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Summary (English)
Weakly electric fish such as the elephantnose fish have for millions of years used elec-
tric signals for navigation. Elephantnose fish create an electric field around their body
to detect, localise, and analyse objects within this field. This allows them to access
the conducting properties of unknown objects.

Knowing the conducting properties of objects is not only useful for elephantnose
fish, but is also useful for human society. In medical imaging for instance, information
about the conducting properties inside the body can indicate the presence of a tumor.
However, it is not an easy task to access the conducting properties of organs from
outside the body. The elephantnose fish is a showcase that can do all at once: Taking
exterior measurements while perturbing its surroundings with the electric field and
afterwards interpreting these measurements to understand the electric properties of
objects in its surroundings. In order for scientists to accomplish similar results they
need a thorough understanding of the physics involved: How the conductivity inside
an object connects to currents and potentials on the outside of the object. Further-
more, they need an idea what measurements on the outside give suitable information
of the interior, so that they can recover the conductivity.

There are certain imaging modalities that have accomplished and build on
these insights such as acousto-electric tomography, magnetic resonance electrical
impedance tomography or current density imaging. What these methods have in
common is that they combine measurements of the electric current at the boundary
of the object with either ultrasound-induced deformations or measurements of the
magnetic field to obtain internal information linked to the conductivity of the object.
From this internal information, power or current densities, it is then possible to
recover the conductivity in the interior.

We address the problem of recovering the conductivity from the internal infor-
mation obtained through exterior measurements. We investigate under which math-
ematical circumstances one is successful with recovering the conductivity. Here we
consider different settings: A limited view setting, where one can only access the
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object from a part of the boundary or recovering the conductivity in a region on a
surface. The former setting is inspired by applications such as breast cancer screening,
where one cannot access the boundary of the breast from all angles. The latter setting
is inspired by scenarios such as a pipe through a wall that can only be accessed from
each side of the wall. The conducting properties of the inaccessible region on the pipe
in the wall could give information about possible cracks.

We build the theoretical foundation for problems that are difficult to address in
medical imaging or for crack detection. This is only a small step in the complex
reconstruction problem and requires modifications in order to be used in practical
applications. It is impressive that evolution has helped to create a species of fish that
can solve the whole problem, while it requires a tremendous effort to understand and
solve the problem from a mathematical perspective.



Summary (Danish)
Svagt elektriske fisk som elefantfisken har igennem millioner af år brugt elektriske
signaler til at navigere. De genererer et elektrisk felt omkring deres krop, som de kan
bruge til at opspore, lokalisere og analysere objekter inden for dette felt. På denne
måde har de adgang til de ledende egenskaber af objektet.

Det er ikke kun en fordel for elefantfisken at kende objekters ledende egenskaber,
men også for verdens befolkning. For eksempel i medicinsk billedannelse kan informa-
tion om ledningsevnen i kroppen indikere om personen har en tumor. Det er ikke en
nem opgave at tilgå ledningsevnen i organer fra det ydre af kroppen. Elefantfisken er
et udmærket eksempel, der kan det hele: Tage målinger fra det ydre af objekter ved
at påvirke dens omgivelser med det elektriske felt og efterfølgende tolke disse målinger
for at forstå de ledende egenskaber af disse objekter. Det kræver en god forståelse
af fysikken involveret for at videnskabsmænd har en chance for at opnå lignende re-
sultater: Hvordan er sammenhængen mellem ledningsevnen i et objekt og strøm eller
spændsforskel på det ydre objektet? Derudover kræver det, at videnskabsmændene
har et overblik over hvilke målinger fra det ydre vil give den passende information fra
det indre, sådan at det er muligt at rekonstruere ledningsevnen.

Der findes eksempler på billedgivende metoder, der har opnået og bygget på ne-
top denne indsigt såsom akustik-elektrisk tomografi, magnetisk resonans elektrisk
impedans tomografi eller strømtæthedstomografi. Disse metoder har tilfælles at de
kombinerer målinger af den elektriske strøm på ydersiden af objektet med enten ul-
tralyd eller målinger af magnetfeltet for at få information i det indre af objektet. Fra
denne information er det så muligt at rekonstruere ledningsevnen i det indre af ob-
jektet.

Vi angriber den del af problemet der svarer til at rekonstruere ledningsevnen fra
information i det indre af objektet, som er opnået igennem målinger på det ydre. Vi
undersøger under hvilke matematiske omstændigheder det lykkedes at rekonstruere
ledningsevnen. Her undersøger vi to forskellige scenarier: Et scenarie, hvor vi kun
har en begrænset adgang til det ydre af objektet og et andet scenarie, hvor vi vil
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rekonstruere ledningsevnen i et areal på en flade. Det første scenarie er motiveret fra
anvendelser, hvor man vil undersøge om en kvinde har brystkræft; i dette tilfælde
er det ikke muligt at tilgå overfladen af brystet fra alle vinkler. Det andet scenarie
er inspireret af anvendelser som et rør i en betonvæg, der kun kan tilgås fra hver
side af væggen. De ledende egenskaber fra den utilgængelige del af røret kan give
informationer om der er sprækker i røret.

Vi danner det teoretiske grundlag for komplekse problemer i medicinsk billeddan-
nelse eller anvendelsesområder, hvor man skal lokalisere sprækker. Det er kun en
lille del i den overordnede problemstilling og kræver modifikationer for at kunne blive
brugt i praktiske anvendelsesområder. Det er imponerende, at evolutionen har frem-
bragt en fiskeart der kan løse det hele komplekse problem, mens det kræver en enorm
indsats for at forstå og løse problemet fra et matematisk perspektiv.



Preface
This PhD thesis was prepared at the department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark in fulfillment of the require-
ments for acquiring a PhD degree. The research covered in this thesis was performed
between August 1st 2019 and July 31st 2022 in the Section for Scientific Computing
under principal supervisor Professor Kim Knudsen and co-supervisor Professor Steen
Markvorsen. The period at the Section for Scientific Computing was interrupted by
an external research stay between September 25th 2021 and December 31st 2021 at
the Department of Mathematics and Statistics at the University of Jyväskylä under
supervision of Professor Mikko Salo.

This thesis covers the research on reconstructing electrical conductivities from
power densities performed during my PhD studies. The aim is to summarize and
present the work and results detailed in the following submitted journal papers and
unpublished manuscripts:

(A) Mikko Salo, Hjørdis Schlüter. Jacobian of solutions to the conductivity equation
in limited view.
Submitted. Preprint available on arXiv: http://arxiv.org/abs/2207.03849.

(B) Bjørn Jensen, Kim Knudsen, Hjørdis Schlüter. Conductivity reconstruction from
power density data in limited view.
Submitted. Preprint available on arXiv: https://arxiv.org/abs/2202.12370.

(C) Kim Knudsen, Steen Markvorsen, Hjørdis Schlüter. Reconstructing anisotropic
conductivities on two-dimensional Riemannian manifolds from power densities.
Manuscript under development. We aim at including results on Riemannian
manifolds with higher genus as discussed in section 4.4.2. Preprint available on
arXiv: https://arxiv.org/abs/2202.12056.

Chapter 1 introduces the different settings studied in this thesis and chapter 2 gives
the necessary preliminaries for the geometric setting. Chapters 3-4 are the main
chapters that cover the different settings, possible future work and summarizes the
papers A-C attached in Appendix A-C. Chapter 5 provides concluding remarks.

Kongens Lyngby, Denmark, July 31, 2022
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CHAPTER1
Introduction

In this thesis, we address the problem of reconstructing the electrical conductivity γ
in a domain Ω from internal power density data. The power density data is assumed
to be obtained from exterior measurements. We address the problem in different
settings: In the Euclidean plane with either full or limited access to the boundary of
Ω and on a Riemannian manifold (M, g) with full access to the boundary.

Ω

σ

Figure 1.1: Two-dimensional domain in the plane

The electrical conductivity is a materials ability to conduct electric current. Cer-
tain materials such as muscle tissue are more conducting in one direction than the
other. This motivates to distinguish between isotropic and anisotropic conductivities.
In the former case one models the conductivity as a scalar valued function, while in
the latter case it is modeled as a matrix valued function to incorporate directional
dependencies. In this thesis, we focus on anisotropic conductivities.

Reconstructing the electrical conductivity has received increasing interest over
the past 40 years since electrical impedance tomography (EIT) was developed for
use in medical imaging. EIT is based on the Calderón problem of determining the
conductivity of a medium from voltage and current measurements at the boundary.
The interest in conductivity imaging for medical applications is due to the fact that
an abnormal conductivity distribution, for instance, can be used for detection and
classification of strokes [18, 24, 27]. Furthermore, it can indicate the presence of a
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tumor [19, 28], as tumors are more conducting than organs and tissue.

1.1 Applications
Since the 1980s, several hybrid methods has evolved to improve the resolution of EIT.
Examples of such hybrid methods are acousto-electric tomography (AET) [4, 30],
magnetic resonance electrical impedance tomography (MREIT) [25, 26] and current
density imaging (CDI) [5, 16, 29]. These hybrid methods couple two imaging modal-
ities: EIT to provide high contrast with another imaging modality providing high
resolution. In AET one thus combines EIT with ultrasound-induced deformations
to obtain internal power density data. The ultrasound-induced deformations are re-
alised by acoustic waves that are generated by sources located at the exterior. The
acoustic waves perturb the conductivity in the interior of the object. In MREIT and
CDI one combines EIT with magnetic resonance imaging (MRI) to obtain current
density data. In these modalities on uses the MRI scanner to measure the magnetic
field generated by an input current. For MREIT one component of the magnetic field
is measured, while for CDI all components are measured. The following two steps
summarise the reconstruction approach for all three methods:

1. Combine EIT measurements with ultrasound/MRI measurements to obtain in-
ternal power/current density data

2. Reconstruct the conductivity from the internal data

This thesis focuses on the second step under the assumption that internal data is
available. Here we mainly address the AET approach of reconstructing the conduc-
tivity from power density data.

1.2 Reconstruction in the Euclidean plane
Let us now formulate the problem in Euclidean space in mathematical terms. The
conductivity γ is linked to the electric potential u via the conductivity equation:{

div(γ∇u) = 0 in Ω,
u = f on ∂Ω.

(1.1)

Here Ω ⊂ Rd and f corresponds to a Dirichlet boundary condition imposed on the
boundary of Ω, denoted ∂Ω. The imposed potential f gives rise to the current flux
Λγf = γ∇u · n|∂Ω at the boundary, with n denoting the unit outward normal. The
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aim of EIT and Calderóns problem is to reconstruct γ from the map f 7→ Λγf , which
is known as the Dirichlet-to-Neumann map (DN map). In AET, one combines mea-
surements of the current flux and ultrasound-induced deformations. This allows one
to recover internal power density measurements Hij = γ∇ui · ∇uj for 1 ≤ i, j ≤ m.
Here ui solves (1.1) for the corresponding potential fi imposed on the boundary. A
naive illustration of this procedure is shown in figure 1.2. The reconstruction problem
of recovering γ from power densities Hij was addressed for d = 2 in [6, 8, 21] and
for dimensions d ≥ 3 in [9, 20, 22]. In this thesis, we will consider the reconstruction
approach in [21].

Ω

σ

Acoustic waves
Im

pose

potential
M

easure

current

γ

Figure 1.2: A naive illustration of the AET procedure.

1.3 Limited view settings
In certain applications, it is not possible to access the full boundary of the object to
take measurements. For instance, for breast cancer detection, one cannot access the
breast from all angles and for patients recovering from early-stage breast cancer one
is mainly interested in the area of the original tumor bed [13, 17]. This motivates to
study reconstruction problems in limited view. Formally, this corresponds to one part
of the boundary, Γ ⊂ ∂Ω, that can be controlled by a Dirichlet condition, while on
the remaining boundary there is either a zero Dirichlet or a zero Neumann condition.
In these cases, the boundary value problems for the potential u take the following
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form: 
div(γ∇u) = 0 in Ω,
u = f on Γ,
u = 0 / γ∇u · n = 0 on ∂Ω\Γ.

(1.2)

The AET procedure for these settings is illustrated in figure 1.3. In the following, we
refer to the boundary value problem (1.1) as the full view setting and the boundary
value problems (1.2) as limited view settings.

For the imaging applications AET, MREIT and CDI, it is essential that the Jaco-
bian of a pair of solutions to the boundary value problem (1.2) is non-vanishing:

det[∇u1 ∇u2] 6= 0, in Ω.

This poses the question:

Q 1 Can one find a set of boundary functions (f1, . . . , fn) so that for any γ the
corresponding solutions have a non-vanishing Jacobian?

For the full view setting in dimension d = 2 this question has a positive answer and
gives constructive conditions on the boundary functions so that the corresponding Ja-
cobian is non-vanishing. In the most simple case of a constant conductivity γ = I2 an
answer to this question is formulated in the Radó-Kneser-Choqet theorem [11, 12, 23]
and this answer has been generalised to non-constant and anisotropic coefficients in
[2, 3, 10]. These results do not generalise to three dimensions; in fact, it is impossible
to find explicit choices of a triplet of boundary conditions that work for any γ [1, sec.
6.5]. However, for the n-dimensional case there are results that guarantee existence
of a finite number of boundary functions so that locally the Jacobian constraint is
satisfied [1, sec. 7.3], [7].

For the limited view setting in (1.2) with a zero Dirichlet condition on ∂Ω\Γ we
address question 1 in two dimensions. We cannot apply the Radó-Kneser-Choquet
type results mentioned above directly, as these require that the mapping (x1, x2) 7→
(u1|∂Ω, u2|∂Ω) is injective, which is not the case in limited view. Therefore, we adapt
these results to limited view and propose sufficient conditions under which the corre-
sponding Jacobian is non-vanishing.

For the limited view setting in (1.2) with a zero Neumann condition on ∂Ω\Γ we
address question 1 in two and three dimensions. Here, we generalise the results in [1,
sec. 7.3] from full view to limited view. This yields existence of a finite number of
boundary conditions, so that locally the Jacobian constraint is satisfied.

1.4 Reconstruction on a manifold (M, g)
We consider the problem of reconstructing an electrical conductivity from power den-
sity measurements on a Riemannian manifold. This has not been studied in the liter-
ature before. However, our work is inspired by the geometric Calderón problem [14,
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Figure 1.3: A naive illustration of the AET procedure in limited view.

15]. In the following, we therefore present the approach for the geometric Calderón
problem and address how this relates to settings that we consider throughout this
thesis.

For the Calderón problem one considers a smooth, d-dimensional, compact mani-
fold (M, g) with boundary and solutions u to the conductivity equation{

divM (gradM (u)) = 0 in M,

u = f on ∂M.
(1.3)

One is then interested in recovering g from the DN map:

Λgf = g(gradM (u) , n),

where n denotes the outward unit normal of M . It has been shown that in dimensions
d ≥ 3 the problem of recovering the Riemannian metric g from Λg is equivalent to
recovering γ from Λγ in Euclidean space when

G = (det γ)
1

d−2 γ−1,

as they in this case produce the same DN map: Λγ = Λg. Further research on
the geometrical Calderón problem concerns which Riemannian metrics g, g̃ produce
the same DN map. This is the case for any g = ψ∗g̃, where ψ : M → M is a
diffeomorphism that is the identity on ∂M . For d = 2 this result holds true when g
is a conformal multiple of ψ∗g̃ [15].

For our setting one does not have the same equivalence between the problems of
recovering an anisotropic conductivity γ from power density data Hij = γ∇ui · ∇uj
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Figure 1.4: Example of a two-dimensional Riemannian manifold with its parameter
domain to the left.

in the plane and recovering a Riemannian metric g from power density data Hij =
g(gradM (ui) , gradM (uj)). While for Calderóns problem G−1

√
det G enters the PDE

and the DN map the same way as the conductivity γ, for our setting the metric g
does not appear the same way in the PDE in (1.3) and the power density data. In our
setting we have data available over the whole manifold M and not only the boundary,
therefore questions addressing which conductivities or metrics give rise to the same
data do not make sense.

This motivates that we treat the metric g and the conductivity γ separately: We
consider an electrically conductive, compact, two-dimensional Riemannian manifold
(M, g) with a smooth boundary ∂M . Here we model the electrical conductivity on M
by a (1, 1) tensor field γ. We consider the unique solution u to the boundary value
problem: {

divM (γ gradM (u)) = 0 in M,

u = f on ∂M.
(1.4)

Figure 1.4 illustrates an example of such a manifold, with M being a strip on a
cylinder. The interior current field is γ gradM (u) , i.e. γ is the tensor turning the
electric field gradM (u) into the current field. By considering m different boundary
functions f = fi, 1 ≤ i ≤ m, the corresponding solutions to equation (1.4) are
denoted by ui. They define the so-called power density (m × m)-matrix H with
elements:

Hij = Hji = g(γ gradM (ui) , gradM (uj)) for 1 ≤ i, j ≤ m.

There is no literature available on the feasibility of obtaining internal power density
measurements following the AET approach on manifolds. This has only been inves-
tigated for Euclidean domains. Throughout this thesis we will assume that the data
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is available and generalise the constructive reconstruction formula in [21] for 2D Eu-
clidean domains to 2D Riemannian manifolds with a conformal or diagonal metric g.
We will discuss why the formula to our knowledge cannot be generalised to general
2D Riemannian manifolds. Furthermore, we show that the PDE in (1.4) and (1.1) are
preserved, when g is conformal. As by the Poincaré-Koebe uniformisation theorem
every general 2D Riemannian manifold has a conformal representation, this implies
that one can use the Euclidean approach to reconstruct γ.

Figure 1.5 shows an illustration of the reconstruction procedure on a 2D Rieman-
nian manifold (M, g), represented by the strip on a cylinder. Here the left hand side
represents five power densities, which is the minimal amount necessary in practice
(corresponding to m = 3 measurements at the boundaries of the strip) to be able to
reconstruct γ determined by the three scalar functions γ11, γ12 and γ22:H11 H12

H22 H23

H33


︸ ︷︷ ︸

H

=⇒
[
γ11 γ12

γ22

]
︸ ︷︷ ︸

γ

. (1.5)

Figure 1.5: Reconstruction procedure on a cylinder: Illustration of the power density
measurements needed for reconstructing γ.

1.5 Structure of this thesis
We use the following structure throughout this thesis: Chapter 1 is the introduc-
tion that gives an overview over the different settings, puts them into context and
presents relevant applications. Chapter 2 contains the geometric preliminaries needed
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for our analysis on Riemannian manifolds. Chapter 3 addresses the full and limited
view setting in the Euclidean plane. Here we give an overview over the constructive
reconstruction procedure from power densities in the plane based on [21] and sum-
marise the results in paper A and B obtained for the different limited view settings.
Possible future work for paper A is also discussed. Chapter 4 addresses the recon-
struction problem on a 2D Riemannian manifold. It shows a generalisation of the
reconstruction procedure in the plane to manifolds with conformal or diagonal metric.
It summarises the result in paper C on the preservation of the conductivity equations
between a conformal manifold and the Euclidean plane. Furthermore, it addresses
possible future work on these topics. Chapter 5 holds concluding remarks and the
appendices A-C contains the papers A-C produced during this project. In order to
keep page turning to a minimum, each chapter is followed by a bibliography.
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CHAPTER2
Geometric

preliminaries
As this thesis was written from the viewpoint of an author with a background in
Analysis and PDEs, we include some preliminaries on two-dimensional Riemannian
manifolds that we need for our investigations in chapter 4. This chapter is inspired
by [1].

2.1 Tangent spaces & cotangent spaces
Consider a two-dimensional Riemannian manifold (M, g) that is defined by the mani-
fold M and metric g. We start by introducing the concept of tangent spaces and cotan-
gent spaces for (M, g). To every point x = (x1, x2) on the manifold one can attach a
tangent space TxM which is a vector space formed by the derivations, i.e. the tangent
vectors of smooth curves on (M, g) through that point. When we consider standard
coordinates x1 and x2 and the corresponding standard basis { ∂

∂x1 = e1 ,
∂

∂x2 = e2}
in R2, each tangent vector V ∈ TxM has unique coordinates (v1, v2) so that:

V = v1 e1(x) + v2 e2(x).

The Riemannian metric g, which is symmetric and positive definite, allows us to
measure lengths of vectors in each tangent space. To g we associate the metric
matrix function G(x1, x2) with the following coordinate expression:

G(x1, x2) =
[
G11(x1, x2) G12(x1, x2)
G12(x1, x2) G22(x1, x2)

]
.

Similar to the tangent space, at every point x there exists a cotangent space T ∗
xM ,

defined as the dual space of TxM consisting of linear functionals on TxM . Collecting
the tangent spaces and cotangent spaces for all points x on the manifold yields the
tangent bundle TM and cotangent bundle T ∗M respectively.
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2.2 Derivatives, gradient and divergence
Next, we introduce the concept of the directional derivative. Let V = v1e1 + v2e2 be
a vector field and f be a function on (M, g). Then the V -directional derivative of f
at each point x is:

Vx(f) = v1(x) ∂f
∂x1 + v2(x) ∂f

∂x2 .

From this, we can define the gradient vector field of f as the unique vector field
gradM (f) which satisfies

g(gradM (f) , V ) = V (f),

for all vector fields V . This yields the following expression in local coordinates of the
gradient at the point x:

gradM (f) (x) =
2∑

k,ℓ=1

Gkℓ(x) ∂f
∂xℓ

ek.

Furthermore, we can define the divergence of a vector field. For that purpose we
introduce the Christoffel symbols Γm

ij :

Γm
ij = Γm

ji = 1
2

2∑
ℓ=1

(
∂gjℓ

∂xi
+ ∂gℓi

∂xj
− ∂gij

∂xℓ

)
gℓm.

Using the Christoffel symbols, we have the following equivalent coordinate expressions
for the divergence of a vector field V :

divM (V ) = 1√
det(G)

2∑
i=1

∂

∂xi

(
vi
√

det(G)
)

=
2∑

i,j=1

(
∂vi

∂xi
+ Γi

ijv
j

)
.

2.3 Integrals
We define the volume form, which is a unique 2-form on M . As M is oriented, at each
point x on the manifold (M, g) there is a local orthonormal frame {E1, E2} which
gives a positive orthonormal basis of TyM for y near x. The volume form is denoted
by dV such that dV (E1, E2) = 1 for any positive local orthonormal frame. It is given
by the following expression in local coordinates:

dV =
√

detGdx1 ∧ dx2.

For the function f on (M, g) we can use the volume form to obtain f dV , which is
a 2-form. We can then integrate f over M , by integrating the 2-form f dV . The
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L2-inner product between real valued functions u, v ∈ C∞(M) is given by

(u, v)L2(M) =
∫

M

uv dV.

Similarly to Euclidean space the L2 norm is defined by

‖u‖L2(M) = (u, u)
1
2
L2(M).

Furthermore, we can define the L2 inner product for vector valued functions u, v ∈
C∞(M,T 2M):

(u, v)L2(M) =
∫

M

g(u, v) dV.

From this we can define the H1(M) inner product for functions u, v ∈ H1(M):

(u, v)H1(M) = (u, v)L2(M) + (gradM (u) , gradM (v))L2(M)

=
∫

M

uv dV +
∫

M

g(gradM (u) , gradM (v)) dV.
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CHAPTER3
Reconstructing

conductivities from
power densities in the

Euclidean plane
In section one of this chapter we go through the reconstruction approach for anisotropic
conductivities from power densities in the Euclidean setting. The approach is imple-
mented and used for numerical examples in section two of this chapter and builds the
basis for the reconstruction approach on 2D Riemannian manifolds in chapter 4. In
section two we address two limited view settings, where only a part of the boundary
of the domain can be controlled by a Dirichlet condition. These two settings were
the basis for two papers: Paper A, Jacobian of solutions to the conductivity equation
in limited view and Paper B, Conductivity reconstruction from power density data in
limited view. Section two is based on and summarises these two papers.

3.1 Constructive reconstruction approach for
anisotropic conductivities

This section lists the reconstruction procedure for an anisotropic conductivity from
power densities based on [5]. To distinguish between the quantities in Euclidean space
and on the Riemannian manifold in the next chapter, we denote the quantities in this
section with upper index ”E”, while in the next chapter they are denoted by upper
index ”M”.

Throughout this section, we consider the following setting:
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We consider solutions ui to the conductivity equation{
−div(γ∇ui) = 0 in Ω,
ui = fi on ∂Ω,

(3.1)

where ui corresponds to the electric potential that solves the boundary value problem
above for the corresponding electric potential fi imposed on the boundary of Ω. Exis-
tence and uniqueness of solutions ui ∈ H1(Ω) to the above boundary value problem is
classical, see e.g. [6, Corollary 8.22]. We let Ω ⊂ R2 be an open, connected, bounded
domain and γ ∈ L∞(Ω) be a real 2 × 2 symmetric matrix that satisfies the uniform
ellipticity condition

λ|ξ|2 ≤ γξ · ξ ≤ Λ|ξ|2 for every ξ = (ξ1, ξ2) ∈ R2,

for some λ,Λ > 0. The reconstruction procedure is characterised by reconstructing
the anisotropic conductivity γ from internal power density measurements on the form

HE
ij = γ∇ui · ∇uj , 1 ≤ i, j ≤ m.

These measurements are stored in a m × m matrix HE . For the reconstruction
procedure to be well-defined we assume throughout the following that the boundary
functions fi were chosen such that the corresponding solutions ui satisfy the following
Jacobian constraint and gradient condition:

min (det([∇u1 ∇u2]),det([∇u3 ∇u4])) ≥ c0 > 0, (3.2)

∇ log
(

det([∇u1 ∇u2])
det([∇u3 ∇u4])

)
6= 0, (3.3)

for every x ∈ Ω. The first condition corresponds to positive Jacobians for the pairs of
solutions (u1, u2) and (u3, u4). Non-vanishing of the Jacobians ensures invertibility
of the submatrices of HE corresponding to each pair of solutions. We restrict our-
selves to positive Jacobians to avoid complex values in the reconstruction procedure,
when calculating

√
det([∇u1 ∇u2]) or

√
det([∇u3 ∇u4]). The latter condition (3.3)

is directly motivated by the reconstruction procedure and guarantees that the right
hand side in a linear system of equations is non-vanishing.

Based on γ another 2 × 2 symmetric matrix function A ∈ L∞(Ω) is introduced
that satisfies the pointwise relation A2(x) = γ(x) with x = (x1, x2). Also, the vector
fields SE

i = A∇ui are introduced for 1 ≤ i ≤ m so that the power density data
formulates to

HE
ij = SE

i · SE
j .

Now the conductivity equation in (3.1) can be expressed in terms of the vector fields
SE

i as
div(ASE

i ) = 0.
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The focus of the reconstruction procedure is then to reconstruct A, as this will give γ
immediately. The procedure consists of two steps and for that purpose, A is decom-
posed into two parts. In that regard the normalised anisotropy Ã is defined as

Ã = det(A)− 1
2A, such that det

(
Ã
)

= 1,

so that A can be decomposed into A = det(A)
1
2 Ã.

The procedure is based on two important equations to be presented in the next
subsection. For that purpose SE = [SE

1 , S
E
2 ] is orthonormalised into a SO(2)-valued

frame RE = [RE
1 R

E
2 ]. This is obtained by finding a matrix T such that RE =

SE(TE)T . This matrix TE gives rise to the vector fields V E
ij :

V E
ij =

2∑
k=1

∇(TE
ik)TE,kj , 1 ≤ i, j ≤ 2, V E,a

ij = 1
2

(V E
ij − V E

ji ).

The frame RE is then parameterised as the following rotational operator

RE =
[
cos θE − sin θE

sin θE cos θE

]
, (3.4)

rotating any vector by θE degrees in positive direction. As SE
1 and SE

2 are assumed
to satisfy the following by the Jacobian constraint (3.2)

det
(
HE

) 1
2 = det

([
SE

1 SE
2
])

≥ c1 > 0, (3.5)

one can derive the first important equation. This is based on the fact that

0 = div
([

−∂2ui

∂1ui

])
= div(JEA−1SE

i ) with JE =
[
0 −1
1 0

]
.

The first important equation corresponding to [5, eq.(8)] then reads

∇ log(detA) = 1
2

∇ log
(
detHE

)
+

2∑
j,ℓ=1

(
∇
(
HE

)jℓ · ÃSE
ℓ

)
Ã−1SE

j . (3.6)

The second important equation corresponding to [5, eq.(10)] is on the form

Ã2∇θ + [Ã2, Ã1] = Ã2V E,a
12 − 1

2
JENE , (3.7)

with NE = 1
2 ∇ log

(
det
(
HE

))
. It is derived by writing the Lie bracket [ÃR2, ÃR1]

in two different ways. The main challenge in the reconstruction procedure is to
reconstruct Ã from equation (3.7), as (3.7) both depends on Ã and the unknown
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function θE . For this purpose one needs two pairs of boundary conditions that both
give rise to solutions that satisfy equation (3.7):

Ã2∇θE
i + [Ã2, Ã1] = Ã2V

E,a(i)
12 − 1

2
JENE,(i). (3.8)

Here (i) in θE
i , V E,a(i)

12 and NE,(i) indicates the respective pair of solutions that gives
rise to these functions and vector fields for i = 1, 2. Subtracting equation (3.8) with
i = 1 from the same equation with i = 2 yields

Ã2
(

∇(θE
2 − θE

1 ) − V
E,a(2)

12 + V
E,a(1)

12

)
= −1

2
JE(NE,(2) −NE,(1)). (3.9)

From (3.9) it is then possible to express the functions cos
(
θE

2 − θE
1
)

and sin
(
θE

2 − θE
1
)
,

and hence also ∇(θE
2 −θE

1 ) by the data, when taking inner products between columns
of the two R-matrices RE,(1) and RE,(2):

cos
(
θE

2 − θE
1
)

= R
E,(1)
1 ·RE,(2)

1 =
2∑

i,j=1
T

E,(1)
1i T

E,(2)
1j HE

i(2+j)

sin
(
θE

2 − θE
1
)

= R
E,(1)
2 ·RE,(2)

1 =
2∑

i,j=1
T

E,(1)
2i T

E,(2)
1j HE

i(2+j).

(3.10)

By the chain rule it follows that

∇(θE
2 − θE

1 ) = cos
(
θE

2 − θE
1
)
∇ sin

(
θE

2 − θE
1
)

− sin
(
θE

2 − θE
1
)
∇ cos

(
θE

2 − θE
1
)

so the gradient ∇(θE
2 − θE

1 ) is solely determined by entries of the TE,(i)-matrices and
the 4 × 4 matrix HE that contains all possible combinations of power density data.

3.1.1 Equations for the reconstruction procedure
Parts of this section are taken from Appendix A section 4.
For the first step in the reconstruction procedure one reconstructs Ã from equation
(3.9) and therefore needs data corresponding to m = 4 boundary conditions. By
the above analysis all quantities apart from Ã depend solely on the data. Therefore,
solving this equation for Ã boils down to solving a linear system of equations.

For the second step in the reconstruction procedure one reconstructs the angle
θE to be able to determine the vector fields SE

i = A∇ui from the entries of HE
ij =

γ∇ui · ∇uj . For this one needs data corresponding to m = 2 measurements. θE

is reconstructed by solving the following gradient equation which is deduced from
equation (3.7):

∇θE = FE , (3.11)
with

FE = V E,a
12 − Ã−2

(
1
2
JENE + [Ã2, Ã1]

)
.
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Once θE is known at at least one point on the boundary one can integrate FE

along curves originating from that point to obtain θE throughout the whole domain.
Alternatively, when assuming that θE is known along the whole boundary one can
apply the divergence operator to (3.11) and solve the following Poisson equation with
Dirichlet boundary condition:{

∆θE = ∇ · FE in Ω,
θE = θE

true on ∂Ω.
(3.12)

For the third step in the reconstruction procedure one reconstructs the determinant
(detA) from equation (3.6) requiring data from m = 2 measurements. Equation (3.6)
can be simplified further to be on the following form:

∇ log(detA) = GE ,

with

GE = cos
(
2θE

)
KE + sin

(
2θE

)
JEKE ,

KE = UEÃ(V E
11 − V E

22) + JEUEÃ(V E
12 + V E

21), and UE =
[
1 0
0 −1

]
.

Similarly as for θE , one needs to solve a gradient equation to obtain (detA) and
has the possibility of either integrating along curves or solving a Poisson equation,
assuming knowledge of γ in one point or along the whole boundary respectively. We
assume knowledge of γ along the whole boundary and solve the following Poisson
problem with Dirichlet condition:{

∆ log(detA) = ∇ ·GE in Ω,
log(detA) = log(detAtrue) on ∂Ω.

(3.13)

These steps yield the reconstruction procedure outlined in algorithm 1.

Algorithm 1 Euclidean anisotropic reconstruction procedure
Choose a set of boundary conditions (f1, f2, f3, f4) so that the corresponding solutions
satisfy condition (3.2) and (3.3)

1. Reconstruct Ã by solving equation (3.9) and using data from all four boundary
conditions above

2. Reconstruct θE by solving the boundary value problem (3.12) and using data
from the pair (f1, f2) of boundary conditions above

3. Reconstruct (detA) by solving the boundary value problem (3.13) and using
data from the pair (f1, f2) of boundary conditions above
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3.1.1.1 Simplification of the equations when the conductivity is isotropic

When the conductivity is isotropic we will denote it by σ instead of γ. In this
case Ã equals the identity which makes the first step in the reconstruction procedure
redundant. Therefore, the assumption (3.3) is redundant as well, the only requirement
on the power density data is the Jacobian constraint (3.2). We note, that for the
second step in algorithm 1 FE simplifies to:

FE = V E,a
12 − 1

2
JENE , (3.14)

while KE in the third step simplifies to:

KE = UE(V E
11 − V E

22) + JEUE(V E
12 + V E

21). (3.15)

Note also that in this case (detA) = σ so that the Poisson problem for σ reads:{
∆ log(σ) = ∇ ·GE in Ω,
log(σ) = log(σtrue) on ∂Ω.

(3.16)

The simplified reconstruction procedure for an isotropic conductivity is outlined
in algorithm 2.

Algorithm 2 Euclidean isotropic reconstruction procedure
Choose a pair of boundary conditions (f1, f2) so that the corresponding solutions
satisfy condition (3.2)

1. Reconstruct θE by solving the boundary value problem (3.12) with FE defined
in (3.14)

2. Reconstruct (detA) by solving the boundary value problem (3.16) with KE

defined in (3.15)

3.1.2 Well-posedness of the reconstruction procedure
The question is, whether one can be sure that there exists a set of boundary conditions
for which the conditions (3.2) and (3.3) are satisfied. Using a construction with
Complex Geometrical Optics (CGO) solutions it is shown in the proof of [5, Lemma
2.1] that these conditions are satisfied under the assumption that (det γ) 1

2 ∈ H5+ε(Ω)
for some ε > 0 and that the function ν is locally of class C4 over Ω. With ν defined
as

ν(x) = γ22 − γ11 − 2iγ12

γ11 + γ22 + 2 det(γ)
1
2

(x).
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Furthermore, by [5, Theorem 2.2 & Theorem 2.4] Ã and (detA) are determined
uniquely by the power density measurements H and they can be reconstructed stably
according to the following stability estimates:∥∥Ã− Ã′∥∥

L∞(X) ≤ C‖H −H ′‖W 1,∞ (3.17a)

‖log(detA) − log(detA′)‖W 1,∞(X) ≤ C‖H −H ′‖W 1,∞ , (3.17b)

Where H and H ′ correspond to power densities that are determined by γ and γ′

respectively, using the same boundary measurements (f1, f2, f3, f4).

3.1.3 Choice of the transfer matrix TE used for numerical
experiments

This is taken from Appendix B section 4.3.

The transfer matrix TE with corresponding rotation matrix RE is uniquely defined
up to a rotation. In theory, the choice of TE will not influence the reconstruction
procedure, as every choice of TE with corresponding θE will work to extract the vec-
tor fields SE

i = A∇ui from the entries of Hij = γ∇ui · ∇uj . However, numerically a
simple choice of TE can be an advantage. For this reason, we choose Gram-Schmidt
orthonormalisation to obtain the following TE , as in this case the vector fields V E

ij

have the simplified form as in (3.20):

TE =
[

(HE
11)− 1

2 0
−HE

12(HE
11)− 1

2 (DE)−1 (HE
11) 1

2 (DE)−1

]
, (3.18)

with DE = (HE
11H

E
22−H2

12) 1
2 . By the Jacobian condition (3.22), HE

11 > 0 and thus TE

is well-defined. For this choice of TE the function θE is given by the angle between
A∇u1 and the x1-axis, as in this case the first column of RE simplifies to

RE
1 = TE

11S
E
1 + TE

12S
E
2 = A∇u1

|A∇u1|
,

so that
θE = arg(A∇u1). (3.19)

In addition, the vector fields V E
ij can be written explicitly in terms of HE :

V E
11 = ∇ log

(
HE

11
)− 1

2 , V E
12 = 0,

V E
21 = −HE

11
DE

∇
(
HE

12
HE

11

)
, V E

22 = ∇ log

(
(HE

11) 1
2

DE

)
.

(3.20)



24 3 Reconstructing conductivities from power densities in the Euclidean plane

3.1.4 Knowledge of θE at the boundary
From equation (3.19) we know that θE is the angle between A∇u1 and the x1-axis
(for an isotropic conductivity this is the angle between ∇u1 and the x1-axis). As
it is assumed that the conductivity γ can be measured along the boundary, this
corresponds to knowledge of the current γ∇u1. We can decompose the current into
two parts with contribution from the unit normal n and the tangent vector t = JEn:

γ∇u1 = (γ∇u1 · n)n+ (γ∇u1 · t)t.

In the case of pure Dirichlet boundary conditions, the tangential component of γ∇u1
is known. In order to have full information of γ∇u1 along the boundary one also
needs information about the normal component corresponding to the Neumann data
γ∇u1 · n.

3.2 Different limited view settings

3.2.1 Paper A: Jacobian of solutions to the conductivity equation
in limited view

In paper A we aim at generalising theoretical results for the Jacobian of solutions
to the conductivity equation from a full view to a limited view setting. We consider
solutions u1 and u2 to the boundary value problem

−div(γ∇ui) = 0 in Ω,
ui = fi on Γ,
ui = 0 on ∂Ω\Γ.

(3.21)

Here Ω ⊂ R2 is a bounded Lipschitz domain, γ ∈ L∞(Ω,R2×2) is an anisotropic
conductivity and Γ ⊂ ∂Ω a non-empty closed part of the boundary that we can
control. We propose sufficient conditions on the boundary functions f1 and f2 so
that the corresponding solutions satisfy

det[∇u1 ∇u2] 6= 0. (3.22)

Existing results for the full view setting (e.g. [3]) cannot be applied directly, as the
mapping defined by the boundary functions (x1, x2) 7→ (u1|∂Ω, u2|∂Ω) is not injective.
However, we can adapt these results to limited view. In this context it is natural
to allow for discontinuous boundary functions. Therefore, we consider the problem
(3.21) in weighted Sobolev spaces. To obtain similar results as in [3] we then prove a
weak maximum principle for solutions to (3.21) in these weighted spaces.

As pointed out in section 3.1 the non-vanishing Jacobian is an essential assumption
for the reconstruction procedure of the conductivity from power densities. For that



3.2 Different limited view settings 25

purpose we supplement the theoretical result with numerical examples on a choice
of boundary functions (f1, f2) that yield power density data from which an isotropic
conductivity σ is reconstructed.

3.2.1.1 Theoretical results

Throughout the paper we assume that the conductivity matrix γ is symmetric and
satisfies for some λ,Λ > 0 the ellipticity condition

λ|ξ|2 ≤ γξ · ξ ≤ Λ|ξ|2 for a.e. x ∈ Ω and all ξ ∈ R2. (3.23)

We want to prescribe discontinuous boundary functions ui|∂Ω that are piecewise
C1 and hence they are also in Hs(∂Ω) when s < 1

2 . The corresponding solutions ui to
the boundary value problem (3.21) are then in the weighted space H1(Ω, d1−2s) (see
Thm. 2.5 in Appendix A). Therefore, we limit ourselves to work with these weighted
spaces, where H1(Ω, d1−2s) is the space of all ui ∈ L2

loc(Ω) with ‖ui‖H1(Ω,d1−2s) < ∞,
where the norm is defined as:

‖ui‖L2(Ω,d1−2s) =
∥∥∥uid

1−2s
2

∥∥∥
L2(Ω)

,

‖ui‖H1(Ω,d1−2s) = ‖ui‖L2(Ω,d1−2s) + ‖∇ui‖L2(Ω,d1−2s).

For these solutions we prove a weak maximum principle when
∣∣s− 1

2
∣∣ < ε so that

we can use a similar approach as in [3] to relate the number of critical points of ui

to the oscillations of ui at the boundary. This result can be used to obtain the non-
vanishing Jacobian condition (3.22).

Main result
In order to proscribe any zeros of the Jacobian, we use an existing result in the

literature. This gives a lower bound for the number of oscillations of u at the boundary
induced by a single critical point in the interior. For this result γ is required to be
C0,α(Ω). To arrive at the lower bound we use that the solution u oscillates locally
around a critical point x0. In fact, there are at least two regions around x0 for
which u is larger than u(x0) and at least two regions for which u is smaller than
u(x0) in alternating order around x0 (see Prop. 2.1 Appendix A). By the weak
maximum principle this local behavior translates to the boundary. One can then
prevent existence of an interior critical point by prescribing a boundary function that
has at most one nonincreasing part and at most one nondecreasing part along the
boundary.

The same approach can be used to prevent existence of a point for which the Jaco-
bian is zero. If such a point x(1) exists, this implies that there is a linear combination
between ∇u1 and ∇u2 at x(1) so that

α1∇u1(x(1)) + α2∇u2(x(1)) = 0,
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for some α1, α2 ∈ R2\{0}. This corresponds to a critical point of the following
function u:

u = α1u1 + α2u2.

By the above observation this function has no interior critical points and hence the
Jacobian is non-vanishing, when it has at most one nonincreasing and at most one
nondecreasing part at the boundary for arbitrary α1, α2 ∈ R2\{0}.

In order to satisfy the above condition on nonincreasing and nondecreasing parts
on the boundary, one needs to pick suitable boundary functions f1 and f2. For that
purpose we parameterise Γ as the closed arc Γ = β([0, ℓ]) in ∂Ω. We then consider
the regular curve η : [0, ℓ] → R2, η(t) = (f1(β(t)), f2(β(t))), and consider the winding
number of η̇ (when the curve is closed). However, as the winding number is only
defined for closed curves, we consider a generalised definition for non-closed curves:

Ind(η̇) = arg(η̇(ℓ)) − arg(η̇(0))
2π

.

We then use the following parameterisation of u on Γ:

g(t) = u(β(t)) = α · η(t), (3.24)

with α = (α1, α2) ∈ R2\{0}. We extend g by zero to [0, 2π). Following this definition
its derivative satisfies

g(t) = α · η̇(t). (3.25)

This yields the main result (corresponding Theorem 2.2 in Appendix A) with the
following two sufficient conditions on f1 and f2 for which (a) is related to continuous
boundary conditions, while (b) concerns discontinuous boundary conditions:

Theorem 3.1 Let Ω ⊂ R2 be a bounded simply connected domain with C1 boundary
curve β : [0, 2π] → ∂Ω, and let γ ∈ C0,α(Ω;R2×2) satisfy (3.23). Let Γ = β([0, ℓ]) be
a closed arc in ∂Ω. Let f1, f2 ∈ C1(Γ) be linearly independent‚ and assume that ui is
the unique solution of 

−div(γ∇ui) = 0 in Ω,
ui = fi on Γ
ui = 0 on ∂Ω\Γ.

(3.26)

Assume that the curve η : [0, ℓ] → R2, η(t) = (f1(β(t)), f2(β(t))) is regular, arg(η̇(t))
is monotone, and that one of the following holds:

(a) ui|∂Ω are continuous, and |Ind(η̇)| ≤ 1; or

(b) ui|∂Ω are continuous at η(0), and |Ind(η̇)| ≤ 1/2.

Then det[∇u1(x) ∇u2(x)] 6= 0 for all x ∈ Ω.
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(a) Idea of the proof: As |Ind(η̇)| is at most 1, the vectors α and η̇(t) in the
expression for g′ in (3.25) can be orthogonal at most twice (or three times,
when they are orthogonal at the endpoints of Γ). Therefore g as defined in
(3.24) has at most two local extremum points in the interior of Γ.

(b) Idea of the proof: As |Ind(η̇)| is at most 1
2 , the vectors α and η̇(t) can be or-

thogonal at most once (or two times, when they are orthogonal at the endpoints
of Γ). Therefore g has at most one local extremum point in the interior of Γ,
while an additional extremum point can appear at the discontinuity t = ℓ.

In all cases g and thus u|∂Ω has at most one nonincreasing and one nondecreasing
part so that the Jacobian in the interior of Ω is non-vanishing. Examples of pairs of
functions (f1, f2) that yield (u1|∂Ω, u2|∂Ω) which satisfy condition (a) and (b) respec-
tively in the main result for Ω being the unit disk are illustrated in figure 3.1. The
explicit expressions are given by:(

f
(a)
1 (t), f (a)

2 (t)
)

= (cos(2t) − 1, sin(2t)) , (3.27a)(
f

(b)
1 (t), f (b)

2 (t)
)

=
(

cos(t) − 1, sin
(

5
4
t

))
, (3.27b)

The assumptions on Ind(η̇(t)) and arg(η̇(t)) for these functions are investigated
in figure 3.2. The index is given by:

Ind(η̇(a)(t)) = 1, Ind(η̇(b)(t)) = 1
2
,

and from figure 3.2(b) we see that in both cases the argument of η̇ is monotonic in-
creasing. Hence, each of the pair of functions satisfies the respective assumptions in
condition (a) and (b), so that both pairs of boundary functions yield a non-vanishing
Jacobian in the interior of Ω.

Weak maximum principle
We did not find a weak maximum principle for weighted Sobolev spaces in the

literature, as the classical weak maximum principles only apply for H1-solutions to
(3.21) (see e.g. [6, Thm. 8.20] or [4, Thm. 8.1]). For that purpose, we include a proof
in paper A. For the proof we need the following ingredients:

• The fact that the set C∞(Ω) is dense in H1(Ω, d1−2s)

• A definition of the trace space of H1(Ω, d1−2s) in terms of a Sobolev space on
∂Ω (see Thm. 3.2 in Appendix A)

• The Hardy inequality that gives an estimate of
∥∥∥d 1−2s

2 −1u
∥∥∥

L2(Ω)
with respect

to
∥∥∥d 1−2s

2 ∇u
∥∥∥

L2(Ω)
(see Lemma 3.3 in Appendix A)
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Figure 3.1: Two pairs of functions (f1, f2) that yield (u1|∂Ω, u2|∂Ω) which are exam-
ples of functions that satisfy condition (a) and (b) respectively in the main result. In
this case ℓ = π

(a) Illustration of Ind(η̇(t)) (b) Illustration of arg(η̇(t))

Figure 3.2: Illustration of how the functions in figure 3.1 satisfy the assumptions
on Ind(η̇(t)) and arg(η̇(t)) in the main result

• The facts that u ∈ H1(Ω, d1−2s) implies u± = max{±u, 0} ∈ H1(Ω, d1−2s), the
weak derivatives satisfy ∇u± = ∇uχu±>0 and T (u±) = (Tu)± (see Lemma 3.7
in Appendix A)
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The proof of the weak maximum principle then follows the standard approach that if
Tu ≤ 0 a.e. on ∂Ω then ∇u+ = 0, which implies that u+ = 0, and therefore u = u−
a.e. in Ω. The main difficulty for weighted Sobolev spaces compared to classical
Sobolev spaces is that for the bilinear form more terms appear due to the weighting
by d1−2s. To prove the desired result we in particular need the Hardy inequality
to deduce from the bilinear form that ∇u+ = 0. This only works when s satisfies∣∣s− 1

2
∣∣ < ε and ε is small enough.

3.2.1.2 Numerical examples

The Python code to generate the numerical examples in paper A can be found on
GitLab: https://lab.compute.dtu.dk/hjsc/jacobian-of-solutions-to-the-
conductivity-equation-in-limited-view.git.

We want to illustrate numerically how two boundary conditions can be selected so
that the non-vanishing Jacobian condition (3.22) for corresponding solutions is satis-
fied in accordance with the main result. We then choose the order of the corresponding
solutions so that det[∇u1 ∇u2] > 0. As we restrict ourselves to reconstruction of an
isotropic conductivity this is the only relevant assumption on the power density data
in the reconstruction approach in section 3.1, since the condition (3.3) only applies for
anisotropic conductivities. We implemented the reconstruction approach as outlined
in algorithm 2 in Python and use FEniCS to solve the PDEs.

We use a fine mesh Ndata = 79281 nodes to generate our power density data and
a coarser mesh Nrecon = 50845 nodes to address the reconstruction problem. We
consider the domain Ω to be the unit disk: Ω = B(0, 1) and the conductivity σ to
have the following coordinate expression:

σ(x1, x2) =


2
(
x1 + 1

2
)2 + (x2)2 ≤ 0.32,

2 (x1)2 +
(
x2 + 1

2
)2 ≤ 0.12,

2
(
x1 − 1

2
)2 +

(
x2 − 1

2
)2 ≤ 0.12,

1 otherwise,

(3.28)

for (x1, x2) ∈ Ω. Figure 3.4(a) illustrates the conductivity and figure 3.4(b) illustrates
different sizes of the boundary of control, Γ, used for reconstruction. As Γmedium cor-
responds to the support of the boundary functions defined in (3.27) we can use these
functions as boundary conditions for this size of Γ, as we know they satisfy condition
(a) and (b) in the main result respectively. As we obtain similar reconstruction per-
formance for both pairs of boundary functions when there is no noise in the data, we
restrict ourselves to use the discontinuous functions here. For the other sizes of Γ we
extend and shrink these boundary functions, while maintaining their shape and num-
ber of oscillations. This yields the following different pairs of discontinuous boundary
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functions:

(f1(t), f2(t)) =


(cos(4t) − 1, sin(5t)) for Γsmall = {t ∈

[
0, π

4
]
}(

cos (t) − 1, sin
( 5t

4
))

for Γmedium = {t ∈ [0, π]}(
cos
( 4t

7
)

− 1, sin
( 5t

7
))

for Γlarge =
{
t ∈
[
0, 7π

4
]}
.

(3.29)

The corresponding functions ui|∂Ω extended by zero along the whole boundary are
illustrated in figure 3.3.

Figure 3.3: The discontinuous boundary functions u1|∂Ω and u2|∂Ω used for the
reconstruction procedure for Γsmall, Γmedium and Γlarge (top to bottom)

The reconstructions of σ for these choices of Γ are shown in figure 3.5 with corre-
sponding relative errors in table 3.1. We see that in regions close to the boundary of
control the reconstructed values of σ are close to the true values. This is especially
evident from the three red circular features; for Γlarge all features are reconstructed
well, as they are located closer to Γ than ∂Ω\Γ. For Γmedium this is only the case for
half of the features; in fact half of the large circular feature close to Γ is captured well,
while for the other half the reconstructed values are too small, as this half is located
closer to the boundary ∂Ω\Γ. In the case of Γsmall most of the features are located
further towards ∂Ω\Γ than Γ, so that all reconstructed values are way smaller than
the true values. In general, we therefore see that the quality of the reconstruction
decreases with decreasing size of Γ. Note that the decrease in quality of the recon-
struction towards ∂Ω\Γ might be explained by the fact that the Jacobian constraint
is violated on this part of the boundary. Here the gradients ∇u1 and ∇u2 are parallel
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to the unit normal following from the zero Dirichlet condition on this part of the
boundary. Therefore, close to this part of the boundary the values of the Jacobian
will be small and less reliable.

(a) True σ

Γlarge

Γmedium

Γsmall

π
8

π
4

3π
8

5π
8

3π
4

7π
8

(b) Different Γ

Figure 3.4: Conductivity and different sizes of Γ used for the reconstruction proce-
dure.

Table 3.1: Relative L2 errors on the reconstructions of σ

Γlarge Γmedium Γsmall

Relative L2 error σ 15.0% 39.9% 56.4%

Γlarge Γmedium Γsmall

Figure 3.5: Reconstructions of σ for varying sizes of Γ as in Figure 3.4(b).
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3.2.1.3 Conclusion

We presented sufficient conditions on two boundary functions so that the correspond-
ing solutions to the conductivity equation satisfy a non-vanishing Jacobian constraint
in limited view. This approach allows for boundary functions that have discontinu-
ities. This is relevant both in limited view and in full view settings, as these conditions
and the use of discontinuous boundary functions apply for both settings.

Numerical examples showed that this approach can be used to select boundary
conditions for reconstruction of the conductivity from power densities. Here the
quality of the reconstruction is good close to the boundary of control. However,
towards the boundary with zero Dirichlet condition the reconstructed values were
too small.

3.2.2 Paper B: Conductivity reconstruction from power density
data in limited view

In paper B we address existence of boundary conditions so that the corresponding
Jacobian is positive. This is a generalisation from a full view to a limited view setting.
We consider solutions u1, . . . , ud to the boundary value problem

Lui = −div(σ∇ui) = 0 in Ω,
ui = fi on Γ,
Lνui = σ∂νui = 0 on ∂Ω\Γ,

(3.30)

where ν denotes the unit outward normal to ∂Ω. Here Ω ⊂ Rd, d = 2, 3 is a bounded
Lipschitz domain and Γ ⊂ ∂Ω a non-empty open part of the boundary that we can
control. σ is an isotropic conductivity that satisfies σ ∈ L∞

+ (Ω), i.e. there exists
λ ∈ (0, 1) such that λ ≤ σ ≤ λ−1. If d = 3 we further assume that σ is Lipschitz on Ω.
We prove a result on existence of a finite number of boundary conditions f1, . . . , fd

so that locally the corresponding solutions satisfy the Jacobian constraint

det[∇u1 · · · ∇ud] ≥ δ > 0, (3.31)

for some δ > 0. For the proof, we use the Runge approximation approach; this is a
generalisation of the proof in [1, section 7.3].

The theoretical findings are supplemented with numerical examples for the case
d = 2. Instead of repeating the numerical examples for the same numerical set up as
in Appendix B, we use the set up as in paper A. This allows to compare how the two
different limited view settings affect the Jacobian and reconstruction performance in
section 3.2.3.

3.2.2.1 Theoretical results

We aim at proving existence of a finite number of boundary conditions so that the Ja-
cobian constraint (3.31) is satisfied locally. In order to address this problem in higher
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dimensions than two, we use the Runge approximation property. For our main result
we prove that the operator L in (3.30) satisfies the Runge approximation property.
Using this property, we can construct solutions to the boundary value problem (3.30)
which approximate xi in a given ball inside the domain. We then cover the domain
Ω with a finite number of these balls and enforce the Jacobian constraint globally.

Runge approximation property
We say that L satisfies the Runge approximation property if for any simply connected
Lipschitz domain Ω′ ⋐ Ω and any u ∈ H1(Ω′) such that Lu = 0 in Ω′ there exists a
sequence un ∈ H1(Ω) such that

(a) Lun = 0 in Ω,

(b) un|Ω′ → u in L2(Ω′).

We prove our first important result (see Theorem 2.2 in Appendix B): L satisfies
the Runge Approximation property with the sequences (un) satisfying the boundary
restriction Lνun = 0 on ∂Ω\Γ for all n ∈ N.
Outline of the proof:

• If this was not true, by the Hahn-Banach theorem there would exist a u and a
functional g ∈ L2(Ω′) such that (g, u)L2(Ω′) 6= 0 and (g, v)L2(Ω′) = 0 for all v

• It is well known that L and Lν have the unique continuation property

• This property implies that the solution to the BVP
Lw = g in Ω,
w = 0 on Γ,
Lνw = 0 on ∂Ω\Γ,

satisfies w = 0 and Lνw = 0 on ∂Ω′

• This implies (g, u)L2(Ω′) = 0; a contradiction

Solutions to (3.30) that approximate xj in balls inside Ω
We want to construct solutions to (3.30) that approximate xj and their gradients re-
spectively in given balls inside Ω. This is motivated by the fact that for the coordinate
functions it is known that the Jacobian constraint is satisfied: det[∇x1 · · · ∇xd] = 1.

The first result follows by using Schauder estimates, the Sobolev embedding the-
orem, standard elliptic theory, and the Runge approximation property (see Lemma
2.3 in Appendix B). Here we assume that σ is Lipschitz, Ω′ ⋐ Ω, x0 ∈ Ω′ and
s ∈ (0,dist(Ω′, ∂Ω)). We then consider u0 ∈ C1,α with α ∈ (0, 1) that solves

−∆u0 = 0, in B(x0, s).

The result reads:
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• For any δ > 0 we can find a radius r ∈ (0, s) and a solution ux0,δ ∈ H1(Ω) to
Lux0,δ = 0 in Ω and Lνux0,δ = 0 on ∂Ω\Γ such that ux0,δ approximates u0:

‖ux0,δ − u0‖
C1(B(x0,r)) ≤ δ.

The second result follows immediately (see Corollary 2.4 in Appendix B):

• For any δ > 0 and v ∈ Rd we can find a radius r ∈ (0, 1) with B(x0, r) ⊂ Ω′

and a solution ux0,δ ∈ H1(Ω) to Lux0,δ = 0 in Ω and Lνux0,δ = 0 on ∂Ω\Γ such
that ∇ux0,δ approximates v:

‖∇ux0,δ − v‖C0(B(x0,r)) ≤ δ. (3.32)

Covering Ω with a finite number of balls in which the Jacobian constraint
is satisfied
We want to show that it follows by the previous result that Ω can be covered by a
finite number of balls in which there is a positive lower bound for the Jacobian.

For the result we assume that σ is Lipschitz in Ω and consider any compactly
embedded domain Ω′ ⋐ Ω. Our result reads (see Theorem 3.1 in Appendix B):

• There exists a finite set of boundary conditions {ϕj}Md
j=1 with corresponding

solutions {uj}Md
j=1 to (3.30), such that at any point x0 ∈ Ω′ there is an open

neighborhood Vx0 of x0 and a subset {un1 , . . . , und
} satisfying

det [∇un1(x) · · · und
(x)] ≥ 1

2
, for all x ∈ Vx0 .

Idea of the proof:

• Using the previous result in (3.32) for each x0 ∈ Ω′ we can find approximating
solutions ũj to xj and by fixing δ sufficiently small we can guarantee that

|det[∇ũ1 · · · ∇ũd] − det[e1 · · · ed]| < 1
2

• By the reverse triangle inequality it follows: |det[∇ũ1 · · · ∇ũd]| > 1
2

• By the compact embedding Ω′ ⋐ Ω there exists a finite subcover {B(xm, rm)}M
m=1

of Ω′ yielding the Md boundary conditions

3.2.2.2 Numerical examples

The Python code to generate the numerical examples in paper B can be found on
GitLab: https://lab.compute.dtu.dk/hjsc/conductivity-reconstruction-
from-power-density-data-in-limited-view.git.
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We illustrate numerically how an isotropic conductivity can be reconstructed from
power density data in dimension d = 2. Here we restrict ourselves to two boundary
conditions. We use the same implementation in Python of the reconstruction ap-
proach as in paper A. This is based on a simplified version of the reconstruction
procedure in section 3.1 as outlined in algorithm 2.

We use the same numerical set up as in paper A: A fine mesh with Ndata = 79281
nodes to generate our power density data and a coarser mesh with Nrecon = 50845
nodes to address the reconstruction problem. We consider the domain Ω to be the
unit disk: Ω = B(0, 1). For the conductivity σ we also consider the coordinate
expression (3.28) as in paper A. Figure 3.6(a) illustrates the conductivity and figure
3.6(b) illustrates different sizes of the boundary of control, Γ, used for reconstruction.
Motivated by the theoretical analysis for Dirichlet boundary conditions in a limited
view setting in paper A, we use the boundary functions defined in (3.29).

The reconstructions of σ for these choices of Γ are shown in figure 3.7 with corre-
sponding relative errors in table 3.2. Similar to the analysis in section 3.2.1.2 we see
that in regions close to the boundary of control the reconstructed values of σ are close
to the true values. Reconstructed values closer to ∂Ω\Γ are too large. Especially for
Γsmall the reconstructed values in the circular features towards ∂Ω\Γ are way too
large: 5.0 instead of 2.0. Note that the decrease in quality of the reconstruction
towards ∂Ω\Γ similar to paper A can be explained by the fact that the Jacobian
constraint is violated on this part of the boundary. Here the gradients ∇u1 and ∇u2
are parallel to the tangent vector along the boundary following from the no-flux con-
dition on this part of the boundary. Therefore, close to this part of the boundary the
values of the Jacobian will be small and less reliable.

We notice that there are small artifacts along the part of the boundary ∂Ω\Γ for
all sizes of Γ. This phenomenon was already observed for the numerical examples in
Appendix B in figure 6. However, in contrast to the reconstructions in the Appendix
B, the artifacts in figure 3.7 are way smaller. This is due the mesh refinement, as for
this experiment we use the same meshes as used for paper A. It was already mentioned
and observed (see figure 9, Appendix B) that the mesh size had large influence on
the magnitude of the artifacts.

Table 3.2: Relative L2 errors on the reconstructions of σ

Γlarge Γmedium Γsmall

Relative L2 error σ 22.4% 72.9% 120%

3.2.2.3 Conclusion

We presented a result on existence of a finite number of boundary conditions so that
the corresponding Jacobian is locally positive. This holds for a limited view setting
in two or three dimensions. In two dimensions we included numerical examples for
reconstruction of the conductivity from power densities from two fixed boundary
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(a) True σ

Γlarge

Γmedium

Γsmall
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(b) Different Γ

Figure 3.6: Conductivity and different sizes of Γ used for the reconstruction proce-
dure.

Γlarge Γmedium Γsmall

Figure 3.7: Reconstructions of σ for varying sizes of Γ as in Figure 3.6(b).

conditions. Here the quality of the reconstruction is good towards the boundary of
control. However, towards the boundary with the no-flux condition the reconstructed
values are too large.

3.2.3 Comments on numerical performance of the different
limited view settings in paper A and paper B

As we conducted numerical experiments on two different limited view settings, it
seems natural to address how the different settings affected the quality of the recon-
structions. We want to emphasize that we cannot compare performance directly, as
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the solutions to the PDEs are different and yield different power density data. Further-
more, for the experiments in paper A we have theoretical foundation for the choice of
boundary functions and it is not clear whether this translates to mixed boundary con-
ditions. However, numerical investigations with different boundary conditions gave
very similar results in paper B. For instance, the choice of boundary functions defined
in (3.29) and the coordinate functions (x1, x2) yielded very similar reconstructions.

For both settings it is clear that the quality of the reconstruction is worse towards
the part of the boundary that cannot be controlled. In case of pure Dirichlet condi-
tions the reconstructed values here are too small, while in case of mixed Dirichlet and
Neumann conditions the reconstructed values are too large. The deviation from the
true values is even larger for the mixed conditions which results in way higher relative
errors than the Dirichlet conditions as can be seen from table 3.1 and 3.2. A physical
explanation to this phenomenon might be that the no-flux condition prevents energy
to exit on this part of the boundary and thus has a damming effect yielding higher
values towards this part of the boundary. On the contrary, by the zero Dirichlet
condition values are forced to be small towards this part of the boundary.

3.2.4 Thoughts on a limited view setting with pure Neumann
boundary conditions

An interesting question is, whether the approach of posing sufficient conditions on a
pair of boundary functions yields a non-vanishing Jacobian in a limited view setting
with Neumann boundary conditions. Consider the following limited view setting:
There is a part of the boundary Γ that can be controlled by a non-zero Neumann
condition, while on the remaining boundary there is a no-flux condition:

−div(γ∇ui) = 0 in Ω,
γ∇ui · n = fi on Γ,
γ∇ui · n = 0 on ∂Ω\Γ.

(3.33)

Here Ω ⊂ R2 is a bounded Lipschitz domain, γ ∈ L∞(Ω,R2×2) is an anisotropic
conductivity, Γ ⊂ ∂Ω a non-empty closed part of the boundary that we can control
and n is the unit outward normal. For H− 1

2 (∂Ω) boundary functions it is known that
the boundary functions should have at most one nonpositive and one nonnegative
part along the boundary in order to prevent existence of a critical point [2, Thm.
2.8]. Similar to the Dirichlet case one can then prevent existence of a point x0 for
which the Jacobian vanishes:

det[∇u1(x0) ∇u2(x0)] = 0.

This is accomplished by ensuring that any linear combination of a pair of boundary
functions (u1|∂Ω, u2|∂Ω) satisfies that there is at most one nonpositive and at most one
nonnegative part along the boundary. Assuming that fi ∈ C1(Γ) yields that ui|∂Ω
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are piecewise smooth functions and hence in L2(∂Ω) and H− 1
2 (∂Ω). By the zero

Dirichlet condition on ∂Ω\Γ in the limited view setting for paper A, the boundary
functions in this paper are aligned with respect to the function value zero. Therefore,
the number of nonincreasing and nondecreasing parts and the number of nonpositive
and nonnegative parts coincide. This indicates that one can use the same sufficient
conditions on the boundary conditions for the Neumann case as for the Dirichlet case.
To repeat the proof in the Neumann case one then needs to replace Proposition 2.1
Appendix A with [2, Thm. 2.8] in the Neumann case to obtain a contradiction.
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CHAPTER4
Reconstructing

conductivities from
power densities on 2D
Riemannian manifolds

In this chapter we aim at reconstructing an anisotropic conductivity from power den-
sities on a two-dimensional Riemannian manifold. The natural setting here is an
electrically conductive compact Riemannian manifold with a smooth boundary. In
the reconstruction procedure the solutions to the conductivity equation play a central
role. For that purpose we show existence and uniqueness of the solutions in the first
section. In the second section we generalise the reconstruction formula in section 3.1
from Euclidean space to certain types of geometries. In the third section we find a
shortcut between Euclidean space and general 2D Riemannian manifolds that allows
us to use the Euclidean reconstruction procedure. This setting was the basis for paper
C, Reconstructing anisotropic conductivities on two-dimensional Riemannian mani-
folds from power densities. Therefore, section three is based on and summarises this
paper. Finally, in section four we discuss further research ideas related to this work.

Throughout this chapter we consider the following setting, which is taken from
section 1 in Appendix C:

Let (M, g) denote the mentioned compact Riemannian manifold with smooth
boundary ∂M and genus zero. An electrical conductivity on M is modelled by a –
generally anisotropic – (1, 1) tensor field γ, which is self-adjoint and uniformly elliptic
with respect to g, i.e. for some κ > 1 and for all tangent vectors v and w:

g(γ(v), w) = g(v, γ(w)) and κ−1 |v|2M ≤ g(γ(v), v) ≤ κ |v|2M . (4.1)

On the boundary ∂M we prescribe an electrostatic potential f that generates an
interior voltage potential u. In the absence of interior sinks and sources, u ∈ H1(M)
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is characterised as the unique solution to the boundary value problem{
divM (γ gradM (u)) = 0 in M,

u = f on ∂M.
(4.2)

The interior current field is γ gradM (u) , i.e. γ is the tensor turning the electric field
gradM (u) into the current field. By considering m different boundary functions
f = fi, 1 ≤ i ≤ m, the corresponding solutions to equation (4.2) are denoted by ui.
They define the so-called power density (m×m)-matrix H with elements:

HM
ij = HM

ji = g(γ gradM (ui) , gradM (uj)) for 1 ≤ i, j ≤ m. (4.3)

For the reconstruction procedure to work, we need the following two conditions on
the power density matrix HM :

min(det(gradM u1, gradM u2),det(gradM u3, gradM u4)) ≥ c0 > 0 for every x ∈ M,

(4.4)

gradM

(
log
(

det(gradM u1, gradM u2)
det(gradM u3, gradM u4)

))
6= 0 for every x ∈ M.

(4.5)

4.1 Existence and uniqueness of solutions to the
conductivity equation

Let u ∈ H1
0 (M) be a weak solution that solves the following Dirichlet problem{

−divM (γ gradM (u)) = h in M,

u = 0 on ∂M,
(4.6)

with h ∈ H−1(M). As γ is positive definite, we can in each tangent space define A
as A2(x) = γ(x). By definition the weak solution u satisfies the variational equation

−
∫

M

div(γ gradM (u))v dV =
∫

M

hv dV

for any test function v ∈ H1
0 (M). It follows from integration by parts (see e.g. [12,

Eq. (2.20)]) that this equation can be rewritten as:∫
M

g(γ gradM (u) , gradM (v)) dV =
∫

M

hv dV

From the equation above we introduce the bilinear form B[u, v]:

B[u, v] =
∫

M

g(γ gradM (u) , gradM (v)) dV,
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and the linear functional H:
Hv =

∫
M

hv dV,

with H ∈ H−1(M), so that H is a bounded linear functional on H1
0 (M). The bilinear

form is symmetric, as it satisfies B[u, v] = B[v, u]. In the following we want to show
that it is continuous. We use the Schwarz inequality (see e.g. [7, p. 141]) and the
upper bound for the uniform ellipticity condition:

|B[u, v]| =
∣∣∣∣∫

M

g(γ gradM (u) , gradM (v)) dV
∣∣∣∣

=
∣∣∣∣∫

M

g(A gradM (u) , A gradM (v)) dV
∣∣∣∣

≤
(∫

M

|A gradM (u)|2g dV
) 1

2
(∫

M

|A gradM (v)|2g dV
) 1

2

=
(∫

M

g(γ gradM (u) , gradM (u)) dV
) 1

2
(∫

M

g(γ gradM (v) , gradM (v)) dV
) 1

2

≤ κ‖gradM (u)‖L2(M)‖gradM (v)‖L2(M)

≤ κ‖u‖H1
0 (M)‖v‖H1

0 (M).

By the Poincaré inequality (see e.g. [8, Theorem p.28]) there exists a constant Cp > 0
so that

‖u‖L2(M) ≤ Cp‖gradM (u)‖L2(M),

for u ∈ H1
0 (M). It then follows that

‖u‖2
H1

0 (M) = ‖u‖2
L2(M) + ‖gradM (u)‖2

L2(M) ≤ (C2
p + 1)‖gradM (u)‖2

L2(M).

Using this inequality and the lower bound from the uniform ellipticity condition, we
can prove that B is coercive:

B[u, u] =
∫

M

g(γ gradM (u) , gradM (u)) dV ≥ 1
κ

‖gradM (u)‖2
L2(M) ≥ 1

κ(C2
p + 1)

‖u‖2
H1

0 (M).

By the Lax-Milgram Theorem (see e.g. [9, Theorem 6.39]) it now follows that there
exists a unique solution u ∈ H1

0 (M) to the variational problem

B[u, v] = Hv,

for all v ∈ H1
0 (M). Furthermore, the following stability estimate holds:

‖u‖H1
0 (M) ≤ κ(C2

p + 1)‖H‖H−1(M).

Following the existence, uniqueness and stability of the solution u ∈ H1
0 (M) to (4.6),

we can prove the same for u ∈ H1(M) that solves (4.2). Consider w = u− f̃ , where
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f̃ ∈ H1(M) is the extension of f from ∂M to M . Now w solves the boundary value
problem {

−divM (γ gradM (w)) = hw in M,

w = 0 on ∂M,

with hw = div(γ gradM

(
f̃
)
) ∈ H−1(M). This expression plays the same role as

h ∈ H−1(M) in the boundary value problem (4.6), so by the previous derivations
it follows that w ∈ H1

0 (M) solves the problem above uniquely with the stability
estimate ‖w‖H1

0 (M) ≤ κ(C2
p + 1)‖Hw‖H−1(M). This implies that u = w + f̃ ∈ H1(M)

is a unique solution to (4.2). Furthermore, by using the same tricks as for showing
continuity of the bilinear form above, we can obtain an estimate for ‖Hw‖H−1(M) in
terms of f̃ :

|Hwv| =
∣∣∣∣∫

M

div(γ gradM

(
f̃
)
)v dV

∣∣∣∣
=
∣∣∣∣−∫

M

g(γ gradM (u) , gradM (v)) dV
∣∣∣∣

≤ κ
∥∥f̃∥∥

H1(M)‖v‖H1
0 (M),

for all v ∈ H1
0 (M). Hence, we have the estimate for ‖w‖H1

0 (M):

‖w‖H1
0 (M) ≤ κ(C2

p + 1)‖Hw‖H−1(M) ≤ κ2(C2
p + 1)

∥∥f̃∥∥
H1(M).

Yielding the following estimate for ‖u‖H1(M):

‖u‖H1(M) =
∥∥w + f̃

∥∥
H1(M) ≤ ‖w‖H1(M) +

∥∥f̃∥∥
H1(M) ≤ (κ2(C2

p + 1) + 1)
∥∥f̃∥∥

H1(M).

4.2 Generalising the reconstruction approach in
Euclidean space to (M, g)

4.2.1 Generalising the important equations to the manifold
In the Euclidean case equation (3.6) and (3.7) are the basis for the reconstruction
procedure. In the following we transfer these formulas to the manifold.

Equation (3.6) is derived based on the fact that ∇ · (JA−1Si) = 0. A similar version
of this equation holds on M :

divM

(
JMA−1SM

i

)
= 0,

with the rotational operator JM defined as

JM = 1√
detG

[
−G12 −G22
G11 G12

]
. (4.7)
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The Jacobian constraint (4.4) yields:

min
(
det HM

) 1
2 = min

(√
detGdet

(
SM

1 , SM
2
))

≥ c0 > 0, (4.8)

which guarantees invertibility of HM . Based on the fact that divM

(
JMA−1SM

i

)
vanishes on M we can then derive a similar version of equation (3.6):

gradM (log(detA)) = NM +
2∑

p,q=1
g(gradM

(
HM,qp

)
, Ã SM

p )Ã−1 SM
q , (4.9)

with NM = 1
2 gradM

(
log
(
detHM

))
. For the second equation in the reconstruction

procedure we orthonormalise SM = (SM
1 , SM

2 ) into a SO(2)-valued frame RM =
(RM

1 , RM
2 ) by finding TM , such that RM = SM (TM )T . We parameterise the rota-

tional operator RM by an angle function θM :

RM = 1√
detG

[
cos
(
θM
)√

detG− sin
(
θM
)
G12 − sin

(
θM
)
G22

sin
(
θM
)
G11 cos

(
θM
)√

detG+ sin
(
θM
)
G12

]
,

(4.10)
which rotates a vector by θM degrees in positive direction and maintains its length
with respect to g. We note that RM satisfies the requirements for a rotation matrix

detRM = 1 and g
(
RMv,RMw

)
= g(v, w) for all v, w ∈ TpM.

The transfer matrix TM gives rise to the four vector fields V M
ij and hence V M,a

ij :

V M
ij =

2∑
k=1

gradM

(
TM

ik

)
TM,kj , 1 ≤ i, j ≤ 2, V M,a

ij = 1
2

(V M
ij − V M

ji ). (4.11)

By using the same approach as in the Euclidean case and writing the Lie bracket
[ÃRM

2 , ÃRM
1 ] in two different ways, we obtain the following equation corresponding

to a generalised version of equation (3.7):

U +
[
Ã2, Ã1

]
= PC + 1

2
PV + 1

2
Pg − 1

2
√

detGJMNM , (4.12)

with

U =
2∑

i,j,k,ℓ=1

ÃijÃkℓ

((
RM

)j

2 ∂i

(
RM

)ℓ

1 −
(
RM

)j

1)∂i

(
RM

)ℓ

2

)
ek,

PC = (Γ1
21 + Γ2

22)e1 − (Γ1
11 + Γ2

12)e2,

PV =
2∑

p,m,q=1

[
−g
(
V M

2p , ÃR
M
p

)
ÃRM

1 + g
(
V M

1p , ÃR
M
p

)
ÃRM

2

+g
(
V M

mqG
mpGq2, ÃR

M
p

)
ÃRM

1 − g
(
V M

mqG
mpGq1, ÃR

M
p

)
ÃRM

2

]
,

Pg =
2∑

q,p=1

[
g
(

gradM (Gqp)Gq2, ÃR
M
p

)
ÃRM

1 − g
(

gradM (Gqp)Gq1, ÃR
M
p

)
ÃRM

2

]
.
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4.2.2 Feasibility of reconstruction approaches on (M, g)
The challenge for the reconstruction approach is to reconstruct Ã from equation
(4.12), as this formula both depends on the unknown normalised anisotropy Ã and
the unknown function θM . In comparison to the Euclidean case there are now several
occurrences of θM instead of one term that only depends on ∇θM . To simplify the
problem, we consider three different types of manifolds:

• A conformal manifold (referred to as the conformal case), where

G(x) = ρ2(x)
[
1 0
0 1

]
.

• A manifold, where the metric is diagonal (referred to as the diagonal case):

G(x) =
[
G11(x) 0

0 G22(x)

]
,

where G11(x) 6= G22(x).

• A general manifold, where the metric takes its general form (referred to as the
general case):

G(x) =
[
G11(x) G12(x)
G12(x) G22(x)

]
,

where Gij(x) does not vanish on M for 1 ≤ i, j ≤ 2 and the three functions are
differing from each other: G11(x) 6= G22(x) and G11(x) 6= G12(x).

In the following we address feasibility of an reconstruction approach for Ã. For that
purpose we parameterise it by functions λ and µ and take into account that Ã is
self-adjoint and has determinant 1:

Ã(λ, µ) =

[
λ µ

−λ2G12+µλG11+G12
λG22−µG12

µ2G11−λµG12+G22
λG22−µG12

]
.

4.2.2.1 The conformal case

In this case reconstructing Ã using equation (4.12) with m = 4 measurements boils
down to solving the following system of equations for Ã:

Ã2
(

gradM

(
θM

2 − θM
1
)

− V
M,a(2)

12 + V
M,a(1)

12

)
= −1

2
JE
(
NM,(2) −NM,(1)

)
, (4.13)

with the operator JE defined in Euclidean space: JE =
[
0 −1
1 0

]
. Similarly to

the Euclidean case, gradM

(
θM

2 − θM
1
)

can be expressed by the data, so a direct
reconstruction procedure from this formula is feasible.
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This gives rise to the conformal reconstruction procedure in algorithm 3.

Algorithm 3 Conformal reconstruction procedure
• Solve equation (4.13) for Ã

• Solve the following equation for θM

ρ2Ã2gradM

(
θM
)

+ [Ã2, Ã1] = −JE gradM

(
ρ2)+ ρ2Ã2V M,a

12 − ρ2 1
2
JENM ,

• Solve equation (4.9) for (detA)

4.2.2.2 The diagonal case

In this case the quantities U,PC , PV , and Pg in (4.12) simplify to:

U − 1
2
Pg = (G11 G22) 1

2 Ã2gradM

(
θM
)

− 1
2

(
Â1 gradM (G11) − Â2 gradM (G22)

)
, (4.14a)

PC = −1
2
JM

[(
G22

G11

) 1
2

gradM (G11) +
(
G11

G22

) 1
2

gradM (G22)

]
, (4.14b)

PV = Ã2(G22V
M

12 −G11V
M

21 ), (4.14c)

with

Â1 =

[
Ã11Ã12 Ã2

12
Ã11Ã22 Ã12Ã22

]
and Â2 =

[
Ã11Ã21 Ã11Ã22
Ã2

21 Ã21Ã22

]
.

Therefore, reconstructing Ã using equation (4.12) with m = 4 measurements boils
down to solving the following system of equations for Ã:

(G11 G22) 1
2 Ã2 gradM

(
θM

2 − θM
1
)

+G11

2
Ã2
(
V

M,(2)
21 − V

M,(1)
21

)
−G22

2
Ã2
(
V

M,(2)
12 − V

M,(1)
12

)
= −1

2
(G11 G22) 1

2 JM (NM,(2) −NM,(1)),

(4.15)

Similarly to the Euclidean case, gradM

(
θM

2 − θM
1
)

can be expressed by the data, so
a direct reconstruction procedure from this formula is feasible. The reconstruction
procedure is outlined in algorithm 4.
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Algorithm 4 Diagonal reconstruction procedure
• Solve equation (4.15) for Ã

• Solve equation (4.12) for θM with the quantities defined in (4.14)

• Solve equation (4.9) for (detA)

4.2.2.3 The general case

In this case reconstructing Ã using equation (4.12) with m = 4 measurements boils
down to solving the following system of third and fourth order polynomials for λ and
µ:

(c1 − c2y
1
f )λ+ (c3 − c4y

1
f )µ+ c5λ

2µ+ c6λµ
2 + c7λ

3 + c8µ
3 = 0

k1 + (k2 + k3y
2
f )λµ+ (k4 − k5y

2
f )λ2 + (k6 − k7y

2
f )µ2

+k8λ
2µ2 + k9λ

3µ+ k10λµ
3 + k11λ

4 + k12µ
4 = 0,

(4.16)

with Yf = (y1
f , y

2
f ) = − 1

2
√

detGJM (NM,(2) − NM,(1)), and where the functions cj

and kj depend on G,TM,(1), TM,(2), θM
1 , and θM

2 . We have the following issue with
this formula: The functions cj and kj include terms on the form cos

(
θM

i

)2 and
cos
(
θM

i

)
sin
(
θM

i

)
, which cannot be expressed by the data. So it seems currently

not feasible to reconstruct Ã directly using this formula.

4.2.3 Proof of equation (4.9) and (4.12)
4.2.3.1 Geometrical setting and preliminaries

Since γ, and thus Ar = γ
r
2 , is uniformly elliptic in the tangent spaces of M for any

r ∈ R, it follows that the vector fields (ArSM
1 , ArSM

2 ) form an oriented frame in each
tangent space. By self-adjointness of γ and thus Ar, the power density measurements
can be expressed as

HM
ij = g(ArSM

i , A−rSM
j ), 1 ≤ i, j ≤ 2, r ∈ R.

We claim that the following formula holds for any vector field V ∈ TpM :

V =
2∑

i,j=1
HM,ijg(V,ArSM

i )A−rSM
j , r ∈ R. (4.17)

In order to prove the formula above, it is sufficient to show that for all V and both
SM

1 and SM
2 it holds that

g(V,ArSM
k ) =

2∑
i,j=1

g
(
HM,ijg(V,ArSM

i )A−rSM
j , ArSM

k

)
.
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We rewrite the right hand side and use the fact that HM is symmetric:
2∑

i,j=1
g
(
HM,ijg(V,ArSM

i )A−rSM
j , ArSM

k

)
=

2∑
i,j=1

g(V,ArSM
i )HM,ijHM

jk

= g(V,ArSM
k ),

so that the formula (4.17) is satisfied. This formula holds for Ã as well.
Furthermore, we claim, that for any self-adjoint 2 × 2 matrix K in the tangent

space of M , the following important relation holds

KJMK = (detK)JM , (4.18)

for the operator JM having the properties of rotating any vector in the tangent space
counterclockwise by 90 degrees, while maintaining its length with respect to g. This
operator can be parameterised as follows:

JM = 1√
detG

[
−G12 −G22
G11 G12

]
. (4.19)

Note, that this general representation of JM is related to the Euclidean version JE by
the relationship JM = (detG)− 1

2 JEG. The selfadjointness assumption on K implies,
that it has the following parameterisation in the standard basis

K =
[

K11 K12
K12G11−K11G12+K22G12

G22
K22

]
.

Using these parametrisations, the relation (4.18) follows immediately.

4.2.3.2 Proof of equation (4.9)
The derivations for equation (4.9) rely on the fact that for the previously defined
operator JM the divergence of the vector field JMA−1SM

i vanishes in each tangent
space. For that purpose we investigate the following inner products. First, since JM

rotates any vector to be g-orthonormal to itself implies that

g
(
JMA−1SM

i , A−1SM
i

)
= 0, i = 1, 2.

We want to simplify the expression for g
(
JMA−1SM

i , A−1SM
j

)
when i 6= j. For

that purpose we now use relation (4.18), self-adjointness of A−1 and the fact that
g(JMSM

1 , SM
2 ) =

√
detG det

(
SM

1 , SM
2
)

=
√

detHM :

g
(
JMA−1SM

1 , A−1SM
2
)

= −g
(
JMA−1SM

2 , A−1SM
1
)

= g
(
A−1JMA−1SM

1 , SM
2
)

= g
(
(detA)−1JMSM

1 , SM
2
)

= (detA)−1
√

detHM .
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Using these expressions and the property (4.17) with r = −1, we can now express the
vector fields JMA−1SM

i :

JMA−1SM
1 =

2∑
i,j=1

HM,ijg
(
JMA−1SM

1 , A−1SM
i

)
ASM

j

=
2∑

j=1
HM,2j(detA)−1

√
detHMASM

j ,

and

JMA−1SM
2 =

2∑
i,j=1

HM,ijg
(
JMA−1SM

2 , A−1SM
i

)
ASM

j

= −
2∑

j=1
HM,1j(detA)−1

√
detHMASM

j .

We now use the fact that divM

(
JMA−1SM

i

)
= 0. Applying the divergence operator

to the vector fields above yields:

2∑
j=1

divM

(
HM,ij(detA)−1

√
detHMASM

j

)
= 0, i = 1, 2.

We use the identity divM (f V ) = f divM (V ) + g(gradM (f) , V ) on f = (detA)−1

and V = HM,ij
√

detHMASM
j , so the above equations formulate to the following for

each i = 1, 2:

2∑
j=1

[
g
(

gradM

(
(detA)−1) ,HM,ij(detHM ) 1

2ASM
j

)
+(detA)−1divM

(
HM,ij

√
detHMASM

j

)]
= 0.

Applying the identity again on the second term with f = HM,ij
√

detHM and V =
ASM

j and using the PDE (4.2) yields for each i = 1, 2:

2∑
j=1

[
g
(

gradM

(
(detA)−1) ,HM,ij

√
detHMASM

j

)
+(detA)−1g

(
gradM

(
HM,ij

√
detHM

)
, ASM

j

)]
= 0.
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As this equation is zero for both i, we can add the equations, multiply by A−1SM
i ,

and divide by (detA)−1
√

detHM to obtain

2∑
i,j=1

[
−HM,ijg

(
gradM (log(detA)) , ASM

j

)
A−1SM

i

+
√

detHMg
(

gradM

(
HM,ij

√
detHM

)
, ASM

j

)
A−1SM

i

]
= 0.

Using the formula (4.17) and the fact that

g(V, ÃSM
j )Ã−1SM

i = g(V,�����(detA)− 1
2ASM

j )����(detA) 1
2A−1SM

i ,

gives

gradM (log(detA)) =
2∑

i,j=1

1√
detHM

g
(

gradM

(
HM,ij(detHM ) 1

2

)
, ÃSM

j

)
Ã−1SM

i .

Expanding the term gradM

(
HM,ij

√
detHM

)
yields

gradM (log(detA)) = NM +
2∑

i,j=1
g
(

gradM

(
HM,ij

)
, ÃSM

j

)
Ã−1SM

i , (4.20)

where the term NM solely depends on the data: NM = 1
2 gradM

(
log
(
detHM

))
.

4.2.3.3 Proof of equation (4.12)
We orthonormalise SM into a SO(2)-valued frame RM = (RM

1 , RM
2 ), so that

RM
i =

2∑
j=1

TM
ij S

M
j , SM

i =
2∑

j=1
TM,ijRM

j , 1 ≤ i ≤ 2.

As RM is SO(2)-valued, it is orthogonal g(RM (v), RM (w)) = g(v, w) for all v, w ∈
TpM and (det RM ) = 1. By orthogonality and the property HM = (SM )TGSM

it follows that the matrix TM can be expressed by the data through the relation
(TM )TG−1TM = (HM )−1, so that

2∑
m,n=1

TM
mjG

mnTM
nℓ = HM,jℓ,

for 1 ≤ j, ℓ ≤ 2. We can construct TM by the Gram-Schmidt procedure or by setting
TM = G

1
2 (HM )− 1

2 . With the vector fields V M
ij defined in (4.11) we have the following
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relationship

2∑
j,ℓ=1

gradM

(
HM,jℓ

)
TM,ℓpTM,jq =

2∑
j,ℓ,m,n=1

gradM

(
TM

mjG
mnTM

nℓ

)
TM,ℓpTM,jq

=
2∑

j,ℓ,m,n=1

[
gradM

(
TM

mj

)
TM,jqδp

nG
mn

+gradM (Tnℓ)T ℓpδq
mG

mn

+gradM (Gmn) δp
nδ

q
m]

=
2∑

m,n=1

[
V M

mqG
mp + V M

npG
qn + gradM (Gqp)

]
,

for 1 ≤ p, q ≤ 2. We now rewrite equation (4.20) in terms of the vector fields RM
1

and RM
2 and use the relationship above:

gradM (log(detA)) = NM +
2∑

j,ℓ=1

g
(

gradM

(
HM,jℓ

)
, ÃSM

ℓ

)
Ã−1SM

j

= NM +
2∑

j,ℓ,p,q=1

g
(

gradM

(
HM,jℓ

)
TM,ℓpTM,jq, ÃRM

p

)
Ã−1RM

q

=
2∑

m,n,p,q=1
g
(
V M

mqG
mp + V M

npG
qn

+gradM (Gqp) , ÃRM
p

)
Ã−1RM

q +NM . (4.21)

In order to derive equation (4.12) we express the Lie Bracket [ÃRM
2 , ÃRM

1 ] in two
different ways: First we use the classical definition from differential topology and sec-
ondly we use a 2d vector calculus identity. By the classical definition in the canonical
basis (e1, e2) we have that

[
ÃRM

2 , ÃRM
1

]
=

2∑
i,j,k,ℓ=1

[
Ãij

(
RM

)j

2 ei, Ãkℓ

(
RM

)ℓ

1 ek

]

=
2∑

i,j,k,ℓ=1

(
ÃijÃkℓ

((
RM

)j

2 ∂i

(
RM

)ℓ

1 −
(
RM

)j

1)∂i

(
RM

)ℓ

2

)
+ Ãij∂iÃkℓ

((
RM

)j

2

(
RM

)ℓ

1 −
(
RM

)j

1

(
RM

)ℓ

2

))
ek.

This definition is equivalent to the definition in Euclidean space. The first term
cannot be simplified further due to the complicated parameterisation of RM in (4.10).
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However, for the second term we obtain:

(
RM

)j

2

(
RM

)ℓ

1 −
(
RM

)j

1

(
RM

)ℓ

2 =


0 if j = ℓ

1 if (j, ℓ) = (2, 1)
−1 if (j, ℓ) = (1, 2)

.

Now the expression for [ÃRM
2 , ÃRM

1 ] above can be reduced to

[ÃRM
2 , ÃRM

1 ] =
2∑

i,j,k,ℓ=1

(
ÃijÃkℓ

((
RM

)j

2 ∂i

(
RM

)ℓ

1 −
(
RM

)j

1 ∂i

(
RM

)ℓ

2

)
+Ãi2∂iÃk1 − Ãi1∂iÃk2

)
ek

= U + [Ã2, Ã1],

where we define

U =
2∑

i,j,k,ℓ=1

ÃijÃkℓ

((
RM

)j

2 ∂i

(
RM

)ℓ

1 −
(
RM

)j

1 ∂i

(
RM

)ℓ

2

)
ek.

Before we use the 2d vector calculus identity to write [ÃRM
2 , ÃRM

1 ] in a different way,
we express the divergence equation for ÃRM

1 and ÃRM
2 in terms of known quantities,

Ã and columns of RM . This gives the following for each i = 1, 2:

divM

(
ÃRM

i

)
=

2∑
j=1

divM

(
Ã TM

ij S
M
j

)

=
2∑

j=1
g
(

(gradM

(
TM

ij

)
, ÃSM

j

)
+ TM

ij divM

(
ÃSM

j

)
.

We write the first part in terms of the columns of RM and for the second part we
rewrite divM

(
ÃSM

j

)
as divM

(
(detA)− 1

2ASM
j

)
and use the identity divM (f V ) =

f divM (V )+g(gradM (f) , V ). Note that divM

(
ASM

j

)
vanishes by the PDE. We then

obtain for each i = 1, 2:

divM

(
ÃRM

i

)
=

2∑
j,k=1

g
(

gradM

(
TM

ij

)
, Ã TM,jk RM

k

)

+
2∑

j=1
TM

ij g
(

gradM

(
(detA)− 1

2

)
, ASM

j

)

=
2∑

k=1

g
(
V M

ik , ÃR
M
k

)
− 1

2
g
(

gradM (log(detA)) , ÃRM
i

)
.
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Inserting the expression for gradM (log(detA)) from equation (4.21) then yields for
each i = 1, 2:

divM

(
ÃRM

i

)
=

2∑
k=1

g
(
V M

ik , ÃR
M
k

)
− 1

2
g
(
NM , ÃRM

i

)
− 1

2

2∑
m,n,p,q=1

g
(
g
(
V M

mqG
mp + V M

npG
qn

+gradM (Gqp) , ÃRM
p

)
Ã−1RM

q , ÃRM
i

)
=

2∑
k=1

g
(
V M

ik , ÃR
M
k

)
− 1

2
g
(
NM , ÃRM

i

)
− 1

2

2∑
m,n,p,q=1

g
(
V M

mqG
mp + V M

npG
qn + gradM (Gqp) , ÃRM

p

)
Gqi

=
2∑

k=1

g
(
V M

ik , ÃR
M
k

)
− 1

2

2∑
n,p=1

g
(
V M

np δ
n
i , ÃR

M
p

)

− 1
2

2∑
j=1

g
(
NM , ÃRM

j

)
− 1

2

2∑
m,p,q=1

g
(
V M

mqG
mpGqi, ÃR

M
p

)

− 1
2

2∑
q,p=1

g
(

gradM (Gqp)Gqi, ÃR
M
p

)

= 1
2

2∑
p=1

g
(
V M

ip , ÃR
M
p

)
− 1

2
g
(
NM , ÃRM

i

)
(4.22a)

− 1
2

2∑
m,p,q=1

g
(
V M

mqG
mpGqi, ÃR

M
p

)
(4.22b)

− 1
2

2∑
p,q=1

g
(

gradM (Gqp)Gqi, ÃR
M
p

)
. (4.22c)

It can be shown that the 2d vector calculus identity [V,W ] = ∇·(W ⊗ V − V ⊗W )−
(∇ ·V )W + (∇ ·W )V in Euclidean space also holds in a similar version on a manifold:

[V,W ] = divM (W ⊗ V − V ⊗W ) − divM (V )W + divM (W )V. (4.23)

We want to apply this identity to the vector fields V = ÃRM
2 and W = ÃRM

1 . For
that purpose we first investigate the first term on the right hand side. We simplify
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the expression W ⊗ V − V ⊗W by using the relation (4.18):

ÃRM
1 ⊗ ÃRM

2 − ÃRM
2 ⊗ ÃRM

1 = Ã(RM
1 ⊗RM

2 −RM
2 ⊗RM

1 )Ã

= −ÃJEÃ = −(det Ã)JE = −JE .

Taking the divergence of this constant coefficient matrix thus only gives a few contri-
butions from the Christoffel symbols:

divM

(
ÃRM

1 ⊗ ÃRM
2 − ÃRM

2 ⊗ ÃRM
1

)
= (Γ1

21 + Γ2
22)e1 − (Γ1

11 + Γ2
12)e2.

For the second part of right hand side in (4.23) we use the expression for the divergence
equations in (4.22) and obtain the following for the Lie bracket:

[ÃRM
2 , ÃRM

1 ] = divM

(
ÃRM

1 ⊗ ÃRM
2 − ÃRM

2 ⊗ ÃRM
1

)
− divM

(
ÃRM

2

)
ÃRM

1 + divM

(
ÃRM

1

)
ÃRM

2

= (Γ1
21 + Γ2

22)e1 − (Γ1
11 + Γ2

12)e2 (4.24a)

+ 1
2

2∑
m,p,q=1

[
−g
(
V M

2p , ÃR
M
p

)
ÃRM

1 (4.24b)

+g
(
V M

1p , ÃR
M
p

)
ÃRM

2 (4.24c)

+g
(
V M

mqG
mpGq2, ÃR

M
p

)
ÃRM

1 (4.24d)

−g
(
V M

mqG
mpGq1, ÃR

M
p

)
ÃRM

2 (4.24e)

+g
(

gradM (Gqp)Gq2, ÃR
M
p

)
ÃRM

1 (4.24f)

−g
(

gradM (Gqp)Gq1, ÃR
M
p

)
ÃRM

2 (4.24g)

+g
(
NM , ÃRM

2

)
ÃRM

1 − g
(
NM , ÃRM

1

)
ÃRM

2

]
, (4.24h)

where the part in (4.24h) can be reduced to

1
2
g
(
NM , ÃRM

2

)
ÃRM

1 − 1
2
g
(
NM , ÃRM

1

)
ÃRM

2 = −1
2
JEGNM .

By the relationship JM = (detG)− 1
2 JEG the above can be reposed as − 1

2 (detG) 1
2 JMNM .

Denoting the part in (4.24a) by PC , the following part in (4.24b)-(4.24e) by 1
2PV and

the next part in (4.24f)-(4.24g) by 1
2Pg yields the following for the Lie bracket:

[ÃRM
2 , ÃRM

1 ] = PC + 1
2
PV + 1

2
Pg − 1

2
(detG) 1

2 JMNM ,
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with

PC = (Γ1
21 + Γ2

22)e1 − (Γ1
11 + Γ2

12)e2,

PV =
2∑

m,p,q=1

[
−g
(
V M

2p , ÃR
M
p

)
ÃRM

1 + g
(
V M

1p , ÃR
M
p

)
ÃRM

2

+g
(
V M

mqG
mpGq2, ÃR

M
p

)
ÃRM

1 − g
(
V M

mqG
mpGq1, ÃR

M
p

)
ÃRM

2

]
,

Pg =
2∑

p,q=1

[
g
(

gradM (Gqp)Gq2, ÃR
M
p

)
ÃRM

1 − g
(

gradM (Gqp)Gq1, ÃR
M
p

)
ÃRM

2

]
.

Combining the two ways to express the Lie bracket [ÃRM
2 , ÃRM

1 ], yields equation
(4.12):

U + [Ã2, Ã1] = PC + 1
2
PV + 1

2
Pg − 1

2
(detG) 1

2 JMNM .

Here the vector fields U,PV and Pg depend on the unknowns Ã and θM . Therefore,
the composition of these vector fields determine if a direct reconstruction approach
for Ã is feasible.

4.2.3.4 Simplification of equation (4.12) when g is diagonal or conformal

The diagonal case The main issue with equation (4.12) in the general case is the
complicated parameterisation for RM . For a diagonal metric RM simplifies to

RM = (detG)− 1
2

[
cos
(
θM
)
(detG) 1

2 − sin
(
θM
)
G22

sin
(
θM
)
G11 cos

(
θM
)
(detG) 1

2

]
Due to this expression for RM the vector fields U,PC , PV and Pg can be simplified, so
that feasibility of a reconstruction approach for Ã can be assessed. We first investigate
this part in the expression for U :(

RM
)j

2 ∂i

(
RM

)ℓ

1 −
(
RM

)j

1)∂i

(
RM

)ℓ

2

For j = ℓ = 1 this simplifies to:

(G11 G22) 1
2 (G−1

11 ∂iθ
M ) − (G−1

11 G22) 1
2
(
G−1

11 ∂iG11 −G−1
22 ∂iG22

)
sin
(
θM
)

cos
(
θM
)
.

For (j, ℓ) = (2, 1) = (1, 2) this simplifies to:

−1
2
(
G−1

11 ∂iG11 −G−1
22 ∂iG22

)
sin2(θM ).

For j = ℓ = 2 this simplifies to:

(G11 G22) 1
2 (G−1

22 ∂iθ
M ) − (G11 G

−1
22 ) 1

2
(
G−1

11 ∂iG11 −G−1
22 ∂iG22

)
sin
(
θM
)

cos
(
θM
)
.
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Now U can be expressed as:

U =
2∑

i,k=1

[
(G11 G22) 1

2

(
Ãi1Ãk1G

−1
11 ∂iθ

M + Ãi2Ãk2G
−1
22 ∂iθ

M
)
ek

−1
2

(
Ãi1Ãk1(G−1

11 f) 1
2 + Ãi2Ãk2(G11 G

−1
22 ) 1

2

) (
G−1

11 ∂iG11

−G−1
22 ∂iG22

)
sin
(
θM
)

cos
(
θM
)
ek

−1
2

(
Ãi1Ãk2G

−1
11 + Ãi2Ãk1

) (
G−1

11 ∂iG11 −G−1
22 ∂iG22

)
sin2(θM )ek

]
.

We note that in the canonical basis (e1, e2) the anistropy can be parameterised as a
non-symmetric matrix by

Ã =

[
Ã11 Ã12

Ã12
G11
G22

Ã2
12G11+G22

Ã11G22

]
,

where the entries Ã21 = Ã12
G11
G22

and Ã22 = Ã2
12G11+G22

Ã11G22
ensure self-adjointness and

that Ã has determinant 1. In the following we will use this parameterisation to
express the quantities in equation (4.12). To keep notation simple we still refer to
the elements in the second row as Ã21 and Ã22. The first line in the expression for U
then simplifies to

(G11 G22) 1
2

(
Ãi1Ãk1G

−1
11 ∂iθ

M + Ãi2Ãk2G
−1
22 ∂iθ

M
)
ek = (G11 G22) 1

2 Ã2gradM

(
θM
)
,

where gradM

(
θM
)

=
[
G−1

11 ∂1θ
M

G−1
22 ∂2θ

M

]
. Next, we show that some of terms in the expres-

sion for U appear in the expression for Pg as well:

Pg =
2∑

p,q=1

[
g
(

gradM (Gqp)Gq2, ÃR
M
p

)
ÃRM

1 − g
(

gradM (Gqp)Gq1, ÃR
M
p

)
ÃRM

2

]

=
2∑

p,q=1

[
g
(

gradM

(
G−1

pp δ
p
q

)
G22δ

2
q , ÃR

M
p

)
ÃRM

1

−g
(

gradM

(
G−1

pp δ
p
q

)
G11δ

1
q , ÃR

M
p

)
ÃRM

2

]
= −g

(
G−1

22 gradM (G22) , ÃRM
2

)
ÃRM

1 + g
(
G−1

11 gradM (G11) , ÃRM
1

)
ÃRM

2
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When we insert the parameterisaton for Ã and RM , and write out the expressions for
gradM (G22) and gradM (G11) explicitly, this yields:

Pg =
2∑

i,k=1

[
−
(
Ãi1Ãk1G

− 1
2

11 G
1
2
22 + Ãi2Ãk2G

1
2
11G

− 1
2

22

) (
G−1

11 ∂iG11

−G−1
22 ∂iG22

)
sin
(
θM
)

cos
(
θM
)
ek

−
(
Ãi1Ãk2G

−1
11 + Ãi2Ãk1

) (
G−1

11 ∂iG11 −G−1
22 ∂iG22

)
sin2(θM )ek

]
+
(
Ã11Ã12G

−1
11 ∂1G11 − Ã11Ã21G

−1
11 ∂1G22

+Ã2
12G

−1
22 ∂2G11 − Ã11Ã22G

−1
22 ∂2G22

)
e1

+
(
Ã11Ã22G

−1
22 ∂1G11 − Ã2

21G
−1
11 ∂1G22

+Ã12Ã22G
−1
22 ∂2G11 − Ã21Ã22G

−1
22 ∂2G22

)
e2.

We see, that the first two lines in the expression only differ by a factor of 1
2 from

the last two lines in the expression for U . To simplify the last two lines above, we
introduce the matrices Â1 and Â2:

Â1 =

[
Ã11Ã12 Ã2

12
Ã11Ã22 Ã12Ã22

]
and Â2 =

[
Ã11Ã21 Ã11Ã22
Ã2

21 Ã21Ã22

]
.

Using these, we can express the last four lines in the expression for Pg by(
Ã11Ã12G

−1
11 ∂1G11 − Ã11Ã21G

−1
11 ∂1G22 + Ã2

12G
−1
22 ∂2G11 − Ã11Ã22G

−1
22 ∂2G22

)
e1

+
(
Ã11Ã22G

−1
22 ∂1G11 − Ã2

21G
−1
11 ∂1G22 + Ã12Ã22G

−1
22 ∂2G11 − Ã21Ã22G

−1
22 ∂2G22

)
e2

= Â1gradM (G11) − Â2gradM (G22) ,

with gradM (G11) =
[
G−1

11 ∂1G11
G−1

22 ∂2G11

]
and gradM (G22) =

[
G−1

11 ∂1G22
G−1

22 ∂2G22

]
. We take the

difference between U and 1
2Pg and obtain

U − 1
2
Pg = (G11 G22) 1

2 Ã2gradM

(
θM
)

− 1
2
Â1gradM (G11) + 1

2
Â1gradM (G22) .

The Christoffel symbols appearing in the vector field PC simplify to

PC = (Γ1
21 + Γ2

22)e1 − (Γ1
11 + Γ2

12)e2

= 1
2

[
0 G−1

11 G22
−1 0

]
gradM (G11) + 1

2

[
0 1

−G11G
−1
22 0

]
gradM (G22) .
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As the operator JM in (4.4.1.2) takes the form

JM = (G11 G22)− 1
2

[
0 −G22
G11 0

]
,

the previous expression can be written in terms of JM as

PC = −1
2

(G−1
11 G22) 1

2 JM gradM (G11) − 1
2

(G11 G
−1
22 ) 1

2 JM gradM (G22) .

Finally, we can simplify the expression for PV :

PV =
2∑

m,p,q=1

[
−g
(
V M

2p , ÃR
M
p

)
ÃRM

1 + g
(
V M

1p , ÃR
M
p

)
ÃRM

2

+g
(
V M

mqG
mpGq2, ÃR

M
p

)
ÃRM

1 − g
(
V M

mqG
mpGq1, ÃR

M
p

)
ÃRM

2

]
=

2∑
m,p,q=1

[
−g
(
V M

2p , ÃR
M
p

)
ÃRM

1 + g
(
V M

1p , ÃR
M
p

)
ÃRM

2

+g
(
V M

mqG
−1
pp δ

p
mG22δ

2
q , ÃR

M
p

)
ÃRM

1 − g
(
V M

mqG
−1
pp δ

p
mG11δ

1
q , ÃR

M
p

)
ÃRM

2

]
= −g

(
V M

21 , ÃR
M
1

)
ÃRM

1 − g
(
G−1

11 G22V
M

21 , ÃR
M
2

)
ÃRM

2

+ g
(
V M

12 , ÃR
M
2

)
ÃRM

2 + g
(
G11G

−1
22 V

M
12 , ÃR

M
1

)
ÃRM

1

= −Ã
(
RM

1 ⊗RM
1 +G−1

11 G22R
M
2 ⊗RM

2
)
ÃTGV M

21

+ Ã
(
RM

2 ⊗RM
2 +G11G

−1
22 R

M
1 ⊗RM

1
)
ÃTGV M

12

= −Ã
[
1 0
0 G11G

−1
22

]
ÃTGV M

21 + Ã

[
G−1

11 G22 0
0 1

]
ÃTGV M

12

= −G11Ã
2V M

21 +G22Ã
2V M

12 . (4.25)

Combining these expressions yields the formula (4.12):

U + [Ã2, Ã1] = PC + 1
2
PV + 1

2
Pg − 1

2
(detG) 1

2 JMNM ,

with the modified expressions

U − 1
2
Pg = (G11 G22) 1

2 Ã2gradM

(
θM
)

(4.26a)

− 1
2

(
Â1gradM (G11) − Â2gradM (G22)

)
, (4.26b)

PC = −1
2
JM

[(
G22

G11

) 1
2

gradM (G11) +
(
G11

G22

) 1
2

gradM (G22)

]
, (4.26c)

PV = Ã2 (G22V
M

12 −G11V
M

21
)
. (4.26d)
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Here we highlight that the mixed terms with sin2(θM ) and sin
(
θM
)

cos
(
θM
)

cancel
out by taking the difference between U and 1

2Pg.

The conformal case For a conformal metric, RM simplifies to

RM =
[
cos
(
θM
)

− sin
(
θM
)

sin
(
θM
)

cos
(
θM
) ] .

Such that in the conformal case, the expression for RM is equivalent to the Euclidean
version RE and θM = θE . This implies that JM is equivalent to JE , as JM is a special
case of the rotational operator RM for the angle θ = π

2 . Furthermore, a conformal
metric is a special case of a diagonal metric so that the formula (4.12) holds for this
case as well with the modified quantities in (4.26) when substituting G11 and G22
with ρ2. This formula then simplifies to

ρ2Ã2 gradM

(
θM
)

+ [Ã2, Ã1] = −1
2
JE gradM

(
ρ2)+ ρ2Ã2V M,a

12 − 1
2
ρ2JENM , (4.27)

where we highlight that in the conformal case self-adjointness implies that Ã is sym-
metric, so that Â1 − Â2 = JE .

4.2.4 Derivation of the reconstruction procedures

4.2.4.1 Reconstruction of the normalised anisotropy Ã with m = 3 or 4

Comments on the general case Consider a quadruple of boundary conditions
(f1, f2, f3, f4) with possibly f2 = f3. Let SM,(1) = [SM,(1)

1 |SM,(1)
2 ] = [SM

1 |SM
2 ] and

SM,(2) = [SM,(2)
1 |SM,(2)

2 ] = [SM
3 |SM

4 ] be matrices that satisfy the positivity condition
(4.8). Let us denote RM,(i) = SM,(i)TM,(i)T the SO(2,R)-valued matrix obtained af-
ter Gram-Schmidt orthonormalisation such that g(RM,(i)V,RM,(i)W ) = g(V,W ) and
det(RM,(i)) = 1. Here TM,(i) is such that TM,(i)HMTM,(i)T = G and we parameterise
RM,(i) by an angle function θM

i for each i. We denote

HM,(i) = SM,(i)TGSM,(i), NM,(i) = 1
2

gradM

(
log
(

detHM,(i)
))

,

V
M,(i)

kℓ =
2∑

j=1
gradM

(
T

M,(i)
kj

)(
TM,(i)

)jℓ

.

For each pair of solutions, we have the equation

U (i) + [Ã2, Ã1] = PC + 1
2
P

(i)
V + 1

2
P (i)

g − 1
2

(detG) 1
2 JMNM,(i), (4.28)
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where

U (i) =
2∑

i,j,k,ℓ=1

ÃijÃkℓ

((
RM,(i)

)j

2
∂i

(
RM,(i)

)ℓ

1
−
(
RM,(i)

)j

1
∂i

(
RM,(i)

)ℓ

2

)
ek,

PC = (Γ1
21 + Γ2

22)e1 − (Γ1
11 + Γ2

12)e2,

P
(i)
V =

2∑
p,m,q=1

[
−g
(
V

M,(i)
2p , ÃRM,(i)

p

)
ÃR

M,(i)
1 + g

(
V

M,(i)
1p , ÃRM,(i)

p

)
ÃR

M,(i)
2

+g
(
V M,(i)

mq GmpGq2, ÃR
M,(i)
p

)
ÃR

M,(i)
1

−g
(
V M,(i)

mq GmpGq1, ÃR
M,(i)
p

)
ÃR

M,(i)
2

]
,

P (i)
g =

2∑
q,p=1

[
g
(

gradM (Gqp)Gq2, ÃR
M
p

)
ÃR

M,(i)
1

−g
(

gradM (Gqp)Gq1, ÃR
M,(i)
p

)
ÃR

M,(i)
2

]
.

Subtracting equation (4.28) with i = 1 from the same equation with i = 2 cancels
the Lie Bracket [Ã2, Ã1] and the term PC , and leaves the following expression:

U (2) − U (1) + 1
2

(
−P (2)

V + P
(1)
V − P (2)

g + P (1)
g

)
= −1

2
Jg(NM,(2) −NM,(1)). (4.29)

When we parameterise Ã by

Ã(λ, µ) =

[
λ µ

−λ2G12+µλG11+G12
λG22−µG12

µ2G11−λµG12+G22
λG22−µG12

]
,

we can write the left hand side in (4.29) as a function of λ and µ. Doing so and denot-
ing the right hand side in (4.29) by Yf we obtain the following system of equations:

(c1 − c2y
1
f )λ+ (c3 − c4y

1
f )µ+ c5λ

2µ+ c6λµ
2 + c7λ

3 + c8µ
3 = 0,

k1 + (k2 + k3y
2
f )λµ+ (k4 − k5y

2
f )λ2 + (k6 − k7y

2
f )µ2

+k8λ
2µ2 + k9λ

3µ+ k10λµ
3 + k11λ

4 + k12µ
4 = 0.

(4.30)

Where ci and ki depend on G,TM,(1), TM,(2), θM
1 , and θM

2 . In the Euclidean case
the trick in equation (3.10) is used to express cos

(
θE

2 − θE
1
)

and sin
(
θE

2 − θE
1
)

with
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respect to inner products of columns of RE . We can obtain similar results:

G11 cos
(
θM

2 − θM
1
)

= R
M,(1)
1 GR

M,(2)
1

=
2∑

i,j=1
T

M,(1)
1i T

M,(2)
1j g(SM,(1)

i , S
M,(2)
j ),

(4.31a)

(detG) 1
2 sin

(
θM

2 − θM
1
)

+G12 cos
(
θM

2 − θM
1
)

= R
M,(1)
2 GR

M,(2)
1

=
2∑

i,j=1
T

M,(1)
2i T

M,(2)
1j g(SM,(1)

i , S
M,(2)
j ).

(4.31b)

Hence, cos
(
θM

2 − θM
1
)
, sin

(
θM

2 − θM
1
)

and gradM

(
θM

2 − θM
1
)

can be expressed by the
data:

gradM

(
θM

2 − θM
1
)

= cos
(
θM

2 − θM
1
)
gradM

(
sin
(
θM

2 − θ1
)M
)

− sin
(
θM

2 − θM
1
)
gradM

(
cos
(
θM

2 − θM
1
))
.

However, in the system of equations (4.30) there appear mixed terms on the form
cos
(
θM

i

)2 and cos
(
θM

i

)
sin
(
θM

i

)
for both i = 1 and i = 2 which cannot be

substituted by any of the formulas above. Therefore a general reconstruction approach
is currently not feasible.

The diagonal case In this case for each pair of solutions equation (4.28) simplifies
with the following modified quantities:

U (i) − 1
2
P (i)

g = (G11 G22) 1
2 Ã2gradM

(
θM

i

)
(4.32a)

− 1
2

(
Â1gradM (G11) − Â2gradM (G22)

)
, (4.32b)

PC = −JM

[
1
2

(
G22

G11

) 1
2

gradM (G11) +
(
G11

G22

) 1
2

gradM (G22)

]
, (4.32c)

P
(i)
V = Ã2

(
G22V

M,(i)
12 −G11V

M,(i)
21

)
. (4.32d)

Subtracting equation (4.28) with i = 1 from the same equation with i = 2 cancels the
Lie Bracket [Ã2, Ã1], the term PC , and the term in (4.32b) so we obtain the system
of equations

Ã2Xf = Yf , (4.33)
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with

Xf = (G11 G22) 1
2 gradM

(
θM

2 − θM
1
)

− 1
2
G22

(
V

M,(2)
12 − V

M,(1)
12

)
+ 1

2
G11

(
V

M,(2)
21 − V

M,(1)
21

)
,

Yf = −1
2

(G11 G22) 1
2 JM

(
NM,(2) −NM,(1)

)
.

Here gradM

(
θM

2 − θM
1
)

can be expressed by the data using the relationships in (4.31):

G11 cos
(
θM

2 − θM
1
)

=
2∑

i,j=1
T

M,(1)
1i T

M,(2)
1j g(SM,(1)

i , S
M,(2)
j ),

(G11 G22) 1
2 sin

(
θM

2 − θM
1
)

=
2∑

i,j=1
T

M,(1)
2i T

M,(2)
1j g(SM,(1)

i , S
M,(2)
j )︸ ︷︷ ︸

=HM
i(2+j)

.

We now parameterise Ã2 by two functions ξ and ζ:

Ã2(ξ, ζ) =

[
ξ ζ

ζ G11
G22

ζ2G11+G22
ξG22

]
.

Denoting Xf = (x1
f , x

2
f )T and Yf = (y1

f , y
1
f )T , the system (4.33) can be rewritten as

ξx1
f + ζx2

f = y1
f and ξζG11x

1
f + (ζ2G11 +G22)x2

f = ξG22y
2
f .

On matrix form we can formulate this system of equations as[
x1

f x2
f

y2
fG22 −y1

fG11

] [
ξ
ζ

]
=
[

y1
f

x2
fG22

]
.

Inverting the matrix on the left hand side gives

ξ = g(Xf , Yf )−1
((
x2

f

)2
G22 +

(
y1

f

)2
G11

)
(4.34a)

and

ζ = g(Xf , Yf )−1 (y1
fy

2
fG22 − x1

fx
2
fG22

)
. (4.34b)

The formulas for ξ and ζ are well-defined, as condition (4.5) guarantees that Yf never
vanishes over M . This is sufficient as by uniform ellipticity for Ã and thus Ã−2 it
follows that the inner product g(Xf , Yf ) is bounded from below by the norm of Yf :

g(Xf , Yf ) = g(Ã−2Yf , Yf ) ≥ κ−2|Yf |M > 0.
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The conformal case In the conformal case the vector fields Xf and Yf appearing
in the system of equations (4.33) are on the form:

Xf = ρ2gradM

(
θM

2 − θM
1
)

− ρ2
(
V

M,a(2)
12 − V

M,a(1)
12

)
,

Yf = −1
2
ρ2JE

(
NM,(2) −NM,(1)

)
.

Where gradM

(
θM

2 − θM
1
)

can be expressed by

ρ2 cos
(
θM

2 − θM
1
)

=
2∑

i,j=1
T

M,(1)
1i T

M,(2)
1j g(SM,(1)

i , S
M,(2)
j ),

ρ2 sin
(
θM

2 − θM
1
)

=
2∑

i,j=1
T

M,(1)
2i T

M,(2)
1j g(SM,(1)

i , S
M,(2)
j ).

Furthermore, the parameterisation of Ã2 simplifies to

Ã2(ξ, ζ) =

[
ξ ζ

ζ ζ2+1
ξ

]
,

which is equivalent to the Euclidean parameterisation. It now follows from (4.34)
that ξ and ζ can be obtained by

ξ = ρ2g(Xf , Yf )−1
((
x2

f

)2 +
(
y1

f

)2
)

and ζ = ρ2g(Xf , Yf )−1 (y1
fy

2
f − x1

fx
2
f

)
.

4.2.4.2 Reconstruction of θM and (det A) = (det γ) 1
2

As the reconstruction approach is only feasible for manifolds with a diagonal or con-
formal metric, this section solely addresses these two cases.

The diagonal case Reconstruction of θM is based on equation (4.12) with the
modified quantities in (4.26). Isolating gradM

(
θM
)

yields:

gradM

(
θM
)

= (detG)− 1
2
(
G22V

M
12 −G11V

M
21
)

+ 1
2

(detG)− 1
2 Ã−2

(
Â1gradM (G11) − Â2gradM (G22)

)
− 1

2
(detG)− 1

2 Ã−2JM

[(
G22

G11

) 1
2

gradM (G11) +
(
G11

G22

) 1
2

gradM (G22)

]

− 1
2
Ã−2JMNM − (detG)− 1

2 Ã−2[Ã2, Ã1].
(4.35)
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Here the expressions for Â1 and Â2 are on the following form:

Â1 =

[
Ã11Ã12 Ã2

12
Ã11Ã22 Ã12Ã22

]
and Â2 =

[
Ã11Ã21 Ã11Ã22
Ã2

21 Ã21Ã22

]
.

In order to reconstruct θM , we thus need to express Â1, Â2 and [Ã2, Ã1] with respect
to the known functions ξ and ζ that are used to parameterise Ã2. We note that Ã
can be parameterised in a similar way as Ã2:

Ã(λ, µ) =

[
λ µ

µG11
G22

µ2G11+G22
λG22

]
.

From the first row of (Ã(λ, µ))2 and Ã2(ξ, ζ) we have the equalities:

λ2 + µ2G11

G22
= ξ, λµ+ µ

µ2G11 +G22

λG22
= ζ.

This yields the following for λ and µ:

λ = (ξ + 1)
(

ξG22

ζ2G11 + (ξ + 1)2G22

) 1
2

, µ = ζ

(
ξG22

ζ2G11 + (ξ + 1)2G22

) 1
2

. (4.36)

When we write [Ã2, Ã1] in terms of λ and µ we obtain:

[Ã2, Ã1] =

[
µG11

µ2G11+G22
λ

(µ2G11+G22)G11
λG22

µG11(µ2G11+G22)
λ2G22

]
gradM (λ)

+

[
−λG11 −µG11

−µG2
11

G22

(−µ2G11+G22)G11
λG22

]
gradM (µ)

+
[

0
µ
λ (gradM (G11))2 − µG11

λG22
(gradM (G22))2

]
.

(4.37)

Here (gradM (G11))2 and (gradM (G22))2 denote the second element in gradM (G11)
and gradM (G22) respectively. Now θM can be reconstructed from equation (4.35).
When θM is known at one point on the boundary one can integrate the right hand
side in the expression along curves originating from that point. Alternatively, when
assuming that θM is known along the whole boundary one can apply the divergence
operator to both sides of the equation and solve a Poisson equation with Dirichlet
boundary.

Once Ã and θM are known, the vector fields SM
i are known as well such that we

can reconstruct log(detA) from equation (4.12), following a similar procedure as for
θM :

gradM (log(detA)) = NM +
2∑

p,q=1
g(gradM

(
HM,qp

)
, Ã SM

p )Ã−1 SM
q . (4.38)
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The conformal case In this case θM is obtained from the simplified equation:

gradM

(
θM
)

= V M,a
12 − Ã−2

(
ρ−2[Ã2, Ã1] + 1

2
ρ−2JE gradM

(
ρ2)+ 1

2
JENM

)
.

(4.39)
As the term with contribution from the matrices Â1 and Â2 vanishes there is only
a need to express the Lie bracket [Ã2, Ã1] in terms of the known functions ξ and ζ.
The parameterisation for Ã simplifies to:

Ã(λ, µ) =
[
λ µ

µ µ2+1
λ

]
.

From the formula in (4.36) it follows that λ and µ can be expressed as:

λ = (ξ + 1)
(

ξ

ζ2 + (ξ + 1)2

) 1
2

, µ = ζ

(
ξ

ζ2 + (ξ + 1)2

) 1
2

.

Now the Lie bracket can be written as:

[Ã2, Ã1] = ρ2

[
µ µ2+1

λ
(µ2+1)

λ µ (µ2+1)
λ2

]
gradM (λ) + ρ2

[−λ −µ
−µ (−µ2+1)

λ

]
gradM (µ) .

Note, that the last term in (4.37) vanishes for a conformal metric. Now θM can be
reconstructed from equation (4.39) following the same procedure as for the diagonal
case. Similarly log(detA) can be reconstructed from equation (4.38) above.

4.3 A shortcut between Euclidean space and
Riemannian manifolds

The following section is based on paper C and some parts are taken directly from
Appendix C.

4.3.1 Paper C: Reconstructing anisotropic conductivities on
two-dimensional Riemannian manifolds from power
densities

In paper C we aim at reconstructing an anisotropic conductivity from power densities
on a two-dimensional Riemannian manifold. Instead of generalising the reconstruction
formula from Euclidean space to the manifold as in section 4.2, we consider a ’shortcut’
that allows us to use the Euclidean approach independent of the type of the geometry.
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We let (M, g) denote a compact Riemannian manifold with smooth boundary ∂M and
genus zero. Consider solutions u1, . . . , u4 to the boundary value problem{

divM (γ gradM (ui)) = 0 in M,

ui = fi on ∂M.
(4.40)

By the Poincaré-Koebe uniformisation theorem for compact Riemann surfaces (with
boundary) (M, g) admits a conformal isometric representation onto a fundamental
domain N in R2. We make the observation that the PDE in (4.40) for a conformal
manifold and the PDE in Euclidean space

divE(γ gradE(u)) = 0,

are preserved. Therefore, after finding a conformal isometric representation of (M, g)
one can use the Euclidean approach to reconstruct γ. For general and constructive
approaches to the uniformisation procedure we refer to work of [4, 5, 10]. We illustrate
our approach numerically by an example of a conductivity on a non-simply connected
surface in three-space.

4.3.1.1 Theoretical results

We assume that γ is a (1, 1) tensor field, which is selfadjoint and uniformly elliptic
with respect to g, i.e. for some κ > 1 and for all tangent vectors v and w there holds:

g(γ(v), w) = g(v, γ(w)) and κ−1 ‖v‖2
g ≤ g(γ(v), v) ≤ κ ‖v‖2

g. (4.41)

From the four different potentials fi, imposed on the boundary, we consider the four
corresponding solutions that gives rise to a (4 × 4)-power density matrix H with
elements:

HM
ij = HM

ji = g(γ gradM (ui) , gradM (uj)) for 1 ≤ i, j ≤ m.

For the reconstruction procedure to work, we need the following two conditions on
the power density matrix HM :

min(det(gradM u1, gradM u2),det(gradM u3, gradM u4)) ≥ c0 > 0 for every x ∈ M,

(4.42)

gradM

(
log
(

det(gradM u1, gradM u2)
det(gradM u3, gradM u4)

))
6= 0 for every x ∈ M.

(4.43)

Preservation of the conductivity equations Consider a conformal isometric
representation of (M, g) given by a compact domain N in R2, equipped with the
metric gN = ρ2 gE . Here gE denotes the Euclidean metric in R2 and ρ denotes the
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conformal factor. We show that the divergence equation on N only differs by the
conformal factor from the divergence equation in Euclidean space, so that the PDEs
are preserved.

Note that the gradient on (N, gN ) can be expressed with respect to the Euclidean
gradient as

gradN (u) =
2∑

i,j=1

∂u

∂xi
Gijej = 1

ρ2

∑
i

∂u

∂xi
ei = 1

ρ2 gradE(u),

and the gN -divergence of a vector field V =
∑2

i=1 v
i ei is in 2D:

divN (V ) = 1√
det(G)

2∑
i=1

∂

∂xi

(
vi
√

det(G)
)

= 1
ρ2

2∑
i=1

∂

∂xi

(
vi ρ2) .

Insertion of V = γ gradN (u) = 1
ρ2 γ gradE(u) now gives directly:

divN (γ gradN (u)) = 1
ρ2 divE(γ gradE(u)).

Equivalence between the equations We want to show that since the conduc-
tivity equations are preserved, there is a direct relationship between the equations
arising in the conformal and the Euclidean reconstruction procedure.

In section 4.2 the following two equations corresponding to (4.9) and (4.27) were
derived for a constructive reconstruction procedure on a conformal manifold (N, gN ):

gradN (log(detA)) = NN +
2∑

p,q=1
g(gradN (HN,qp), Ã SN

p )Ã−1 SN
q , (4.44)

and

ρ2Ã2 gradN (θN ) + [Ã2, Ã1] = −1
2
JE gradN (ρ2) + 1

2
ρ2Ã2V N,a

12 − 1
2
ρ2JENN , (4.45)

with NN = 1
2 gradN (log

(
detHN

)
). In the Euclidean case these equations are on the

following form, corresponding to equation (4.9) and (3.7):

∇ log(detA) = 1
2

∇ log
(
detHE

)
+

2∑
j,ℓ=1

(
∇
(
HE

)jℓ · ÃSE
ℓ

)
Ã−1SE

j , (4.46)

and
Ã2∇θ + [Ã2, Ã1] = Ã2V E,a

12 − 1
2
JENE , (4.47)

with NE = 1
2 ∇ log

(
detHE

)
. One key observation between the conformal manifold

and Euclidean space is, that the rotation operators RM and RE and JM and JE
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respectively are equivalent. On the manifold we can express the quantities with
respect to their Euclidean versions, and when we insert them in equation (4.45) it
will reduce to equation (4.47). We note that since gradN (V ) = ρ−2∇V the matrix
SM can be expressed in terms of its Euclidean version as ρ−2SE . For the power
density data HN we obtain

HN = (SN )TGSN = ρ−2(SE)TSE = ρ−2HE .

Furthermore, we want to express the matrix TN in terms of its Euclidean version TE .
By the relationship

(
RN
)T
GRN = G it follows that TN satisfies

TNHN (TN )T = G ⇔ ρ−2TNHE(TN )T = ρ2I.

As its Euclidean version TE is determined by the relationship TEHE(TE)T = I, it
follows that TN = ρ2TE . The vector field V N

12 can now be expressed with respect to
V E

12 by

V N
12 = 1

2

2∑
k=1

gradN (TN
1k)TN,k2

= ρ−2
2∑

k=1

∇(ρ2TE
1k)ρ−2TE,k2

= ρ−2
2∑

k=1

∇(TE
1k)TE,k2 + ρ−4∇(ρ2)

2∑
k=1

TE
1kT

E,k2

︸ ︷︷ ︸
=0

= ρ−2V E
12 .

As the same holds for the vector field V N
21 it follows that V N,a

12 = ρ−2V E,a
12 . Finally,

we can express NN in terms of NE by

NN = 1
2

gradN (log
(
detHN

)
)

= 1
2
ρ−2∇(log

(
ρ−4 detHE

)
)

= −ρ−4∇(ρ2) + ρ−2 1
2

∇(log(detH))︸ ︷︷ ︸
=NE

.

Insertion of these quantities in equation (4.45) yields exactly equation (4.47), as
claimed. Similarly, we can substitute the expression for NN and (HN )−1 into equa-
tion (4.44) which yields equation (4.46) in Euclidean space.

Reconstruction procedure The reconstruction procedure is outlined in algorithm
5.
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Algorithm 5 Reconstruction procedure
Choose a set of boundary conditions (f1, f2, f3, f4) so that HM satisfies (4.42) and
(4.43).

1. Use [4, 5, 10] to determine a conformal diffeomorphism that gives the conformal
isometric representation (N, ρ2 gE) of (M, g)

2. Express the power density data in the conformal coordinates and transform the
power density data by the known conformal factor ρ: HE = ρ2 HN

3. Use the Euclidean reconstruction approach in algorithm 1 to reconstruct γ from
HE

4.3.1.2 A numerical example

The Matlab and Python code to generate the numerical example can be found
on GitLab: https://lab.compute.dtu.dk/hjsc/reconstructing-anisotropic-
conductivities-on-two-dimensional-riemannian-manifolds-from-power-
densities.git.

To illustrate the reconstruction procedure we consider a manifold (N, gN = ρ2 ·gE)
represented by a catenoid. The fundamental domain N is seen in the left part of figure
4.1, and the catenoid is already ‘uniformized’ via the following two different analytic
conformal representations r1 and r2, and corresponding conformal factors ρ1 and ρ2:

r1(x1, x2) =

cosh
(
x1) cos

(
x2)

cosh
(
x1) sin

(
x2)

x1

 ,

r2(x1, x2) =


cosh

(
log
(√

(x1)2 + (x2)2
))

cos
(
arg(x1 + ix2)

)
cosh

(
log
(√

(x1)2 + (x2)2
))

sin
(
arg(x1 + ix2)

)
log
(√

(x1)2 + (x2)2
)

 ,

ρ1(x1, x2) = cosh
(
x1),

ρ2(x1, x2) =
cosh

( 1
2 log

(
(x1)2 + (x2)2))√

(x1)2 + (x2)2
.

r1 is the typical parameterisation of a catenoid, while we consider the more com-
plicated parameterisation r2 to illustrate how holes in the fundamental domain can
be mapped into vertical level curves on the catenoid. These parameterisations are
illustrated in the right part of figure 4.1.
The conductivity tensor field γ is composed of three functions ξ, ζ, and (det γ) 1

2 :

γ = (det γ) 1
2

(
ξ ζ

ζ 1+ζ2
ξ

)
. (4.48)
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Figure 4.1: Illustration of the two different parameterisations r1 and r2 respectively.

The three functions ξ, ζ, and (det γ) 1
2 are chosen to show a number of features to

be reconstructed. These are illustrated in the fundamental domain N in the first
row of figure 4.2. In accordance with [6] we use only three boundary conditions to
generate the power densities. These are simple polynomials in x1 and x2 given by
(f1, f2, f4) = (−x2 − 0.1(x2)2, x1 − x2, 0.2x1x2 + x2 − 0.1(x1)2) (the third boundary
condition is f3 = f2). The reconstructions are shown on the catenoid in the second
and third row of Figure 4.2.

4.3.1.3 Conclusion

We have presented a new geometric setting for the reconstruction of anisotropic
conductivities from power densities. Our main result generalises the reconstruction
method for the 2-dimensional Euclidean setting to 2-dimensional compact Rieman-
nian manifolds with genus 0. The result is presented in a way that opens for further
research questions in the setting of Riemannian manifolds with higher genus and possi-
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Figure 4.2: The true scalar functions ξ, ζ and (det γ) 1
2 determining the conductivity

in the plane (first row) and their reconstructions on a catenoid corresponding to the
parameterisations r1 and r2 respectively (second and third row).
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bly in higher dimensions. The approach applies to other similar inverse problems with
internal data, in particular the reconstruction problem for anisotropic conductivities
from current densities, c.f. [2, 3].

4.4 Future work

4.4.1 Current densities
4.4.1.1 Short summary of the reconstruction procedure of an anisotropic

conductivity from current densities in the Euclidean plane

This is based on [2, 3].
One considers solutions ui to the conductivity equation{

−div(γ∇ui) = 0 in Ω,
ui = fi on ∂Ω.

(4.49)

Here Ω ⊂ R2 is an bounded domain with C2,α boundary. γ ∈ H5+ε(Ω) is a real 2 × 2
symmetric matrix that satisfies the uniform ellipticity condition

λ|ξ|2 ≤ γξ · ξ ≤ Λ|ξ|2 for every ξ = (ξ1, ξ2) ∈ R2,

for some λ,Λ > 0. The reconstruction procedure is characterised by reconstructing
the anisotropic conductivity γ from internal current densities on the form

Ci = γ∇ui, 1 ≤ i, j ≤ 4.

Reconstruction of the anisotropy γ̃ This requires four measurements Ci = γ∇ui

for which the following matrices M1 and M2 are linearly independent throughout Ω,
where

Mk = 1
2
(
ZkC

TJ + (ZkC
TJ)T

)
,

with

Z1 = [∇µ1 ∇µ2], Z2 = [∇λ1 ∇λ2], C = [C1 C2], J =
[
0 −1
1 0

]
.

Furthermore, µ1, µ2, λ1, and λ2 are defined as:

(µ1, µ2) =
(

det(∇u3,∇u2)
det(∇u1,∇u2)

,
det(∇u1,∇u3)
det(∇u1,∇u2)

)
,

(λ1, λ2) =
(

det(∇u4,∇u2)
det(∇u1,∇u2)

,
det(∇u1,∇u4)
det(∇u1,∇u2)

)
.
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The reconstruction formula is derived by applying the curl-operator (J∇)· to the
following system of equations:

∇u3 = µ1∇u1 + µ2∇u2, (4.50a)
∇u4 = λ1∇u1 + λ2∇u2. (4.50b)

Using the fact that ∇ui is curl-free and the formula ∇(f V ) = ∇f · V + fdiv(V ),
one can derive that γ̃ must be orthogonal to M1 and M2 (in the sense tr(γ̃M1) =
tr(γ̃M2) = 0). Therefore, γ̃ must be parallel to the following matrix B, which is
orthogonal to both M1 and M2:

B =
[
2M1,22M2,12 − 2M1,12M2,22 M1,11M2,22 −M1,22M2,11
M1,11M2,22 −M1,22M2,11 2M1,12M2,11 − 2M1,11M2,12

]
.

This yields the following explicit reconstruction formula for γ̃:

γ̃ = sign(B11)(detB)− 1
2B, (4.51)

In order to be able to write the solutions ∇u3 and ∇u4 as linear combinations in the
basis (∇u1,∇u2), as in the system (4.50), it is required that u1 and u2 satisfy:

inf
x∈Ω

|det(∇u1,∇u2)| ≥ c1 > 0. (4.52)

Reconstruction of (det γ) 1
2 This requires the pair of measurements (C1, C2) and

that condition (4.52) is satisfied. Similarly to the previous step it is derived from
the fact that ∇ui is curl-free and using the formula ∇(f V ) = ∇f · V + fdiv(V ).
Rewriting the equations (J∇) ·

(
(det γ)− 1

2 γ̃−1∇ui

)
= 0 yields:

∇ log
(

(det γ) 1
2

)
· (Jγ̃−1Ci) = (J∇) · (γ̃−1Ci),

for i = 1, 2. Combining these equations gives the reconstruction formula which in-
volves integration of a gradient equation:

∇ log
(

(det γ) 1
2

)
= Jγ̃(C−1)T

(
(J∇) · (γ̃−1C1)
(J∇) · (γ̃−1C2)

)
. (4.53)

This is very similar to the reconstruction formula of an isotropic conductivity from
power densities (see [1, Prop. 10.2]).

4.4.1.2 Thoughts on this approach on Riemannian manifolds

In following we discuss whether it is possible to generalise the reconstruction proce-
dure in the Euclidean plane to a Riemannian manifold (M, g). We consider current
density data CM

i = γ gradM (ui) for 1 ≤ i ≤ 4. The reconstruction procedure in the
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Euclidean plane relies on the two important equations (4.51) and (4.53). These are
both derived based on the fact that the gradients ∇ui are curl-free. This is equiva-
lent to the gradients satisfying div(J∇ui) = 0. It was shown in section 4.2 that the
property divM (JM gradM (ui)) = 0 holds on (M, g) with the operator JM defined as

JM = 1√
detG

[
−G12 −G22
G11 G12

]
.

This indicates that constructive reconstruction formulas on (M, g) are feasible, when
one applies the operator divM

(
JM ·

)
to the system of equations:

gradM (u3) = µ1 gradM (u1) + µ2 gradM (u2) (4.54)
gradM (u4) = λ1 gradM (u1) + λ2 gradM (u2) . (4.55)

Furthermore, we note that the derivations of formula (4.51) are simpler than for the
formula to reconstruct Ã from power densities. This gives the impression that one can
generalise equation (4.51) for all types of Riemannian manifolds (not only manifolds
with conformal or diagonal metric). In this case Mk and B will depend on the metric
matrix function G. The same generalisation holds for formula (4.53), which is solely
derived based on the fact that the gradients are curl-free.

The approach in paper C seems feasible as well, as the solutions satisfy the same
PDE and the equations are similar. Here one can follow the reconstruction procedure
in algorithm 5 with an appropriate transformation of the current density data on a
conformal manifold: CE

i = ρ2CN
i .

4.4.2 Higher genus: A torus with disks removed
It would be of interest, whether the reconstruction approach described in section 4.3
for manifolds with genus zero could be generalised to manifolds with higher genus.
As a first step we consider the example of a torus with a disk removed as illustrated
in figure 4.3.

For the reconstruction procedure from power densities in the Euclidean plane
it is discussed in section 3.1.2, whether there exist boundary functions so that the
conditions for the reconstruction procedure were satisfied. Here it was shown in
[6] that a construction with CGO solutions guarantees that there exists a set of
four boundary conditions such that the Jacobian condition in (3.2) and the gradient
condition in (3.3) are satisfied. By the equivalence in the PDEs between a conformal
manifold and the Euclidean plane, this also applies to Riemannian manifolds with
genus zero. In order to generalise this type of result one needs to work with periodic
functions as illustrated for the torus in figure 4.3. To guarantee existence of boundary
functions such that the corresponding solutions in periodic Sobolev spaces satisfy
the Jacobian condition (4.4) and the gradient condition (4.5) we think of using the
Runge approximation property. It is known that the unique continuation principle
holds for our operator in periodic Sobolev spaces (see e.g. [11, p. 155]). To show
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Torus with a disk removed. Parameter domain.

Figure 4.3: A higher genus example: A torus with a disk removed.

that the Runge approximation property holds, we think of using a similar approach
as in section 3.2.2.1 for paper B. By compactness we might be able to show that
there exists a finite number of boundary conditions so that the Jacobian condition
(4.4) holds. It then requires some extra work to extend this result for the gradient
condition (4.5), as the coordinate functions xj and their gradients do not satisfy this
condition.

4.4.2.1 Numerical investigations of the Jacobian on a torus

We investigated numerically for the simple case of γ = I2, whether it is possible
to find a pair of boundary conditions (f1, f2) so that the corresponding Jacobian
det(∇u1,∇u2) is non-vanishing on a torus with one or two disks removed. Figure 4.4
illustrates the solutions and the corresponding Jacobian for the coordinate functions
as boundary functions: f1 = x1 and f2 = x2. For this choice of boundary conditions
we always observed regions in which the Jacobian vanished. To illustrate how the
size and number of disks removed influenced in which regions the Jacobian vanishes,
we consider the case of a torus with one medium-sized disk removed, one big disk re-
moved, and two disks removed. We see that in the case of one disk removed the small
(and problematic) values of the Jacobian appear on a band towards the corners of the
parameter domain, which are the regions most difficult to control from the disk re-
moved in the middle. This problem cannot be solved by controlling the domain from
two disks removed, but the location and size of the two disks removed influence the
shape and location of the band of small values of the Jacobian. Figure 4.5 illustrates
the solutions and Jacobian on a torus with a medium-sized disk removed for more os-
cillating boundary functions f1 = cos(4 arg(x1 + ix2)) and f2 = sin(4 arg(x1 + ix2)).
The band of small values of the Jacobian is further towards the corners than in the
case of the less oscillating boundary functions. As the regions of a vanishing Jacobian
for these two cases in figure 4.4(a) and figure 4.5 do not overlap one could therefore
combine these two pairs of boundary functions to obtain a non-vanishing Jacobian
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over the whole domain. However, even for the simple case of γ = I2 we were not able
to find a single pair of boundary conditions that yielded a non-vanishing Jacobian
over the whole domain. Therefore, the approach of covering the domains with a finite
number of balls as indicated for the theoretical result above seems also to be the
approach to obtain numerical results.

u
1

u
2

de
t(

∇
u

1,
∇
u

2)

(a) (b) (c)

Figure 4.4: The solutions u1, and u2, and the Jacobian det(∇u1,∇u2) in the pa-
rameter domain of a torus with one or two disks removed. The boundary conditions
f1 = x1 and f2 = x2 are used. For the Jacobian only the smallest values are illus-
trated in order to highlight in which region the Jacobian vanishes.

4.4.3 Thoughts on the reconstruction of the anisotropy γ̃ when
the magnitude (det γ) is known

In some practical settings the magnitude of the conductivity, (det γ), is known, while
the anisotropy, γ̃, is unknown. In this case, it is of interest whether one can reconstruct
γ̃ from data corresponding to less than four measurements.
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Figure 4.5: The solutions u1, and u2, and the Jacobian det(∇u1,∇u2) in the
parameter domain of a torus with one disk removed. The boundary conditions
f1 = cos(4 arg(x1 + ix2)) and f2 = sin(4 arg(x1 + ix2)) are used. For the Jacobian
only the smallest values are illustrated in order to highlight that the Jacobian van-
ishes in the outermost corners of the parameter domain.

4.4.3.1 Current densities

We investigate, whether it is possible to reconstruct γ̃ with known (det γ) from two
current density measurements Ci = γ∇ui in the Euclidean plane and if this result
translates to a Riemannian manifold (M, g). As (det γ) is known one could try to use
the formula (4.53) to reconstruct γ̃. As det γ̃ = 1 we parameterise it with functions
λ(x1, x2) and µ(x1, x2):

γ̃(λ, µ) =

[
λ(x1, x2) µ(x1, x2)
µ(x1, x2) 1+µ(x1,x2)2

λ(x1,x2)

]
.

We insert this expression in (4.53). This yields the following non-linear system of
first-order PDEs depending on λ(x1, x2) and µ(x1, x2):

−
(
µ2 + 1

)
λ∂1λ− (µ3 + µ) ∂2λ+ λ2µ∂1µ

−(µ2 + 1)λ∂2µ+ c1λ
3µ+ c2λ

2µ2 + (c3 − L1)λ2

+c4(µ3 + µ)λ+ c5(µ4 + 2µ2 + 1) = 0, (4.56a)
λµ∂1λ+ (1 + µ2) ∂2λ− λ2 ∂1µ− λµ∂2µ− c1λ

3

−c2λ
2µ− c4λµ

2 + (c6 − L2)λ− c5(µ3 + µ) = 0, (4.56b)
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with
[
L1
L2

]
= ∇ log

(
(det γ) 1

2

)
. The expressions ci depend on entries of the matrix

C = [C1 C2] and derivatives of these entries:

c1 = −C22∂1C21

detC
+ C21∂1C22

detC
,

c2 = C12∂1C21

detC
− C22 (∂2C21 − ∂1C11)

detC
− C11∂1C22

detC
+ C21 (∂2C22 − ∂1C12)

detC
,

c3 = C12∂1C21

detC
− C11∂1C22

detC
,

c4 = C12 (∂2C21 − ∂1C11)
detC

+ C22∂2C11

detC
− C11 (∂2C22 − ∂1C12)

detC
− C21∂2C12

detC
,

c5 = −C12∂2C11

detC
+ C11∂2C12

detC
,

c6 = −C22∂2C11

detC
+ C21∂2C12

detC
.

In future work one has to investigate, whether this system has a unique pair of
solutions. If this is the case, we think it would be possible to solve it numerically in
FEniCS. If this approach succeeds, we believe that this result can be generalised to
the manifold from our analysis in section 4.4.1.2.

4.4.3.2 Power densities

In contrast to current densities, it is be more complicated to reconstruct γ̃ from power
density data Hij = γ∇ui · ∇uj , corresponding to two measurements 1 ≤ i, j ≤ 2 in
the Euclidean plane. In this case one cannot rely on the formula below corresponding
to equation (3.6):

∇ log(detA) = 1
2

∇ log
(
detHE

)
+

2∑
j,ℓ=1

(
∇
(
HE

)jℓ · ÃSE
ℓ

)
Ã−1SE

j ,

which is similar to the formula (4.53) for current densities. For the reconstruction
approach from power densities there is an extra step involved, splitting the vector
fields Si = A∇ui from the power densities Hij by reconstructing the angle function
θ. In the formula above knowledge of θ is crucial in order to know the vector fields
Si. Therefore, one cannot use this formula to reconstruct Ã without knowledge of θ.
However, it is also not possible to reconstruct θ from the formula below corresponding
to equation (3.7) as it depends on Ã:

Ã2∇θ + [Ã2, Ã1] = Ã2V E,a
12 − 1

2
JENE .

Thus, we think that one needs a different approach in order to reduce the amount of
measurements to reconstruct γ̃. If this succeeds in the Euclidean plane there is a high
chance from the analysis in section 4.2 and 4.3 that the result can be generalised to
Riemannian manifolds.
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CHAPTER5
Concluding remarks

This chapter summarises the work covered in this thesis. In the preceding chap-
ters different settings were considered for reconstruction of an electrical conductivity
from power densities. A lot of work has gone into understanding this reconstruction
problem on a 2D Riemannian manifold and generalising an existing reconstruction
procedure from the Euclidean plane to the manifold, which is partly covered in paper
C. Another large part of work went into implementing the reconstruction procedure
for anisotropic conductivities in the Euclidean plane. This implementation was used
for the spin-off projects on two limited view settings in the Euclidean plane as well.
Supplemented with theoretical results this resulted in paper A and B.

The reconstruction problem on a 2D Riemannian manifold was a difficult task as
the start of the project. There was no literature available on this topic and we were
wondering whether we were asking the right questions for this setting and considering
the right approach. It took some time to fully understand the reconstruction proce-
dure in the Euclidean plane and how the assumptions and quantities would translate
to the manifold. We realised relatively quickly that one of the main equations for the
reconstruction procedure in the plane can be translated to the manifold almost one
to one. However, the other main equation relies on the fact that a rotation matrix
has a simple parameterisation in the Euclidean plane. This parameterisation is more
complicated on the manifold, destroying the simple properties of the equation in the
plane. Therefore, we were only able to generalise the second equation to the manifold
when the Riemannian metric is conformal or diagonal. We did not find a way to
generalise the equation for a general Riemannian manifold, but it is possible that
there exists a different approach that will work.

During the process of generalising the reconstruction procedure from the plane to
the manifold we realised that the conductivity equations between a conformal mani-
fold and the plane are preserved. To our knowledge this result exists in the literature
for isotropic, but not for anisotropic conductivities. This observation implies that
one can solve the reconstruction procedure for general Riemannian manifolds: By the
Poincaré-Koebe uniformisation theorem every compact Riemann surface has a confor-
mal representation and constructive uniformisation approaches exist in the literature.
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After the uniformisation one can simply use the Euclidean reconstruction procedure
to recover the conductivity. This result is documented in paper C.

Simultaneous to addressing the reconstruction problem on the manifold, we started
implementing the existing reconstruction procedure in the plane. In contrast to the
original authors, we decided to implement the procedure in Python using FEniCS
where it is easier to consider non-simply connected domains. The reconstruction
procedure is split into two steps: Recovering the normalised anisotropy of the con-
ductivity represented by two functions and afterwards recovering the magnitude of
the conductivity represented by a third function. The second step corresponds to
reconstructing an isotropic conductivity, and it was relatively straightforward to get
this part to work in the implementation. The first part of recovering the anisotropy
was a challenge in the implementation. It took us some time to realise that it required
a mesh with a very high resolution and second order basis functions along each mesh
interval to obtain reasonable results. The Python code is now public available on
GitLab.

The results on a 2D Riemannian manifold open for possible future work. The
result in paper C solely applies for manifolds with genus zero. Therefore, possible fu-
ture work is to generalise these results to higher genus. One of the main assumptions
for the reconstruction procedure is, that a pair of boundary functions is chosen so
that the corresponding solutions to the conductivity equation have a non-vanishing
Jacobian. For the genus zero case there is a result that guarantees existence of such
boundary conditions. In order to generalise this result to higher genus, one needs to
prove this result for periodic domains with a boundary. We think that this is possible
by using the Runge approximation property.

Another possible topic for future work is generalising the work for power densities
on Riemannian manifolds to current densities. For the Euclidean plane there exists
an explicit reconstruction procedure, which is simpler than for power densities as one
do not have to extract the current densities from the power density measurements.
As this reconstruction procedure does not seem to rely on properties that simplify in
the Euclidean plane, but not on the manifold, we are positive that the constructive
procedure can be generalised to general 2D Riemannian manifolds. Alternatively, we
think it is possible to consider the approach in paper C to reconstruct the conduc-
tivity from current densities by using a conformal representation of the manifold and
solving the problem using the Euclidean reconstruction procedure.

Motivated by practical applications, another interesting question is, whether one
can reconstruct the normalised anisotropy from less than four measurements when
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the magnitude of the conductivity is known. This applies to reconstruction from both
current and power densities and would be an interesting question in the Euclidean
plane as well as on a 2D Riemannian manifold. There is a chance that it is possible to
reconstruct the normalised anisotropy from two current density measurements. How-
ever, this would require solving a non-linear system of first order PDEs. Whether the
system is solvable would require further investigations. If this is possible, we think
that a similar approach will work on the manifold. A similar approach does not work
for reconstruction from power densities, as there, compared to recovery from current
densities, is an extra step of extracting the current densities from the power density
measurements.

After we did the implementation of recovering anisotropic conductivities from
power densities, we tested the implementation on a limited view setting that a previ-
ous PhD student, Bjørn Jensen, has worked on. In this limited view setting two- or
three-dimensional domains in Euclidean are considered, where a part of the boundary
can be controlled by a Dirichlet condition, while on the remaining boundary there
is a no-flux condition. This resulted in paper B, where we prove an existence re-
sult of a finite number of boundary functions so that the corresponding Jacobian
is non-vanishing locally. We supplemented this with numerical examples for a two-
dimensional domain and a fixed pair of boundary conditions.

On the external stay the work on the limited view setting gave the idea for another
possible research project. Here we studied a limited view setting for two-dimensional
domains in the Euclidean plane, where a part of the boundary can be controlled
by a Dirichlet condition, while on the remaining boundary there is a zero Dirichlet
condition. For this setting we were interested in finding an explicit pair of boundary
functions so that the corresponding Jacobian is non-vanishing over the whole domain.
We adapted existing results from the full view setting to limited view and proposed
sufficient conditions on the boundary functions so that the previous statement is true.
This is related to the number of increasing and decreasing part of the functions along
the boundary. In this setting it seemed natural to consider boundary functions that
are discontinuous along the boundary. We were able to generalise the result to these
types of functions by proving a weak maximum principle for weighted Sobolev spaces.
This was supplemented by numerical examples by using the previous implementation.
However, this required some extra work to make the procedure work in weighted
Sobolev spaces, as the general framework in FEniCS only supports solving PDEs in
classical Sobolev spaces. This work is documented in paper A.

In practical applications one is usually interested in Neumann rather than Dirichlet
boundary conditions. Therefore, for possible future work it would be interesting
whether the results in paper A can be generalised to a limited view setting with pure
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Neumann instead of pure Dirichlet conditions. In the full view setting with Neumann
conditions it is known that a non-vanishing Jacobian is related to the number of
positive and negative parts of the function at the boundary. We think that the
same sufficient conditions on the boundary functions as in paper A will work in this
setting, as the zero Dirichlet condition in paper A on the non-controllable part of the
boundary implies, that the number of increasing and decreasing parts is equivalent
to the number of positive and negative parts of the function at the boundary. We
think that this result will also hold for discontinuous boundary functions without the
additional work on weighted Sobolev spaces, as in the Neumann case the existing
result allows for discontinuous boundary functions.
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JACOBIAN OF SOLUTIONS TO THE CONDUCTIVITY EQUATION IN
LIMITED VIEW

MIKKO SALO AND HJØRDIS SCHLÜTER

Abstract. The aim of hybrid inverse problems such as Acousto-Electric Tomography or Current
Density Imaging is the reconstruction of the electrical conductivity in a domain that can only be
accessed from its exterior. In the inversion procedure, the solutions to the conductivity equation
play a central role. In particular, it is important that the Jacobian of the solutions is non-
vanishing. In the present paper we address a two-dimensional limited view setting, where only a
part of the boundary of the domain can be controlled by a non-zero Dirichlet condition, while on
the remaining boundary there is a zero Dirichlet condition. For this setting, we propose sufficient
conditions on the boundary functions so that the Jacobian of the corresponding solutions is non-
vanishing. In that regard we allow for discontinuous boundary functions, which requires the
use of solutions in weighted Sobolev spaces. We implement the procedure of reconstructing a
conductivity from power density data numerically and investigate how this limited view setting
affects the Jacobian and the quality of the reconstructions.

acousto-electric tomography, current density imaging, hybrid inverse problems, coupled physics
imaging, non-vanishing Jacobian, conductivity equation

1. Introduction

In certain imaging applications it is important to know whether solutions u1 and u2 to the
conductivity equation −div(σ∇ui) = 0 in Ω,

ui = gi on ∂Ω,

satisfy the following non-vanishing Jacobian condition:

(1) det[∇u1(x)∇u2(x)] 6= 0, for x ∈ Ω.

Here Ω ⊂ R2 is a bounded Lipschitz domain and σ ∈ L∞(Ω,R2×2) is an anisotropic conduc-
tivity. This question arises in Acousto-Electric Tomography that aims at reconstructing the un-
known interior conductivity σ from internal data composed of power density measurements [ZW04;
Amm+08]. Similar questions appear in other imaging methods including Current Density Imaging
[WS12; Bal13; Li+21] and Magnetic Resonance Electric Impedance Tomography [SKW05; SW11]
that aim at reconstructing the conductivity from current density measurements. These questions
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2 JACOBIAN OF SOLUTIONS TO THE CONDUCTIVITY EQUATION IN LIMITED VIEW

are relevant in any dimension n ≥ 2, but in this article, we will restrict our attention only on the
two-dimensional case.

The reconstruction procedure in Acousto-Electric Tomography is characterized by two steps:
First reconstructing interior power density data Hij = σ∇ui · ∇uj from combined information
from boundary measurements and perturbations by acoustic waves, and secondly reconstructing σ
from the power density matrix H ∈ R2×2. The non-vanishing Jacobian condition (1) is essential
for the second step in the reconstruction procedure, as it requires inverting the matrix H.

The question whether one can find conditions on the boundary functions g1 and g2 so that
the non-vanishing Jacobian condition (1) is satisfied dates back to Radó in the 1920s. For the
constant coefficient case σ = I2 an answer to this question is formulated in the Radó-Kneser-
Choquet theorem [Rad26; Kne26; Cho45]. This result was generalized to non-constant coefficients
in [Ale86; Ale87; AM94; AN01; BMN01; AN15]. For instance, [BMN01] require that g = (g1, g2)

is a C1 diffeomorphism and maps ∂Ω onto the boundary of a convex domain for the condition (1)
to hold. A discussion of results of this type is given in [AC18] (see also [Alb22] for recent work on
random boundary data).

In this paper, we address the same question in a limited view setting that is characterized by
a non-empty closed part of the boundary, Γ ⊂ ∂Ω, which we can control, while on the rest of the
boundary the potentials u1 and u2 are vanishing:

(2)


−div(σ∇ui) = 0 in Ω,

ui = fi on Γ

ui = 0 on ∂Ω\Γ.

The Radó-Kneser-Choquet type results mentioned above cannot be applied directly in limited
view, as g = (u1, u2)|∂Ω is not injective. However, we show that the arguments for proving such
results can be adapted to the limited view setting, and we formulate sufficient conditions under
which the corresponding Jacobian is non-vanishing. We also allow the boundary functions to be
discontinuous (e.g. piecewise smooth), which seems natural in this setting and requires the use of
weighted Sobolev spaces. We illustrate by numerical simulations how these conditions can be used
to reconstruct an isotropic conductivity from power density data. For the numerical simulations
an analytic reconstruction approach is used [MB12b].

2. Main results

We will consider the conductivity equation −div(σ∇u) = 0 in Ω, where the conductivity matrix
σ is symmetric and satisfies for some λ,Λ > 0 the ellipticity condition

(3) λ |ξ|2 ≤ σjkξjξk ≤ Λ |ξ|2 for a.e. x ∈ Ω and all ξ ∈ Rn.

The first result states that the presence of an interior critical point for a nonconstant solution u
forces oscillations in its boundary data. The result is known for H1/2 boundary data, see [AC18,
Proposition 6.7], but we give an extension to the case where the boundary data can be slightly
worse that H1/2 (e.g. piecewise smooth). Boundary data in Hs with s ≤ 1/2 may be discontinuous,
and for such functions, we can use a quasicontinuous representative to talk about their pointwise
values [AH96, Chapter 6]. The notation H1(Ω, d1−2s) for weighted spaces is explained in Section
3.
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Proposition 2.1. Let Ω ⊂ R2 be a simply connected bounded Lipschitz domain and let σ ∈ C0,α(Ω)

satisfy (3). There is ε > 0 with the following property: if f ∈ Hs(∂Ω) where |s− 1/2| < ε and if
u ∈ H1(Ω, d1−2s) is a nonconstant solution of−div(σ∇u) = 0 in Ω,

u = f on ∂Ω,

and if ∇u(x0) = 0 for some x0 ∈ Ω, then there are x1, x2, x3, x4 ∈ ∂Ω that are in increasing order
along ∂Ω such that

u(x1) > u(x0), u(x2) < u(x0), u(x3) > u(x0), u(x4) < u(x0).

Proof. We follow the argument in [AC18, Proposition 6.7]. By [Sch90, Theorem 2.3.3] the
interior regularity of u is C1,α

loc (Ω). As x0 is a critical point of u it follows from [AC18, Proposition
6.6] that in a neighborhood U of x0 the level set {x ∈ U : u(x) = u(x0)} is made of m + 1 arcs
intersecting with equal angles at x0 for some m ≥ 1. We note that by [AC18, Proposition 6.5 (i)]
the set {x ∈ U : u(x) > u(x0)} is made of m+ 1 connected components that we denote by U+

l :

{x ∈ U : u(x) > u(x0)} =

m+1⋃
l=1

U+
l .

Furthermore, by the same proposition it follows that these connected components alternate with
the corresponding connected components U−l of the set {x ∈ U : u(x) < u(x0)}. We now consider
the corresponding sets over the whole domain Ω. The components of {u(x) > u(x0)} are denoted
by Ω+

j and
{x ∈ Ω : u(x) > u(x0)} =

⋃
j∈J

Ω+
j .

Similarly, the components of {u(x) < u(x0)} are denoted by Ω−j and

{x ∈ Ω : u(x) < u(x0)} =
⋃
k∈K

Ω−k .

Now pick indices j1, j2 ∈ J such that U+
1 ⊂ Ω+

j1
and U+

2 ⊂ Ω+
j2
. It follows from theorem 3.6 that

the weak maximum principle holds for H1(Ω, d1−2s) solutions, so that if u(x) > u(x0) holds in the
interior of the domains Ω+

j1
and Ω+

j2
, then one must have u(x1) > u(x0) and u(x3) > u(x0) for

some x1 ∈ ∂Ω+
j1

and x3 ∈ ∂Ω+
j2
. Since u(x) = u(x0) for x ∈ ∂Ω+

ji
∩Ω, we must have x1 ∈ ∂Ω∩Ω

+

j1

and x3 ∈ ∂Ω ∩ Ω
+

j2 . By construction there exist indices l1, l2 ∈ [1, ..,m + 1] so that U−l1 is located
between U+

1 and U+
2 and U−l2 is located to the other side of U+

2 . We now pick indices k1, k2 ∈ K
such that U−l1 ⊂ Ω−k1 and U−l2 ⊂ Ω−k2 . By the weak maximum principle (theorem 3.6) there then
exist points x2 ∈ ∂Ω∩Ω

−
k1 and x4 ∈ ∂Ω∩Ω

−
k2 such that u(x2) < u(x0) and u(x4) < u(x0) yielding

the desired statement. �

Let γ : [0, `]→ R2 be a C1 curve (we do not require that γ(0) = γ(`)). We say that γ is regular
if γ̇(t) 6= 0 for all t ∈ [0, `]. For a regular curve, we may write a polar coordinate representation for
the tangent vector γ̇(t) as

γ̇(t) = r(t)eiφ(t)
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4 JACOBIAN OF SOLUTIONS TO THE CONDUCTIVITY EQUATION IN LIMITED VIEW

where r(t) = |γ̇(t)| and φ(t) are continuous functions in [0, `]. The function

arg(γ̇(t)) := φ(t)

is well defined modulo a constant in 2πZ. We define

Ind(γ̇) :=
arg(γ̇(`))− arg(γ̇(0))

2π

If γ is closed, i.e. γ(0) = γ(`), then Ind(γ̇) is the winding number of the curve γ̇(t) (also called
the rotation index of γ(t)), which is an integer. If γ is not closed but arg(γ̇(t)) is monotone (i.e.
nondecreasing or nonincreasing), we may still interpret Ind(γ̇) as the winding number of γ̇(t), and
this is then a real number.

We now give sufficient conditions on a pair of boundary data vanishing outside an arc Γ such
that the corresponding solutions u1, u2 satisfy det[∇u1(x)∇u2(x)] 6= 0 everywhere in Ω. Condition
(a) below is related to the case where ui|∂Ω are continuous and condition (b) allows discontinuous
boundary data.

Theorem 2.2. Let Ω ⊂ R2 be a bounded simply connected domain with C1 boundary curve η :

[0, 2π] → ∂Ω, and let σ ∈ C0,α(Ω;R2×2) satisfy (3). Let Γ = η([0, `]) be a closed arc in ∂Ω. Let
f1, f2 ∈ C1(Γ) be linearly independent‚ and assume that ui is the unique solution of

(4)


−div(σ∇ui) = 0 in Ω,

ui = fi on Γ

ui = 0 on ∂Ω\Γ.

Assume that the curve γ : [0, `]→ R2, γ(t) = (f1(η(t)), f2(η(t))) is regular, arg(γ̇(t)) is monotone,
and that one of the following holds:

(a) ui|∂Ω are continuous, and |Ind(γ̇)| ≤ 1; or
(b) ui|∂Ω are continuous at η(0), and |Ind(γ̇)| ≤ 1/2.

Then det[∇u1(x)∇u2(x)] 6= 0 for all x ∈ Ω.

Proof. Assume that (a) or (b) holds, but one has det[∇u1(x0)∇u2(x0)] = 0 for some x0 ∈ Ω.
Then there is a vector ~α = (α1, α2) ∈ R2 \ {0} such that the function

u = α1u1 + α2u2

satisfies ∇u(x0) = 0. Note that if u is a constant, then by the boundary condition one has u ≡ 0

and hence f1 and f2 would be linearly dependent. Thus, we may assume that u is nonconstant.
Note that ui|∂Ω are piecewise C1 and hence they are also in Hs(∂Ω) for any s < 1/2. This implies
that ui ∈ H1(Ω, d1−2s) by Theorem 3.5. Then by Proposition 2.1 there exist distinct points
x1, x2, x3, x4 ∈ ∂Ω that are in increasing order along ∂Ω such that

u(x1) > u(x0), u(x2) < u(x0), u(x3) > u(x0), u(x4) < u(x0).

Consider the function g : [0, `]→ R given by

(5) g(t) := u(η(t)) = ~α · γ(t).

Extend g by zero to [0, 2π). Writing xj = η(tj) where tj ∈ [0, 2π), we have

(6) g(t1) > u(x0), g(t2) < u(x0), g(t3) > u(x0), g(t4) < u(x0).
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We may assume that t1 < t2 < t3 < t4 (possibly after a cyclic permutation of the indices and after
changing g to −g).

We now assume that (a) holds, and want to derive a contradiction with (6). The function g is
C1 on [0, `] and its derivative satisfies

(7) g′(t) = ~α · γ̇(t).

Since arg(γ̇(t)) is monotone and |Ind(γ̇(t))| ≤ 1, it follows that g′(t) either has at most two zeros
in [0, `], or has three zeros two of which are at t = 0 and t = `. Note that if the argument is not
strictly monotone, we make the interpretation that some of these zeros of g′ could be intervals.
We also note that by (7) and monotonicity of arg(γ̇(t)), g′ changes sign after each of these zeros.
Now suppose that u(x0) ≥ 0. Using the assumption that u|∂Ω is continuous, we have g(0) = 0, and
then (6) implies that g′ is positive somewhere in (0, t1), negative somewhere in (t1, t2), positive
somewhere in (t2, t3), and negative somewhere in (t3, `). On the other hand, if u(x0) < 0, we
use the fact that g(`) = 0 to obtain similarly that g′ is negative somewhere in (t1, t2), positive
somewhere in (t2, t3), negative somewhere in (t3, t4), and positive somewhere in (t4, `). In both
cases g′ has at least three zeros in (0, `). Moreover, before the first such zero, after the last zero,
and between each subsequent pair of these zeros there are points where g′ is nonzero. This is a
contradiction.

Assume that (b) holds. One has the formula (7) for g′(t) on [0, `]. Since arg(γ̇(t)) is monotone
and |Ind(γ̇(t))| ≤ 1/2, g′(t) either has at most one zero (that could be an interval) in [0, `], or has
two zeros (that could be intervals) which are at t = 0 and t = `. By the assumption that ui|∂Ω

is continuous at t = 0 it follows that g(0) = 0, while there may be a discontinuity at t = `. If
one has u(x0) ≥ 0, it follows from (6) that g′ is positive somewhere in (0, t1), negative somewhere
in (t1, t2), and positive somewhere in (t2, t3). On the other hand if u(x0) < 0, from (6) one sees
that t4 ∈ (0, `] and hence g′ is negative somewhere in (t1, t2), positive somewhere in (t2, t3), and
negative somewhere in (t3, t4). In both cases g′ has at least two zeros in (0, `) and before, between,
and after these zeros there are points where g′ is nonzero. This is a contradiction. �

Remark 2.3. In the setting of theorem 2.2, let Γ = η([0, `]) and Γd = η([0, `d]) with `d < `.
Boundary functions f1, f2 ∈ C1(Γ) that satisfy the assumptions and condition (a) in theorem
2.2 can also be used to generate boundary functions fd1 , fd2 ∈ C1(Γd) whose zero extensions are
discontinuous. Define fdi as

fdi (η(t)) = fi(η(t))χ[0,`d](t).

This yields solutions udi that satisfy det[∇ud1(x)∇ud2(x)] 6= 0. This allows for boundary functions
that are not captured in condition (b) in theorem 2.2, as in this case it is possible that 1/2 <

|Ind(γ̇d)|, where γd(t) = (fd1 (η(t)), fd2 (η(t))).

Proof. Assume that one has det[∇ud1(x0)∇ud2(x0)] = 0 for some x0 ∈ Ω. Then there is a vector
~α = (α1, α2) ∈ R2 \ {0} such that the function

ud = α1u
d
1 + α2u

d
2

satisfies ∇ud(x0) = 0. As udi |∂Ω is piecewise C1 it follows by the analysis in the proof of theorem
2.2 that there exist distinct points x1, x2, x3, x4 ∈ ∂Ω that are in increasing order along ∂Ω such
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6 JACOBIAN OF SOLUTIONS TO THE CONDUCTIVITY EQUATION IN LIMITED VIEW

that
ud(x1) > ud(x0), ud(x2) < ud(x0), ud(x3) > ud(x0), ud(x4) < ud(x0).

We then consider the function gd : [0, `d]→ R,

gd(t) := ud(η(t)) = (~α · γ(t))χ[0,`d](t)

where γ(t) = (f1(η(t)), f2(η(t)) for t ∈ [0, `] as before. We extend gd by zero to [0, 2π). Writing
xj = η(tj) where tj ∈ [0, 2π), we have

(8) gd(t1) > ud(x0), gd(t2) < ud(x0), gd(t3) > ud(x0), gd(t4) < ud(x0).

Furthermore, we consider the function g : [0, `]→ R for the same vector ~α:

g(t) := ~α · γ(t).

Since arg(γ̇(t)) is monotone and |Ind(γ̇)| ≤ 1, it follows that g′(t) has at most two zeros in (0, `),
or three zeros two of which are at t = 0 and t = `. (Again these zeros could be intervals.) Since
uj |∂Ω are continuous, we have fj(η(0)) = fj(η(`)) = 0 and thus g(0) = g(`) = 0. Suppose that
g′(t) has exactly two zeros in (0, `). Then since g′ must change sign after each zero, there exist
two intervals (0, ti) and (ti, `) so that either

g(t) ≥ 0 for t ∈ (0, ti) and g(t) ≤ 0 for t ∈ (ti, `),

or
g(t) ≤ 0 for t ∈ (0, ti) and g(t) ≥ 0 for t ∈ (ti, `).

On the other hand if g′(t) has at most one zero, or three zeros two of which are at t = 0 and t = `,
then either

g(t) ≥ 0 for t ∈ (0, `) or g(t) ≤ 0 for t ∈ (0, `).

The behavior of g translates to gd, as gd is the restriction of g to the interval [0, `d] with `d < `. It
follows that there are at most two intervals for which gd is nonnegative and nonpositive respectively,
and additionally (gd)′ must change sign after each of its zeros. This is in contradiction with (8)
as no matter if ud(x0) ≥ 0 or ud(x0) ≤ 0 it is not possible for gd to have two points for which
gd(t) ≥ u(x0) and two points for which gd(t) ≤ u(x0) in alternating order. �

Remark 2.4. For boundary functions f1 and f2 that satisfy one of the conditions in theorem 2.2
it is determined by the order of the functions whether det[∇u1(x)∇u2(x)] is positive or negative
for all x ∈ Ω.

3. Dirichlet problem in weighted spaces

Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary, and consider the operator

Lu = −∂j(σjk∂ku) + cu

where σjk, c ∈ L∞(Ω), σjk = σkj , and (σjk) is uniformly elliptic in the sense that for some λ,Λ > 0,

(9) λ |ξ|2 ≤ σjkξjξk ≤ Λ |ξ|2 for a.e. x ∈ Ω and all ξ ∈ Rn.

We wish to consider the Dirichlet problem

Lu = 0 in Ω, u = f on ∂Ω
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in suitable weighted Sobolev spaces. For general references on weighted Sobolev spaces see [Tri78,
Chapter 3] and [Kuf80]. The following theory in the L2 setting is mostly in [Kuf80], but for
completeness we also discuss the Lp theory following [Kim08] but with slightly different notation.

Definition 3.1. Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary. Let 1 < p < ∞ and
α ∈ R, and let d(x) = dist(x, ∂Ω). Consider the norms

‖u‖Lp(Ω,dα) = ‖udα/p‖Lp(Ω),

‖u‖W 1,p(Ω,dα) = ‖u‖Lp(Ω,dα) + ‖∇u‖Lp(Ω,dα).

LetW 1,p(Ω, dα) be the space of all u ∈ Lploc(Ω) with ‖u‖W 1,p(Ω,dα) <∞. We also defineW 1,p
0 (Ω, dα)

as the closure of C∞c (Ω) in W 1,p(Ω, dα).

The spaces W 1,p(Ω, dα) and W 1,p
0 (Ω, dα) are Banach spaces, and they are equal when α ≤ −1

or α > p − 1 (see [Kuf80, Proposition 9.10]). For α > −1 the set C∞(Ω) is dense in W 1,p(Ω, dα)

(see [Kuf80, Remark 7.2]). The trace space of W 1,p(Ω, dα) can then be identified with a Sobolev
space on ∂Ω as follows.

For 1 < p < ∞ and 0 < s < 1, let W s,p(∂Ω) be the standard Sobolev space on ∂Ω defined via
a partition of unity, C1 boundary flattening transformations, and corresponding spaces on Rn−1.
Part (a) of the following trace theorem is given in [Kim08, Theorem 2.13] (see [Tri78, Section 3.6.1]
for the case of C∞ domains), and part (b) follows from [Kim08, Lemma 2.14, Remark 2.15 and
Proposition 2.3] and Lemma 3.3 below.

Theorem 3.2. Let Ω ⊂ Rn be a bounded Lipschitz domain, let 1 < p <∞, and let −1 < α < p−1.

(a) The trace operator T : C∞(Ω) → C(∂Ω), Tu = u|∂Ω extends as a bounded surjective
operator

T : W 1,p(Ω, dα)→W 1− 1+α
p ,p(∂Ω).

Moreover, T has a bounded right inverse E : W 1− 1+α
p ,p(∂Ω)→W 1,p(Ω, dα).

(b) The space W 1,p
0 (Ω, dα) satisfies

W 1,p
0 (Ω, dα) = {u ∈W 1,p(Ω, dα) : Tu = 0}

= {u ∈ Lp(Ω, dα−p) : ∇u ∈ Lp(Ω, dα)}.

The three norms ‖ · ‖W 1,p(Ω,dα), ‖ · ‖Lp(Ω,dα−p)+‖∇ · ‖Lp(Ω,dα), and ‖∇ · ‖Lp(Ω,dα) are equiv-
alent norms on W 1,p

0 (Ω, dα).

The following Hardy inequality is given in [Kuf80, Section 9.1]. However, for later purposes we
need to make sure that the constant has a controlled dependence on α and hence we repeat the
proof.

Lemma 3.3. Let Ω ⊂ Rn be a bounded Lipschitz domain, 1 < p < ∞, and α ∈ R, α 6= p − 1.
There are C,C1 > 0 only depending on Ω, n, p such that

‖d(α/p)−1u‖Lp(Ω) ≤ CC
α/p
1

(
1 +

1

|α− p+ 1|

)
‖dα/p∇u‖Lp(Ω)

for any u ∈W 1,p
0 (Ω, dα).
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Proof. We begin with the case of Rn+ = {xn > 0}. Let u ∈ C∞c (Rn+). We integrate by parts
over Rn+ and use the Hölder inequality to obtain∫

xα−pn up dx =

∫
∂n

(
xα−p+1
n

α− p+ 1

)
up dx = − p

α− p+ 1

∫
xα−p+1−α/p
n up−1xα/pn ∂nu dx

≤ p

|α− p+ 1|
‖x(α/p)−1

n u‖p−1
Lp ‖x

α/p
n ∂nu‖Lp .

This implies that for any u ∈ C∞c (Rn+), one has

‖x(α/p)−1
n u‖Lp ≤

p

|α− p+ 1|
‖xα/pn ∂nu‖Lp .

Similarly, if U = {(x′, xn) ∈ Rn : |x′| < r, xn > h(x′)} where r > 0 and h : {|x′| ≤ r} → R
is a Lipschitz function, and if u ∈ C∞(U) vanishes near {xn = h(x′)} and {xn = ∞}, the same
argument gives that

(10) ‖(xn − h(x′))(α/p)−1u‖Lp(U) ≤
p

|α− p+ 1|
‖(xn − h(x′))α/p∂nu‖Lp(U).

Now if Ω is a bounded Lipschitz domain, then ∂Ω can be covered by finitely many balls
B1, . . . , BN such that for each j, after a rigid motion one has Bj ∩ Ω = {xn > hj(x

′)} ∩ Ω

where hj is a Lipschitz function, and d(x) in Bj ∩ Ω is comparable to xn − hj(x′) (see [Kuf80,
Corollary 4.8]). There is also an open set B0 with B0 ⊂ Ω so that Ω is covered by B0, . . . , BN .
Moreover, Bj and hj only depend on Ω and not on p and α.

Let u ∈ C∞c (Ω). We can now apply (10) in Bj ∩ Ω for j = 1, . . . , N to obtain that

‖d(α/p)−1u‖Lp(Bj∩Ω) ≤ C
C
α/p
1

|α− p+ 1|
‖dα/p∇u‖Lp(Ω).

In B0, where d(x) is comparable to 1, we can apply a Poincaré inequality as in [Kuf80, Section 9.1]
and use the above estimates on Bj ∩ Ω to get

‖d(α/p)−1u‖Lp(B0) ≤ CC
α
p

1 ‖u‖Lp(B0) ≤ CC
α/p
1 (‖∇u‖Lp(B0) + ‖u‖Lp(B0∩(B1∪...∪BN ))

≤ CCα/p1

(
1 +

1

|α− p+ 1|

)
‖dα/p∇u‖Lp(Ω).

The result follows by adding these inequalities and using that C∞c (Ω) is dense in W 1,p
0 (Ω, dα). �

The next result, which follows from [Kim08, Theorem 3.7], states the solvability of the Dirichlet
problem in weighted Sobolev spaces when the Dirichlet data is in W s,p(∂Ω).

Theorem 3.4. Let Ω ⊂ Rn be a bounded C1 domain, let 1 < p <∞, and let 0 < s < 1. Assume
that σjk and c are Lipschitz continuous in Ω with (σjk) satisfying (9), and assume that c ≥ 0.
Given any f ∈W s,p(∂Ω), there is a unique solution u ∈W 1,p(Ω, dp(1−s)−1) of the problem

Lu = 0 in Ω, u|∂Ω = f.

One has the estimate
‖u‖W 1,p(Ω,dp(1−s)−1) ≤ C‖f‖W s,p(∂Ω)

with C independent of f .

For p = 2 we obtain a similar result in weighted L2 spaces H1(Ω, dα) := W 1,2(Ω, dα) under
weaker conditions, but assuming that s is close to 1/2.
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Theorem 3.5. Let Ω ⊂ Rn be a bounded Lipschitz domain. Assume that σjk, c ∈ L∞(Ω) with
(σjk) satisfying (9) and c ≥ 0 a.e. in Ω. There is ε > 0 such that whenever |s− 1/2| < ε, then for
any f ∈ Hs(∂Ω) there is a unique solution u ∈ H1(Ω, d1−2s) of the problem

Lu = 0 in Ω, u|∂Ω = f.

One has the estimate
‖u‖H1(Ω,d1−2s) ≤ C‖f‖Hs(∂Ω)

with C independent of f .

Proof. Note that |s− 1/2| < ε implies |1− 2s| < 2ε. If ε is chosen small enough, the result
follows by combining [Kuf80, Theorem 14.4] and the trace theorem (Theorem 3.2) above. �

The next result gives a weak maximum principle for solutions inH1(Ω, dα) when |α| is sufficiently
small. This smallness condition is analogous to the condition that s is close to 1/2 in Theorem 3.5.

Theorem 3.6. Let Ω ⊂ Rn be a bounded Lipschitz domain. Let σjk, c ∈ L∞(Ω) be such that (9)
holds and c ≥ 0 a.e. in Ω. There is ε > 0 such that if |α| ≤ ε and u ∈ H1(Ω, dα) solves

−∂k(σjk∂ju) + cu = 0 in Ω

in the sense of distributions, and if Tu ≤ C a.e. on ∂Ω, then u ≤ C in Ω. Similarly, if Tu ≥ C

a.e. on ∂Ω, then u ≥ C in Ω.

The proof uses the following simple result where we write u± = max{±u, 0}.

Lemma 3.7. Let Ω ⊂ Rn be a bounded open set and α ∈ R. If u ∈ H1(Ω, dα), then u± ∈ H1(Ω, dα)

and the weak derivatives satisfy

∂ju± =

∂ju in {±u > 0},

0 elsewhere.

If Ω has Lipschitz boundary and −1 < α < 1, we also have T (u±) = (Tu)±.

Proof. If u ∈ H1(Ω, dα), then it is standard that u± ∈ H1
loc(Ω) and that ∂ju± satisfies the

formula above locally in Ω. It follows directly that u± ∈ H1(Ω, dα). The formula T (u±) = (Tu)±

holds for u ∈ C∞(Ω), and it continues to hold for u ∈ H1(Ω, dα) by density. �

Proof of Theorem 3.6. We will prove that if Tu ≤ 0 a.e. on ∂Ω, then u ≤ 0 a.e. in Ω (the other
statements follow easily from this). This will be done by testing the equation against dαv where
v = u+. Let u ∈ H1(Ω, dα) and v ∈ C∞c (Ω), and define the bilinear form

B(u, v) = (σjk∂ju, ∂k(dαv)) + (cu, dαv)

where the inner products are in L2(Ω). Using the Leibniz rule gives

(11) B(u, v) = (σjkdα/2∂ju, d
α/2∂kv) + (σjkdα/2∂ju, α(∂kd)dα/2−1v) + (cdα/2u, dα/2v).

Now |∇d| ≤ 1. Using Theorem 3.2 (b), the identity (11) continues to hold for all u ∈ H1(Ω, dα)

and v ∈ H1
0 (Ω, dα) by density.
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Finally, let u be a solution with Tu ≤ 0 a.e. on ∂Ω. Then B(u, v) = 0 for all v ∈ H1
0 (Ω, dα),

and T (u+) = 0 by Lemma 3.7. Thus we may choose v = u+, which implies that

0 = B(u, u+) = B(u+, u+)−B(u−, u+).

By Lemma 3.7 any product ∂βu+∂
γu− vanishes a.e. in Ω for |β| , |γ| ≤ 1. This implies that

B(u−, u+) = 0, which yields B(u+, u+) = 0. We now use (11) with u = v = u+, the assumption
(9) for σjk, and the assumption that c ≥ 0 to obtain that

λ‖dα/2∇u+‖2 ≤ Λ |α| ‖dα/2∇u+‖ ‖dα/2−1u+‖.

Using the Hardy inequality from Lemma 3.3, we obtain that

‖dα/2∇u+‖2 ≤
Λ

λ
|α|CCα/21

(
1 +

1

|α− 1|

)
‖dα/2∇u+‖2.

If ε is small enough and |α| ≤ ε, then the constant on the right is ≤ 1/2. It follows that ∇u+ = 0,
which implies that u+ = 0 using that Tu+ = 0. �

4. Reconstruction procedure

This section lists the reconstruction procedure for an isotropic conductivity σ from a 2×2 power
density matrix H based on [MB12b]. One can extend this procedure for anisotropic conductivities
by adding another step following the approach of [MB12a]. For simplicity, we limit ourselves to
the isotropic case. Throughout this section we assume that the boundary functions f1 and f2 were
chosen in accordance with theorem 2.2 so that the corresponding solutions u1 and u2 entering H

satisfy the non-vanishing Jacobian constraint (1) and are ordered so that det[∇u1∇u2] > 0.
The procedure is characterized by two steps. In the first step we reconstruct the angle θ that

enables us to determine the functionals Si =
√
σ∇ui from the entries of Hij = σ∇ui · ∇uj . In the

second step, we reconstruct σ from the functionals Si.

4.1. Reconstruction of θ. We consider the power density matrix H and the matrix S com-
posed of the functionals S1 and S2: S = [S1 S2]. By definition, H is symmetric and by the
Jacobian constraint and the lower bound on σ it follows that H is positive definite: For any
x = (x1, x2) 6= 0, xTHx = σ |x1∇u1 + x2∇u2|2 > 0 (since ∇u1 and ∇u2 are nonzero and linearly
independent by the Jacobian constraint).

In order to split the functionals Si from the entries of the power density data Hij , S is or-
thonormalized into a SO(2)-valued matrix R: R = STT . By definition, R is orthogonal and has
determinant one and the transfer matrix T is determined by the data. The question is, which
matrices T satisfy the equality R = STT under the conditions on R. This question has no unique
answer, so several choices of T are possible, for instance T = H−

1
2 or obtaining T by Gram-

Schmidt orthonormalization. As R is a rotation matrix, it is parameterized by the angle function
θ as follows:

R(θ) =

[
cos θ − sin θ

sin θ cos θ

]
.

From this definition, we see that once T and S are known, the function θ can be computed by

θ = arg(R1),
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where R1 denotes the first column of R. The orthonormalization technique and thus the choice of
T influences the angle θ. Our choice of T and the corresponding interpretation of θ is discussed
in subsection 4.3.

Defining T = (Tij)1≤i,j≤2 and T−1 = (T ij)1≤i,j≤2, and letting

Vij = ∇(Ti1)T 1j +∇(Ti2)T 2j ,

then θ is determined by the following equation [MB12b, Eq. (65)]:

(12) ∇θ = F,

with
F =

1

2
(V12 −V21 − J∇ logD),

J =

[
0 −1

1 0

]
, and D = (H11H22−H2

12)
1
2 . Once θ is known at at least one point on the boundary

one can integrate F along curves originating from that point to obtain θ throughout the whole
domain. Alternatively, when assuming that θ is known along the whole boundary one can apply
the divergence operator to (12) and solve the following Poisson equation with Dirichlet boundary
condition:

(13)

∆θ = ∇ · F in Ω,

θ = θtrue on ∂Ω.

In our implementation, we use the second option and discuss in subsection 4.3 knowledge of θ along
the boundary.

4.2. Reconstruction of σ. Reconstruction of σ is based on [MB12b, Eq. (68)]

(14) ∇ log σ = G,

with

G = cos(2θ̃)K + sin(2θ̃)K,

K = U(V11 −V22) + JU(V12 −V21) and U =

[
1 0

0 −1

]
.

Similarly as for θ one need to solve a gradient equation to obtain σ and has the possibility of either
integrating along curves or solving a Poisson equation, assuming knowledge of σ in one point or
along the whole boundary respectively. We assume knowledge of σ along the whole boundary and
solve the following Poisson equation with Dirichlet condition:

(15)

∆ log(σ) = ∇ ·G in Ω,

log(σ) = log(σtrue) on ∂Ω.

4.3. Choice of the transfer matrix T and knowledge of θ. For our implementation, we use
Gram-Schmidt orthonormalization to obtain the transfer matrix T:

T =

[
H
− 1

2
11 0

−H12H
− 1

2
11 D−1 H

1
2
11D

−1

]
.
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By the Jacobian constraint, it follows that H11 > 0 so that T is well-defined. As a direct conse-
quence of using Gram-Schmidt orthonormalization the first column of R simplifies to:

R1 = T11S1 + T12S2 = ��
√
σ∇u1

��
√
σ |∇u1|

.

Therefore, the angle θ simply defines the angle between ∇u1 and the x1-axis. Hence,

(16) θ = arg(∇u1).

In addition, following this definition for T the vector fields Vij can be written explicitly in terms
of H:

V11 = ∇ logH
− 1

2
11 , V12 = 0,

V21 = −H11

D
∇
(
H12

H11

)
, V22 = ∇ log

(
H

1
2
11

D

)
.

(17)

Knowledge of θ at the boundary is essential for the reconstruction procedure. By this definition of
T, knowledge of θ is directly related to knowledge of the gradient ∇u1 and the current σ∇u1, as
both vector fields have the same direction. We decompose σ∇u1 into two parts with contribution
from the unit outward normal ν and the tangent vector η = J ν:

σ∇u1 = (σ∇u1 · ν)ν + (σ∇u1 · η)η.

As along the whole boundary u1 and σ are known, the contribution from σ∇u1 · t is known as well.
Furthermore, along the part of the boundary ∂Ω\Γ we have additional information as u1 vanishes.
Therefore, the only contribution is from the unit outward normal ν, so that on this part of the
boundary σ∇u1 has either the direction of ν, −ν or the zero vector. However, in order to have full
information of θ along the boundary one needs knowledge about the Neumann data σ∇u1 · ν.

5. Numerical Examples

The Matlab and Python code to generate the numerical examples can be found on GitLab:
GitLab code.

Our aim is to illustrate numerically how two boundary conditions can be selected so that the
non-vanishing Jacobian condition (1) for corresponding solutions is satisfied in accordance with
theorem 2.2. And we choose the order of the corresponding solutions so that det[∇u1∇u2] > 0.
Furthermore, we show numerically how this can be used to reconstruct the conductivity from
power density data. For that purpose, we implemented the reconstruction procedure in section 4
in Python and used FEniCS [LMW12] to solve the PDEs. We use a fine mesh to generate our
power density data and a coarser mesh to address the reconstruction problem. We use Ndata =

79281 nodes in the high-resolution case, while for the coarser mesh we consider a resolution of
Nrecon = 50845 nodes. For both meshes, we use P1 elements. We consider the domain Ω to be the
unit disk: Ω = B(0, 1). Furthermore, we consider two test cases for an isotropic conductivity σ
defined by:

σcase 1(x1, x2) =

1 + e

2− 2

1− (x1)2+(x2)2

1−0.82


0 ≤ (x1)2 + (x2)2 ≤ 0.82,

1 0.82 ≤ (x1)2 + (x2)2 ≤ 1,
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σcase 2(x1, x2) =



2
(
x1 + 1

2

)2
+ (x2)2 ≤ 0.32,

2 (x1)
2

+
(
x2 + 1

2

)2 ≤ 0.12,

2
(
x1 − 1

2

)2
+
(
x2 − 1

2

)2 ≤ 0.12,

1 otherwise.

for (x1, x2) ∈ Ω. Figure 1 illustrates the conductivities. To investigate influence of the size of the
boundary of control, Γ, we consider three different sizes that are outlined in figure 2.

Case 1 Case 2

Figure 1. The conductivities σ used for the reconstruction procedure.

Γlarge

Γmedium

Γsmall

π
8

π
4

3π
8

5π
8

3π
4

7π
8

Figure 2. Different sizes of Γ used for the reconstruction procedure.

We demonstrate that the Jacobian constraint is satisfied for a choice of continuous and dis-
continuous boundary conditions in accordance with theorem 2.2. Note that as Ω is the unit disk
the parameterization of the boundary satisfies η(t) = t. The following functions (f1, f2) yielding
continuous boundary conditions satisfy condition (a) in theorem 2.2, as arg(γ̇) is strictly increasing
and |ind(γ̇)| = 1:
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(f c1(t), f c2(t)) =


(cos(8t)− 1, sin(8t)) for Γsmall = {t ∈

[
0, π4

]
}

(cos(2t)− 1, sin(2t)) for Γmedium = {t ∈ [0, π]}(
cos
(

8t
7

)
− 1, sin

(
8t
7

))
for Γlarge =

{
t ∈
[
0, 7π

4

]}
.

The corresponding functions uci |∂Ω extended by zero along the whole boundary are illustrated in
figure 3.

Figure 3. The continuous boundary functions uc1|∂Ω and uc2|∂Ω used for the re-
construction procedure for Γsmall, Γmedium and Γlarge (top to bottom).

The following functions (f1, f2) yield discontinuous boundary conditions satisfying condition (b)
in theorem 2.2, as arg(γ̇) is strictly increasing and |ind(γ̇)| = 1/2:

(fd1 (t), fd2 (t)) =


(cos(4t)− 1, sin(5t)) for Γsmall = {t ∈

[
0, π4

]
}(

cos (t)− 1, sin
(

5t
4

))
for Γmedium = {t ∈ [0, π]}(

cos
(

4t
7

)
− 1, sin

(
5t
7

))
for Γlarge =

{
t ∈
[
0, 7π

4

]}
.

The corresponding functions udi |∂Ω extended by zero along the whole boundary are illustrated
in figure 4.

We compute the corresponding solutions u1 and u2 and the three power densities H11, H12 and
H22. It is not straightforward to compute the solutions numerically for discontinuous boundary
conditions; therefore, the procedure is discussed in section 5.1. The solutions u1 and u2 are then
illustrated in figure 6. From table 1 we see that the Jacobian condition is satisfied for all cases, as
the determinant of H is positive. However, for a small boundary of control the values of the deter-
minant are very small, so for Γsmall the minimum values are of order 10−14. To investigate where
the small values of det(H) concentrate, we illustrate the expression log(det(H)) for continuous
and discontinuous boundary conditions in figure 7. The expression log(det(H)) will give us more
nuances of the small values than the determinant itself. From the figure, it is evident that the small
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Figure 4. The discontinuous boundary functions ud1|∂Ω and ud2|∂Ω used for the
reconstruction procedure for Γsmall, Γmedium and Γlarge (top to bottom).

Figure 5. The curves γ̇c(t) = (f c1(t), fc2(t)) and γ̇d(t) = (fd1 (t), fd2 (t)) for con-
tinuous and discontinuous ui|∂Γ as in figure 3 and 4 respectively to give an idea
about the winding numbers of γ̇. The right figure shows their arguments in the
case of Γsmall (for Γmedium and Γlarge the behavior is identical).

values concentrate close to the boundary that we cannot control. Furthermore, the figure shows
that for discontinuous boundary conditions there appear larger values of log(det(H)) than for the
continuous case, but these are mainly concentrated around the discontinuity. For the continuous
boundary conditions, the maximal values are smaller, but they are more evenly distributed along
the boundary of control. As the Jacobian condition is satisfied, we can use the reconstruction
procedure outlined in section 4 to reconstruct the two conductivities σcase 1 and σcase 2. For the
reconstruction procedure, we use knowledge of the true angle θ that can be computed by knowledge
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of the true gradient ∇u1.
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Figure 6. The solutions u1 and u2 induced by the discontinuous and continuous
boundary conditions for σ as in case 1 and varying boundaries of control Γlarge,
Γmedium and Γsmall.

5.1. Solving the conductivity equation numerically with discontinuous boundary func-
tions udi |∂Ω. It is a challenge numerically to use FEniCS to compute the solutions with discon-
tinuous boundary conditions as the solutions are only in H1(Ω, d1−2s) and not in H1(Ω). Using
Lagrange basis functions one can define a H1-function space, but this does not allow for dis-
continuities. To allow for discontinuities one has the possibility to define a function space using
discontinuous Galerkin basis functions between the nodes, but in this way one loses interior reg-
ularity as well. Both possibilities are not optimal as in our case we only have a discontinuity
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Figure 7. The expression log(det(H)) for varying sizes of Γ, when using contin-
uous and discontinuous boundary conditions. Large negative values (blue regions)
correspond to values of det(H) close to zero.

at the boundary, while away from the boundary the function behaves like an H1-function. For
that purpose, we consider the functions wi = ui − u0

i , were u0
i ∈ H1(Ω, d1−2s) solves the Laplace

equation with boundary conditions:

(18)


∆u0

i = 0 in Ω,

u0
i = fi on Γ

u0
i = 0 on ∂Ω\Γ.

Now wi solves the following boundary value problem:

(19)

−div(σ∇wi) = div(σ∇u0
i ) in Ω,

wi = 0 on ∂Ω.

As we consider conductivities σ that are one on and in a neighborhood of the boundary, the right
hand side div(σ∇u0

i ) vanishes in a neighborhood where the discontinuity appears. Using these
choices of σ thus ensure that the discontinuity is covered so that the right hand side satisfies
div(σ∇u0

i ) ∈ H−1(Ω) implying that wi is a solution in H1(Ω). We solve the boundary value
problem (18) semi-analytically for u0

i in Matlab using the Fourier transform. This gives us the
exact solution at each node apart from the Gibbs phenomenon happening at the discontinuity.
Afterwards we solve the boundary value problem (19) for wi in Python using FEniCS and
compute the solution ui as desired. In this way, we obtain the correct solution ui at each node,
but there still happens a smoothing between the nodes around the discontinuity, as we assign ui
to a H1 function space using Lagrange basis functions.

5.2. Reconstruction of θ. We compute the true angle θ as the argument of ∇u1 as highlighted
in equation (16). Using the true angle as boundary condition for the boundary value problem (13)
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we reconstruct θ by solving the problem numerically. This is repeated for the two conductivities as
in figure 1, all different boundaries of control as in figure 2 and the continuous and discontinuous
boundary conditions as in figure 3 and 4. The relative errors are shown in table 1 and table 2.

Table 1. Relative L2 errors when using the continuous boundary conditions
(uci |∂Ω) and the discontinuous boundary conditions (udi |∂Ω).

Γlarge Γmedium Γsmall
uci |∂Ω udi |∂Ω uci |∂Ω udi |∂Ω uci |∂Ω udi |∂Ω

Min det(H)
case 1 1 · 10−6 3 · 10−6 8 · 10−10 1 · 10−9 8 · 10−14 8 · 10−14

case 2 1 · 10−6 3 · 10−6 9 · 10−10 2 · 10−9 8 · 10−14 7 · 10−14

Rel. L2 error θ case 1 1.62% 0.74% 1.19% 6.90% - -
case 2 1.67% 0.75% 1.20% 7.11% - -

Rel. L2 error σ case 1 15.7% 15.6% 40.1% 39.9% 56.5% 56.3%
case 2 15.0% 15.0% 40.0% 39.9% 56.9% 56.4%

Table 2. Relative L2 errors of (cos(2θ), sin(2θ)) for Γsmall.

Continuous BC Discontinuous BC
case 1 (3.47%, 3.61%) (5.34%, 5.44%)
case 2 (3.58%, 3.56%) (5.40%, 5.38%)
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Figure 8. True θ for the different boundary conditions and different conductivi-
ties and having control over Γlarge.

Even though the errors range up to 7% the reconstructions with control over Γlarge or Γmedium

can barely be distinguished visually from the true θ. The only difference appears through minor
artifacts along the part of the boundary that cannot be controlled. For that purpose in these
cases, we only focus on the true expressions for θ. These are illustrated for Γlarge in figure 8 and
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Figure 9. True θ for the different boundary conditions and different conductivi-
ties and having control over Γmedium.

for Γmedium in figure 9. From the figures we see that the discontinuities of udi are reflected in θ

as well, which follows directly from the definition of θ. Furthermore, θ differs for the two cases
of σ: As the circular feature in σcase 1 has a smooth edge its contours can barely be seen in the
expression for θ. However, as there appear piecewise constant features in σcase 2 the edges are
clearly reflected in the expression for θ as well.

For some choices of the boundary conditions and Γ, the true angle θ changes values from −π to
π throughout Ω. This is here the case for both continuous and discontinuous boundary conditions
and when Γ has the size of Γsmall. This behavior causes a curve of transitions. Along this curve the
expression transitions through all values from −π to π, instead of leaving a discontinuity, which
would adhere to the periodic nature of the codmain. This is illustrated in the left part of figure
10 and a periodic color map is used to highlight the transition curve. A similar phenomenon was
observed and addressed in [JKS22] and we use the same approach to address this issue. By the
discussion in section 4.3 the direction of ∇u1 corresponds to the direction of the unit normal ν,
its opposite −ν, or the zero vector along the boundary ∂Ω\Γsmall. If we investigate θ along the
boundary in the right part of figure 10, we see that along ∂Ω\Γsmall θ is a linear increasing function,
as it corresponds to the angle between ν and the x1-axis. The only deviations happen for t ∈ [0, π4 ],
which is the boundary of control Γsmall. By this behavior of θ along ∂Ω\Γsmall there happens a
jump from π to −π at t = π. An additional jump is induced by the boundary condition: For the
continuous boundary condition there happens a jump at t = π

8 and for the discontinuous boundary
condition there happens a jump at t = π

4 . The smoothed discontinuities are a problem when using
the true angle θ as a boundary condition in (13), therefore we define a modified version θ̃ to be
used as a boundary condition. As θ only appears as an input to the cosine and sine-functions in
the reconstruction formula in (15), we can add and subtract multiples of 2π without changing the
reconstruction. Therefore, we subtract 2π in the interval between the discontinuities to extend θ to

104 A Paper A: Jacobian of solutions to the conductivity equation in limited view



20 JACOBIAN OF SOLUTIONS TO THE CONDUCTIVITY EQUATION IN LIMITED VIEW

a more continuous function along the boundary. For continuous boundary conditions θ̃c is defined
as

(20) θ̃c(t) =

θc(t)− 2π t ∈
[
π
8 , π

]
,

θc(t) otherwise.

And for the discontinuous boundary condition:

(21) θ̃d(t) =

θd(t)− 2π t ∈
[
π
4 , π

]
,

θd(t) otherwise.

These functions are illustrated in the right part of figure 10 and used as a boundary condition
when solving the boundary value problem (13).
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True θ Comparing θ to a mod-
ified version θ̃ along
∂Ω

Figure 10. True expression for θ assigned to a smooth function space and using
continuous and discontinuous boundary conditions. We consider the conductivity
σcase 1 and have control over Γsmall. The left part shows θ along the boundary
together with modified versions θ̃ defined in (20) and (21).

For these reconstructions θ it does no longer make sense to compare them to the true angles, so
instead we compare the reconstructed cos(2θ) to the true expression in figure 11, as this is the way
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θ appears in the reconstruction formula for σ (15). The reconstruction errors are shown in table 2.
From the figure, we see that there appear artifacts along the whole boundary ∂Ω\Γsmall. This is
because this part of the boundary is difficult to control from the small boundary Γsmall so that the
Jacobian constraint almost is violated close to this part of the boundary. This is seen from figure
7, as the values of det(H) are very small close to the boundary ∂Ω\Γsmall. And from table 1 we
see the small values are of order 10−14. These artifacts were not as visible for Γlarge and Γmedium,
as the smallest values of det(H) were larger than 3 · 10−6 and 9 · 10−10 respectively.
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Reconstructed
cos(2θ)

Figure 11. Reconstructions of cos(2θ) compared to the true expression for the
different boundary conditions. We consider the conductivity σcase 1 and have
control over Γsmall.

5.3. Reconstruction of σ. Using the reconstructions of θ we compute σ by solving the bound-
ary value problem (15). The reconstructions of σ using the continuous boundary conditions are
shown in figure 12. As seen from the relative errors in table 1 there is no significant difference
in the quality of the reconstruction when using the continuous or discontinuous boundary condi-
tions. It is therefore impossible to distinguish the reconstructions visually, so we only show the
reconstructions using the continuous boundary conditions. From the figure we see that the quality
of the reconstructions is highly affected by the size of the boundary of control Γ: The larger the
boundary of control the better the reconstruction. For Γlarge the features in the reconstructions
are still visible in almost the same intensity as for the true σ, only the shape of the circular fea-
ture in σcase 1 is changed in the direction of ∂Ω\Γlarge. With decreasing size of Γ the intensity of
the features is decreasing as well, so that for Γsmall the features have intensity close to 1 like the
background of the true σ. Also in a large neighborhood of the boundary ∂Ω\Γ, the reconstruction
has intensity close to 0, so that for Γsmall the reconstruction is dominated by intensity 0. When
comparing performance for the two different conductivities σ we see that the reconstructions for
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the piecewise constant conductivity σcase 2 look almost better than for the smooth σcase 1, as the
piecewise constant edges of the three features in σcase 2 are clearly visible in the reconstructions.
This is due to the fact, that these edges are clearly visible in the data and in θ as can be seen from
the right parts of figure 8 and figure 9. For σcase 1 the shape of the feature is deformed a little
bit towards ∂Ω\Γ, as the feature has a smooth edge. However, this difference in quality is not
evident from the relative errors in table 1. Another take away from the reconstructions is that as
σcase 2 is composed of features that are closer and further away from the boundary of control as the
feature in σcase 1, we can see that there is a difference in the intensity of the three features. This
is especially evident for Γmedium, so that the feature closest to Γmedium has intensity 1.8, which is
almost the same intensity as the true σcase 2. On the other hand, the feature furthest away from
Γmedium has intensity 1, which is the same as the background intensity of the true σcase 2.

5.4. Reconstruction of σ from noisy data. We perturb the entries of the power density matrix
H at each node with random noise:

H̃ij = Hij +
α

100

eij
‖eij‖L2

Hij ,

where α is the noise level and eij are entries in the matrix E that are normally distributed
eij ∼ N (0, 1). We use numpy.random.randn to generate the elements eij and fix the seed
numpy.random.seed(50). After generating H̃, we make sure that it is symmetric by comput-
ing 1

2 (H̃ + H̃T ). Furthermore, for the reconstruction procedure it is essential that H̃ is positive
definite so that we use a small positive lower bound L for the eigenvalues of H̃. This approach can
be seen as a regularization method. We note that as ∇u1 and ∇u2 are parallel to the unit normal
±ν on ∂Ω\Γ, the Jacobian constraint is violated on this part of the boundary. Therefore we would
assume very small values of det(H̃) close to this part of the boundary. However, in the approach
of using a lower bound for the eigenvalues we might discard some of these values. Therefore, we
choose the lower bound as small as possible in order to get a reasonable reconstruction that is not
dominated by noise on these small values.

After these modifications on symmetry and positive definiteness, we use H̃ for reconstructing
σcase 2 for three different noise levels: α = 1%, α = 5% and α = 10%. The results are shown
in Figure 13, where we compare performance when using continuous and discontinuous boundary
conditions. The lower bounds L used for reconstruction are documented in Table 3 and the relative
errors of σ are shown in the same table. The reconstructions are all of similar quality when looking
at the relative errors and how well the values at the red features matches with the true σ. However,
for the discontinuous boundary condition the increasing noise level results in an artifact around the
discontinuity. To account for this one needs to use significantly larger lower bounds for increasing
noise level. In contrast, there is a gradual rise in the lower bound for increasing noise level when
using continuous boundary conditions. The high lower bound in the case of discontinuous boundary
conditions induces a light belt close to ∂Ω\Γ. This belt appears, as information in this region is
discarded by the lower bound.
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Table 3. Relative L2 errors on σcase 2 in presence of noise. To obtain a positive
definite noisy matrix H̃, different lower bounds L for the eigenvalues of H̃ are
used. The boundary of control is Γmedium.

Continous BC Discontinuous BC
L Relative error σ L Relative error σ

1% Noise 10−6 40.7% 10−6 38.9%
5% Noise 10−5 41.4% 10−3 41.7%
10% Noise 10−4 40.6% 2 · 10−2 38.4%

108 A Paper A: Jacobian of solutions to the conductivity equation in limited view



24 JACOBIAN OF SOLUTIONS TO THE CONDUCTIVITY EQUATION IN LIMITED VIEW
T
ru
e
σ

Γ
la

rg
e

Γ
m

ed
iu

m
Γ

sm
al

l

bla
Case 1 Case 2

Figure 12. Reconstructions of σ as in test case 1 in the left column and as in
test case 2 in the right column for varying sizes of Γ. The discontinuous boundary
conditions are used.
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Figure 13. Reconstructions of σcase 2 when H is perturbed with varying noise
levels and with boundary of control Γmedium. To obtain a positive definite noisy
matrix H̃, different lower bounds L for the eigenvalues of H̃ are used.

110 A Paper A: Jacobian of solutions to the conductivity equation in limited view



26 JACOBIAN OF SOLUTIONS TO THE CONDUCTIVITY EQUATION IN LIMITED VIEW

6. Conclusions

In this work, we have derived sufficient conditions on two boundary functions so that the cor-
responding solutions to the conductivity equation satisfy a non-vanishing Jacobian constraint in
limited view. This approach allows for boundary functions that have discontinuities. This is rele-
vant for Acousto-Electric Tomography and Current Density Imaging both in limited view and in
full view settings, as the conditions and thus the use of discontinuous boundary functions apply
for both settings.

We illustrated how these conditions could be used for numerical examples of reconstructing the
conductivity from power density data in limited view following the approach of [MB12b]. It was ev-
ident from the numerical examples how the non-vanishing Jacobian constraint was almost violated
close to the boundary that could not be controlled. This follows from the zero Dirichlet condition
on this part of the boundary: Here the two corresponding solutions have both the direction of
the unit normal so that the non-vanishing Jacobian constraint cannot be satisfied on this part of
the boundary. Nevertheless, without noise it was possible to obtain decent reconstructions of the
conductivity especially for a large boundary of control. However, due to the very small values of
the Jacobian it was impossible to add even small levels of noise while maintaining positive defi-
niteness of the measurement matrix. To account for this, we used a small positive lower bound for
the eigenvalues of the measurement matrix. This worked well in the numerical experiments even
for high noise levels. However, in this approach especially values close to the part of the boundary
that cannot be controlled are affected by the lower bound. When the lower bound is high this
might be in contradiction with the assumption that values should be small in this region. This is
especially a problem when using discontinuous boundary conditions as the lower bound needs to
be chosen large when the noise level is high.

We mention that the proposed conditions in order to obtain solutions satisfying the non-
vanishing Jacobian constraint are not optimal. Especially for the case of discontinuous boundary
functions there is a possibility that 2.2 (b) can be relaxed, as we are aware of functions that are
more general than allowed here as indicated in Remark 2.3.
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CONDUCTIVITY RECONSTRUCTION FROM POWER DENSITY DATA IN

LIMITED VIEW

BJØRN JENSEN, KIM KNUDSEN, AND HJØRDIS SCHLÜTER

Abstract. In Acousto-Electric tomography, the objective is to extract information about the

interior electrical conductivity in a physical body from knowledge of the interior power density

data generated from prescribed boundary conditions for the governing elliptic partial differential

equation. In this note, we consider the problem when the controlled boundary conditions are

applied only on a small subset of the full boundary. We demonstrate using the unique continua-

tion principle that the Runge approximation property is valid also for this special case of limited

view data. As a consequence, we guarantee the existence of finitely many boundary conditions

such that the corresponding solutions locally satisfy a non-vanishing gradient condition. This

condition is essential for conductivity reconstruction from power density data. In addition, we

adapt an existing reconstruction method intended for the full data situation to our setting. We

implement the method numerically and investigate the opportunities and shortcomings when

reconstructing from two fixed boundary conditions.

Keywords: acousto-electric tomography, electrical impedance tomography, hybrid data to-

mography, coupled physics imaging, inverse problems, medical imaging

MSC2000: 35R30; 65N21

1. Introduction

Acousto-electric tomography (AET) [5, 19] is an imaging modality for obtaining information

about the interior electrical conductivity in a physical body. By combining electrostatic boundary

measurements during an acoustic excitation of the body, we first recover the so-called interior power

density data and from there reconstruct the conductivity. In principle, the modality yields high

resolution and high contrast images, but the practical feasibility is yet to be demonstrated [13].

The reconstruction problem in AET is fairly well understood in situations where the full bound-

ary is available for the electrostatic measurements. In this manuscript we consider the more

challenging problem in the limited view setting where we only have access to measurements on a

possibly small part of the boundary. Our main result shows that reconstruction is feasible also in

this setting, and in this way we generalize results pioneered in [6].
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2 CONDUCTIVITY FROM POWER DENSITY IN LIMITED VIEW

We now define the involved quantities and the model linking them. The limited boundary control

is modelled by a prescribed voltage on part of the domain boundary with a no-flux condition applied

elsewhere. To this end we consider a connected open set Ω ⊂ Rd, d = 2, 3 with Lipschitz boundary

∂Ω and let Γ ⊂ ∂Ω be nonempty and open. We assume the conductivity denoted by σ satisfies

σ ∈ L∞+ (Ω), i.e. there exists λ ∈ (0, 1) such that λ ≤ σ ≤ λ−1 a.e. in Ω. If d = 3 we assume

further that σ is Lipschitz on Ω. The model is described by the partial differential equation

Lu = −∇ · σ∇u = 0 in Ω,(1.1a)

u = f on Γ,(1.1b)

Lνu = σ∂νu = 0 on ∂Ω\Γ,(1.1c)

where u is the electrical potential, ∇u the electrical field and f ∈ H 1
2 (Γ) := {v|Γ : v ∈ H1(Ω)} the

prescribed voltage under our control. ν denotes the outward unit normal to ∂Ω. From standard

elliptic theory we know that (1.1) has a unique solution u ∈ H1(Ω) for each choice of boundary

potential f .

In AET the data is given in terms of the mixed power density matrix H ∈ Rd×d with elements

(1.2) Hij = σ∇ui · ∇uj .

The function ui denotes the solution to (1.1) for a boundary condition fi, i = 1, . . . , d. The inverse

problem of AET is to uniquely and constructively recover the unknown conductivity σ from H.

If we successfully pick fi so that the electrical fields ∇ui are linearly independent, then H

satisfies the Jacobian constraint

(1.3) det

[
∇u1 · · · ∇ud

]
≥ δ > 0

for some δ > 0. This condition is crucial for the reconstruction problem in AET.

There is a rich mathematical literature on AET for the full boundary case (Γ = ∂Ω). For the two-

dimensional problem, the Jacobian constraint is essentially guaranteed by the Radó–Kneser–Choquet

theorem using the two coordinate functions as boundary conditions. A reconstruction method is

found in [6]. The anisotropic problem is considered in [15] with boundary conditions given in terms

of complex geometrical optics (CGO) solutions generically depending on σ. In three dimensions, it

is impossible to find three boundary conditions that can work for any conductivity [2], but again

a CGO construction can be used to provide four solutions [6]. A different approach using the

Runge approximation property can be used for both the isotropic and anisotropic problem in any

dimension [7] yielding a finite number of boundary conditions. Further work to establish smaller

upper bounds on the number of boundary conditions can be found in [4]. We refer to [3] for a

complete overview.

Our main result states that even in the limited view setting there are a finite number of boundary

conditions such that locally the solutions satisfy (1.3). The method relies on the Runge approxima-

tion property that will be established for the mixed problem (1.1). This approach is equivalent to

the construction of so-called localized potentials [9]). We will in addition review the reconstruction

method, emphasize the importance of (1.3), and investigate the possibilities and shortcomings in

the limited view setting.
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In Section 2, we recall the Runge approximation property and prove that the given PDE (1.1)

satisfies the property. Section 3 gives the solutions satisfying the Jacobian constraint. In Section 4

we review for completeness the reconstruction formula for σ in terms of H in the case d = 2

following [6]. We end the story in Section 5 with a description of the numerical implementation

and numerous computational experiments that shows the possibilities and limitations of limited

view AET.

2. The Runge approximation property

In this section, we recall the Runge approximation property and ascertain that the property

holds for our PDE in question (1.1). To prove that this property holds we make use of the unique

continuation property, which is satisfied for the operators L and Lν as defined in (1.1) [3, Lemma

7.5]. Given an open non-empty subset Σ ⊆ ∂Ω the unique continuation property states that if

u ∈ H1(Ω) is a solution to Lu = 0 in Ω, which further satisfies u|Σ = 0 and Lνu|Σ = 0, then u

vanishes in all of Ω; i.e. u = 0 everywhere in Ω.

We state the definition of the Runge approximation property.

Definition 2.1 (Runge approximation property). We say that L satisfies the Runge approximation

property if for any simply connected Lipschitz domain Ω′ b Ω and any u ∈ H1(Ω′) such that Lu = 0

in Ω′ there exists a sequence un ∈ H1(Ω) such that (a) Lun = 0 in Ω, and (b) un|Ω′ → u in L2(Ω′).

It follows from the satisfaction of the unique continuation property that our PDE satisfies the

Runge approximation property as well. The following lemma is a modified version of a similar

result in [3, Thm. 7.7] and the proof follows the same general lines as well:

Theorem 2.2. Let Ω ⊂ Rd be a Lipschitz bounded domain and L as defined in (1.1). Then L sat-

isfies the Runge approximation property with the sequences (un) satisfying the boundary restriction

Lνun = 0 on ∂Ω\Γ for all n ∈ N.

Proof. Assume without loss of generality that Ω is connected. Take Ω′ b Ω as in Definition 2.1

and u ∈ H1(Ω′) such that

Lu = 0 in Ω′.

Set F := {v|Ω′ : v ∈ H1(Ω), Lv = 0 in Ω, Lνv = 0 on ∂Ω\Γ}. Suppose by contradiction that the

Runge approximation property does not hold that we managed to pick a u for which there is no

sequence in F converging to u in L2-norm. By the Hahn-Banach theorem there exists a functional

g ∈ L2(Ω′)∗ such that g(u) 6= 0 and g(v) = 0 for v ∈ F . In other words, there exists g ∈ L2(Ω′)

such that (g, u)L2(Ω′) 6= 0 and (g, v)L2(Ω′) = 0 for all v ∈ F .

Consider now the extension by zero of g to Ω, which by an abuse of notation is still denoted by

g. Let V := {φ|Γ : φ ∈ H 1
2 (∂Ω)} and fix φ ∈ V . Let w, v ∈ H1(Ω) be the unique solutions to

Lw = g in Ω,

w = 0 on Γ,

Lνw = 0 on ∂Ω\Γ,

and

Lv = 0 in Ω,

v = φ on Γ,

Lνv = 0 on ∂Ω\Γ.

By definition of g there holds (g, v)L2(Ω) = 0. Thus, integration by parts shows

0 = −(v, g)L2(Ω) = (Lv,w)L2(Ω) − (v, Lw)L2(Ω) =

∫
Γ

(Lνw)φdσ.
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4 CONDUCTIVITY FROM POWER DENSITY IN LIMITED VIEW

Since the above holds for all φ ∈ H 1
2 (Γ) we obtain Lνw = 0 on Γ. Observe now that w is solution

to Lw = 0 in Ω\Ω′ such that w = 0 and Lνw = 0 on Γ. In view of the unique continuation

property we have w = 0 in Ω\Ω′, therefore w = 0 and Lνw = 0 on ∂Ω′. As a result, by integrating

by parts we obtain∫
Ω′
gudx =

∫
Ω′

(Lw)udx

=

∫
Ω′

(Lu)︸︷︷︸
=0

w dx+

∫
∂Ω′

(Lνw)︸ ︷︷ ︸
=0

uds+

∫
∂Ω′

(Lνu) w︸︷︷︸
=0

ds

= 0,

where the last identity follows from the definition of u. This contradicts the assumptions on g,

since (g, u)L2(Ω′) 6= 0. �

By the application of Schauder estimates, Sobolev embedding and standard elliptic theory,

assuming Lipschitz regularity for the coefficient yields the following result.

Lemma 2.3. Assume σ is Lipschitz and let Ω′ b Ω, x0 ∈ Ω′ and s ∈ (0,dist(Ω′, ∂Ω)). Let

u0 ∈ C1,α(Ω), α ∈ (0, 1) satisfy

−∆u0 = 0, in B(x0, s).

Then for any δ > 0 there is an r ∈ (0, s) and ux0,δ ∈ H1(Ω) satisfying Lux0,δ = 0 in Ω and

Lνux0,δ = 0 on ∂Ω\Γ such that

‖ux0,δ − u0‖C1(B(x0,r))
≤ δ.

The proof can be found in Appendix A. As any linear map u0 satisfies the conditions of the

lemma, the corollary is immediate.

Corollary 2.4. Let σ, Ω′ and x0 be as in Lemma 2.3. For any δ > 0 and v ∈ Rd there is r ∈ (0, 1)

with B(x0, r) ⊂ Ω′ and ux0,δ ∈ H1(Ω) satisfying Lux0,δ = 0 in Ω and Lνux0,δ = 0 on ∂Ω\Γ such

that

‖∇ux0,δ − v‖C0(B(x0,r)) ≤ δ.

3. Satisfying the Jacobian constraint

We summarize in this section how the above guarantees solutions that satisfies the Jacobian

constraint. The treatment follows along the lines of [3, Sec. 7.3]:

First note that the canonical basis vectors ej satisfies det
[
e1 . . . ed

]
= 1, i.e. the Jacobian

constraint. Next, fix a sufficiently small δ > 0. Corollary 2.4 provides the existence of solutions

to (1.1) (including suitable boundary conditions) that can approximate v = ej locally in small balls.

This is illustrated in Figure 1 if considered from the same relative origin then ∇ũj is contained in

a cone Cj . Consequently, the solutions satisfy locally the Jacobian constraint. Finally, the union

of such small balls is an open cover of Ω′ and can, due to compactness of Ω′, be exhausted to a

finite open cover with M ∈ N balls. As each ball requires a set of d boundary conditions to satisfy,

we ultimately end up with Md boundary conditions.

The theorem is as follows:

Theorem 3.1. Assume σ is Lipschitz continuous in Ω, and consider any compactly embedded

domain Ω′ b Ω. Then there exists a finite set of boundary conditions {φj}Md
j=1 with corresponding
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ej

∇ũj

α

δ = sin(α)

Figure 1. Illustration of the cone Cj and the ball of approximating vectors at
most δ = sin(α) away from ej .

solutions {uj}Md
j=1 to (1.1) with f = φj, such that at any point x0 ∈ Ω′ there is an open neighborhood

Vx0
of x0 and a subset {un1

, . . . , und} satisfying

det

[
∇un1(x) · · · ∇und(x)

]
≥ 1

2
, for all x ∈ Vx0

Proof. Let δ > 0 be arbitrary. For each x0 ∈ Ω′, and v = ej , Corollary 2.4 gives an rj > 0 and

an approximating solution ũj ∈ H1(Ω) satisfying Lũj = 0 in Ω and Lν ũj = 0 on ∂Ω\Γ such

that ‖∇ũj − ej‖C0(B(x0,rj)) < δ in B(x0, r0) with r0 = min(r1, r2, . . . , rd). By continuity of the

determinant, by fixing δ sufficiently small we can guarantee∣∣∣det
[
∇ũ1 . . .∇ũd

]
− det

[
e1 . . . ed

]∣∣∣ < 1

2
,

and by the reverse triangle inequality∣∣∣det
[
∇ũ1 . . .∇ũd

]∣∣∣ > 1

2
.

Since Ω′ b Ω, there is a finite subcover {B(xm, rm)}Mm=1 of Ω′ that yields the Md boundary

conditions. �

4. Reconstruction formula

In this section we review without proofs the main formulas used for the reconstruction procedure

based on [16] in order to prepare for the numerical experiments in section 5. We consider the case

d = 2; for d = 3 we refer to [6]. Throughout this section we consider a power density matrix

H = (Hij)1≤i,j≤2 for which the corresponding solutions u1 and u2 are assumed to satisfy the

Jacobian constraint (1.3).

The derivation goes in 2 steps. The aim in the first step is to obtain Ji =
√
σ∇ui, i = 1, 2, from

Hij . Ji is the current density up to a factor of
√
σ; i.e. the current density is precisely

√
σJi. In a

slight abuse of the name, we call the first step the “current density step”. The second step is the

recovery of an equation for σ from Ji. We call this the “conductivity step”.

4.1. Current density step. To this end consider the matrices J =
[
J1 J2

]
and H = (Hij)1≤i,j≤2;

the latter obviously symmetric. Under the assumed positive lower bound on σ and the Jacobian
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constraint (1.3) it is easy to see that for any x = (x1, x2) 6= 0, xTHx = σ|q1 + q2|2 > 0, where

qi = xi∇ui 6= 0 and q1 6= −q2. Hence H is positive definite.

The matrix J is then orthonormalized into a SO(2)-valued matrix R via a transformation of

the form R = JTT . By definition R is orthogonal and det R = 1. As R is a rotation matrix, it is

parameterized by

R(θ) =

[
cos θ − sin θ

sin θ cos θ

]
,

dependent only on a single parameter θ. This definition implies that when the exact matrices T

and J are known the function θ can be computed by

(4.1) θ = argument(R11 + iR21).

Defining T = (Tij)1≤i,j≤2 and T−1 = (T ij)1≤i,j≤2, and letting

Vij = ∇(Ti1)T 1j +∇(Ti2)T 2j ,

then θ is determined by the following equation [16, Eq. (65)]:

(4.2) ∇θ = F,

with

F =
1

2
(V12 −V21 − J∇ logD) ,

J =

[
0 −1

1 0

]
, and D = (H11H22 −H2

12)
1
2 . Applying the divergence operator to (4.2) yields the

Poisson equation

(4.3)

{
∆θ = ∇ · F in Ω,

θ given on ∂Ω.

We discuss in section 4.3 below that we can assume θ to be known on the whole boundary ∂Ω.

4.2. Conductivity step. Reconstruction of σ is based on [16, eq. (68)]

∇ log σ = G(4.4)

with

G = cos(2θ)K + sin(2θ)JK

K = U(V11 −V22) + JU(V12 + V21) and U =

[
1 0

0 −1

]
.

We assume that σ is known on the whole boundary ∂Ω and then reconstruct σ by solving the

Poisson equation

(4.5)

{
∆(log(σ)) = ∇ ·G in Ω,

log(σ) given on ∂Ω.

4.3. Choice of T and knowledge of θ. The decomposition R = JTT is not unique as any

transfer matrix T1 that satisfies this equation for some rotation matrix R1 gives rise to another

rotated transfer matrix T2 = R
T
T1 that satisfies the same equation for the corresponding rotation

matrix R2 = R1R. This holds true for any rotation matrix R. In theory, the choice of T
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will not influence the reconstruction procedure, as every choice of T with corresponding θ will

work to extract the functionals Ji =
√
σ∇ui from the entries of Hij = σ∇ui · ∇uj . However,

numerically a simple choice of T can be an advantage. For this reason, we choose Gram-Schmidt

orthonormalization to obtain the following T, as in this case the functionals Vij have the simplified

form as in (4.7):

(4.6) T =

[
H
− 1

2
11 0

−H12H
− 1

2
11 D−1 H

1
2
11D

−1

]
.

By the Jacobian constraint (1.3), H11 > 0 and thus T is well-defined. For this choice of T the

function θ is given by the angle between ∇u1 and the x1-axis, as in this case the first column of R

simplifies to

R1 = T11J1 + T12J2 =
∇u1

|∇u1|
.

Using (4.1) we then calculate

θ = argument(∂1u1 + i∂2u1).

In addition, the vector fields Vij can be written explicitly in terms of H:

V11 = ∇ logH
− 1

2
11 , V12 = 0,

V21 = −H11

D
∇
(
H12

H11

)
, V22 = ∇ log

(
H

1
2
11

D

)
.

(4.7)

An outline of the reconstruction procedure using this choice for T is shown in Algorithm 1.

Knowledge of θ at the boundary is essential in the reconstruction procedure. The gradient

equation (4.2) can be solved in two different ways for θ: Either by knowledge of θ at a single point

and integrating along curves originating from that point, or by solving the Poisson problem (4.3),

where knowledge of θ is required on the whole boundary. As we suggest the second option, the

question is whether knowledge of θ at the boundary is a valid assumption. Information about θ

is related to the gradient ∇u1 and hence the current σ∇u1, as both vector fields have the same

direction. The functional σ∇u1 can be decomposed into two parts with contribution from the unit

outward normal ν and its direct orthogonal η = J ν:

σ∇u1 = (σ∇u1 · ν)ν + (σ∇u1 · η)η.

Along the part of the boundary ∂Ω\Γ the Neumann data is known, so that knowledge of (σ∇u1 ·η)η

is required to determine σ∇u1 along this part of the boundary. Along Γ the Dirichlet data and

thus the directional derivative (∇u1 · η) is known, so that knowledge of σ and σ∇u1 · ν is required

to determine σ∇u1 along Γ. This requires the following information on the different parts of the

boundary:

• Knowledge of σ and the potential u1 yield information about θ on ∂Ω\Γ
• Knowledge of σ and σ∇u1 · ν yield information about θ on Γ

However, along ∂Ω\Γ the vanishing Neumann data gives us the additional information that σ∇u1

is solely determined by the direct orthogonal η. Hence, on ∂Ω\Γ the direction of σ∇u1 is either

η or −η. The sign of η is influenced by the choice of the boundary function f1. By theorem B.1

(the weak maximum principle) the maximum and minimum of u1 is attained at points xmax and
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xmin on the Dirichlet boundary Γ. At these points ∇u1 will then point outwards and inwards of

the domain respectively, as the gradient points in the direction of highest increase. The maxima

and minima of f1 will therefore influence the direction of the current and this information can be

used to determine sign of η and thus θ on ∂Ω\Γ.

Algorithm 1 Reconstruction procedure

Generating data: Choose a set of boundary conditions (f1, f2) so that the corresponding solutions
satisfy the Jacobian constraint (1.3). Use the solutions to generate the power density matrix H.

(1) Use the measurement matrix H to define T and the vector fields Vij as in (4.6) and (4.7)
respectively

(2) Reconstruct θ by solving the boundary value problem (4.3)
(3) Reconstruct σ by solving the boundary value problem (4.5)

5. Numerical Examples

The Matlab and Python code to generate the numerical examples can be found on GitLab:

GitLab code.

To investigate the performance of the reconstruction algorithm in the limited view setting, we

implement the algorithm in Python and used FEniCS [14] to solve the PDEs. Here we mainly

focus on performance for two boundary conditions. We use a fine mesh to generate our power

density data and a coarser mesh to address the reconstruction problem. Unless otherwise stated

we used Ndata = 44880 nodes in the high-resolution case, while for the smaller mesh we considered

a resolution of Nrecon = 20100 nodes. For both meshes, we use P1 elements. We consider the

domain Ω to be the unit disk: Ω = B(0, 1). Furthermore, we consider two test cases for the

conductivity σ defined by:

σcase 1(x1, x2) = 1 + e−5((x1)2+(x2)2),

σcase 2(x1, x2) = 1 + e
−20

(
(x1+ 1

2 )
2
+(x2)2

)
+ e
−20

(
(x1)

2
+(x2+ 1

2 )
2
)

+ e
−50

(
(x1− 1

2 )
2
+(x2− 1

2 )
2
)
,

for (x1, x2) ∈ Ω. Figure 2 illustrates the conductivities.

To test the reconstruction procedure we follow the procedure as outlined in Section 4. To gen-

erate the power density data we simply consider the coordinate functions as boundary conditions:

(f1, f2) = (x1, x2), (x1, x2) ∈ Γ.

We make this choice, as there is no theory developed on how to constructively choose the boundary

functions in the case of mixed Dirichlet and Neumann conditions such that (1.3) is satisfied.

However, for Dirichlet boundary conditions and when the domain is convex and 2-dimensional it

is known that the coordinate functions (f1, f2) = (x1, x2) yield solutions (u1, u2) so that these

satisfy the Jacobian condition (see e.g. [?]). Motivated by this theory we limit ourselves to these

boundary conditions.

We consider different sizes for the subset of the boundary, Γ, that we can control, and show

these in Figure 3. For each choice of Γ we then solve the two PDEs using FEniCS and use the

computed solutions u1 and u2 to generate the 3 power densities H11, H12 and H22. Furthermore,

for comparison we compute the true angle θ from knowledge of the true gradient ∇u1.
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Case 1 Case 2

Figure 2. The conductivities σ used for the reconstruction procedure.

Γlarge

Γmedium

Γsmall

π
8

π
4

3π
8

5π
8

3π
4

7π
8

Figure 3. Different sizes of Γ used for the reconstruction procedure.

5.1. Reconstruction of θ. For the three different sizes of Γ, Γlarge,Γmedium and Γsmall, as seen

in Figure 3, we reconstruct θ for σ defined as in test case 1. As θ is a function mapping from Ω to

the unit circle S1, which is a periodic space, we choose on ∂Ω a representation of θ which forms a

continuous curve when unwrapping S1 to an interval of R. We denote this representation θ̃ and it

is constructed as follows.

(5.1) θ̃ =

θ + 2π t ∈
[
−π2 ,−

3π
8

]
θ otherwise.

The representation is illustrated in Figure 4(a). This is done to avoid any discontinuous tran-

sitions, which could otherwise occur from θ taking values on alternating sides of the end points

of the interval; this problem is illustrated in Figure 4(b). The special region in which we make

the modification to obtain continuity is identified by considering the boundary conditions. As θ

represents the angle between −η and the x1-axis a discontinuity, when viewing S1 in R can be

identified to occur at exactly the points t = −π2 and t− 3π
8 .
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Using the representation θ̃ as a boundary condition, we reconstruct θ for the three different

sizes of Γ. The reconstructions of θ are compared to the true expressions in Figure 5, while table 1

shows the relative L2-error. For the smaller sizes of Γ there appear artifacts close to the boundary

∂Ω\Γ otherwise there is no visual distinction between true expressions and reconstructions, which

is reflected in the relative errors as well. Note that due to the above modifications we use sin(2θ)

instead of θ for comparison.

(a) True θ (b) True θ and a modified version

θ̃ along the boundary ∂Ω.

Figure 4. True expression for θ assigned to a smooth function space for σ as in
test case 1 and having control over Γsmall. The right figure compares the same
function to a modified version θ̃ defined in (5.1) along the boundary.

Table 1. Relative L2 errors for varying sizes of Γ.

Γlarge Γmedium Γsmall

Min det(H)
case 1 3.94 · 10−6 3.87 · 10−10 9.94 · 10−18

case 2 2.94 · 10−6 3.57 · 10−10 1.07 · 10−17

Rel. L2 error case 1 (0.79%,2.04%) (1.40%,2.01%) (2.24%,2.37%)
(cos(2θ), sin(2θ)) case 2 (0.77%,1.86%) (1.41%,1.97%) (2.25%,2.33%)

Rel. L2 error σ
case 1 32.02% 104% 177%
case 2 33.62% 108% 180%

5.2. Reconstruction of σ. We reconstruct σ for both test cases in Figure 2 and for the three

different sizes of Γ. Here we use the reconstructed θ from the previous step. The results are shown

in Figure 6; note that the intervals for the colorbars are different, as for smaller sizes of Γ there

is more variation in the reconstructed σ. Furthermore, Table 1 shows the relative L2-error in the

reconstructions. Both visually and quantitatively, we see that the quality of the reconstructed σ

decrease for decreasing size of Γ. Comparing the different test cases of σ, from the relative error

we see that the quality of the reconstruction is slightly better for test case 1. The slight difference

in quality may be explained by the fact that in test case 2 there are smaller features closer to the

boundary. Overall, the decreasing quality for decreasing size of Γ may follow from the fact that the
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Γlarge Γmedium Γsmall

Figure 5. True expression for sin(2θ) in the upper row and reconstructions in
the lower row for varying sizes of Γ and σ being as in test case 1.

assumption of a non-vanishing determinant of H is almost violated for Γsmall. Figure 7 illustrates

the expression log(det(H)) for all sizes of Γ and their minimal values can be found in Table 1.

We see from the Figure that with decreasing size of the boundary of control, the values of det(H)

decrease close to ∂Ω\Γ. By assumption, the determinant should be non-vanishing everywhere in

the domain, but for Γsmall the minimal value is 9.94 · 10−18, and in comparison to values of the

determinant elsewhere in the domain, this is effectively zero. As a consequence, the reconstruction

in such regions of low determinants are not reliable, even though the algorithm does produce a

result (see reconstructions in Figure 6 below.)

The size of Γ roughly reflects how large an amount of the domain can be controlled: While

for Γlarge the reconstruction looks reasonable for most of the domain, for Γmedium this is the case

for about half of the domain and for Γsmall this does only apply for a small part of the domain.

For the last two cases the part of the domain that is difficult to control is dominated by values

of the reconstructed conductivity that are way higher than the true values and this is reflected

in the high relative errors above 100%. What is common for all sizes of Γ is that there appear

artifacts close to the part of the boundary that cannot be controlled, ∂Ω\Γ. For Γmedium and

Γsmall the artifacts occur at distinct points along the boundary. Further experiments showed that

the locations of the artifacts seem not influenced by the choice of the boundary conditions. This

indicates that the appearance of the artifacts is not caused by the PDE. However, we think that

they are a mesh-dependent phenomenon. To understand what part in the reconstruction procedure

induces the artifacts, we illustrate the fraction log
(√

H11

D

)
in Figure 8. This fraction appears in

the expression for V22 in (4.7) and then enters the right hand side of the reconstruction formula

of σ in (4.4). We see from the figure that there appear small discontinuities at locations similar

to the artifacts along the boundary ∂Ω\Γ. To obtain V22 one needs to compute the gradient of

this function, which will cause the artifacts visible in the reconstruction. To support the theory
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Γlarge Γmedium Γsmall

Figure 6. Reconstructions of σ as in test case 1 for varying sizes of Γ in the
upper row and for test case 2 in the lower row. Note that different color scales are
used.

Γlarge Γmedium Γsmall

Figure 7. The expression log(det H) for varying sizes of Γ. Large negative values
(blue regions) correspond to values of det H close to zero.

that these are induced by the discretization of the domain, we compare the reconstruction of σ for

finer meshes in Figure 9 and show the relative errors in Table 2. The mesh refinement does not

make the artifacts disappear, but with increasing mesh size, the artifacts have less impact on the

reconstruction, so that the relative errors decrease.

Table 2. Relative errors in the reconstructions for varying grid sizes Ndata and
Nrecon, using test case 1 and controlling Γmedium.

number of nodes
Grid size Ndata Nrecon Relative L2 error σ
Nsmall 44.880 20.100 103.7%
Nmedium 79.281 44.880 86.38 %
Nlarge 124.265 79.281 78.85%
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Figure 8. The fraction log
(√

H11

D

)
in test case 1 when having control over

Γmedium. We zoom in on some of the discontinuities towards the boundary ∂Ω\Γ.

Nsmall Nmedium Nlarge

Figure 9. Reconstructions of σ as in test case 1 for varying mesh sizes when
having control over Γmedium.

5.3. Reconstruction of σ from noisy data. We perturb the entries of the power density matrix

H at each node with random noise:

H̃ij = Hij +
α

100

eij
‖eij‖L2

Hij ,

where α is the noise level and eij are entries in the matrix E that are normally distributed

eij ∼ N (0, 1). We use numpy.random.randn to generate the elements eij and fix the seed

numpy.random.seed(50). The perturbation by random noise causes the Jacobian constraint to

be violated close to the boundary ∂Ω\Γ. To enforce symmetry of H̃ we use 1
2 (H̃ + H̃T ) in the re-

construction procedure. Furthermore, to enforce positive definiteness of H̃ we use a small positive
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lower bound for the eigenvalues of H̃. This procedure works like a regularization of the recon-

struction, where the lower bound, L, is the regularization parameter. This behavior is illustrated

for reconstructions of σCase 2 in figure 10 and three different lower bounds L = 10−6, L = 10−5

and L = 10−4. Here H is perturbed with 5% noise and Γmedium is used. When L is chosen too

small relative to the noise level the reconstruction is dominated by the noise on the values of H̃

for which det(H̃) is small. On the other hand, for a large value of L (like L = 10−4 in this case) a

lot of information close to ∂Ω\Γ is discarded, where the values of det(H̃) should be small, as the

Jacobian constraint is violated at the boundary. Therefore, we choose the lower bound as small as

possible, while still obtaining a reasonable reconstruction which is the case for L = 10−5 in this

case. Following this procedure, we reconstruct σCase 2 for three different noise levels 1%, 5% and

10% in Figure 11. Here the lower bounds L = 10−6 (1% noise) and L = 10−5 (5% and 10% noise)

are used. Visually there appear more artifacts close to the boundary of control for increasing noise

level. However, by choosing the suitable lower bound for each noise level the reconstructions are

of similar quality. This makes it possible to add even higher levels of noise than 10%, but for

increasing noise level one needs to use increasing lower bounds.

L = 10−6 L = 10−5 L = 10−4

Figure 10. Reconstructions of σ as in test case 2 when corrupting the power
density matrix with 5% noise and using the boundary of control Γmedium. We use

varying lower bounds L for the eigenvalues of H̃.

1% noise 5% noise 10% noise

Figure 11. Reconstructions of σ as in test case 2 when corrupting the power
density matrix with varying noise levels and using the boundary of control Γmedium.

We use lower bounds L for the eigenvalues of H̃: L = 10−6 (1% noise) and
L = 10−5 (5% and 10% noise).
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6. Discussion and further work

In this work we have shown the existence of finitely many boundary conditions that make

solutions to the governing elliptic PDE satisfy the Jacobian constraint. This is certainly relevant

for AET, as it indicates that AET in the limited view setting is indeed feasible. Moreover, we

consider a numerical reconstruction framework in this setting and address both possibilities and

limitations for reconstruction based on three particular boundary conditions.

The results are based on the Runge approximation and hence they are not constructive. This

immediately prompts the question of how to constructively find boundary conditions to satisfy

the Jacobian constraint. An additional question concerns the reconstruction possibilities in the

pragmatic choice of few boundary conditions. This is a question of deterioration of information with

distance from the active part of the boundary as observed in [12] and [8]. We note additionally, that

given the no-flux condition outside Γ, the electrical field on the boundary must be tangential; hence

the Jacobian constraint can never be satisfied on this part of the boundary. The reconstruction

problem thus gets hard in the proximity to the boundary.

The result here itself guarantees a limited number of required boundary conditions, however,

it is not clear how large that number may be. It would be interesting to find an upper bound at

least for certain geometries.

A final important question for further studies concerns the growth and behavior of the boundary

conditions found via the Runge approximation. The Runge approximation has recently been

studied quantitatively [17], and combining such results with our work could be an important step

further.
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Appendix A. Proof of Lemma 2.3

Proof of Lemma 2.3. We sketch the principal steps of the proof. It is derived from [3, Section 7.3].

Step 1.) Observe first that for any g ∈ C0,α(B(x0, s)) we have

(A.1) ‖g − g(x0)‖
C0, α

2 (B(x0,s))
≤ C1s

α
2 |g|C0,α(B(x0,s)),

where C1 is an independent constant. [3, Eq. (7.28)]

Step 2.) Let us be the solution to the PDE problem

Lus = 0 in B(x0, s),

us = u0 on ∂B(x0, s).

Consider now vs = us − u0 and observer that it is the unique solution of

Lvs = −∇ · (σ − σ(x0))∇u0 in B(x0, s),

vs = 0 on ∂B(x0, s).

Then by [3, Lem. 7.14] we have the estimate

‖vs‖C1, α
2 (B(x0,s))

≤ C2‖(σ − σ(x0))∇u0‖C0, α
2 (B(x0,s))

.

By [11, Eq. (4.7)] and (A.1)

‖(σ − σ(x0))∇u0‖C0, α
2 (B(x0,s))

≤ ‖σ − σ(x0)‖
C0, α

2 (B(x0,s))
‖∇u0‖C0, α

2 (B(x0,s))
≤ C3s

α
2

where C3 = C1‖∇u0‖C0, α
2 (B(x0,s))

|σ|C0,α(B(x0,s)). Therefore

‖us − u0‖C1, α
2 (B(x0,s))

≤ C4s
α
2

with C4 = C2C3, and there is s̃ ∈ (0, s) such that

(A.4) ‖us̃ − u0‖C1, α
2 (B(x0,s̃))

≤ δ

2
.

Step 3.) Observe that us̃ ∈ H1(B(x0, s̃)) ∩ C1,α2 (B(x0, s̃)) and Lus̃ = 0 in B(x0, s̃). By

Theorem 2.2 there is a sequence un ∈ H1(Ω) satisfying Lun = 0 in Ω and Lνun = 0 on ∂Ω\Γ and

un|B(x0,s̃) → us̃ in L2(B(x0, s̃)).

Put wn = un−us̃ then wn ∈ H1(B(x0, s̃)) and satisfy Lwn = 0 in B(x0, s̃). By [10, Thm. 5.19]

we have

(A.5) ‖∇wn‖C0, α
2 (B(x0,

s̃
3 ))
≤ C5‖∇wn‖L2(B(x0,

s̃
2 )

with C5 ≡ C5(x0, s̃, σ), thus wn ∈ C1,α2 (B(x0,
s̃
3 )). By [18, Thm. 8.25] we have

(A.6) ‖wn‖H2(B(x0,
s̃
k+1 )) ≤ C6‖wn‖L2(B(x0,

s̃
k )),

where C6 ≡ C6(x0, s̃, k, σ), and by Sobolev embedding [1] we have

(A.7) ‖wn‖C0(B(x0,
s̃
3 )) ≤ C7‖wn‖H2(B(x0,

s̃
3 ))

where C7 ≡ C7(x0, s̃).

By combining the estimates (A.5)–(A.7) we obtain

‖wn‖C1, α
2 (B(x0,

s̃
3 ))
≤ C8‖wn‖L2(B(x0,s̃)) → 0 as n→∞,
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where C8 = C8(x0, s̃, σ). Thus we have the strengthened convergence un → us̃ in C1,α2 (B(x0,
s̃
3 )).

Hence we can pick ñ such that

(A.8) ‖uñ − us̃‖C1, α
2 (B(x0,

s̃
3 ))
≤ δ

2
.

Step 4.) Choose r ∈ (0, s̃3 ). Combining the estimates (A.4) and (A.8) we then have

‖uñ − u0‖C1(B(x0,r))
≤ ‖uñ − us̃‖C1, α

2 (B(x0,r))
+ ‖us̃ − u0‖C1, α

2 (B(x0,r))
≤ δ

2
+
δ

2
= δ.

�

Appendix B. Weak Maximum Principle for a mixed Dirichlet-Neumann problem

Theorem B.1 (Weak Maximum Principle). Let Ω ⊂ Rn be a bounded connected Lipschitz domain

and σ ∈ L∞+ (Ω). Let u ∈ H1(Ω) ∩ C(Ω) be a solution to (1.1) so that it satisfies the variational

equation

(B.1)

∫
Ω

σ∇u · ∇v dx = 0,

for all test functions v ∈ H1
0,Γ(Ω). Here H1

0,Γ(Ω) consists of the set of functions in H1(Ω) with

zero trace on Γ. Then the following are true:

(1) If u ≥ 0 on Γ then u ≥ 0 in Ω.

(2) infy∈Γ u(y) ≤ u(x) ≤ supy∈Γ u(y) for all x ∈ Ω.

Proof. This proof is based on [18, proof of Thm. 8.20], but for the convenience of the reader it

is simplified to only cover the setting where the elliptic operator is composed of a diffusion term.

Define u− = max{−u, 0} and u+ = max{u, 0}. Since u ∈ H1(Ω) then |u|, u− and u+ are also in

H1(Ω) [18, Prop. 7.68].

(1) Since u ≥ 0 on Γ, the negative part u− has zero trace on Γ. Hence, u− ∈ H1
0,Γ. Thus for

the choice of the test function v = u−, the variational equation (B.1) is∫
Ω

σ∇u · ∇u− dx = 0.

This simplifies to the following as ∇u− = ∇uχu<0 a.e. in Ω, so there is only a contribution

for u < 0 and in this case u = −u−:

−
∫

Ω

σ∇u− · ∇u− dx = 0.

As σ ∈ L∞+ (Ω) it follows directly from this equation that ∇u− = 0 in L2(Ω), implying

u− = C, where C is a constant. As u− has zero trace on Γ it follows that C = 0. This

implies u− = 0 a.e. and therefore u = u+ a.e. on Ω.

(2) Let m1 = infy∈Γ u(y). Then u − m1 ≥ 0 and u − m1 ∈ H1(Ω) satisfies the variational

equation (B.1), as m1 is just a constant. By step (1) it then follows that u−m1 = (u−m1)+

a.e. on Ω, hence u ≥ infy∈Γ u(y) a.e. on Ω. Defining m2 = supy∈Γ u(y) and using the same

approach for the function m2 − u yields u ≤ supy∈Γ u(y) a.e. on Ω.

�
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Reconstructing anisotropic conductivities
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Abstract

We consider an electrically conductive compact two-dimensional Riemannian manifold
with a smooth boundary. This setting defines a natural conductive Laplacian on the
manifold and hence also voltage potentials, current fields and corresponding power densities
arising from suitable boundary conditions. Motivated by Acousto-Electric Tomography we
show that if the manifold has genus zero and the metric is known, then the conductivity
can be recovered uniquely and constructively from knowledge of a few power densities. We
illustrate the reconstruction procedure numerically by an example of a conductivity on a
non-simply connected surface in three-space.

Keywords: Elliptic PDE, Inverse Problem, Riemannian manifold, Conductivity
PACS: 02.20.Jr, 02.30.Zz, 02.40.Ky
2000 MSC: 35J20, 58J05

1. Introduction and statement of the main result

Let (M, g) denote the mentioned compact Riemannian manifold with smooth boundary
∂M. An electric conductivity on M is modelled by a – generally anisotropic – (1, 1) tensor
field γ, which is selfadjoint and uniformly elliptic with respect to g, i.e. for some κ > 1
and for all tangent vectors v and w:

g(γ(v), w) = g(v, γ(w)) and κ−1 ‖v‖2g ≤ g(γ(v), v) ≤ κ ‖v‖2g. (1)

On the boundary ∂M we prescribe an electrostatic potential f that generates an interior
voltage potential u. In the absence of interior sinks and sources, u ∈ H1(M) is characterized
as the unique solution to the boundary value problem{

divg
(
γ gradg (u)

)
= 0 in M,

u = f on ∂M.
(2)

Existence and uniqueness of solutions to such an elliptic PDE on a manifold is classical,
see e.g. [1]. The interior current field is γ gradg (u) , i.e. γ is the tensor turning the electric
field gradg (u) into the current field.
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By considering m different boundary functions f = fi, 1 ≤ i ≤ m, the corresponding
solutions to equation (2) are denoted by ui. They define the so-called power density
(m×m)-matrix H with elements:

Hij = Hji = g(γ gradg (ui) , gradg (uj)) for 1 ≤ i, j ≤ m. (3)

The inverse problem in Acousto-Electric Tomography [2, 3] is concerned with the above
in a Euclidean setting and asks for the recovery of γ from knowledge of H. This problem
was adressed for n = 2 in [4, 5, 6] and for dimensions n ≥ 3 in [7, 8, 9]. It is highly related
to the Calderón problem [10], see [11] for an account on this and related problems.

We conjecture the following: Suppose we know the manifold (M, g) and the power
density matrix H associated with a number of sufficiently well-chosen boundary functions
fi. Then the conductivity tensor field γ is uniquely and constructively determined

As a first step towards this general conjecture, we prove it for all cases where the
topology of the background manifold is simplest possible in a sense that we now explain:

Every 2-dimensional, compact, orientable Riemannian manifold is diffeomorphic to a
handle-body, i.e. it consists of a number handles attached to a 2-sphere. This number
is called the genus of the manifold. When M has k boundary components, its genus is
related to the Euler characteristic χ(M) and k as follows: p = 1− (χ+ k) /2, see [12].

With these preliminaries, we can now state our main result.

Theorem 1. Let (M, g) denote a given compact 2-dimensional Riemannian manifold with
genus p = 0, metric g and non-empty smooth boundary ∂M consisting of a finite number
of boundary components. Suppose that γ is a conductivity tensor field on M , which is
known only on the boundary ∂M . Then there exist m = 4 boundary functions fi with
induced corresponding power density matrix H, such that H determines γ uniquely and
constructively on all of M.

Our approach takes in particular advantage of the work in 2D by Monard and Bal [4].
In addition, the proof of Theorem 1 makes use of the Poincaré-Koebe uniformization the-
orem for compact Riemann surfaces (with boundary). Indeed, (M, g) admits a conformal
isometric representation onto a fundamental domain in R2. When p > 0 the fundamental
domain has extra boundary components that must be glued together to reconstruct the
original manifold. We refer to [13, 14, 15] for a very general and constructive approach to
this uniformization procedure.

For p = 0 the fundamental domain in R2 has no extra boundary components, so all
boundaries are accessible for specifications of boundary functions, and (contrary to the
cases p > 0) it is not needed for the PDE problem (2) to take periodicity across the extra
boundary components into account.

Remark. We note that the manifolds mentioned in Theorem 1 are very general in the
sense that they do not need to be realizable as surfaces in R3 (with the induced metric).

The main novelty of our work is the geometric setting and the application of the uni-
formization theorem allowing for the reduction to the known, Euclidean setting. The

2
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outline is as follows: We prove Theorem 1 in Section 2. In Section 3 we review some
details from the Euclidean reconstruction method and indicate how the key equations can
be lifted to (M, g) using explicit reference to the conformal factor that is induced from the
isometric conformal representation of (M, g) in R2. Finally, in Section 4, we present the
result of a numerical implementation of the reconstruction procedure.

2. Proof of Theorem 1

With reference to the uniformization theorem, (M, g) is – via a conformal diffeomor-
phism – isometric to a compact domain N (with boundary) in the R2 equipped with the
metric gN = ρ2 · gE. Here gE denotes the Euclidean metric in R2 and ρ denotes the
conformal factor induced from the uniformization – obtained e.g. from the constructive
numerical approach of [13, 14, 15]. In this way (M, g) is isometric to (N, gN). Since The-
orem 1 is by definition only concerned with intrinsic metric properties of (M, g), we can
therefore prove it purely in terms of (N, gN) using standard coordinates x1 and x2 and
the corresponding standard basis { ∂

∂x1
= e1 ,

∂
∂x2

= e2} in R2. The metric gN is then
represented by the (2 × 2)-matrix function G with elements Gi j(x

1, x2) = ρ2(x1, x2) · δi j,
and the conductivity tensor is represented by a (2 × 2)-matrix function with elements γji
so that γ(ei)(x

1, x2) =
∑

j γ
j
i (x

1, x2) · ej.
We will denote the first equation in (2) as the γ-Laplace equation for (M, g), and we

will write it shorthand as ∆γ
g(u) = 0. In the isometric representation (N, gN) of (M, g) we

then have the following key observation:

Proposition 2. Let u(x1, x2) denote a smooth function on N . Then

∆γ
gN

(u)(x1, x2) =
1

ρ2(x1, x2)
·∆γ

gE
(u)(x1, x2). (4)

Proof. The gN -gradient of the function u is expressed using the elements Gi,j of the inverse
matrix G−1 as follows:

gradgN (u) =
∑
i j

∂u

∂xi
·Gi j · ej =

1

ρ2
·
∑
i

∂u

∂xi
· ei =

1

ρ2
· gradgE(u),

and the gN -divergence of a vector field V =
∑

i v
i · ei is in 2D:

divgN (V ) =
1√

det(G)
·
∑
i

∂

∂xi

(
vi ·
√

det(G)
)

=
1

ρ2
·
∑
i

∂

∂xi
(
vi · ρ2

)
.

Insertion of V = γ(gradgN (u)) = 1
ρ2
· γ(gradgE(u)) now gives directly:

divgN (γ(gradgN (u))) =
1

ρ2
· divgE(γ(gradgE(u))),

and the proposition follows.

3
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Remark. The identity (4) only holds in dimension 2 where we can use the fact that√
det(G) = ρ2 – as is already well-known from the case of an isotropic conductivity

γji (x
1, x2) = q(x1, x2) · δji for a positive function q.

We prove Theorem 1 with (M, g) represented isometrically by (N, gN) in R2. In view
of proposition 2 we have that ∆γ

gN
(u) = 0 is equivalent to ∆γ

gE
(u) = 0 for all u, so that the

the boundary value problem (2) then reads:

{
∆γ
gE

(u) = 0 in N,

u = f on ∂N.
(5)

The power density matrix HN associated with m different boundary functions fi on
∂N and corresponding solutions ui to (5) on N is then

HN
i j = HN

j i = gN(γ gradN ui, gradN uj)

=
1

ρ2
· gE(γ gradE ui, gradE uj)

=
1

ρ2
·HE

i j , for 1 ≤ i , j ≤ m.

(6)

In other words, since ρ is known, if HN
i j are known functions in N then HE

i j are known
as well. Theorem 1 now follows from the following specific version in the Euclidean plane
(N, gE) due to Monard and Bal [4, Theorem 2.2]:

Theorem 3. Let (N, gE) denote a given compact domain (with non-empty smooth bound-
ary) in the Euclidean plane (R2, gE). Then for any conductivity tensor field γ on N which
is known on the boundary of N there exists m = 4 boundary functions fi with induced cor-
responding power density matrix HE, such that γ is uniquely and constructively determined
by HE on all of N .

3. The reconstruction procedure

For the convenience of the reader, we now survey key points and identities from the
proof of Theorem 3 with a view to the expressions as they appear in (N, gN). Next, we
outline the reconstruction procedure.

3.1. The governing equations

Based on (the unknown) γ we introduce another smooth (1,1) tensor field A defined
in each tangent space as A2(x) = γ(x) and based on A we define the vector fields Sk =
A gradN uk for 1 ≤ k ≤ m. Furthermore A is decomposed into two parts, so that

Ã = det(A)
1
2A with det(Ã) = 1.

4
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For the reconstruction procedure S = (S1, S2) is orthonormalized into an SO(2)-valued
frame R = (R1, R2), by finding T such that R = ST T . The transfer matrix T gives rise to
the four vector fields Vij and thence V a

ij :

Vij =
2∑

k=1

gradN(Tik)T
kj, 1 ≤ i, j ≤ 2, V a

ij =
1

2
(Vij − Vji),

where Tik and T kj denote the entries in T and T−1 respectively. As R is a rotation matrix,
it can be parameterized by a function θ as R =

(
cos θ − sin θ
sin θ cos θ

)
. For the procedure to work,

we need the following two conditions on the power density matrix H:

min(det(gradN u1, gradN u2), det(gradN u3, gradN u4)) ≥ c0 > 0 for every x ∈ N, (7)

gradN

(
log

(
det(gradN u1, gradN u2)

det(gradN u3, gradN u4)

))
6= 0 for every x ∈ N. (8)

The boundary functions fi mentioned in theorem 3 are suitable for reconstruction of γ
when the corresponding four solutions ui satisfy the conditions above. Existence of such
four boundary functions for any γ is guaranteed, c.f. [4, Lemma 2.1]. The reconstruction
procedure is then based on two equations. Using that divN(JA−1Sk) vanishes on N for
k = 1, 2, and with J defined as J = ( 0 −1

1 0 ), we can derive the first equation (corresponding
to [4, eq.(8)]):

gradN log(detA) = D + g(gradN H
qp, Ã Sp)Ã

−1 Sq, (9)

with D = 1
2

gradN log(detH) and where Hqp denotes entries in H−1. By writing the Lie

bracket [ÃR2, ÃR1] in two different ways we obtain the second equation (corresponding to
[4, eq.(10)]):

ρ2Ã2 gradN θ + [Ã2, Ã1] = −1

2
J gradN ρ

2 + ρ2Ã2V a
12 −

1

2
ρ2JD. (10)

Here [Ã2, Ã1] denotes the Lie bracket between columns of Ã. As already alluded to above,
these equations can be directly expressed on (N, gE) by substituting the following quanti-
ties:

HN = ρ−2HE, V N,a
12 = ρ−2V E,a

12 , DN = ρ−2DE − gradE ρ
2.

3.2. Solving the inverse problem

Algorithm 1 Reconstruction procedure

Choose a set of boundary conditions (f1, f2, f3, f4) so that HN satisfies (7) and (8).

1. Reconstruct Ã by use of equation (10) and data from m = 4 boundary conditions

2. Reconstruct θ by use of equation (10) and data from m = 2 boundary conditions

3. Reconstruct det(γ)
1
2 by use of equation (9) and data from m = 2 boundary conditions

5
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Using the governing equations (9) and (10) we can derive the reconstruction procedure
as presented in Algorithm 1. The first step corresponds to two pairs of boundary conditions
giving rise to solutions and power density data that each satisfy equation (10). Subtracting
them yields an algebraic equation to be solved for Ã. The condition (8) ensures that
division by zero is avoided, while condition (7) ensures invertibility of each power density
matrix corresponding to a pair of solutions. The second and third step correspond to
solving gradient equations for θ and log(det(γ)

1
2 ) respectively (corresponding to [4, eq.(36)

& (41)]). As the gradients of θ and det(γ)
1
2 are known throughout N , we only need to

know the values of these functions at a single point. Because then the functions can be
reconstructed throughout N by integration of the gradients along curves originating from
that point. Specifically, the knowledge of γ at the global minimum xm ∈ ∂N of f1 at the
boundary yields the value of θ at xm. Indeed, by the choice of the transfer matrix

T =

(
H

− 1
2

11 0

−H12H
− 1

2
11 (det H)−

1
2 H

1
2
11(det H)−

1
2

)
,

we have that R1 = T11S1+T12S2 = A gradN u1
|A gradN u1|N

. Thus θ = argument(R11+iR21) is given by

the angle between A gradN u1 and the x1-axis. By the maximum principle [16] u1 achieves
its minimum over N at xm. Therefore, at this point the gradient points in the direction of
highest increase of u1 corresponding to −ν, the inward normal vector (gradN u1 cannot be
zero as by the condition (7) | gradN u1|N > 0). Hence,

gradN u1
| gradN u1|N

(xm) = −ν(xm) ⇒ A gradN u1(xm) = −| gradN u1|NAν(xm),

so that θ is known at xm, since it is solely determined by the direction of A gradN u1.

4. A numerical example

The Matlab and Python code to generate the numerical example can be found on
GitLab: GitLab code. To illustrate the reconstruction procedure we consider a manifold
(N, gN = ρ2 · gE) represented by a catenoid. The fundamental domain N is seen in the
upper images in Figure 1, and the catenoid is already ‘uniformized’ via the following
analytic conformal representation r and corresponding conformal factor ρ:

r(x1, x2) =


cosh

(
log
(√

(x1)2 + (x2)2
))

cos(arg(x1 + ix2))

cosh
(

log
(√

(x1)2 + (x2)2
))

sin(arg(x1 + ix2))

log
(√

(x1)2 + (x2)2
)

 ,

ρ(x1, x2) =
cosh

(
1
2

log((x1)2 + (x2)2)
)√

(x1)2 + (x2)2
.

The conductivity tensor field γ is composed of three functions ξ, ζ and (det γ)
1
2 :

γ = (det γ)
1
2

(
ξ ζ

ζ 1+ζ2

ξ

)
. (11)

6
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The three functions ξ, ζ and (det γ)
1
2 are chosen to show a number of features to

be reconstructed. These are illustrated in the fundamental domain N in the first row
of figure 1. In accordance with [4] we use only three boundary conditions to generate
the power densities. These are simple polynomials in x1 and x2 given by (f1, f2, f4) =
(−x2−0.1(x2)2, x1−x2, 0.2x1x2 +x2−0.1(x1)2) (the third boundary condition is f3 = f2.)
The reconstructions are shown on the catenoid in the second row of Figure 1.

Figure 1: The true scalar functions ξ, ζ and (det γ)
1
2 determining the conductivity in the plane (first row)

and their reconstructions on a catenoid (second row).

5. Conclusion

We have presented a new geometric setting for the reconstruction of anisotropic con-
ductivities from power densities. Our main result generalizes the reconstruction method
for the 2-dimensional Euclidean setting to 2-dimensional compact Riemannian manifolds
with genus 0. The result is presented in a way that opens for further research questions in
the setting of Riemannian manifolds with higher genus and possibly in higher dimensions.
The approach applies to other similar inverse problems with internal data, in particular the
reconstruction problem for anisotropic conductivities from current densities, c.f. [17, 18].
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