (α, β′) ∈ AΓ and (α, β′)h = (α1, β2). By assumption
there is δ ∈ VΓ such that (δ, α, β) and (δ, α, β′) are 2-arcs. Then, viewed in Arc(Γ), by
definition of a digraph morphism (δ, α, β)h is an arc connecting (δ, α)h and (α, β)h =
(γ, β1) and (δ, α, β′)h is an arc connecting (δ, α)h and (α, β′)h = (α1, β2). This proves
α1 = γ. Now we defined an action of Aut(Arc(Γ)) on Γ and thus a group homomorphism
Aut(Arc(Γ))→ Aut(Γ).

It is easy to check that the group homomorphisms Aut(Γ) → Aut(Arc(Γ))) and
Aut(Arc(Γ))→ Aut(Γ) are inverse to each other.

2. The automorphism group of Γ acts on the cubic graph Γ′, which means that we
have a homomorphism Aut(Γ)→ Aut(Γ′). Since Aut(Γ) acts locally like D4, the graph Γ
cannot be the quartic tree and consequently the graph Γ′ is not the cubic tree. As Aut(Γ′)
acts non-discretely and Γ′ is not the cubic tree, it follows from Corollary 13 that Γ′ and
thus Aut(Γ) must satisfy the conditions in Case C. Now if we endow Γ′ with an expedient
edge colouring and then contract the red edges, we get the graph Γ. Therefore Aut(Γ′)
acts on Γ and we have a homomorphism Aut(Γ′)→ Aut(Γ). The homomorphisms in both
directions between Aut(Γ) and Aut(Γ′) are clearly the inverses of each other and are thus
isomorphisms.

We can determine the automorphism group of ∆2 explicitly. Recall that V∆2 =
{1, 2}×Z. We identify the group C2 with Sym({1, 2}). Then the group

∏
ZC2 acts on ∆2

via (i, j)(fk)k∈Z = (ifj, j). Also the group Z acts on ∆2, namely via (i, j)k = (i, j + k).
One can say that the elements from

∏
ZC2 describe the action on the first coordinate of

a vertex (i, j) and Z describes the action on the second coordinate. Thus every element
of Aut(Γ) can be written as (fk)h, where (fk) comes from

∏
ZC2 and h comes from Z.

Multiplication is determined by the equation h−1(fk)h = (fk+h). We have now described
Aut(Γ) as a semidirect product

∏
ZC2nZ. This type of semidirect product is often called

the (unrestricted permutation) wreath product of C2 and Z.
The map f : V∆2 → V∆2 given by (i, j)f = (i,−j) is an isomorphism from ∆2 to its

reverse digraph. The automorphism group of the underlying undirected graph of ∆2 is
thus

∏
ZC2 nD∞, where D∞ denotes the infinite dihedral group.

From [21, Corollary 17] and Lemma 29(1) it follows that the groups Aut(∆2) and
Aut(Arcs(∆2)) for s > 1 are all isomorphic to the semidirect product (

∏
ZC2) n Z. We

obtain the graph Θs from Arcs(∆2) by first looking at the underlying undirected graph
and then applying the construction from Part 6 in Example 6. The following corollary is
then a consequence of Lemma 29.

Corollary 30. Let Γ be a connected, cubic graph with two ends. Suppose Aut(Γ) acts on
Γ vertex-transitively and non-discretely. Then Aut(Γ) is isomorphic to (

∏
ZC2) nD∞.
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7 Applications to totally disconnected, locally compact groups

A topological group is a group G with a topology on its underlying set such that the
multiplication operation G × G → G; (g1, g2) 7→ g1g2 and the operation of inverting an
element G → G; g 7→ g−1 are continuous maps. The map G → G;x 7→ xg given by
right multiplication by a group element g is thus a homeomorphism. Often a separation
condition, such as the topology being Hausdorff, is added to the definition. A topological
group is said to be locally compact if the topology is locally compact, i.e. if every element
in G has an open neighbourhood with compact closure. The group is totally disconnected
if the topology is totally disconnected, i.e. the only connected subsets are singleton sets.
Many of the topological groups occurring in other branches of mathematics are locally
compact. The solution to Hilbert’s fifth problem gives a way to use the theory of Lie
groups in the study of connected topological groups. Let G be a locally compact group
and define G0 as the connected component containing the identity. Then G0 is a normal
subgroup and the quotient group G/G0 is a totally disconnected, locally compact group.
Thus one can say that the study of general locally compact groups can be divided into
the study of connected, locally compact groups and the study of totally disconnected,
locally compact groups. The study of totally disconnected, locally compact groups is
also interesting in its own right and there are important examples of such groups coming
from other branches of mathematics, such as matrix groups and Lie groups over the p-
adic numbers and, as is explained below, automorphism groups of locally finite connected
graphs.

The study of totally disconnected, locally compact groups has become an active field
in recent years, largely due to the efforts of George Willis and his coworkers, see e.g. [32]
and [5]. In this section we relate the work in the preceding section to the scale function
introduced by Willis in [32].

Let G be a compactly generated, totally disconnected, locally compact group. If G
acts vertex-transitively on a connected, locally finite graph Γ such that the stabilisers of
vertices are compact, open subgroups of G, then we say that Γ is a Cayley–Abels graph for
G. A Cayley–Abels graph for G can be constructed by starting with a compact generating
set C and a compact open subgroup U of G (such a subgroup always exists by a theorem
of van Dantzig, [30]). Then we form the Cayley graph of G with respect to C and define
Γ as the quotient graph (see Section 2.2) with respect to the left action of U . Note that
the vertex set of Γ is the set of right cosets of the subgroup U . This construction comes
from Abels’ paper [1, Beispiel 5.2], but for further information and another construction
see the survey paper [20, Section 4] where the term rough Cayley graph is used instead
of Cayley–Abels graph. For a survey from the perspective of geometric group theory, see
[16]. Define md(G) as the minimal possible degree of a Cayley–Abels graph for G. This
concept is the main topic of discussion in [2]. It follows easily from known results that
md(G) = 2 if and only if G has a Cayley–Abels graph with precisely two ends (and then
every Cayley–Abels graph has precisely two ends), see [2, Theorem 4.1]. The results in
this section give a special property for compactly generated, totally disconnected, locally
compact groups such that md(G) = 3.
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The connection between totally disconnected, locally compact groups and group ac-
tions on graphs works in both directions. When G is a group acting on a set Ω, e.g. the
automorphism group of a graph Γ acting on the vertex set VΓ, we can endow G with the
permutation topology, see for instance [34] and [20]. One way to define the permutation
topology is to say that a neighbourhood basis of the identity is formed by the family of all
subgroups of the form G(Φ), where Φ ranges over all finite subsets of Ω. In a topological
group, a neighbourhood basis of the identity element completely determines the topology,
since this neighbourhood basis can be translated to a neighbourhood basis of an element
g by multiplying with g. If the group G already has a topology and the stabiliser Gα of a
point α ∈ Ω is open, then the permutation topology is a subset of the given topology on
G. The permutation topology coincides with the topology of pointwise convergence and
thus the convergence for sequences defined in Section 2.3 is the same as convergence in
the permutation topology. Note that the permutation topology is Hausdorff if and only
if the action is faithful. Using the permutation topology we find that a closed subgroup
of the automorphism group of a locally finite graph Γ is a totally disconnected, locally
compact group, see [34, Lemma 1] and, also, [20, Lemma 2.2].

In [32], Willis introduced the concepts of a tidy subgroup and the scale function. In
this work we will only discuss the scale function and we use as definition a formulation
from Willis’ later paper [33]. The scale function on a totally disconnected, locally compact
group G is the function s : G→ Z+ defined by the formula

s(g) = min{|U : U ∩ g−1Ug| | U a compact open subgroup of G}.

Note that s(g) has to be finite; the reason is that g−1Ug ∩ U is an open subgroup of
G and its right U -cosets form a partition of U with cardinality |U : U ∩ g−1Ug|. Each
element of the partition is open and by compactness of U , the partition has to be finite.

Let U be a compact, open subgroup of G and consider the action of G on the set of
right cosets Ω = G/U . Set α = U and think of α as a point in Ω. It is shown in [19,
Corollary 7.8] that

s(g) = lim
n→∞

|(αgn)Gα|1/n,

and, furthermore, s(g) = 1 if and only if there is a constant C such that |(αgi)Gα| 6 C
for all i = 0, 1, 2, . . .. A totally disconnected, locally compact group is said to be uniscalar
if s(g) = 1 for all g ∈ G.

The arguments used in the proof of the following lemma are somewhat reminiscent of
arguments found in [19] and the notation is chosen to reflect this similarity.

Lemma 31. Suppose Γ is a connected, vertex-transitive, cubic graph. Assume there exists
a closed subgroup G 6 Aut(Γ) such that the action of G on Γ satisfies the conditions in
Case C. Consider an alternating line . . . , α−1, β−1, α0, β0, α1, β1, . . . in Γ such that the
edges of type {αi, βi} are red and the edges of type {βi, αi+1} are blue. If there is a
constant C such that |αiGα0| 6 C for all i > 1, then Γ has exactly two ends.

Proof. By Corollary 24 there exists an element g ∈ G such that αig = αi+1 and βig = βi+1

for all i. Set U = Gα0 . Define U−∞,i as the subgroup of G fixing pointwise the ray
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. . . , αi−1, βi−1, αi, βi. These subgroups are all conjugate via powers of g. Now define U++

as the subgroup
⋃
i∈Z U−∞,i and G++ = 〈U++, g〉. Note that g−1U++g = U++. Clearly

G++ = {h ∈ G | there exist m,n ∈ Z such that (. . . , αm, βm)h = (. . . , αn, βn)}.

Let Γ++ denote the subgraph that has vertex set α0G++ ∪ β0G++ and edge set
{α0, β0}G++ ∪ {β0, α1}G++. Our aim is to show that Γ++ is equal to Γ. The graph
Γ++ is connected. The group G++ has at most two orbits on the vertex set of Γ++ and
also at most two orbits on the edge set. It follows from the transitivity on alternating
lines in Γ (see Corollary 24 above) that all the vertices in the orbit βiG++ have degree 3
in the graph Γ++.

Suppose n is a number such that 2n > C. There are 2n alternating 2n-arcs hav-
ing α0 as their initial vertex and starting with the red edge {α0, β0}. From Corol-
lary 24 we see that the group U−∞,0 acts transitively on the set of these arcs. But
the orbit αnU−∞,0 has fewer than 2n elements and thus there is some alternating 2n-
arc in Γ++ of the form (α0, β0, α

′
1 . . . , α

′
n−1, βn−1, αn) that is different from the 2n-arc

(α0, β0, α1 . . . , αn−1, βn−1, αn). Note that it is impossible that αi = α′i for all i. Let i be
the biggest number such that αi 6= α′i. Then βi 6= β′i and β′i+1 = βi+1. Hence the vertices
βi, β

′
i and βi+1 are all distinct and all of them are neighbours of αi+1 (recall that the edges

{βi, αi+1} and {β′i, αi+1} are both blue but the edge {αi+1, βi+1} is red). Thus the vertex
αi+1 has degree 3 in Γ++. Hence Γ++ is regular with degree 3. Since Γ is a connected,
cubic graph, we see that Γ++ = Γ.

The orbits αiU++ are all finite and each orbit has size at most C. The same holds true
for the orbits βiU++. We also see that (αiU++)g = αi+1U++ and similarly that (βiU++)g =
βi+1U++. Hence 〈g〉 has at most 2C orbits on Γ. A result of Jung and Watkins [14,
Theorem 5.12] says that a connected, vertex-transitive graph that has an automorphism
with only finitely many orbits has just two ends. (For the readers’ convenience a direct
proof of this fact is included in Appendix C.)

Remark 32. From the argument above we see that it is enough to assume that there exists
some positive integer n such that |αnU−∞,0| < 2n to get the conclusion that Γ has exactly
two ends.

Lemma 33. Let G be a totally disconnected, locally compact group that has a cubic
Cayley–Abels graph Γ such that G has two orbits on the edges of Γ. Let K denote the
kernel of the action of G on VΓ. Suppose the group Gα/K is infinite for one, and hence
every, vertex α in Γ. If the group G is uniscalar, then Γ has two ends, and G has a
compact, open, normal subgroup.

Proof. The conditions in Case C are satisfied, except that we don’t know if the action
of G on Γ is faithful. Hence we have an expedient colouring of the edges of Γ. Let
. . . , α−1, β−1, α0, β0, α1, β1, . . . be an alternating line in Γ such that the edges of type
{αi, βi} are red and edges of the type {βi, αi+1} are blue. By Corollary 24, there exists
g ∈ G such that αig = αi+1 and βig = βi+1. As mentioned above, the assumption that
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s(g) = 1 implies that there is a constant C such that C > |(α0g
n)Gα0| = |αnGα0| for all

n. From Lemma 31 we see that Γ has just two ends.
From Corollary 30 we see that Aut(Γ) is isomorphic to

∏
ZC2 o D∞. The subgroup∏

ZC2 in Aut(Γ) is a compact, open normal subgroup in the permutation topology and
thus there is a homomorphism Aut(Γ) → D∞ with a compact, open kernel. The image
of this homomorphism is isomorphic to D∞. Thus we have a homomorphism G → D∞
and the kernel is a compact, open, normal subgroup of G.

Theorem 34. Suppose G is a compactly generated, totally disconnected, locally compact
group. If G has a cubic Cayley–Abels graph, then either G has a compact, open, normal
subgroup or G is not uniscalar.

Proof. Let Γ be a cubic Cayley–Abels graph for G. Assume that G has no compact, open,
normal subgroup. Denote the kernel of the action of G on Γ by K. Let α be a vertex
in Γ. If Gα/K is a finite group, then there is a finite set of vertices in Γ such that the
pointwise stabiliser of this set acts trivially on Γ, i.e. the kernel K is equal to the pointwise
stabiliser of this finite set. Hence the kernel of the action of G on Γ is a compact, open,
normal subgroup of G, contradicting our assumption. Whence Gα/K must be infinite.
We consider separately what happens in Cases A, B and C.

Let us first look at Case A. Consider an infinite line . . . , α−1, α0, α1, . . . in Γ. Let
g ∈ G be an element such that αig = αi+1 for all i. Then α0g

n = αn. By Theorem 8 we
see that |αnGα0| = 3 · 2n−1 and then

s(g) = lim
n→∞

|(αgn)Gα|1/n = lim
n→∞

(
3 · 2n−1

)1/n
= 2.

Hence G is not uniscalar.
In Case B we let Γ+ be the digraph defined in the proof of Theorem 12. Suppose that

(. . . , α−1, α0, α1, . . .) is a 2-way ∞-arc in Γ+ and g ∈ G acts like a translation on this arc
such that αig = αi+1 for all i. The fact that G acts highly arc-transitively on Γ+ implies
that if n > 0, then |αnGα0| = 2n. Thus

s(g) = lim
n→∞

|(αgn)Gα|1/n = lim
n→∞

|αnGα|1/n = lim
n→∞

(
2n
)1/n

= 2.

Finally we consider Case C. If the action of G on Γ is uniscalar, then, by Lemma 33,
we see that G must have a compact, open, normal subgroup. Since we are assuming that
G has no compact, open, normal subgroup we conclude that G cannot be uniscalar.

Let G be a totally disconnected, locally compact group and g ∈ G. From the definition
of the scale function we see that s(g) = 1 if and only if g normalises some compact,
open subgroup of G, and the group G is uniscalar if and only if for every element of
G there is some compact, open subgroup normalised by g. If G has a compact, open,
normal subgroup, then G is clearly uniscalar. Bhattacharjee and Macpherson [3, Section 3]
(following up on work by Kepert and Willis, [15]), constructed an example of a compactly
generated, totally disconnected, locally compact group that has no compact, open, normal
subgroup, but every element normalises some compact open subgroup. On the other hand
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Glöckner and Willis have shown in [11] that a compactly generated, uniscalar p-adic Lie
group has a compact, open, normal subgroup.

Corollary 35. Let G be a compactly generated, totally disconnected, locally compact group
having a cubic Cayley–Abels graph. If every g ∈ G normalises a compact open subgroup
of G (i.e. G is uniscalar), then G has a compact, open, normal subgroup.

8 Trofimov’s result on cubic graphs

For a graph Γ we let Γn denote the the graph that has the same vertex set as Γ and two
distinct vertices α and β are adjacent in Γn if and only if dΓ(α, β) 6 n.

Definition 36. Let Γ be a graph. We say that Γ essentially includes a tree if there exists
a number n such that the graph Γn contains the cubic tree as a subgraph.

Remark 37. Trofimov uses the term hyperbolic for graphs having the property described
above, but we follow Cornulier [6] in using the term essentially includes a tree.

An action of a group G on a set Ω is said to be nearly discrete if there is a G-congruence
σ on Ω with finite equivalence classes such that if K is the kernel of the action of G on
Ω/σ, then the action of G/K on Ω/σ is discrete.

In his paper from 1984, [25], Trofimov considers the following question:

Is it true that if Γ is a locally finite, connected graph and G is a subgroup of Aut(Γ)
acting transitively on the vertices, then the graph Γ essentially includes a tree or the action
is nearly discrete?

In [6] Cornulier constructs an example of a vertex-transitive, locally finite graph that
does not essentially include a tree and the action of its automorphism group is not nearly
discrete, thereby giving a negative answer to Trofimov’s question. But, Trofimov showed
in [25] that the answer is “yes” if it is assumed that the graph Γ has degree 3. Our
methods yield a short proof of Trofimovs’s result.

Theorem 38. ([25, Theorem 3.1]) Let Γ be a vertex-transitive, cubic graph and G =
Aut(Γ). Then, the action of G is nearly discrete or Γ2 contains a subgraph isomorphic to
the 3-regular tree.

Proof. We may assume that the stabilisers in G of vertices in Γ are infinite. If G acts
edge-transitively, then Corollary 13 says that Γ is a tree. Hence we may assume that G
does not act transitively on the edges of Γ and that the conditions in Case C are satisfied.
Once again we work with an expedient colouring. Let . . . , α−1, β−1, α0, β0, α1, β1, . . . be an
alternating line in Γ such that the edges {αi, βi} are red and the edges {βi, αi+1} are blue.
Let U−∞,0 denote the pointwise stabiliser of the ray . . . , α−1, β−1, α0. If there is a positive
integer n such that |αnU−∞,0| < 2n, then it follows from the remarks after Lemma 31 and
Lemma 33 that Γ has exactly two ends and the action is nearly discrete.

Since |αnU | 6 2n, we are now left to consider the case where |αnU | = 2n for every
positive integer n. First note that {αi, αi+1} is an edge in the graph Γ2. We consider the
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subgraph ∆ of Γ2 with vertex set
⋃∞
i=0 αiU and edge set

⋃∞
i=0{αi, αi+1}U . In this graph

the vertex α0 has degree 2 and every other vertex has degree 3. The set of vertices in ∆
at distance n from α0 is equal to αnU and since |αnU | = 2n we conclude that ∆ is the
infinite rooted binary tree. When we apply the same argument to the ray α−1, α−2, . . .
and its pointwise stabiliser we find another copy of the rooted binary tree inside Γ2. This
second tree has root α−1 and is disjoint from the first one. Since the two roots α−1 and
α0 are adjacent in Γ2, these two rooted trees together with the edge {α−1, α0} give a copy
of the 3-regular tree.

Combining Proposition 7 with Corollary 35 and Theorem 38 yields:

Proposition 39. ([26, Example 5.5]) Let G be a group that acts vertex-transitively on a
locally finite, connected graph Γ of degree d. Assume that G acts locally like the dihedral
group with 2d elements in its usual action on a set with d elements. Then, either the
action is nearly discrete or the graph Γ essentially includes a tree.

Acknowledgements

The authors thank the anonymous referees for careful reading and for their suggestions,
which helped improving the presentation of the article.

References

[1] H. Abels. Specker-Kompaktifizierungen von lokal kompakten topologischen Gruppen.
Math. Z., 135:325–361, 1973/74.
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[19] R. G. Möller. Structure theory of totally disconnected locally compact groups via
graphs and permutations. Canad. J. Math., 54(4):795–827, 2002.
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Appendix A: Quartic graphs

The results involving Case C can be rephrased as results for a special class of group
actions on quartic (4-regular) graphs. This connection with quartic graphs has already
appeared in Parts 6 and 7 of Example 6 and the proof of Theorem 26. We will use the
notation described in Example 6.

Let Γ be a connected quartic graph and G a group acting vertex-transitively on Γ
such that the local action is D4. For a vertex α there is a natural Gα-congruence σα on
Γ(α) with two classes Σα,1 and Σα,2. Let Γ′ denote the cubic graph constructed on the
basis of Γ as in Example 6. An Σ-alternating s-arc in Γ is an s-arc (α0, . . . , αs) such
that αi−1 and αi+1 belong to different σαi

classes. The Σ-alternating s-arc in Γ gives us
an rr-alternating 2s-arc in Γ′ starting with either Σα0,1 or Σα0,2 and ending with either
Σαs,1 or Σαs,2. If, on the other hand, we start with a cubic graph and a subgroup of
the automorphism group so the conditions in Case C are satisfied, then an rr-alternating
2s-arc gives an Σ-alternating s-arc in the quartic graph that we get upon contracting the
red edges. Thus one can go back-and-forth between cubic graphs with a group action
such that the conditions in Case C are satisfied and quartic graphs with a group acting
vertex-transitively and locally like D4. Applying Lemma 19 and Corollary 20 to Γ′ we
get:

Corollary A.1 Let Γ be a connected quartic graph and G a group acting vertex-transitively
on Γ such that the local action is D4. If the action of G on Γ is non-discrete, then G
acts transitively on the set of Σ-alternating s-arcs in Γ for every s > 0. If the action is
discrete, then there is a number s such that G acts regularly on the set of Σ-alternating
s-arcs.

Remark 40. The part in the above corollary about groups with finite vertex-stabilisers is
stated in [9, p. 25]. There the author, Djoković, attributes this observation to G. L. Miller
and says that it can be proved by applying the same argument as in the proof of 7.72 in
[29]. A result in similar vein as Corollary 8 is [31, Lemma 2.3].

Example A.2 Tutte showed in [27] and [28] that if Γ is a connected finite cubic graph
and G 6 Aut(Γ) acts arc-transitively, then G acts regularly on the set of s-arcs for some
s 6 5. In Corollaries 20 and A.1, where the conclusion is that G acts regularly on a
specific set of Σ-alternating s-arcs, we do not get a general bound on s as the following
example shows.

Let Γs be a graph with vertex set {0, 1, . . . , s}×{1, 2} for some s > 2. If 0 6 r 6 s−1,
then {(r, i), (r + 1, j)} is an edge in Γs for all i, j ∈ {1, 2} and in addition {(s, i), (0, j)}
is an edge in Γs for all i, j ∈ {1, 2}. This is clearly a connected quartic graph and
its automorphism group acts vertex-transitively and locally like D4. The automorphism
group acts regularly on the Σ-alternating s-arcs.

Corollary A.3 below is an analogue of Theorem 26. It would also be possible to deduce
this directly from [21, Corollary 16] without mentioning cubic graphs.
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Corollary A.3 Let Γ be a connected, vertex-transitive, quartic graph with two ends.
Suppose Aut(Γ) acts non-discretely and locally like D4. Then Γ is isomorphic to the
underlying undirected graph of ∆2 or the underlying undirected graph of Arcs(∆2) for
some s > 1.

Rephrasing Theorem 34 and Corollary 35 we get:

Corollary A.4 Let G be a compactly generated, totally disconnected, locally compact
group having a quartic Cayley–Abels graph such that the local action of G is D4. Then
either G has a compact, open, normal subgroup or G is not uniscalar. In particular, if
every g ∈ G normalises a compact open subgroup of G (i.e. G is uniscalar), then G has a
compact, open, normal subgroup.

Appendix B: Diestel-Leader graphs

The Diestel-Leader graphs were first defined by Diestel and Leader in [8]. Diestel and
Leader start with a regular directed tree T with in-degree q and out-degree r (in their
paper they have q = 2 and r = 3). Then they look at the s-arc-digraphs Arcs(T ) and
construct the limit of this sequence of digraphs. The underlying undirected graph of this
limit is the Diestel-Leader graph DL(q, r).

The following direct construction of the Diestel-Leader graphs comes from Woess, see
[35, p. 131] and [36]: Start with a regular tree T with degree q+1. Select a fixed reference
end ω of T . Let . . . , α−1, α0, α1, . . . be a line in T such that the ray α0, α−1, . . . , belongs
to ω. Set

H = {g ∈ Aut(T ) | g fixes all the vertices αN , αN−1, . . . for some number N}.

Then H is a subgroup of Aut(T ). The horocycles of T with respect to the end ω are
defined as the orbits of H. The function h : VT → Z defined by setting h(α) = j if α is
in the same horocycle as αj is called a Busemann function.

Definition B.1 Let T be a regular tree with degree q + 1 and let T ′ be a regular tree
with degree r + 1. Let h : VT → Z and h′ : VT ′ → Z denote Busemann functions as
above. The vertex set of the Diestel-Leader graph DL(q, r) is the set {(α, α′) ∈ VT×VT ′ |
h(α) + h(α′) = 0}. Two vertices (α, α′) and (β, β′) in DL(q, r) are adjacent if and only if
α and β are adjacent in T , and α′ and β′ are adjacent in T ′.

The graph DL(2, 2) is a quartic graph. It is vertex-transitive and the vertex-stabilisers
in its automorphism group are infinite and act locally like D4. Furthermore this graph
has only one end. As explained in Part 7 of Example 6 it is thus possible to use DL(2, 2)
to construct a one-ended cubic graph that satisfies the conditions in Case C.

An alternative description of the Diestel-Leader graphs is given in [18, Example 1].
This description is helpful if one wants to visualise these graphs. To simplify the exposition
we only describe DL(2, 2). Start with a copy T of the cubic tree and let h denote a
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Busemann function as above defined with respect to a fixed end ω. For a horocycle i (the
horocycle containing the vertex αi) take a copy Ti of T and let ϕi : VT → VTi be an
isomorphism. Now identify α and ϕ(α) for every vertex α in VT such that h(α) > i. Do
this for every i. When that is done, every vertex in T has degree 4. For each horocycle
in Ti where the vertices still have degree 3 take a new copy of T and identify vertices as
above. Continue like this ad infinitum until you have a graph with valency 4. This graph
is the graph DL(2, 2).

Variants of the above description can be used to produce further examples of cubic
graphs satisfying the conditions in Case C. Let T denote the cubic tree equipped with a
Busemann function with respect to some end ω. We say a vertex β is a descendant of a
vertex α if the unique ray in ω that has β as its initial vertex contains α. If A is a set
of vertices in T , the descendant set of A is the union of the descendant sets of all the
vertices in A. In the description of DL(2, 2) above we identify each vertex in T that is
in the descendant set of horocycle i to some vertex that is in the descendant set in Ti of
some particular horocycle.

Say, vertices β, β′ are siblings if there is a vertex α such that both β and β′ are adjacent
to α and both are descendants of α. For each pair β, β′ of siblings in T we get a new
copy Tβ,β′ of T and an isomorphism ϕ : T → Tβ,β′ . For each vertex α in the descendant
set of {β, β′} identify α with ϕ(α). As above we continue this process until we end up
with a quartic graph Γ. The stabilisers of vertices in the automorphism group of this
graph are infinite and the automorphism group acts locally like D4. The role of the pair
of siblings in this construction could be taken over by a 4 element set {β1, β2, β3, β4} of
cousins (meaning that there is a vertex α such that β1, β2, β3, β4 are all descendants of α
and the dΓ(α, βi) = 2 for all i). Instead of using 4 element sets one could use 8 element
sets and so on.

Each set of cousins contains two pairs of siblings and we colour the vertices in one
of these pairs white and the other black. For horocycle i in a cubic tree T we take two
copies Ti,w and Ti,b of the cubic tree together with isomorphisms ϕi,w : T → Ti,w and
ϕi,b : T → Ti,b. For each vertex α that belongs to the descendant set of a white vertex
in the i-th horocycle in T we identify α and ϕi,w(α) and similarly identify α and ϕi,b(α)
if α belongs to the descendant set of a black vertex in the i-th horocycle in T . We
continue this process until we get a quartic graph. The resulting graph has one end, is
vertex-transitive, the automorphism group acts non-discretely and the local action of the
automorphism group is D4. Again, there are obvious variants of this construction.

Appendix C: Two-ended graphs

In the proof of Lemma 31 we make use of a result that is contained in the the paper [14,
Section 5] by Jung and Watkins. The purpose of this appendix is to give a completely
self-contained proof of this result.

Lemma C.1 Let Γ be an infinite, connected, locally finite graph such that its automor-
phism group has only finitely many orbits on the vertex set. Then Γ has precisely two
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ends if and only if there exists an automorphism g ∈ Aut(Γ) such that 〈g〉 has only
finitely many orbits on the vertex set of Γ.

Proof. Recall that the graph Γ has precisely two ends if for every finite set Φ of vertices
the graph Γ \ Φ has at most two infinite components and there exists a finite set Φ0 of
vertices such that the graph Γ \Φ0 has two infinite connected components. We denote by
dΓ(−,−) the graph theoretical distance on Γ.

We now assume that Γ has precisely two ends. Let Φ0 be a set as described above and
let B and B′ denote the two infinite components of Γ \ Φ0. Since Γ is locally finite we
can be assured that Γ \Φ0 has at most finitely many components. Thus, we may assume
that the set Φ0 is connected and that VΓ = B ∪ Φ0 ∪ B′. Our first task is to find an
automorphism g such that (B ∪ Φ0)g ⊆ B or such that (B′ ∪ Φ0)g ⊆ B′. The following
argument comes from [13]. Since Aut(Γ) has only finitely many orbits on VΓ and Γ is
connected, we see that there is a constant c such that for every vertex α and every orbit O
of Aut(Γ) there is some vertex αO from O with dΓ(α, αO) 6 c. The graph Γ is assumed to
be locally finite and thus the diameters of the infinite components B and B′ are infinite.
If d denotes the diameter of the finite set Φ0 and α is a vertex in Φ0 then there is a vertex
β in B such that β is in the same Aut(Γ)-orbit as α and the distance from β to any
vertex in Φ0 is at least d. Thus if h is an automorphism such that αh = β then Φ0h ⊆ B.
Similarly we can find an automorphism h′ such that Φ0h

′ ⊆ B′. (In this argument the
assumption that the graph is locally finite is used in an essential way. If the assumption of
local finiteness is dropped but it assumed that the graph is vertex-transitive then we get
a similar result as we have just proved, see [7, Section 3].) If it so happens that Bh ⊆ B
or B′h′ ⊆ B′, then we need look no further. So let us assume that Bh is not contained in
B and that B′h′ is not contained in B′. The connected set Φ0 is either contained in Bh
or B′h. If Φ0 ⊆ B′h, then Bh ⊆ B. Since we are assuming that Bh is not contained in
B we see that Φ0 ⊆ Bh and then (B′ ∪ Φ0)h ⊆ B. Similarly (B ∪ Φ0)h′ ⊆ B′. Now set
g = h′h. Then

(B ∪ Φ0)g = (B ∪ Φ0)h′h ⊆ B′h ⊆ B.

Now we have to show that g has only finitely many orbits on the vertex set of Γ. Since
we assumed that Γ has precisely two ends, the graph Γ \ (Φ0 ∪ Φ0g) has precisely two
infinite components and they are B′ and Bg. Thus the set Ψ = VΓ \ (B′ ∪ Bg) is finite.
Let α0 be some vertex in Φ0. If β is a vertex in Bgj for some j > 0, then a path from α0

to β has to contain vertices from all of the sets Φ0g, . . . ,Φ0g
j. As these sets are disjoint,

we see that dΓ(α0, β) > j. Thus
⋂
j>0Bg

j = ∅ and by symmetry
⋂
j60B

′gj = ∅. From

this we see that VΓ =
⋃
j∈Z Ψgj. Because Ψ is finite we conclude that g has only finitely

many orbits on Γ.
Assume now that g is an automorphism of Γ such that 〈g〉 has only finitely many

orbits on the vertex set of Γ. For a set A ⊆ VΓ we define

Nr(A) = {β ∈ VΓ | dΓ(β, γ) 6 r for some γ ∈ A}.

Let α0 be some vertex in Γ. Set αi = α0g
i. Since 〈g〉 has only finitely many orbits

on Γ, there is a finite set of vertices F ⊆ VΓ that contains an vertex from each of the
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〈g〉 orbits and then
⋃
i∈Z Fg

i = VΓ. But Γ is connected we see that there is a number
c, which is at most the maximal distance between two vertices in F , such that for every
vertex β in Γ there is some i such that dΓ(β, αi) 6 c. The graph Γ is infinite and locally
finite, implying that the orbit of α0 under 〈g〉 is infinite. Since 〈g〉 acts by isometries,
we see that dΓ(αi, αj) only depends on |i− j| and thus there is a number K such that if
|i − j| > K, then dΓ(αi, αj) > 2c + 2. Set Φ0 = Nc({α1, . . . , αK}). The set Φ0 is finite.
We want to show that the graph Γ \ Φ0 is not connected.

Let i 6 0 and j > K + 1 be numbers such that neither αi nor αj are in Φ0. Suppose
β0, . . . , βs is a path in Γ\Φ0 such that β0 = αi and βs = αj. From the way K is defined it
follows that dΓ(αi, αj) > 2c + 2. Let k be the largest number such that βk is in distance
at most c from one of the vertices α0, α−1, . . .. Note that k is well defined because β0 = αi
and k < s because βs = αj and dΓ(α`, αj) > 2c + 2 for all ` = 0,−1, . . .. Then there is
a number ` 6 0 such that βk is in distance at most c from α` and since βk+1 6∈ Φ0 there
must be a number `′ > K + 1 such that βk+1 is in distance at most c from α`′ . This leads
to a contradiction since

dΓ(α`, α`′) 6 dΓ(α`, βk) + dΓ(βk, βk+1) + dΓ(βk+1, α`′) 6 c+ 1 + c = 2c+ 1,

but dΓ(α`, α`′) > 2c + 2. Hence it is impossible that such a path β0, . . . , βs exists. We
have now shown that αi and αj cannot belong to the same component of Γ \ Φ0.

Note that dΓ(αi−1, αi) is a constant independent of i. Thus we can find a number
M 6 0 such that if i 6 M , then there is a path from αi−1 to αi that does not intersect
Φ0. From this we see that the vertices αM , αM−1, . . . all belong to the same component of
Γ \Φ0. Similarly we can find a number M ′ > K + 1 such that the vertices αM ′ , αM ′+1, . . .
all belong to the same component of Γ \ Φ0. As we saw above the vertices αM and αM ′

cannot belong to the same component of Γ \ Φ0 and thus Γ \ Φ0 has at least two infinite
components.

The final step is to show that if Φ is a finite set of vertices, then Γ \ Φ has at most
two infinite components. As above we can find numbers M and M ′ such that the vertices
αM , αM−1, . . . all belong to some component B of Γ\Φ and all the vertices αM ′ , αM ′+1, . . .
all belong to some component B′ of Γ \Φ. In addition we may assume that the numbers
M and M ′ are chosen so that Nc({αM , αM−1, . . .}) ⊆ B and Nc({αM ′ , αM ′+1, . . .}) ⊆ B′.
But then

Γ \ (B ∪B′) ⊆ Γ \ (Nc({αM , αM−1, . . .}) ∪Nc({αM ′ , αM ′+1, . . .}))
⊆ Nc({αM+1, . . . , αM ′−1})

is finite. From this we see that if Φ is a finite set of vertices in Γ, then Γ \Φ has at most
two infinite components.

We have now shown that there exists a finite set Φ0 of vertices in Γ such that Γ \ Φ0

has at least two infinite connected components and for every finite set Φ of vertices the
graph Γ \ Φ can have at most have two infinite components. Hence Γ has precisely two
ends.
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