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Summary (English)

Nature-inspired optimization algorithms are defined as a class of algorithms that
are inspired by natural phenomena, e. g., evolutionary algorithms and simulated
annealing. These methods have gained popularity in practice since they are sim-
ple to use and quickly provide good results. Single-trajectory search heuristics
are nature-inspired optimization algorithms that iteratively develop a trajectory
of solutions to a problem. They have a straightforward structure which can be
seen in many powerful nature-inspired algorithms, such as randomized local
search, the (1+1)-evolutionary algorithm, and simulated annealing. They typi-
cally have some parameters (e. g., mutation rate) to be set and need a selection
strategy for developing the sequence of solutions. Runtime analysis of nature-
inspired algorithms is a line of research that offers suggestions for parameter
tuning in nature-inspired algorithms. Also, several studies have been conducted
to determine how to pick the selection mechanisms in such algorithms.

For a single-trajectory search heuristic, getting out of a local optimum, where
all nearby solutions are of lower quality, is difficult, and its mutation and se-
lection mechanism significantly impact the escaping time. This thesis discusses
three main strategies used in the literature to overcome local optima in single-
trajectory search heuristics. (1) Global mutations with a proper probability
distribution over solutions can always find a strict improvement with positive
probability and eventually leave a local optimum. (2) Stagnation detection ap-
proaches, as self-adjusting mechanisms, gradually increase the mutation rate
when getting stuck in a local optimum. (3) Accepting inferior solutions in non-
elitist algorithms has been used in practice to leave local optima. In this
context, we study two well-known non-elitist algorithms, the Metropolis algo-
rithm and simulated annealing, in specific optimization scenarios.
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Summary (Danish)

Naturinspirerede optimeringsalgoritmer er defineret som en klasse af algorit-
mer der er inspireret af naturlige fænomener, for eksempel evolutionære al-
goritmer og simuleret udglødning. Disse metoder er blevet populære i praksis
da de er nemme at bruge og hurtigt finder frem til løsninger af god kvalitet.
Enkelttrajektorie-søgeheuristikker er naturinspirerede algoritmer der iterativt
udvikler en trajektorie af løsninger til et problem. Disse algoritmer har en sim-
pel struktur der kan findes i mange stærke naturinspirerede algoritmer, f. eks.
randomiseret lokal søgning, (1+1)-evolutionær algoritme og simuleret udglød-
ning. Algoritmerne har almindeligvis nogle parametre (f. eks. mutationsraten)
der skal indstilles, og har brug for en strategi der udvikler sekvensen af løsnin-
ger. Køretidsanalysen af naturinspirerede algoritmer er en forskningsretning der
giver anbefalinger til parametervalget i naturinspirerede algoritmer. Derudover
der er flere studier der fastslår hvordan man vælger udvælgelsesmekanismerne i
sådanne algoritmer.

Det kan være svært for en enkelttrajektorie-søgeheuristik at undvige et lokalt
optimum hvor alle tilstødende løsninger er af ringere kvalitet, og heuristik-
kens mutations- og udvælgelsesmekanismer påvirker undvigelsestiden væsentligt.
Denne afhandling diskuterer tre hovedstrategier for at undvige lokale optima i
enkelttrajektorie-søgeheuristikker: (1) Globale mutationer med en passende
sandsynlighedsfordeling over løsningerne har altid en positiv sandsynlighed for
en ægte forbedring og kan før eller siden undvige et lokalt optimum. (2) Stag-
neringsdetektion som f. eks. i selvjusterende algoritmer øger mutationsraten
gradvist når algoritmer sidder fast i et lokalt optimum. (3) Accept af løsninger
af dårligere kvalitet i ikke-elitære algoritmer er blevet brugt i praksis til at
undvige lokale optima. I denne sammenhæng undersøger vi to velkendte ikke-
elitære algoritmer, Metropolis-algoritmen og simuleret udglødning, i specifikke
optimeringsscenarier.
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Chapter 1

Introduction

1.1 Motivation

Natural-inspired computation is a framework for problem-solving methodologies
and approaches inspired by natural processes. Evolutionary algorithms, which
follow Darwin’s survival of the fittest principle, ant colony optimization, which
models ant foraging behavior, and simulated annealing, which is inspired by
annealing in metallurgy, are all well-known examples of natural-inspired algo-
rithms. These approaches are popular in a variety of industries, including en-
gineering [DM13], healthcare [FC03], and finance [Che02], since they are easy
to implement and produce surprise outcomes. In this thesis, we are interested
in studying single-trajectory search heuristics, a frequent framework in nature-
inspired optimization problems, which evolve iteratively a trajectory of solutions
to a problem. From now on, we call each solution of the trajectory a search point.
The first search point, called initial search point, is often chosen randomly from
all possible solutions, and each future solution is chosen from previous search
points or a modified version of them. A rigorous definition of single-trajectory
search heuristics is provided in Section 1.6. This structure for heuristics can
be seen in many well-known nature-inspired algorithms discussed in this thesis,
such as randomized local search, the (1 + 1)-evolutionary algorithm (EA), and
simulated annealing.



2 Introduction

Runtime analysis of nature-inspired algorithms is a line of research that tries
to characterize how fast nature-inspired algorithms solve specific types of prob-
lems. This has led to many rigorously proven statements on the speed, so-called
the runtime [AD11, Jan13, NW10, DN20]. Nature-inspired algorithms typi-
cally come with different parameters that need to be set, e. g., the so-called
mutation rate (the degree to which existing solutions are changed while devel-
oping new ones). Runtime analysis can provide a solution to the often very
time-consuming work of parameter tuning in nature-inspired algorithms, which
typically come with a variety of parameters that need to be set [DD20]. Also, it
has been a subject of ongoing research on how to select promising solutions in
nature-inspired algorithms. There are the following two general categories for
selection mechanisms: Some algorithms, so-called elitist algorithms, keep the
best-so-far search point (usually the last one if there are more than one), e. g.,
the (1+1) EA, while there are non-elitist algorithms that also accept inferior
solutions sometimes, e. g., simulated annealing.

Leaving local optima, where there is no better search point by making a small
number of changes to the current solution, is challenging for single-trajectory
search heuristics. They need to modify the current search point more than what
is usually beneficial for hill-climbing, where only a single change in the solution
can result in a better solution. In this situation, the choice of the mutation and
selection mechanisms is crucial for leaving local optima in an efficient time. We
discuss three main approaches for single-trajectory search heuristics to overcome
local optima in Chapter 2: global mutations, self-adjusting mechanisms, and
non-elitist selections.

In global mutations, new search points might be any possible solution, so there
is always a positive probability of making a strict improvement if the current
search point does not have the optimal fitness value. However, the probability
distribution over search points is crucial and has a significant impact on the total
optimization time. The bit-wise mutations in the (1+1) EA and fast mutations
in the (1+1) FEAβ [DLMN17] are examples of global mutations. However, local
mutations can only create a fixed set of offspring points. The 1-bit flip mutation
that often can be found in the Randomized Local Search algorithm (RLS), for
example, only reaches a limited number of search points, which may result in
being stuck in a local optimum when using the elitist selection. In Section 2.1,
we discuss global and local mutations more precisely.

The second approach is adapting the mutation rate by self-adjusting mechanisms
during the run. Self-adjusting algorithms can learn acceptable or even near-
optimal parameters on the fly. There are several self-adjusting mechanisms
for unimodal problems [DD18, DGWY19, RW20a, HFS21, DDL21, KLLZ22],
while there are a few research works on multimodal problems [LS11, DL16b]
(see Section 2.2). On multimodal problems, we study the recently proposed
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stagnation detection mechanisms, which gradually increase the mutation rate
until leaving a local optimum [RW22a, RW21b, RW21a, DR22]. In Section 2.2,
more detailed discussions and concrete runtime results can be found.

The last but not least strategy we study is the non-elitist approach in which
an algorithm occasionally accepts inferior solutions. Recently, there has been
an increasing amount of literature studying the performance of non-elitist algo-
rithms to escape local optima [Doe20a, DEL21a, DEL21b, FS21]. In the thesis,
we mostly investigate two well-known algorithms in practice, Metropolis algo-
rithm [MRR+53] and simulated annealing [KGJV83]. So far, runtime analyses
of these algorithms have mostly appeared as side results in papers focused on
other heuristics. In Section 2.3, both algorithms are discussed and analyzed.

1.2 Thesis Overview and Contributions

This thesis is structured as follows: this chapter continues with discussing more
studies from the literature in Section 1.3, defining the basic definitions and
mathematical tools used in the thesis in Section 1.4 and determining the contexts
of optimization problems and heuristics of the thesis in Section 1.5 and 1.6,
respectively. Chapter 2 overviews the strategies that can be used for leaving
local optima. Afterward, we see the following 6 papers1 rigorously analyzing
different strategies in Chapters 3–8.

• The published journal paper [RW22a] in Chapter 3 as Paper A: Self-
Adjusting Evolutionary Algorithms for Multimodal Optimiza-
tion.

• The accepted (with minor revisions) journal paper [RW22c] in Chapter 4 as
Paper B: Stagnation Detection with Randomized Local Search.

• The submitted journal paper [RW22b] in Chapter 5 as Paper C: Stag-
nation Detection in Highly Multimodal Fitness Landscapes.

• The extended version of [DR22] in Chapter 6 as Paper D: Stagnation
Detection Meets Fast Mutation.

• The in-preparation paper [DHRW22] in Chapter 7 as Paper E: How
Fast Does the Metropolis Algorithm Leave Local Optima?

1The versions of the papers that appear in this thesis may differ slightly due to typo
corrections and minor alterations.
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• The extended version of [DRW22] in Chapter 8 as Paper F: Simulated
Annealing is a Polynomial-Time Approximation Scheme for the
Minimum Spanning Tree Problem.

I have published, submitted, or prepared the following articles during my Ph.D.
studies. The papers that are used in the thesis are marked by *.

Conference papers:

[RW20b] Amirhossein Rajabi and Carsten Witt. Self-adjusting evolutionary algo-
rithms for multimodal optimization. In Genetic and Evolutionary Com-
putation Conference, GECCO 2020, pages 1314–1322. ACM, 2020

[RW20a] Amirhossein Rajabi and Carsten Witt. Evolutionary algorithms with self-
adjusting asymmetric mutation. In Parallel Problem Solving from Nature,
PPSN 2020, Part I, pages 664–677. Springer, 2020

[RW21b] Amirhossein Rajabi and Carsten Witt. Stagnation detection with ran-
domized local search. In Evolutionary Computation in Combinatorial Op-
timization, EvoCOP 2021, pages 152–168. Springer, 2021

[RW21a] Amirhossein Rajabi and Carsten Witt. Stagnation detection in highly
multimodal fitness landscapes. In Genetic and Evolutionary Computation
Conference, GECCO 2021, pages 1178–1186. ACM, 2021

[DR22] *Benjamin Doerr and Amirhossein Rajabi. Stagnation detection meets
fast mutation. In European Conference on Evolutionary Computation in
Combinatorial Optimization (Part of EvoStar), pages 191–207. Springer,
2022

[DRW22] *Benjamin Doerr, Amirhossein Rajabi, and Carsten Witt. Simulated an-
nealing is a polynomial-time approximation scheme for the minimum span-
ning tree problem. In Genetic and Evolutionary Computation Conference,
GECCO 2022. ACM, 2022. To appear

[DHRW22] *Benjamin Doerr, Taha El Ghazi El Houssaini, Amirhossein Rajabi, and
Carsten Witt. How fast does the metropolis algorithm leave local optima?
To be submitted to a conference, 2022

[FKKR22] Tobias Friedrich, Timo Kötzing, Martin S. Krejca, and Amirhossein Ra-
jabi. Escaping local optima with local search: A theory-driven discussion.
In Parallel Problem Solving From Nature, PPSN 2022. Springer, 2022.
submitted to Parallel Problem Solving from Nature, PPSN 2022
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Journal papers:

[RW22a] *Amirhossein Rajabi and Carsten Witt. Self-adjusting evolutionary algo-
rithms for multimodal optimization. Algorithmica, pages 1–30, 2022. Pre-
liminary version in GECCO 2020

[RW22c] *Amirhossein Rajabi and Carsten Witt. Stagnation detection with ran-
domized local search. Evolutionary Computation, 2022. Preliminary ver-
sion in EvoCOP 2021, to appear in the EC journal

[RW22b] *Amirhossein Rajabi and Carsten Witt. Stagnation detection in highly
multimodal fitness landscapes. Algorithmica, 2022. Preliminary version in
GECCO 2021, submitted to the Algorithmica journal

1.3 Other approaches

Other than single-trajectory variants, search heuristics with a more com-
plex structure have been used for multimodal optimization. For exam-
ple, population-based algorithms maintain more than one solution in con-
trast to single-trajectory search heuristics. The idea is to search different
areas of the search space at the same time, avoiding small local optima.
An elaborate line of research highlights various aspects of these algorithms
[DL16a, LY12, ADY19]. In recent years, there has been an increasing amount
of literature studying the performance of non-elitist algorithms to escape local
optima [Doe20a, DEL21a, DEL21b, FS21].

When using population-based methods, it is natural to attempt to use variation
operators known as crossover to integrate advantageous characteristics from
different local optima (creating a new solution using at least two solutions from
the population). Given good diversity mechanisms, a crossover can be capable
of overcoming large fitness valleys [DFK+18, DFK+16a, DFK+16b]. However,
also employing crossover without an explicit diversity mechanism speeds up the
run time for certain problems [AN21, ABD21, AD20, ADK20, FKK+16b].

Another fundamentally different approaches are estimation-of-distribution algo-
rithms (EDAs), which maintain a probabilistic model of the search space in-
stead of sets of solutions. In this approach, the model is constantly updating
based on samples from the search space, leading to creating better solutions
in the next iteration. In this method, choosing the correct step size is crucial
[FKK16a, LSW21]. Given a proper step size, EDAs overcome valleys of a con-
siderable size at almost no extra cost [HS18, Doe19, Wit21]. Also, a number
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of authors have investigated the efficiency of another EDA called UMDA on
escaping local optima on a deceptive fitness function [LN19, DK20].

Moreover, ant colony optimization (ACO) algorithms are nature-inspired search
heuristics that evolve a probability distribution on the search space. A rigor-
ous run time analysis of a version of ACO so-called 2-MMASib on multimodal
functions has been conducted in [BBD21b]. Artificial immune systems (AISs)
are another class of nature-inspired search heuristics that have also been proven
to escape from local optima efficiently [COY18, COY20, COY21a, COY21b].
Also, it should be mentioned that the performance of the Move-Acceptance
hyper-heuristic (MAHH) was rigorously analyzed for multimodal optimisation
problems [LOW19].

1.4 Preliminaries

We let N denote the set of all natural numbers including 0 and R denote the set
of all real numbers. For all a, b ∈ N, let [a..b] denote the set of natural numbers
from at least a to at most b. For each x ∈ {0, 1}n, let ∥x∥1 denote the number of
one-bits in x, and analogously, let ∥x∥0 denote its number of zero-bits. Further,
for each i ∈ [0..n], let xi denote the bit at position i in x. We say that we flip
bit i when we refer to the value 1− xi.

We call a pseudo-Boolean function f a fitness function, and we refer to bit-
strings as search points. Assume we want to optimize a pseudo-Boolean function
f : {0, 1}n → R for n ∈ N. All asymptotic expressions are with respect to n. We
call f(x) the fitness of the bit-string x. For x, y ∈ {0, 1}n, we call dH(x, y) :=
|{i ∈ [n] | xi ̸= yi}| the Hamming distance of x and y.

Moreover, for all i ∈ [0..n], we call the set of all search points with Hamming
distance i to x the i-neighborhood of x. By search points in local neighborhood
or neighbors, we mean the 1-neighborhood search points.

We discuss two probability distributions used in this thesis. A random vari-
able X follows a binomial distribution with parameters n and p if for all
k ∈ [0..n], we have

Pr (X = k) =

(
n

k

)
pk(1− p)n−k,

and we write X ∼ Bin(n, p).
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In addition, an integer random variable X follows a power-law distribution with
parameters β and u if

Pr (X = k) =

{
Cβ,uk

−β if 1 ≤ k ≤ u,

0 otherwise,
(1.1)

where Cβ,u := (
∑u

j=1 j
−β)−1 is the normalization coefficient, and Cβ,u = Θ(1)

for β > 1 (we refer to [DLMN17] for more details). The function pow(β, u)
returns a sample from this distribution.

1.5 Discrete Optimization Problems

Theoretical research on nature-inspired algorithms often studies simple well-
structured functions, which can serve as building blocks of more complicated
problems. In this section, we define some of them, which are used in the thesis.
In all algorithms and results presented in this thesis, we aim at maximizing the
fitness function f except when the minimum spanning tree problem is considered
as the optimization problem. Nevertheless, on any minimization problem, we
can simply assume that the negated fitness function is maximized.

We use the definition of unimodal functions determined in [DJW02]. A search
point is a local maximum if no neighbor has a larger fitness value. A fitness func-
tion is unimodal if and only if there is only one local maximum. Analogously, a
fitness function is multimodal if and only if there are more than one local max-
imum in the function. To study the performance of heuristics on multimodal
problems, we should first analyze the behavior of algorithms on unimodal func-
tions as they can usually be seen in the underlying landscapes of multimodal
functions. In the next section, we present some well-studied fitness functions in
the literature.

1.5.1 Fitness Functions

In this part, we define and explain some of the benchmark functions used in the
thesis.

Unimodal functions. The following unimodal benchmark functions
OneMax and LeadingOnes have been extensively studied in the literature.
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Figure 1.1: Jumpm Figure 1.2: Jumpk,m

They are defined by

OneMax(x) := ∥x∥1 and LeadingOnes(x) :=
n∑

i=1

i∏
j=1

xj

for all x = (x1, . . . , xn) ∈ {0, 1}n, where ∥x∥1 is the number of one-bits in the
bit-string x.

Jump functions families. The well-known Jumpm function [DJW02] with
jump size m defined as follows:

Jumpm(x) :=

{
m+ ∥x∥1 if ∥x∥1 ≤ n−m or ∥x∥1 = n,

n− ∥x∥1 otherwise.

This function is multimodal with local optima at all search points with n −m
one-bits, and there is only one global optimum 1n. See also Figure 1.1 for a
depiction.

Two papers [BBD21a] and [RW21a] independently defined variants of jump func-
tions in which the place of the jump with size m starts at an earlier point than
the Hamming distance m from the global optimum. According to the general-
ized version of Jump functions illustrated in Figure 1.2 and defined in [BBD21a],
formally, for all x ∈ {0, 1}n, we have

Jumpk,m(x) :=

{
∥x∥1 if ∥x∥1 ∈ [0..n− k] ∪ [n− k +m..n],

−∥x∥1 otherwise.



1.5 Discrete Optimization Problems 9

Figure 1.3: Cliffd Figure 1.4: Cliffd,m

In other words, after the jump, there is a unimodal sub-problem of length k−m.
The classical Jump function can be considered as a special case of Jumpk,m

with k = m, i. e., Jumpm = Jumpm,m by ignoring the differences in the fitness
values in the valley. The function Jumpk,m is called JumpOff in [RW21a] and
JumpOffset in [Wit21] using a fixed k = n/4.

Cliff functions. Cliff functions were originally defined with one
parameter d determining the distance of the local optimum from the global
optimum ([JS07]) (see Figure 1.3).

Cliffd(x) :=

{
∥x∥1 if ∥x∥1 ≤ n− d,

∥x∥1 − d+ 1/2 otherwise.

We also define this function with two parameters d and m. The function
Cliffd,m is increasing as the number of one-bits of the argument increases
except for the points with n −m one-bits, where the fitness decreases sharply
by d if we add one more one-bit to the search point.

Cliffd,m(x) :=

{
∥x∥1 if ∥x∥1 ≤ n−m,

∥x∥1 − d− 1 otherwise.

The valley in Jump includes false fitness signals that lead the search back to the
local optimum, while the fitness signal in Cliff leads to the global optimum,
see Figure 1.4.

The minimum spanning tree (MST) problem. We now define the MST
problem and additional notation used later in the thesis. Assume that an undi-
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rected, connected, weighted graph G = (V,E) is given, and let n and m denote
the number of graph vertices and edges, respectively. Also, let the set of edges
be E = {e1, . . . , em}. The weight of edge ei, where i ∈ {1, . . . ,m}, is a pos-
itive number wi. We say that the weights w1, . . . , wm are (1 + ε)-separated
if wj ≥ (1 + ε)wi for all i, j ∈ {1, . . . , n} such that wj > wi. We define
wmin := min{wi | i ∈ {1, . . . ,m}} and wmax := max{wi | i ∈ {1, . . . ,m}}
for the minimum and maximum edge weight. The aim of the problem is to find
a subset of edges called E′ such that (V,E′) is a spanning tree of the graph G
having minimal total weight w(E′) =

∑
ei∈E′ wi. We use the bit-string repre-

sentation for sets E′ of edges, that is, a bit-string x = (x1, . . . , xm) ∈ {0, 1}m
represents the set E(x) = {ei | xi = 1}. As objective function, we use the sum
of the weights of the selected edges when these form a connected graph on V
and ∞ (or an extremely large value) otherwise.

f(x) :=

{
w1x1 + · · ·+ wmxm if (V,E(x)) is connected,
∞ otherwise.

1.6 Single-trajectory Search Heuristics

All algorithms addressed in this thesis follow the framework of single-trajectory
heuristics, optimizing a fitness function f (Algorithm 1). A single-trajectory
heuristic processes a trajectory (x(t))t∈N of search points (the current search
point). The initial search point (x(0)) is chosen uniformly at random from the
search space {0, 1}n. In all iterations t ∈ N, the search point x(t+1) is made via
the subroutines: mutate and select. We allow mutation and selection to take
into account additional information, such as the number of iterations since the
last improvement was found.

Algorithm 1: The framework for single-trajectory heuristics, requiring the
potentially parameterized subroutines mutate and select as well as a fit-
ness function f

x(0) ← individual drawn uniformly at random from {0, 1}n;
for t← 0, 1, 2, . . . do

y ← mutate(x(t));
x(t+1) ← selectf (x

(t), y);

The subroutine mutate : {0, 1}n → {0, 1}n is a randomized function that re-
turns a modified version of the input. In iteration t, this function gets x(t) as
input (the parent) and returns x(t), denoted by y (the offspring). We call this
process mutation, and we say that x(t) is mutated. In this thesis, we assume
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that all mutations are unary unbiased black-box variation operators as rigor-
ously defined in [LW12], which means that the mutation cannot discriminate
between bit positions nor between bit values.

After mutation, utilizing f , the subroutine select : ({0, 1}n)2 → {0, 1}n selects
either x(t) or y to be assigned to x(t+1), which is a starting point for the next
iteration. We refer to this process as selection. An elitist selection always selects
the search points with higher fitness values. In the case that the fitness values
are equal, i. e., f(x(t)) = f(y), the algorithm usually selects the offspring y
although not always. In elitist algorithms, the current search point is always
the search point with the highest-so-far fitness value. On the other side, non-
elitist selection might accept inferior search points.

The runtime or the optimization time of a heuristic on a function f is the first
point in time where a search point of the global optima has been evaluated.
Usually, a black-box perspective is assumed, and time is measured in the num-
ber of evaluations of the objective function. Since the heuristics considered in
this thesis evaluate one search point in each iteration of their main loop, their
runtime equals the number of iterations until an optimum is found plus 1 for the
evaluation of the initial search point. Hence, their runtime is simply the smallest
value of the iteration counter t such that an optimum is evaluated plus 1. The
expected runtime, i. e., the expected value of this time, is often analyzed.
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Chapter 2

Strategies for Escaping local optima

This chapter investigates three strategies for leaving a local optimum: global
mutations, self-adjusting mechanisms, and non-elitist strategies.

2.1 Mutations

We first study an example of local mutations, called k-bit flip mutation, in
Section 2.1.1. Afterward, we investigate two global mutation classes of bit-wise
mutations and heavy-tailed mutations in Section 2.1.2 and 2.1.3, respectively.

2.1.1 k-bit flip mutations

The first mutations we address are k-bit flip mutations, which are called λ-
changes in [JPY88]. A k-bit flip mutation with a fixed integer k flips exactly k
out of n bits uniformly at random, which means that the offspring differs from
its parent in k places. These mutations are also classified as local mutations due
to the fact that the set of possible offspring is constrained to a proper subset
of the search space. In other words, unlike global mutations, which will be
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Algorithm 2: RLS for the maximization of f : {0, 1}n → R
Select x(0) uniformly at random from {0, 1}n;
for t← 0, 1, 2, . . . do

Create y by flipping a bit chosen uniformly at random in a copy of x(t);
if f(y) ≥ f(x(t)) then

x(t+1) ← y;
else

x(t+1) ← x(t);

discussed later, the mutation is not able to generate all search points in the
search space in one iteration.

Algorithm 1 using 1-bit flip as its mutation is called RLS in the litera-
ture (displayed in Algorithm 2) and has been studied extensively over the
years [MHF93, WW05, NW07, JZ14, DD16]. This algorithm can outperform
other unbiased black-box search heuristics on unimodal problems. This is be-
cause other algorithms typically spend some time to find the next improve-
ment in larger Hamming distances, which is often not beneficial. However,
RLS achieves this superiority by assuming some information about the prob-
lem. In other words, we assume that there is always an improvement in the
1-neighborhood. Basically, if we have some specific knowledge about the prob-
lem’s landscape and can find a suitable value for k, we might achieve an efficient
algorithm on that problem.

Taking the minimum spanning tree problem as an example, using some 1-bit
flips, we can create a spanning tree from a random solution. Afterward, 1-bit
flips are not advantageous anymore, and 2-bit flips can make progress by adding
one edge and removing another edge from the solution to keep connectivity in
the solution (see [NW10]). The authors in [NW07] introduced a variant of RLS
(called RLS1,2 by [NW10] to avoid confusion), which employs both 1-bit and
2-bit flips with equal probability and proved that a minimum spanning tree is
found in O(m2 ln(nwmax)) expected steps. Since this algorithm flips at most 2
bits each time, by replacing all edge weights with their rank in their increasingly
sorted sequence, the algorithm can still achieve the same MSTs as in the original
graph [RKJ06]. Therefore, because wmax ≤ m and m ≤ n2, it can be shown
that RLS1,2 solves the MST problem in expected time O(m2 lnn) (see [RW21b,
Section 7] for more detail).

Generally, we are not always fortunate enough to know the proper value for k
in k-bit flip mutations. Also, the optimal parameter choice for k might change
during the search. For the latter case, we give the above-defined Jump functions
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Algorithm 3: The (1+1) EA with mutation probability p for the maximiza-
tion of f : {0, 1}n → R
Select x(0) uniformly at random from {0, 1}n;
for t← 0, 1, 2, . . . do

Create y by flipping each bit in a copy of x(t) independently with
probability p;

if f(y) ≥ f(x(t)) then
x(t+1) ← y;

else
x(t+1) ← x(t);

as an example. In the beginning, 1-bit flips are efficient until the local optimum
is reached. From this state, m-bit flips are required to find the next strict
improvement. The size of the jump m typically can be considered as an unknown
value to the algorithm. However, even if it is known, the algorithm with m-bit
flips operator might not reach the local optimum, starting from the initial search
point. These arguments hold for most of the local mutations. They motivate
us to design and study global mutations, where any search point in the search
space can be produced in a single iteration.

2.1.2 Bit-wise mutations

The bit-wise mutations with mutation rates 0 < p < 1 [JW00, Weg02] are well-
known global mutations, which have been studied widely [DLMN17, DG13,
BDN10, Wit13, OHY09]. The mutation with a given mutation rate p flips
each bit of the search point with probability p. The Hamming distance of the
offspring from the parent follows a binomial distribution with parameters n
and p, i. e., dH(x

(t), y) ∼ Bin(n, p), and the expected number of flipping bits
is np. Algorithm 1 with a bit-wise mutation is called the (1+1) EA, which has
a parameter indicating the mutation rate, see Algorithm 3. Also, let strength
in mutations denote the expected number of flipping bits, i. e., n times the
mutation probability, so a bit-wise mutation with strength k flips each bit with
probability k

n .

Much research has been conducted to find the best mutation rate for the algo-
rithm (1+1) EA on different problems [DD20]. Based on several studies, such
as [Müh92, Bäc93], the mutation rate 1/n, which is so-called the standard mu-
tation probability, is known as a good choice. In [DG13], it was shown that the
(1+1) EA with mutation rate c/n for a constant c > 0 finds the optimum of the
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linear objective function OneMax in expected time Θ(n lnn). Later, Witt in
[Wit13] rigorously proved that 1/n is the optimal rate for all linear functions.
On LeadingOnes, the authors of [BDN10] showed that although the mutation
rate p ≈ 1.59/n is the optimum, the rate 1/n is enough to find the global opti-
mum in asymptotic expected runtime Θ(n2). Similarly to RLS, we, therefore,
see that flipping one bit in expectation is promising on unimodal functions.

The standard mutation probability, however, is not the best choice for mul-
timodal problems. Droste et al. [DJW02] showed that on jump functions
as theoretical benchmarks for multimodal problems, the (1+1) EA with the
standard mutation probability finds the global optimum in expected runtime
Θ(nm + n lnn). However, [DLMN17] proves that the optimum choice of
which static parameter for the mutation rate can achieve the expected runtime
Θ((n/m)m(n/(n−m))n−m on jump functions with jump size m. This results in
a speed-up by the factor of roughly (m/e)m. The authors also showed that the
mutation rate m/n achieves asymptotically the same runtime although using a
problem-specific knowledge (the value m in Jumpm) in black-box algorithms is
not recommended [Doe20c]. Using the example of jump functions, we can see
that the choice of the mutation rate in the (1+1) EA is crucial on multimodal
problems.

Nevertheless, the (1+1) EA with the standard mutation probability can still be
a powerful search heuristic in some multimodal scenarios. On MST problems, as
a multimodal optimization problem with many local optima, the algorithm can
find the optimum in at most (1+o(1))em2 ln(emwmax) expected steps [DJW12].
Even on the generalized version of jump functions, the (1+1) EA can outperform
some mechanisms specifically designed for multimodal problems [BBD21a] in
some scenarios.

2.1.3 Heavy-tailed mutations

In the previous section, we mentioned that the number of flipping bits in bit-wise
mutations follows a binomial distribution, so they highly concentrate on flipping
around np bits by Chernoff’s bounds. Thus, we rarely observe a mutation
flipping much more or much less than np bits in an iteration. This behavior
can be detrimental on multimodal optimization problems. For example, assume
that there is only one strict improvement at Hamming distance m. The expected
waiting time of the (1+1) EA with p = 1/n to find this improvement is Θ(nm)
while during this time, each search point in the local neighborhood is evaluated
Θ(nm−1) times in expectation, that is, it spends numerous iterations to evaluate
inferior search points repeatedly.



2.2 Self-adjusting Mechanisms: Stagnation Detection Mechanisms 17

Algorithm 4: The (1+1) FEAβ with parameters β and u for the maximiza-
tion of f : {0, 1}n → R
Select x(0) uniformly at random from {0, 1}n;
for t← 0, 1, 2, . . . do

α← pow(β, u);
Create y by flipping each bit in a copy of x(t) independently with
probability α;

if f(y) ≥ f(x(t)) then
x(t+1) ← y;

else
x(t+1) ← x(t);

Doerr et al. in [DLMN17] proposed the heavy-tailed mutation or fast mutation
where a power-law distribution with parameters β and u (i. e., Dβ

u) determines
the number of flipping bits. We define by the (1+1) FEAβ a single-trajectory
search heuristic (Algorithm 1) with bit-wise mutation with probability α/n,
where α is sampled from heavy-tailed mutation Dβ

n/2 in each iteration [DLMN17]
(i. e., α = pow(β, u)), see Algorithm 4. When β > 1, the probability of flipping
k bits equals Θ(k−β). Thus with a constant probability, the algorithm flips a
constant number of bits, which results in efficiency in hill-climbing. In addition,
the probability that α = m equals Θ(m−β), so it is also beneficial for leaving
local optima compared to binomial distributions.

Many studies on the (1+1) FEAβ have been carried out in recent years, which
shows the advantage of this mutation, compared to the standard mutation prob-
ability in a single-trajectory search heuristic [QGWF21, FQW18, FGQW18b,
COY18].

2.2 Self-adjusting Mechanisms on Escaping Local
Optima: Stagnation Detection Mechanisms

To the best of the author’s knowledge, only a few runtime analyses of self-
adjusting evolutionary algorithms on multimodal functions exist. There are the
work by [LS11] on self-adjusting offspring population sizes resulting in a speedup
on the Jump functions and the paper by [DL16b] on a self-adjusting mutation
rate in a non-elitist EA with respect to the specifically constructed PeakedLO
function. However, since these mechanisms are analyzed on population-based
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algorithms, they are beyond the scope of this thesis. In this part, we investi-
gate a mechanism called Stagnation Detection (SD), which has recently been
introduced to manage the mutation rate in single-trajectory algorithms on multi-
modal problems based on the number of failures with a certain mutation setting.

Consider a run of the (1+1) EA with standard mutation probability 1/n on a
pseudo-Boolean fitness function f . If a strict improvement is not found in the
first en lnn iterations, a given search point in the local neighborhood is observed
with probability 1− (1− 1

en )
en lnn ≥ 1− 1/n, so a large portion (almost all for

a sufficiently large n) of the search points in the local neighborhood has already
been observed at least once. If the algorithm keeps using this mutation rate,
it still creates search points in the neighborhood most of the time (i. e., with
probability around 1/e). In this situation, the algorithm has stagnated into
looking at Hamming distance 1.

We generalize the arguments for larger strengths as follows. A stagnation at
distance k is detected if for a given R, at least a 1− 1/R fraction of the search
points at Hamming distance k has been observed in expectation. We call the
mechanism that discovers such situations Stagnation Detection (SD). Different
strategies can be applied following a stagnation (see restart strategies, for exam-
ple, in [FKKR22]). However, changing the mutation strength (e. g., increasing
it by 1) seems to be sensible and beneficial in elitist algorithms. There are
different recommendations of how to set the parameter R best, so we refer the
interested readers to see them in the corresponding papers; however, in general,
the algorithm is rather robust with respect to setting R = nc for an arbitrary
constant c > 4 in most of the algorithms employing SD mechanisms. In the con-
ducted analyses, the value of c only affects the lower order terms of the upper
bounds on the runtime.

The idea of stagnation detection has also been successfully used in GSEMO,
called SD-GSEMO [DZ21], to compute Pareto-optimal solutions in multi-object-
ive evolutionary algorithms. In the following sections, we summarize the re-
sults of the studies conducted for using stagnation detection in several single-
trajectory search heuristics.

2.2.1 Stagnation Detection with Bit-wise Mutations

In the first version presented in [RW20b, RW22a], we combine the SD mechanism
with bit-wise mutations and propose the (1+1) EA with stagnation detection
or the SD-(1+1) EA. In this algorithm, we start with strength 1 (i. e., the
standard mutation probability 1/n). Each time that the algorithm fails to create
a strict improvement with strength r within ℓr (discussed below) iterations, it
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changes the strength to min{r + 1, n/2}. We note that since a mutation at a
bit should not be more likely than a non-mutation, the strengths above n/2
in binary search spaces are considered “ill-natured” [ADK19]. Regarding ℓr,
in the preliminary version [RW20b] of our work, we proposed that ℓr should
be 2(en/r)r ln(nR). However, in the extended work [RW22a], we proved that
ℓr = (n/r)r(n/(n− r))n−r ln(enR) gives us a more efficient escaping time from
local optima (especially, for large gap sizes), so we only mention the results
based on the latter set of threshold values in this thesis.

It is proved in [RW22a, Theorem 3] that this algorithm optimizes the jump
benchmark functions with jump size 2 ≤ m = o(n/ lnn) in expected runtime

(1± o(1))
( n

m

)m( n

n−m

)n−m

.

This bound is significantly better than the upper bound of the (1+1) EA with
strength 1 by a factor of roughly (m/e)m and equal up to lower-order terms
to the bound of the (1+1) EA with the best choice of the static parameter,
corresponding to a mutation rate of m/n, up to lower-order terms. Also, the
SD-(1+1) EA outperforms the (1+1) FEAβ with parameter β > 1 on the jump
functions by a factor of mβ−1/2 [DLMN17].

We will describe these results in detail in Chapter 3.

2.2.2 Stagnation Detection with k-bit Flip Mutations

Next, we aim at using k-bit flip mutations with the stagnation detection mech-
anism. The first straightforward combination of stagnation detection and k-bit
flip mutations is to adjust the strength of the mutation by SD. We call the
resulting algorithm RLS with plain stagnation detection or SD-RLSp [RW21b].
Starting from strength 1, the algorithm using strength s increases the strength
to s + 1 if it fails to find a strict improvement within ℓs =

(
n
s

)
lnR iterations.

Let m be the Hamming distance at which there are some strict improvements.
After the algorithm has increased the strength to m, it has a high probability
to make an improvement in the following

(
n
m

)
iterations; if it fails to do so,

the algorithm increases the strength to m + 1 with probability at most 1/R.
If the algorithm misses strict improvements when the strength is m, it might
never make progress in some scenarios, e. g., if there is no strict improvement
in larger Hamming distances. However, by setting R = nc for an arbitrary
constant c > 0, the probability of failure to make progress at strength s is at
most 1/nc.
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Although this failure probability can be negligible and satisfactory small in
many applications, we still prefer to guarantee a finite expected time in making
progress. In order to make the algorithm robust, we suggest iteratively returning
to lower strengths [RW21b]. In the resulting algorithm, called RLS with robust
stagnation detection or SD-RLSr, given a radius r, the algorithm uses all the
strengths between 1 to r with their corresponding number of tries, that is,
ℓs =

(
n
s

)
for strength s. Starting with radius 1, each time the algorithm does

not find a strict improvement with radius r, it changes the radius to r + 1.
Surprisingly, we achieve the same asymptotic upper bound on the expected
time of leaving local optima as SD-RLSp besides having a guarantee for finite
expected runtime. It is shown that SD-RLSr optimizes the jump function with
jump size 2 ≤ m = o(n/ lnn) in expected time

(
n
m

)
(1± o (1)), which gives us a

speedup of at least (1− o(1))
√
2πm compared to SD-(1+1) EA.

As further analysis of SD-RLSr, we studied the performance of the algorithm on
the minimum spanning tree problem [RW21b]. On this problem, starting with
an arbitrary spanning tree, the algorithm cannot make progress with strength 1;
however, the algorithm returns to this strength after each strict improvement.
Since the algorithm resets the radius to 1 after each strict improvement, there
is a term (2m lnm)S in the upper bound on the expected runtime where S
is the total expected number of strict improvements during the run. Since at
most (1+o(1))m2 lnm iterations with strength 2 are sufficient to find the global
optimum in expectation, the number of iterations with strength 1 dominates the
total runtime in some scenarios, e. g., on dense graphs. For example, it is not
difficult to find an example where E (S) = Ω(m), resulting in an upper bound
of cm2 lnm with a constant c depending on R but larger than 2. Therefore, the
algorithm might suffer from iterations in lower strengths in highly multimodal
optimization problems. We will describe these results in detail in Chapter 4.

Motivated by this, a mechanism called radius memory has been proposed
in [RW21a] to manage the starting radius values after strict improvements in-
stead of blindly resetting it to 1. In this mechanism, the algorithm keeps the
successful strengths as the initial value for the radius after improvements. More-
over, it considers a maximum budget for the strengths smaller than the radius in
the next phase, see Algorithm 15 in Chapter 5. This algorithm is known as RLS
with robust stagnation detection and radius memory mechanism or SD-RLSm.
The analysis shows us the upper bound on the expected runtime of SD-RLSm on
the MST problem of (1 + o(1))m2 lnm, which outperforms the obtained upper
bounds of the well-known black-box algorithms, such as RLS1,2, the (1+1) EA,
and SD-RLSr. In Chapter 5, more discussions and results of the radius memory
mechanism are available.
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While the variants of stagnation detection with k-bit flips as mentioned above
are very efficient in leaving local optima with a single desired target solution
(e. g., on Jump), they perform poorly when there are several improving solutions,
compared to some other heuristics. In a paper by Bambury et al. [BBD21a], it
has been proven that we can find δ and m such that SD-RLSr is slower than
the standard (1+1) EA on Jumpk,m by a factor polynomial in n of arbitrary
degree. The reason for this poor performance is that the algorithm does not
flip m bits in the first

(
n

m−1

)
lnR fitness evaluations until the radius increases

to m. However, the (1+1) EA might flip m bits in a given iteration with
a positive probability, so there is a chance that the (1+1) EA leaves a local
optimum before

(
n

m−1

)
lnR iterations have elapsed if there is a sufficiently large

number of improving solutions at the Hamming distance m.

2.2.3 Stagnation Detection with Heavy-tailed Mutations

Two successful strategies SD-RLSr and the (1+1) EA with the heavy-tailed
mutation have been discussed for leaving local optima. We have seen that
when there are a few improving solutions, SD-RLSr finds a strict improvement
in a relatively efficient time, whereas the heavy-tailed mutation becomes more
powerful and superior as the number of improving solutions increases. Now,
we propose a mutation strategy in SD-FEAβ,γ,R being efficient regardless of the
number of improving solutions, using both ideas of the stagnation detection and
power-law distributions employed in heavy-tailed mutation.

The SD-FEAβ,γ,R has different phases until finding the strict improvement
similarly as in stagnation detection. It starts with phase 1, and after (1 −
γ)−1

(
n
r

)
ln(R) iterations in phase r without strict improvement, the algorithm

increases r by one and enters phase min{r + 1, ⌊ n
2.1⌋}. In phase 1 only, the

algorithm accepts search points with equal fitness values. In a given iteration
of phase r, the algorithm flips s bits, where s follows the following distribution,
see Figure 2.1 for an illustration.

s =


r with probability 1− γ,

r + pow(β, n− r) with probability γ/2,

r − pow(β,max{1, r − 1}) with probability γ/2.

(2.1)

The algorithm SD-FEAβ,γ,R has three parameters β, γ, and R. They might
seem challenging to manage, but they are rather robust, and their values can be
chosen easily. By setting β > 1, γ = o(1) (e. g., γ = (log log n)−1), and R = e1/γ ,
we have achieved some acceptable asymptotic results in our analysis, which can
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Figure 2.1: An illustration of the probabilities of flipping s out of n bits in
phase r in a given iteration of SD-FEAβ,γ,R. The graph is based
on numerical evaluations of Equation (2.1) with n = 100, r = 15,
γ = 0.2, β = 1.5, which are represented in logarithmic scale.

be seen in the next paragraph. In order to read the detailed recommendations
for choosing the parameters, see Section 7 in [DR22].

According to our analysis [DR22], SD-FEAβ,γ,R inherits the beneficial properties
of previous stagnation detection and fast mutation approaches. The expected
optimization time of this algorithm on Jumpm is bounded from above by (1 +
o(1))

(
n
m

)
for 2 ≤ m = o(n/ lnR), and on Jumpk,m, it is bounded from above by

O

(
n lnn+

(
n

m

)(
k

m

)−1

(m− r′)β/γ

)
,

where r′ = min
{
m, argmaxr

{(
n
r

)
≤
(
n
m

)(
k
m

)−1 1
γ (m− r)β

}}
. The parameter r′

indicates the first phase that the probability of finding an improvement becomes
constant, and we have 1 ≤ r′ ≤ m. As we can see, SD-FEAβ,γ,R achieves
the same upper bound on the expected optimization on the classical Jumpk

functions as SD-RLSr and obtains an upper bound on the Jumpk,m functions
asymptotically less than the (1+1) FEAβ . Moreover, when k = ω(1) ∩ O(lnn)
and m = k − ∆ for a constant ∆ ≥ 2, the optimization time of SD-FEAβ,γ,R

on Jumpk,m functions is at most O
((

n
m

)(
k
m

)−1
γ−1

)
, which is an example where

the SD-FEAβ,γ,R can asymptotically outperform the (1+1) FEAβ and SD-RLSr.
We will describe these results in detail in Chapter 6.
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Algorithm 5: Metropolis algorithm with temperature T for the maximiza-
tion of f : {0, 1}n → R. We usually write α = e1/T

Select x(0) uniformly at random from {0, 1}n;
for t← 0, 1, . . . do

Create y by flipping a bit of x(t) chosen uniformly at random;
if f(y) ≥ f(x(t)) then

x(t+1) ← y;
else

x(t+1) ← y with probability e(f(y)−f(x(t)))/T and
x(t+1) ← x(t) otherwise;

2.3 Non-elitist strategies: Metropolis Algorithm
and Simulated annealing

2.3.1 Metropolis Algorithm

The Metropolis Algorithm (MA) [MRR+53] as defined in Algorithm 5, which is
a non-elitist single-trajectory search heuristic, selects a random neighbor to the
current search point (i. e., from the 1-neighborhood) and evaluates it. The MA
always accepts if the offspring is at least as good as the parent. Also, it may
accept inferior solutions with a small probability. More precisely, the inferior
offspring is accepted with probability e−δ/T , where δ is the absolute fitness
difference with respect to the parent and T is the temperature. In this thesis,
we use the parameterization α = e1/T for α > 0, resulting in the acceptance
probability α−δ for worse solutions. In the next section (Section 2.3.2) we will
see that the MA is a special case of simulated annealing with fixed temperature.

On the unimodal benchmark OneMax, although accepting inferior solutions
cannot be beneficial, the result in [JW07] shows that only temperatures α =
Ω(n/ log n) lead to polynomial runtimes. In [DHRW22], we have more rigorously
shown that if α = ω(

√
n), the runtime of the MA on OneMax equals

(1± o(1))n ln(n) + 1α≤n(1± o(1))αen/α,

which demonstrates that the best possible runtime of (1±o(1))n lnn is obtained
for α ≥ n

ln lnn , and for all α = 1
c

n
lnn , the runtime is (1± o(1)) 1cn

c+1(lnn)−1.

On multimodal problems, which is the main focus of this thesis, the MA has
mostly been investigated on the Cliff functions family instead of Jump func-
tions. The main reason is that the deceptive valley in the Jump functions does
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not allow the search to get far from the local optimum. As another reason, on
Jump functions, the fitness difference between the local optimum and its neigh-
bors in the valley is of order n, which is unlikely that the algorithm accepts such
a fitness decrease. For a lower bound on Jump functions and a more precise
discussion, we refer the interested reader to [LOW19, Theorem 13].

The first analysis of the MA on Cliff functions is conducted in [LOW19, Theo-
rem 10]. On Cliffm (i. e., Cliffd,m with fixed d = m− 3/2), the authors show
a lower bound of

min

{
1

2
· n−m+ 1

m− 1
· (n/ log n)m−3/2

, nω(1)

}
.

To study the performance of MA on multimodal problems, we have conducted a
rigorous research in [DHRW22] on the generalized version Cliffd,m, resulting in
Theorem 7.6 of Chapter 7. Also, in the same work [DHRW22] it is proved that
the upper bound on the expected runtime of the (1+1) EA with the optimal
parameter choice on Cliffd,m is at most

(1 + o(1))

(
m

⌊d⌋+ 2

)−1(
ne

⌊d⌋+ 2

)⌊d⌋+2

.

These results show that the (1 + 1) EA is provably at least as fast and for many
parameters faster than the MA, even for an optimal choice of the temperature
parameter of the MA, see Section 7.6 for a comprehensive discussion. Following
this failed attempt to explain the effectiveness of the MA, it is still an open
question of what is the real reason for the MA’s success in a wide range of
practical applications. [WZD21] showed a good performance of the MA on the
DLB problem roughly by a factor of n faster than the (1+1) EA. A number of
other results exist for artificially designed problems [DJW00, JW07, OPH+18].
We will describe these results in detail in Chapter 7.

2.3.2 Simulated Annealing

Simulated annealing (SA) proposed in [KGJV83] is another non-elitist simple
single-trajectory search heuristic using 1-bit flip mutations, which may also ac-
cept inferior solutions with a small probability. A solution with fitness loss δ
over the current solution is accepted with probability e−δ/T , where T is the
current temperature, see Algorithm 6. If we consider a fixed temperature for
the whole run, we have a special case of SA called Metropolis Algorithm as
discussed in Section 2.3.1.
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Algorithm 6: Simulated Annealing (SA) with starting temperature T0 and
cooling factor β ≤ 1 for the maximization of f : {0, 1}n → R
Select x(0) from {0, 1}n;
for t← 0, 1, . . . do

Create y by flipping a bit of x(t) chosen uniformly at random;
if f(y) ≥ f(x(t)) then

x(t+1) ← y;
else

x(t+1) ← y with probability e(f(y)−f(x(t)))/Tt and
x(t+1) ← x(t) otherwise;

Tt+1 := Tt · β;

In SA the temperature is reduced during the run. This allows the algorithm
to accept worsening moves easily in the early stages of the run, whereas later
worsening moves are accepted with smaller probability, bringing the algorithm
closer to the algorithm RLS. There are different strategies to reduce the temper-
ature called cooling schedules. A popular choice, already proposed in [KGJV83],
is a multiplicative cooling schedule; Starting with a given temperature T0, we
reduce the temperature by some factor β in each iteration.

Although we do not see a reducing interest in SA in practice [FS19], there are
few research papers conducted to study the theory of SA with variant cooling
schedules. Wegener in [Weg05] proposed a construction of an instance of the
MST problem where the MA with any fixed temperature fails to find an MST,
but SA computes an optimal solution efficiently. In [DRW22], we have shown
that simulated annealing is a polynomial-time approximation scheme for the
MST problem, thereby proving a conjecture by Wegener [Weg05]. We showed
that SA with T0 ≥ wmax and multiplicative cooling schedule with parameter
β = 1−1/ℓ, where ℓ = ω(mn ln(m)), with probability at least 1−1/m computes
in time O(ℓ(ln ln(ℓ) + ln(T0/wmin))) a spanning tree with weight at most 1 + κ
times the optimum weight, where

1 + κ =
(1 + o(1)) ln(ℓm)

ln(ℓ)− ln(mn ln(m))
.

Consequently, stated in a simplified manner, for any ε > 0, we can choose ℓ in
such a way that a (1 + ε)-approximation is found in time

O((mn ln(n))1+1/ε+o(1)(ln lnn+ ln(T0/wmin))),

with probability at least 1 − 1/m. Also, the analyses have led to improved
results in the case of (1 + ϵ)-separated weights (defined in Section 1.5.1) from
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Wegener’s runtime guarantee of O(m8+8/ε) to

O((mn ln(n))1+1/ε+o(1)(ln lnn+ ln(T0/wmin))),

where simulated annealing yields an optimal solution with high probability. We
will describe these results in detail in Chapter 8.



Chapter 3

Paper A: Self-Adjusting Evolutionary
Algorithms for Multimodal Optimization

Recent theoretical research has shown that self-adjusting and self-adaptive
mechanisms can provably outperform static settings in evolutionary algorithms
for binary search spaces. However, the vast majority of these studies focuses
on unimodal functions which do not require the algorithm to flip several bits
simultaneously to make progress. In fact, existing self-adjusting algorithms are
not designed to detect local optima and do not have any obvious benefit to cross
large Hamming gaps.

We suggest a mechanism called stagnation detection that can be added as a
module to existing evolutionary algorithms (both with and without prior self-
adjusting schemes). Added to a simple (1+1) EA, we prove an expected run-
time on the well-known Jump benchmark that corresponds to an asymptotically
optimal parameter setting and outperforms other mechanisms for multimodal
optimization like heavy-tailed mutation. We also investigate the module in the
context of a self-adjusting (1+λ) EA.

To explore the limitations of the approach, we additionally present an example
where both self-adjusting mechanisms, including stagnation detection, do not
help to find a beneficial setting of the mutation rate. Finally, we investigate our
module for stagnation detection experimentally.
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3.1 Introduction

The runtime analysis of evolutionary algorithms (EAs) is a research area that
originated from the analysis of classical randomized algorithms, where the aim
is to prove rigorous statements on the expected runtime and approximation
quality of the algorithm depending on the problem size; however, a notable
difference is that this theoretical research on EAs mostly considers the number
of objective function calls as complexity measure. Since the late 1990s, several
results on the runtime of simple and moderately complex EAs as well as of other
nature-inspired algorithms have emerged [AD11, NW10, Jan13, DN20]. EAs are
parameterized algorithms, so it has been ongoing research to understand how
to choose their parameters best. Self-adjusting mechanisms address this issue
as a non-static parameters control framework that can learn acceptable or even
near-optimal parameter settings on the fly.

Recent theoretical research on self-adjusting algorithms in discrete search spaces
has produced a remarkable body of results showing that self-adjusting and self-
adaptive mechanisms outperform static parameter settings. Examples include
an analysis of the well-known (1+(λ, λ)) GA using a 1/5-rule to adjust its mu-
tation rate on OneMax [DD18], of a self-adjusting (1+λ) EA sampling off-
spring with different mutation rates [DGWY19], matching the parallel black-
box complexity of the OneMax function, and a self-adaptive variant of the
latter [DWY18]. Furthermore, self-adjusting schemes for algorithms over the
search space {0, . . . , r}n for r > 1 provably outperform static settings [DDK18]
of the mutation operator. Self-adjusting schemes are also closely related to
hyper-heuristics which, e. g., can dynamically choose between different muta-
tion operators and therefore outperform static settings [LOW20]. Besides the
mutation probability, other parameters like the population sizes may be ad-
justed during the run of an evolutionary algorithm (EA) and analyzed from a
runtime perspective [LS11]. Moreover, there is much empirical evidence (e. g.
[DYvR+18, DW18, RABD19, Faj19, AM16, DDY16a]) showing that parame-
ters of EAs should be adjusted during its run to optimize its runtime. See
also the survey article [DD20] for an in-depth coverage of parameter control,
self-adjusting algorithms, and theoretical runtime results.

A common feature of existing self-adjusting schemes is that they use different
settings of a parameter (e. g., the mutation rate/strength) and – in some way
– measure and compare the progress achievable with the different settings. For
example, the 2-rate (1+λ) EA from [DGWY19] with the current strength r
samples λ/2 of the offspring with strength r/2 (where we define strength as the
expected number of flipped bits, i. e., n times the mutation probability) and
the other half with strength 2r. The strength is afterwards adjusted to the one
used by a fittest offspring. Similarly, the 1/5-rule [DD18] increases the muta-
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tion rate if fitness improvements happen frequently and decreases it otherwise.
This requires that the algorithm is likely enough to make some improvements
with the different parameters tried or, at least, that the smallest disimprove-
ment observed in unsuccessful mutations gives reliable hints on the choice of
the parameter. However, there are situations where the algorithm cannot make
progress and does not learn from unsuccessful mutations either. This can be the
case when the algorithm reaches local optima escaping from which requires an
unlikely event (such as flipping many bits simultaneously) to happen. Classical
self-adjusting algorithms would observe many unsuccessful steps in such situa-
tions and suggest to set the mutation rate to its minimum although that might
not be the best choice to leave the local optimum. In fact, the vast majority
of runtime results for self-adjusting EAs is concerned with unimodal functions
that have no other local optima than the global optimum. An exception is the
work [DL16b] which considers a self-adaptive EA allowing two different mutation
probabilities on a specifically designed multimodal problem. Altogether, there
is a lack of theoretical results giving guidance on how to design self-adjusting
algorithms that can leave local optima efficiently.

In this paper, we address this question and propose a self-adjusting mechanism
called stagnation detection that adjusts mutation rates when the algorithm has
reached a local optimum. In contrast to previous self-adjusting algorithms this
mechanism is likely to increase the mutation in such situations, leading to a
more efficient escape from local optima. This idea has been mentioned before,
e. g., in the context of population sizing in stagnation [EMV04]; also, recent em-
pirical studies of the above-mentioned 2-rate (1+λ) EA, handling of stagnation
by increasing the variance was explicitly suggested in [YDB19]. Our contribu-
tion has several advantages over previous discussion of stagnation detection: it
represents a simple module that can be added to several existing evolutionary
algorithms with little effort, it provably does not change the behavior of the
algorithm on unimodal functions (except for small error terms), allowing the
transfer of previous results, and we provide rigorous runtime analyses showing
general upper bounds for multimodal functions including its benefits on the
well-known Jump benchmark function.

In a nutshell, our stagnation detection mechanism works in the setting of pseudo-
Boolean optimization and standard bit mutation. Starting from strength r = 1,
it increases the strength from r to r + 1 after a long waiting time without
improvement has elapsed, meaning it is unlikely that an improving bit string at
Hamming distance r exists. This approach bears some resemblance with variable
neighborhood search (VNS) [HM18]; however, the idea of VNS is to apply local
search with a fixed neighborhood until reaching a local optimum and then to
adapt the neighborhood structure. There have also been so-called quasirandom
evolutionary algorithms [DFW10] that search the set of Hamming neighbors of
a search point more systematically; however, these approaches do not change
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the expected number of bits flipped. In contrast, our stagnation detection uses
the whole time an unbiased randomized global search operator in an EA and
just adjusts the underlying mutation probability. Statistical significance of long
waiting times is used, indicating that improvements at Hamming distance r are
unlikely to exist; this is rather remotely related to (but clearly inspired by)
the estimation-of-distribution algorithm sig-cGA [DK18] that uses statistical
significance to counteract genetic drift.

This paper is structured as follows: In Section 3.2, we introduce the concrete
mechanism for stagnation detection and employ it in the context of a simple,
static (1+1) EA and the already self-adjusting 2-rate (1+λ) EA. Moreover, we
collect tools for the analysis that are used in the rest of the paper. Section 3.3
deals with concrete runtime bounds for the (1+1) EA with stagnation detection.
Besides general upper bounds, we prove a concrete result for the Jump bench-
mark function that is asymptotically optimal for algorithms using standard bit
mutation and outperforms previous mutation-based algorithms for this function
like the heavy-tailed EA from [DLMN17]. Elementary techniques are sufficient
to show these results. To explore the limitations of stagnation detection and
other self-adjusting schemes, we propose in Section 3.4 a function where these
mechanisms provably fail to set the mutation rate to a beneficial regime. As a
technical tool, we use drift analysis and analyses of occupation times for pro-
cesses with strong drift. To that purpose, we use a theorem by Hajek [Haj82]
on occupation times that, to the best of the knowledge, was not used for the
analysis of randomized search heuristics before and may be of independent in-
terest. Finally, in Section 3.5, we add some empirical results, showing that the
asymptotically smaller runtime of our algorithm on Jump is also visible for small
problem dimensions. We finish with some conclusions.

3.2 Preliminaries

We shall now formally define the algorithms analyzed and present some funda-
mental tools for the analysis.

3.2.1 Algorithms

We are concerned with pseudo-Boolean functions f : {0, 1}n → R that w. l. o. g.
are to be maximized. A simple and well-studied EA studied in many runtime
analyses (e. g., [DJW02]) is the (1+1) EA displayed in Algorithm 7. It uses
standard bit mutation with strength r, where 1 ≤ r ≤ n/2, which means that
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every bit is flipped independently with probability r/n. Usually, r = 1 is used,
which is the optimal strength on linear functions (see [Wit13] for the general
case and also [GKS99] for the special case of OneMax). Smaller strengths
lead to less than 1 bit being flipped in expectation, and strengths above n/2 in
binary search spaces are considered “ill-natured” [ADK19] since a mutation at
a bit should not be more likely than a non-mutation.

Algorithm 7: (1+1) EA with static strength r

Select x uniformly at random from {0, 1}n;
for t← 1, 2, . . . do

Create y by flipping each bit in a copy of x independently with
probability r

n ;
if f(y) ≥ f(x) then

x← y;

The runtime (also called optimization time) of the (1+1) EA on a function f
is the first point of time t where a search point of maximal fitness has been
created; often the expected runtime, i. e., the expected value of this time, is
analyzed. The (1+1) EA with r = 1 has been extensively studied on simple
unimodal problems like

OneMax(x1, . . . , xn) := ∥x∥1 and LeadingOnes(x1, . . . , xn) :=

n∑
i=1

i∏
j=1

xj ,

but also on the multimodal Jumpm function with gap size m defined as follows.

Jumpm(x1, . . . , xn) =

{
m+ ∥x∥1 if ∥x∥1 ≤ n−m or ∥x∥1 = n,

n− ∥x∥1 otherwise.

The classical (1+1) EA with r = 1 optimizes these functions in expected time
Θ(n log n), Θ(n2) and Θ(nm + n log n), respectively (see, e. g., [DJW02]).

The first two problems are unimodal functions, while Jump for m ≥ 2 is mul-
timodal and has a local optimum at the set of points such that ∥x∥1 = n−m.
To overcome this optimum, m bits have to be flipped simultaneously. It is
well known [DLMN17] that the time to leave this optimum is minimized at
strength m instead of strength 1 (see below for a more detailed exposition of this
phenomenon). Hence, the (1+1) EA would benefit from increasing its strength
when sitting at the local optimum. The algorithm does not immediately know
that it sits at a local optimum. However, if there is an improvement at Hamming
distance 1 then such an improvement has probability at least (1/n)(1−1/n)n−1

with strength 1, and the probability of not finding it in (1− 1/n)1−nn lnn steps
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is at most (
1− 1

n

(
1− 1

n

)n−1
)(1−1/n)1−nn lnn

≤ 1

n
.

Similarly, if there is an improvement that can be reached by flipping k bits
simultaneously and the current strength equals k, then the probability of not
finding it within (n/k)k(1− k/n)k−n lnn steps is at most(

1−
(
k

n

)k (
1− k

n

)n−k
)(n/k)k(1−k/n)k−n lnn

≤ 1

n
.

Hence, after (n/k)k(1 − k/n)k−n lnn = (n/k)k(n/(n − k))n−k lnn steps with-
out improvement there is high evidence for that no improvement at Hamming
distance k exists.

We put these ideas into an algorithmic framework by counting the number of
so-called unsuccessful steps, i. e., steps that do not improve fitness. Starting
from strength 1, the strength is increased from r to r + 1 when the counter
exceeds the threshold ((n/r)r(n/(n − r))n−r) ln(enR) for a parameter R to be
discussed shortly. Both counter and strength are reset (to 0 and 1, respectively)
when an improvement is found, i. e., a search point of strictly better fitness. In
the context of the (1+1) EA, the stagnation detection (SD) is incorporated in
Algorithm 8. We see that the counter u is increased in every iteration that does
not find a strict improvement. However, search points of equal fitness are still
accepted as in the classical (1+1) EA. We note that the strength stays at its
initial value 1 if finding an improvement does not take longer than the corre-
sponding threshold n(n/(n− 1)n−1) ln(enR); if the threshold is never exceeded
the algorithm behaves identical to the (1+1) EA with strength 1 according to
Algorithm 7.

The parameter R can be used to control the probability of failing to find an
improvement at the “right” strength. More precisely, the probability of not
finding an improvement at distance r with strength r is at most(

1−
( r
n

)r (
1− r

n

)n−r
)(n/r)r(n/(n−r))n−r ln(enR)

≤ 1

enR
.

As shown below in Theorem 3.5, if R is at least set to the maximum of n3 and the
number of fitness values of the underlying function f , i. e., R ≥max{n3, |Im(f)|},
then the probability of ever missing an improvement at the right strength is
sufficiently small throughout the run. We recommend at least R = n3 if nothing
is known about the range of f , resulting in a threshold of at least (n/r)r(n/(n−
r))n−r ln(en4) at strength r.



3.2 Preliminaries 33

Algorithm 8: (1+1) EA with stagnation detection (SD-(1+1) EA)
Select x uniformly at random from {0, 1}n and set r1 ← 1;
u← 0;
for t← 1, 2, . . . do

Create y by flipping each bit in a copy of x independently with
probability rt

n ;
u← u+ 1;
if f(y) > f(x) then

x← y;
rt+1 ← 1;
u← 0;

else
if f(y) = f(x) and rt = 1 then

x← y;

if u >
(

n
rt

)rt (
n

n−rt

)n−rt
ln(enR) then

rt+1 ← min{rt + 1, n/2};
u← 0;

else
rt+1 ← rt;

Compared to the conference version of this paper [RW20b], we have optimized
the choice of the threshold on the number of unsuccessful steps at strength r.
Previously the threshold was 2

(
en
r

)r
ln(nR), which is larger than the new choice(

n
r

)r ( n
n−r

)n−r

ln(enR) in Algorithm 8. We note that(
n

n− r

)n−r

=

(
1 +

r

n− r

)n−r

≤ er,

so that for r = o(n) the factor
(
en
r

)r from the old choice is recovered up to lower
order terms. However, for r = Ω(n) the new choice is asymptotically smaller
than before, which results in several improved bounds for scenarios where the
mutation strength has to reach Ω(n), see, e. g., Theorem 3.4 and Corollary 3.9.

Stagnation detection can also be used to other randomized search heuristics –
for example, this has been done recently for randomized local search using k-bit
flip mutation instead of standard bit mutation [RW21b] and for multi-objective
algorithms [DZ21]. We also added stagnation detection to the (1+λ) EA with
self-adjusting mutation rate defined in [DGWY19] (adapted to maximization of
the fitness function), where half of the offspring are created with strength r/2
and the other half with strength 2r; see Algorithm 9.
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Algorithm 9: (1+λ) EA with two-rate standard bit mutation and stagna-
tion detection (SASD-(1+λ) EA)
Select x uniformly at random from {0, 1}n and set r1 ← rinit;
u← 0;
g ← False; // boolean variable indicating stagnation detection
for t← 1, 2, . . . do

u← u+ 1;
if g = True then

▷ State 1 – Stagnation Detection;
for i← 1, . . . , λ do

Create xi by flipping each bit in a copy of x independently with
probability rt

n
;

y ← argmaxxi f(xi) (breaking ties randomly);
if f(y) > f(x) then

x← y;
rt+1 ← rinit;
g ← False;
u← 0;

else

if u >
(

n
rt

)rt
(

n
n−rt

)n−rt
ln(enR)/λ then

rt+1 ← min{rt + 1, n/2};
u← 0;

else
rt+1 ← rt;

else i. e., g = False
▷ State 2 – Self-Adjusting (1+λ) EA;

for i← 1, . . . , λ do
Create xi by flipping each bit in a copy of x independently with
probability rt

2n
if i ≤ λ/2 and with probability 2rt/n otherwise;

y ← argmaxxi f(xi) (breaking ties randomly);
if f(y) ≥ f(x) then

if f(y) > f(x) then
u← 0;

x← y;

Perform one of the following two actions with prob. 1/2:
– Replace rt with the strength that y has been created with;
– Replace rt with either rt/2 or 2rt, each with probability 1/2;

rt+1 ← min{max{2, rt}, n/4};

if u >
(

n
rt

)rt
(

n
n−rt

)n−rt
ln(enR)/λ then

rt+1 ← 2;
g ← True;
u← 0;

Unsuccessful mutations are counted in the same way as in Algorithm 8, taking
into account that λ offspring are used. The algorithm can be in two states,
remotely resembling a hyperheuristic [BGH+13]. Unless the counter threshold
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is reached and a strength increase is triggered, the algorithm behaves the same as
the self-adjusting (1+λ) EA from [DGWY19] (State 2). If, however, the counter
threshold n ln(enR)/λ is reached, then the algorithm changes to the module that
keeps increasing the strength until a strict improvement is found (State 1). Since
it does not make sense to decrease the strength in this situation, all offspring
use the same strength until finally an improvement is found and the algorithm
changes back to the original behavior using two strengths for the offspring. The
boolean variable g keeps track of the state. From the discussion of these two
algorithms, we see that the stagnation detection consisting of a counter for
unsuccessful steps, threshold, and strength increase also can be added to other
algorithms, while keeping their original behavior unless the counter threshold
it reached. In this paper, we investigate this self-adjusting (1+λ) EA with
stagnation detection (SASD-(1+λ) EA) mostly experimentally; however, a lower
bound on its runtime on an example function is given in Section 3.4.

3.2.2 Mathematical Tools

We now collect frequently used mathematical tools. The first one is a simple
summation formula used to analyze the time spent until the strength is increased
to a certain value.

Lemma 3.1. For 1 ≤ m < n/2, we have

m∑
i=1

(n
i

)i( n

n− i

)n−i

<
( n

m

)m( n

n−m

)n−m(
n−m

n− 2m

)
.

Proof. By an index transformation for i, we obtain

m∑
i=1

(n
i

)i( n

n− i

)n−i

=

m−1∑
i=0

(
n

m− i

)m−i(
n

n−m+ i

)n−m+i

=
( n

m

)m( n

n−m

)n−m m−1∑
i=0

(
m

m− i

)m−i(
n−m

n−m+ i

)n−m+i(
m

n−m

)i
=
( n

m

)m( n

n−m

)n−m

·

m−1∑
i=0

(
1 +

i

m− i

)m−i(
1− i

n−m+ i

)n−m+i(
m

n−m

)i

.
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Via the inequality 1 + x ≤ ex for all x ∈ R, the last expression can be bounded
from above by ( n

m

)m( n

n−m

)n−m ∞∑
i=0

ei

ei

(
m

n−m

)i

=
( n

m

)m( n

n−m

)n−m(
n−m

n− 2m

)
.

The last equation is calculated by the geometric series formula.

The following result due to Hajek applies to processes with a strong drift towards
some target state, resulting in decreasing occupation probabilities with respect
to the distance from the target. On top of this occupation probabilities, the
theorem bounds occupation times, i. e., the number of steps that the process
spends in a non-target state over a certain time period.

Theorem 3.2 (Theorem 3.1 in [Haj82]). Let Xt, t ≥ 0, be a stochastic process
adapted to a filtration Ft on R. Let a ∈ R. Assume for ∆t = Xt+1 − Xt that
there are η > 0, ρ < 1 and D > 0 such that

1. E
(
eη∆ | Ft;Xt > a

)
≤ ρ,

2. E
(
eη∆ | Ft;Xt ≤ a

)
≤ D.

If additionally X0 is of exponential type (i. e., E
(
eλX0

)
is finite for some λ > 0)

then for any constant ϵ > 0 there exist absolute constants K ≥ 0, δ < 1 such
that for all b ≥ a and T ≥ 1

Pr
( 1

T

T∑
t=1

1Xt≤b ≤ 1− ϵ− 1− ϵ

1− ρ
Deη(a−b)

)
≤ KδT .

3.3 Analysis of SD-(1+1) EA

In this section, we study the SD-(1+1) EA from Algorithm 8 in greater detail.
We show general upper bounds on multimodal functions and then analyze the
special case of Jump more precisely. We also show the important result that
on unimodal functions, the SD-(1+1) EA with high probability behaves in the
same way as the classical (1+1) EA with strength 1. Moreover, this result
asymptotically transfers bounds on the expected optimization time from the
(1+1) EA to the SD-(1+1) EA.
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3.3.1 Expected Times to Leave Local Optima

In the following, given a fitness function f : {0, 1}n → R, we call the fitness level
gap (or in short, gap) of a point x ∈ {0, 1}n the maximum of all individual gap
sizes in the fitness level of x, where the individual gap is the minimum Hamming
distance to points with strictly larger fitness function value, i. e.,

IndividualGap(x) := min{H(x, y) : f(y) > f(x), y ∈ {0, 1}n},
gap(x) = FitnessLevelGap(x) := max

{y|f(y)=f(x)}
IndividualGap(y).

If the algorithm creates a point of gap(x) distance from the current search point
x, we can make progress with a positive probability. Note that gap(x) = 1 is
allowed, so the definition also covers points that are not local optima.

Let phase r consist of all points of time where strength r is used in the algorithm
with stagnation counter. Let Er be the event of not finding a strict improvement
in phase r, and Ur be the event of not finding a strict improvement during
phases 1 to r−1 and finding in phase r. In other words, Ur = E1∩· · ·∩Er−1∩Er.

The following lemma will be used throughout this section. It shows that the
probability of not finding a search point with larger fitness value in phases at
least the real gap size is small; however, by definition, phase n/2 is not finished
before the algorithm finds an improvement. In the statement of the lemma, recall
that the parameter R controls the threshold for the number of unsuccessful steps
in stagnation detection.

Lemma 3.3. Consider the SD-(1+1) EA on a pseudo-Boolean fitness function
f : {0, 1}n → R. Assume that x ∈ {0, 1}n be the search point at the beginning of
phase r ≥ 1, i. e., immediately after the counter u has been (re)set to 0 and r
becomes the current strength. Then

Pr (Er) ≤

{
1

enR if gap(x) ≤ r < n/2,

0 if r = n/2.

Proof. The algorithm spends (nr )
r( n

n−r )
n−r ln(enR) steps at strength r until it

increases the counter. Then, the probability of not improving at strength r ≥ m
is at most

Pr (Er) =

(
1−

(
1− r

n

)n−m ( r
n

)m)nr/rr(n/(n−r))n−r ln(enR)

≤ 1

enR
.
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During phase n/2, the algorithm does not increase the strength, and it contin-
ues to mutate each bit with probability of 1/2. As each point in the search
space is accessible in this phase, the probability of eventually failing to find the
improvement is 0.

We turn the previous observation into a general theorem on improvement times.

Theorem 3.4. Consider the SD-(1+1) EA with R ≥ n3 on a pseudo-Boolean
fitness function f : {0, 1}n → R. Let x ∈ {0, 1}n be the current search point im-
mediately following a strict improvement or the initial search point. Define Tx as
the time to find a strict improvement from x and let Lx,m := E (Tx | gap(x) = m).
Then for all m ∈ {1, . . . , n}, we have Lx,m = O (2nn ln(enR)). Moreover, for
any constant 0 < ϵ < 1, if m < (1− ϵ)n/2, then

Lx,m ≤
( n

m

)m( n

n−m

)n−m (
1 +O

(m
n

ln(enR)
))

.

Note that while waiting for a strict improvement, the current search point of the
SD-(1+1) EA may change to another search point with the same fitness value
in phase 1, i. e., if r = 1; however, this does not change the value m = gap(x)
considered in the theorem.

Proof of Theorem 3.4. Let Ir be the number of iterations spent in phase r. Us-
ing linearity of expectation, we have

E (Tx) =

⌈n/2⌉−1∑
r=1

E (Ir) + E
(
In/2

)
.

We first prove the upper bound for the case that there is a constant 0 < ϵ < 1
such that m < (1−ϵ)n/2. In order to accomplish this, we bound the summation∑⌈n/2⌉−1

r=1 E (Ir)+E
(
In/2

)
for different ranges of the strengths, where 0 ≤ r < m,

r = m, and r < m. In the first case, we assume that the strength is less than m,
i. e. r < m. Then, we have E (Ir) at most the threshold value in phase r. Thus,
by using Lemma 3.1, we compute

m−1∑
r=1

E (Ir) ≤
m−1∑
r=1

(n
r

)r ( n

n− r

)n−r

ln(enR)

<

(
n

m− 1

)m−1(
n

n−m+ 1

)(n−m+1)(
n−m+ 1

n− 2m+ 2

)
ln(enR)
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=
( n

m

)m( n

n−m

)(n−m)

((
mm

(m− 1)m−1

)(
(n−m)n−m

(n−m+ 1)n−m+1

)(
n−m+ 1

n− 2m+ 2

)
ln(enR)

)
=
( n

m

)m( n

n−m

)(n−m)
(

m

n−m

(
1 +

1

m− 1

)m−1(
1− 1

n−m+ 1

)n−m+1

(
n−m+ 1

n− 2m+ 2

)
ln(enR)

)
≤
( n

m

)m( n

n−m

)(n−m)(
m

n−m
· e
e
· n−m+ 1

n− 2m+ 2
ln(enR)

)
.

Then, for m < (1 − ϵ)n2 , we can bound the last expression from above and
compute

m−1∑
r=1

E (Ir) = O

(( n

m

)m( n

n−m

)(n−m)

· m lnR

n

)
.

When the strength is m, i. e., the mutation probability is m/n, within an ex-
pected number of at most ((m/n)m(1−m/n)n−m)

−1 steps, a better point will
be found or the phase ends since we are dealing with a truncated geometric
distribution with success probability (m/n)m(1−m/n)n−m. Thus,

E (Im) ≤
( n

m

)m( n

n−m

)n−m

.

For r > m, with probability Pr (Ur), the algorithm does not make progress
with strengths less than r, and the strength is increased to r. In phase r, the
number of iterations is at most the threshold value. This is because for r < n/2,
the algorithm changes the strength after the threshold value is exceeded and
for r = n/2, the algorithm makes progress within 2n iterations in expectation
via the geometric distribution, which is less than (n/r)

r
(n/(n−r))n−r

ln(enR).
Thus, for all strengths r > m, we have

E (Ir) ≤ Pr (Ur) ·
(n
r

)r ( n

n− r

)n−r

ln(enR).

Using Lemma 3.3, we have Pr (Ur) <
∏r−1

j=m Pr (Ej) < (enR)−(r−m). Hence, we
can bound

E (Ir) ≤ (enR)−(r−m) ·
(n
r

)r( n

n− r

)n−r

ln(enR)
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= (enR)−(r−m) ·
(n
r

)r ( n

n−m

)n−r (
1 +

r −m

n− r

)n−r

ln(enR).

Since (1 + (r −m)/(n − r))n−r ≤ er−m using the inequality 1 + x ≤ ex for all
x ∈ R, the last expression is less than

(nR)−(r−m) ·
(n
r

)r ( n

n−m

)n−r

ln(enR)

=
( n

m

)m( n

n−m

)n−m

· m
m

rr

(
n

n−m

)m−r

Rm−r ln(enR).

Since r > m and (n/(n − m))m−r ≤ 1, the last expression is bounded from
above by ( n

m

)m( n

n−m

)n−m

·Rm−r ln(enR),

and since R ≥ n3, it is at most

o

(
1

n
·
( n

m

)m( n

n−m

)n−m
)
.

Altogether, we achieve

E (Tx) =

⌈n/2⌉−1∑
r=1

E (Ir) + E
(
In/2

)
=

m−1∑
r=1

E (Ir) + E (Im) +

⌈n/2⌉−1∑
r=m+1

E (Ir) + E
(
In/2

)
=
( n

m

)m( n

n−m

)(n−m)

O

(
1 +

m ln(enR)

n

)
.

Now, we investigate an upper bound on the improvement time for all gap sizes
including the cases that for all constants 0 < ϵ < 1, m > (1 − ϵ)n/2. For r ≤
⌈n/2⌉−1, E (Ir) is at most the threshold value considered for strength r. When
the strength is n/2 (i. e., the mutation probability is 1/2), the algorithm makes
progress within 2n iterations in expectation through the geometric distribution
with success probability 2−n. We compute

E (Tx) ≤
⌈n/2⌉−1∑

r=1

(n
r

)r ( n

n− r

)n−r

ln(enR) + 2n
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≤ O(n/2)

(
n

⌈n/2⌉ − 1

)⌈n/2⌉−1(
n

n− ⌈n/2⌉+ 1

)n−⌈n/2⌉+1

ln(enR) + 2n

= O(2nn ln(enR)).

We now present the above-mentioned important “simulation result” implying
that on unimodal functions, the stagnation detection of SD-(1+1) EA is unlikely
ever to trigger a strength increase during its run so that the algorithm behaves
like the (1+1) EA then. Moreover, for a wide range of runtime bounds obtained
via the fitness level method [Weg02, Sud13], we show that these bounds transfer
to the SD-(1+1) EA up to vanishingly small error terms. The proof carefully
estimates the probability of the strength ever exceeding 1.

Lemma 3.5. Let f : {0, 1}n → R be a unimodal function and consider the SD-
(1+1) EA with R ≥ max{|Im(f)|, n3}. Then, with probability 1 − o(1), the
SD-(1+1) EA never increases the strength and behaves stochastically like the
(1+1) EA until finding an optimum of f .

Denote by T the runtime of the SD-(1+1) EA on f . Let fi be the i-th fitness
value of an increasing order of all fitness values of f and si be a lower bound for
the probability that (1+1) EA finds an improvement from a search point with
fitness value fi, then

E (T ) ≤ (1 + o(1))

|Im(f)|−1∑
i=1

1

si
.

Proof. As above, E1 denotes the probability of not finding an improvement
within phase 1. As on unimodal functions the gap of all points is 1, we have by
Lemma 3.3 that Pr (E1) ≤ 1

enR . This argumentation holds for each improvement
that has to be found. Since at most |Im(f)| ≤ R improving steps happen before
finding the optimum, by a union bound the probability of the SD-(1+1) EA
ever increasing the strength beyond 1 is at most R 1

enR = o(1), which proves the
first claim of the lemma.

Regarding the second claim, we consider all fitness levels A1, . . . , A|Im(f)| such
that Ai contains search points with fitness value fi. Using strength 1, the worst-
case time to leave fitness level Ai is 1/si as for the (1+1) EA. Let I

(i)
r be the

number of iterations spent in phase r after the search point being selected from
the fitness level i for the first time. Hence, for each fitness level i, we bound
I
(i)
1 from above by the waiting time on the fitness level for the (1+1) EA, which

is given by 1/si, and for r > 1, we bound I
(i)
r from above by considering the

probability of missing the improvement for the strengths less than r with the
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maximum iterations that can be spent in phase r, similarly to the proof of
Theorem 3.4; formally, let

I(i) =

⌈n/2⌉−1∑
r=1

I(i)r + I
(i)
n/2.

In other words, I(i) is the number of all iterations spent to leave the fitness
level i since observing the first search point in the fitness level. we have

E (T ) =

|Im(f)|−1∑
i=1

E
(
I(i)
)
.

When the strength is 1, the algorithm makes progress in 1/si steps in expecta-
tion where the current fitness level is i, i. e., E

(
I
(i)
1

)
≤ 1/si. For strengths r

larger than 1, we estimate E
(
I
(i)
r

)
similarly to the analogous part in the proof of

Theorem 3.4. The algorithm does not make progress with strengths less than r
with probability Pr (Ur), and the number of iterations with strength r < n/2 is
at most the threshold value, and for r = n/2, is at most 2n iterations in expecta-
tion, which is less than (n/r)(n/(n−r))n−r ln(enR). So, for all strengths r > 1,
we have

E
(
I(i)r

)
≤ Pr (Ur) ·

(n
r

)r ( n

n− r

)n−r

ln(enR).

Via Lemma 3.3, we have Pr (Ur) <
∏r−1

j=1 Pr (Ej) < (enR)1−r. Then, we have

E
(
I(i)r

)
≤ (enR)1−r ·

(n
r

)r ( n

n− r

)n−r

ln(enR)

= (enR)1−r ·
(n
r

)r (
1 +

r

n− r

)n−r

ln(enR).

Since (1 + r/(n − r))n−r ≤ er through the inequality 1 + x ≤ ex for all x ∈ R,
the last expression is less than

e · (nR)1−r ·
(n
r

)r
ln(enR) ≤ en ln(enR)

R
= o(1/n),

where r ≥ 2 and R ≥ n3.

Hence for each fitness level and strength larger than 1 we have at most o(1/n)
extra iterations in expectation, which results in at most o(|Im(f)|) extra itera-
tions in expectation for the total optimization time.
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Altogether, we have

E (T ) =

|Im(f)|−1∑
i=1

E
(
I(i)
)
≤

|Im(f)|−1∑
i=1

1

si
+ o(|Im(f)|)

≤ (1 + o(1))

|Im(f)|−1∑
i=1

1

si
,

where we have 1/si ≥ 1, resulting in
∑|Im(f)|−1

i=1
1
si
≥ |Im(f)| − 1.

3.3.2 Analysis on Jump

It is well known that strength 1 for the (1+1) EA leads to an expected runtime
of Θ(nm) on Jumpm if m ≥ 2 [DJW02]. The asymptotically dominating term
comes from the fact that m bits must flip simultaneously to leave the local op-
timum at n −m one-bits. To minimize the waiting time for such an escaping
mutation, the mutation rate m/n is optimal [DLMN17], leading to an expected
time of (1+o(1))(n/m)m(1−m/n)m−n to optimize Jump, which is Θ((en/m)m)
for m = O(

√
n). However, a static rate of m/n cannot be chosen without know-

ing the gap size m. Therefore, different heavy-tailed mutation operators have
been proposed for the (1+1) EA [DLMN17, FQW18], which most of the time
choose strength 1 but also use strength r, for arbitrary r ∈ {1, . . . , n/2} with
at least polynomial probability. This results in optimization times on Jump of
Θ((en/m)m · p(n)) for some small polynomial p(n) (roughly, p(n) = ω(

√
m) in

[DLMN17] and p(n) = Θ(n) in [FQW18]). Similar polynomial overheads oc-
cur with hypermutations as used in artificial immune systems [COY18]; in fact
such overheads cannot be completely avoided when using random choices of the
mutation strength, as proved in [DLMN17]. We also remark that Jump can be
optimized faster than O((en/m)m) if crossover is used [WVHM18, RA19], by
simple estimation-of-distribution algorithms [Doe19] or specific black-box algo-
rithms [BDK16]. In addition, in [ADK20], the expected optimization time of
n(m+1)/2eO(m)m−m/2 is shown for the (1+(λ, λ)) GA to optimize Jump with
2 < m < n/16 and a carefully set algorithm parameter depending on m; with a
heavy-tailed version of the algorithm eliminating this parameter, almost match-
ing upper bounds can be achieved [AD20]. All of this is outside the scope of
this study that concentrates on mutation-only algorithms.

We now state our main result, implying that the SD-(1+1) EA achieves an
asymptotically optimal runtime on Jumpm for m = o(n/ lnn), hence being
faster than the heavy-tailed mutations mentioned above. Recall that this does
not come at a significant extra cost for simple unimodal functions like OneMax
according to Lemma 3.5.
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Theorem 3.6. Let n ∈ N. For all 2 ≤ m = o(n/ lnn), the expected run-
time E (T ) of the SD-(1+1) EA with R = n3 on Jumpm satisfies( n

m

)m( n

n−m

)n−m

(1− o(1)) ≤ E (T ) ≤
( n

m

)m( n

n−m

)n−m

(1 + o(1)).

Proof. It is well known that the (1+1) EA with mutation rate 1/n finds the
optimum of the n-dimensional OneMax function in an expected number of at
most O (n lnn) iterations [Weg02].

Until reaching the local optimum consisting of all points of n−m one-bits, Jump
is equivalent to OneMax; hence, according to Lemma 3.5, the expected time
until SD-(1+1) EA reaches the local optimum is at most O(n lnn) (noting that
this bound was obtained via the fitness level method with si = e−1/(n − i) as
minimum probability for leaving the set of search points with i one-bits).

Every local optimum x with n −m one-bits satisfies gap(x) = m according to
the definition of Jump. Thus, using the upper bound stated in Theorem 3.4,
the algorithm finds the global optimum from the local optimum within expected
time at most ( n

m

)m( n

n−m

)n−m

(1 + o(1)).

This dominates the expected time of the algorithm before the local optimum.

For the lower bound, we first claim that with probability at least 1 − o(1),
the local optimum is reached. Let X be the number of one-bits in the initial
random search point. Then, using Chernoff’s bounds [DD20, Subsection 1.10],
for m = o(n/lnn), Pr (X ≤ n−m), i. e., the probability that the initial search
point is at a distance greater than m from the optimum, is 1 − o(1). If this
holds, as long as it has less than n − m one-bits, the algorithm does not in-
crease the strength and behaves like the (1+1) EA with mutation rate 1/n
using Lemma 3.5 with probability 1 − o(1). If this also happens, there are at
most O ((n−m+ 1) · n ln(enR)) = O

(
n2 ln(enR)

)
iterations in expectation be-

fore reaching a local optimum. The probability of reaching the global optimum
is at most (1/n)m+1 in each iteration before reaching the local optimum. Thus,
the probability of reaching the global optimum before a local optimum is at
most O

(
n1−m ln(enR)

)
= o(1) for m ≥ 2 using union bounds. Altogether, with

probability at least 1− o(1), the local optimum is reached in a run.

From a search point in the local optimum, the expected number of iterations
for finding the global optimum is at least p−m (1− p)

−(n−m) for any mutation
rate p. Using the same arguments as in the analysis of the (1+1) EA on Jump
in [DLMN17], since m

n is the unique minimum point in the interval [0, 1], the
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expected iterations to find an improvement is at least
(
n
m

)m ( n
n−m

)n−m

. Con-
sidering the probability of reaching the local optimum and using the law of total
probability, we achieve the lower bound( n

m

)m( n

n−m

)n−m

(1− o(1)).

It is easy to see (similarly to the analysis of Theorem 3.6) that for all m = O(n),
the expected runtime E (T ) of the SD-(1+1) EA on Jumpm is at most Lx,m +
O(n lnn), where Lx,m is defined in Theorem 3.4.

3.3.3 General Bounds

The Jump function only has one local optimum that usually has to be overcome
on the way to the global optimum. We generalize the previous analysis to
functions that have multiple local optima of possibly different gap sizes, using
the canonical partition of the search space into fitness levels. As a use case, we
can asymptotically recover the expected runtime on the LeadingOnes function
in Corollary 3.8.

Theorem 3.7. Given a pseudo-Boolean fitness function f having k different
fitness values f1 < · · · < fk, let Fi := {x ∈ {0, 1}n | f(x) = fi}, where i ∈
{1, . . . , k−1}, be the set of all search points in the i-th non-optimal fitness level.
Let gi = gap(x∗

i ) for an arbitrary but fixed x∗
i ∈ Fi, noting that gi is identical

for all x ∈ Fi, and let Li = Lx∗
i ,gi

with Lx∗
i ,gi

as defined in Theorem 3.4.

Then the expected runtime of the SD-(1+1) EA on f is at most

E (T ) ≤
k−1∑
i=1

Li.

Proof. In order to find an optimum point, each non-optimal fitness level has to
be left at most once towards a search point of strictly higher fitness. For any
i ∈ {1, . . . , k − 1} and any x ∈ Fi as the first search point reached in level i,
the expected time to find a strictly better search point is E (Tx) ≤ Lx∗

i ,gi
= Li

according to Theorem 3.4, noting again that gap(x) = gi for all x ∈ Fi. Since
the strength r of the SD-(1+1) EA is reset to 1 after each improvement, the total
expected optimization time is bounded by the sum of the Li as suggested.

Corollary 3.8. The expected runtime of the SD-(1+1) EA with R = n3 on
LeadingOnes is at most O(n2).
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Proof. On LeadingOnes, all n non-optimal fitness levels contain points of gap
size 1 only. Hence, according to Theorem 3.7, the expected runtime is O(n2).

Corollary 3.8 follows also from Lemma 3.5 since LeadingOnes is unimodal and
the O(n2) bound for the (1+1) EA can be inferred via the fitness level method
with improvement probabilities si ≥ 1/(en). The alternative proof given here
does not use the improvement probabilities from fitness levels explicitly but
arguably, these probabilities implicitly influence the bounds Li.

We finally specialize Theorem 3.7 into a result for the well-known, multimodal
Trap function [DJW02] that is identical for OneMax except for the all-zeros
string that has optimal fitness n+ 1. We also note that Trap is isomorphic to
Jumpn; however, Theorem 3.6 does not apply for m = n.

We obtain a bound of O(2nn lnn) for the runtime of the SD-(1+1) EA on Trap
instead of the Θ(nn) bound for the classical (1+1) EA. We note that our result is
close to the 2n bound that would be obtained by uniform search and superior to
the bound for the fast GA with β > 1 from [DLMN17] optimizing this function
in O(2nnβ).

Corollary 3.9. The expected runtime of SD-(1+1) EA with R = n3 on Trap
is at most O(2nn lnn).

Proof. On Trap, there are n − 1 non-optimal fitness levels containing points
of gap size 1 only and one non-optimal level of gap size n. So according to
Theorem 3.7, the expected runtime is O

(
n2 + 2nn lnn

)
= O(2nn lnn).

3.4 An Example Where Self-Adaptation Fails

While our previous analyses have shown the benefits of the self-adjusting scheme,
in particular highlighting stagnation detection on multimodal functions, it is
clear that our scheme also has limitations. In this section, we present an exam-
ple of a pseudo-Boolean function where stagnation detection does not help to
find its global optimum in polynomial time; moreover, the function is hard for
other self-adjusting schemes since measuring the number of successes does not
hint on the location of the global optimum. In fact, the function demonstrates a
more general effect where the behavior is very sensitive with respect to the choice
of the mutation probability. More precisely, a plain (1+1) EA with mutation
probability 1/n with overwhelming probability gets stuck in a local optimum
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from which it needs exponential time to escape while the (1+1) EA with mu-
tation probability 2/n and also above finds the global optimum in polynomial
time with overwhelming probability. Since the function is unimodal except at
the local optimum, our self-adjusting (1+1) EA with stagnation detection fails
as well.

To the best of our knowledge, a phase transition with respect to the mutation
probability where an increase by a small constant factor leads from exponential
to polynomial optimization time has been unknown in the literature of runtime
analysis so far and may be of independent interest. We are aware of opposite
phase transitions on monotone functions [Len18] where increasing the mutation
rate is detrimental; however, we feel that our function and the general underlying
construction principle are easier to understand than these specific monotone
functions.

The construction of our function, called NeedHighMut, is based on a general
principle that was introduced in [Wit03] to show the benefits of populations
and was subsequently applied in [JW04] to separate a coevolutionary variant
of the (1+1) EA from the standard (1+1) EA. Section 5 of the latter paper
also beautifully describes the general construction technique that involves cre-
ating two differently pronounced gradients for the algorithms to follow. Further
applications are given in [Wit06] and [Wit08] to show the benefit of popula-
tions in elitist and non-elitist EAs. Also [RLY09] use very similar construction
technique for their Balance function that is easier to optimize in frequently
changing than slowly changing environments; however, they did not seem to be
aware that their approach resembles earlier work from the papers above.

We now describe the construction of our function NeedHighMut. The crucial
observation is that strength 1 (i. e., probability p = 1/n) makes it more likely to
flip exactly one specific bit than strength 2 – in fact strength 1 is asymptotically
optimal since the probability of flipping one specific bit is p(1− p)n−1 ≈ pe−pn,
which is maximized for p = 1/n. However, to flip specific two bits, which has
probability p2(1−p)n−2 ≈ p2e−pn, the choice p = 2/n is asymptotically optimal
and clearly better than 1/n. Now, given a hypothetical time span of T , we
expect approximately T1(p) := Tpe−p/n specific one-bit and T2(p) := Tp2e−p/n

specific two-bit flips. Assuming the actual numbers to be concentrated and just
arguing with expected values, we have T1(1/n) ≫ nT2(1/n) but nT2(2/n) ≫
T1(2/n), i. e., there will be (after scaling with n) considerably more two-bit flips
at strength 2 than at strength 1 and considerably less 1-bit flips. The fitness
function will account for this. It leads to a trap at a local optimum if a certain
number of one-bit flips is exceeded before a certain minimum number of two-bit
flips has happened; however, if the number of one-bit flips is low enough before
the minimum number of two-bit flips has been reached, the process is on track
to the global optimum.
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We proceed with the formal definition of NeedHighMut, making these ideas
precise and overcoming technical hurdles. Since we have at most n specific one-
bit flips but a specific two-bit flip is already by a factor of O(1/n) less likely
than a one-bit flip, we will work with two-bit flips happening in small blocks of
size 4
√
n, leading to a probability of roughly n−3/2 for a two-bit flip in a block.

In the following, we will imagine a bit string x of length n as being split into a
prefix a := a(x) of length n−m and a suffix b := b(x) of length m, where m still
has to be defined. Hence, x = a(x) ◦ b(x), where ◦ denotes the concatenation.

The prefix a(x) is called valid if it is of the form 1i0n−m−i, i. e., i leading ones
and n −m − i trailing zeros. The prefix fitness pre(x) of a string x ∈ {0, 1}n
with valid prefix a(x) = 1i0n−m−i equals just i, the number of leading ones.
The suffix consists of ⌈ 23ξ

√
n⌉, where ξ ≥ 1 is a parameter of the function,

consecutive blocks of ⌈n1/4⌉ bits each, altogether m ≤ ξ 2
3n

3/4 = o(n) bits. Such
a block is called valid if it contains either 0 or 2 one-bits; moreover, it is called
active if it contains 2 and inactive if it contains 0 one-bits. A suffix where all
blocks are valid and where all blocks following the first inactive block are also
inactive is called valid itself, and the suffix fitness suff(x) of a string x with
valid suffix b(x) is the number of leading active blocks before the first inactive
block. Finally, we call a string x ∈ {0, 1}n valid if both its prefix and suffix are
valid.

Our final fitness function is a weighted combination of pre(x) and suff(x). We
define for x ∈ {0, 1}n, where x = a ◦ b with the above-introduced a and b,

NeedHighMutξ(x) :=
n2suff(x) + pre(x) if pre(x) ≤ 9(n−m)

10 ∧ x valid,
n2⌈ 23ξ

√
n⌉+ pre(x) + suff(x)− n− 1 if pre(x) > 9(n−m)

10 ∧ x valid,
−OneMax(x) otherwise.

We note that all search points in the second case have a fitness of at least n2m−
n−1, which is bigger than n2(m−1)+n, an upper bound on the fitness of search
points that fall into the first case without having m leading active blocks in the
suffix. Hence, search points x where pre(x) = n −m and suff(x) = ⌈ 23ξ

√
n⌉

represent local optima of second-best overall fitness. The set of global optima
equals the points where pre(x) = 9(n −m)/10 and suff(x) = ⌈ 23ξ

√
n⌉, which

implies that (n−m)/10 = Ω(n) bits have to be flipped simultaneously to escape
from the local towards the global optimum.

The parameter ξ ≥ 1 controls the target strength that allows the algorithm to
find the global optimum with high probability. In the simple setting ξ = 1,
strength 1 usually leads to the local optimum first while strengths above 2 usu-
ally lead directly to the global optimum. Using larger ξ increases the threshold
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for the strength necessary to find the global optimum instead of being trapped
in the local one.

We now formally show with respect to different algorithms that NeedHighMut
is challenging to optimize without setting the right mutation probability in
advance. We start with an analysis of the classical (1+1) EA, where we for
simplicity only show the negative result for p = 1/n even though it would even
hold for ξ/n.

Theorem 3.10. Consider the plain (1+1) EA with mutation probability p on
NeedHighMutξ for a constant ξ ≥ 1. If p = 1/n then with probability 1 −
2−Ω(n), its optimization time is nΩ(n). If p = (cξ)/n for any constant c ≥ 2

then the optimization time is O(n2) with probability 1− 2−Ω(n1/3).

Proof. It is easy to see (similarly to the analysis of the SufSamp function
from [JJW05]) that the first valid search point (i. e., search point of non-negative
fitness) has both pre- and suff-value of at most n1/3 with probability 2−Ω(n1/3).
This follows from the fact that the function is symmetric on invalid search points
and that from each level set of i one-bits, only O(1) search points are valid. In
the following, we tacitly assume that we have reached a valid search point of
the described maximum pre- and suff-value and note that this changes the
required number of improvements to reach local or global maximum only by a
1− o(1) factor. For readability this factor will not be spelt out any more.

We prepare the main analysis by bounding the probability of a mutation being
accepted after a valid search point has been reached. Even if a mutation changes
up to o(n) consecutive bits of the prefix or suffix, it must maintain n − o(n)
prefix bits in order to result in a valid search point. Hence, the probability of an
accepted step at mutation probability c/n (valid for any constant c) is at most
(1 − c/n)n−m−o(n) = (1 + o(1))e−c. Steps flipping Ω(n) consecutive bits have
probability n−Ω(n) and are subsumed by the failure probabilities stated in this
theorem. Clearly, the probability of an accepted step is at least (1 − 1/n)n =
(1− o(1))e−c.

Using this knowledge of accepted steps, we shall now prove the statement for
p = 1/n. The probability of improving the pre-value is at least e−1/n since
it is sufficient to flip the leftmost zero of the prefix to 1. In a phase of length
11
10emn steps, there are at least m prefix-improving mutations with probability
1− 2−Ω(n) by Chernoff bounds. All these mutations improve the function value
and are accepted unless the suff-value increases to m before the pre-value
exceeds 9n/10.
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The probability of improving the leftmost inactive block of the suffix by 1 is at
most

(
n1/4

2

)
1
n2 e

−1(1+o(1)) ≤ (1+o(1))(e−1/2)n−3/2 since it is necessary to flip
two zeros into ones and to have an accepted mutation. By the same reasoning,
steps that activate k = o(n) blocks simultaneously have a probability of at
most (1 + o(1))(e−1/2n−3/2)k. We consider a phase of s := 11

10emn steps and
bound the number of accepted steps increasing the suff-value by k by applying
Chernoff bounds since this number is bounded by a binomial distribution with
parameter s and pk := (1+ o(1))(e−1/2n−3/2)k. Hence, the number of accepted
steps activating one suffix block in 11

10emn ≤ 11
10en

2 steps is less than 3
5

√
n with

probability 1 − 2−Ω(
√
n). The expected number of accepted steps activating

k ≥ 2 suffix blocks is already O(n−1/2), and by Chernoff bounds the actual
number is at most n1/3 with probability 1−2−Ω(n1/3). Hence, by a union bound
over k ∈ {2, . . . , n1/9}, the steps adding more than one valid suffix block increase
the suff-value by at most n1/3+1/9 = n4/9 with probability 1−2−Ω(n1/3). Steps
adding k > n1/9 valid blocks have probability O(2−Ω(n1/9)) and are subsumed by
the failure probability. If none of the failure events occurs, the total increase of
the suff-value is at most 3

5

√
n+n4/3 < 2

3

√
n. Also, with probability 1−2−Ω(

√
n),

the pre-value decreases by altogether at most O(
√
n) in the O(

√
n) mutations

that improve the suffix, which can be subsumed in a lower-order term in the
above analysis of pre-improving steps.

Altogether, with overwhelming probability 1− 2−Ω(n1/9) the prefix is optimized
before the suffix. The probability of reaching the global optimum from the local
one is n−Ω(n) since it is necessary to flip m/10 bits simultaneously to leave the
local optimum. In a phase of nc′n steps for a sufficiently small constant c′ this
does not happen with probability 1 − 2−Ω(n). This completes the proof of the
statement for the case p = 1/n.

For p = c/n, where c ≥ 2ξ, we argue similarly with inverted roles of prefix
and suffix. The probability of activating a block in the suffix is at least (1 −
o(1))((c2/2)e−cn−3/2) now. In a phase of (7/4)ξ(e2/c2)mn steps, we expect
(7/8)ξ

√
n activated blocks and with overwhelming probability we have at least

(2/3)ξ
√
n such blocks. The probability of improving the pre-value by k is

only (1+ o(1))ce−c/nk, amounting to a total expected number of improvements
by k of at most (1+o(1))(7/4)(e2/ec)(ξ/c)mn1−k ≤ (1+o(1))(7/4)(ξ/c)n2−k ≤
(1 + o(1))(7/8)n2−k since c ≥ 2ξ ≥ 2, and, using similar Chernoff and union
bounds as above, the probability of at least (9/10)m pre-improving steps in the
phase is 2−Ω(n1/3).

The previous analysis can be transferred to the SD-(1+1) EA with stagnation
detection, showing that this mechanism does not help to increase the success
probability significantly compared to the plain (1+1) EA with p = 1/n. The
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proof shows that the SD-(1+1) EA with high probability does not behave differ-
ently from the (1+1) EA. The only major difference is visible after reaching the
local optimum of NeedHighMut, where stagnation detection kicks in. This
results in the bound 2Ω(n) in the following theorem, compared to nΩ(n) in the
previous one.

Theorem 3.11. With probability at least 1 − O(1/n), the SD-(1+1) EA with
R ≥ n needs at least 2Ω(n) steps to optimize NeedHighMutξ for ξ ≥ 1.

Proof. We follow the analysis of the case p = 1/n from the proof of Theo-
rem 3.10. In a phase of 11

10emn steps, there are at least m pre-improving mu-
tations (having probability at least 1/(en) each) with probability 1− 2−Ω(n) by
Chernoff bounds. For each of these improving mutations, the probability that
it does not happen within the threshold of en ln(enR) ≥ en ln(n2) iterations is
at most (1 − 1/(en))en ln(en2) ≤ 1/n2. By a union bound, the probability that
at least one of the mutations does not happen within this number of iterations
is at most 1/n. Together with the analysis of the number of suff-increasing
mutations, this means that the strength stays at 1 until the local optimum is
reached, and that the local optimum is reached first, with probability at least
1−O(1/n).

Leaving the local optimum requires a mutation flipping at least m/10 = Ω(n)
bits simultaneously. As already analyzed in Theorem 3.4, even at optimal
strength this requires 2Ω(n) steps with probability 1 − 2−Ω(n). Taking a union
bound over all failure probabilities completes the proof.

Finally, we also show that the self-adaptation scheme of the SASD-(1+λ) EA
does not help to concentrate the mutation rate on the right regime for
NeedHighMutξ if ξ is a sufficiently large constant and λ is not too large.
This still applies in connection with stagnation detection.

Theorem 3.12. Let ξ be a sufficiently large constant and assume λ = o(n)
and λ = ω(1). Then with probability at least 1− O(1/n), the SASD-(1+λ) EA
with stagnation detection (Algorithm 9) needs at least 2Ω(n)/λ generations to
optimize NeedHighMut1.

The proof of this theorem uses more advanced techniques, more precisely The-
orem 3.2 to analyze the distribution of mutation strength in the offspring over
time. This technique allows us that only a small constant fraction of steps uses
strength that are more beneficial for the suffix than the prefix.

Proof. The idea is to show that the strength has a drift towards its minimum
and then apply Theorem 3.2 to bound the number of steps at which a mutation
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rate is taken that could be beneficial. Then, since most of the steps use small
mutation rates, the prefix is optimized before the suffix with high probability
and a local optimum is reached.

To make these ideas precise, we pick up and extend the analysis of the acceptance
and improvement probabilities from Theorem 3.10. Hence (with respect to the
creation of a single offspring):

• The probability of creating a valid offspring at strength r = o(n) is (1 ±
o(1))e−r since only o(n) bits flip with probability 1−e−ω(r) and (1−o(1))n
bits have to be preserved (not flipped) with probability 1 − 2−Ω(n). At
strength r = Ω(n) the probability is 2−Ω(n) which can be seen as follows:
the probability of improving the pre-value by m/2 is 2−Ω(n) since m/2
consecutive bits have to be set to 1; otherwise, at least m/2 bits must be
preserved, which has probability at most e−Ω(r).

• the probability of improving the pre-value by k=o(n) is (1±o(1))( rn )
ke−r.

• the probability of improving the suff-value by k=o(n) is (1±o(1))(rn)
ke−r.

Clearly, the probability that at least one out of λ offspring is improving the
function value is at most λ times as large. Since we have λ = o(n) offspring
and each improvement has probability pi = O(1/n), the probability of having
at least one improving offspring is at least 1− (1− pi)

λ = 1− (1− (1− o(1))λpi,
hence also by a factor at least (1− o(1))λ larger.

Using these bounds on the acceptance and improvement probabilities, we now
use ideas similar to the analysis of the near region in [DGWY19] to show a drift
of the strength towards small values. We distinguish between three cases.

Case 1: rt ≤ (lnλ)/4 =: L: then the probability of creating a copy of the
parent at strength rt/2 is at least (1 − o(1))e−(lnλ)/8 = (1 − o(1))λ−1/8. This
probability is by a factor (1 − o(1))e4 smaller at strength 2rt. Using Chernoff
bounds and exploiting λ = ω(1) we have that with probability 1 − o(1), the
number of copies produced at strength rt/2 is by a constant factor larger than
the one produced at strength 2rt, and there is at least one copy produced from
strength rt/2. Due to the uniform choice of the individual adjusting the strength
in case of ties, the probability of increasing the strength is at most 1/2 − ϵ for
some constant ϵ > 0.

Case 2: rt ≥ 4 lnλ =: U : then with probability 1−o(1), all offspring are invalid
in prefix or suffix and therefore worse than the parent. The fitness function is
−OneMax in this case. Now, since the minimum number of bits flipped at
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strength 2rt is with probability 1 − o(1) larger than the maximum number of
bits flipped at strength rt/2 (using Chernoff and union bounds), with probability
1 − o(1) an offspring produced from strength rt/2 has best fitness and adjusts
the strength. Hence, the probability of increasing the strength is at most 1/2−ϵ
again.

Case 3: L ≤ rt ≤ U : here we only know that the probability of decreasing
the strength is at least 1/4 due to the random steps of the SASD-(1+λ) EA.
However, a constant number of such decreasing steps is enough to reach strength
at most L from the smallest possible strength above U . To accommodate for
this, we shall define a potential function with an exponentially falling slope in
the range [L,U ] like in [DGWY19]. Since the change of rt is of a multiplicative
kind, our potential function will consider the logarithmized state log2(rt), which
lives on the non-negative integers and changes by an absolute value of at most 1
in every step. In more detail, we define

g(rt) :=


log2(rt) if rt ≤ L,

log2(L) +
∑⌈log2(rt/L)⌉

i=1 2−i if L < rt < U,

log2(L) +
∑log2(U/L)+1

i=1 2−i +2− log2(U/L)−1 log2(rt) otherwise,

assuming that L and U have been rounded down and up to the closest power
of 2, respectively.

To apply Theorem 3.2, we have to analyze the moment-generating function of
the drift of g. Therefore, we write ∆t := g(Xt+1) − g(Xt) and will bound
E
(
eη∆t

)
for a sufficiently small constant η > 0.

In Case 1, if rt ≤ L and additionally rt > 2, the probability of decreasing the
strength is at least 1/2+ ϵ and the probability of increasing it is at most 1/2− ϵ
for a sufficiently small constant ϵ > 0. The g-value changes by ±1 in this case.
Hence, using ex ≤ 1 + x+ x2/2 as well as e−x ≤ 1− x+ x2/2 for 0 ≤ x ≤ 1, we
have

E
(
eη∆t | Ft; 2 < rt ≤ L

)
= e−η

(
1

2
+ ϵ

)
+ eη

(
1

2
− ϵ

)
≤ 1− 2ηϵ+ η2 ≤ ρ

for a constant ρ < 1 if η is chosen as a sufficiently small constant (depending
on the constant ϵ). Similarly, considering Case 3, we have the same bounds on
the probabilities for increasing and decreasing the g-value. Now the change is
±2− log2(U/L)−1 in both cases if rt > U and even stronger in negative direction
if rt = U . Since 2− log2(U/L)−1 = c∗ for a constant c∗, we have

E
(
eη∆t | Ft; rt ≥ U

)
= e−ηc∗

(
1

2
+ ϵ

)
+ eηc

∗
(
1

2
− ϵ

)
,

which again is at most ρ < 1 for an appropriate choice of η.
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Finally, considering Case 3, i. e., L < rt < U , the probability of decreasing rt
can only be bounded from below by 1/4 thanks to the random steps. The g-
value increases by 2−1−log2(rt/L) if rt increases and decreases by 21−log2(rt/L)

otherwise; hence the increase is by a factor of 4 larger. We obtain

E
(
eη∆t | Ft;L < rt < U

)
≤ 1

4
e−η(2rt/L) +

3

4
eηrt/(2L),

which, writing η′ = ηrt/L, can be bounded from above by(
1− 2η′ +

(2η′)2

2

)
1

4
+

(
1 + (η/2)′ +

(η′/2)2

2

)
3

4
,

which is again bounded from above by the constant ρ < 1 if η is chosen as a
sufficiently small constant; here we have used that log(rt/L) is bounded by a
constant as well.

Altogether, we have shown

E
(
eη∆t | Ft; rt > 2

)
≤ ρ

for a constant ρ < 1 if η is chosen as a sufficiently small constant (depending on
the constant ϵ). Similarly, given this choice of η, we immediately have

E
(
eη∆t | Ft;Xt ≤ 2

)
≤ D

for a constant D > 0. If we choose b in Theorem 3.2 as a sufficiently large
constant, we obtain, noting a = 2,

1− ϵ− 1− ϵ

1− ρ
Deη(a−b) ≥ 9

10
.

Hence, the theorem states that in a phase of length T , the number of generations
where Xt > b holds, is at most T/10 with probability 1− 2−Ω(T ). Let b∗ = 2b,
i. e., the strength corresponding to Xt = b. We set T := ( 1210 )e

b∗ mn
b∗λ . Since a

pre-improving mutation has probability at least (1−o(1))λ(b∗/n)e−b∗ , we have
an expected number of at least (1−o(1))(27/25)m such mutations in the phase,
and with probability 1− 2−Ω(n) we have at least m such mutations by Chernoff
bounds. This is sufficient to reach the local optimum unless there are at least
(2/3)ξ

√
n suff-improving mutations in the phase. Note that the choice of the

constant ξ only impacts the length of the prefix in lower-order terms that vanish
in O-notation.

We bound the number of suff-improving mutations separately for the points
in time (i. e., generations) where Xt ≤ b and where Xt > b. For the first
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set of time points, we note that the probability of a suff-improving mutation
by k ≥ 1 is at most (1 + o(1))λ(2/n3/2)ke−2 since the term x2/e−x takes its
maximum at x = 2. Using similar arguments based on Chernoff and union
bounds as in the proof of Theorem 3.10, we bound the total improvement of
the suff-value in at most T ≤ (12/10)eb

∗
n2/(λb∗) steps where Xt ≤ b by

i1 := (25/10)eb
∗−2
√
n/b∗ with probability 1− 2−Ω(n1/9). For the points of time

where Xt > b the probability of a pre-improving mutation is maximized (up
to lower-order terms) at strength b∗ since the function x2/e−x is monotonically
decreasing for x > 2. Assuming at most (12/100)eb

∗
n2/b∗ such time points

(which assumption holds with probability at least 1 − 2−Ω(n2)), we obtain an
expected number of suff-improving mutations by 1 of at most

12

100
eb

∗ n2

b∗
b∗

n3/2
e−b∗ =

12

100

√
n

and using Chernoff and union bounds we bound the total improvement of the
suff-value in these generations by i2 = (13/100)

√
n with 1 − 2−Ω(n1/9). Now,

if we choose ξ large enough, then

i1 + i2 ≤
2

3
ξ
√
n

so that the prefix is optimized before the suffix with probability altogether 1−
2−Ω(n1/3).

Together with the analysis in Theorem 3.11 for the case that the stagnation
counter exceeds its threshold, this means that with probability 1−O(1/n) the
local optimum is reached before the global one. Again arguing in the same way
as in the proof of Theorem 3.11, the time to reach the global optimum from
the local one is 2Ω(n)/λ with probability 1 − 2−Ω(n). The sum of all failure
probabilities is O(1/n).

The algorithms considered in this paper use standard-bit mutation only. It
would be an interested subject to study algorithms incorporating other mutation
operators (e. g., fast mutation [DLMN17]) on NeedHighMut.

3.5 Experiments

Our theoretical results are asymptotic. In this section, we show the results of
the experiments we did in order to see how the different algorithms perform in
practice for small n.
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Figure 3.1: Average number of fitness calls (over 1000 runs) the mentioned
algorithms take to optimize Jump4.

In the first experiment, we ran an implementation of Algorithms 8 (i. e., SD-
(1+1) EA) and 9 (i. e., SASD-(1+λ) EA) with λ = 10 on the Jump fitness
function with jump size m = 4 and n varying from 80 to 160. We compared our
algorithms against (1+1) EA with standard mutation rate 1/n, (1+1) EA with
mutation probability m/n, and Algorithm (1+1) FEAβ from [DLMN17] with
three different values of β = {1.5, 2, 4}.

In Figures 3.1 and more precisely 3.2, we observe that stagnation detection
technique makes the algorithm faster than the algorithms with heavy-tailed
mutation operator (1+1) FEAβ . Also, Algorithm SD-(1+1) EA and SASD-
(1+λ) EA perform roughly the same compared to the (1+1) EA with mutation
probability m

n even though it does not need the gap size.

In the second experiment, we ran our algorithms and the classic (1+1) EA
with different mutation probabilities on NeedHighMutξ with different n =
{200, 400, 600, 800, 1000} and ξ = 3.

The outcomes support that the theory from Section 3.4 already holds for small n.
In Table 3.1, one can see that for ξ = 3, the (1+1) EA with p = 6/n and 8/n
is much more successful to find global optimum points than the rest of the
algorithms.
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Figure 3.2: Box plots comparing number of fitness calls (over 1000 runs) the
mentioned algorithms take to optimize Jump4.

Conclusions

We have designed and analyzed self-adjusting EAs for multimodal optimization.
In particular, we have proposed a module called stagnation detection that can be
added to existing EAs without essentially changing their behavior on unimodal
(sub)problems. Our stagnation detection keeps track of the number of unsuc-
cessful steps and increases the mutation rate based on statistically significant
waiting times without improvement. Hence, there is high evidence for being at
a local optimum when the strength is increased.

Theoretical analyses reveal that the (1+1) EA equipped with stagnation detec-
tion optimizes the Jump function in asymptotically optimal time corresponding
to the best static choice of the mutation rate. Moreover, we have proved a
general upper bound for multimodal functions that can recover asymptotically
runtimes on well-known example functions, and we have shown that on uni-
modal functions, the (1+1) EA with stagnation detection with high probability
never deviates from the classical (1+1) EA. Finally, to show the limitations
of the approach we have presented a function on which all of our investigated
self-adjusting EAs provably fail to be efficient.

In the future, we would like to investigate our module for stagnation detection
in other EAs and study its benefits on combinatorial optimization problems.
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(1+1) EA
SD-(1 + 1)EA SASD-(1 + lnn)EA

n p = 1
n

p = 2
n

p = 6
n

p = 8
n

200 0.000 0.000 0.011 0.193 0.000 0.000
400 0.000 0.000 0.338 0.874 0.001 0.000
600 0.000 0.000 0.424 0.859 0.000 0.000
800 0.000 0.000 0.840 0.972 0.000 0.002

1000 0.000 0.000 0.807 0.979 0.000 0.001

Table 3.1: Ratio of successfully achieved global optimum where ξ = 3 over
1000 runs instead of getting stuck in a local optimum from which
it needs exponential time to escape.
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Chapter 4

Paper B: Stagnation Detection with
Randomized Local Search

Recently a mechanism called stagnation detection was proposed that automati-
cally adjusts the mutation rate of evolutionary algorithms when they encounter
local optima. The so-called SD-(1+1) EA introduced by Rajabi and Witt
(GECCO 2020) adds stagnation detection to the classical (1+1) EA with stan-
dard bit mutation. This algorithm flips each bit independently with some mu-
tation rate, and stagnation detection raises the rate when the algorithm is likely
to have encountered a local optimum.

In this paper, we investigate stagnation detection in the context of the k-bit flip
operator of randomized local search that flips k bits chosen uniformly at ran-
dom and let stagnation detection adjust the parameter k. We obtain improved
runtime results compared to the SD-(1+1) EA amounting to a speedup of at
least (1 − o(1))

√
2πm, where m is the so-called gap size, i. e., the distance to

the next improvement. Moreover, we propose additional schemes that prevent
infinite optimization times even if the algorithm misses a working choice of k due
to unlucky events. Finally, we present an example where standard bit mutation
still outperforms the k-bit flip operator with stagnation detection.



60 Paper B: Stagnation Detection with Randomized Local Search

4.1 Introduction

Evolutionary algorithms (EAs) are parameterized algorithms, so it has been a
subject of ongoing research to discover how to choose their parameters best. A
poor choice of a parameter may result in inefficient optimization times, and it
can be challenging to find an optimal parameter setting, both from a theoretical
and empirical perspective. Also, given a specific problem, there might be differ-
ent scenarios during the optimization, e. g., success probabilities that decrease
with the distance to the optimum. This can result in relative inefficiency of one
static parameter configuration for the whole run, see, e. g., the (1 + (λ, λ)) GA
on OneMax [DD18]. Self-adjusting mechanisms address this issue by learning
acceptable or even near-optimal parameter settings on the fly. See also the sur-
vey article by [DD20] for a detailed coverage of static and non-static parameter
control.

Many studies have been conducted on frameworks that adjust the mutation rate
of different mutation operators on unimodal functions. For example, the above-
mentioned (1 + (λ, λ)) GA using the 1/5-rule can adjust its mutation strength
(and also its crossover rate) on the well-known OneMax function [DD18], re-
sulting in asymptotic speedups compared to static settings. Likewise, the self-
adjusting mechanism in the (1+λ) EA with two rates proposed in [DGWY19]
performs on OneMax as efficiently as the best λ-parallel unary unbiased black-
box algorithm. Another approach based on reinforcement learning has been
presented in [DDY16b], which adjusts the mutation strength of RLS (i. e., the
k in the k-bit flip operator) on OneMax.

The self-adjusting frameworks mentioned above have been mainly analyzed on
unimodal functions such as the OneMax benchmark. Generally, it is not very
clear how they can suggest efficient parameter settings on multimodal functions.
Since the above frameworks mainly work based on the past number of successes,
they do not receive clear signals on promising parameters choices when an al-
gorithm gets stuck in a local optimum and does not make progress for a long
time. On multimodal functions, where a specific number of bits has to flip to
make progress, stagnation detection (SD) introduced in [RW22a] can efficiently
overcome local optima in some black-box optimization scenarios. This module
can be added to many existing algorithms to leave local optima without any
significant increase of the optimization time on unimodal (sub)problems.

To our knowledge, there are only a few other runtime analyses of self-adjusting
mechanisms on multimodal functions, most notably the work by [LS11] on self-
adjusting offspring population sizes that yield a speedup on, e. g., the well-known
Jump function, and the one by [DL16b] on a self-adjusting mutation rate in a
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non-elitist evolutionary algorithm with respect to the specifically constructed
PeakedLO function.

In the broader context of mutation-based randomized search heuristics, the
heavy-tailed mutation presented in [DLMN17] is able to leave a local optimum
in a much more efficient time than the standard bit mutation does. Moreover, in
the context of artificial immune systems [COY18] and hyperheuristics [LOW19],
there are proofs that specific search operators and selection of low-level heuris-
tics can speed up multimodal optimization compared to the classical mutation
operators. Altogether, so far there are only few runtime analyses that study
local optima from a general perspective and aim at designing and analyzing
self-adjusting mutation operators to escape local optima.

Recent theoretical research on evolutionary algorithms in discrete search spaces
mainly considers global mutations which can create all possible points in one
iteration. These mutations have been functional in optimization scenarios where
information about the difficulties of the local optima is not available. For ex-
ample, the standard bit mutation, which flips each bit independently with a
non-zero probability, can produce any point in the search space. However, local
mutations can only create a fixed set of offspring points. The 1-bit flip mutation
that often can be found in the Randomized Local Search algorithm (RLS) can
only reach a limited number of search points, which may result in being stuck in
a local optimum when using the elitist selection. Nevertheless, local mutations
may outperform global mutations on unimodal functions and multimodal func-
tions with known gap sizes. It is of special interest to use advantages of local
mutations on unimodal (sub)functions additionally to overcome local optima
efficiently.

This paper investigates k-bit flip mutation as a local mutation in the context of
the above-mentioned stagnation detection mechanism. This mechanism detects
when the algorithm is likely to be stuck in a local optimum and gradually
increases the mutation strength (i. e., the number of flipped bits) to a value
the algorithm needs to leave the local optimum. Similarly, we aim to show
that the algorithms using k-bit flip mutation can use stagnation detection to
tune the parameter k. One of the key benefits of such algorithms is using the
efficiency of RLS, which performs very well on unimodal (sub)problems, without
fear of infinite running time in local optima. An additional advantage of using
k-bit flip mutation accompanied by stagnation detection is that it overcomes
Hamming gaps of size m, i. e., search points with Hamming distance m to the
closest improvement, more efficiently than global mutations (see below for a
detailed calculation of the speedup). Moreover, our outcomes point out the
advantages and practicability of our self-adjusting approach that makes local-
mutation algorithms able to optimize functions that have been intractable to
solve so far.
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We propose two globally searching algorithms combining stagnation detection
with local mutations. The first algorithm called SD-RLSp gradually increases
the mutation strength when the current strength has been unsuccessful in find-
ing improvements for a significantly long time. In the most extreme case, the
strength ends at n, i. e., mutations flipping all bits. With high probability, SD-
RLSp has a runtime that is by a factor of ( enm )m/

(
n
m

)
≥
√
2πm (up to lower-order

terms) smaller on Jump functions with Hamming gaps of size m than the SD-
(1+1) EA previously considered in [RW22a]. Although it is unlikely that the
algorithm fails to find an improvement when the current strength allows this,
there is a risk that this algorithm misses the “right” strength and therefore it
can have infinite expected runtime. To address this, we propose a more robust
algorithm called SD-RLSr that repeatedly loops over smaller strengths than the
last one tried. This results in an expected finite optimization time on all prob-
lems and only increases the typical runtime by lower-order terms compared to
SD-RLSp. We also observe that the algorithms we obtain can still follow the
same search trajectory as the classical RLS when one-bit flips are sufficient to
make improvements. In those cases, well-established techniques for the analysis
of RLS like the fitness-level method carry over to our variant enhanced with
stagnation detection. This is not necessarily the case in related approaches like
variable neighborhood search [HM18] and quasirandom evolutionary algorithms
[DFW10], both of which employ more determinism and do not generally follow
the trajectory of RLS.

We shall investigate the two suggested algorithms on unimodal functions and
functions with local optima of different gap sizes, defined as the number of bits
that need to be flipped to escape from the optima. Many results are obtained
following the analysis of the SD-(1+1) EA [RW22a] which uses a global op-
erator with self-adjusted mutation strength. In conclusion, globally searching
algorithms with the self-adjusting local mutation seem to be the preferred al-
ternative to the SD-(1+1) EA with global mutation. However, we will also
investigate carefully chosen scenarios where the simple (1+1) EA with global
mutation outperforms our algorithms with self-adjusting local mutation, despite
the fact that they are globally searching and cannot get stuck in local optima.

This paper is structured as follows: in Section 4.2, we state the classical RLS
algorithm and introduce our self-adjusting variants with stagnation detection;
moreover, we collect important mathematical tools. Section 4.3 shows runtime
results for the simpler variant SD-RLSp, concentrating on the probability of
leaving local optima, while Section 4.4 gives a more detailed analysis of the
variant SD-RLSr on benchmark functions like OneMax and Jump. Section 4.5
analyzes an example function which the standard (1+1) EA with standard bit
mutation can solve in polynomial time with high probability whereas the k-
bit flip mutation with stagnation detection needs exponential time. Through
improved upper bounds, we give in Section 4.6 indications for that our approach
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may also be superior to static settings on instances of the minimum spanning
tree problem. This problem and other scenarios are investigated experimentally
in Section 4.7 before we finally conclude the paper.

Recent, related work. In a recent conference article, [RW21a] extend SD-
RLSp with a memory mechanism that gives improved running times for prob-
lems containing a large number of local optima like the MST problem. The
present paper describes the original implementation of stagnation detection in
randomized local search as originally announced at EvoCOP 2021 [RW21b].

4.2 Preliminaries

4.2.1 Algorithms

Let f : {0, 1}n → R be the fitness function we want to optimize. This paper
describes all algorithms and results taking the perspective that one aims to
maximize the fitness function f except when the minimum spanning tree prob-
lem is considered as optimization problem (in Section 4.6). Nevertheless, on
any minimization problem, we can still use the results from Sections 4.2–4.5
analogously by simply assuming that the negated fitness function is maximized.

One of the most simple randomized search heuristics studied in the literature
is randomized local search (RLS) displayed in Algorithm 10. To the best of
our knowledge, the first appearance of the name "Random(ized) Local Search"
in the literature goes back to [WW05]. They also mention that the algorithm
was called "random mutation hill-climbing" in [MHF93]. This heuristic starts
with a random search point and then repeats mutating the point by flipping s
uniformly chosen bits (without replacement) and replacing it with the offspring
if it is not worse than the parent.

Algorithm 10: RLS with static strength s for the maximization
of f : {0, 1}n → R
Select x uniformly at random from {0, 1}n;
for t← 1, 2, . . . do

Create y by flipping s bit(s) in a copy of x;
if f(y) ≥ f(x) then

x← y;
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The runtime or the optimization time of a heuristic on a function f is the
first point in time where a search point of maximal fitness has been created.
Usually, a black-box perspective is assumed and time is measured in the number
of evaluations of the objective function. Since the algorithms considered in
this paper evaluate one search point in each iteration of their main loop, their
runtime equals the number of iterations until an optimum is found plus 1 for the
evaluation of the initial search point. Hence, their runtime is simply the smallest
value of the iteration counter t such that an optimum is evaluated plus 1. Very
often the expected runtime, i. e., the expected value of this time, is analyzed.

We use the definition of unimodal functions provided in [DJW02]. A function is
unimodal if and only if there is only one local maximum, where a local maximum
is defined as a search point such that no Hamming neighbor has a larger fitness
value. An immediate result of this definition is that on unimodal functions,
any search point except the global optimum has a better point in its Hamming
neighborhood.

Theoretical research on evolutionary algorithms often studies simple unimodal
benchmark problems, such as

OneMax(x) := ∥x∥1,

where ∥x∥1 denotes the number of one-bits in the bit string x, and multimodal
functions, like the Jumpm function [DJW02] with jump size m defined as follows:

Jumpm(x) :=

{
m+ ∥x∥1 if ∥x∥1 ≤ n−m or ∥x∥1 = n,

n− ∥x∥1 otherwise.

These simple, well-structured functions can serve as building blocks of more
complicated problems.

The mutation used in RLS is a local mutation as it only produces a limited
number of offspring. This mutation, which we call s-bit flip (in the introduction,
we used the classical name k-bit flip), flips exactly s bits randomly chosen from
the bit string of length n, so for any point x ∈ {0, 1}n, RLS with strength s
can just sample from

(
n
s

)
possible points. As a result, the s-bit flip mutation is

often more efficient compared to global mutations when we know the difficulty
of making progress since the algorithm just looks at a certain part of the search
space.

To be more precise, we define two terms describing the difficulty of a local
optimum in terms of the distance from improving solutions. Let the individual
gap of x ∈ {0, 1}n be the minimum Hamming distance of x to points with
strictly larger fitness function value, i. e.,

IndividualGap(x) := min{H(x, y) : f(y) > f(x), y ∈ {0, 1}n}.
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By the fitness level of x, we mean all the search points with fitness value f(x).
Since the algorithm might replace the current search point with another search
point in its fitness level before creating a strict improvement, we need to take
into account the individual gap of all the search points in the fitness level. Hence,
we call the fitness level gap of a point x ∈ {0, 1}n the maximum of all individual
gap sizes in the fitness level of x, i. e.,

FitnessLevelGap(x) := max {IndividualGap(y) : f(y) = f(x), y ∈ {0, 1}n} .

If the algorithm creates a point at Hamming distance IndividualGap(x) from
the current search point x, with positive probability a strict improvement can
be found. We also note that FitnessLevelGap(x) = 1 is allowed, so the defini-
tion also covers search points that are not local optima. As long as no strict
improvement is made, the FitnessLevelGap remains the same, although the cur-
rent search point might be replaced with another search point in the same fitness
level.

However, in general, quantities such as FitnessLevelGap(x) are unknown, and
benefiting from domain knowledge to determine the most promising strength
is not always feasible in the perspective of black-box optimization. Therefore,
despite the advantages of the s-bit flip operator, global mutations, which can
produce any point in the search space with positive probability, have been used
in the literature frequently. For example, the well-known (1+1) EA [DJW02]
uses the same framework as Algorithm 10 except for the mutation operator,
which follows the so-called standard bit mutation where each bit is flipped in-
dependently with probability p. Hence, standard bit mutation implicitly uses
the binomial distribution with parameters n and p to determine how many bits
must flip. Consequently, even if the algorithm uses strength 1 (i. e., mutation
rate p = 1/n), with a positive probability, the algorithm can escape from any
local optimum.

We now study the search and success probability of Algorithm 10 and its rela-
tion to stagnation detection more closely. With similar arguments as presented
in [RW22a], if the individual gap of the current search point is 1, then the al-
gorithm makes a strict improvement with probability 1/n at strength 1, and
the probability of not finding it in n lnR steps is at most (1− 1/n)n lnR ≤ 1/R
(where R is a parameter to be discussed). Similarly, if we use the strength k,
the probability of not finding a strict improvement for a point with individual
gap of k within

(
n
k

)
lnR steps is at most(

1− 1(
n
k

))(nk) lnR

≤ 1

R
.

Hence, after
(
n
k

)
lnR steps, there is a probability of at least 1 − 1/R that a

possible improvement at that distance would have been found.
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Algorithm 11: RLS with plain stagnation detection (SD-RLSp) with
parameter R for the maximization of f : {0, 1}n → R
Select x uniformly at random from {0, 1}n and set s1 ← 1;
u← 0;
for t← 1, 2, . . . do

Create y by flipping st bits in a copy of x uniformly;
u← u+ 1;
if f(y) > f(x) then

x← y;
st+1 ← 1;
u← 0;

else
if f(y) = f(x) and st = 1 then

x← y;

if u ≥
(
n
st

)
lnR then

st+1 ← min{st + 1, n};
u← 0;

else
st+1 ← st;

We consider this idea to develop the first algorithm. We add the plain stag-
nation detection mechanism to RLS to manage the strength s. As shown in
Algorithm 11, hereinafter called SD-RLSp, the initial strength is 1. Also, there
is a counter u for counting the number of unsuccessful steps, i. e., steps without
a strict improvement, to find the next after the last success. When the counter
exceeds the threshold of

(
n
s

)
lnR, the strength s is increased by one, and when

the algorithm finds a strict improvement using appropriate strengths, e. g., a
strength equal to the individual gap of the current search point, the counter
and the strength are reset to their initial values. Non-strict improvements, i. e.,
search points of equal fitness, are accepted if the current strength equals 1 to
maintain the search behavior of the classical RLS algorithm with 1-bit flip mu-
tation. They also increase the counter.

In the case that the algorithm fails to have a success at a strength allowing
a strict improvement, the algorithm might miss the chance of making further
progress. Therefore, with probability up to 1/R, the optimization time would
be infinite. Choosing a sufficiently large R to have an overwhelming large prob-
ability of making progress could be a solution to this problem. However, we
next propose another algorithm that resolves this issue, although the running
time is not always as efficient as with Algorithm 11.
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Algorithm 12: RLS with robust stagnation detection (SD-RLSr) with
parameter R for the maximization of f : {0, 1}n → R
Select x uniformly at random from {0, 1}n and set r1 ← 1 and s1 ← 1;
u← 0;
for t← 1, 2, . . . do

Create y by flipping st bits in a copy of x uniformly;
u← u+ 1;
if f(y) > f(x) then

x← y;
st+1 ← 1;
rt+1 ← 1;
u← 0;

else
if f(y) = f(x) and rt = 1 then

x← y;

if u ≥
(
n
st

)
lnR then

if st = rt then
if rt ≤ ⌊n/2⌋ − 1 then rt+1 ← rt + 1 else rt+1 ← n;
st+1 ← 1;

else
rt+1 ← rt;
st+1 ← st + 1;

u← 0;
else

st+1 ← st;
rt+1 ← rt;

In Algorithm 12, hereinafter called SD-RLSr, where the label r denotes robust,
we introduce a new variable r called radius. This parameter determines the
largest Hamming distance from the current search point that the algorithm
must investigate. In detail, when the radius is r, the algorithm explores all
strengths at most r (i. e., strengths from 1 to r). This results in a more robust
behavior since possibly promising strengths are revisited regularly. In the case
that the threshold is exceeded and the current strength equals the radius, the
radius is increased by one to cover a more expanded space. Also, when the radius
exceeds n/2, the algorithm sets it to n, which means that the algorithm covers all
possible strengths between 1 and n. Apart from that, the robust algorithm SD-
RLSr follows the plain variant SD-RLSp as far as possible, including acceptance
of equally good search points at radius 1.
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The reason for not considering radii from ⌊n/2⌋ + 1 to n − 1 is mostly for
the sake of simplicity in the analyses. Since the threshold values

(
n
st

)
lnR are

not increasing for strengths at least n/2, the first inequality in Lemma 4.1
does not hold anymore so we would need to consider another case for such gap
sizes. Hence, we immediately increase the radius to n without substantially
sacrificing the performance of the algorithm. We also note that the strategy
of repeatedly returning to lower strengths remotely resembles the 1/5-rule with
rollbacks proposed in [BBS21].

In the preliminary version of this work [RW21b], we considered a decreasing
order for the strengths in such a way that the algorithm starts with strength r
(i. e., s = r), and when the threshold is exceeded, it decreases the strength by
one as long as the strength is greater than 1. However, in this paper, for the sake
of simplicity of the algorithm, we consider the increasing order of the strengths
instead of the decreasing one, i. e., the algorithm increases the strength from 1
to the radius r. In any case, in the proofs in this paper, we pessimistically
assume that the successful strength making progress is attempted last after all
other strengths. Thus, the runtime bounds derived are independent of the order
in which the algorithm traverses the strength.

We finally discuss the parameter R in more detail, which is related to the prob-
ability of failing to find a strict improvement at the “right” strength. More
precisely, as proved in Theorem 4.2 and Lemma 4.4 (for SD-RLSp and SD-
RLSr, respectively), the probability of not finding a strict improvement when
there is a potential of making progress is at most 1/R. Assume that S is an
upper bound on the number of strict improvements during the run. In our up-
coming analyses, we will recommend R ≥ S for SD-RLSp, and for an arbitrary
constant ϵ > 0, R ≥ max{n4+ϵ, S} for SD-RLSr, resulting in that the proba-
bility of ever missing a strict improvement at the right strength is sufficiently
small throughout the run.

The choice of S is not very crucial since only the logarithm of R determines the
phase lengths of the algorithms, but can make a difference. Obviously, we can
always set S = |Im f | (where Im f is the image set of f); however, sometimes we
may have tighter estimates on the number of strict improvements. Consider the
binary value problem, i. e., BinVal(x1, . . . , xn) =

∑n
i=1 2

i−1xi, as an example.
This function has 2n different function values, i. e., |Im f | = 2n, but can be
optimized by RLS by making at most n strict improvements.
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4.2.2 Mathematical tools

The following lemma containing some combinatorial inequalities will be used in
the analyses of the algorithms SD-RLSp and SD-RLSr. The first part of the
lemma seems to be well known and has already been proved in [Lug17] and is
also a consequence of Lemma 1.10.38 in [Doe20b]. The second part follows from
elementary manipulations.

Lemma 4.1. We have

1.
∑m

i=1

(
n
i

)
≤ n−(m−1)

n−(2m−1)

(
n
m

)
for any integer m ≤ n/2,

2.
(
n
M

)
≤
(

n−m
m+1

)M−m (
n
m

)
for m ≤M ≤ n.

Proof. For (a), we use the following proof due to [Lug17]. Through the equation(
n

k−1

)
= k

n−k+1

(
n
k

)
, which comes from the definition of the binomial coefficient,

and the infinite geometric series sum formula, we achieve the following result:∑m
i=1

(
n
i

)(
n
m

) =

(
n
m

)(
n
m

) + (
n

m−1

)(
n
m

) + · · ·+
(
n
1

)(
n
m

)
= 1 +

m

n−m+ 1
+

m(m− 1)

(n−m+ 1)(n−m+ 2)
+ · · ·+ m(m− 1) · · · 2

(n−m+ 1) · · · (n− 1)

≤ 1 +
m

n−m+ 1
+

(
m

n−m+ 1

)2

+ · · · = n− (m− 1)

n− (2m− 1)
.

Regarding (b), for m = M , the inequality holds trivially. For m < M , by using(
n
k

)
= n−k+1

k

(
n

k−1

)
multiple times, we have(

n

M

)
=

(n−M + 1) · · · (n−m)

M · · · (m+ 1)

(
n

m

)
≤
(
n−m

m+ 1

)M−m(
n

m

)
.

4.3 Analysis of the Algorithm SD-RLSp

In this section, we study the first algorithm called SD-RLSp, see Algorithm 11.
In the beginning of the section, in Theorem 4.2, we will show upper bounds
on the time to escape from local optima, conditioned on an event that holds
with high probability depending on the choice of the parameter R. Then in
Theorem 4.3, we will show the important result that on unimodal functions,
SD-RLSp with high probability behaves in the same way as RLS with strength 1,
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including the same asymptotic bound on the expected optimization time using
the fitness-level method.

We shall now introduce the notation used in the analysis of SD-RLSp. Let x
be the initial search point or the search point immediately following a strict
improvement in a run of the algorithm on an arbitrary fitness function. Let
phase s consist of all points of time where strength s is used in the algorithm.
Let ℓs denote the number of iterations with strength s (in this section, it equals
the number of iterations in phase s). We note that ℓs ≤

(
n
s

)
lnR and that

equality holds if no strict improvement is found in phase s.

We let P denote the random phase number in which SD-RLSp finds a strict
improvement. Since the phase number is nothing else than the current strength
used by the algorithm, intuitively, there should be a high probability that P is no
larger than the fitness level gap of the search point x we consider. Concretely,
if m = FitnessLevelGap(x), the following theorem shows that Pr (P ≤ m) ≥
1 − 1/R and gives us upper bounds on the expected time SD-RLSp takes to
make progress, conditional on the event that {P ≤ m}. We note that SD-RLSp

might not be able to find a strict improvement in a finite number of steps,
and P = ∞ can occur with positive probability. The reason is that there is a
positive probability that the algorithm fails to make progress in situations when
it is possible to find improvements, and when it increases the strength to larger
values, it may fail to create a strict improvement forever. However, we have
Pr (P =∞) ≤ Pr (P > m) ≤ 1/R.

In the theorem, we also will make the assumption that no search point in the
fitness level has individual gap 1. The reason is the following. The algorithm
SD-RLSp selects search points in the same fitness level (and not only strict im-
provements) in phase 1, and these search points might have different individual
gap sizes. Assume that in phase 1, the search points accepted have individual
gaps of larger than 1 except in the last iteration of the phase, where a search
point y with individual gap 1 is chosen. From the next iteration in phase 2, the
algorithm only accepts strict improvements, so the algorithm might not make
progress if there are only improvements in the local neighborhood (i. e., Ham-
ming distance 1) of y. Then, we cannot guarantee that the algorithm spends
enough iterations with “right” strength. The assumption of no search point in
the fitness level having individual gap 1 is met on the typical benchmarks we
consider, e. g., the local optima of the Jump function.

Theorem 4.2. Let 0 < ϵ < 1 be a constant. Consider SD-RLSp on a pseudo-
Boolean function f : {0, 1}n → R. Let x ∈ {0, 1}n be the current search point
immediately following a strict improvement or the initial search point. Let m =
FitnessLevelGap(x). Assume that there is no search point in the fitness level
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of x with individual gap 1, i. e.

∀y ∈ {0, 1}n (f(y) = f(x)⇒ IndividualGap(y) > 1) .

Let P denote the phase in which the algorithm creates a strict improvement.
We define Tm as the time to create a strict improvement. Then we have the
upper-bound E (Tm | P ≤ m) = O(2n lnR). If m < (1− ϵ)n/2, we have

E (Tm | P ≤ m) ≤
(
n

m

)(
1 +O

(
m lnR

n

))
.

Moreover, Pr (P ≤ m) ≥ 1− 1/R.

Compared to the corresponding theorems in [RW22a], the bound in Theorem 4.2
is by a factor of ( enm )m/

(
n
m

)
(up to lower-order terms) smaller. In more detail,

on unimodal functions, we have a speedup of e. For general m, using Stirling’s
inequality m! >

√
2πm(me )

m, we compute a speedup of at least

(en/m)m

(1 + o(1))
(
n
m

) ≥ (1− o(1))
(en/m)m

nm

m!

> (1− o(1))
√
2πm. (4.1)

Proof of Theorem 4.2. The algorithm SD-RLSp can make a strict improvement
when the current strength equals the individual gap of the current search point.
Let y be the current search point at the beginning of phase 2. This point might
be different from x because in phase 1 the algorithm accepts offspring with the
same fitness value. However, in phase 2 and larger, y is fixed until a strict
improvement is found.

We know that gy := IndividualGap(y) ≥ 2 because of the assumption in the
theorem. There is no strict improvement in phases less than gy. Since the
algorithm spends

(
n
gy

)
iterations with strength gy (or a strict improvement is

found), we have

Pr (P > gy) ≤

(
1−

(
n

gy

)−1
)( n

gy
) lnR

≤ 1

R
.

Thus we have Pr (P ≤ m) ≥ Pr (P ≤ gy) = 1−Pr (P > gy) ≥ 1−1/R as claimed.

We now prove the statements on E (Tm | P ≤ m). We recall that ℓs denotes the
number of iterations with strength s, i. e., ℓs ≤

(
n
s

)
lnR. Let gy ≤ k ≤ m. We

have

E (Tm | P = k) ≤
k−1∑
s=1

ℓs︸ ︷︷ ︸
=:S1

+

(
n

k

)
︸︷︷︸
=:S2

,
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where S1 is the number of iterations for increasing the strength to k and S2 is
an upper bound on the expected number of iterations needed to make a strict
improvement when the strength equals k. For S2, we note that the algorithm
finds a strict improvement in phase k as we condition on the event {P = k}. In
each step, the probability of finding this improvement is at least

(
n
k

)−1. Hence,
the algorithm makes progress in at most

(
n
k

)
iterations in expectation using the

truncated geometric distribution.

Since using the law of total probability, we have

E (Tm | P ≤ m) =

m∑
k=gy

E (Tm | P = k) Pr (P = k | P ≤ m)

≤ max
gy≤k≤m

E (Tm | P = k)

and gy ≤ m, we conclude

E (Tm | P ≤ m) ≤
m−1∑
s=1

ℓs +

(
n

m

)
, (4.2)

where we have used
(
n
b

)
≤
(
n
a

)
for b ≤ a ≤ n/2. By using Lemma 4.1 for

m < n/2, we have

E (Tm | P ≤ m) ≤
m−1∑
s=1

(
n

s

)
lnR+

(
n

m

)
≤ n−m+ 2

n− 2m+ 3

(
n

m− 1

)
lnR+

(
n

m

)
=

n−m+ 2

n− 2m+ 3
· m

n−m+ 1

(
n

m

)
lnR+

(
n

m

)
=

(
n

m

)(
n−m+ 2

n− 2m+ 3
· m

n−m+ 1
lnR+ 1

)
.

If m < (1− ϵ)n/2, we have

E (Tm | P ≤ m) ≤
(
n

m

)(
1 +O

(
m lnR

n

))
,

which proves the bound on E (Tm | P ≤ m) for m < (1− ϵ)n/2.

To prove the general bound, since we have
∑n

s=1

(
n
s

)
< 2n, we can compute an

upper bound on Equation (4.2):

E (T | P ≤ m) =

m−1∑
s=1

ℓs +

(
n

m

)
=

m−1∑
s=1

(
n

s

)
lnR+

(
n

m

)
= O(2n lnR).
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Next, we obtain the following result that allows us to reuse existing results for
RLS on unimodal functions. In particular, runtime bounds obtained via the
well-known fitness-level method [Weg02] can be carried over.

Theorem 4.3. Let ϵ > 0 be a constant. Let f : {0, 1}n → R be a unimodal
function and consider SD-RLSp with R ≥ S, where S is an upper bound on the
number of strict improvements during the run, e. g., S = |Im f |. Then there is
an event G happening with probability at least 1 − S/R, such that conditioned
on G, SD-RLSp never increases the radius and behaves stochastically like RLS,
also conditioned on G, before finding an optimum of f .

Denote by T the runtime of SD-RLSp with R ≥ n4+ϵ on f . Let fi be the i-th
fitness value of an increasing order of all fitness values of f and si be a lower
bound on the probability that RLS finds a strict improvement from search points
with fitness value fi. Then it holds that

E (T | G) ≤
|Im f |−1∑

i=1

1

si
.

Proof. As on unimodal functions, the individual gap of all points is 1, the prob-
ability of not finding a strict improvement from any non-optimal search point
within phase 1 consisting of

(
n
1

)
lnR steps is at most

(
1−

(
n

1

)−1
)(n1) lnR

≤ 1

R
.

This argumentation holds for each improvement that has to be found. Let G be
the event that all strict improvements until finding a global optimum are found
in phase 1. On G, SD-RLSp always uses strength 1 and is stochastically identical
to RLS, also conditioned on G. Since at most S improving steps happen before
finding the optimum, by a union bound we have that Pr (G) ≥ 1 − S/R. This
proves the first claim.

To prove the second claim, we use a similar approach as for the analysis of S2

in the proof of Theorem 4.2. Conditioned on G, we bound the time to leave
fitness level fi from above by a truncated geometric distribution with success
probability at least si. Summing up the upper bounds 1/si on expected waiting
times, we obtain the second claim.

We remark that si in Lemma 4.3 can be set to Ni/n, where Ni is the minimum
number of local strict improvements (i. e., strict improvements at Hamming
distance 1) of the search points in fitness level i.
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With these two general results, we conclude the analysis of SD-RLSp and turn to
the variant SD-RLSr that always has finite expected optimization time. In fact,
we will present similar results in general optimization scenarios and supplement
them by analyses on specific benchmark functions. It is possible to analyze the
simpler SD-RLSp on these benchmark functions as well, but we do not feel that
this gives additional insights.

4.4 Analysis of the Algorithm SD-RLSr

In this section, we turn to the algorithm SD-RLSr that iteratively returns to
lower strengths to avoid missing the “right” strength. In a nutshell, we will
obtain the following results: Theorem 4.6 will show that the algorithm will
overcome (fitness level) gaps of size m in expected time roughly (1 + o(1))

(
n
m

)
,

i. e., essentially corresponding to the size of the m-bit neighborhood. Unlike the
analysis in Theorem 4.2, this expected time is not conditional on an event corre-
sponding to making progress with the “right strength”. To prove Theorem 4.6,
we will formulate two helper results in Lemmas 4.4 and 4.5. The purpose of
the first lemma is to bound the probability of missing a strict improvement at
the “right” strength, similar to the proof of Theorem 4.2, while the second one
bounds the contribution of steps using “too high” strengths to the total expected
runtime. Afterwards, we re-use the helper results to prove Theorem 4.7, a result
dealing with the behavior on unimodal functions. The statement and results are
similar to Theorem 4.3; however, again the expected runtime is finite in total
and not only conditional on a success event. We will conclude this section with
an analysis of SD-RLSr on the jump function class, where we will make use of
both Theorem 4.6 and Theorem 4.7.

We now define the crucial notions in the analysis of SD-RLSr, including the
distinction of so-called phases and subphases. As in the previous section, let x
be the initial search point or the search point immediately following a strict
improvement in a run of SD-RLSr on a fitness function f . We consider the
epoch starting from the first point in time where x is the current search point
until the next strict improvement. Let phase r consist of all points of time of the
epoch, starting immediately after a reset of the strength to 1 (or the beginning
of the epoch), before the strength is reset to 1 for the rth time or the epoch ends.
In other words, the epoch begins with phase 1, and any phase r ≥ 1 starts with
strength 1. When the counter exceeds the threshold, if the strength is smaller
than the radius, it increases the strength by one; otherwise, the next phase r+1
begins, the radius increases to r + 1 and the strength is reset to 1. Hence, for
r ≤ ⌊n/2⌋, we have that phase r starts from the first time with radius r and
ends before the radius reaches r + 1 or a strict improvement is found.
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In the case that r + 1 > ⌊n/2⌋, the next radius is n instead of r + 1 but the
phase number increases from ⌊n/2⌋ to ⌊n/2⌋+1. Eventually, the phase number
may even become larger than the radius. For example, when the radius has
become n for the first time and the strength has increased from 1 to n without
a success at any strength, the strength will be reset to 1 again, which starts
phase ⌊n/2⌋+ 2 etc.

Let subphase s consist of all iterations with strength s in a phase. We have that
for r ∈ [1..⌊n/2⌋], phase r consists of subphases s ∈ [1..r] and any phase larger
than ⌊n/2⌋ consists of subphases s ∈ [1..n].

Carrying over the notation from the previous section, let ℓs denote the number
of iterations in subphase s in a phase, so we have ℓs ≤

(
n
s

)
lnR. Moreover, let

Li denote the number of iterations in phase i. Then we have Li ≤
∑i

s=1 ℓs for
i ≤ ⌊n/2⌋ and Li ≤

∑n
s=1 ℓs for r > ⌊n/2⌋. We note that the upper bounds

on ℓs and Li hold with equality if no strict improvement is found in subphase s
or phase i, respectively. We should also note that ℓs already appeared in the
previous section, where a different notion of phases was used; more precisely,
the phases in Section 4.3 correspond to subphases in this section. However,
mathematically, the ℓs are the same in both sections.

Recall that according to the definition of the algorithm SD-RLSr, in phase 1,
i. e., when the radius is 1, the algorithm might change the current search point
if another one with the same fitness value f(x) is found. However, from phase 2
onwards, the algorithm keeps the current search point until a strict improvement
is found.

Our main result in this section, Theorem 4.6 below, hinges on an analysis
of the phase in which the algorithm makes progress. Let Er be the event
of not finding an optimum within phase r. Let the random variable P de-
note the phase in which the algorithm finds a strict improvement, that is,
Pr (P = i) = Pr

(
E1 ∩ · · · ∩ Ei−1 ∩ Ei

)
. In our analyses, we will bound the

distribution of P and show that it essentially is dominated by a geometric dis-
tribution with success probability 1−1/R plus the gap size of the current search
point minus 1. This is a consequence of the following result on the failure prob-
ability Er.

Lemma 4.4. Consider SD-RLSr on a pseudo-Boolean function f : {0, 1}n →
R. Let x ∈ {0, 1}n be the current search point immediately following a strict
improvement or the initial search point. Let m = FitnessLevelGap(x) and m ≤
⌊n/2⌋. Then for r ≥ m, Pr (Er) ≤ 1/R.
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Proof. Let y be the current search point in the beginning of phase r and gy :=
IndividualGap(y). For r ≥ 2, the algorithm does not change the current search
point during phase r. However, for m = 1 and r = 1, although the algorithm
might change the current search point, the individual gap of all selected search
points is still 1. Therefore, in both cases, there is a strict improvement at
Hamming distance gy during phase r. We have that gy ≤ m since by definition,
the fitness level gap is the maximum of all individual gap sizes in the fitness
level.

During phase r, the algorithm spends ℓgy steps at strength gy until it changes the
strength or enters phase r+1 (unless it already has found a strict improvement
with strength gy). Then the probability of not finding a strict improvement in
subphase gy of phase r is at most

Pr (Er) ≤

(
1−

(
n

gy

)−1
)ℓgy

=

(
1−

(
n

gy

)−1
)( n

gy
) lnR

≤ 1

R
.

Intuitively, the proof of our main result shows that SD-RLSr has a high proba-
bility of finding a strict improvement in phase m, where m corresponds to the
gap size of the current search point. The following lemma bounds the time to
leave a local optimum conditional on that the “right” strength was missed. In
the proof of our main theorem, we will combine this lemma with Lemma 4.4
to obtain an expected number of at most o(

(
n
m

)
) extra iterations at “too high”

strengths, which is dominated by the upper bound
(
n
m

)
on the expected number

of iterations sufficient for making a strict improvement at strength at most m.

Lemma 4.5. Let ϵ > 0 be a constant. Consider SD-RLSr with R ≥ n4+ϵ on a
pseudo-Boolean fitness function f : {0, 1}n → R. Let x ∈ {0, 1}n be the current
search point immediately following a strict improvement or the initial search
point. Let m = FitnessLevelGap(x) and m ≤ ⌊n/2⌋. By Tm we define the time
to create a strict improvement. Let P denote the phase in which the algorithm
makes progress. Then we have

E (Tm | P > m) = o

(
R

n
·
(
n

m

))
.

Proof. Using the law of total probability with respect to the random variable P
defined above, we have

E (Tm | P > m) =

∞∑
i=1

E (Tm | P = i ∩ P > m) Pr (P = i | P > m)

=

∞∑
i=m+1

E (Tm | P = i) Pr (P = i | P > m) .
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The variable i represents the earliest phase in which the algorithm finds a strict
improvement. The event {P = i | P > m} implies that no strict improvement
is made in phases m+ 1 to i− 1. Thus in order to estimate Pr (P = i | P > m)
for i ≥ m+ 1, we have

Pr (P = i | P > m) ≤ Pr (Em+1 ∩ · · · ∩ Ei−1) ≤
i−1∏

j=m+1

Pr (Ej) ≤ R−(i−m−1),

where we have used Lemma 4.4 to bound Pr (Ej).

Let y be the current search point from phase 2 and gy := IndividualGap(y). For
m+ 1 ≤ i ≤ ⌊n/2⌋, we estimate, using the notation Lr defined above, that

E (Tm | P = i) ≤
i∑

r=1

Lr ≤
i∑

r=1

r∑
s=1

(
n

s

)
lnR ≤ n2

(
n

i

)
lnR ≤ ni−m+2

(
n

m

)
lnR,

where we have used
(
n
i

)
≤ ni−m

(
n
m

)
using Lemma 4.12. For i > ⌊n/2⌋, we

compute

E (Tm | P = i) ≤
i∑

r=1

Lr ≤
⌊n/2⌋∑
r=1

r∑
s=1

(
n

s

)
lnR+ (i− ⌊n/2⌋)

n∑
s=1

(
n

s

)
lnR,

recalling that radius ⌊n/2⌋ is immediately follows by radius n. Since for all
1 ≤ k ≤ n, we have

(
n
k

)
≤
(

n
⌊n/2⌋

)
, we bound the last expression from above by

n2

4

(
n

⌊n/2⌋

)
lnR+ (i− ⌊n/2⌋)n

(
n

⌊n/2⌋

)
lnR

< (i− ⌊n/2⌋)n2n⌊n/2⌋−m

(
n

m

)
lnR.

Altogether, since (i− ⌊n/2⌋) < ni−⌊n/2⌋ for sufficiently large n, we have

∞∑
i=m+1

E (Tm | P = i) Pr (P = i | P > m) <

∞∑
i=m+1

(
n

m

)
ni−m+2 lnR

Ri−m−1

= n3 lnR ·
(
n

m

)( ∞∑
i=0

(n/R)i

)
.

Using the fact that R ≥ n4+ϵ and i > m, the last expression is bounded from
above by

O

(
n3 lnR ·

(
n

m

))
= o

(
R

n
·
(
n

m

))
.
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We are now ready for formulate and prove our main result in the following
Theorem 4.6. The theorem and its proof are similar to Theorem 4.2 but require
a more careful analysis to cover the repeated use of smaller strengths. We note
that the bounds differ from Theorem 4.2 only in lower-order terms. Hence, we
again achieve the speedup calculated in Equation 4.1 for SD-RLSr, which is√
2πm roughly, compared to SD-(1+1) EA.

Theorem 4.6. Let ϵ̂ > 0 and 0 < ϵ < 1 be constants. Consider SD-RLSr with
R ≥ n4+ϵ̂ on a pseudo-Boolean function f : {0, 1}n → R. Let x ∈ {0, 1}n be the
current search point immediately following a strict improvement or the initial
search point. Let m = FitnessLevelGap(x). By Tm we define the time to create a
strict improvement. Then E (Tm) = O (2nn lnR). Moreover, if m < (1− ϵ)n/2,
we have

E (Tm) ≤
(
n

m

)(
1 +O

(
m lnR

n

))
.

Proof. We first prove the statement where we have m < (1 − ϵ)n/2. Here
we will exploit that in phase m, there is a subphase of index gy ≤ m where
the algorithm can potentially make progress, i. e., create a strict improvement,
in each iteration of the subphase. If m = 1, we have gy = m = 1, because
all selected search points in phase and subphase 1 have the individual gap 1,
so the algorithm can make progress in subphase 1. If m ≥ 2, let y be the
search point in the beginning of phase 2. This point might be different from x
since the algorithm accepts equal-fitness search points in phase 1. However,
in phase 2 and after, the current search point y remains fixed until a strict
improvement is found. Thus, the algorithm is able to create a strict improvement
in subphase gy := IndividualGap(y). We recall that gy ≤ m since by definition,
the fitness level gap is the maximum of all individual gap sizes in the fitness
level.

We recall the random variable P denoting the phase in which the algorithm
creates a strict improvement. The aim is to decompose the expected time E (Tm)
according to the event P ≤ m, which is the more typical event of making progress
in a phase no larger than the fitness level gap of the search point x, and the
opposite event P > m, whose contribution to E (Tm) will be proved small.
Formally, using the law of total probability with respect to P , we have

E (Tm) = E (Tm | P ≤ m) Pr (P ≤ m)︸ ︷︷ ︸
=:S1

+E(Tm | P > m) Pr (P > m)︸ ︷︷ ︸
=:S2

,

and we are left with bounding S1 and S2.

Regarding S1, we pessimistically assume that a strict improvement is not found
in phases less than m. Thus, it take

∑m−1
r=1 Lr steps until SD-RLSr increases the
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radius to m. Then it takes
∑gy−1

s=1 ℓs steps to increase the strength to gy. When
the strength is gy, within an expected number of at most

(
n
gy

)
steps, a better

point is found or the subphase is terminated by using a truncated geometric
distribution. Thus, since gy ≤ m,

S1 = Pr (P ≤ m) E (Tm | P ≤ m) ≤ E (Tm | P ≤ m) ≤ E (Tm | P = m)

≤
m−1∑
r=1

Lr +

gy−1∑
s=1

ℓs +

(
n

gy

)
≤

m−1∑
r=1

r∑
s=1

(
n

s

)
lnR+

m−1∑
s=1

(
n

s

)
lnR+

(
n

m

)
.

Using Lemma 4.1, we can bound the last expression from above by

m−1∑
r=1

n− (r − 1)

n− (2r − 1)

(
n

r

)
lnR+

m−1∑
s=1

(
n

s

)
lnR+

(
n

m

)

≤
(
1 +

m− 1

n− 2m+ 3

)m−1∑
r=1

(
n

r

)
lnR+

m−1∑
s=1

(
n

s

)
lnR+

(
n

m

)
≤
(
2 +

m− 1

n− 2m+ 3

)(
1 +

m− 1

n− 2m+ 3

)(
n

m− 1

)
lnR+

(
n

m

)
≤
(
2 +

m− 1

n− 2m+ 3

)(
1 +

m− 1

n− 2m+ 3

)
m · lnR

n−m+ 1

(
n

m

)
+

(
n

m

)
.

Then for m < (1− ϵ)n2 , the last expression is bounded from above by(
n

m

)(
1 +O(

m lnR

n
)

)
.

In regard to S2, where the optimum is not found by the end of phase m,
there are in expectation at most o((R/n)

(
n
m

)
) iterations to find the optimum

through Lemma 4.5. Also, the event {P > m} happens if the algorithm fails to
make a strict improvement in phase m, so Pr (P > m) ≤ Pr (Em) ≤ 1/R using
Lemma 4.4. Altogether, for m < (1− ϵ)n2 , we have

E (Tm) = Pr (P ≤ m) E (Tm | P ≤ m) + Pr (P > m) E (Tm | P > m)

≤
(
n

m

)(
1 +O

(
m lnR

n

))
+

1

R
· o
(
R

n

(
n

m

))
≤
(
n

m

)(
1 +O

(
m lnR

n

)
+ o(1/n)

)
.

We are left with the proof of the general result E (Tm) = O(2nn lnR). Here we
pessimistically assume that the radius r increases to n as no strict improvement
has been found in phases at most ⌊n/2⌋. Afterwards, in each phase, there is a
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subphase using the strength of the individual gap of the current search point.
Thus according to Lemma 4.4, the algorithm makes a strict improvement with
probability at least 1 − 1/R; so by the geometric distribution, there are in
expectation at most R/(R− 1) phases with radius n. Finally, recalling that we
pessimistically ignore all progress in phases at most ⌊n/2⌋, we bound

E (Tm) ≤
⌊n/2⌋∑
r=1

Lr + E(Tm | P > ⌊n/2⌋) ≤
⌊n/2⌋∑
r=1

Lr +
R

R− 1

n∑
s=1

ℓs

=

⌊n/2⌋∑
r=1

r∑
s=1

(
n

s

)
lnR+

R

R− 1

n∑
s=1

(
n

s

)
lnR

≤
n∑

r=1

n∑
s=1

(
n

s

)
lnR+

R

R− 1

n∑
s=1

(
n

s

)
lnR = O (2nn lnR) ,

where we used R ≥ n4+ϵ̂.

Similarly to Lemma 4.3, we obtain a relation to RLS on unimodal functions and
can re-use existing upper bounds based on the fitness-level method. The first
part of the following theorem and its proof are the same as in Theorem 4.3.
However, since the runtime of SD-RLSr is finite, in the second part of the
following theorem, we prove an upper bound on the optimization time of the
algorithm using runtime bounds for RLS.

Theorem 4.7. Let ϵ > 0 be a constant. Let f : {0, 1}n → R be a unimodal
function and consider SD-RLSr with R ≥ S, where S is an upper bound on the
number of strict improvements during the run, e. g., S = |Im f |. Then there is
an event G happening with probability at least 1 − S/R, such that conditioned
on G, SD-RLSr never increases the radius and behaves stochastically like RLS,
also conditioned on G, before finding an optimum of f .

Denote by T the runtime of SD-RLSr with R ≥ n4+ϵ on f . Let fi be the i-th
fitness value of an increasing order of all fitness values in f and si be a lower
bound on the probability that RLS finds a strict improvement from search points
with fitness value fi. Then

E (T ) ≤ (1 + o(1))

|Im f |−1∑
i=1

1

si
.

Proof. Using the same arguments as in the proof of Theorem 4.3, we prove the
first part.
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To prove the second claim, we consider all fitness levels A1, . . . , A|Im f | such that
Ai contains search points with fitness value fi and sum up upper bounds on the
expected times to leave each of these fitness levels. Let Ti denote the random
time spent in level Ai. We have T ≤

∑|Im f |−1
i=1 Ti. Using the truncated geometric

distribution, within at most 1/si iterations in expectation, the algorithm leaves
the fitness level by finding a strict improvement or increases the radius to 2
(i. e., the phase 1 ends). Using Lemma 4.4, the probability of that the phase
is terminated before creating a strict improvement is at most 1/R, and using
Lemma 4.5, if the algorithm enters the second phase, the expected time to find
a strict improvement is o((R/n)

(
n
1

)
) = o(R). Altogether, since si ≤ 1, we have

E (Ti) ≤
1

si
+

1

R
· o(R) = (1 + o(1))

1

si
.

Then

E (T ) ≤ (1 + o(1))

|Im f |−1∑
i=1

1

si
.

In the same way as for Theorem 4.3, si in Theorem 4.7 can be set to Ni/n,
where Ni is the minimum number of local strict improvements of the search
points in fitness level i.

Finally, we use the results developed so far to prove a bound on the Jump
function with gap size m. This bound is essentially the size of the m-bit
flip neighborhood and seems to be the best available for mutation-based hill-
climbers. For example, the expected optimization time of the (1+1) EA is Ω(nm)
[DJW02], which is by an asymptotic factor Ω(mm) worse. The fast (1+1) EA
from [DLMN17] is by a factor polynomial in m slower, as is the SD-(1+1) EA
[RW22a].

Theorem 4.8. Let n ∈ N and ϵ > 0 be a constant. For all 2 ≤ m = o(n), the
expected runtime E (T ) of SD-RLSr with R ≥ n4+ϵ on Jumpm satisfies(

n

m

)
(1− o(1)) ≤ E (T ) ≤

(
n

m

)(
1 +O

(
m
n lnR

))
.

Proof. Before reaching the plateau consisting of all points of n − m one-bits,
Jump is equivalent to OneMax; hence, according to Theorem 4.7, the expected
time SD-RLSr takes to reach the plateau at n−m one-bits is at most O(n lnn).
Note that this bound was obtained via the fitness level method with si = (n−
i)/n as minimum probability for leaving the set of search points with i one-bits
via a one-bit flip.
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Every plateau point x with n−m one-bits satisfies

IndividualGap(x) = FitnessLevelGap(x) = m,

according to the definition of Jump. Thus, using Theorem 4.6, starting from
the plateau, the algorithm finds the optimum within expected time

E (T ) ≤
(
n

m

)(
1 +O

(
m
n lnR

))
.

Since m ≥ 2, this dominates the expected time of the algorithm before the
plateau point and results in the running time in the theorem.

Regarding the lower bound, we show that with high probability, the initial search
point is not the global optimum and is not a search point at Hamming distance 1
to the global optimum. Using Chernoff’s bounds, the probability that the initial
search point is at Hamming distance at least m from the optimum is 1 − o(1).
Using Theorem 4.7, with probability 1 − o(1), the algorithm finds at most n
strict improvements in phase 1 until it reaches the local optimum (within an
expected number of Θ(n lnn) iterations). To move from the local optimum to
the global optimum, the algorithm first needs to increase the radius and strength
to m. From that strength, the algorithm requires at least

(
n
m

)
iterations in

expectation since only one out of the search points at Hamming distance m yields
a strict improvement. Hence, SD-RLSr needs at least (1 − o(1))

(
n
m

)
iterations

in expectation.

4.5 An Example Where Global Mutations are
Necessary

While our s-bit flip mutation along with stagnation detection can outperform the
(1+1) EA on Jump functions, it is clear that its different search behavior may
be disadvantageous on other examples. Concretely, we will present a function
that has a unimodal path to a local optimum with a large Hamming distance
to the global optimum. SD-RLSp will with high probability follow this path
and incur exponential optimization time. However, the function has a second
gradient that requires two-bit flips to make progress. The classical (1+1) EA
will be able to follow this gradient and to arrive at the global optimum before
one-bit flips have reached the end of the path to the local optimum.

In a broader context, our function illustrates an advantage of global mutation
operators. By a simple swap of local and global optimum, it immediately turns
into the direct opposite, i. e., an example where using global instead of local



4.5 An Example Where Global Mutations are Necessary 83

mutations is highly detrimental and increases the runtime from polynomial to
exponential with overwhelming probability. An example of such a function was
previously presented in [DJK08]; however, both the underlying construction and
the proof of exponential runtime for the (1+1) EA seem much more complicated
than our example.

The construction of our function is based on a general principle that was in-
troduced in [Wit03] to show the benefits of populations and was subsequently
applied in [JW04] to separate a coevolutionary variant of the (1+1) EA from
the standard (1+1) EA. Section 5 of the latter paper also beautifully describes
the general construction technique that involves creating two differently pro-
nounced gradients for the algorithms to follow. A further applications was given
in [Wit06] to show the benefit of populations in elitist and non-elitist EAs. Also,
[RLY09] use very similar construction technique for their Balance function that
is easier to optimize in frequently changing than slowly changing environments;
however, they did not seem to be aware that their approach resembles earlier
work from the papers above. Recently, the construction technique inspired the
function NeedHighMut that [RW22a] used to show disadvantages of stagna-
tion detection adjusting the rate of a global mutation operator. In fact, our
function NeedGlobalMut is more or less immediately obtained from Need-
HighMut. The only change is to adjust the length of the suffix part of the
function, which rather elegantly allows us to re-use the previous technique of
construction and a major part of the analysis.

We now described the function NeedGlobalMut formally. In the following,
we will imagine any bit string x of length n as being split into a prefix a := a(x) of
length n−m and a suffix b := b(x) of length m, where m is defined below. Hence,
x = a(x)◦b(x), where ◦ denotes the concatenation. The prefix a(x) is called valid
if it is of the form 1i0n−m−i, i. e., i leading ones and n−m−i trailing zeros. The
prefix fitness pre(x) of a string x ∈ {0, 1}n with valid prefix a(x) = 1i0n−m−i

equals i, the number of leading ones. The suffix consists of ⌈ 13
√
n⌉ consecutive

blocks of ⌈n1/4⌉ bits each, altogether m ≤ ( 13
√
n + 1)(⌈n1/4⌉) = O(n3/4) bits.

Such a block is called valid if it contains either 0 or 2 one-bits; moreover, it is
called active if it contains 2 and inactive if it contains 0 one-bits. A suffix where
all blocks are valid and where all blocks following the first inactive block are also
inactive is called valid itself, and the suffix fitness suff(x) of a string x with
valid suffix b(x) is the number of leading active blocks before the first inactive
one. Finally, we call x ∈ {0, 1}n valid if both its prefix and suffix are valid.

The final fitness function is a weighted combination of pre(x) and suff(x). We
define for x ∈ {0, 1}n, where x = a ◦ b with the above-introduced a and b,

NeedGlobalMut(x) :=
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
n2suff(x) + pre(x) if pre(x) ≤ 9(n−m)

10 ∧ x valid
n2⌈ 13

√
n⌉+ pre(x) + suff(x)− n− 1 if pre(x) > 9(n−m)

10 ∧ x valid
−OneMax(x) otherwise.

The function NeedGlobalMut equals NeedHighMutξ from [RW22a] for the
setting ξ = 1/2 (ignoring that ξ < 1 was disallowed there for technical rea-
sons). We note that all search points in the second case have a fitness of at
least n2⌈ 13

√
n⌉−n−1, which is bigger than n2(⌈ 13

√
n⌉−1)+n, an upper bound

on the fitness of search points that fall into the first case without having m lead-
ing active blocks in the suffix. Hence, search points x where pre(x) = n −m
and suff(x) = ⌈ 13

√
n⌉ represent local optima of second-best overall fitness.

The set of global optima equals the points where pre(x) = 9(n − m)/10 and
suff(x) = ⌈ 13

√
n⌉, which implies that (n−m)/10 = Ω(n) bits have to be flipped

simultaneously to escape from the local toward the global optimum.

Theorem 4.9. With probability 1−o(1), both SD-RLSp and SD-RLSr with R ≥
n2 need 2Ω(n) steps to optimize NeedGlobalMut. The (1+1) EA optimizes
this function in time O(n2) with probability 1− 2−Ω(n1/3).

Proof. As in the proof of Theorem 4.1 in [RW22a], we have that the first valid
search point (i. e., search point of non-negative fitness) of both SD-RLSp, SD-
RLSr and (1+1) EA has both pre- and suff-value value of at most n1/3 with
probability 2−Ω(n1/3). In the following, we tacitly assume that we have reached
a valid search point of the described maximum pre- and suff-value and note
that this changes the required number of improvements to reach local or global
maximum only by a 1− o(1) factor. For readability this factor will not be spelt
out anymore.

We now consider SD-RLSp and SD-RLSr, for both of which the proof is identical.
As long as the counter threshold is not exceeded, the algorithm behaves like RLS.
We follow the argumentation from Theorem 4.3 until the point in time where
pre(x) = n − m since it is possible to improve the function value by one-bit
flips before. Hence, using a union bound over at most n−m improvements, the
probability of ever increasing the suff-value before pre(x) = n−m is at most
(n−m)/R ≤ 1/n. The fitness can only be further improved if at least (n−m)/10
bits flip simultaneously. This requires the rate to be increased (n −m)/10 − 1
times; in particular the last of the increases happens only after a phase of length
at least

(
n

(n−m)/10−1

)
= 2Ω(n). This proves the statement for both SD-RLSp and

SD-RLSr.

We now analyze the success probability of the (1+1) EA. To this end, we first
bound the probability of a mutation being accepted after a valid search point
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has been reached. Even if a mutation changes up to Θ(n3/4) consecutive bits
of the prefix or suffix, it must maintain n − Θ(n3/4) prefix bits in order to
result in a valid search point. Hence, the probability of an accepted step at
mutation probability 1/n is at most (1 − 1/n)n−m−Θ(n3/4) = (1 + o(1))e−1.
Since the probability of flipping Ω(n3/4) bits is n−Ω(n3/4), the probability of
an accepted step is altogether, by the law of total probability, (1 ± o(1))(1 −
1/n)n = (1 ± o(1))e−1. By similar arguments, the probability of a mutation
improving the pre-value by k at most (1 + o(1))e−1/nk and the probability
of improving the suff-value is at least (1 − o(1))(e−1/2)n−3/2 since there are(
n1/4

2

)
= (1− o(1))n1/2/2 choices of probability at least e−1/n2 each.

We now consider a phase of (3/4)emn steps. Using the bound on improving the
suff-value, we expect (1−o(1))(3/8)

√
n activated blocks. By Chernoff bounds,

with overwhelming probability we have at least 1
3

√
n such blocks. The proba-

bility of improving the pre-value by k ≥ 1 is only (1 + o(1))e−1n−k, amount-
ing to an expected number of improvements by k of (1 + o(1))(3/4)mn1−k =
(1 + o(1))(3/4)n2−k. Using Chernoff bounds and union bounds over all values
of k such that k = o(n), the probability of improving the pre-value by at least
(9/10)m during the phase is 2−Ω(n1/3).

4.6 Minimum Spanning Trees

Our self-adjusting s-bit flip mutation operator can also have advantages on clas-
sical combinatorial optimization problems. We reconsider the minimum span-
ning tree (MST) problem on which EAs and RLS were analyzed before [NW07].
The known bounds for the globally searching (1+1) EA are not tight. More
precisely, they depend on log(wmax), the logarithm of the largest edge weight.
This is different with RLS variants that flip only one or two bits due to an equiv-
alence first formulated in [RKJ06]: if only up to two bits flip in each step, then
the MST instance becomes indistinguishable from the MST instance formed by
replacing all edge weights with their rank in their increasingly sorted sequence.
This results in a tight upper bound of O(m2 lnm), where m is the number of
edges, for RLS1,2, an algorithm that uniformly at random decides to flip either
one or two uniformly chosen bits. Note that this algorithm is simply called RLS
in [NW07]; however, to avoid confusion, we use the naming RLS1,2 inspired by
Neumann and Witt [NW10].

Although not spelled out by Neumann and Wegener [NW07], it is easy to see
that the leading term in the polynomial O(m2 lnm) is at most 2, i. e., that
the expected time for RLS1,2 to create an MST is at most (2 + o(1))m2 lnm.
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The leading coefficient 2 stems from the logarithm of sum of the weight ranks,
which can be in the order of m2; more precisely, following the multiplicative drift
analysis in [DJW12, Theorem 15] with δ = 1/m2 and ln(X(t)) ≤ ln(1+· · ·+m) ≤
2 lnm gives the bound 2m2 lnm on the expected time to transform an arbitrary
spanning tree to an MST. With the fitness functions from [NW07], the expected
time for RLS1,2 to arrive at a first spanning tree, starting from an arbitrary
initial search point, is O(m logm) and therefore of lower order.

We will see that the leading coefficient of 2 can, in some sense, be avoided
in our SD-RLSr. The following theorem bounds the optimization time of SD-
RLSr in the case that the algorithm has reached a spanning tree and the fitness
function only allows spanning trees to be accepted. Since the expected time
to find the first spanning tree is O(m logm) also for SD-RLSr with R ≥ m4+ϵ,
we do not consider this lower-order term further. However, our bound comes
with an additional term related to the number of strict improvements. We will
discuss this term and implications on the use of multiplicative drift analysis for
SD-RLSr after the proof.

Theorem 4.10. The expected optimization time of SD-RLSr with R = m5 on
the MST problem with m edges, starting with an arbitrary spanning tree, is at
most

(1 + o(1))
(
(m2/2)(1 + ln(r1 + · · ·+ rm)) + (10m lnm)E (S)

)
≤ (1 + o(1))

(
m2 lnm+ (10m lnm)E (S)

)
,

where ri is the rank of the ith edge in the sequence sorted by increasing edge
weights, and E (S) is the total expected number of strict improvements until
reaching the optimum conditioned on that the strength never exceeds 2 during
this time.

Proof. We aim at using multiplicative drift analysis using g(x) =
∑m

i=1 xiri as
potential function. As long as at most two bits flip, implying that g(x) is in-
distinguishable from

∑m
i=1 wixi (cf. [RKJ06]), g(x) can be seen as the canonical

potential function used in multiplicative drift analysis with respect to the MST
[DJW12, Th. 15].

Since SD-RLSr can be in the state of strength 1 but at least two bits must be
flipped simultaneously to transform a spanning tree into another one, there is
not always a positive drift to the optimum. However, at strength 1 no mutation
is accepted since the fitness function from [NW07] gives a huge penalty to non-
trees. Hence, our plan is to conduct the drift analysis conditioned on that the
strength is exactly 2 and account for the steps spent at strength 1 separately.
Cases where the radius exceeds 2 will be handled by an error analysis and a
restart argument.
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Let X(t) := g(xt) − g(xopt) for the current search point x(t) and an optimal
search point xopt. Moreover, assume that the strength never exceeds 2 be-
fore finding an optimum. Then the algorithm behaves stochastically the same
on the original fitness function and the potential function g. We obtain that
E
(
X(t) −X(t+1) | X(t)

)
≥ X(t)/

(
m
2

)
≥ 2X(t)/m2 since the g-value can be de-

creased by altogether g(xt) − g(xopt) via a sequence of at most
(
m
2

)
disjoint

two-bit flips; see also the proof of Theorem 15 in [DJW12] for the underly-
ing combinatorial argument. Let T denote the number of steps at strength 2
until g is minimized, assuming no larger strength to occur. Using the mul-
tiplicative drift theorem, we have E (T ) ≤ (m2/2)(1 + ln(r1 + · · · + rm)) ≤
(m2/2)(1 + ln(m2)) and by the tail bounds for multiplicative drift [DG13]
it holds that Pr

(
T > (m2/2)(ln(m2) + ln(m2))

)
≤ e− ln(m2) = 1/m2. Note

that this bound on T is below the threshold for strength 2 since
(
m
2

)
lnR =

(m2 −m)/2 ln(m5) ≥ (m2/2)(4 lnm) for m large enough. Hence, with proba-
bility at most 1/m2 the algorithm fails to find the optimum before the strength
can change from 2 to a different value due to the threshold being exceeded.

Next, we bound the expected number of steps spent at larger strengths. Since
each increase of the radius implies an unsuccessful phase at strength 2, the prob-
ability that radius r, where 3 ≤ r ≤ m/2, is selected before finding the optimum
is at most (1/m2)r−2. According to Lemma 4.1, the number of steps spent for
each such radius is at most m−(r−1)

m−(2r−1)

(
m
r

)
. By the law of total probability, the

expected number of steps at larger strengths than 2 is at most
m/2∑
r=3

m− (r − 1)

m− (2r − 1)

(
m

r

)(
1

m2

)r−2

= o(m2)

and contributes only a lower-order term captured by the o(1) in the statement
of the theorem. If the strength exceeds 2, we wait for it become 2 again and
restart the previous drift analysis, which is conditional on strength at most 2.
Since the probability of a failure is at most 1/m2, this accounts for an expected
number of at most 1/(1−m−2) restarts, which is 1 + o(1) as well.

It remains to bound the number of steps at strength 1 when the radius equals 1
or 2. For each strict improvement, the radius and consequently, the strength, is
reset to 1. Also, when the radius is increased to 2, the algorithm uses strength 1
before increasing the strength to 2. Thereafter, 2m lnR steps pass before the
strength becomes 2 again. Hence, if the strength does not exceed 2 before the
optimum is reached, this adds a term of (2m lnR)S, where S is the number of
strict improvements in the run, to the running time. The expected number of
strict improvements is bounded by E (S), where we assume a random starting
point of the algorithm and count the number of strict improvement after reaching
the first tree. If an error occurs and the strength exceeds 2, the remaining
expected number of strict improvements will not be bigger.
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The term E (S) appearing in the previous theorem is not easy to bound. If
E (S) = o(m), the upper bound suggests that SD-RLSp may be more efficient
than the classical RLS1,2 algorithm; with the caveat that we are talking about
upper bounds only. However, it is not difficult to find examples where E (S) =
Ω(m), e. g., on the worst-case graph used for the lower-bound proof in [NW07],
which we will study below experimentally, and we cannot generally rule out that
E (S) is asymptotically bigger than m on certain instances. However, empirically
SD-RLSr can be faster than RLS1,2 and the (1+1) EA on MST instances, as we
will see in Section 4.7. In any case, although the algorithm can search globally,
the bound in Theorem 4.10 does not suffer from the log(wmax) factor appearing
in the analysis of the (1+1) EA.

Technically, the proof of Theorem 4.10 shows that it is not straightforward to
apply drift analysis in algorithms using stagnation detection. More precisely,
since the drift of SD-RLSr not only depends on the current search point, but also
on the current strength, it may be challenging to derive good drift bounds. In the
proof, we could address this challenge by essentially ignoring all improvements
happening at strengths different from 2.

We also considered designing variants of SD-RLSr that do not reset the strength
to 1 after each strict improvement and would therefore, be able to work with
strength 2 for a long while on the MST problem. However, such an approach
is risky in scenarios where, e. g., both one-bit flips and two-bit flips are possible
and one-bit flips should be exploited for the sake of efficiency. Instead, we think
that a combination of stagnation detection and selection hyperheuristics [War19]
based on the s-bit flip operator or the learning mechanism from [DDY16b], which
performs very well on the MST, would be more promising here.

4.7 Experiments

In this section, we present the results of the experiments1 conducted to see the
empirical performance of the proposed algorithms. On the problems we will
study in this section, the individual gap of a given search point equals its fitness
level gap, so we use the term gap instead for short.

In order to investigate the escaping time of different algorithms using stagnation
detection, in a numerical simulation, we compared the expressions

• T1(m) :=
∑m−1

s=1 2(en/s)s ln(en6) + (en/m)m,

1https://github.com/DTUComputeTONIA/SDRLS
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(a) For small gap sizes (b) For gap sizes at most n/2

Figure 4.1: Evaluations of the functions T1, T2, and T3 with a fixed but large n
(n = 500) and R = n5 as some estimators for the number of steps
the mentioned algorithms take to escape local optima of different
gap sizes m. The data is represented in logarithmic scale.

• T2(m) :=
∑m−1

s=1

(
n
s

)
lnn5 +

(
n
m

)
,

• T3(m) :=
∑m−1

r=1

∑r
s=1

(
n
s

)
lnn5 +

∑m−1
s=1

(
n
s

)
lnn5 +

(
n
m

)
,

representing roughly the expected number of steps of SD-(1+1) EA2, SD-RLSp,
and SD-RLSr, respectively, to leave a local optimum with the gap size m in
finite time. We considered R = n5, which satisfies the recommendations for
the parameter R in different algorithms. For the sake of simplicity, we did not
consider the number of iterations in the case of missing the improvement at the
right strength in the estimators Ti. However, since those events only contribute
to lower-order terms (except for SD-RLSp, which results in infinite runtime), we
believe that ignoring them does not change the results significantly. The results
can be seen in Figure 4.1, where the x-axis shows the asymptotic growth rate
of m, i. e., the gap size, and the y-axis indicates the value of each aforementioned
expression, i. e., the estimated escaping time.

Although in SD-RLSr (T3), the algorithm looks into smaller strengths each time
to guarantee finite expected running time, there is no apparent increase in the
bounds on improvement times compared to SD-RLSp (T2). However, the bounds
for both variants outperform the bound for the SD-(1+1) EA (T1).

2Note that in this section, we always use the threshold value from the preliminary version
of the SD-(1+1) EA presented in GECCO 2020, i. e., 2(en/r)r ln(nR) for the strength r.
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We also conducted two experiments to see the performance of the proposed algo-
rithms for small problem dimensions. This experimental design was employed
because our theoretical results are asymptotic.

Figure 4.2: Average number of fitness calls (over 1000 runs) the mentioned
algorithms took to optimize Jump4.

Figure 4.3: Box plots comparing number of fitness calls (over 1000 runs) the
mentioned algorithms took to optimize Jump4.
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Figure 4.4: Example graph TG with p = n/4 connected triangles and a com-
plete graph on q vertices with edges of weight 1. The source of the
figure is [NW07].

In the first experiment, we ran an implementation of Algorithm 12 (SD-RLSr)
on the Jump fitness function with jump size m = 4 and n varying from 80 to 160.
We compared our algorithm against the (1+1) EA with standard mutation rate
1/n, the (1+1) EA with mutation probability m/n, Algorithm (1+1) FEAβ from
[DLMN17] with three different β = {1.5, 2, 4}, and the SD-(1+1) EA presented
in [RW22a]. In Figure 4.2, we observe that SD-RLSr outperforms the rest of
the algorithms based on average values of 1000 independent runs.

In the second experiment, we ran an implementation of four algorithms SD-
RLSr, (1+1) FEAβ with β = 1.5 from [DLMN17], the standard (1+1) EA and
RLS1,2 from [NW07] on the MST problem with the fitness function from [NW07]
for two types of graphs called TG and Erdős–Rényi.

The graph TG with n vertices and m = 3n/4+
(
n/2
2

)
edges contains a sequence

of p = n/4 triangles which are connected to each other, and the last triangle
is connected to a complete graph on q = n/2 vertices. Regarding the weights,
the edges of the complete graph have the weight 1, and we set the weights of
edges in triangles to 2a and 3a for the side edges and the main edge, respectively
(See Figure 4.4). In this paper, we consider a = n2. The graph TG is used for
estimating lower bounds on the expected runtime of the (1+1) EA and RLS in
the literature [NW07]. In this experiment, we use n = {24, 36, 48, 60}. As can
be seen in Figure 4.5, the (1+1) FEAβ is faster than the rest of the algorithms.

An Erdős–Rényi graph as defined in [ER60] is a random graph of size n such that
each edge appears with probability p. We produced several random Erdős–Rényi
graphs with p = (2 lnn)/n and assigned each edge an integer weight in the range
[1, n2] uniformly at random. We also checked that the graphs obtained were
connected. Then we ran the implementation to find the MST of these graphs.
The obtained results can be seen in Figure 4.6. As we discussed in Section 4.6,
SD-RLSr is outperformed by the (1+1) EA and RLS1,2 on the MST problems
when the number of strict improvements in SD-RLSr is large. However, since
relatively fewer strict improvements seem to be sufficient on the TG graphs than
on the Erdős–Rényi graphs, we can see in Figure 4.5 that SD-RLSr is slightly
better than the (1+1) EA and RLS1,2.
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Figure 4.5: Average number of fitness calls (over 400 runs) the mentioned
algorithms took to optimize the fitness function MST of the TG
graphs.

Figure 4.6: Average number of fitness calls (over 400 runs) the mentioned
algorithms took to optimize the fitness function MST of the
Erdős–Rényi graphs.

Conclusions

We have transferred stagnation detection, previously proposed for EAs with
standard bit mutation, to the operator flipping exactly s uniformly randomly
chosen bits as typically encountered in randomized local search. We have also
introduced techniques that make the algorithm robust if it, due to its randomized
nature, misses the right number of bits flipped, and analyzed scenarios where
global mutations are still preferable.
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Through theoretical runtime analyses, we have shown that this combination of
stagnation detection and local search can leave local optima located at Hamming
distance k from the closest improvement in expected time roughly

(
n
k

)
, i. e., the

size of the k-bit flip neighborhood, which outperforms the previously considered
variant of stagnation detection with global mutation. Moreover, in experimental
studies, our proposed algorithms outperform some well-known algorithms on
Jump functions. However, it can be seen that on problems where many strict
improvements are needed, e. g., MST problems with dense instances, the number
of iterations that the robust variant SD-RLSr spends at too small strengths has
a considerable negative impact on the total optimization time.

In the future, we would like to investigate stagnation detection more thoroughly
on instances of classical combinatorial optimization problem like the minimum
spanning tree problem, for which the present paper only gives preliminary but
promising results.
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Chapter 5

Paper C: Stagnation Detection in Highly
Multimodal Fitness Landscapes

Stagnation detection has been proposed as a mechanism for randomized search
heuristics to escape from local optima by automatically increasing the size of
the neighborhood to find the so-called gap size, i. e., the distance to the next
improvement. Its usefulness has mostly been considered in simple multimodal
landscapes with few local optima that could be crossed one after another. In
multimodal landscapes with a more complex location of optima of similar gap
size, stagnation detection suffers from the fact that the neighborhood size is
frequently reset to 1 without using gap sizes that were promising in the past.

In this paper, we investigate a new mechanism called radius memory which can
be added to stagnation detection to control the search radius more carefully by
giving preference to values that were successful in the past. We implement this
idea in an algorithm called SD-RLSm and show compared to previous variants of
stagnation detection that it yields speed-ups for linear functions under uniform
constraints and the minimum spanning tree problem. Moreover, its running time
does not significantly deteriorate on unimodal functions and a generalization of
the Jump benchmark. Finally, we present experimental results carried out to
study SD-RLSm and compare it with other algorithms.
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5.1 Introduction

The theory of self-adjusting evolutionary algorithms (EAs) is a research area
that has made significant progress in recent years [DD20]. For example, a self-
adjusting choice of mutation and crossover probability in the algorithm so-called
(1+(λ, λ)) GA allows an expected optimization time of O(n) on OneMax,
which is not possible with any static setting [DDE15, DD18]. Many studies
focus on unimodal problems, while self-adjusting EAs for multimodal problems
in discrete search spaces, more precisely for pseudo-Boolean optimization, were
investigated only recently from a theoretical runtime perspective. Stagnation de-
tection proposed in [RW20b] addresses a shortcoming of classical self-adjusting
EAs, which try to learn promising parameter settings from fitness improvements.
Despite the absence of a fitness improvements when the best-so-far solution is
at a local optimum, stagnation detection learns from the number of unsuc-
cessful steps and adjusts the mutation rate if this number exceeds a certain
threshold. Thanks to this mechanism, the so-called SD-(1+1) EA proposed in
[RW20b] optimizes the classical Jump function with n bits and gap size m in
expected time O((en/m)m), which corresponds asymptotically to the best pos-
sible time achievable through standard bit mutation, more precisely when each
bit is flipped independently with probability m/n. It is worth pointing out that
stagnation detection does not have any prior information about the gap size m.

Although leaving a local optimum requires a certain number of bits to be flipped
simultaneously, which we call the gap size, the SD-(1+1) EA mentioned above
still performs independent bit flips. Therefore, even for the best setting of the
mutation rate, only the expected number of flipping bits equals the gap size
while the actual number of flipping bits may be different. This has motivated
Rajabi and Witt [RW21b] to consider the k-bit flip operator flipping a uniform
random subset of k bits as known from randomized local search (RLS) [DD18]
and to adjust k via stagnation detection. Compared to the SD-(1+1) EA, this
allows a speed-up of (nem )m/

(
n
m

)
(up to lower-order terms) on functions with

gap size m and a speed-up of up to roughly e = 2.718 . . . on unimodal functions
while still being able to search globally.

Rajabi and Witt [RW21b] emphasize that their RLS with self-adjusting k-bit
flip operator resembles variable neighborhood search [HM18] but features less
determinism by drawing the k bits to be flipped uniformly at random instead of
searching the neighborhood in a fixed order. The random behavior still main-
tains many characteristics of the original RLS, including independent stochastic
decisions which ease the runtime analysis. If the bit positions to be flipped
follow a deterministic scheme as in quasirandom EAs [DFW10], dependencies
complicate the analysis and make it difficult to apply tools like drift analysis.
However, a drawback of the randomness is that the independent, uniform choice
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of the set of bits to be flipped leaves a positive probability of missing an im-
provement within the given time a specific parameter value k is tried. Therefore,
the first RLS variant with stagnation detection proposed in [RW21b] and called
SD-RLS there has infinite expected runtime in general, but is efficient with high
probability, where the success probability of the algorithm is controlled via the
threshold value for the number of steps without fitness improvement that trig-
ger a change of k. We remark here that the problem with infinite runtime is
not existent with the independent bit flips as long as each bit is flipped with
probability in the open interval (0, 1).

In this paper, we denote by SD-RLSp the simple SD-RLS just proposed. To
guarantee finite expected optimization time, Rajabi and Witt [RW21b] intro-
duce a second variant that repeatedly returns to lower so-called (mutation)
strengths, i. e., number of bits flipped, while the algorithm is still waiting for
an improvement. The largest neighborhood size (i. e., number of bits flipped) is
denoted as radius r and, in essence, the strength s is decreased in a loop from r
to 1 before the radius is increased. Interestingly, the additional time spent at
exploring smaller strengths in this loop, with the right choice of phase lengths,
contributes only a lower-order term to the typical time that SD-RLSp has in the
absence of errors. The resulting algorithm (Algorithm 14) is called SD-RLS∗ in
[RW21b], but in this paper referred to by SD-RLSr, where the label r denotes
robust.

As already explained in [RW21b], SD-RLSr (and also the plain SD-RLSp) return
to strength 1 after every fitness improvement and try this strength for a suffi-
ciently large time to find an improving one-bit flip with high probability. This
behavior can be undesired on highly multimodal landscapes where progress is
typically only made via larger strengths. As an example, the minimum span-
ning tree (MST) problem as originally considered for the (1+1) EA and an RLS
variant in [NW07] requires two-bit flips to make progress in its crucial optimiza-
tion phase. Both theoretically and experimentally, Rajabi and Witt [RW21b]
observed that SD-RLSr is less efficient than the RLS variant from [NW07] since
low, useless strengths (here 1) are tried for a too long period of time. On the
other hand, it can also be risky exclusively to proceed with the strength that
was last found to be working if the fitness landscape becomes easier at some
point and progress can again be made using smaller strengths.

In this paper, we address this trade-off between exploiting high strengths that
were necessary in the past and again trying smaller strengths for a certain
amount of time. We propose a mechanism called radius memory that uses the
last successful strength value to assign a reduced budget of iterations to smaller
strengths. This budget is often much less than the number stereotypically tried
in SD-RLSr after every fitness improvement. However, the budget must be
balanced carefully to allow the algorithm to adjust itself to gap sizes becoming
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smaller over the run of the algorithm. Our choice of budget is based on the
number of iterations (which is the same as the number of fitness evaluations)
passed to find the latest improvement and assigns the same combined amount
of time, divided by lnn, to smaller strengths tried afterwards.

This choice, incorporated in our new algorithm SD-RLSm, basically limits the
time spent at unsuccessful strengths by less than the waiting time for an im-
provement with the last successful strength but is still big enough to adjust to
smaller strength sufficiently quickly. On the one hand, it (up to lower-order
terms) preserves the runtime bounds on general unimodal function classes and
jump functions shown for SD-RLSr in [RW21b]. On the other hand, it signifi-
cantly reduces the time for the strength to return to larger values on two highly
multimodal problems, namely optimization of linear functions under uniform
constraints and the MST. Although these ideas are implemented in a simple
RLS maintaining one individual only, we implicitly consider stagnation detec-
tion as a module that can be added to other algorithms as shown in [RW20b] and
very recently in [DZ21] for multi-objective optimization. Concretely, we could
also use the stagnation detection with radius memory in population-based algo-
rithms.

This paper is structured as follows. In Section 5.2, we define the algorithms
considered and collect some important technical lemmas. Section 5.3 presents
time bounds for the new algorithm SD-RLSm to leave local optima and ap-
plies these to obtain bounds on the expected optimization time on unimodal
and jump functions. Moreover, it includes in Lemma 5.5 the crucial analysis
of the time for the strength to settle at smaller values when an improvement is
missed. Thereafter, these results are used in Section 5.4 to analyze SD-RLSm

on linear functions under uniform constraints and to show a linear-time speedup
compared to the SD-RLSr algorithm in [RW21b]. Section 5.5 shows that SD-
RLSm optimizes MST instances on graphs with m edges in expected time at
most (1 + o(1))m2 lnm, which is by an asymptotic factor of 2 faster than the
bound for RLS1,2 from [NW07] and represents, to the best of our knowledge,
the first asymptotically tight analysis of a globally searching (1+1)-type algo-
rithm on the problem. In Section 5.6, we present an example where the radius
memory is detrimental and leads to exponential optimization time with proba-
bility 1− o(1) while the original SD-RLSr from [RW21b] is efficient. Section 5.7
presents experimental supplements to the analysis of SD-RLSr and SD-RLSm

and comparisons with other algorithms from the literature before we finish with
some conclusions.
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5.2 Preliminaries

5.2.1 Algorithms

We start by describing a class of classical RLS algorithms and the considered
extensions with stagnation detection. Algorithm 13 is a simple hill climber that
uses a static strength s and always flips s bits uniformly at random. The special
case where s = 1, i. e., using one-bit flips, has been investigated thoroughly in
the literature [DD16] and is mostly just called RLS.

Algorithm 13: RLS with static strength s for the maximization of
f : {0, 1}n → R
Select x uniformly at random from {0, 1}n;
for t← 1, 2, . . . do

Create y by flipping s bits in a copy of x;
if f(y) ≥ f(x) then

x← y;

The algorithm RLS1,2 (which also is just called RLS in [NW07]) is an extension
of this classical RLS (i. e., Algorithm 13 with strength 1) choosing strength s ∈
{1, 2} uniformly before flipping s bits. This extension is crucial for making
progress on the MST problem, as further explained in Section 5.5.

In [RW21b], RLS is enhanced by stagnation detection, leading to Algorithm 14.
In a nutshell, the algorithm increases its strength after a certain number of
unsuccessful steps according to the threshold value

(
n
s

)
lnR which has been

chosen to bound the so-called failure probability at strength s, i. e., the prob-
ability of not finding an improvement at Hamming distance s, by at most(
1−1/

(
n
s

))(ns) lnR ≤ 1/R. It also incorporates logic to return to smaller strengths
repeatedly by maintaining the so-called radius value r. All variables and pa-
rameters will be discussed in detail below when we come to our extension with
radius memory. Algorithm 14 is called SD-RLS∗ in [RW21b] since that paper
also discusses a simpler variant called SD-RLS without the logic related to the
radius variable. However, that variant is not robust and has infinite expected
optimization time in general even on unimodal problems. We call Algorithm 14
SD-RLSr since, as argued in [RW21b], the radius makes the algorithm robust.

In the following, we present in Algorithm 15 the new algorithm SD-RLSm using
stagnation detection and radius memory. It extends SD-RLSr by adding logic for
setting the helper variable B and by using B to minimize the original thresh-
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Algorithm 14: RLS with robust stagnation detection (SD-RLSr) for the
maximization of f : {0, 1}n → R
Select x uniformly at random from {0, 1}n;
r ← 1, s← 1, u← 0;
for t← 1, 2, . . . do

Create y by flipping s bits in a copy of x uniformly at random;
u← u+ 1;
if f(y) > f(x) then

x← y;
r ← 1, s← 1, u← 0;

else if f(y) = f(x) and r = 1 then
x← y;

if u >
(
n
s

)
lnR then

if s = 1 then
if r < n/2 then r ← r + 1 else r ← n;
s← r ;

else
s← s− 1;

u← 0;

old
(
n
s

)
lnR for the number of unsuccessful steps with u

(lnn)(r−1) , where u is
explained below. Another minor change is that it increases the strength from 1
to the radius r instead of decreasing it for the sake of simplicity of the new
algorithm and the proofs. We describe the algorithm in more detail now.

After a strict improvement with strength s (which becomes the initial radius r
for the next search point), the algorithm uses all strengths s′ < r for

min

{
u

(lnn)(r − 1)
,

(
n

s′

)
lnR

}
attempts, where u is the value of the counter at the time that the previous
improvement happened. Once the current strength becomes equal to the cur-
rent radius, the threshold becomes min{∞,

(
n
s′

)
lnR} =

(
n
s′

)
lnR for the rest of

iterations with the current search point. Therefore, the cap at u
(lnn)(r−1) is only

effective as long as the current radius equals r and the current strengths are
smaller than r.

For technical reasons, the radius increases directly to n when it has passed n/2.
Moreover, as another technical detail, we accept search points of equal fitness
only if the current radius is one (leading to the same acceptance behavior as in
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classical RLS, see Algorithm 13), whereas only strict improvements are accepted
at larger radii.

The factor 1/ lnn appearing in the first argument of the minimum

min

{
u

(lnn)(r − 1)
,

(
n

s′

)
lnR

}
is a parameter choice that has turned out robust and useful in our analyses. The
choice u

r−1 , i. e., an implicit constant of 1, could seem more natural here since
then the algorithm would look at smaller strengths as often as the last successful
strength was tried; however, this would make our forthcoming bounds worse by
a constant factor.

As mentioned above, stagnation detection has also a parameter R to bound the
probability of failing to find an improvement at the “right” strength. We formally
prove in Lemma 5.3 that the probability of not finding an improvement where
there is a potential of making progress is at most 1/R. The recommendation
of R for SD-RLSr in [RW21b] is still valid for SD-RLSm, i. e., R ≥ n3+ϵ · |Im f |
for a constant ϵ (where Im f is the image set of f), resulting in that the proba-
bility of ever missing an improvement at the right strength is sufficiently small
throughout the run. However, in this paper, by improving some analyses, we
recommend a tighter value for R, namely R ≥ max{S, n3+ϵ} for an arbitrary
constant ϵ > 0 where S is an upper bound on the number of strict improvements
during the run. Obviously, we can always choose S = |Im f |.

The runtime or the optimization time of a search heuristic on a function f is
the first point time t where a search point of optimal fitness has been created;
often the expected runtime, i. e., the expected value of this time, is analyzed.

5.2.2 Mathematical tools

In the following lemma, which has been taken from [RW21b], we have some
combinatorial inequalities that will be used in the analyses of the algorithms.
Part 1 in Lemma 5.1 seems to be well known and has already been proved
in [Lug17] and is also a consequence of Lemma 1.10.38 in [Doe20b]. Part 2
follows from elementary manipulations.

Lemma 5.1 (Lemma 1 in [RW21b]). We have

1.
∑m

i=1

(
n
i

)
≤ n−(m−1)

n−(2m−1)

(
n
m

)
for any integer m ≤ n/2,

2.
(
n
M

)
≤
(
n
m

) (
n−m
m

)M−m for m < M < n/2.
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Algorithm 15: RLS with robust stagnation detection and radius memory
mechanism (SD-RLSm) for the maximization of f : {0, 1}n → R
Select x uniformly at random from {0, 1}n;
r ← 1, s← 1, u← 0, B ←∞;
for t← 1, 2, . . . do

Create y by flipping s bits in a copy of x uniformly at random;
u← u+ 1;
if f(y) > f(x) then

x← y;
r ← s, s← 1;
if r > 1 then B ← u

(lnn)(r−1) else B ←∞;
u← 0;

else if f(y) = f(x) and r = 1 then
x← y;

if u > min{B,
(
n
s

)
lnR} then

if s = r then
if r < n/2 then r ← r + 1 else r ← n;
s← 1;

else
s← s+ 1. if s = r then B ←∞;

u← 0;

Proof. For Part 1, we use the following proof due to [Lug17]. Through the
equation

(
n

k−1

)
= k

n−k+1

(
n
k

)
, which comes from the definition of the binomial

coefficient and the summation formula for geometric series, we achieve the fol-
lowing result:∑m

i=1

(
n
i

)(
n
m

) =

(
n
m

)(
n
m

) + (
n

m−1

)(
n
m

) + · · ·+
(
n
1

)(
n
m

)
< 1 +

m

n−m+ 1
+

m(m− 1)

(n−m+ 1)(n−m+ 2)
+ . . .

≤ 1 +
m

n−m+ 1
+

(
m

n−m+ 1

)2

+ · · · = n− (m− 1)

n− (2m− 1)
.

Regarding Part 2, for t ≥ m, by using
(
n
m

)
= n−m+1

m

(
n

m−1

)
, we have(

n

M

)
=

(n−M + 1) . . . (n−M + t)

M . . . (M − t+ 1)

(
n

M − t

)
≤
(
n−M + t

M − t

)t(
n

M − t

)
.

Thus, by setting m = M − t, we obtain the statement.
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5.3 Analysis of the Algorithm SD-RLSm

In this section, we shall show bounds on the optimization time of SD-RLSm in
addition to useful technical lemmas used in different analyses in the paper.

5.3.1 Expected Times to Leave a Search Point

In this subsection, we will prove some bounds on the time to leave a search
point that has a Hamming distance larger than 1 to all improvements. Let us
define by the epoch of x the sequence of iterations where x is the current search
point. In contrast to the previously proposed algorithm SD-RLSr in [RW21b],
the optimization time of SD-RLSm for making progress with the current search
point x is also dependent to the progress in the epoch of the second-to-last
different search point, i. e., the parent of x. In detail, the algorithm in epoch x
starts with parameters r0 and B0, which are set to the strength escaping the
parent of x and the number of fitness calls at that strength divided by (r0 −
1) lnn, respectively. Therefore, to analyze the running time, we also need to
consider those parameters. Hereinafter, we define Tx,r0,B0

as the number of
steps SD-RLSm takes to find an improvement from the current search point x
with starting radius r0 (i. e., at the beginning of the epoch) and budget B0 in
the current epoch.

We recall the so-called gap of the point x ∈ {0, 1}n defined in [RW20b] as the
minimum Hamming distance to points with the strictly larger fitness function
value. Formally, gap(x∗) = ∞ where x∗ is an optimum, and for the rest of the
points, we define

gap(x) := min{H(x, y) : f(y) > f(x), y ∈ {0, 1}n}.

It is not possible to make progress by flipping less than gap(x) bits of the current
search point x, but if the algorithm uses the s-flip with s = gap(x), it can make
progress with a positive probability.

In order to estimate the escape time bounds, we consider two cases where
gap(x) ≥ r0 and where gap(x) < r0. In the first case, it costs B0 fitness func-
tion calls for the algorithm to increase the radius r to r0. Then, the analysis of
the rest of the iterations is the same as Theorem 3 for the algorithm SD-RLSr

(the algorithm without radius memory) in [RW21b]. Obviously, the algorithm is
asymptotically as efficient as SD-RLSr in this case. However, in the second case
where gap(x) < r0, the proposed algorithm can be outperformed by SD-RLSr

since if it fails to improve at every radius, the algorithm meets larger strengths,
which are costly. It means that although the gap size of the current search
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point is less than its parent, the escape time is the same or even longer in the
worst case scenario. However, in the rest of the paper, we show that this is not
harmful to the optimization time because it is captured by the escape time of
the previous epoch, and after a short time, the radius “recovers” and is set to
the gap of the current search point, as proved in Lemma 5.5 below.

Concretely, we present the next theorem presenting escape time bounds and
prove it by the end of this subsection.

Theorem 5.2. Let x ∈ {0, 1}n be the first search point after a strict improve-
ment of SD-RLSm with starting radius r0, budget B0, and R ≥ n3+ϵ for an
arbitrary constant ϵ > 0 on a pseudo-Boolean function f : {0, 1}n → R. Define
Tx,r0,B0

as the time to create a strict improvement. Let m = gap(x). Then, for
an arbitrary constant ϵ̂, we have

E (Tx,r0,B0) ≤


(
n
m

) (
1 +O(m lnR

n )
)

if r0 ≤ m ≤ (1− ϵ̂)n/2,

O
((

n
r0

)
lnR

)
if m < r0 ≤ (1− ϵ̂)n/2,

O(2nn lnR) otherwise.

For proving Theorem 5.2, we need some definitions and lemmas as follows. Let
phase r consist of all points in time where radius r is used in the algorithm. Let
Er be the event of not finding the optimum within phase r. In Lemma 5.3, we
show that the failure probability is at most 1/R in phases r with m ≤ r < n/2
and zero in the last phase (i. e., at radius n). In the following lemma, we show
that in each radius which is at least the gap size, the algorithm makes progress
with high probability.

Lemma 5.3. Let x ∈ {0, 1}n be the current search point of SD-RLSm on a
pseudo-Boolean fitness function f : {0, 1}n → R and let m = gap(x) and B ≥(
n
m

)
lnR. Then

Pr (Er) ≤


1 if r < m,
1
R if m ≤ r < n

2 ,

0 if r = n.

Proof. According to the definition of the gap, the algorithm can not make
progress where the strength is less than the gap size, so in this case, Pr (Er) = 1.
Now, assume r ≥ m. During phase r (i. e., at radius r), the algorithm spends
min{B,

(
n
m

)
lnR} =

(
n
m

)
lnR steps at strength m until it changes the strength

or radius. Then, the probability of not improving at strength s = m is at most

Pr (Er) =

(
1−

(
n

m

)−1
)(n

m) lnR

≤ 1

R
.
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During phase n, the algorithm does not change the radius anymore, and it
continues to flip s bits with different s containing m until making progress,
so the probability of eventually failing to find the improvement in this phase
is 0.

Let Ej
i for j > i be the event of not finding the optimum during phases i to j.

In other words, Ej
i = Ei ∩ · · · ∩ Ej . Also, we remark that Ei

i = Ei and Ej
i = ∅

for j < i.

The next lemma is used to analyze situations where the algorithm does not find
an improvement in the first k phases, where k is some number depending on the
application of the lemma. In the proof of the lemma, we pessimistically do not
consider possible improvements at distances larger than the gap size.

Lemma 5.4. Let x ∈ {0, 1}n with m = gap(x) < n/2 be the current search
point of SD-RLSm with R ≥ n3+ϵ for an arbitrary constant ϵ > 0 on a pseudo-
Boolean function f : {0, 1}n → R. Given r0 as starting radius and B0 as budget,
T ′
x,r0,B0

is defined as the number of steps to find a strict improvement. Let
k < (1 − ϵ̂)n/2 for an arbitrary constant 0 < ϵ̂ < 1 such that k ≥ m − 1 and
k ≥ r0 in the case that r0 > m. In other words, if the first k phases do not find
a strict improvement, the algorithm uses the threshold

(
n
m

)
lnR at strength m in

phase k + 1. Then we have

E
(
T ′
x,r0,B0

| Ek
1

)
≤
(
n

m

)
+O

(
k lnR

n

(
n

k + 1

))
,

where Ej
i is the event of not finding an optimum during phases i to j (included).

Proof. Using the law of total probability, we have

E
(
T ′
x,r0,B0

| Ek
1

)
=

⌈n/2⌉−1∑
i=k+1

E
(
T ′
x | Ei−1

k+1 ∩ Ei

)
Pr
(
Ei−1

k+1 ∩ Ei

)
︸ ︷︷ ︸

=:S1

+ E
(
T ′
x | E

⌈n/2⌉−1
k+1 ∩ En

)
Pr
(
E

⌈n/2⌉−1
k+1 ∩ En

)
︸ ︷︷ ︸

=:S2

.

To interpret the last formula, we recall phase r as all points of time where
radius r is used. In each term in S1, variable i represents the phase in which
the algorithm makes progress (i. e., Ei) and not in smaller phases, i. e., phases
from k + 1 to i − 1 (i. e., Ei−1

k+1). Thus, all cases where making improvement
happens in one of the phases ranging from k + 1 to ⌈n/2⌉ − 1 are considered in
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S1, and the last case of phase n is computed in S2. In this manner, we consider
all possible cases of success.

In order to estimate Pr
(
Ei−1

k+1 ∩ Ei

)
, because of the assumptions on k, the budget

B0 is not effective in the threshold value. Hence we can use Lemma 5.3, which
results in

Pr
(
Ei−1

k+1 ∩ Ei

)
< Pr

(
Ei−1

k+1

)
=

i−1∏
j=k+1

Pr (Ej) < R−(i−k−1).

Note that we consider only improvements at the Hamming distance of the gap
size. Now, for S1, we compute

⌈n/2⌉−1∑
i=k+1

E
(
T ′
x | Ei−1

k+1 ∩ Ei

)
Pr
(
Ei−1

k+1 ∩ Ei

)
≤

⌈n/2⌉−1∑
i=k+1

(
i−1∑
r=1

r∑
s=1

(
n

s

)
lnR+

m−1∑
s=1

(
n

s

)
lnR+

(
n

m

))
·R−(i−k−1).

This is because in the last phase, the success can happen with strength m, so
we do not consider the strengths larger than m in the last phase. Also, in the
last phase, the algorithm makes progress in

(
n
m

)
iterations in expectation.

Now, since we have
∑m−1

s=1

(
n
s

)
≤
∑i−1

r=1

∑r
s=1

(
n
s

)
for i ≥ m, the last expression

is bounded from above by

⌈n/2⌉−1∑
i=k+1

(
2

i−1∑
r=1

r∑
s=1

(
n

s

)
lnR+

(
n

m

))
·R−(i−k−1)

≤ 2

⌈n/2⌉−1∑
i=k+1

(
i−1∑
r=1

n− r + 1

n− 2r + 1

(
n

r

)
lnR+

(
n

m

))
R−(i−k−1)

≤ 2

⌈n/2⌉−1∑
i=k+1

((
n− i+ 2

n− 2i+ 3

)2(
n

i− 1

)
lnR+

(
n

m

))
R−(i−k−1)

= 2

⌈n/2⌉−1∑
i=k+1

((
1 +

i− 1

n− 2i+ 3

)2(
n

i− 1

)
lnR+

(
n

m

))
R−(i−k−1),

where in the second and third inequalities, we apply the first inequality in
Lemma 5.1 to eliminate the inner summations.
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Now, via the second inequality in Lemma 5.1, and then excluding the first term
from the summation, we bound the last expression from above by

2

(
1 +

k

n− 2k + 1

)2(
n

k

)
lnR+

(
n

m

)

+ 4

⌈n/2⌉−1∑
i=k+2

(
1 +

i− 1

n− 2i+ 3

)2(
n− k

k

)i−k−1(
n

k

)
lnR ·R−(i−k−1).

We have k/(n− 2k + 1) = O(1) because k < (1− ϵ̂)n/2 for a constant ϵ̂, giving
the upper bound

O

((
n

k

)
lnR

)
+

(
n

m

)
+ 4 lnR

(
n

k

) ⌈n/2⌉−1∑
i=k+2

n2
(n
k

)i−k−1

·R−(i−k−1).

By using
(
n
k

)
= k+1

n−k

(
n

k+1

)
, we get

O

(
k + 1

n− k
lnR

(
n

k + 1

))
+

(
n

m

)
+ 4

k + 1

n− k
lnR

(
n

k + 1

) ⌈n/2⌉−1∑
i=k+2

n2
(
n
k

)i−k−1

Ri−k−1
.

Using the fact that R ≥ n3+ϵ, the third term in the last expression is bounded
from above by O(k lnR/n

(
n

k+1

)
). Then, we have(

n

m

)
+O

(
k lnR

n

(
n

k + 1

))
.

Regarding S2, when radius r is increased to n, the algorithm mutates s bits of
the current search point for all possible strengths s from 1 to n periodically. In
each cycle through different strengths, according to Lemma 5.3, the algorithm
escapes from the local optimum with probability at least 1− 1/R, so there are
at most R/(R−1) cycles in expectation via the geometric distribution. Besides,
each cycle of radius n costs

∑n
s=1

(
n
s

)
lnR. Overall, we have R

R−1

∑n
s=1

(
n
s

)
lnR

extra fitness function calls if the algorithm fails to find the optimum in the first
⌈n/2⌉− 1 phases, happening with probability at most R−(⌈n/2⌉−k−1). Thus, we
have

E
(
T ′
x,r0,B0

| E⌈n/2⌉−1
k+1 ∩ En

)
Pr
(
E

⌈n/2⌉−1
k+1 ∩ En

)
≤

⌈n/2⌉−1∑
r=1

r∑
s=1

(
n

s

)
lnR+

R

R− 1

n∑
s=1

(
n

s

)
lnR

R−(⌈n/2⌉−k−1)
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≤

3

⌈n/2⌉−1∑
r=1

r∑
s=1

(
n

s

)
lnR

R−(⌈n/2⌉−k−1)

≤
(
3n2

(
n

⌈n/2⌉ − 1

)
lnR

)
R−(⌈n/2⌉−k−1)

≤

(
3n2

(
n− k

k

)⌈n/2⌉−k−1(
n

k

)
lnR

)
R−(⌈n/2⌉−k−1) = o

((
n

k

))
.

Altogether, we finally have E
(
T ′
x,r0,B0

| Ek
1

)
= S1 + S2, resulting in the state-

ment.

Now, by using Lemma 5.4, we prove Theorem 5.2.

Proof of Theorem 5.2. We have E (Tx,r0,B0) ≤ E
(
Tx,r0,B0 | Ek

1

)
. If r0 ≤ m ≤

(1− ϵ̂)n/2, we use Lemma 5.4 with k = m−1. Otherwise, if m < r0 ≤ (1− ϵ̂)n/2,
we use Lemma 5.4 with k = r0. Then we have

E
(
Tx,r0,B0

| Ek
1

)
≤
(
n

m

)
+O

(
k lnR

n

(
n

k + 1

))
.

In the first case, the last expression is bounded from above by
(
n
m

)(
1+O(m lnR

n )
)
.

However, in the latter case, it is bounded from above by O
((

n
r0

)
lnR

)
.

If max{m, r0} > (1− ϵ̂)n/2, we pessimistically assume that the algorithm is not
able to make an improvement for radius r less than n/2. As radius r is increased
to n, the algorithm mutates m bits of the current search point for all possible
strengths of 1 to n periodically. Thus, according to Lemma 5.3, the algorithm
escapes from the local optimum with probability at least 1− 1/R, so there are
at most R/(R−1) cycles in expectation in this phase (i. e., at radius n) by using
the geometric distribution. Finally, we compute

E (Tx,r0,B0) <

⌈n/2⌉−1∑
r=1

r∑
s=1

(
n

s

)
lnR+

R

R− 1

n∑
s=1

(
n

s

)
lnR ≤ O(2nn lnR).

5.3.2 Expected Optimization Times

In this subsection, we prove a crucial technical lemma on recover times and use
it to obtain bounds on the expected optimization time on unimodal and jump
functions.
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Recover times for strengths. In the previous subsection, we analyzed the
time of SD-RLSm for leaving only a single search point. We observed that
the duration of epochs depended on the starting radius denoted as r0 set from
the previous epoch. This can be inconvenient to estimate an upper bound on
the running time on an arbitrary function. Therefore, in the following lemma,
we show that if the algorithm uses larger strengths than the gap size to make
progress, after a relatively small number of iterations the algorithm chooses the
gap size of a current search point as the strength.

Lemma 5.5. Let x ∈ {0, 1}n with m = gap(x) < n/2 be the current search
point of SD-RLSm with R ≥ n3+ϵ for an arbitrary constant ϵ > 0 on a pseudo-
Boolean function f : {0, 1}n → R. Assume that the radius is k > m. Define Sx

as the number of iterations spent from that point in time on until the algorithm
sets the radius to at most the gap size of the current search point. Assume that
B0 is the value of the variable B in the beginning. Then, for B0 ≥

(
n
m

)
lnR, we

have

E (Sx) = o

((
n

k − 1

))
,

and for B0 <
(
n
m

)
lnn, we have

E (Sx) = o

(
R

(
n

k − 1

))
.

The idea of the proof is that in the case of making progress with larger strengths
than m or failing to improve and increasing strength and radius even further,
the algorithm also tries all smaller strengths often enough, more precisely, as
often as the threshold value

(
n

gap(x)

)
lnR that would hold if the current search

point was x, s = gap(x) and B = ∞ in a phase of Algorithm 15. Thus, the
algorithm can make progress when the strength equals the current gap with
good probability.

Proof of Lemma 5.5. We recall the epoch of x as the sequence of iterations
where x is the current search point. We assume that the gap size of the current
search point does not become equal to or larger than the current radius value in
all epochs. Otherwise, Sx is bounded from above by the following estimation.

Assume x′ is the current search point and r′ is a radius value larger than gx′ :=
gap(x′). Note that gx′ equals m in the beginning (in the first epoch), but it may
be different when a strict improvement is made.

We now claim that for each at most lnn · r′
(
n
r′

)
lnR iterations with strength r′

in phase r′, i. e., at radius r′, (even in different epochs), the algorithm uses
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smaller strengths including strength gx′ for
(

n
gx′

)
lnR iterations. After proving

the claim, we can show that with probability 1 − 1/R the algorithm makes
progress with the strength which equals the gap size of the current search point
via Lemma 5.3.

To prove this claim, we consider two cases. First, if the algorithm does not make
progress with strength r′, then in the next phase the algorithm uses strengths
smaller than r′ including gx′ in

(
n
gx′

)
lnR iterations. Thus,

(
n
r′

)
lnR iterations

with strength r′ are enough for satisfying the claim in this case.

In the second case, assume that the algorithm makes an improvement with
strength r′ in its uth attempt. For the next epoch, the algorithm tries
strength gx′ for (1/ lnn) · u/(r′ − 1) times (according to the variable B in
Algorithm 15). Assume that u1, u2, . . . are the counter values where the al-
gorithm makes progress with strength r′. Thus, after at most ℓ improve-
ments with

∑ℓ
i=1 ui iterations with strength r′ such that

∑ℓ
i=1 ui ≤ (lnn) ·

(r′ − 1)
(

n
gx′

)
lnR − 1, the number of iterations with strength gx′ is at least∑ℓ

i=1(1/ lnn) · ui/(r
′− 1) ≥

(
n
gx′

)
lnR− 1. In the next epoch, there are at most(

n
r′

)
lnR iterations with strength r′ for having the last required iteration.

Overall, it costs less than (lnn) · r′
(

n
gx′

)
lnR+

(
n
r′

)
lnR < (lnn) · r′

(
n
r′

)
iterations

to observe
(

n
gx′

)
lnR iterations with strength gx′ , and consecutively with a prob-

ability of at least 1 − 1/R, the algorithm makes progress with strength gx′ via
Lemma 5.3.

If we pessimistically assume that after each
(

n
gx′

)
lnR iterations with strength gx′ ,

the radius is increased by one, by the law of total probability and Lemma 5.1,
the expected number of steps at larger strengths than the gap of the current
search point is at most

⌊n/2−1⌋∑
r=k

n− (r − 1)

n− (2r − 1)
r lnn

(
n

r

)
lnR ·R−(r−k−1)

< R ·
⌊n/2−1⌋∑

r=k

n2 lnn ·
(
n− k + 1

k − 1

)r−k+1(
n

k − 1

)
lnR ·R−(r−k)

for the phases ranging from k to ⌊n/2− 1⌋ and at most

R

R− 1
· 2n lnn

(
n

⌊n/2⌋

)
lnR ·R−(r−m−1)
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< R · 4n lnn

(
n− k + 1

k − 1

)⌊n/2⌋−k+1(
n

k − 1

)
lnR ·R−(⌊n/2⌋−k−2)

for the last phase (i. e., at radius n). Since R > n3+ϵ, both are bounded from
above by o

(
R
(

n
k−1

))
.

However, in phase k, before reaching the strength k, the algorithm uses the
strength m B0 times. If B0 ≥

(
n
m

)
lnR, then with probability at least 1− 1/R,

the algorithm finds an improvement at the Hamming distance corresponding to
the gap size, resulting in

E (Sx) ≤
1

R
· o
(
R

(
n

k − 1

))
= o

((
n

k − 1

))
.

Analysis on unimodal functions On unimodal functions, the gap of all
points in the search space (except for global optima) is one, so the algorithm
can make progress with strength 1. In the following theorem, we show how SD-
RLSm behaves on unimodal functions compared RLS using an upper bounds
based on the fitness-level method [Weg02]. The proof is similar to the proof of
Lemma 4 in [RW21b].

Theorem 5.6. Let f : {0, 1}n → R be a unimodal function and consider SD-
RLSm with R ≥ max{S, n3+ϵ} for an arbitrary constant ϵ > 0 where S is
an upper bound on the number of strict improvements during the run, e. g.,
S = |Im f |. Then, with probability at least 1 − S/R2, SD-RLSm never uses
strengths larger than 1 and behaves stochastically like RLS before finding an
optimum of f .

Denote by T the runtime of SD-RLSm on f . Let fi be the i-th fitness value
of an increasing order of all fitness values in f and si be a lower bound for
the probabilities that RLS finds an improvement from search points with fitness
value fi, then E (T ) ≤

∑|Im f |
i=1 1/si + o(n).

Proof. The algorithm SD-RLSm uses strength 1 for
(
n
m

)
lnR times when the

radius is 1 and
(
n
m

)
lnR times when the radius is 2 but the strength is still 1.

(Only considering the first case would not be sufficent for the result of this
lemma.) Overall, the algorithm tries 2

(
n
m

)
lnR steps with strength 1 before

setting the strength to 2.
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As on unimodal functions, the gap of all points is 1, the probability of not
finding and improvement is(

1−
(
n

m

)−1
)2(n

m) lnR

≤ 1

R2
.

This argumentation holds for each improvement that has to be found. Since
at most |Im f | improving steps happen before finding the optimum, by a union
bound the probability of SD-RLSm ever increasing the strength beyond 1 is at
most S 1

R2 , which proves the lemma.

To prove the second claim, we consider all fitness levels A1, . . . , A|Im f | such
that Ai contains search points with fitness value fi and sum up upper bounds on
the expected times to leave each of these fitness levels. Under the condition that
the strength is not increased before leaving a fitness level, the worst-case time
to leave fitness level Ai is 1/si similarly to RLS. Hence, we bound the expected
optimization time of SD-RLSm from above by adding the waiting times on all
fitness levels for RLS, which is given by

∑|Im f |
i=1 1/si.

We let the random set W contain the search points from which SD-RLSm does
not find an improvement within phase 1 (i. e., while r = 1) so the radius is
increased. Assume Tx is the number of iterations spent where the radius is
larger than 1 and increasing the radius happening where x is the current search
point; formally,

E (T ) ≤
|Im f |∑
i=1

1

si
+
∑
x∈W

E (Tx) .

Each search point selected by the algorithm contributes with probability Pr (E1)
to W . Hence, as S is an upper bound on the number of improvements, E (|W |) ≤
S ·Pr (E1). As on unimodal functions, the gap of all points is 1, by Lemma 5.5,
we compute ∑

x∈W

E (Tx) ≤ S · Pr (E1) · E (Tx | gap(x) = 1)

≤ S ·R−1o

((
n

1

))
= o (n) .

Thus, we finally have

E (T ) ≤
|Im f |∑
i=1

1

si
+ o (n) ,

as suggested.
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Figure 5.1: The function JumpOffsetm,c.

Analysis on JumpOffset We now use the results developed so far to prove
a bound on a newly designed function called Jump with Offset or JumpOffset
illustrated in Figure 5.1 with two parameters m and c. The function JumpOff-
set can be considered as a variant of well-known Jump benchmark [DJW02],
which the location of the jump with size m is moved to an earlier point. Then,
after the jump, there is a unimodal sub-problem behaving like OneMax of
length c. The Jump function is a special case of JumpOffset with c = 0, i. e.,
JumpOffsetm,0 = Jumpm. Formally,

JumpOffsetm,c :=

{
m+ ∥x∥1 if ∥x∥1 ≤ n−m− c or ∥x∥1 ≥ n− c,
n− ∥x∥1 − c otherwise.

This generalized version of Jump was also proposed independently in [BBD21a]
to investigate how quickly various mutation-based algorithms overcome a gap
that is not adjacent to the global optimum. In another recent study, Witt
in [Wit21] analyzes the performance of other algorithms on the function
JumpOffset.

The following theorem shows that SD-RLSm optimizes JumpOffset in a time
that is essentially determined by the time to overcome the gap only. The proof
idea is that the algorithm can quickly re-adapt its radius value to the gap size
of the current search point after escaping the local optimum.

Theorem 5.7. Let n ∈ N. For all 2 ≤ m < O(lnn) and 0 ≤ c < O(lnn), the
expected runtime E (T ) of SD-RLSm with R ≥ n3+ϵ for an arbitrary constant
ϵ > 0 on JumpOffsetm,c satisfies E (T ) = O

((
n
m

))
, conditioned on an event

that happens with probability 1− o(1).

Proof. Before reaching the local optimum consisting of all points with n−m− c
one-bits, JumpOffsetm,c is equivalent to OneMax; hence, according to
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Lemma 5.6, the expected time SD-RLSm takes to reach the local optimum is at
most O(n lnn). Note that this bound was obtained via the fitness level method
with si = (n − i)/n as the minimum probability for leaving the set of search
points with i one-bits.

Every local optimum x with n−m−c one-bits satisfies gap(x) = m according to
the definition of JumpOffsetm,c. Thus, using Theorem 5.2, the algorithm finds
one of the

(
m+c
m

)
improvements within expected time at most

(
n
m

)
iterations.

According to Lemma 5.3, this success happens with strength m (and not larger)
with probability at least 1− 1/R.

After making progress over the jump, the starting radius r0 is at least m,
although an improvement can be found at the Hamming distance of 1, i. e.,
gap(x) = 1. If we show that B0 ≥

(
n
1

)
lnR, the algorithm sets the radius

to 1 within o(
(

n
m−1

)
) steps in expectation via Lemma 5.5 with k = m. Now,

we compute the probability that B0 < n lnR, resulting from making progress
within less steps than (m− 1)n lnn lnR in the previous epoch. Hence, let u be
the number of iterations with the strength the algorithm makes progress in the
epoch with the local optimum. We have

Pr (u < (m− 1)n lnn lnR) ≤ 1−

(
1−

(
m+c
m

)(
n
m

) )(m−1)n lnn lnR

≤ (m− 1)n lnn lnR

(
m+c
m

)(
n
m

) ≤ (m− 1)n lnn lnR
(e(m+ c))m

nm
.

According to the assumption on m and c, the last term is bounded from above
by

(m− 1)n lnn lnR
O(lnm n)

nm
≤ O

(
m(lnm n)

nm−1

)
= o(1).

This means that with probability at least 1−o(1), the variable B is not effective
in the beginning of the next epoch with strength 1, so we use the first case in
Lemma 5.5.

After recovering the radius to 1, the algorithm needs to optimize a sub-problem
like OneMax of length at most c, so similarly to the first part, its expected
time again can be obtained from Lemma 5.6, which is at most O(n lnn).

Altogether, E (T ) ≤ O(n lnn) +
(
n
m

)
+
(

n
m−1

)
+ O(n lnn), conditioned on the

mentioned events of having enough iterations with the strength passing the
jump part and escaping from the local optimum with strength m, happening
with probability 1− o(1).
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5.4 Speed-ups By Using Radius Memory

In this section, we consider the problem of minimizing a linear function under
a uniform constraint as analyzed in [NPW19]: given a linear pseudo-Boolean
function f(x1, . . . , xn) =

∑n
i=1 wixi, the aim is to find a search point x mini-

mizing f under the constraint ∥x∥1 ≥ B for some B ∈ {1, . . . , n}. W. l. o. g.,
w1 ≤ · · · ≤ wn.

Neumann, Pourhassan and Witt [NPW19] obtain a tight worst-case runtime
bound Θ(n2) for RLS1,2 and a bound for the (1+1) EA which is O(n2 logB)
and therefore tight up to logarithmic factors. We will see in Theorem 5.8 that
with high probability, SD-RLSm achieves the same bound O(n2) despite being
able to search globally like the (1+1) EA. Afterwards, we will identify a scenario
where SD-RLSr is by a factor of Ω(n) slower.

We start with the general result on the worst-case expected optimization time,
assuming the set-up of [NPW19].

Theorem 5.8. Starting with an arbitrary initial solution, the expected optimiza-
tion time of SD-RLSm with R ≥ n3+ϵ, where ϵ > 0 is an arbitrary constant, on
a linear function with a uniform constraint is O(n2) conditioned on an event
that happens with probability 1−O(1/n).

Proof. We follow closely the proof of Theorem 4.2 in [NPW19] which analyzes
RLS1,2. The first phase of optimization (covered in Lemma 4.1 of the pa-
per) deals with the time to reach a feasible search point and proves this to
be O(n log n) in expectation. Since the proof uses multiplicative drift, it is eas-
ily seen that the time is O(n log n) with probability at least 1−O(1/n) thanks to
the tail bounds for multiplicative drift [Len20]. The second phase deals with the
time to reach a tight search point (i. e., containing B one-bits, which is O(n log n)
with probability at least 1− O(1/n) by the very same type of arguments. The
analyses so far rely exclusively on one-bit flips so that the bounds also hold for
SD-RLSm thanks to Lemma 5.6, up to a failure event of O(S/R2) = o(1/n)
since it holds for the number of improvements S that S ≤ n. By definition of
the fitness function, only tight search points will be accepted in the following.

The third phase in the analysis from [NPW19] considers the potential function
ϕ(x) = |{xi = 1 : i > B}| denoting the number of one-bits outside the B least
significant positions. At the same time, ϕ(x) describes the number of zero-bits
at the B optimal positions. Given ϕ(x) = i > 0 for the current search point, the
probability of improving the potential is Θ(i2/n2) since there are i2 improving
two-bit flips (i choices for a one-bit to be flipped to 0 at the non-optimal positions
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and i choices for a zero-bit to be flipped to 1 at the other positions). This results
in an expected optimization time of at most

∑∞
i=1 O(n2/i2) = O(n2) for RLS1,2.

SD-RLSm can achieve the same time bound since after every two-bit flip, the
radius memory only allocates the time for the last improvement (via two-bit
flips) to iterations trying strength 2. Hence, as long as no strengths larger
than 2 are chosen, the expected optimization time of SD-RLSm is O(n2).

To estimate the failure probability, we need a bound on the number of strict
improvements of f , which may be larger than the number of improvements of
the ϕ-value since steps that flip a zero-bit and a one-bit both located in the
prefix or suffix may be strictly improving without changing ϕ. Let us assign a
value to each zero-bit, representing the number of one-bits to its left (at higher
indices). In other words, each of these values shows the number of one-bits that
can be flipped with the respective zero-bit to make a strict improvement. Let
us define by S the sum of these values. Clearly, S ≤ n(n− 1)/2 = O(n2). Now,
we claim that each strict improvement decreases S by at least one, resulting
in bounding the number of strict improvements from above by O(n2). Assume
that in a strict improvement, the algorithm flips one one-bit at position i and
one zero-bit at position j. Obviously, j < i. The corresponding value for the
zero-bit at the new position i is less than the corresponding number for the
zero-bit at position j before flipping because there is at least one one-bit less
for the new zero-bit, which was the one-bit at the position of i. Altogether, the
number of strict improvements at strength 2 is at most O(n2).

The proof is completed by noting that the strength never exceeds 2 with prob-
ability at least 1 − O(n2)/R = 1 − O(1/n), using Lemma 5.3 and a union
bound.

With more effort, including an application of Lemma 5.5, the bound from The-
orem 5.8 could be turned into a bound on the expected optimization time. We
will see an example of such arguments later in the proof of Theorem 5.9 and in
the proof of Theorem 5.11.

We now illustrate why the original SD-RLSr is less efficient on linear functions
under uniform constraints than SD-RLSm. To this end, we study the following
instance: the weights of the objective function are n pairwise different natural
numbers (sorted increasingly), and the constraint bound is B = n/2, i. e., only
search points having at least n/2 one-bits are valid. Writing search points in
big-endian as x = (xn, . . . , x1), we assume the point 1n/20n/2 as starting point
of our search heuristic. The optimum is then 0n/21n/2 since the n/2 one-bits
are at the least significant positions. We call the latter positions the suffix and
the other the prefix.
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Considering the potential ϕ(x) defined as the number of one-bits in the prefix, we
note that the expected time for RLS1,2 and for SD-RLSm (up to a failure event)
to reduce the potential from its initial value n/4 to n/8 is O(n) since during this
period there is always an improvement probability of at least Ω((n/8)2/n2) =
Ω(1). We claim that SD-RLSr needs time Ω(n2 log n) for this since after each
improvement the strength and radius are reset to 1, resulting in Ω(n) phases
where the algorithm is forced to iterate unsuccessfully with strength 1 until the
threshold

(
n
1

)
lnR is reached. By contrast, SD-RLSm will spend O(n lnn) steps

to set the strength and radius to 2. Afterwards, during the n/4 improvements it
will only spend an expected number of O(1) steps at strength 1 before it returns
to strength 2 and finds an improvement in expected time O(1). The total time
is O(n log n+n) = O(n log n). Based on these ideas, we formulate the following
theorem.

Theorem 5.9. Consider a linear function with n pairwise different weights
under uniform constraint with B = n/2 and let Sb = {ϕ(y) ≤ b | y ∈ {0, 1}n}.
Starting with a feasible solution x such that x contains B one-bits and ϕ(x) = a,
the expected time to find a search point in Sb for SD-RLSm with R ≥ n3+ϵ for
an arbitrary constant ϵ > 0 is at most

O

(
n lnR+ n2

a∑
i=b

1

i2

)
.

For SD-RLSr with R ≥ n3+ϵ for an arbitrary constant ϵ > 0 it is at least

Ω

(
P · n lnR+ n2

a∑
i=b

1

i2

)
,

where P is the number of improvements with strengths larger than 1 and P >
a− b with probability 1− o(1/n).

Proof. We first find an upper bound for SD-RLSm. First, SD-RLSm spends
O(n lnR) steps to set the strength and radius to 2. Afterwards, the number
of iterations with strength 1 is 1/ lnn times of the number of iterations with
strength 2, conditioned on not exceeding the threshold when r = 2, which will
be studied later.

When the strength equals 2, the probability of improving the potential is Θ( i2

n2 ),
resulting in the expected time of Θ(n2/i2) for each improvement. Thus, in
expectation, there are n2

∑a
i=b 1/i

2 iterations to find a search point in Sb. In
the case that the counter exceeds the threshold, happening with probability 1/R
for each improvement using Lemma 5.3, it costs o(

(
n
2

)
) iterations with different
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strengths in expectation, according to Lemma 5.5, to set the radius to 2 again.
Since the number of fitness improvements at strength 2 is at most n2 (see the
proof of Th. 5.9), we obtain a failure probability of at most n2 · 1/R = o(1/n)
for the event of exceeding the threshold. Hence, the expected number iterations
with different strengths is o((1/n)

(
n
2

)
) = o(n) and therefore a lower-order term

of the claimed bound on the expected time to reach Sb.

In case of a failure, we repeat the argumentation. Hence, after an expected
number of 1/(1 − o(1/n)) = 1 + o(1) repetitions no failure occurs and Sb is
reached.

Overall, the expected time for SD-RLSm to find a search point in Sb is at most

(1 + o(1))

(
n lnR+ (1 + 1/ lnn) ·

a∑
i=b

n2

i2

)
= O

(
n lnR+ n2

a∑
i=b

1

i2

)
.

In order to compute a lower bound on the optimization time of SD-RLSr, we
claim that the number of potential improvements is at least a− b with probabil-
ity 1− o(1/n), i. e., each improvement decreases the potential function roughly
by at most one in expectation.

As long as the strength does not become greater than 2, the number of one-bits
remains B, so when the strength is at most 2, the algorithm can only improve
the potential by 1 since it cannot make progress by flipping at least two zero-
bits in B least significant positions. The radius becomes 3 with probability
at most 1/R for each improvement at strength 2. Since there are at most n2

improvements, the probability of not increasing the current radius to 3 during
the run is at least 1− n2/R = 1− o(1/n).

Now, since the algorithm spends n lnR steps for each improvement, the number
of steps with strength 1 is Ω((a−b)n lnR) with probability 1−o(1/n). Also, the
number of steps with strength 2 is Θ(n2

∑a
i=b 1/i

2) in expectation. Note that
we ignore the number of iterations with strengths larger than 2 for the lower
bound.

Overall, with probability at least 1− o(1/n) the time of SD-RLSr is at least

Ω

(
(a− b)n lnR+ n2

a∑
i=b

1

i2

)
.
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In the following corollary, it can be seen that SD-RLSm is faster than SD-RLSr

in the middle of the run by a factor of roughly n.

Corollary 5.10. The relative speed-up of SD-RLSm with R ≥ n3+ϵ for an
arbitrary constant ϵ > 0 compared to SD-RLSr with R ≥ n3+ϵ′ for an arbitrary
constant ϵ′ > 0 to find a search point in Sb with b = n/8 for a starting search
point x with ϕ(x) = n/4 is Ω(n) with probability at least 1− o(1/n).

Proof. Assume that Tr and Tm are the considered hitting times of SD-RLSr and
SD-RLSm, respectively, with R ≥ n3+ϵ for an arbitrary constant ϵ > 0. Using
Theorem 5.9 with a = n/4 and b = n/8, we have

E (Tr)

E (Tm)
≥ Ω(n2 lnR)

O(n lnR)
= Ω(n),

with probability at least 1− o(1/n).

5.5 Minimum Spanning Trees

In Theorem 6 in [RW21b], the authors studied SD-RLSr on the MST problem as
formulated in [NW07]: we are given an undirected, weighted graph G = (V,E),
where n = |V |, m = |E| and the weight of edge ei, where i ∈ {1, . . . ,m}, is
a positive integer wi. Let c(x) denote the number of connected components in
the subgraph described by the search point x ∈ {0, 1}m. The fitness function
f : {0, 1}m → R considered in [NW07], to be minimized, is defined by

f(x) := M2(c(x)− 1) +M

(
m∑
i=1

xi − (n− 1)

)
+

m∑
i=1

wixi

for an integer M ≥ n2wmax, where wmax denotes the largest edge weight. Hence,
f returns the total weight of a given spanning tree and penalizes unconnected
graphs as well as graphs containing cycles so that such graphs are always in-
ferior than spanning trees. The authors of [RW21b] showed that SD-RLSr

with R = m4 can find an MST starting with an arbitrary spanning tree in
(1 + o(1))

(
m2 lnm + (4m lnm)E (S)

)
fitness calls where E (S) is the expected

number of strict improvements. The reason behind E (S) is that for each im-
provement with strength 2, the algorithm resets the radius to one for the next
epoch and explores this radius more or less completely in m lnR iterations. This
can be costly for the graphs requiring many improvements.

However, with SD-RLSm, we do not need to include the number of improve-
ments for estimating the number of iterations with strength 1 in the runtime
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bound since with the radius memory mechanism, the number of iterations with
strength 1 is asymptotically in the order of 1/ lnn times of the number of suc-
cesses. This leads to the following simple bound.

Theorem 5.11. Consider an instance to the MST problem, modeled with the
classical fitness function from [NW07]. The expected optimization time of SD-
RLSm with R = m4, starting with an arbitrary spanning tree, is at most

(1 + o(1))
(
(m2/2)(1 + ln(r1 + · · ·+ rm))

)
≤ (1 + o(1))

(
m2 lnm

)
,

where ri is the rank of the ith edge in the sequence sorted by increasing edge
weights.

The proof is similar to the proof of Theorem 6 in [RW21b] by using drift multi-
plicative analysis [Len20]. However, we show that the radius memory mechanism
controls the number of iterations with strength 1, and we apply Lemma 5.5 to
show that if the algorithm uses strengths larger than 2, the algorithm shortly
after makes an improvement with strength 2 again.

Proof of Theorem 5.11. We aim at using multiplicative drift analysis using
g(x) =

∑m
i=1 xiri as potential function. As shown in [RKJ06], RLS behaves

stochastically identical on the original fitness function f and the function g if at
most two bits may flip simultaneously. Since SD-RLSm has different states, we
do not have the same lower bound on the drift towards the optimum as with the
classical RLS1,2 from [NW07]. However, at strength 1 no mutation is accepted
since the fitness function from [NW07] gives a huge penalty to non-trees. Hence,
our plan is to conduct the drift analysis conditioned on that the strength is at
most 2 and account for the steps spent at strength 1 separately. Cases where the
strength exceeds 2 will be handled by an error analysis and a restart argument.

Let X(t) := g(xt) − g(xopt) for the current search point x(t) and an optimal
search point xopt. Since the algorithm behaves stochastically the same on
the original fitness function f and the potential function g, we obtain that
E
(
X(t) −X(t+1) | X(t)

)
≥ X(t)/

(
m
2

)
≥ 2X(t)/m2 since the g-value can be de-

creased by altogether g(xt) − g(xopt) via a sequence of at most
(
m
2

)
disjoint

two-bit flips; see also the proof of Theorem 15 in [DJW12] for the underlying
combinatorial argument. Let T denote the number of steps at strength 2 until
g is minimized, assuming no larger strength to occur. Using the multiplicative
drift theorem, we have E (T ) ≤ (m2/2)(1+ln(r1+· · ·+rm)) ≤ (m2/2)(1+ln(m2))
and by the tail bounds for multiplicative drift (e. g., [Len20]) it holds that
Pr
(
T > (m2/2)(ln(m2) + ln(m2))

)
≤ e− ln(m2) = 1/m2. Note that this bound

on T is below the threshold for strength 2 since
(
m
2

)
lnR = (m2 −m) ln(m4) ≥

(m2/2)(4 lnm) for m large enough. Hence, with probability at most 1/m2 the
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algorithm fails to find the optimum before the strength can change from 2 to a
different value due to the threshold being exceeded.

We next bound the expected number of steps spent at larger strengths. By
Lemma 5.5, if the algorithm fails to find an improvement with the right radius,
i. e. when the radius becomes r = 3 > gap(x) = 2, then, in at most o(

(
m

r−1

)
)

iterations in expectation, the radius is set to the gap size of the current search
point at that time. Thus, by using Lemma 5.5, an increase of radius above 2
costs at most o

((
m
2

))
iterations to make improvements with strength 2 again and

set the radius to two. This time is only a lower-order term of the runtime bound
claimed in the theorem. If the strength exceeds 2, we wait for it to become 2
again and restart the previous drift analysis, which is conditional on strength at
most 2. Since the probability of a failure is at most 1/m2, this gives an expected
number of at most 1/(1−m−2) restarts, which is 1 + o(1) as well.

It remains to bound the number of steps at strength 1. For each strict im-
provement, B is set to 1/ lnn · u where u is the counter value, the counter is
reset, and radius r is set to 2. Thereafter, B steps pass before the strength
becomes 2 again. Hence, if the strength does not exceed 2 before the optimum
is reached, this contributes a term of (1 + 1/ lnn) to the number of iterations
with strength 2 in the previous epoch. Also, in the beginning of the algorithm,
there is a complete phase with strength 1 costing m lnR, which only contributes
a lower-order term.

Theorem 5.11 is interesting since it is asymptotically tight and does not suffer
from the additional log(wmax) factor known from the analysis of the classical
(1+1) EA [NW07]. In fact, this seems to be the first asymptotically tight
analysis of a globally searching (1+1)-type algorithm on the MST. So far a tight
analysis of evolutionary algorithms on the MST was only known for RLS1,2 with
one- and two-bit flip mutations [RKJ06]. Our bound in Theorem 5.11 is by a
factor of roughly 2 better since it avoids an expected waiting time of 2 for a
two-bit flip. On the technical side, it is interesting that we could apply drift
analysis in its proof despite the algorithm being able to switch between different
mutation strengths influencing the current drift.

5.6 Radius Memory can be Detrimental

After a high mutation strength has been selected, e. g., to overcome a local
optimum, the radius memory decreases the threshold values for phase lengths
related to lower strengths. As we have seen in Lemma 5.5, SD-RLSm can often
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return to a smaller strength quickly. However, we can also point out situations
where using the smaller strength with their original threshold values as used in
the original SD-RLSr from [RW21b] is crucial.

Our example is based on a general construction principle that can be traced back
to [Wit03] and was picked up in [RW20b] to show situations where stagnation in
the context of the (1+1) EA is detrimental; see that paper for a detailed account
of the construction principle. In [RW21b], the idea was used to demonstrate
situations where bit-flip mutations outperforms SD-RLSr. Roughly speaking,
the functions combine two gradients one of which is easier to exploit for an
algorithm A while the other is easier to exploit for another algorithm B. By
appropriately defining local and global optima close to the end of the search
space in direction of the gradients, either Algorithm A significantly outperforms
Algorithm B or the other way round.

We will now define a function on which SD-RLSm is exponentially slower than
SD-RLSr. In the following, we will imagine any bit string x of length n as
being split into a prefix a := a(x) of length n − m and a suffix b := b(x) of
length m, where m is defined below. Hence, x = a(x) ◦ b(x), where ◦ denotes
the concatenation. The prefix a(x) is called valid if it is of the form 1i0n−m−i,
i. e., i leading ones and n − m − i trailing zeros. The prefix fitness pre(x) of
a string x ∈ {0, 1}n with valid prefix a(x) = 1i0n−m−i equals i, the number
of leading ones. The suffix consists of ⌈n1/8⌉ consecutive blocks of ⌈n3/4⌉ bits
each, altogether m = O(n7/9) bits. Such a block is called valid if it contains
either 0 or 2 one-bits; moreover, it is called active if it contains 2 and inactive
if it contains 0 one-bits. A suffix where all blocks are valid and where all blocks
following first inactive block are also inactive is called valid itself, and the suffix
fitness suff(x) of a string x with valid suffix b(x) is the number of leading active
blocks before the first inactive one. Finally, we call x ∈ {0, 1}n valid if both its
prefix and suffix are valid.

The final fitness function is a weighted combination of pre(x) and suff(x). We
define for x ∈ {0, 1}n, where x = a ◦ b with the above-introduced a and b,

PreferOneBitFlip(x) :=
n−m− pre(x) + suff(x) if suff(x) ≤ n1/9 ∧ x valid
n2pre(x) + suff(x) if n1/9<suff(x)≤n1/8/2 ∧ x valid
n2(n−m) + suff(x)−n−1 if suff(x) > n1/8/2 ∧ x valid
−OneMax(x) otherwise.

We note that all search points in the third case have a fitness of at least n2(n−
m) − n − 1, which is bigger than n2(n − m − 1) + n, an upper bound on the
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fitness of search points that fall into the second case without having m leading
active blocks in the suffix. Hence, search points x where pre(x) = n −m and
suff(x) = ⌈n1/8⌉ represent local optima of second-best overall fitness. The set of
global optima equals the points where suff(x) = ⌊n1/8/2⌋ and pre(x) = n−m,
which implies that at least n1/8 bits (two from each block) have to be flipped
simultaneously to escape from the local toward the global optimum. The first
case is special in that the function is decreasing in the pre-value as long as
suff(x) ≤ n1/9. Typically, the first valid search point falls into the first case.
Then two-bit flips are essential to make progress and the radius memory of
SD-RLSm will be used when waiting for the next improvement. After leaving
the first case, since two-bit flips happen quickly enough, the memory will make
progress via one-bit flips unlikely, leading to the local optimum.

We note that function PreferOneBitFlip shares some features with the func-
tion NeedHighMut from [RW20b] and the function NeedGlobalMut from
[RW21b]. However, it contains an extra case for small suffix values, uses dif-
ferent block sizes and block count for the suffix, and inverts roles of prefix and
suffix by leading to a local optimum when the suffix is optimized first.

In the following, we make the above ideas precise and show that SD-RLSr out-
performs SD-RLSm on PreferOneBitFlip.

Theorem 5.12. With probability at least 1− 1/n1/8, SD-RLSm with R ≥ n3+ϵ

for an arbitrary constant ϵ > 0 needs time 2Ω(n1/8) to optimize PreferOneBit-
Flip. With probability at least 1− 1/n, SD-RLSr with R ≥ n3+ϵ optimizes the
function in time O(n2).

Proof. As in the proof of Theorem 4.1 in [RW20b], we have that the first valid
search point (i. e., search point of non-negative fitness) of both SD-RLSr and SD-
RLSm has both pre- and suff-value value of at most n1/9/2 with probability
2−Ω(n1/9). In the following, we tacitly assume that we have reached a valid
search point of the described maximum pre- and suff-value and note that this
changes the required number of improvements to reach local or global maximum
only by a 1 − o(1) factor. For readability this factor will not be spelt out any
more.

Given the situation with a valid search point x where suff(x) < n1/9/2, fitness
improvements only possible by increasing the suff-value. Since the probability
of a suff-improving steps is at least

(
n3/2

2

)
/n2 = Ω(n−1/2) at strength 2, the

time for both algorithms to reach the second case of the definition of Prefer-
OneBitFlip is O(n1/9n1/2) = O(n11/18) according to Lemma 5.4, and by re-
peating independent phases and Markov’s inequality, the time is O(n) with
probability exponentially close to 1. Afterwards, one-bit flips increasing the
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pre-value are strictly improving and happen while the strength is 1 with proba-
bility at least 1− 1/R in SD-RLSr, which does not have radius memory. There-
fore, by a union bound over all O(n) improvements, with probability at least
1−1/n, SD-RLSp increases the pre-value to its maximum before the suff-value
becomes greater than ⌈n1/9⌉. The time for this is O(n2) even with probability
exponentially close to 1 by Chernoff bounds. Afterwards, by reusing the above
analysis to leave the first case, with probability at least 1 − 1/n a number of
o(n2) steps is sufficient for SD-RLSp to find the global optimum. This proves
the second statement of the theorem.

To prove the first statement, i. e., the claim for SD-RLSm, we first note that
the probability of improving the pre-value at strength 2 is O(n2) since two
specific bits would have to flip. Hence, such steps never happen in Θ(n) steps
with probability 1−O(1/n). By contrast, a suff-improving step at strength 2,
which has probability Ω(n−1/2), happens within O(n3/4) steps with probabil-
ity at least 1 − 1/n1/4 according to Markov’s inequality. In this case, the ra-
dius memory of SD-RLSm will set a threshold of B = n3/4 for the subsequent
iterations at strength 1. The probability of improving the pre-value within
this time is O(1/n−1/4) by a union bound, noting the success probability of
at most 1/n. Hence, the probability of having at least n1/8 improvements of
the suff-value within n3/4 steps each before an improvement of the pre-value
(at strength 1) happens, is at least 1 − 1/n1/8 by a union bound. If all this
happens, the algorithm has to flip at least n1/8 bits simultaneously, which re-
quires 2Ω(n1/8) steps already to reach the required strength. The total failure
probability is O(1/n1/8).

5.7 Experiments

We ran an implementation of five algorithms SD-RLSm, SD-RLSr, (1+1) FEAβ

with β = 1.5 from [DLMN17], the standard (1+1) EA and RLS1,2 on the MST
problem with the fitness function from [NW07] for three types of graphs called
TG, Erdős–Rényi with p = (2 lnn)/n, and Kn. We carried out a similar ex-
periment to [RW21b] with the more additional class of complete graphs Kn to
illustrate the performance of the new algorithm and compare with the other
algorithms.

The graph TG represented in Figure 5.3 with n vertices and m = 3n/4 +
(
n/2
2

)
edges contains a sequence of p = n/4 triangles which are connected to each
other, and the last triangle is connected to a complete graph of size q = n/2.
Regarding the weights, the edges of the complete graph have the weight 1, and
we set the weights of edges in triangle to 2a and 3a for the side edges and the
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(a) Graphs TG. (b) Graphs Erdős–Rényi.

(c) Graphs Kn.

Figure 5.2: Average number of fitness calls (over 200 runs) the mentioned algo-
rithms took to optimize the fitness function MST of the graphs.

Figure 5.3: Example graph TG with p = n/4 connected triangles and a com-
plete graph on q vertices with edges of weight 1 [NW07].
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main edge, respectively. In this paper, we consider a = n2. The graph TG
is used for estimating lower bounds on the expected runtime of the (1+1) EA
and RLS in the literature [NW07]. As can be seen in Figure 5.2a, (1+1) EA
with heavy-tailed mutation (i. e., (1+1) FEAβ) with β = 1.5 outperformed the
rest of the algorithms. However, SD-RLSr and SD-RLSm also outperformed the
standard (1+1) EA and RLS1,2.

Regarding the graphs Erdős–Rényi, we produced some Erdős–Rényi graphs ran-
domly with p = (2 lnn)/n and assigned each edge an integer weight in the range
[1, n2] uniformly at random. We also checked that the graphs are certainly con-
nected. Then, we ran the implementation to find the MST of these graphs.
The obtained results can be seen in Figure 5.2b. As discussed in Section 6 in
[RW21b], SD-RLSr does not outperform the (1+1) EA and RLS1,2 on MST with
graphs when the number of strict improvements in SD-RLSr is large. However,
the proposed algorithm in this paper, SD-RLSm outperformed the rest of the
algorithms, although there can be a relatively large number of improvements on
such graphs. We can also see this superiority in Figure 5.2c for the complete
graphs Kn with random edge weights in the range [1, n2].

For statistical tests, we ran the algorithms on the graphs TG and Erdős–Rényi
200 times, and all p-values obtained from a Mann-Whitney U-test between the
algorithms, with respect to the null hypothesis of identical behavior, are less than
10−2 except for the results regarding the smallest size in each set of graphs.

Conclusions

We have investigated stagnation detection with the s-bit flip operator as known
from randomized local search and introduced a mechanism called radius mem-
ory that allows continued exploitation of large s values that were useful in the
past. Improving earlier work from [RW21b], this leads to tight bounds on com-
plex multimodal problems like linear functions with uniform constraints and
the minimum spanning tree problem, while still optimizing unimodal and jump
functions as efficiently as in earlier work. The bound for the MST is the first
tight runtime bound for a global search heuristics and improves upon the run-
time of classical RLS algorithms by a factor of roughly 2. We have also pointed
out situations where the radius memory is detrimental for the optimization
process. In the future, we would like to investigate the concept of stagnation
detection with radius memory in population-based algorithms and plan analyses
on further combinatorial optimization problems.
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Chapter 6

Paper D: Stagnation Detection Meets
Fast Mutation

Two mechanisms have recently been proposed that can significantly speed up
finding distant improving solutions via mutation, namely using a random mu-
tation rate drawn from a heavy-tailed distribution (“fast mutation”, Doerr et al.
(2017)) and increasing the mutation strength based on a stagnation detection
mechanism (Rajabi and Witt (2020)). Whereas the latter can obtain the asymp-
totically best probability of finding a single desired solution in a given distance,
the former is more robust and performs much better when many improving
solutions in some distance exist.

In this work, we propose a mutation strategy that combines ideas of both mech-
anisms. We show that it can also obtain the best possible probability of finding
a single distant solution. However, when several improving solutions exist, it
can outperform both the stagnation-detection approach and fast mutation. The
new operator is more than an interleaving of the two previous mechanisms and
it outperforms any such interleaving.
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6.1 Introduction

Leaving local optima is a challenge for evolutionary algorithms. Mutation-
based approaches are challenged by the fact that the typical mutation rate of
p = 1/n rarely leads to offspring in a larger distance from the parent. When
using larger mutation rates, the choice of the mutation rate is critical and small
constant-factor deviations from the optimal rate can lead to huge performance
losses [DLMN17, Cor. 4.2].

Two ways to overcome this problem were proposed recently, namely the use
of a random mutation rate sampled from a power-law distribution (“fast mu-
tation”) [DLMN17] and the successive increase of the mutation rate when a
stagnation-detection mechanism indicates that the current rate is unlikely to
generate solutions not seen yet [RW20b]. An improved version of this stagnation-
detection approach [RW21b], the so-called SD-RLS algorithm based on k-bit
mutation instead of standard bit mutation, can find a single improving solution
in distance m in expected time (1+o(1))

(
n
m

)
(without knowing that the distance

to the desired solution is m). Apart from lower order terms, this is the same
runtime that can be obtained via a repeated use of the best unbiased mutation
operator that is aware of m (which is, naturally, flipping m random bits). It is
faster than the fast (1 + 1) EA by a factor of Ω(m).

While the SD-RLS algorithm thus is very efficient in finding a single desired solu-
tion (and thus has very good runtimes on the classic jump functions benchmark
(see Section 6.5 for a definition)), this algorithm has a poor performance when
there are several improving solutions in distance m as now the stagnation de-
tection approach leads to too much time spent on too small mutation strengths.
Taking as an extreme example the generalized jump function [BBD21a] (see
again Section 6.5 for a definition) having a valley of low fitness of width δ,
δ ≥ 2 a constant, in distance n/4 from the optimum, we easily see that the SD-
RLS takes an expected time of Ω(nδ−1) to traverse the fitness valley, whereas
the (1 + 1) EA both with the classic mutation operator and with fast mutation
does so in expected constant time.

Our results: Based on the insight that fast mutation and stagnation detec-
tion have complementary strengths, we design a mutation-based approach that
takes inspiration from both approaches. We follow, in principle, the basic ver-
sion of the improved stagnation-detection approach of [RW21b], that is, we
start with mutation strength r = 1 and increase r gradually. More precisely,
when strength r has been used for a certain number ℓr of iterations without
that an improvement was found, we increase r by one since we assume that no
improvement in distance r exists (we omit some technical details in this first
presentation of our approach, e.g., that we do not increase r beyond n/2.1, and
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refer the reader to Algorithm 16 for the full details). Different from [RW21b],
when the current strength is r, we do not always flip r random bits as mutation
operation, but we choose a random number Xr of bits to flip. This number
is equal to r with probability 1 − γ, where γ is an algorithm parameter that
is usually small (a small constant or o(1)). With probability γ, however, Xr

deviates from r by an amount following a power-law distribution with expo-
nent β. The precise definition of this case (see again Algorithm 16) is not too
important, so for this first exposition we can assume that we sample D from
a power-law distribution (with exponent β) on the positive integers and then,
each with probability 1/2, flip r+D or r−D random bits (where we do nothing
if this number is not between 1 and n).

Since with probability 1−γ we essentially follow the basic approach of [RW21b],
it is not surprising that we find a single closest improving solution in distance m
in an expected time of 1

1−γ (1 + o(1))
(
n
m

)
, again without that the algorithm

needs to know m (Theorem 6.5). If γ = o(1), this is again the optimal time of
(1+ o(1))

(
n
m

)
discussed above. We note, however, that our algorithm is simpler

than the solution presented in [RW21b]. The basic SD-RLS algorithm proposed
in [RW21b] obtains a runtime of (1 + o(1))

(
n
m

)
only with high probability and

otherwise fails. To turn this algorithm into one that never fails and has an
expected runtime of (1+o(1))

(
n
m

)
, a robust version of the SD-RLS was developed

in [RW21b] as well. This version repeats previous phases as follows. When
the ℓr uses of strength r have not led to an improvement, before increasing
the rate to r + 1, first another ℓi iterations are performed with strength i, for
i = r−1, . . . , 1. In our approach, such an additional effort is not necessary since
the fast mutations automatically render the algorithm robust.

The use of a heavy-tailed mutation rate also helps in situations where the
stagnation-detection mechanism takes too long to use larger mutation strengths.
Since in phases r = 1, . . . , 2m the probability to flip m bits is at least γ/2 times
the probability of this event in a run of the fast (1 + 1) EA, it is not surprising
that our algorithm finds an improvement in distance m is at most 2/γ times
the time of the fast (1 + 1) EA, which as discussed above can be significantly
faster than the SD-RLS. Such a result could also have been obtained from a
simple interleaving of SD-RLS and fast (1 + 1) EA iterations. Since our heavy-
tailed choices of the mutation strength, however, take into account the current
strength r, we often obtain better runtimes, often better than both the SD-RLS
and the fast (1 + 1) EA. As the precise statement of these results is technical,
we defer the details to Section 6.4. As a simple example showing the outperfor-
mance of our algorithm, we regard the generalized jump function Jumpm,δ:=m−∆

for a constant value of ∆ ≥ 2 and m = ω(1). This jump function is similar to
the classic jump function Jumpm, but the valley of low fitness consists not of all
search points in positive distance at most m− 1 from the optimum, but only of
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those in distance ∆+1, . . . ,m− 1. Consequently, from the local optimum there
is not a single improving solution, but Θ(n∆). Note that this is still relatively
few compared to the fitness valley of size essentially

(
n

m−1

)
. On this generalized

jump function, the expected runtime of SD-RLS is O
((

n
δ−1

)
ln(R)

)
, the one of

the fast (1 + 1) EA is O
(
δβ−0.5(en/δ)δn−∆

)
, and the one of our algorithm is

at most O
((

n
δ

)
n−∆γ−1

)
(Corollary 6.11). Since it is also clear that any inter-

leaving of SD-RLS and fast (1 + 1) EA iterations cannot give a better runtime
than the one of the two pure algorithms, this result shows that our algorithm
can beat SD-RLS and fast EA (and any simple mix of them) when there are
several improving solutions in a given distance.

A short experimental evaluation of the algorithms discussed so far shows that
the advantages of our algorithm, proven only via asymptotic runtime results,
are also visible for moderate problems sizes.

Structure of this paper: After reviewing the most relevant previous works
in Section 6.2, we introduce our new algorithm in Section 6.3. In Section 6.4,
we analyze via mathematical means how our algorithm finds an improvement
in distance m both when this is typically achieved in phase m (e.g., when there
is only one improving solution in distance m) and when this is achieved earlier
via the heavy-tailed rates. We use these results in Section 6.5 to prove sev-
eral runtime results, among others, for generalized jump functions. We present
some experimental results in Section 6.6. In Section 6.7, we discuss recommen-
dations on how to set the parameters of our algorithm. We conclude the paper
with a short discussion of our results and a pointer to possible future work in
Section 6.8.

6.2 Previous Works

This work aims at combining the advantages of stagnation detection and heavy-
tailed mutation, so clearly these topics contain the most relevant previous works.
Both integrate into the wider questions of how to optimally set the muta-
tion strength of evolutionary algorithms (for this we refer to the recent sur-
vey [DD20]) and how evolutionary algorithms can leave local optima (here we
refer to [Doe20a, Section 2.1] for a discussion of non-elitist approaches and to
the introduction of [DFK+18] for a discussion of crossover-based approaches).

For elitist mutation-based approaches, it is clear that when the population has
converged to a local optimum the only way to leave this is by mutating a solution
from the local optimum into an at least as good solution outside this local
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optimum. It was observed in [DLMN17] (the earlier work [Prü04] contains
similar findings for the special case that the nearest improving solution is in
Hamming distance two or three) that standard bit mutation with mutation rate
p = 1

n , which is the most recommended way of doing mutation, is not perfectly
suitable to perform larger jumps in the search space. In fact, when the nearest
improving solution is in Hamming distance m, then a mutation rate of p = m

n

is much better, leading to a speed-up by a factor of order mΘ(m).

Since [DLMN17] also observed that missing the optimal rate by a small constant
factor leads to performance losses exponential in m, it was proposed to use
a mutation rate that is drawn from a (heavy-tailed) power-law distribution.
Without the need to know m, this approach led to runtimes that exceed the
ones obtained from the optimal rate p = m

n by only a small factor polynomial in
m. This price for universality can be made as low as Θ(m0.5+ε), but not smaller
than Θ(

√
m). Various variants of heavy-tailed mutation operators have been

proposed subsequently, also heavy-tailed choices of other parameters have been
used with great success [FQW18, FGQW18b, FGQW18a, WQT18, ABD20a,
ABD20b, AD20, ABD21, DZ21, COY21a, COY21b].

A different way to cope with local optima was proposed in [RW20b]. When an
algorithm is stuck in a local optimum for a sufficiently long time, then with high
probability it has explored all search points in a certain radius. Consequently, it
is safe to increase the mutation rate, which increases the probability to generate
more distant solutions. This is the main idea of a series of works on stagna-
tion detection [RW20b, RW21a, RW21b]. As shown in [RW20b], this approach
can save the polynomial price for universality of the heavy-tailed approach and
thus obtain runtimes of the same asymptotic order as when using the optimal
(problem-specific) mutation rate. By replacing standard bit mutation with m-
bit flips, the time to find a particular solution in Hamming distance m was
further reduced to (1 + o(1))

(
n
m

)
, the same time (apart from lower order terms)

one would obtain with the best unbiased mutation operator (which consists of
flipping m random bits).

To be precise, two approaches are discussed in [RW21b]. The simple one, ob-
tained from just replacing standard bit mutation in [RW20b] by r-bit mutation,
obtains the desired runtimes with high probability, but fails completely with
some very small probability. For this reason, also a robust version of the algo-
rithm was proposed in [RW21b], which by cyclically reverting to smaller muta-
tion strengths overcomes the problem that, with small probability, a given solu-
tion in distance m is not found in the phase which uses m-bit flips. In [RW21a],
a variation of SD-RLS was proposed that keeps the successful strength after
leaving local optima with the help of the radius memory mechanism, which
is beneficial on highly multimodal fitness landscapes. The idea of stagnation
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Algorithm 16: The SD-FEAβ,γ,R for the maximization of f : {0, 1}n → R.
Its parameters are the power-law exponent β > 1, the probability γ to
deviate from rate r in phase r, and the parameter R which defines the
maximum length of the r-th phase at ℓr = (1− γ)−1

(
n
r

)
ln(R).

Select x uniformly at random from {0, 1}n and set r1 ← 1;
u← 0;
for t← 1, 2, . . . do

Set s = rt with probability 1−γ or
s = rt + pow(β, n− rt) with probability γ/2 or
s = rt − pow(β,max{1, rt−1}) with probability γ/2;

Create y by flipping s bits in a copy of x uniformly at random;
u← u+ 1;
if f(y) > f(x) then

x← y;
rt+1 ← 1;
u← 0;

else
if f(y) = f(x) and rt = 1 then

x← y;

if u ≥ ℓrt then
rt+1 ← min{rt + 1, ⌊ n

2.1⌋};
u← 0;

else
rt+1 ← rt;

detection has also been successfully used in multi-objective evolutionary com-
putation [DZ21].

6.3 Combining Fast Mutation and Stagnation
Detection: The Algorithm SD-FEAβ,γ,R

We propose the algorithm SD-FEAβ,γ,R for the maximization of pseudo-Boolean
functions f : {0, 1}n → R as defined in Algorithm 16. The function pow(β, u)
samples from a power-law distribution with exponent β and range [1..u] as
defined in Equation (6.1) below.
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The general idea of this algorithm is that it increases the mutation strength r
to r + 1 when the improvement is not in Hamming distance r with at least a
constant probability (with probability 1/R roughly) using the stagnation detec-
tion mechanism. While the strength is r, called in phase r, the algorithm looks
at larger or smaller Hamming distances (with probability γ) besides using the
current strength r. The distribution of the distance of the search radius from
to the current strength r follows a power-law distribution. An integer random
variable X follows a power-law distribution with parameters β and u if

Pr[X = i] =

{
Cβ,ui

−β if 1 ≤ i ≤ u,

0 otherwise,
(6.1)

where Cβ,u := (
∑u

j=1 j
−β)−1 is the normalization coefficient. The function

pow(β, u) used in Algorithm 16 returns a sample from this distribution.

The algorithm starts with a search point selected uniformly at random from the
search space {0, 1}n and with the initial strength r = 1. There is a counter u for
counting the number of unsuccessful steps in finding a strict improvement with
the current strength. When the counter exceeds the maximum phase length ℓr,
the strength r increases by one but not exceeding n/2.1. When the algorithm
makes progress, the counter and strength are reset to their initial values.

The mutation, which we call s-flip in the following, flips exactly s bits randomly
chosen as follows. With probability 1 − γ, the algorithm flips exactly r bits in
phase r. However, with probability γ, the algorithm deviates from this choice
and instead flips a number of bits which differs from r, in either direction, by a
value following a power-law distribution. The distribution over s is analyzed in
Lemma 6.1 below.

In this paper, we use maximum phase lengths of

ℓr = (1− γ)−1

(
n

r

)
ln(R). (6.2)

This choice is designed for pseudo-Boolean fitness functions. For other search
spaces, the maximum phase length should be ℓr = |Sr|/(1−γ) ln(R), where |Sr|
is the number of search points in distance r from the current search point or
an upper bound for this. The maximum phase length defined in Equation (6.2)
has a parameter R controlling the probability of failing to find an improvement
at the “right” strength. To prove our theoretical results, R should be selected
at least e1/γ . In Section 6.7, we give some recommendations for choosing the
parameters of the SD-FEAβ,γ,R.

As runtime of a heuristic algorithm on a fitness function f , we define the first
point of time t where a search point of maximal fitness has been evaluated.
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6.4 Analysis of the SD-FEAβ,γ,R

In this paper, let us define by the individual gap of x ∈ {0, 1}n the minimum
Hamming distance of x from points with strictly larger fitness function value,
that is,

IndividualGap(x) := min{H(x, y) : f(y) > f(x), y ∈ {0, 1}n}.

By the fitness level of x, we mean all the search points with fitness value f(x).
We call the fitness level gap of a point x ∈ {0, 1}n the maximum of all individual
gap sizes in the fitness level of x, i. e.,

FitnessLevelGap(x) := max {IndividualGap(y) : f(y) = f(x), y ∈ {0, 1}n} .

If the algorithm creates a point at the Hamming distance IndividualGap(x)
from the current search point x, with positive probability an improvement can
be found. Note that FitnessLevelGap(x) = 1 is allowed, so the definition also
covers search points that are not local optima. As long as a strict improvement
is not made, the FitnessLevelGap remains the same, although the current search
point might be replaced with another search point in the fitness level in phase 1,
that is, when the strength is 1.

We now analyze how the SD-FEAβ,γ,R finds better selections. Let the current
search point be x. We define by phase r all points of time where radius r is
used for search points with fitness value f(x), i. e., while in the fitness level of
x. Let Er be the event of not finding the optimum within phase r. For j ≥ i,
let Ej

i denote the event of not finding a strict improvement within phases i to j.
Formally, Ej

i = Ei ∩ · · · ∩ Ej .

Before computing the probabilities of these events, we need to know the dis-
tribution of the offspring in an iteration. The following lemma will be used
throughout this paper, showing the distribution of the number of flipping bits
(i. e., the variable s in Algorithm 16) in each iteration. We recall that in phase r,
with a relatively large probability 1 − γ, the algorithm flips r bits. However,
with probability γ, it uses power-law distributions to flip less or more than r
bits.

Lemma 6.1. Let r be the current strength in an iteration of the algorithm
SD-FEAβ,γ,R. Let X be the integer random variable corresponding to the number
of bits that are flipped, that is, the variable s in Algorithm 16. Then

Pr[X = α] =


(γ/2) · Cβ,r−1 · (r − α)−β 1 ≤ α < r,

1− γ α = r,

(γ/2) · Cβ,n−r · (α− r)−β r < α ≤ n,

and for r = 1, Pr[X = 0] = γ/2.
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Proof. It is immediately visible from Algorithm 16 that Pr[X = r] = 1− γ. For
1 ≤ α < r, we have

Pr[X = α] = Pr[X < r] · Pr[X = α | X < r]

= Pr[X < r] · Pr[pow(β, r − 1) = r − α]

= (γ/2) · Cβ,r−1(r − α)−β .

For α > r, we similarly obtain

Pr[X = α] = Pr[X > r] · Pr[X = α | X > r]

= Pr[X > r] · Pr[pow(β, n− r) = α− r]

= (γ/2) · Cβ,n−r(α− r)−β .

For r = 1, Pr[X = 0] = γ/2 because in this case, pow(β,max{1, rt − 1}) =
pow(β, 1) returns 1 only.

In a run of the algorithm SD-FEAβ,γ,R, assume w is the current search point
immediately following a strict improvement or the initial search point. Since in
phase 1 the algorithm accepts offspring with the same fitness value, the current
search point is changing and might be different from w. However, in phase 2 and
larger, the current search point is fixed until a strict improvement is found, see
Algorithm 16. Let x be the selected search point at the beginning of phase 2,
which is basically the latest selected search point in fitness level of w. From
phase 2, the algorithm needs to flip at least m bits to find a strict improvement,
where m := IndividualGap(x) and m ≤ FitnessLevelGap(w) according to their
definitions. That is the reason why in the following results, we also consider the
latest selected search point in the fitness level.

Also, in the case that FitnessLevelGap(w) > 1 but IndividualGap(x) = 1, some
of the selected search points might have individual gaps larger than 1 but the
last one called x in phase 1. Then, we cannot claim that the algorithm spends
sufficient iterations in the promising phase 1 for x. Hence this case is excluded
in the following results.

The following lemma estimates the probability of reaching a phase that is
greater than the fitness gap size. In the statement of the lemma, recall that
the parameter R controls the length of the phase.

Lemma 6.2. Let β > 1, 0 < γ < 1 and R > 1. Consider the SD-FEAβ,γ,R

maximizing a pseudo-Boolean fitness function f : {0, 1}n → R. Let w ∈ {0, 1}n
be the current search point immediately following a strict improvement or the
initial search point. Let x ∈ {0, 1}n be the latest selected search point in fitness
level of w and m = IndividualGap(x). Let Er−1

1 denote the probability of not
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finding an improvement in phases 1 to r−1 and m < r ≤ ⌊ n
2.1⌋. Then for either

m ≥ 2 or FitnessLevelGap(w) = 1, we have

Pr[Er−1
1 ] ≤ R−1−(γ/2)·( ln(1.1)

β )
β
Cβ,n(r−m−1).

Proof. Let pr be a lower bound on the probability of making progress in phase r
in one iteration. Then we have

Pr[Er−1
1 ] ≤ Pr[Em ∩ · · · ∩ Er−1] =

r−1∏
i=m

Pr[Ei] ≤
r−1∏
i=m

(1− pi)
ℓi

≤ exp

(
−

r−1∑
i=m

piℓi

)
, (6.3)

where we use the inequality 1 + x ≤ ex for all x ∈ R.

In the following paragraphs, we aim at bounding piℓi from below. Note that
the search point x might be different from w because in phase 1 the algorithm
accepts offspring with the same fitness value. However, in phase 2 and larger, x
is fixed until a strict improvement is found.

For i = m, the promising phase to make progress, if m ≥ 2, w is the fixed
current search point in phase m until making a strict improvement or increasing
the phase. Otherwise, if FitnessLevelGap(x) = 1 resulting in m = 1 and the
individual gap 1 for all search points in the fitness level x, the algorithm can
always make progress by changing a bit although the current search point might
change in phase 1. In both cases either FitnessLevelGap(x) = 1 or m ≥ 2,
the success probability in all iterations in phase m equals (1 − γ)

(
n
m

)−1 via
Lemma 6.1, so

pmℓm ≥ (1− γ)

(
n

m

)−1

· (1− γ)−1

(
n

m

)
ln(R) = ln(R).

For m < i ≤ n
2.1 , again using Lemma 6.1, we have

pi ≥ (γ/2)Cβ,i−1(i−m)−β

(
n

m

)−1

,

and thus

piℓi ≥ (γ/2) · Cβ,i−1

(
n
i

)
ln(R)

(1− γ)(i−m)β
(
n
m

) ≥ (γ/2) · Cβ,n

(
n
i

)
ln(R)

(i−m)β
(
n
m

) ,
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where we have used Cβ,n ≤ Cβ,i−1. The last expression is bounded from below
by

(γ/2) · Cβ,n
ln(R)

(i−m)β
·
(
n
i

)(
n

i−1

) · · · ( n
m+1

)(
n
m

) ≥ (γ/2) · Cβ,n
ln(R)

(i−m)β
(1.1)i−m, (6.4)

where we have used
(
n
k

)
/
(

n
k−1

)
= n−k+1

k ≥ 1.1 for k ≤ ⌊ n
2.1⌋.

We finally show that 1.1k/kβ ≥ (ln(1.1)/β)
β for k ∈ N≥1. To prove this, let

f(x) = 1.1x/xβ . For x > 0, its derivative, i. e., f ′(x), has only one root, namely
x̂ = β

ln 1.1 . Before and after this point the function is decreasing and increasing,
respectively, so f(x̂) is the minimum value of the function for x > 0. We have

f(x̂) =
1.1β/ ln(1.1)

(β/ ln(1.1))β
≥
(
ln(1.1)

β

)β

.

Thus, Equation (6.4) is bounded from below by (γ/2) · Cβ,n (ln(1.1)/β)
β
ln(R).

From Equation (6.3), we obtain

Pr[Er−1
1 ] ≤ exp

(
−

r−1∑
i=m

piℓi

)
≤ R−1−(γ/2)·( ln(1.1)

β )
β
Cβ,n(r−m−1).

The next lemma is used to estimate the number of iterations in phases larger
than the fitness level gap. With a good choice of the parameters γ and R,
the following result becomes o (1/sm), that is, the number of steps at larger
strengths is negligible compared to the number of steps at the phase m.

Lemma 6.3. Let β > 1, 0 < γ < 1 and R ≥ e1/γ . Consider the SD-FEAβ,γ,R

maximizing a pseudo-Boolean fitness function f : {0, 1}n → R. Let w ∈ {0, 1}n
be the current search point immediately following a strict improvement or the
initial search point. Let x ∈ {0, 1}n be the latest selected search point in fitness
level of w. Assume m = IndividualGap(x) and m ≤ ⌊n/2.1⌋. Let sm be a
lower bound on the probability that an improvement is found from search point x
conditional on flipping m bits. Then, if either m ≥ 2 or FitnessLevelGap(w) =
1, the expected number of iterations spent with strengths larger than m is at most

O

(
R−1γ−1 1

sm

)
.

Proof. Let Ir be the number of iterations spent in phase r and E[I>m] denote
the expected number of iterations spent with strengths larger than m. Then

E[I>m] =

⌊ n
2.1 ⌋∑

r=m+1

E[Ir].
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With probability Pr[Er−1
1 ], the algorithm does not make progress with strengths

less than r. In phase r, the probability of finding an improvement is at least
Cβ,r−1(γ/2)(r − m)−β · sm in each iteration, by Lemma 6.1. Thus, for all
strengths r > m, using the law of total probability, we have

E[Ir] = Pr
[
Er−1

1

]
E[Ir | Er−1

1 ] + Pr
[
Er−1

1

]
E
[
Ir | Er−1

1

]
≤ Pr[Er−1

1 ] · (Cβ,r−1)
−12γ−1 · 1

sm
(r −m)β + Pr

[
Er−1

1

]
· 0

= Pr[Er−1
1 ] · (Cβ,r−1)

−12γ−1 · 1

sm
(r −m)β .

Using Lemma 6.2 and R ≥ e1/γ , we can bound

E[Ir] ≤ R−1−(γ/2)( ln(1.1)
β )

β
Cβ,n(r−m−1)(Cβ,r−1)

−12γ−1 1

sm
(r −m)β

= O

R−1γ−1 1

sm

(r −m)β

exp

[
(1/2) ·

(
ln(1.1)

β

)β
Cβ,n(r −m− 1)

]
 ,

where we have used (Cβ,r−1)
−1 = O(1) for β > 1. This results in

⌊ n
2.1 ⌋∑

r=m+1

E[Ir] ≤ O

R−1γ−1 1

sm

⌊ n
2.1 ⌋∑

r=m+1

(r −m)β

exp

[
(1/2) ·

(
ln(1.1)

β

)β
Cβ,n(r −m)

]


≤ O

(
R−1γ−1 1

sm

)
,

where we estimated
⌊ n
2.1 ⌋∑

r=m+1

(r −m)β

exp

[
(1/2) ·

(
ln(1.1)

β

)β
Cβ,n(r −m)

] =

⌊ n
2.1 ⌋∑

r=m+1

(r −m)β

eΘ(r−m)

≤
∞∑
k=1

kβ

eΘ(k)
= O(1).

Therefore, we obtain

E[I>m] =

⌊ n
2.1 ⌋∑

r=m+1

E[Ir] = O

(
R−1γ−1 1

sm

)
as claimed.



6.4 Analysis of the SD-FEAβ,γ,R 141

The following lemma, a combinatorial inequality taken from [RW21b], will be
used to count the number of iterations spent with strengths smaller than the
fitness level gap.

Lemma 6.4 (Lemma 1 in [RW21b]). For any integer m ≤ n/2, we have

m∑
i=1

(
n

i

)
≤ n− (m− 1)

n− (2m− 1)

(
n

m

)
.

We now present the first main result. In the following theorem, we provide two
rigorous upper bounds on the escaping time from a local optimum.

Theorem 6.5. Let β > 1, 0 < γ < 1 and R ≥ e1/γ . Consider the SD-FEAβ,γ,R

maximizing a pseudo-Boolean fitness function f : {0, 1}n → R. Let w ∈ {0, 1}n
be the current search point immediately following a strict improvement or the
initial search point. Define T as the time SD-FEAβ,γ,R takes to create a strict
improvement. Let x ∈ {0, 1}n be the latest selected search point in fitness level
of w and m = IndividualGap(x). If 2 ≤ m ≤ n/2.1, then

E[T ] ≤
(
n

m

)(
1

1− γ
+O

(
m ln(R)

(1− γ)n
+R−1γ−1

))
.

Moreover, for all m ≤ n, we have

E[T ] = O

(
2n

ln(R)

1− γ
+ γ−1

(
n

m

)
|⌊ n

2.1⌋ −m|β
)
.

Proof. Let Ir be the number of iterations spent in phase r. Using linearity of
expectation, we have

E[T ] =

⌊ n
2.1 ⌋−1∑
r=1

E[Ir] + E[I⌊ n
2.1 ⌋].

Let first m ≤ n/2.1. For r < m, we use that E[Ir] is at most the maximum
length of phase r, i. e., ℓr = (1 − γ)−1

(
n
r

)
ln(R). Thus, with Lemma 6.4, we

compute

m−1∑
r=1

E[Ir] ≤
m−1∑
r=1

(
n

r

)
ln(R)

1− γ

≤
(

n

m− 1

)
ln(R)

1− γ
· n− (m− 2)

n− (2m− 3)
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=

(
n

m

)
ln(R)

1− γ
· m

n−m+ 1
· n− (m− 2)

n− (2m− 3)
.

Since m ≤ n
2.1 , the last expression is bounded from above by

m−1∑
r=1

E[Ir] = O

((
n

m

)
m ln(R)

(1− γ)n

)
.

When the strength r equals m, with probability 1 − γ, the algorithm flips
exactly m bits (Lemma 6.1). When m bits are flipped, with probability at
least

(
n
m

)−1 an improvement is found. Regarding a truncated geometric dis-
tribution with success probability (1 − γ)

(
n
m

)−1, within at most (1 − γ)−1
(
n
m

)
iterations in expectation the algorithm finds a better point or the phase is ter-
minated. Thus

E[Im] ≤
(
n
m

)
(1− γ)

.

For r > m, using Lemma 6.3 with sm ≥
(
n
m

)−1, we obtain

E[I>m] =

⌊ n
2.1 ⌋∑

r=m+1

E[Ir] = O

(
R−1γ−1

(
n

m

))
.

Altogether, we have

E[T ] =

⌊ n
2.1 ⌋∑
r=1

E[Ir] =

m−1∑
r=1

E[Ir] + E[Im] +

⌊ n
2.1 ⌋∑

r=m+1

E[Ir]

≤
(
n

m

)(
1

1− γ
+O

(
m ln(R)

(1− γ)n
+R−1γ−1

))
.

To prove the second claim, since for r ≤ ⌊ n
2.1⌋−1, we have that E[Ir] is at most

the maximum length of phase r, we have

E[T ] ≤
⌊ n
2.1 ⌋−1∑
r=1

ℓr + E[I⌊ n
2.1 ⌋] =

⌊ n
2.1 ⌋−1∑
r=1

(
n

r

)
(1− γ)−1 ln(R) + E[I⌊ n

2.1 ⌋].

In phase ⌊ n
2.1⌋, the algorithm no longer increases the strength until finding an

improvement. Using Lemma 6.1, the improvement is found with probability at
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least

Ω

(
(γ/2) · |⌊ n

2.1⌋ −m|−β ·
(
n

m

)−1
)

in each iteration. Using the geometric distribution with this success probability,
we obtain

E[T ] ≤
⌊ n
2.1 ⌋−1∑
r=1

(
n

r

)
(1− γ)−1 ln(R) +O

(
γ−1

(
n

m

)
|⌊ n

2.1⌋ −m|β
)

= O

(
2n

ln(R)

1− γ
+ γ−1

(
n

m

)
|⌊ n

2.1⌋ −m|β
)
,

where we have used
∑n

i=0

(
n
i

)
= 2n. The second part is proven as desired.

Theorem 6.5 provides a good upper bound on the escaping time from a local
optimum when there are only few ways to leave it. However, it is not as good
when there are many ways to leave the local optimum. The following theorem
considers such scenarios. The constant r′ defined in the theorem basically rep-
resents the first phase that the probability of finding one of the improvements
is at least constant, and its value is an integer between 1 and m.

Theorem 6.6. Let β > 1, 0 < γ < 1 and R ≥ e1/γ . Consider the SD-FEAβ,γ,R

maximizing a pseudo-Boolean fitness function f : {0, 1}n → R. Let w ∈ {0, 1}n
be the current search point immediately following a strict improvement or the
initial search point. Let x be the latest selected search point in fitness level
of w and m = IndividualGap(x). Let sm be a lower bound on the probability
that a strict improvement is found from search point x ∈ {0, 1}n conditional
on flipping m bits. Define T as the time SD-FEAβ,γ,R takes to create a strict
improvement. If 2 ≤ m ≤ n/2.1, then

E[T ] ≤ 1

sm
· 1
γ
(m− r′)β ·O

(
1 +

r′ ln(R)

(1− γ)n

)
,

where r′ = min
{
m, argmaxr

{(
n
r

)
≤ 1

sm
1
γ (m− r)β

}}
.

Proof. Let Ir be the number of iterations spent in phase r. Using linearity of
expectation, we have

E[T ] =

⌊ n
2.1 ⌋∑
r=1

E[Ir].
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For r < r′, we use that E[Ir] is at most the maximum length of phase r. Thus,
by Lemma 6.4, we have

r′−1∑
r=1

E[Ir] ≤
r′−1∑
r=1

(
n

r

)
(1− γ)−1 ln(R)

≤
(

n

r′ − 1

)
ln(R)

(1− γ)

n− (r′ − 2)

n− (2r′ − 3)

=
r′

n− r′ + 1
·
(
n

r′

)
ln(R)

(1− γ)

n− (r′ − 2)

n− (2r′ − 3)
.

Since r′ ≤ m ≤ n
2.1 , the last expression is bounded from above by

O

((
n

r′

)
r′ ln(R)

(1− γ)n

)
.

Since
(
n
r′

)
≤ 1

sm
1
γ (m− r′)β by definition of r′, we estimate

r′−1∑
r=1

E[Ir] = O

(
1

sm
· 1
γ
(m− r′)β · r

′ ln(R)

(1− γ)n

)
.

In the phases from r′ to m − 1, the probability of finding an improvement is
at least sm(γ/2)Cβ,n−r′(m − r′)−β , see Lemma 6.1. Hence the expected time
spent in phases r′ to m− 1 is

m−1∑
r=r′

E[Ir] = O

(
1

sm
· 1
γ
(m− r′)β

)
.

In phase m, where the strength is m, exactly m bits are flipped with prob-
ability 1 − γ (Lemma 6.1), and in this phase an improvement is found with
probability at least sm when m bits are flipped. Thus

E[Im] ≤ 1

sm
· 1

(1− γ)
.

For r > m, using Lemma 6.3 with sm, we obtain

⌊ n
2.1 ⌋∑

r=m+1

E[Ir] = O
(
R−1γ−1s−1

m

)
.

Altogether, we have

E[T ] =

⌊ n
2.1 ⌋∑
r=1

E[Ir]
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=

r′−1∑
r=1

E[Ir] +

m−1∑
r=r′

E[Ir] + E[Im] +

⌊ n
2.1 ⌋∑

r=m+1

E[Ir]

≤ O

(
1

sm
· 1
γ
(m− r′)β · r

′ ln(R)

(1− γ)n
+

1

sm
· 1
γ
(m− r′)β +

1

sm(1− γ)
+

R−1

γsm

)
≤ 1

sm
· 1
γ
(m− r′)β ·O

(
1 +

r′ ln(R)

(1− γ)n

)
.

After having established some tools for obtaining upper bounds on the time
required to escape from local optima, we now analyze the performance
of SD-FEAβ,γ,R on the sub-problems without local optima. A maximization
function is called unimodal in [DJW02] if and only if there is only one local
maximum, where a local maximum is defined as a search point with no better
neighbors. In this paper, we use this definition of unimodal functions. Thus, on
unimodal functions the gap of all search points in the search space (except for
the global optima) is 1, so the algorithm can always make progress in phase 1.

In the following theorem, we state how SD-FEAβ,γ,R behaves on unimodal
functions compared to RLS using an upper bound based on the fitness-level
method [Weg01]. The theorem and its proof are similar to the second part of
Lemma 4 in [RW21b], and with a good choice of parameters γ and R, the same
asymptotic result can be achieved (see the following corollary).

Theorem 6.7. Let β > 1, 0 < γ < 1 and R ≥ e1/γ . Let f : {0, 1}n → R
be a unimodal function and |Im(f)| be the number of its fitness values. Let fi
be the i-th fitness value in an increasing order of the fitness values of f . We
consider all fitness levels A1, . . . , A|Im(f)| such that Ai contains search points
with fitness value fi. Let si be a lower bound on the probability that RLS finds
an improvement from any search point in Ai. Denote by T the runtime of
SD-FEAβ,γ,R on f . Then

E[T ] ≤
(

1

1− γ
+O

(
R−1γ−1

)) |Im(f)|−1∑
i=1

1

si
.

Proof. We define by I(i) the number of all iterations spent to leave the fitness
level i. Using linearity of expectation, we have

E[T ] =

|Im(f)|−1∑
i=1

E[I(i)].
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Let I(i)r be the number of iterations spent in phase r after a search point for Ai

was found. Then

I(i) =

⌊ n
2.1 ⌋∑
r=1

I(i)r .

As long as the strength is 1, the algorithm flips exactly one bit with probability
at least 1 − γ (Lemma 6.1). The worst-case time to leave fitness level i is at
most 1

(1−γ)si
using the geometric distribution with success probability si(1−γ).

Hence, for each fitness level i, we bound E[I
(i)
1 ] from above by 1

(1−γ)si
, and for

r > 1, we bound E[I
(i)
r ] from above by using Lemma 6.3 with sm = si. Thus

E[I
(i)
>1] = O

(
R−1γ−1 1

si

)
.

Altogether, we have

E[T ] =

|Im(f)|−1∑
i=1

E[I(i)]

≤
|Im(f)|−1∑

i=1

(
1

si(1− γ)
+O

(
R−1γ−1 1

si

))

≤
(

1

1− γ
+O

(
R−1γ−1

)) |Im(f)|−1∑
i=1

1

si
.

The following unimodal benchmark functions OneMax and LeadingOnes
have been extensively studied in the literature. They are defined by

OneMax(x) := ∥x∥1,

LeadingOnes(x) :=
n∑

i=1

i∏
j=1

xj

for all x = (x1, . . . , xn) ∈ {0, 1}n, where ∥x∥1 is the number of one-bits in the
bit string.

The corollary below is a result of Theorem 6.7 applied on the unimodal functions
OneMax with si = (n− (i− 1))/n and LeadingOnes with si = 1/n.

Corollary 6.8. The expected runtime of the SD-FEAβ,γ,R with β > 1, γ = o(1)
and R ≥ e1/γ on OneMax is at most (1 + o(1))n lnn and on LeadingOnes
is at most (1 + o(1))n2.
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6.5 Analysis on Jumpk,δ

In this section, we use the results in the previous section to prove a bound on
a generalization of Jumpδ called Jumpk,δ with two parameters k and δ, see
Figure 6.1 for a depiction.

Figure 6.1: The function Jumpk,δ.

This function is based on the well-known Jump benchmark [DJW02], in which
the place of the jump with size δ starts at the Hamming distance k from the
global optimum. In other words, after the jump, there is a unimodal sub-problem
of length k − δ. The classical Jump function is a special case of Jumpk,δ with
k = δ, i. e., Jumpδ = Jumpδ,δ. Formally, for all x ∈ {0, 1}n, we have

Jumpk,δ(x) =

{
∥x∥1 if ∥x∥1 ∈ [0..n− k] ∪ [n− k + δ..n],

−∥x∥1 otherwise.

We refer the interested reader to see [BBD21a] for more information about
Jumpk,δ, where the performance of the (1+1) EA, the (1+1) FEAβ , and the
robust version of SD-RLS (SD-RLSr) are carefully analyzed. Also, Rajabi and
Witt [RW21a] independently define the jump function with an offset to analyze
the recovery time for the strength in the algorithm SD-RLS with radius memory
(SD-RLSm) after leaving the local optimum. Recently, Witt in [Wit21] analyzes
the performance of some other algorithms on the function Jumpk,δ (which is
called JumpOffset in the paper).
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We want to show that the algorithm SD-FEAβ,γ,R performs relatively efficiently
on Jumpk,δ in both cases when k = δ (i. e., Jumpδ) and k > δ. In the first case,
when there is only one improving solution, SD-FEAβ,γ,R with γ = o(1) optimizes
Jumpδ as efficient as SD-RLSr thanks to Theorem 6.5. The result is formally
proven in Theorem 6.9.

Theorem 6.9. The expected runtime E[T ] of SD-FEAβ,γ,R with β > 1, γ =
o(1) and R ≥ e1/γ on Jumpδ with 2 ≤ δ = o (n/ ln(R)) satisfies

E[T ] ≤
(
n

δ

)
(1 + o(1)).

Proof. Before reaching a local optimum with n−m one-bits, Jumpδ is equivalent
to OneMax. Thus, the expected time until SD-FEAβ,γ,R reaches the local
optimum is at most O(n lnn) via Theorem 6.7 with si = (n− (i− 1))/n.

For a local optimum x we have FitnessLevelGap(x) = δ according to the def-
inition of Jump. Hence, using Theorem 6.5, the algorithm finds the global
optimum from the local optimum within the expected time at most(

n

δ

)
(1 + o(1)).

This dominates the expected time the algorithm spends before reaching the local
optimum.

For γ = Θ(1), by closely following the analysis of Theorem 6.9, it is easy to see
that the expected runtime of SD-FEAβ,γ,R on Jumpδ is(

n

δ

)(
1

1− γ
+ o(1)

)
,

which is still very efficient.

We now present an upper bound on the runtime of the proposed algorithm on
Jumpk,δ.

Theorem 6.10. The expected runtime E[T ] of SD-FEAβ,γ,R with β > 1, 0 <
γ < 1 and R ≥ e1/γ on Jumpk,δ with δ = o (n/ ln(R)) satisfies

E[T ] = O

((
n

δ

)(
k

δ

)−1

(δ − r′)β · γ−1 + n lnn

)
,

where r′ = min
{
δ, argmaxr

{(
n
r

)
≤
(
n
δ

)(
k
δ

)−1 1
γ (δ − r)β

}}
.
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Proof. Until reaching the local optimum with n−k one-bits, Jumpk,δ is equiva-
lent to OneMax. Thus, the expected time until SD-FEAβ,γ,R reaches the local
optimum is at most O(n lnn) via Theorem 6.7 with si = (n− (i− 1))/n.

For a local optimum x, we have FitnessLevelGap(x) = δ according to the defi-
nition of Jumpk,δ. Using Theorem 6.6 with sm =

(
n
δ

)−1(k
δ

)
, the algorithm finds

a strict improvement with at least n − k + δ one-bits from the local optimum
within expected time at most

O

((
n

δ

)(
k

δ

)−1

(δ − r′)β · γ−1

)
,

where we used our assumption δ = o(n/ ln(R)).

After leaving the local optimum, Jumpk,δ is again equivalent to OneMax on the
second slope. Using the same arguments as in the beginning of the proof, the ex-
pected time until SD-FEAβ,γ,R reaches the global optimum is at most O(n lnn)
via Theorem 6.7 with si = (n− (i− 1))/n.

In the following corollary, we see a scenario where we have r′ ≥ δ − c for some
constant c, resulting in that the term (δ − r′)β disappears from the asymptotic
upper bound. This is also an example where the SD-FEAβ,γ,R can asymptoti-
cally outperform the (1+1) FEAβ .

Corollary 6.11. Let ∆ ≥ 2 be a constant. The expected runtime E[T ] of
SD-FEAβ,γ,R with β > 1, 0 < γ < 1 and R ≥ e1/γ on Jumpk,δ with k =
ω(1) ∩O(lnn) and δ = k −∆ satisfies

E[T ] = O

((
n

δ

)(
k

δ

)−1

γ−1

)
.

Proof. We show that r′ defined in Theorem 6.10 is at least k−2∆. To this aim,
we show that for r ≤ k − 2∆, we have

(
n
r

)(
n
δ

)(
k
δ

)−1
γ−1(δ − r)β

≤ γ

(
n

k−2∆

)(
n

k−∆

)(
k
∆

)−1
∆β
≤ γ

(en/(k − 2∆))k−2∆(ek/∆)∆

(n/(k −∆))k−∆∆β
,

where we have used δ = k −∆ and the inequality (n/m)m ≤
(
n
m

)
≤ (en/m)m.

The last expression equals

γ
ek−∆k∆

n∆∆∆+β

(k −∆)k−∆

(k − 2∆)k−2∆
= γ

ek−∆k∆

n∆∆∆+β
(k −∆)∆

(
1 +

∆

k − 2∆

)k−2∆
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≤ γ
ekk∆

n∆∆∆+β
(k −∆)∆ = o(1),

where we use the assumption k ≤ lnn and the estimate 1+x ≤ ex for all x ∈ R.
Thus for r ≤ k − 2∆ and a large enough n, we have(

n

r

)
≤
(
n

δ

)(
k

δ

)−1

γ−1(δ − r)β ,

which means that r′ ≥ k − 2∆. Therefore, using the result of Theorem 6.10
with r′ ≥ k − 2∆, we obtain

E[T ] = O

((
n

δ

)(
k

δ

)−1

∆β · γ−1 + n lnn

)
= O

((
n

δ

)(
k

δ

)−1

γ−1

)
,

where the O (n lnn) term is subsumed by the first term according to our as-
sumptions.

6.6 Experiments

In this section, we present the results of the experiments carried out to measure
the performance of the proposed algorithm and several related ones on concrete
problem sizes.

We ran an implementation of SD-FEAβ,γ,R with β ∈ {1.25, 1.5, 2}, γ = 1/4
and R = 25 on the fitness function Jumpk,δ of size n = 100 with the jump
size δ = 4 and k varying from 4 to 13. We recall that we have the classical Jump
function for k = 4. We compared our algorithm with the classical (1+1) EA with
standard mutation rate 1/n, the (1+1) FEAβ from [DLMN17] with β = 1.5, the
SD-(1+1) EA presented in [RW20b] with R = n2, and SD-RLSr from [RW21b]
with R = n2. The parameter settings for these algorithms were all recommended
in the corresponding papers. The parameter values for our algorithm were
chosen in an ad-hoc fashion, slightly inspired by our theoretical results. All
data presented is the average number of fitness calls over 200 runs.

As can be seen in Figure 6.2, SD-RLSr outperforms the rest of the algorithms
for k = 4, i. e., when there is only one improving solution for local optima.
Our SD-FEAβ,γ,R needs roughly (1 − γ)−1 times more fitness function calls
than that since it “wastes” a fraction of γ of the iterations on wrong mutation
strengths in phase 4. Not all these iterations are wasted as the small differences
for different values of β show. The higher β is, the smaller values the power-law
distribution typically takes, meaning that the mutation rate in these iterations
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Figure 6.2: Average number (over 200 runs) of fitness calls the mentioned algo-
rithms spent to optimize Jumpk,4 (n = 100) with different values
for k.

stays closer to the ideal one. All three variants of the SD-FEAβ,γ,R significantly
outperform the (1+1) FEAβ , SD-(1+1) EA and (1+1) EA. As k is increasing,
the average running time of SD-RLSr improves only little and remains almost
without change after k = 5; consequently, this algorithm becomes less and less
competitive for growing k. This is natural since this algorithm necessarily has
to reach phase 4 to be able to flip 4 bits. All other algorithms, especially the
(1+1) FEAβ , perform increasingly better with larger k.



152 Paper D: Stagnation Detection Meets Fast Mutation

In a middle regime of k ∈ {5, 6, 7}, the SD-FEAβ,γ,R has the best average
running time among the algorithms regarded. Although both with k = 4 and
for k ≥ 8, the SD-FEAβ,γ,R is not the absolutely best algorithm, but its per-
formance loss over the most efficient algorithm (SD-RLSr for k = 4 and SD-
(1+1) EA for k ≥ 8) is small. This finding supports our claim that our algorithm
is a good approach to leaving local optima of various kinds.

For a large k, such as 10 or 11, the good performance of the SD-(1+1) EA
and (1+1) FEAβ might appear surprising. The reason for the slightly weaker
performance of our algorithm is the relatively small width of the valley of low
fitness (δ = 4), where our algorithm cannot fully show its advantages, but
pays the price of sampling from the right heavy-tailed distribution only with
probability γ/2.

6.7 Recommended Parameters

In this section, we use our theoretical and experimental results to derive some
recommendations for choosing the parameters β, γ, and R of our algorithm.
We note that having three parameters for a simple (1+1)-type optimizer might
look frightening at first, but a closer look reveals that setting these parameters
is actually not too critical.

For the power-law exponent β, as in [DLMN17], there is little indication that
the precise value is important. The value β = 1.5 suggested in [DLMN17] gives
good results even though in our experiments, β = 2 gave slightly better results.
We do not have an explanation for this, but in the light of the small differences
we do not think that a bigger effort to optimize β is justified.

Different from the previous approaches building on stagnation detection, our
algorithm also does not need specific values for the parameter R, which governs
the maximum phase length ℓr = 1

1−γ

(
n
r

)
ln(R) and in particular leads to the

property that a single improving solution in distance m is found in phase m
with probability 1 − 1

R (as follows from the proof of Lemma 6.2). Since we
have the heavy-tailed mutations available, it is less critical if an improvement
in distance m is missed in phase m. At the same time, since our heavy-tailed
mutations also allow to flip more than r bits in phase r, longer phases obtained
by taking a larger value of R usually do not have a negative effect on the runtime.
For these reasons, the times computed in Theorem 6.5 depend very little on R.
Since the phase length depends only logarithmically on R, we feel that it is safe
to choose R as some mildly large constant, say R = 25.
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The most interesting choice is the value for γ, which sets the balance between
the SD-RLS mode of the algorithm and the heavy-tailed mutations. A large rate
1 − γ of SD-RLS iterations is good to find a single improvement, but can lead
to drastic performance losses when there are more improving solutions. Such
trade-offs are often to be made in evolutionary computation. For example, the
simple RLS heuristic using only 1-bit flips is very efficient on unimodal problems
(e.g., has a runtime of (1 + o(1))n lnn on OneMax), but fails on multimodal
problems. In contrast, the (1 + 1) EA flips a single bit only with probability
approximately 1

e , and thus optimizes OneMax only in time (1 + o(1))en lnn,
but can deal with local optima. In a similar vein, a larger value for γ in our
algorithm gives some robustness to situations where in phase r other mutations
than r-bit flips are profitable – at the price of a slowdown on problems like
classic jump functions, where a single improving solution has to be found. It
has to be left to the algorithm user to set this trade-off suitably. Taking the
example of RLS and the (1 + 1) EA as example, we would generally recommend
a constant factor performance loss to buy robustness, that is, a constant value
of γ like, e.g., γ = 0.25.

6.8 Conclusion

In this work, we proposed a way to combine stagnation detection with heavy-
tailed mutation. Our theoretical and experimental results indicate that our
new algorithm inherits the good properties of the previous stagnation detection
approaches, but is superior in the following respects.

• The additional use of heavy-tailed mutation greatly speeds up leaving a
local optimum if there is more than one improving solution in a certain
distance m. This is because to leave the local optimum, it is not necessary
anymore to complete phase m− 1.

• Compared to the robust SD-RLS, which is the fairest point of comparison,
our algorithm is significantly simpler, as it avoids the two nested loops
(implemented via the parameters r and s in [RW21b]) that organize the
reversion to smaller rates. Compared to the SD-(1 + 1) EA, our approach
can obtain the better runtimes of the SD-RLS approaches in the case that
few improving solutions are available, and compared to the simple SD-RLS
of [RW21b], our approach surely converges.

• Again comparing our approach to the robust SD-RLS, our approach gives
runtimes with exponential tails. Let m be constant. If the robust SD-RLS
misses an improvement in distance m in the m-th phase and thus in time
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O(nm) – which happens with probability n−Θ(1) for typical parameter set-
tings –, then strength m is used again only after the (m+1)-st phase, that
is, after Ω(nm+1) iterations. If our algorithm misses such an improvement
in phase m, then in each of the subsequent ℓm+1 = Ω(nm+1) iterations, it
still has a chance of Ω (n−mγ) to find this particular improvement. Hence
the probability that finding this improvement takes Ω(nm+1) time, is only
(1− Ω (n−mγ))Ω(nm+1) ≤ exp(−Ω(nγ)).

As discussed in Section 6.7, the three parameters of our approach are not too
critical to set. For these reasons, we believe that our combination of stagnation
detection and heavy-tailed mutation is a very promising approach.

As the previous works on stagnation detection, we have only analyzed stagna-
tion detection in the context of a simple hillclimber. This has the advantage
that it is clear that the effects revealed in our analysis are truly caused by our
stagnation detection approach. Given that there is now quite some work study-
ing stagnation detection in isolation, for future work it would be interesting
to see how well stagnation detection (ideally in the combination with heavy-
tailed mutation as proposed in this work) can be integrated into more complex
evolutionary algorithms.
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Chapter 7

Paper E: How Fast Does the Metropolis
Algorithm Leave Local Optima?

The Metropolis algorithm (MA) is a classical local search heuristic. It avoids
getting stuck in local optimal by occasionally accepting inferior solutions. To
better and in a rigorous manner understand this ability, we conduct a mathe-
matical runtime analysis of the MA on the CLIFF benchmark. Apart from one
local optimum, cliff functions are monotonically increasing towards the global
optimum. Consequently, to optimize a cliff function, the MA only once needs
to accept an inferior solution. Despite apparently being an ideal benchmark for
the MA to profit from its main working principle, our runtime analysis shows
that this hope does not come true. Even with the optimal temperature (the only
parameter of the MA), the MA does not optimize most cliff functions faster than
simple elitist evolutionary algorithms (EAs), which can only leave the local op-
timum by generating a superior solution possibly far away. This result suggests
that our understanding of why the MA is often very successful in practice is not
yet complete. It also suggests to try the MA with global mutation operators,
an idea supported by our preliminary experiments.
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7.1 Introduction

A major difficulty faced by many search heuristics is that the heuristic might
run into a local optimum and then finds it hard to escape from it. A num-
ber of mechanisms have been proposed to overcome this difficulty, e. g., restart
mechanisms, discarding good solutions (non-elitism), tabu mechanisms, global
mutation operators (which can, in principle, generate any solution as offspring),
or diversity mechanisms (which prevent a larger population to fully converge
into a local optimum). While all these ideas have been successfully used in
practice, a rigorous understanding of how these mechanisms work and in which
situation to employ which one, is still largely missing.

To shed some light on this important question, we analyze how the Metropolis
algorithm (MA) profits from its mechanism to leave local optima. The MA is
a simple randomized hillclimber except that can also accept an inferior solu-
tion. This happens with some small probability which depends on the degree
of inferiority and the temperature, the only algorithm parameter. Choosing the
right temperature is a delicate problem – a too low temperature makes it hard
to leave local optima, whereas a too high temperature lets the algorithm lose
profitable solutions too quickly.

From this description of the MA one might speculate that the MA copes partic-
ularly well with local optima that have neighbors from which improving paths
lead away from the local optimum. In this case, the local optimum can be left
by just once accepting an inferior solution. The main result of this work is that
this speculation does not come true. By conducting a rigorous runtime analysis
of the MA on the Cliff benchmark (in which the above-mentioned property
is very pronounced), we observe that the MA even with the optimal tempera-
ture finds the optimum of most Cliff functions not much faster than a simple
elitist mutation-based algorithm called (1 + 1) EA. If the (1 + 1) EA uses an
optimized mutation rate, then it outperforms the MA with optimal temperature
on almost all cliff functions. Our experimental results support this finding and
show that several simple heuristics using global mutation clearly outperform the
MA on cliff functions. These results have motivated us to conduct preliminary
experiments on the MA equipped with a global mutation operator instead of
the usual one-bit flips. While not fully conclusive, these experiments show a
good performance of the MA with global mutation operators on Cliff.

This paper is structured as follows. After a description of previous work in Sec-
tion 7.2, we define in Section 7.3 the algorithms and benchmark problems under
consideration. Sections 7.4 and 7.5 are devoted to the mathematical runtime
analysis of OneMax and Cliff, respectively. Section 7.6 is the mathemati-
cal comparison of the MA and (1 + 1) EA. Section 7.7 presents experimental
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supplements to the theoretical analysis, emphasizing that the performance dif-
ference of the algorithms is rather pronounced for small problem sizes already.

7.2 Previous Works

The mathematical runtime analysis of randomized search heuristics has pro-
duced a decent number of results on how elitist evolutionary algorithm cope
with local optima, but much fewer on other algorithms. The majority of results
on evolutionary algorithms concern mutation-based algorithms. Results de-
rived from the Jump benchmark suggest that higher mutation rates or a heavy-
tailed random mutation rate [DLMN17] as well as a stagnation-detection mech-
anism [RW20b] are preferable when the local optimum can only be left by mov-
ing to a more distant solution. Some elitist crossover-based algorithms showed
a significant superiority in leaving local optima [JW02, DHK12, DFK+18], but
overall crossover is not too well understood from the theoretical perspective.

There are a few runtime results on non-elitist evolutionary algorithms, how-
ever, they do not give a very positive picture. The results in [JS07, Leh10,
Leh11, RS14, Doe20a] show that in many situations, there is essentially no
room between a regime with low selection pressure, in which the algorithm can-
not optimize any function with unique optimum efficiently, and a regime with
large selection pressure, in which the algorithm essentially behaves like its eli-
tist counterpart. With a very careful parameter choice, one can profit from
non-elitism in a small middle regime, e. g., with a population size being neither
too small nor too large in the order Θ(log n), the (1,λ) EA optimizes the func-
tion Cliffn

3 − 3
2 ,

n
3

in polynomial time [FS21]. While these results show that the
non-elitism of the (1,λ) EA can be helpful, it has to be noted that the exponen-
tial dependence of the runtime on λ, roughly 6.20λ in [FS21], implies that this
algorithm parameter has to be chosen very carefully. Other examples of success-
ful applications of non-elitism in evolutionary algorithms exist, e.g., [DEL21a],
but most of these works consider artificial problems designed to demonstrate
that a particular behavior can happen, but not giving much information on how
widespread this behavior might be. Outside the range of well-established search
heuristics, [PHST17] show that the strong-selection weak-mutation process from
biology can optimize some functions faster than elitist evolutionary algorithms.
[LOW19] show that the move-acceptance hyper-heuristic proposed in [LO13]
can optimize cliff functions in cubic time.

For the MA algorithm, the rigorous understanding is less developed than for
EAs. The classic result [SH88] shows that it can compute good approximations
for the maximum matching problem. An analogous result was shown for the
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(1 + 1) EA [GW03], demonstrating that this problem can also be solved via eli-
tist methods. [JS98] showed that the MA can solve certain random instances
of the minimum bisection problem in quadratic time. [JW07] conducted a run-
time analysis on the OneMax benchmark. While it is not surprising that the
MA does not profit from its ability to accept inferior solutions on this unimodal
benchmark, their result shows that only very small temperatures (namely such
that the probability of accepting an inferior solution is at most O(n/ log n)) lead
to polynomial runtimes. Again a number of results exist for artificially designed
problems [DJW00, JW07, OPH+18]. [WZD21] show a good performance of the
MA on the DLB problem (roughly by a factor of n faster than elitist EAs).
This problem has (many) local optima, however, these are easy to leave since
they all have a strictly better solution in Hamming distance two.

7.3 Preliminaries

7.3.1 The Metropolis Algorithm and the (1 + 1) EA

The MA [MRR+53] is a simple single-trajectory search heuristic for pseudo-
boolean optimization. It selects and evaluates a random neighbor of the current
solution and accepts it (i) always if it is at least as good as the parent, and
(ii) with probability e−δ/T if its fitness is by δ is worse than the fitness of the
current solution. Here T , often called temperature, is the single parameter of
the MA. See Algorithm 17 for the pseudocode. To ease our later analyses,
we use the parameterization α = e1/T , that is, the parameter α > 0 fixes
the probability α−δ of accepting a solution worse than the parent by δ. The
MA and its generalization Simulated Annealing have found numerous successful
applications in various areas, see, e.g., [vLA87].

Algorithm 17: Metropolis algorithm with temperature T for the maximiza-
tion of f : {0, 1}n → R. We usually write α = e1/T .

Select x(0) uniformly at random from {0, 1}n;
for t← 0, 1, . . . do

Create y by flipping a bit of x(t) chosen uniformly at random;
if f(y) ≥ f(x(t)) then

x(t+1) ← y;
else

x(t+1) ← y with probability e(f(y)−f(x(t)))/T and
x(t+1) ← x(t) otherwise;
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The (1 + 1) EA (Algorithm 18) is a simple stochastic hillclimber. It follows a
single search trajectory as the MA; however, it never accepts search points of
inferior fitness. Since the (1 + 1) EA flips each bit independently of the others,
the mutation operator is global and can reach any search point with positive
probability. In particular, it is able to escape from local optima by flipping the
required number of bits for an improvement. The (1 + 1) EA is intensively stud-
ied in the theory of evolutionary computation [DJW02] and serves as the basis
for the study of more advanced evolutionary algorithms. In our formulation,
it comes with the parameter p for the mutation rate. The setting p = 1/n is
known as the standard mutation rate, which is a default, rather robust choice
used in many studies [DJW02, Wit13].

Algorithm 18: (1 + 1) EA with mutation rate p for the maximization of
f : {0, 1}n → R.

Select x(0) uniformly at random from {0, 1}n;
for t← 0, 1, . . . do

Create y by flipping each bit of x(t) independently with probability p;
if f(y) ≥ f(x(t)) then

x(t+1) ← y;
else

x(t+1) ← x(t);

The runtime (synonymously, optimization time) of the algorithms is the random
first point in time t where an optimum has been sampled. Usually, its expected
value, called expected runtime/optimization time, is analyzed.

7.3.2 The Cliff and OneMax Functions

The aim of this paper is to study how efficient the MA is at optimizing functions
with a local optimum. Two well-established and well-studied benchmark func-
tions to model situations with local optima are Jump [DJW02] and Cliff [JS07].
In this research, we investigate the Metropolis algorithm on Cliff instead of
Jump for two primary reasons. Firstly, on Jump functions, since the difference
between the fitness of the local optimum and its neighbors is of order n, it is
unlikely that the algorithm accepts such a fitness decrease. Also, the decep-
tive valley in the function Jump does not allow the search to get far from the
local optimum because of accepting all improvements. We refer the interested
reader to [LOW19, Theorem 13] for a lower bound on the optimization time of
Metropolis on Jump. We should mention that the authors in [OPH+18] also
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studied the Metropolis algorithm on the function so-called Valley, which is a
multimodal problem containing both increasing and decreasing valleys.

In contrast to Jump functions, for Cliff functions the valley of low fitness
is more shallow and the fitness inside the valley is not deceptive, that is, the
gradient is pointing towards the optimum. These properties could let them
appear like an easy optimization problem for the Metropolis algorithm, but as
our precise analysis for the full spectrum of temperatures will show, this is not
true.

Cliff functions were originally defined with only one parameter determining
the distance of the local optimum from the global optimum [JS07]. However,
since the Metropolis algorithm is sensitive to function values when it accepts
worse solutions, we are interested in analyzing different depths for the valley in
the fitness function. That is why we define an additional parameter to express
the depth of the cliff.

Let again n ∈ N denote the problem size. As before, we shall usually suppress
this parameter from our notation. Let m ∈ N≥1 and d ∈ R>0 such that m < n
and d < m − 1. Then the function Cliffd,m is increasing as the number of
one-bits of the argument increases except for the points with n − m one-bits,
where the fitness decreases sharply by d if we add one more one-bit to the search
point. Formally,

Cliffd,m(x) :=

{
∥x∥1 if ∥x∥1 ≤ n−m,

∥x∥1 − d− 1 otherwise.

See Figure 7.1 for a graphical sketch. Note that the original cliff function can
be obtained with fixed parameter d = m− 3/2.

Figure 7.1: The function Cliffd,m.

To the best of our knowledge, the only available analysis of the Metropolis Algo-
rithm on Cliff functions is conducted in [LOW19, Theorem 10]. On Cliffd,m
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with fixed d = m− 3/2, the authors show a lower bound of

min

{
1

2
· n−m+ 1

m− 1
· (n/ log n)m−3/2

, nω(1)

}
,

indicating that even for reasonable settings of the parameter α the expected
runtime grows exponentially in m, with the bound being capped a some super-
polynomial function. However, if depth and location of the cliff are not linked,
our analysis will show polynomial runtimes for big m as well.

On the two slopes of Cliff, the function is only depending on the number of
one-bits of the search point and monotonically increasing in this number. If this
applies to the whole search space, we obtain the function

OneMax(x) := ∥x∥1,

which is intensively studied in the theory of evolutionary algorithms [DJW02,
Wit13]. Understanding the MA on OneMax is crucial for the analysis on Cliff.
Intuitively, if the MA is run on Cliff, assuming m ≪ n/2, it first of all has
to optimize a OneMax-like function to reach the cliff, accept the drop to jump
down the cliff and then again optimize a OneMax-like function to reach the
global optimum. However, it may happen that the MA returns to the cliff point
or even points left of the cliff again after having overcome it for the first time.

7.4 Analysis of OneMax

In this section, we study the performance of the Metropolis algorithm on the
OneMax benchmark. OneMax is the possibly best-studied benchmark in the
theory of randomized search heuristics. For a given problem size n ∈ N, the
OneMax function is the mapping f : {0, 1}n → N defined by f(x) = ∥x∥1 =∑n

i=1 xi for all x = (x1, . . . , xn) ∈ {0, 1}n. This is an easy benchmark represent-
ing problems or parts of problems where the gradient points into the direction
of the global optimum x∗ = (1, . . . , 1).

It is safe to say that Θ(n log n) is a typical runtime of a randomized search
heuristic optimizing OneMax. This runtime, more precisely, (1 + o(1))n ln
[DDY20], was proven for the randomized local search heuristic, a randomized
hillclimber that flips a single random bit and accepts the new solution if it is
at least as good as the previous one. Many simple evolutionary algorithms also
solve OneMax in time Θ(n log n) with suitable parameters, e.g., the mutation-
based (µ+λ) EA [Müh92, DJW02, Wit06, AD21].
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It might appear surprising at first that it takes time Ω(n log n) to find the correct
value of n bits for a simple function like OneMax, where the correct value each
bit can be found from the discrete partial derivative at any search point (i.e.,
by comparing the fitness of the search point and the search point obtained by
flipping this bit). The reason is that many randomized search heuristics flip
bits chosen at random and then the so-called coupon-collector effect implies
that it takes Ω(n log n) time until each bit was flipped at least once. It is clear
that this problem can be overcome, and an O(n) runtime can be obtained, by
flipping the bits in a given order, however, as shown in [DFW10], this can lead
to unexpected difficulties when trying to design algorithms that not always flip
single bits. Linear runtimes on OneMax have also been obtained via crossover-
based EAs [DD18, ADK20]. The black-box complexity of OneMax, that is,
the best performance a black-box optimization algorithm can have on the class
of all functions isomorphic to OneMax, is Θ(n/ log n) [ER63]. Despite the fact
that these faster performances have been shown for particular algorithms, it still
appears appropriate to call Θ(n log n) the typical runtime of a general-purpose
search heuristic on OneMax. In fact, Lehre and Witt [LW12] have shown that
any unary unbiased black-box algorithm, that is, any black-box algorithm that
treats the bit positions 1, . . . , n and the bit values 0 and 1 in a symmetric fashion
(unbiasedness) and that creates new solution only from one parent (unary), takes
time at least Ω(n log n) on OneMax. A precise tight bound of (1± o(1))n lnn
was given in [DDY20].

We now conduct a precise analysis of how the Metropolis algorithm with different
values of the parameter α performs on the OneMax problem. The only previous
work on this question [JW07] has shown the following three results for the
number T of iterations taken to find the optimum.

• If α ≥ εn for any positive constant ε, then E[T ] = O(n log n).

• If α = o(n), then E[T ] = Ω(α2n/3α).

• E[T ] is polynomial in n if and only if α = Ω(n/ log n).

This first work clearly shows that a relatively large value of α is necessary to
efficiently optimize OneMax.

Our main result (Theorem 7.5) is very precise analysis of the runtime of the
Metropolis algorithm on OneMax showing that for all α = ω(

√
n), we have

E[T ] = (1± o(1))n ln(n) + (1± o(1))α exp(nα ).

This result covers the most interesting regime describing the transition from
polynomial to exponential runtimes. Our methods would also allow to prove re-
sults for smaller values of α, but in the light of the previously shown exp(Ω(n/α))
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lower bound, these appear less interesting and consequently we do not explore
this further.

Different from the previous work, our runtime result is tight apart from lower
order terms for all α = ω(

√
n) and thus, in particular, for the phase transition

between (1+o(1))n lnn and runtimes exponential in n
α . From this, we learn that

we have a runtime of (1±o(1))n ln(n) if α ≥ n
ln lnn , but that the runtime becomes

ω(n log n) when α ≤ (1−ε) n
ln lnn for any constant ε > 0. Recall from above that

(1 ± o(1))n lnn is the best runtime a unary unbiased black-box algorithm can
have on OneMax (and in fact any function f : {0, 1}n → R with unique global
optimum), so this insight characterizes the optimal parameter settings for the
Metropolis algorithm on OneMax.

Our result also implies the known result that the runtime is polynomial in n if
and only if α = Ω( n

logn ), however, we also make precise the runtime behavior in
this critical phase: For all α = 1

c
n

lnn , the runtime is (1± o(1)) 1cn
c+1(lnn)−1.

We show this result not only because precise runtime results give a better picture
of the performance of an algorithm, but also because our alternative analysis
method gives additional insights on where this runtime stems from. In partic-
ular, we observe that a OneMax fitness of ⌈n − n

α+1⌉ is always obtained very
efficiently (in expected time (1+o(1))n lnn at most). Hence as long as α = ω(1),
an almost optimal solution of fitness (1− o(1))n is found in that time. A third
motivation for this detailed analysis on OneMax is that we need similar argu-
ments in the next section, where we study the performance of the Metropolis
algorithm to see how well it copes with local optima.

7.4.1 Preliminaries and Notation

From the symmetry of the Metropolis algorithm and the OneMax function, it
is clear that all search points x ∈ {0, 1}n having the same number of ones, that
is, the same OneMax value, and thus the same number of zeroes, that is, same
distance

d(x) := n−OneMax(x)

from the optimum, behave equivalently. For this reason, let us, for all i ∈ [0..n],
denote by Li = {x ∈ {0, 1}n | d(x) = i} the set of search points in distance i.
Since the Metropolis algorithm creates new solutions by flipping single bits, an
iteration starting with a solution x ∈ Li for some i can only end with a solution
in Li−1, Li, or Li+1. By definition of the algorithm, the probability for reducing
the fitness distance from a solution x ∈ Li (that is, creating an offspring in Li−1)
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is

p−i :=
i

n

and the probability for increasing the distance (that is, creating an offspring in
Li+1 and accepting it as new solution) is

p+i :=
n− i

αn
.

We note that this notation is different from the one used in [JW07], where the
notation was based on the fitness and not on the distance. Hence our p+i equals
the p−n−i used there. We prefer to work with the distance since the more critical
part of the optimization process is close to the optimum.

With the transition probabilities just defined, we can use simple Markov chain
arguments to, in principle, compute the expected runtime. For i ≥ j, denote
by Ej

i the expected time the Metropolis algorithm (with some given parameter
α suppressed in this notation) takes to find a solution in Lj when started with
a solution in Li. We abbreviate Ei = Ei−1

i . Then, by elementary properties of
Markov processes,

Ej
i =

j+1∑
ℓ=i

Eℓ. (7.1)

From the one-step equation Ei = 1+p+i (Ei+1+Ei)+(1−p+i −p−i )Ei, we derive
the following equation, which was also used in [JW07].

Ei =
1

p−i
+

p+i
p−i

Ei+1. (7.2)

The analysis of the runtime of the Metropolis algorithm on OneMax in [JW07]
was solely based on the above two equations (with, of course, non-trivial es-
timates of the arising sums). In this work, we partially take a different route
by separately analyzing the part of the process in which the algorithm has a
positive expected fitness gain per iteration. This is when the fitness distance
is still large and thus is it easy to find improving solutions. In this part of the
process, we can conveniently use multiplicative drift analysis, a tool presented
a few years after [JW07]. For the remainder of the process, we use arguments
similar to those in [JW07], however, we profit from the fact that we need to
cover only a smaller range of fitness levels.
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7.4.2 Pseudo-linear Time in the Regime with Positive
Drift

We start our analysis with the part of the process where the expected progress
per iteration is positive. We recall that we denote by d(x) the fitness distance
(and Hamming distance) of x to the optimum, in other words, the number
of zeros in x. Recalling that x(t) denotes the current solution at the end of
iteration t (and x(0) the random initial solution), and defining Dt = d(x(t)) for
convenience, we see that the expected progress in one iteration satisfies

E[Dt−Dt+1 | Dt] = p−Dt
+

1

α
p+Dt

=
Dt

n
− n−Dt

αn
= Dt

(
1

n
+

1

αn

)
− 1

α
. (7.3)

In particular, the expected progress is positive when Dt > n
α+1 =: k∗ and

negative when Dt < k∗. An expected progress towards a target can be trans-
lated into estimates on the hitting time of this target, usually via so-called drift
theorems [Len20], and this is our approach to show the following result.

Theorem 7.1. Let k∗ = n
α+1 and k = ⌈k∗⌉. Then the first time T such that

the Metropolis algorithm with parameter α finds a solution x(T ) with d(x(T )) ≤ k
satisfies

E[T ] ≤ α

α+ 1
n(ln(n) + 1).

If k = o(n), then we also have E[T ] ≥ (1− o(1))n ln(nk ).

Proof. To derive a situation with multiplicative drift, we regard a shifted version
of the process (Dt). Let Xt = Dt − k∗ for all t. By (7.3), we have

E[Xt −Xt+1 | Xt] = E[Dt −Dt+1 | Dt]

= Dt

(
1

n
+

1

αn

)
− 1

α

=

(
Xt +

n

α+ 1

)(
1

n
+

1

αn

)
− 1

α

= Xt

(
1

n
+

1

αn

)
=: Xtδ,

that is, we have an expected multiplicative progress towards 0 in the regime
Xt ≥ 0 (which is the regime Dt ≥ k∗).

To apply the multiplicative drift theorem, we require a process in the non-
negative numbers, having zero as target, and such that the smallest positive
value is bounded away from zero. For this reason, we define (Yt) by Yt = 0 if
Xt < k+1− k∗ =: ymin and Yt = Xt otherwise (in other words, for Dt ≥ k+1,
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the processes (Xt) and (Yt) agree, and we have Y0 = 0 otherwise). Since (Xt)
changes by at most one per step and since ymin ≥ 1, in an iteration t such that
Xt = Yt ≥ ymin we have Yt+1 ≤ Xt+1 and thus E[Yt−Yt+1 | Yt] ≥ E[Xt−Xt+1 |
Xt] = Xtδ = Ytδ, that is, we have the same multiplicative progress. We can thus
apply the multiplicative drift theorem from [DJW12] (also found as Theorem 11
in the survey [Len20]) and derive that the first time T such that YT = 0 satisfies
E[T ] ≤ 1+ln(n/ymin)

δ ≤ α
α+1n(ln(n) + 1) as claimed.

For the lower bound, we argue as follows, very similar to the proof of [JW07,
Proposition 5]. Let D0 be the fitness distance of the initial random search
point. We condition momentarily on a fixed outcome of D0 that is larger than
k. Consider in parallel a run of the randomized local search heuristic RLS
[DDY20] on OneMax, starting with a fitness distance of D0. Note that this
is equivalent to saying that we start a second run of the Metropolis algorithm
with parameter α = ∞. Denote the fitness distances of this run by D̃t. This
is again a Markov chain with one-step changes in {−1, 0, 1}, however, with
transition probabilities p̃−i = p−i and p̃+i = 0 ≤ p+i . Consequently, a simple
induction shows that Dt stochastically dominates D̃t. In particular, the first
hitting time T̃ of k of this chain is a lower bound for T , both in the stochastic
domination sense and in expectation. We therefore analyze T̃ . Since D̃t in each
step either decreases by one or remains unchanged, we can simply sum up the
waiting times for making a step towards the target, that is, E[T̃ ] =

∑k−1
i=D0

1
p−
i

=∑k−1
i=D0

n
i = n(HD0

−Hk−1), where Hm :=
∑m

i=1
1
i denotes the m-th Harmonic

number. Using the well-known estimate ln(m) ≤ Hm ≤ ln(m) + 1, we obtain
E[T̃ ] ≥ n(ln(D0)−ln(k)−1). Recall that this estimate was conditional on a fixed
value of D0. Since D0 follows a binomial distribution with parameters n and 1

2 ,
we have D0 ≥ n

2 − n3/4 with probability 1− o(1), and in this case, E[T | D0 ≥
n
2 − n3/4] ≥ n(ln(n2 − n3/4 − 1)− ln(k)− 1) = (1− o(1))n ln(nk ), where the last
estimate exploits our assumption k = o(n). Just from the contribution of this
case, we obtain E[T ] ≥ (1− o(1))E[T | D0 ≥ n

2 − n3/4] = (1− o(1))n ln(nk ).

We note that there is a non-vanishing gap between our upper and lower bound
in the theorem above when k = nΩ(1). The reason, most likely, is the argument
used in the lower bound proof that the Metropolis algorithm cannot be faster
than randomized local search, which ignores any negative effect of accepting infe-
rior solutions. For our purposes, the theorem above is sufficient, since for all but
very large values of α (where the gap is negligible) the runtime of the Metropolis
algorithm is dominated by the second part of the optimization process starting
from a solution x with d(x) = k. The reason why we could not prove a tighter
bound for all values of α is that the existing multiplicative drift theorems for
lower bounds, e.g., Theorem 2.2 in [Wit13] or Theorem 3.7 in [DKLL20], either
are not applicable to our process or necessarily lead to a constant-factor gap to
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the upper bound obtained from multiplicative drift. Applying the variable drift
theorem from [DFW11] to the process Zt = min{Ys | s ≤ t} appears to be a
promising way to overcome these difficulties, but since we do not need such a
precise bound, we do not follow this route any further.

7.4.3 Progress Starting the Equilibrium Point

In the regime with negative drift, we use elementary Markov chain arguments to
estimate runtimes. We profit here from the fact that the optimization time when
starting in an arbitrary solution in the negative drift regime is very close to the
optimization time when starting in a solution that is a Hamming neighbor of
the optimum. This runtime behavior, counter-intuitive at first sight, is caused
by the fact that the apparent advantage of starting with a Hamming neighbor
is diminished by that fact that (at least for α not too large) it is much easier
to generate and accept an inferior solution than to flip the unique missing bit
towards the optimum. We make this precise in the following theorem. Since it
does not take additional effort, we formulate and prove this result for a range
of starting points k that extends also in the regime of positive drift. In this
section, we shall use it only for ℓ = k = ⌈k∗⌉.

Theorem 7.2. For all 1 ≤ ℓ ≤ 2.5
1+2.5/α

n
α , we have

E1 ≤ E0
ℓ ≤ (1 +O(αn ))E1.

Proof. By equation (7.2) and the values for p+i , p
−
i computed earlier, we see that

Ei =
n

i
+

n− i

αi
Ei+1, (7.4)

for all i ∈ [1..n− 1]. By omitting the first summand, we obtain Ei+1 ≤ αi
n−iEi,

and an elementary induction yields Ej+1 ≤ αj 1·2...j
(n−j)...(n−1)E1 for all j ∈ [1..n−1].

Using the estimate j! ≤ 3
√
j( je )

j stemming from a sharp version of Stirling’s
formula due to Robbins [Rob95] (also stated as Theorem 1.4.10 in [Doe20b]),
we estimate, for j ∈ [1..ℓ],

αj 1 · 2 . . . j
(n− j) . . . (n− 1)

≤ 3
α

n− 1
j3/2

(
α(j − 1)

e(n− j)

)j−1

≤ 3
α

n− 1
j3/2

(
αℓ

e(n− ℓ)

)j−1

≤ 3
α

n− 1
j3/2

(
2.5
e

)j−1
,



168 Paper E: How Fast Does the MA Leave Local Optima?

where we note that our assumption ℓ ≤ 2.5
1+2.5/α

n
α is equivalent to αℓ

e(n−ℓ) ≤
2.5
e .

By (7.1), we have

E0
ℓ = E1 +

ℓ−1∑
j=1

Ej+1

≤ E1 +

ℓ−1∑
j=1

αj 1 · 2 . . . j
(n− j) . . . (n− 1)

E1

≤ E1 +

ℓ−1∑
j=1

3
α

n− 1
j3/2

(
2.5
e

)j−1
E1

= (1 +O(αn ))E1,

where we exploited that the series
∑∞

j=1 j
ABj converges for all constants A ∈ R

and b ∈ (0, 1). Note that the first line in this set of equations also shows our
elementary lower bound E0

ℓ ≥ E1.

From Theorems 7.1 and 7.2, both applied with k = ⌈k∗⌉, we know the runtime
of the Metropolis algorithm on OneMax except that we do not yet understand
E1. This is what we do now.

7.4.4 Estimating E1

To estimate E1, we use again elementary Markov arguments, but this time to
derive an expression for E1 in terms of Eℓ for some ℓ sufficiently far in the regime
with positive drift (Theorem 7.3). Being in the positive drift regime, Eℓ then
can be easily bounded via drift arguments, which gives the final estimate for E1

(Corollary 7.4).

Theorem 7.3. Let α ≥ 1 and ℓ = o(
√
n). Let

E+
1 = n

(
ℓ−1∑
i=0

(n
α

)i 1

(i+ 1)!

)
+
(n
α

)ℓ 1

ℓ!
Eℓ+1.

Then (1− o(1))E+
1 ≤ E1 ≤ E+

1 .

Proof. We first show that for all ℓ ∈ [0..n− 1], we have

E1 =

ℓ−1∑
i=0

n · (n− 1) . . . (n− i)

αi(i+ 1)!
+

(n− 1) . . . (n− ℓ)

αℓℓ!
Eℓ+1. (7.5)
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This is trivially true for ℓ = 0 (when using the convention that an empty sum
evaluates to zero and an empty product evaluates to one). Assume now that
equation (7.5) is true for some ℓ ∈ [0..n− 2]. Together with equation (7.4), we
compute

E1 =

ℓ−1∑
i=0

n · (n− 1) . . . (n− i)

αi(i+ 1)!
+

(n− 1) . . . (n− ℓ)

αℓℓ!
Eℓ+1

=

ℓ−1∑
i=0

n · (n− 1) . . . (n− i)

αi(i+ 1)!
+

(n− 1) . . . (n− ℓ)

αℓℓ!

(
n

ℓ+ 1
+
n− (ℓ+ 1)

α(ℓ+ 1)
Eℓ+2

)

=

ℓ∑
i=0

n · (n− 1) . . . (n− i)

αi(i+ 1)!
+

(n− 1) . . . (n− (ℓ+ 1))

αℓ+1(ℓ+ 1)!
Eℓ+2,

which shows the equation also for ℓ + 1. By induction, the equation holds for
all ℓ ∈ [0..n− 1].

From equation (7.5), we immediately obtain E1 ≤ E+
1 . For i = o(

√
n),

we estimate (n − 1) . . . (n − i) = ni
∏i

j=1(1 −
i
n ) ≥ ni(1 − 1

n

∑i
j=1 j) =

ni(1− i(i−1)
2n ) = ni(1−o(1)), where the inequality uses an elementary generaliza-

tion of Bernoulli’s inequality sometimes called Weierstrass inequality (see, e.g.,
Lemma 1.4.8 in [Doe20b]). This shows the lower bound E1 ≥ (1− o(1))E+

1 .

By estimating Eℓ for ℓ in the positive drift regime, we obtain the following
estimate for E1, which is tight apart from lower order terms when α = o(n).

Corollary 7.4. Let α = ω(
√
n). Then

(1− 2 exp(− 2
3
n
α )− o(1))αen/α ≤ E1 ≤ αen/α.

If α ≥ 2n, then E1 ≤ 2n.

Proof. Let ℓ = ⌈3n
α⌉. Since ℓ = o(

√
n), we can use Theorem 7.3 with this ℓ to

estimate E1. Let X denote a random variable following a Poisson distribution
with parameter λ := n

α . Then

n

(
ℓ−1∑
i=0

(n
α

)i 1

(i+ 1)!

)
= α

(
ℓ−1∑
i=0

λi+1

(i+ 1)!

)

= αeλ

(
ℓ∑

i=0

λie−λ

i!
− e−λ

)
= αeλ

(
Pr[X ≤ ℓ]− e−λ

)
.
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To estimate the second summand in Theorem 7.3, we first note that (nα )
ℓ 1
ℓ! ≤

(neℓα )
ℓ ≤ ( e3 )

3λ follows from the estimate ℓ! ≥ ( ℓe )
ℓ. To bound Eℓ+1, we observe

from equation (7.3) that the drift of the fitness distance Dt, whenever Dt ≥ ℓ+1,
satisfies E[Dt − Dt+1] = Dt(

1
n + 1

αn ) −
1
α ≥

ℓ+1
n −

1
α ≥

2
α , using ℓ ≥ 3n

α in
the last estimate. Consequently, we have an additive drift of at least 2

α for
Dt ∈ [ℓ+ 1..n], and thus the additive drift theorem of He and Yao [HY01] (also
found as Theorem 2.3.1 in [Len20]) yields that the expected time it takes to
reach a Dt value of ℓ when starting in ℓ+ 1 is at most Eℓ+1 ≤ α

2 .

Putting these three estimates together, we obtain an upper bound of

E1 ≤ n

(
ℓ−1∑
i=0

(n
α

)i 1

(i+ 1)!

)
+
(n
α

)ℓ 1

ℓ!
Eℓ+1

≤ αeλ
(
Pr[X ≤ ℓ]− e−λ

)
+
(e
3

)3λ
· α
2
≤ αeλ.

For the lower bound, we note that a Poisson random variable Z with parameter
λ satisfies the Chernoff-type bound Pr[Z ≥ λ+γ] ≤ exp(− γ2

2(λ+γ) ) for all γ ≥ 0,
see [BLM13, Section 2.2]. Consequently, with γ = 2λ, we obtain Pr[X ≤ ℓ] ≥
1− exp(− 2

3λ). This gives a lower bound of

E1 ≥ (1− o(1))n

(
ℓ−1∑
i=0

(n
α

)i 1

(i+ 1)!

)
≥ (1− o(1))αeλ

(
Pr[X ≤ ℓ]− e−λ

)
≥ (1− exp(− 2

3λ)− exp(−λ)− o(1))αeλ.

For the case α ≥ 2n, we use again the additive drift argument. Whenever
Dt ≥ 1, we have E[Dt−Dt+1 | Dt] = Dt(

1
n + 1

αn )−
1
α ≥

1
n −

1
α ≥

1
2n . Hence the

additive drift theorem bounds the expected time E1 to reach Dt = 0 starting
from Dt = 1 by 1/ 1

2n = 2n.

7.4.5 A Tight Estimate for the Total Optimization Time

From the partial results proven so far, we now obtain an estimate for the total
runtime that is tight apart from lower order terms.

Theorem 7.5. Let T be the runtime of the Metropolis algorithm with parameter
α on the OneMax function defined on bit strings of length n. Let α = ω(

√
n).

Then
E[T ] = (1± o(1))n ln(n) + 1α≤n(1± o(1))αen/α.
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Proof. Let k = ⌈ n
α+1⌉. Let Tk be the first time that a solution x with d(x) ≤ k is

found. By Theorem 7.1, we have E[Tk] ≤ (1+ o(1))n ln(n). Since α = ω(1) and
thus k = o(n), Theorem 7.1 also gives the lower bound E[Tk] ≥ (1−o(1))n ln(nk ).

When α ≥ n − 1, that is, k = 1, then by Corollary 7.4 the remaining expected
runtime is E1 = O(n). Together with our estimates on Tk, this shows the claim
E[T ] = (1± o(1))n ln(n) for this case.

Hence let α < n − 1 and thus k ≥ 2. Since α = ω(
√
n) and we aim at an

asymptotic result, we can assume that n, and thus α, are sufficiently large.
Then k ≤ 2 n

α+1 ≤
2.5

1+2.5/α
n
α , that is, k satisfies the assumptions of Theorem 7.2.

By this theorem, the expectation of the remaining runtime satisfies E0
k = (1 +

O(αn ))E1. By Corollary 7.4, E1 ≤ αen/α. This shows an upper bound of
E[T ] ≤ (1 + o(1))n ln(n) + (1 +O(αn ))αe

n/α. For α ≥ n
ln lnn , this is the claimed

upper bound (1 + o(1))n ln(n), for α < n
ln lnn , this is the claimed upper bound

(1± o(1))n ln(n) + (1± o(1))αen/α.

If remains to show the lower bound for α < n − 1. If α ≥ n
ln lnn and thus

k = O(log log n), the lower bound E[Tk] ≥ (1− o(1))n ln(nk ) = (1− o(1))n ln(n)
suffices. For α < n

ln lnn , we estimate E[T ] ≥ E[Tk] + E0
k ≥ E[Tk] + E1 =

(1 − o(1))n ln(nk ) + (1 − 2 exp(− 2
3
n
α ) − o(1))αen/α = (1 − o(1))n ln(nk ) + (1 −

o(1))αen/α, again using Theorem 7.2 and Corollary 7.4. For α ≥ n
ln(n) , we have

ln(nk ) = (1 − o(1)) ln(n) and thus E[T ] ≥ (1 − o(1))n ln(n) + (1 − o(1))αen/α.
For α ≤ n

ln(n) , we have n ln(n) = o(αen/α), hence our claimed lower bound
is E[T ] ≥ (1 − o(1))αen/α, which follows trivially from the estimate E[T ] ≥
(1− o(1))n ln(nk ) + (1− o(1))αen/α just shown.

7.5 Analysis of Cliff

We now examine how the Metropolis algorithm behaves when optimizing a
function with a local optimum. We recall some definitions used in Subsec-
tion 7.4.1. Let Li be the set of search points with i zero-bits, i. e., Li := {x ∈
{0, 1}n | n − ∥x∥1 = i}. For j < i, let Ej

i be the expected number of iter-
ations the Metropolis algorithm spends to find a solution in Lj when started
with a solution in Li. We write Ei = Ei−1

i . By the distance d(x) of a search
point x we understand the Hamming distance to the global optimum 1n, i. e.,
d(x) = n− ∥x∥1.

Hereinafter, by writing Cliff, we mean the function Cliffd,m defined in the be-
ginning of the section for parameters d,m clear from the context. There are two
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slopes in Cliff on which the algorithm has the same behavior as on OneMax.
More precisely, for i /∈ {m − 1,m}, the expected time Ei the Metropolis algo-
rithm takes to find a solution with distance i− 1 when started with a solution
with distance i follows Equation (7.4), that is, we have

Ei =
n

i
+

n− i

αi
Ei+1. (7.6)

However, in the local optimum, i. e., solutions with n −m one-bits, increasing
the number of ones does not increase the fitness. In this case, p−m, denoting the
probability of accepting a search point with distance m− 1 (i. e., a search point
with n − m + 1 one-bits), equals α−dm/n, and p+m, denoting the probability
of accepting a search point with distance m + 1, equals α−1(n −m)/n. Using
Equation (7.2), we obtain

Em = αd n

m
+ αd−1 · n−m

m
Em+1. (7.7)

Finally, for the search points with distance m − 1, we have p−m−1 = m−1
n and

p+m−1 = n−m+1
n , resulting in

Em−1 =
n

m− 1
+

n−m+ 1

m− 1
Em. (7.8)

To ease our analysis of the optimization time T , we shall assume that m = o(n).
Then a simple Chernoff bound argument shows that the initial search point is
at a distance greater than m from the global optimum with high probability.
Thus, we have

(1− o(1))
(
Em + Em−1 + E0

m−2

)
≤ E (T ) ≤ Em

n + Em + Em−1 + E0
m−2.

Intuitively, the term Em−1 is one of the most influential terms on the total
optimization time. The reason is that with the search points in this state, the
algorithm goes back to the local optimum with n−m one-bits (1+ o(1))n/m =
ω(1) times in expectation, where it has to again try many steps to accept a worse
solution with fitness difference d. Besides aforementioned event, the term E1,
which is hidden in E0

m−2, also plays an important role in the optimization time
as their corresponding search points have the least drift value or basically, the
most negative drift value among all search points except the ones near the drop
for some α.

We will even observe that E1 might impact on the total optimization time more
significantly than Em−1 if all search points within the distance m have the
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negative drift, that is, the drop is at a distance less than the equilibrium k∗ :=
n

α+1 . In this case, if the algorithm is only one improvement away from the global
optimum, it might get back to the local optimum with high probability. That is
why we are not really interested in Em−1, which is basically captured by E1 in
this case. Contrariwise, when the equilibrium point k∗ := n

α+1 is on the second
slope, it becomes essential to consider and analyze the role of Em−1 in the total
optimization time, and this term cannot be ignored in the total optimization
time without additional assumptions.

The following theorem is our main result in this section. This theorem analyzes
the optimization time of Metropolis algorithm on Cliffd,m in two parts: where
the search points with distance m + 1 are in the regime with positive drift
(Part 1) or negative drift (Part 2).

In Part 1, if the equilibrium point is far from the drop (i. e., m−2 > β ≈ 2.5k∗),
we have to use some additional arguments (Lemma 7.8) as Theorem 7.2 is only
valid for ℓ ≤ β. That is why there are two cases for the upper bound. We
discuss this issue more comprehensively in the Subsection 7.5.1.

Theorem 7.6. Let k∗ := n
α+1 and β := 2.5

1+2.5/α (n/α). Let T denote the first
time Metropolis with α = ω(

√
n) on Cliffd,m with m = o(

√
n) and d ≥ 1 finds

the optimum point 1n.

1. If k∗ < m+ 1, then

E (T ) ≤


(
(1 +O(αn ))

(n
α )

m−2

(m−2)! + 1 + o(α/n)

)
Em−1 if m− 2 ≤ β,(

(1 +O(αn ))
(n

α )
m−2

(m−2)! + 5/3 + o(α/n)

)
Em−1 if m− 2 > β,

and

E (T ) ≥ (1− o(1))

( (
n
α

)m−2

(m− 2)!
+ 1

)
Em−1,

where

(1− o(1))
n2αd−1

m(m− 1)

(
α+

n

m+ 1

)
≤ Em−1

≤ (1 + o(1))
n2αd−1

m(m− 1)

(
α+

n

(m+ 1)α+1
α − n/α

)
.

2. If m+ 1 ≤ k∗, then(
1√

2πeα/(12n)
− o(1)

)
αd+2en/α√

n/α
≤ E (T ) ≤ (1− o(1))αd+2en/α.
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In Subsection 7.5.1, we discuss the optimization time for the part 1 while the
part 2 is investigated in Subsection 7.5.2.

7.5.1 Progress When the Cliff is Below the Equilibrium
Point

In this subsection, we investigate the case that the drift at the search points
with distance m+ 1 is positive, that is, we prove part 1 of Theorem 7.6.

In this case, the algorithm easily climbs up to the local optimum, that is, a search
point with n − m one-bits, in Θ(n log n) steps as shown in Subsection 7.4.2.
Leaving the local optimum to a search point closer to the global optimum is
difficult, that is, the time Em is large, but since the algorithm from a search
point in distance m − 1 often moves back to the local optimum, we have this
fact Em = o (Em−1).

Regarding Em−1, using recurrence relations obtained at the beginning of the
section, we obtain a relation between Em−1 and Em+1. Also, since the drift
at the search points with distance m + 1 is positive, we have a closed form for
Em+1 via the drift theorem, resulting in the following closed form for Em−1.

Lemma 7.7. Let k∗ = n
α+1 . For k∗ < m+ 1 = o(n), we have

(1− o(1))
n2αd−1

m(m− 1)

(
α+

n

m+ 1

)
≤ Em−1

≤ (1 + o(1))
n2αd−1

m(m− 1)

(
α+

n

(m+ 1)α+1
α − n/α

)
.

Proof. Note that we have α > n
m+1 − 1 = ω(1) from our assumptions.

By Equation (7.7) and (7.8), we have

Em−1 =
n

m− 1
+

n−m+ 1

m− 1
Em

=
n

m− 1
+

n−m+ 1

m− 1

(
αd−1

(
αn

m
+

n−m

m
Em+1

))
.

For the lower bound, since m = o(n), we have

Em−1 ≥
n−m+ 1

m− 1

(
αd−1

(
αn

m
+

n−m

m
Em+1

))
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= (1− o(1))
n

m− 1

(
αd−1

(αn
m

+ (1− o(1))
n

m
Em+1

))
= (1− o(1))

n2

m(m− 1)

(
αd−1 (α+ Em+1)

)
, (7.9)

and for the upper bound,

Em−1 ≤
n

m− 1
+

n

m− 1

(
αd−1

(αn
m

+
n

m
Em+1

))
=

n

m− 1
+

n2

m(m− 1)

(
αd−1 (α+ Em+1)

)
= (1 + o(1))

n2

m(m− 1)

(
αd−1 (α+ Em+1)

)
. (7.10)

It remains to estimate Em+1. Using Equation (7.3), the drift at distance m+ 1

is positive and equals ∆ := (m+1)(α+1)−n
αn . Since the drift at larger distances is

at least ∆, by the additive drift theorem of He and Yao [HY01] (also found as
Theorem 2.3.1 in [Len20]), the expected time to reach the distance m starting
from the distance m+ 1 is at most 1/∆ = n

(m+1)α+1
α −n/α

. For the lower bound
on Em+1, a necessary condition to reach the distance m from the distance m+1
is that one of m+1 zero-bits flips, happening with probability (m+1)/n. This
upper bound on reaching the distance m holds in every step. Using the geometric
distribution, we need at least n/(m + 1) steps in expectation. Altogether, we
have

n

m+ 1
≤ Em+1 ≤

n

(m+ 1)α+1
α − n/α

. (7.11)

Replacing Em+1 in Equation (7.9) and (7.10) with Equation (7.11), we get the
following bounds.

(1− o(1))
n2αd−1

m(m− 1)

(
α+

n

m+ 1

)
≤ Em−1

≤ (1 + o(1))
n2αd−1

m(m− 1)

(
α+

n

(m+ 1)α+1
α − n/α

)
.

We note that the above estimate for Em+1 would be exactly the same for the
optimization process on OneMax since the time to go from distance m+ 1 to
m is not affected by the cliff. The reason why we could not use results from
Section 7.4 here is that there we did not analyze the Ei separately, but used a
simpler argument to analyze the sum of the first Ei.
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Now, we discuss how we estimate E0
m−2, i. e., the expected time to reach the

global optimum from a search point located in the second position after the
drop in the valley. Since in the valley, we have the same recurrence relation
between Ei and Ei+1 as for OneMax, we can use similar arguments as in
Theorem 7.2. If we have m−2 ≤ β := 2.5

1+2.5/α
n
α , the term E0

m−2 asymptotically
equals E1. Otherwise, if m − 2 > β, we only have the estimation E0

β = (1 +

o(α/n))E1, so we also need to analyze Eβ
m−2.

In the following lemma, we prove that the expected time to reach the distance β
starting from m−2, i. e., Eβ

m−2, is at most by a constant factor larger than Em−1.

Lemma 7.8. Let β := 2.5
1+2.5/α (n/α). For β < m− 2 = o(

√
n), we have

Eβ
m−2 ≤ (2/3 + o(1))Em−1.

For the proof of the previous lemma, we need a classical inequality from prob-
ability theory called Wald’s inequality.

Lemma 7.9 (Wald’s inequality from [DK15]). Let T be a random variable with
a finite expectation, and let X1, X2, . . . be non negative random variables with
E (Xi | T ≥ i) ≤ C. Then

E

(
T∑

i=1

Xi

)
≤ E (T ) · C.

Proof of Lemma 7.8. For β ≤ i ≤ m − 1, let Si be the event of that the
algorithm starts from a search point with distance i and reaches a search
point with distance β before it reaches distance m − 1. Reusing the no-
tation x(t) from Subsection 7.4.2, we let Xt = n − ∥x(t)∥1. If we define
U b
a = min{t | Xt = b and X0 = a}, Si is defined as the event that Uβ

i < Um−1
i .

In the first part of the proof, we aim at bounding Pr (Sm−2) from below.
According to the definition, we have Pr (Sm−1) = 0, Pr (Sβ) = 1, and for
β + 1 ≤ i ≤ m− 2, using the law of total probability,

Pr (Si) = p−i Pr (Si−1) + p+i Pr (Si+1) + (1− p−i − p+i ) Pr (Si) ,

which can be rewritten as

Pr (Si)− Pr (Si−1) =
p+i
p−i

(Pr (Si+1)− Pr (Si)).
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By denoting wi :=
∏m−2

k=i
p+
k

p−
k

and carrying out a simple induction, for all β+1 ≤
i ≤ m− 1, we have

Pr (Si)− Pr (Si−1) = wi(Pr (Sm−1)− Pr (Sm−2)).

Through a telescoping sum of the equations, we get

Pr (Sm−1)− Pr (Sβ) = (Pr (Sm−1)− Pr (Sm−2))

m−1∑
i=β+1

wi.

Hence, using the fact that Pr (Sm−1) = 0, Pr (Sβ) = 1, we have

Pr (Sm−2) =
1∑m−1

i=β+1 wi

.

Furthermore, for β + 1 ≤ i ≤ m − 2, since p+
i

p−
i

= n−i
αi ≤

n
α·β , we obtain wi ≤(

n
αβ

)m−i−1

. Since n/(αβ) < 1, using the geometric series sum formula, we get

m−1∑
i=β+1

wi ≤
∞∑
i=0

(
n

αβ

)k

=

(
1− n

αβ

)−1

,

resulting in Pr (Sm−2) ≥
(
1− n

αβ

)
= 3+5/α

5 ≥ 3/5 through the geometric dis-
tribution.

Now, in the second part of the proof, we estimate the time τ for the process
starting from a search point with distance m − 2 to reach a search point with
distance either m− 1 or β, that is,

τ := min
{
Um−1
m−2 , U

β
m−2

}
.

To compute an upper bound on E[τ ], we introduce a stopped process, y(t)

defined as follows. We let y(0) = x(0), and for t ≥ 1,

y(t) =

{
x(t) if Xt ̸= m− 1,
y(t−1) otherwise,

and let Yt := n − ∥y(t)∥1, and τ ′ := Uβ
m−2. The process y(t) follows the same

movements as x(t), except if x(t) gets to a point with distance m− 1, where it is
stopped. With our definition, we see immediately that ∀t ≥ 0, Yt ≤ m− 2, and
that τ ≤ τ ′.

To compute E[τ ′], we compute the drift associated to Yt, and we notice that
this process has the same drift as the process associated to the optimization of
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OneMax by the MA (y(t) is not affected by the cliff because it can never reach
it). We then use Theorem 7.1 to deduce that

E[τ ] ≤ E[τ ′] ≤ α

α+ 1
n(lnn+ 1),

resulting in E[τ ] = o(Em−1) through Lemma 7.7 with m = o(
√
n).

Now, in the final part of the proof, we estimate Eβ
m−2 by using Pr (Sm−2)

and E (τ) which were bounded in the previous paragraphs. Let It be the random
variable denoting the number of iterations starting from a search point with
distance m−2 to reach a search point with distance m−1, and thereafter again
to reach a search point with distance m− 2. Then we have

Eβ
m−2 ≤ E

(
ℓ∑

t=1

It

)
+ E(τ | Sm−2) , (7.12)

where ℓ is the number of times the algorithm reaches a search point with dis-
tance m − 1 before β starting with a search point with distance m − 2. Since
the assumptions of the Wald’s inequality in Lemma 7.9 are satisfied, the first
term in the right-hand side of the inequality equals E (ℓ)C, where based on the
definition, we have E (Ii | i ≤ ℓ) = E (Em−1) + E

(
τ | Sm−2

)
=: C. Also, using

the geometric distribution, we have E (ℓ) + 1 = Pr (Sm−2)
−1. Altogether, the

right-hand side of Inequality (7.12) is bounded from above by(
Pr (Sm−2)

−1 − 1
) (

Em−1 + E
(
τ | Sm−2

))
+ E(τ | Sm−2)

=
(
Pr (Sm−2)

−1 − 1
)
Em−1 +

(
1− Pr (Sm−2)

Pr (Sm−2)

)
E
(
τ | Sm−2

)
+E(τ | Sm−2)

=
(
Pr (Sm−2)

−1 − 1
)
Em−1

+

(
Pr
(
Sm−2

)
E
(
τ | Sm−2

)
+ Pr (Sm−2) E (τ | Sm−2)

Pr (Sm−2)

)

=
(
Pr (Sm−2)

−1 − 1
)
Em−1 +

(
E (τ)

Pr (Sm−2)

)
.

Using the bounds obtained on Pr (Sm−2) and E (τ), we can finally conclude

Eβ
m−2 ≤ (2/3 + o(1))Em−1.

Finally, by working out the informal arguments for the overall proof idea given
at the beginning of this subsection, we rigorously prove the optimization time
in Part 1 of Theorem 7.6 as follows.



7.5 Analysis of Cliff 179

Proof of Theorem 7.6 part 1. Let z0 := ∥x(0)∥1 be the number of one-bits in
the initial random search point. Then, using Chernoff’s bound, for m = o(n),
Pr (z0 ≤ n−m), i. e., the probability that the initial search point is at a distance
at least m from the optimum, is exponentially close to 1, more precisely 1 −
2−Ω(n). Therefore, we have(

1−2−Ω(n)
) (

Em
z0+Em+Em−1+E0

m−2

)
≤ E (T ) ≤ Em

z0+Em+Em−1+E0
m−2. (7.13)

In the following paragraphs, we estimate each of the terms in the last expression and
then finally bound E (T ).

Em
z0 : Since m + 1 > n

α+1
and α = ω(

√
n), the drift as defined is positive, and by

Theorem 7.1,

(1− o(1))n lnn ≤ Em
z0 ≤ α

α+ 1
n(ln(n) + 1).

Using Lemma 7.7 and the fact that d ≥ 1, we have Em−1 = Ω(n3/m3), resulting
in Em

z0 = o(Em−1) for m = o(
√
n).

Em, Em−1: By Equation (7.8), we have Em = o(Em−1), and using Lemma 7.7, we have
Em−1 as defined in the statement of the lemma.

E0
m−2: We consider the following two cases. If m− 2 ≤ β, we use Theorem 7.2 since for

all i ∈ [1..m− 2], the equation Ei =
n
i
+ n−i

αi
Ei+1 holds due to Equation (7.6),

so all arguments in the proof of Theorem 7.2 are still valid. This results in
E0

m−2 = (1+O(α/n))E1. Otherwise, if m−2 > β, we have E0
m−2 = Eβ

m−2+E0
β .

By Lemma 7.8 we get Eβ
m−2 ≤ (2/3 + o(1))Em−1 and by Theorem 7.2, we have

E0
β = (1 + O(α/n))E1 for the same reason as in the previous case. Therefore,

we have E0
m−2 ≥ E1 and

E0
m−2 ≤

{
(1 +O(α/n))E1 if m− 2 ≤ β,

(2/3 + o(1))Em−1 + (1 +O(α/n))E1 if m− 2 > β.

To compute E1, since m = o(
√
n) and the equation Ei =

n
i
+ n−i

αi
Ei+1 holds for

1 ≤ i ≤ m− 2, we can use Theorem 7.3. By this theorem for ℓ = m− 2, we get
(1− o(1))E+

1 ≤ E1 ≤ E+
1 such that

E+
1 = n

(
m−3∑
i=0

(n
α

)i 1

(i+ 1)!

)
+
(n
α

)m−2 1

(m− 2)!
Em−1

= α

(
m−3∑
i=0

(n
α

)i+1 1

(i+ 1)!

)
+ 5

(n
α

)m−2 1

(m− 2)!
Em−1. (7.14)

We now compute the first summand in two cases according to α: α < n and
α ≥ n. In the first case, which is n/α > 1, let us denote f(k) :=

(
n
α

)k 1
k!

.
Since f(k)/f(k− 1) = n/α

k
, f(k) is increasing for k < n/α. Thus, since we have

m + 1 > n
α+1

, the summation in the last expression (Equation (7.14)) can be
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bounded based on the largest term, which is the term of i = m− 3. Therefore,
we get

E+
1 ≤ α(m− 3)

(n
α

)m−2 1

(m− 2)!
+
(n
α

)m−2 1

(m− 2)!
Em−1

≤
(n
α

)m−2 1

(m− 2)!
(αm+ Em−1)

= (1 + o(1))
(n
α

)m−2 1

(m− 2)!
Em−1,

where we have used m = o (
√
n) and Em−1 = Ω(αn2/m2) using Lemma 7.7 with

d ≥ 1.
For n/α ≤ 1, the first summand in Equation (7.14) is O(α), so it is again
asymptotically dominated by Em−1 = Ω(αn2/m2) using Lemma 7.7 with d ≥ 1.
Thus, for n/α ≤ 1, we have

E+
1 = o(Em−1) +

(n
α

)m−2 1

(m− 2)!
Em−1.

For both cases n/α > 1 and n/α ≤ 1, we can conclude the upper bound

E+
1 ≤ o(Em−1) + (1 + o(1))

(n
α

)m−2 1

(m− 2)!
Em−1.

Altogether, by Equation (7.13), we can conclude E (T ) ≥ (1− o(1))Em−1, and

E (T ) ≤

{
Em

z0 + (1 + o(1))Em−1 + (1 +O(α/n))E+
1 if m− 2 ≤ β,

Em
z0+(1 + o(1))Em−1+(2/3 + o(1))Em−1+(1 +O(α

n
))E+

1 if m− 2 > β,

which gives us

E (T ) ≤


(
(1 +O(α

n
))
(n
α )

m−2

(m−2)!
+ 1 + o(α/n)

)
Em−1 if m− 2 ≤ β,(

(1 +O(α
n
))
(n
α )

m−2

(m−2)!
+ 5/3 + o(α/n)

)
Em−1 if m− 2 > β,

and for the lower bound, we get

E (T ) ≥ (1− o(1))

((n
α

)m−2 1

(m− 2)!
+ 1

)
Em−1.

7.5.2 Progress When the Cliff is in Negative Drift Region

In this subsection, we analyze the optimization time of Metropolis on Cliff,
when the drift at the search points with distance m+1 is not positive. In other
words, the algorithm reaches local optima no sooner than a search point with
negative drift.
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In this case, we shall argue (in the proof of Theorem 7.6, Part 2) that(
1− 2−n

)
E1 < E (T ) ≤ (1 +O(α/n))E1,

that is, the optimization time is well described by the time taken to find the
optimum from one of its Hamming neighbors. Here the lower bound stems from
the fact that the algorithm has to visit a Hamming neighbor before finding the
optimum except when the random initial solution is already the optimum.

For the upper bound, by elementary properties of Markov processes, we have

E (T ) ≤ E
⌈ n
α+1 ⌉

n + Em
⌈ n
α+1 ⌉

+ Em + E0
m−1.

Using Equation (7.6), (7.7), and (7.8), we will show that Ei is asymptotically
larger than Ei−1 for the last three terms representing the search points in the
negative drift region.

Therefore, the following lemma bounding E1 plays an important role to estimate
the optimization time. The αd+2en/α factor appearing in both bounds comes
from the fact that the gap is reached and has to be overcome a repeated number
of times due to the negative drift.

Lemma 7.10. If m ≤ n
α+1 − 1 and α = ω(

√
n), we have(

1√
2πeα/(12n)

− o(1)

)
αd+2e⌊n/α⌋√
⌊n/α⌋

≤ E1 ≤ αd+2en/α + o(n).

Proof. Regarding the lower bound, using Equation (7.6), we have Ei = n
i +

n−i
αi Ei+1 ≥ n

i +
n
cαiEi+1 for i ∈ [1..m−2]∪ [m+1..⌊nα⌋], where c = 1+⌊nα⌋/(n−

⌊nα⌋) because

Ei =
n

i
+

n− i

αi
Ei+1 =

n

i
+

n

(1 + i/(n− i))αi
Ei+1

≥ n

i
+

n

(1 + ⌊nα⌋/(n− ⌊
n
α⌋))αi

Ei+1 =
n

i
+

n

cαi
Ei+1.

Then, using the recursive formulas for i ∈ [1..m− 2], we achieve

E1 ≥
m−3∑
i=0

n

(i+ 1)!

( n

cα

)i
+

1

(m− 2)!

( n

cα

)m−2

Em−1.

In the drop region, i.e., i = m and i = m − 1, using Equation (7.7) and (7.8),
we have

Em−1 ≥
n

m− 1
+

n

c(m− 1)
Em,
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Em ≥ αd n

m
+ αd n

cαm
Em+1,

which results in

E1 ≥
m−2∑
i=0

n

(i+ 1)!

( n

cα

)i
+

α

(m− 1)!

( n

cα

)m−1

Em,

and furthermore

E1 ≥
m−2∑
i=0

n

(i+ 1)!

( n

cα

)i
+

n · αd+1

m!

( n

cα

)m−1

+
αd+1

m!

( n

cα

)m
Em+1.

By using Equation (7.6) for m+ 1 ≤ i ≤ ⌊nα⌋, we achieve

E1 ≥
m−2∑
i=0

n

(i+ 1)!

( n

cα

)i
+ αd+1

⌊n
α ⌋−1∑

i=m−1

n

(i+ 1)!

( n

cα

)i
+

αd+1

⌊nα⌋!

( n

cα

)⌊n
α ⌋

E⌊n
α ⌋+1.

The last expression is bounded from below by

αd+1

⌊n
α ⌋−1∑

i=m−1

n

(i+ 1)!

( n

cα

)i
≥ cαd+2

⌊n
α ⌋−1∑

i=m−1

1

(i+ 1)!

( n

cα

)i+1

≥ cαd+2 1

⌊n/α⌋!

( n

cα

)⌊n/α⌋
.

Since n
α+1 − 1 > m and m > 0, we have n/α > 2. Thus, using Stirling’s formula

(Theorem 1.4.10 in [Doe20b]), the last term is bounded from below by

cαd+2 1√
2π⌊n/α⌋eα/(12n)

(
en

cα⌊nα⌋

)⌊n/α⌋

≥ αd+2

cn/α−1 ·
√
2π⌊n/α⌋eα/(12n)

e⌊n/α⌋.

Since n/α = o(
√
n), we have

cn/α−1 =

(
1 +

⌊ n
α+1⌋

(n− ⌊ n
α+1⌋)

)n/α−1

≤
(
1 +

n/α

n− n/α

)n/α

≤ e
n

α(α−1) = 1+o(1),

where α = ω(
√
n). Then, we have

E1 ≥
(

1√
2πeα/(12n)

− o(1)

)
αd+2e⌊n/α⌋√
⌊n/α⌋

.
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Regarding the upper bound, using Equation (7.6), for i ∈ [1..m − 2] ∪ [m +
1..⌈3n/α⌉], we have Ei =

n
i + n−i

αi Ei+1 ≤ n
i + n

αiEi+1.

Then, using the recursive formulas for i ∈ [1..m− 2], we achieve

E1 ≤
m−3∑
i=0

n

(i+ 1)!

(n
α

)i
+

1

(m− 2)!

(n
α

)m−2

Em−1.

In the drop region, i.e., i = m and i = m − 1, using Equation (7.7) and (7.8) ,
we can compute

Em−1 ≤
n

m− 1
+

n

m− 1
Em,

and

Em ≤ αd n

m
+ αd n

αm
Em+1,

which results in

E1 ≤
m−2∑
i=0

n

(i+ 1)!

(n
α

)i
+

α

(m− 1)!

(n
α

)m−1

Em,

and

E1 ≤
m−2∑
i=0

n

(i+ 1)!

(n
α

)i
+

n · αd+1

m!

(n
α

)m−1

+
αd+1

m!

(n
α

)m
Em+1.

For i ∈ [m+ 1..⌈3n/α⌉], using Equation (7.6), we have

E1 ≤
m−2∑
i=0

n

(i+ 1)!

(n
α

)i
+ αd+1

⌈3n/α⌉−1∑
i=m−1

n

(i+ 1)!

(n
α

)i
+

αd+1

(⌈3n/α⌉)!

(n
α

)⌈3n/α⌉
E⌈3n/α⌉+1

≤ αd+2
∞∑
i=0

1

i!

(n
α

)i
+ αd+1

(e
3

)⌈3n/α⌉
E⌈3n/α⌉+1 ≤ αd+2en/α + o

(
αd+1

)
= (1 + o(1))αd+2en/α,

where we have E⌈3n/α⌉+1=O(n) since the search points in the distance ⌈3n/α⌉+
1 have positive drift (see Equation (7.3)).

Finally, by working out the informal arguments for the overall proof idea given
at the beginning of this subsection, we rigorously prove the optimization time
for the part 2 in Theorem 7.6 as follows.
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Proof of Theorem 7.6 part 2. We first prove that

(1− o(1)) (n lnn+ E1) ≤ E (T ) ≤ α

α+ 1
n(lnn+ 1) + E1(1 +O(α/n)).

Regarding the lower bound, using Theorem 7.1, the running time to reach a
search point with a negative drift (at distance ⌈ n

α+1⌉ ≥ m+ 1 where m > 1) is
at least (1−o(1))n lnn for α = ω(

√
n). Since the algorithm flips at most one bit

each iteration, at a point of time, one search point at distance 1 is reached if the
initial search point is not the global optimum with probability 2−n. Therefore,
for the lower bound, we have E (T ) ≥ (1− o(1)) (n lnn+ E1).

Regarding the upper bound, we have the following inequalities

E (T ) ≤ E
⌈ n
α+1 ⌉

n + Em
⌈ n
α+1 ⌉

+ Em + E0
m−1.

In the following paragraphs, we aim at estimating the terms in the last expres-
sion.

E0
m−1: Via Equation (7.6), we use the recurrence relation

Ei+1 =
αi

n− i
Ei −

αn

n− i
≤ αi

n− i
Ei. (7.15)

For i ≤ n/(α+ 1), we have

αi

n− i
≤ α · n/(α+ 1)

n− (n/(α+ 1))
=

α

α+ 1
· n

n(1− 1/(α+ 1)
= 1, (7.16)

resulting in Ei+1 ≤ Ei. For m = 2, E0
m−1 = E1 is immediately obtained

from the definitions and for m ≥ 3, we have

E0
m−1 =

m−1∑
i=1

Ei ≤ E1 + E2 + E3(m− 3)

≤ E1 +O (α/n)E1 +O (α/n)E2(m− 3)

≤ E1 +O (α/n)E1 +O
(
α2/n2

)
E1(m− 3),

where we used Equation (7.15) for E2 and E3 and for i ≥ 4, Ei ≤ E3.
Since m < n

α+1 − 1 = O(n/α), the last expression is bounded from above
by

E1 +O (α/n)E1 +O
(
α2/n2

)
E1 ·O(n/α) = E1(1 +O(α/n)).

Therefore, we have E0
m−1 = E1(1 +O(α/n)).
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Em: Via Equation (7.8), we have

Em =
m− 1

n−m+ 1
Em−1 −

n

n−m+ 1
≤ m− 1

n−m+ 1
Em−1.

Thus, Em = Θ(m/n)Em−1. Since Em−1 ≤ E0
m−1 = E1(1 + O(α/n)), we

get

Em = Θ(m/n)E1(1 +O(α/n)). (7.17)

Em
⌈ n
α+1 ⌉

: We have Ei+1 ≤ Ei for i ≤ n/(α + 1) similarly to the paragraph corre-
sponding to E0

m−1 (Equation (7.16)). We compute

Em
⌈ n
α+1 ⌉

=

⌈ n
α+1 ⌉∑

i=m+1

Ei ≤ ⌈
n

α+ 1
⌉Em+1.

Using Equation (7.7) and (7.17), for m = o(n), we have

⌈ n

α+ 1
⌉Em+1 = ⌈ n

α+ 1
⌉Θ(m/n)Em = ⌈ n

α+ 1
⌉Θ(m2/n2)E1(1+O(α/n)).

Since m < ⌈ n
α+1⌉ = o(

√
n), we have Em

⌈ n
α+1 ⌉

= o (E1) (1 +O(α/n)).

E
⌈ n
α+1 ⌉

n : Since Equation (7.6) denoting Ei = n
i + n−i

αi Ei+1 for i ∈ [⌈ n
α+1⌉..n] is

the same as the corresponding recursive equation for OneMax, the drift
equation is also the same as Equation (7.3), so E

⌈ n
α+1 ⌉

n = E(T ′) can be
estimated by Theorem 7.1, where T ′ is the first time that the algorithm
finds a solution with distance ⌈ n

α+1⌉, resulting in E
⌈ n
α+1 ⌉

n ≤ α
α+1n(lnn+1).

Altogether, we have

E (T ) ≤ E
⌈ n
α+1 ⌉

n +Em
⌈ n
α+1 ⌉

+Em +E0
m−1 ≤

α

α+ 1
n(lnn+ 1) +E1(1 +O(α/n)),

and using Lemma 7.10, we obtain

(1− o(1))n lnn+

(
1√

2πeα/(12n)
− o(1)

)
αd+2en/α√

n/α
≤ E (T )

≤ α

α+ 1
n(lnn+ 1) + αd+2en/α + o(n).

Since d ≥ 1 and α = ω(
√
n), αd+2 = ω(n1.5), so we have(

1√
2πeα/(12n)

− o(1)

)
αd+2en/α√

n/α
≤ E (T ) ≤ (1− o(1))αd+2en/α.
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7.6 Comparison of MA and (1 + 1) EA

In order to compare the Metropolis algorithm with evolutionary algorithms,
we estimate the optimization time of the (1+1) EA on Cliff functions. An
expected runtime of Θ(nm) is has already been proven in [PHST17] for the
classic case d = m− 3/2 and mutation rate p = 1

n .

In the following theorem, we prove an upper bound on the optimization time of
the (1+1) EA with general mutation rate p on Cliffd,m. Since our main aim
is showing that the (1 + 1) EA in many situations is faster than the MA, we
prove no lower bounds. We note that for k or p not too large, one could show
matching lower bounds with the methods developed in [DLMN17, BBD21a].

Theorem 7.11. Consider the (1+1) EA with general mutation rate 0 < p < 1
2

optimizing Cliffd,m with arbitrary m and 1 ≤ d < m − 1. Then the expected
optimization time is at most

E[T ] ≤ p−1(1− p)−n+1(1 + lnn) +

(
m

⌊d⌋+ 2

)−1

p−⌊d⌋−2(1− p)−n+⌊d⌋+2.

Any p minimizing this bound satisfies p ≤ ⌊d⌋+2
n . If m = O(n1/2/ log n) and

p = λ
n for some 0 < λ ≤ ⌊d⌋+ 2, then this bound is

E[T ] ≤ (1 + o(1))
eλ

λ⌊d⌋+2

(
m

⌊d⌋+ 2

)−1

n⌊d⌋+2.

This latter bound is minimized for λ = ⌊d⌋+ 2, which yields

E[T ] ≤ (1 + o(1))

(
m

⌊d⌋+ 2

)−1(
ne

⌊d⌋+ 2

)⌊d⌋+2

.

Since we analyze an elitist algorithm, we can use Wegener’s [Weg01] fitness level
argument, which estimates the expected runtime by the sum of the expected
times to leave each fitness level (apart from the optimal one).

In our proof, we will need the following elementary estimate.

Lemma 7.12. Let m = O(n1/2/ log n), 2 ≤ D ≤ m, and 0 < p ≤ D
n . Then

p−1(1− p)−n+1 ln(n) = o

(
p−D(1− p)−n+D

(
m

D

)−1
)
.
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Proof. It suffices to show that p−D+1(1−p)D−1
(
m
D

)−1
= ω(log n). Assuming n to

be sufficiently large, we have p ≤ D
n ≤

m
n ≤

1
2 and thus p−D+1(1−p)D−1

(
m
D

)−1 ≥
( 2Dn )−D+1( D

em )D = D
em ( n

2em )D−1 ≥ 2
em

n
2em = Ω((log n)2) = ω(log n).

Proof of Theorem 7.11. Let us first assume that d /∈ N as in this case each set
Li = {x ∈ {0, 1}n | ∥x∥1 = i} is a separate fitness level of Cliff. Let si be
the probability that a single iteration of the (1 + 1) EA starting with a solution
in Li ends with a solution of better fitness (note that this is independent of
the particular solution from Li). Then Wegener’s [Weg01] fitness level theorem
gives the bound E[T ] ≤

∑n−1
i=0

1
si

for the runtime T of the algorithm.

For i ̸= n −m, that is, a level different from the local optimum, we have si ≥
(n−i)p(1−p)n−1 simply by regarding the event that the mutation operator flips
a single zero-bit. Consequently,

∑
i̸=n−m

1
si
≤ p−1(1− p)−n+1(1 + lnn) =: T ′.

To estimate sn−m, we note that if the current search point is on the local
optimum, then flipping any ⌊d⌋+2 of the zero-bits and no other bits leads to a
better solution. Hence

sn−m ≥
(

m

⌊d⌋+ 2

)
p⌊d⌋+2(1− p)n−⌊d⌋−2.

Consequently, by the fitness level argument,

E[T ] ≤
n−1∑
i=0

1
si
≤ T ′ +

(
m

⌊d⌋+ 2

)−1

p−⌊d⌋−2(1− p)−n+⌊d⌋+2,

which proves our claim for arbitrary mutation rate p. We note that the expres-
sion px(1− p)n−x is maximal exactly for p = x

n . Consequently, both T ′ and our
estimate for 1

sn−m
are strictly increasing for p ≥ ⌊d⌋+2

n . Hence any mutation
rate minimizing our estimate for the expected runtime cannot be larger than
⌊d⌋+2

n .

If p ≤ ⌊d⌋+2
n , then by our assumption m = O(n1/2/ log n) and Lemma 7.12,

we have E[T ] ≤ (1 + o(1))
(

m
⌊d⌋+2

)−1
p−⌊d⌋−2(1 − p)−n+⌊d⌋+2, which yields the

remaining small claims.

When d is an integer, then only the Li with i ∈ [0..n− 1] \ {n−m,n−m+ d+
1} =: I form a complete fitness level of non-optimal solutions. The solutions
on the remaining two Hamming levels have equal fitness. We estimate the
probability to leave this level by the probability to generate a search point in
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Ln−m+d+2. By [Wit13, Lemma 6.1], since p ≤ 1
2 , this probability is at least

the probability of finding an improvement from the (farther) level Ln−m. Hence
s∗ =

(
m

d+2

)
pd+2(1 − p)n−d−2 is a lower bound for the probability to leave this

fitness level, independent of the current search point. The resulting runtime
estimate E[T ] ≤

∑
i∈I

1
si

+ 1
s∗ is identical to our above estimate for the d-value

d+ 0.5, which concludes this proof.

Still considering the Cliff function, we shall now compare the bounds we have
obtained for the expected runtime of the MA in Theorem 7.6 with the bounds
on the runtime of the (1 + 1) EA from Theorem 7.11. To this end, we will first
investigate optimal parameter choices for α depending on the Cliff parame-
ters m and d and compare it with the bound for the (1 + 1) EA, both for the
standard mutation probability 1/n and the optimized one (⌊d⌋+ 2)/n.

Our bounds on the runtime of MA and (1 + 1) EA are rather precise, but arith-
metically complicated and not necessarily tight. Since we want to analyze how
much faster the MA can be compared to the (1 + 1) EA, we compute parameter
settings for α that make the lower bounds for the MA as small as possible.
These minimized lower bounds will be contrasted with the upper bounds for the
(1 + 1) EA. Again, we have to distinguish between the two main cases for m in
relation to n and α that appear in Theorem 7.6.

Case m+1 > ⌈ n
α+1⌉: In this case, corresponding to Part 1 of Theorem 7.6, we

have a lower bound on the runtime of the MA of

(1− o(1))

(
1 +

(
n
α

)m−2

(m− 2)!

)
n2αd

m(m− 1)
.

By computing the derivative of αd

(
1 +

(n
α )

m−2

(m−2)!

)
, we find that the expression is

first decreasing and then increasing in α if m−2 ≥ d. We assume this condition
on d now without analyzing the border case d ∈ (m−2,m−1). Then the bound
(up to a factor 1± o(1) is minimized for

α∗ = n

(
m− d− 2

d(m− 2)!

)1/(m−2)

.

For convenience, we assume m = ω(1) hereinafter and obtain α∗ = (1 ±
o(1)) en

m−2 . Plugging this in our lower bound, we have an expected runtime
for the MA of at least

(1− o(1))
n2

m2
αd = (1− o(1))ed

( n

m

)d+2

.



7.6 Comparison of MA and (1 + 1) EA 189

By comparison, the bounds for the (1 + 1) EA with the two mutation probabil-
ities are no larger than

(1 + o(1))e

(
n(⌊d⌋+ 2)

m

)⌊d⌋+2

and (1 + o(1))
(ne
m

)⌊d⌋+2

,

respectively, where we used
(
a
b

)
≥ (a/b)b. Hence, if d is not an integer, the

bound for the optimized (1 + 1) EA is by a factor Θ((n/m)⌈d⌉−d) smaller than
for the MA; in the border case of integral d, the bound for the MA is by a factor
no larger than (1 + o(1))e2 smaller. The bound for the standard (1 + 1) EA
loses at most a factor of order O(dd). Note also that d must be a small constant
for efficient (polynomial) optimization times anyway. Hence, the optimized MA
is not much faster than the standard (1 + 1) EA, while typically the optimized
(1 + 1) EA is even faster than the optimized MA.

Intuitively, the value α∗ ≈ en
m says that the equilibrium point n

α+1 is around
m
e , i. e., the cliff is clearly in the positive drift region. Hence, it seems plausible
that the true minimal expected runtime of the MA is obtained for α falling into
the present case. However, since we do not have a sufficiently precise, global
expression for the runtime, we still have to consider the case with the cliff in
the negative drift region.

Case m+ 1 ≤ ⌈ n
α+1⌉: In this case, corresponding to Part 2, the bound on the

expected runtime of the MA is at least(
1√

2πe1/12
− o(1)

)
αd+2en/α√

n/α
, (7.18)

where we have used α ≤ n. For given n and d, the latter expression is first
decreasing and then increasing in α, with the minimum taken at α∗ = n

d+5/2 .
Depending on the integrality of n

α+1 appearing in the case condition, this choice
of α may be slightly too big and violate the general assumption d < m − 1;
however, then α∗ ≈ n

d+3 can be chosen to minimize the bound while meeting
the condition. This will not essentially change the following reasoning. Plugging
in α = n

d+5/2 in (7.18) gives a lower bound for the MA of(
1√

2πe1/12
− o(1)

)(
ne

d+ 5/2

)d+2

then. The upper bounds for the (1 + 1) EA in Theorem 7.11 for mutation
probabilities 1/n and (⌊d⌋+ 2)/n are no larger than

(1 + o(1))en⌈d⌉+1 and (1 + o(1))

(
ne

⌊d⌋+ 2

)⌊d⌋+2

,
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respectively, where we simply estimated
(

m
⌊d⌋+2

)−1 ≤ 1. If d is not an integer,
the bound for the optimized (1 + 1) EA turns out lower than for the MA by
a factor Θ((n/d)⌈d⌉−d); if it is an integer, the bound for MA is at most by

a constant factor
√
2πe1/12

(
d+2.5
d+2

)d+2

smaller. Moreover, the bound for the

(1 + 1) EA with standard mutation rate is at most by a factor of order O(dd)
bigger. Altogether, we have arrived at the same conclusions as in the previous
case.

7.7 Experiments

To supplement our theoretical results, we have run the MA, the (1 + 1) EA and
a few related algorithms on different instances of the Cliff problem. More pre-
cisely, besides the MA with α ∈ {20, 30, 40} (good values in a preliminary exper-
iment with broader range of α), we used the (1 + 1) EA both with the standard
mutation probability 1/n and the higher mutation probability ⌈d + 1⌉/n, the
Fast-(1 + 1) EA using heavy-tailed mutation from [DLMN17] (with parameter
β = 1.5), and the SD-(1 + 1) EA, using stagnation detection, from [RW20b]
(with parameters R = n3 and the threshold value (n/r)r(n/(n− r))n−r ln(enR)
for strength r). We ran these algorithms on Cliff functions with problem size
n = 150 and problem parameters d = 3 and growing m ∈ {8, 12, 16, . . . , 32}.

The runtimes depicted in Figure 7.2 show that for all three value of α, the MA
is clearly slower than the other algorithms (among which the (1 + 1) EA with
high mutation rate and Fast (1 + 1) EA performed best).

Since the EAs using global mutation apparently coped well with the valley of
low fitness, we also tried the MA with these mutation operators instead of one-
bit flips. In this set of experiments, we ran the standard MA, the MA using
standard bit mutation with mutation rate 1/n, and the MA using the heavy-
tailed mutation of the Fast-(1 + 1) EA, all for α = 20 (the most promising value
for the smaller problem size n = 100 which we used here). To investigate whether
the ability of MA to accept worse search points was relevant, we included the
(1 + 1) EA with mutation rate 1/n in this comparison. In the runtime results
presented in Figure 7.3, the two global-mutation MAs overall perform better
than the standard MA. The (1 + 1) EA might be the overall best choice, only
occasionally mildly beaten by the heavy-tailed MA. While these preliminary
experiments do not suffice to draw final conclusions, they motivate as future
work a closer analysis of MA with global mutation operators.
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Figure 7.2: Comparison of MA with (1 + 1) EA and its variants on Cliffm,d

for n = 150, d = 3 and increasing m; averaged over 100 runs.

Figure 7.3: Comparison of (1 + 1) EA and different variants of MA, including
global mutation, on Cliffm,d for n = 100, α = 20, d = 3 and
increasing m; averaged over 50 runs.
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7.8 Conclusions

We have conducted a mathematical runtime analysis of the Metropolis Algo-
rithm (MA), a local search algorithm that with positive probability may accept
worse solutions, on the multimodal Cliff benchmark problem. This problem,
which always has a gradient towards the global optimum except for one Ham-
ming level, seems like a canonical candidate where MA can profit from its ability
to accept inferior solutions. However, our mathematical runtime analysis has
revealed that this intuition is not correct. The simple elitist (1 + 1) EA is prov-
ably at least as fast and for many parameters faster than the MA, even for an
optimal choice of the temperature parameter of the MA. This failed attempt to
explain the effectiveness of the MA raises the question of what is the real reason
for the success of the MA in many practical applications.

The comparably good performance of algorithms using global mutation opera-
tors suggest to also use the MA with such operators. Our preliminary exper-
imental results show that this can indeed be an interesting idea – backing up
these findings with a mathematical runtime analysis is an interesting problem
for future research.

A second question of interest is to what extent simulated annealing, that is,
the MA with a temperature decreasing over time, can improve the relatively
weak performance of the classic MA on Cliff even with optimal choice of
the temperature. From our understanding gained in this work, we are slightly
pessimistic, mostly because again a relatively small temperature is necessary to
reach the local optimum and then diving into the fitness valley is difficult, but
definitely a rigorous analysis of this question is necessary to understand this
question.



Chapter 8

Paper F: Simulated Annealing is a
Polynomial-Time Approximation Scheme
for the Minimum Spanning Tree Problem

We prove that Simulated Annealing with an appropriate cooling schedule com-
putes arbitrarily tight constant-factor approximations to the minimum span-
ning tree problem in polynomial time. This result was conjectured by Wegener
(2005). More precisely, denoting by n,m,wmax, and wmin the number of ver-
tices and edges as well as the maximum and minimum edge weight of the MST
instance, we prove that simulated annealing with initial temperature T0 ≥ wmax

and multiplicative cooling schedule with factor 1−1/ℓ, where ℓ = ω(mn ln(m)),
with probability at least 1−1/m computes in time O(ℓ(ln ln(ℓ)+ln(T0/wmin))) a
spanning tree with weight at most 1+κ times the optimum weight, where 1+κ =

(1+o(1)) ln(ℓm)
ln(ℓ)−ln(mn ln(m)) . Consequently, for any ε > 0, we can choose ℓ in such a way
that a (1 + ε)-approximation is found in time O((mn ln(n))1+1/ε+o(1)(ln lnn +
ln(T0/wmin))) with probability at least 1− 1/m. In the special case of so-called
(1 + ε)-separated weights, this algorithm computes an optimal solution (again
in time O((mn ln(n))1+1/ε+o(1)(ln lnn + ln(T0/wmin)))), which is a significant
speed-up over Wegener’s runtime guarantee of O(m8+8/ε).
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8.1 Introduction

The theory of randomized search heuristics, mostly in the last 25 years, has
considerably increased our understanding of this class of algorithms. A closer
look at this field shows that in the early years, significant efforts were devoted
also to simulated annealing (SA) [SH88, JS98, Weg05, JW07], whereas more
recently these algorithms at most appear in side results of works focused on
other heuristics. Due to this decline in attention, the gap between theory and
practice, at least as wide in heuristics as in classic algorithms, is even wider
for SA.

Since we do not see a reducing interest in SA in practice [FS19], with this first
theoretical work solely devoted to SA after a longer time, we aim at reviving
the theoretical analysis of this famous heuristic. To this aim, we revisit a classic
problem, namely how SA computes minimum spanning trees (MSTs) [Weg05].
We are, of course, not finally interested in using SA for this purpose – for this
several very efficient near-linear time algorithms are known –, but we use this
problem to try to understand the working principles of SA.

Wegener’s seminal work [Weg05] is well-known for the construction of an in-
stance of the MST problem where the Metropolis algorithm with any fixed
temperature fails badly, but SA with a simple multiplicative cooling schedule
computes an optimal solution efficiently. Much less known, but equally interest-
ing is another result in this work, namely that SA with a suitable multiplicative
cooling schedule can efficiently find optimal solutions to the MST problem when
the edge weights are (1 + ε)-separated.

Theorem 8.1 ([Weg05]). Let G = (V,E) with w : E → Z>0 be an instance of
the MST problem. Let ε > 0 be such that for all edges e1, e2 ∈ E, we have that
w(e1) > w(e2) implies w(e1) ≥ (1 + ε)w(e2). Assume further that w(e) ≤ 2m

for all e ∈ E. Then SA with initial temperature T0 = 2m and cooling factor
β = (1+ ε/2)−m−7−8/ε

with probability 1−O(1/m) finds an optimal solution in
at most 2 log2(1 + ε/2)−1m8+8/ε iterations.

Wegener [Weg05] conjectured that his SA algorithm for general weights instead
of (1+ε)-separated ones computes (1+ε)-approximate minimum spanning trees,
that is, trees with weight at most (1 + ε) times the weight of a true minimum
spanning tree. While this conjecture is very natural, it was never proven.

Our main result is that Wegener’s conjecture is indeed true, even though our
proof does not confirm his statement that “it is easy to generalize our result to
prove that SA is always highly successful if one is interested in (1 + ε)-optimal
spanning trees.” More precisely, we show the following result (see Theorem 8.4
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for a slightly stronger, but more complicated version of this result). We note that
SA cannot compute (1+ε)-approximations for sub-constant ε, see again [Weg05],
so in this sense our result is as good as possible.

Let ε > 0 be a constant. Consider a run of SA with cooling factor β =
1 − 1/ℓ, where ℓ = (mn ln(m))1+1/ε+o(1), and T0 ≥ wmax on an instance of
the MST problem. Then there is a time T ∗ = O((mn ln(n))1+1/ε+o(1)(ln lnn+
ln(T0/wmin))) such that with probability at least 1− 1/m, at all times t ≥ T ∗

the current solution is a (1 + ε)-approximation.

Due to the use of proof methods not available at that time, our time bound is
significantly better than Wegener’s. To compute a (1 + ε)-approximation, or to
compute an optimal solution when the edge weights are (1 + ε)-separated (see
Theorem 8.11), our runtime guarantee is roughly O((mn log n)1+1/ε log wmax

wmin
) as

opposed to O(m8+8/ε) in Theorem 8.1.

Mostly because of a different organization of the proof, our result gives more
insights into the influence of the algorithm parameters. Our result only applies
to initial temperatures T0 that are at least the maximum edge weight. This is
very natural since with substantially smaller temperatures, the heaviest edge
cannot be included in the solution with reasonable probability (this follows
right from the definition of the algorithm). It is also not difficult to prove that
once the temperature is somewhat below the smallest edge weight, then no new
edges will ever enter the solution (see Lemma 8.6 for the precise statement of
this result). This implies that there is no reason to run the algorithm longer
than roughly for time log1/β(T0/wmin) = O(ℓ log(T0/wmin)), see Theorem 8.9
for the details. From the perspective of the algorithm user, this is an interesting
insight since it gives an easy termination criterion. Also without understanding
the precise influence of the cooling factor β on the approximation quality, this
insight motivates to use the algorithm for decreasing values of β, say βi = 2−i,
always until the above-determined time is reached, and follow this procedure
until a sufficiently good MST approximation is found.

The remainder of this paper is organized as follows. In Section 8.2, we describe
the most relevant previous works. We define SA and the minimum spanning
tree problem in Section 8.3. The core of this work is our mathematical runtime
analysis in Section 8.4. Afterwards, in Section 8.5, we give the result carried
out for the MST problem with (1 + ε)-separated weights. The paper ends with
a conclusion and a discussion of possible future works.
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8.2 Previous Work

As mentioned in the introduction, there are relatively few runtime analyses for
SA as discrete optimization algorithm, see also the survey [Jan11].

The first such result [SH88] proves that SA can compute good approximations
to the maximum matching problem. A closer look at the result reveals that a
constant temperature is used, that is, the SA algorithm is in fact the special
case of the Metropolis algorithm. It has to be noted that to obtain a par-
ticular approximation quality, the temperature has to be set suitably. In this
light, the following result from [GW03] shows a light advantage for evolution-
ary algorithms: When running the (1 + 1) EA with standard mutation rate on
this problem, then the expected first time to find a (1 + ε)-approximation is
O(m2⌈1/ε⌉). Note that in this result, the parameters of the algorithm do not
need to be adjusted to the desired approximation rate.

For a different problem, namely the bisection problem, it was shown in [JS98]
that SA, again with constant temperature, can solve certain random instances
in quadratic time.

Wegener’s above mentioned work [Weg05] on the MST problem was the first
to show that for some non-artificial problem, a non-trivial cooling schedule is
necessary.

A runtime analysis of the Metropolis algorithm on the classic benchmark
OneMax was conducted in [JW07]. Not surprisingly, the ability to accept
inferior solutions is not helpful when optimizing this unimodal function. The
interesting side of this result, though, is that the Metropolis algorithm is efficient
on OneMax only for very small temperatures of asymptotic order O(log(n)/n).

A recent study [WZD21] on the deceiving-leading-blocks (DLB) problem shows
that here the Metropolis algorithm with a constant temperature has a good
performance, beating the known runtime results for evolutionary algorithms by
a factor of Θ(n). We note that the DLB problem, just as the MST problem,
has many local optima which all can be left by flipping two bits.

As side results of a fundamental analysis of hyper-heuristics, two easy lower
bounds on the runtime of the Metropolis algorithm (that is, SA with constant
temperature) are proven in [LOW19]: (i) The Metropolis algorithm needs time
Ω̃(nd−1/2) on cliff functions with constant cliff width d and super-polynomial
time when the cliff width is super-polynomial. (ii) The Metropolis algorithm
with a temperature small enough to allow efficient hill-climbing needs exponen-
tial time to optimize jump functions.
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As part of a broader analysis of single-trajectory search heuristics, it was found
that the Metropolis algorithm can optimize all weakly monotonic pseudo-Bool-
ean functions in at most exponential time [Doe21].

Some more results exist on problems designed for demonstrating a particular
phenomenon. In [DJW00], a problem called Valley is designed that has the
property the Metropolis algorithm with any temperature needs at least expo-
nential expected time, whereas SA with a suitable cooling schedule only needs
time O(n5 log n). In [JW07], examples are constructed where one of (1 + 1) EA
and SA has a small polynomial runtime and the other has an exponential run-
time. Also, a class of functions is constructed where both algorithms have a
similar performance despite dealing with the local optimum in a very different
manner. In [OPH+18], a class of problems with tunable width and depths of a
valley of low fitness is proposed. It is proven that the performance of the elitist
(1 + 1) EA is mostly influenced by the width of the valley, whereas the perfor-
mance of the Metropolis algorithm and a similar non-elitist algorithm inspired
from population genetics is mostly influenced by the depths of the valley.

For evolutionary algorithms, for which the theory is more developed than for SA,
there are a larger number of results showing that they can serve as approxima-
tion algorithms for optimization problems, including NP-hard problems [NW10].
However, results describing an approximation scheme where the user can provide
a parameter ε to the evolutionary algorithm to compute a (1+ε)-approximation
are rare; apart from the maximum matching problem mentioned above, we
are only aware of related results for parallel (1+1) EAs, (1+1) EAs with age-
ing and simple artificial immune systems on the number partitioning problem
[Wit05, COY19] and for an evolutionary algorithm on the multi-objective short-
est path problem [Hor10]. Evolutionary algorithms that approximate the opti-
mum are also known in the subfield of fixed-parameter tractability. While most
of these results prove an approximation within a constant factor or growing
slowly with the problem dimension, there are also statements similar to ap-
proximation schemes for the vertex cover problem [NS20]. However, in general
it is safe to say that there are only few results in the literature that charac-
terize very simple randomized search heuristics like the (1 + 1) EA and SA as
polynomial-time approximation schemes for classical (non-noisy) combinatorial
optimization problems.

Finally, we remark that the classical (1+1) EA and a variant of randomized
local search can solve the MST problem in expected pseudo-polynomial time
O(m2 log(nwmax)) [NW07]. While SA in general does not solve the problem in
expected polynomial time, its time bound to achieve a (1 + ϵ)-approximation
(see Theorem 8.4 below) can be smaller than the time bound for the (1+1) EA
in certain cases where m = ω(n) and ϵ is a constant.
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8.3 Preliminaries

We now define the SA algorithm and the MST problem. Also, we state a
technical tool our main proof builds on.

Algorithm 19: Simulated Annealing (SA) with starting temperature T0

and cooling factor β ≤ 1 for the minimization of f : {0, 1}n → R
Select x(0) from {0, 1}n;
for t← 0, 1, . . . do

Create y by flipping a bit of x(t) chosen uniformly at random;
if f(y) ≤ f(x(t)) then

x(t+1) ← y;
else

x(t+1) ← y with probability e(f(x
(t))−f(y))/Tt and

x(t+1) ← x(t) otherwise;

Tt+1 := Tt · β;

Simulated annealing (SA) is a simple stochastic hill-climber first proposed as
optimization algorithm in [KGJV83]. Different from a true hill-climber it may,
with small probability, also accept inferior solutions. Working with bit-string
representations, we use the classic bit-flip neighborhoods, that is, the neighbors of
a solution are all other solutions that differ from it in a single bit value. For the
acceptance of inferior solutions, we use the widely accepted Metropolis condition,
that is, a solution with fitness loss δ over the current solution is accepted with
probability e−δ/T , where T is the current temperature. The temperature is
usually not taken as constant, but is reduced during the run of the algorithm.
This allows the algorithm to accept worsening moves easy in the early stages of
the run, whereas later worsening moves are accepted with smaller probability,
bringing the algorithm closer to a true hill-climber. The choice of the cooling
schedule is a critical decision in the design of a SA algorithm. A popular choice,
already proposed in [KGJV83], is a multiplicative cooling schedule (also called
geometric cooling scheme). Here we start with a given temperature T0 and
reduce the temperature by some factor β in each iteration. This common variant
of SA, see Algorithm 19 for the pseudocode, was regarded also in the predecessor
work of Wegener [Weg05].

The minimum spanning tree (MST) problem is defined as follows. We are given
an undirected, connected, weighted graph G = (V,E). We denote by n its
number of vertices and by m its number of edges. Let the set of edges be
E = {e1, . . . , em}. The weight of edge ei, where i ∈ {1, . . . ,m}, is a positive
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number wi. We write wmin := min{wi | i ∈ {1, . . . ,m}} and wmax := max{wi |
i ∈ {1, . . . ,m}} for the minimum and maximum edge weight.

The task in the MST problem is to find a subset E′ ⊆ E such that (V,E′) is
a spanning tree of G having minimal total weight w(E′) =

∑
ei∈E′ wi. We use

the natural bit-string representation for sets E′ of edges, that is, a bit string
x = (x1, . . . , xm) ∈ {0, 1}m represents the set E(x) = {ei | xi = 1}. As objective
function, we use the sum of the weights of the selected edges when these form
a connected graph on V and ∞ otherwise:

f(x) =

{
w1x1 + · · ·+ wmxm if (V,E(x)) is connected,
∞ otherwise.

Here ∞ can be replaced by an extremely large value without essentially chang-
ing the result. To ensure that we start with a feasible solution (one that has
finite objective value), we assume that SA is initialized with the all-ones string
x(0) = (1, . . . , 1). From this initial string, SA can move to solutions having
fewer edges by flipping one-bits; however, it will never accept solutions that are
not connected due to their infinitely high f -value. We note that, similarly to
the analysis of the (1 + 1) EA on the MST problem [NW07], one could use a
more involved fitness function to penalize connected components and thus lead
the algorithm towards connected subgraphs when the current solution is not
connected. However, since we assumme SA to start from a connected solution
and connected solutions will not be replaced with disconnected solutions with
the present definition of f , this would not provide new insights. Overall, our
setup is the same as the one used by Wegener [Weg05].

When the temperature has become sufficiently low, it is likely that SA has
reached a solution describing a spanning tree. If this spanning tree is suboptimal,
improvements require a change of at least 2 bits. Since SA only flips one bit
per iteration, this is only possible by temporarily including one more edge,
i. e., closing a cycle, and then removing another edge from the cycle in the
next iteration. This requires a temperature still being sufficiently high for the
temporary inclusion to be accepted.

Our measure of complexity is the first hitting time T ∗ for a certain set of so-
lutions S∗, e. g., globally optimal solutions or solutions satisfying a certain ap-
proximation guarantee with respect to the set of global optima. That is, we
give bounds on the smallest t such that SA has found a solution in S∗. Due to
the probabilistic nature of the algorithm, we will usually give bounds that hold
with high probability, e. g., with probability 1− 1/n. The expected value of T ∗

may be undefined since the cooling schedule may make it less and less likely
to hit the set S∗ when the algorithm has been unsuccessful during the steps
where a promising temperature held. This is different from the analysis of, e. g.,
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simple evolutionary algorithms, where one often considers the so-called runtime
as the first hitting time of the set of optimal solutions and bounds the expected
runtime. However, as described in detail by Wegener [Weg05], there are sim-
ple restart schemes for SA that guarantee expected polynomial optimization
times if there is a sufficiently high probability of a single run being successful in
polynomial time.

The proof of our main result uses multiplicative drift analysis as state-of-the-art
technical tool, which was not available to Wegener [Weg05]. The multiplicative
drift theorem in Theorem 8.2 below goes back to [DJW12] and was enhanced
with tail bounds in [DG13]. We give a slightly generalized presentation that can
be found in [LW21].

Theorem 8.2 (Multiplicative Drift, cf. [DJW12, DG13, LW21]). Let (Xt)t≥0,
be a stochastic process, adapted to a filtration Ft, over a state space S ⊆ {0} ∪
[smin, smax], where smin > 0 and {0} ∈ S. Suppose that there exists a δ > 0 such
that for all t ≥ 0, we have

E (Xt −Xt+1 | Ft) ≥ δXt.

Then the first hitting time T := min{t | Xt = 0} satisfies

E (T | F0) ≤
ln(X0/smin) + 1

δ
.

Moreover, Pr(T > (ln(X0/smin) + r)/δ) ≤ e−r for any r > 0.

8.4 SA as Approximation Scheme for the Mini-
mum Spanning Tree Problem

In this section, we prove our main results on how well SA computes approx-
imate solutions for the MST problem. These results easily imply improved
bounds for the previously regarded special case of (1 + ε)-separated instances,
see Section 8.5.

8.4.1 Main Results and Proof Outline

As outlined above in the introduction, this paper revisits Wegener’s [Weg05]
analysis of SA on the MST problem. Our main result is Theorem 8.3 below,
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proving that SA is a polynomial-time approximation scheme for the MST prob-
lem as originally conjectured by Wegener. The statement of our main theo-
rem describes the approximation quality and the required time to reach it as a
function of the cooling factor, the desired success probability and of course the
instance parameters. Theorem 8.4 takes the dual perspective of computing cool-
ing schedules and running times that allow SA to find a (1 + ε)-approximation
for a given ε with high probability.

We now present the main theorem and a variant of it, corresponding to the two
perspectives mentioned above for analyzing the approximation quality.

Theorem 8.3. Let δ < 1. Consider a run of SA with multiplicative cooling
schedule with β = 1 − 1/ℓ for some ℓ = ω(mn ln(m/δ)) and T0 ≥ wmax on
an instance of the MST problem. With probability at least 1 − δ, at all times
t ≥ (ℓ/2) ln

(
ln(4(ℓ−1)/δ)T0

wmin

)
the current solution is a (1 + κ)-approximation,

where
1 + κ ≤ (1 + o(1))

ln(ℓ/δ)

ln(ℓ)− ln(mn ln(m/δ))
.

Theorem 8.4. Let δ = ω(1/(mn lnn)) and δ < 1, ε > 0. Consider a run
of SA with β = 1 − 1/ℓ for ℓ = (mn ln(m/δ))1+1/ε and T0 ≥ wmax on an
instance of the MST problem. With probability at least 1 − δ, at all times t ≥
(ℓ/2) ln

(
ln(4(ℓ−1)/δ)T0

wmin

)
the current solution is a (1+o(1))(1+ε)-approximation.

The last theorem is stated in somewhat weaker, but simpler form in the following
corollary. In particular, it gives a concrete time bound until SA has computed a
(1 + ε)-approximation with probability at least 1− δ, where δ and ε are chosen
by the user.

Corollary 8.5. Let ε > 0 be a constant and δ = ω(1/(mn lnn)). Consider a
run of SA with β = 1− 1/ℓ, where

ℓ =
(
mn ln

(m
δ

))1+1/ε+o(1)

,

and T0 ≥ wmax on an instance of the MST problem. With probability at least
1 − δ, at all times t ≥ T ∗ := (ℓ/2) ln

(
ln(4(ℓ−1)/δ)T0

wmin

)
the current solution is a

(1 + ε)-approximation. Moreover,

T ∗ = O

(
(mn ln(n))1+1/ε+o(1)

(
ln lnn+ ln

(
T0

wmin

)))
.

The idea of the proof of all results formulated above is to consider phases in the
optimization process, concentrating on different intervals for the edge weights,
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with the size and center of the intervals decreasing over time. In each phase, the
number of edges chosen from such an interval will achieve some close-to-optimal
value with high probability. After the end of the phase, the temperature of SA
is so low that basically no more changes occur to the edges with weights in the
interval.

In more detail, the proofs of Theorem 8.3 and its variant are composed of several
lemmas. We are now going to outline the main ideas of these lemmas and how
they relate to each other in the roadmap of the final proof.

It is useful to formulate the main results in terms of a cooling factor β = 1−1/ℓ
for some ℓ > 1 since ℓ carries the intuition of a “half-life” for the temperature;
more precisely, after ℓ iterations of SA the temperature has decreased by the
constant factor of (1 − 1/ℓ)ℓ ≈ e−1. Lemma 8.6 is (on top of the usual graph
parameters and the starting temperature) based on ℓ, a weight w and some
parameter a. Intuitively, it describes a point of time tw after which edges of
weight at least w are no longer flipped in with high probability and can be
ignored for the rest of the analysis due to an exponential decay in the probability
of accepting search points of higher f -value. This probability depends on the
parameter a which will be optimized later in the composition of the main proof.

While Lemma 8.6 will be used to show that edges above a certain weight are
no longer included in the current solution after the temperature has dropped
sufficiently, Lemma 8.7, which is the main lemma in our analysis, deals with the
structure of the current solution after edges of a certain weight w are no longer
included. It considers connected components that can be spanned by cheaper
edges and states that these connected components are essentially connected in
an optimal way in the whole solution up to multiplicative deviations of a factor
(1 + κ) in the weights of the connecting edges. Lemma 8.7 uses careful edge
exchange arguments in its proof and bounds the time to do these exchanges in
a multiplicative drift analysis. Moreover, it features another parameter called γ
that will be optimized later along with the above-mentioned a.

Lemma 8.8 puts together the previous two lemmas to consider the run of SA
over up to n phases depending on the weight spectrum of the graph until the
temperature has dropped to a value being so small that no more changes are
accepted. This will be the final solution considered in the main proof. Essen-
tially, having listed the weights of an MST decreasingly, the lemma will match
the weights of the final solution to the weights of the MST and show for each
element in the list that the final solution matches the weight of the element up
to a factor 1 + κ. Its proof uses a bijection argument proved by induction to
apply Lemma 8.7 and is crucially different from Wegener’s analysis.
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The final lemma, Lemma 8.10, finds choices for the parameter γ to minimize
the bound 1 + κ on the approximation ratio. Its proof uses several results
from calculus. Afterwards, Theorem 8.3 also chooses the parameter a carefully
and arrives at the first statement on the approximation ratio depending on ℓ,
the desired success probability 1 − δ, and the graph parameters, only. The
second main theorem, Theorem 8.4 then essentially translates parameters into
each other to compute ℓ and to express time bounds based on the desired ε. A
weaker but simpler formulation of that theorem is finally stated in Corollary 8.5.

8.4.2 Detailed Technical Analysis

In this subsection, we collect the technical lemmas and theorems outlined above.

Let a > 1 and tw be the earliest point of time when T (tw) ≤ w/a. In the fol-
lowing lemma, we state that the probability that SA accepts edges of weight w
after tw is exponentially small with respect to a. It shows that after the temper-
ature becomes less than w, the probability of accepting such an edge is sharply
decreasing.

Lemma 8.6. Consider a run of SA with multiplicative cooling schedule with
β = 1 − 1/ℓ and T0 ≥ wmax on an instance of the MST problem. Let ℓ > 2,
1 < a ≤ ℓ − 1 and for any w > 0, tw be the earliest point of time when
T (tw) ≤ w/a. It holds that no new edge of weight at least w is included in the
solutions after time tw with probability at least

1− 2(ℓ− 1)

aea
,

which is at least 1− δ/2 for δ < 1, if we set a ≥ ln(4(ℓ− 1)/δ).

Proof. Let s be an edge of weight at least w, which is not in the solution at the
beginning of the step tw. Let t ∈ N≥0 and E

(tw+t)
s be the event of accepting

the edge s at step tw + t. This event happens if the edge s is flipped with
probability 1/m and the algorithm accepts this worse solution. Thus

Pr
(
E(tw)

s

)
= m−1 · exp

(
−w
T (tw)

)
≤ e−a

m
.

For all integers t ≥ 0, we have T (tw + t) = T (tw)(1− 1/ℓ)t. Then

Pr
(
E(tw+t)

s

)
= m−1 exp

(
−w

T (tw)(1− 1
ℓ )

t

)
≤ m−1e−a(1+ 1

ℓ−1 )
t
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≤ m−1e−a(1+ t
ℓ−1 ),

where we used the inequality (1 + x)r ≥ 1 + rx for x > −1 and r ∈ N≥0.

Let E≥tw
s be the event of accepting the edge e of weight at least w after step tw

at least once. Then, using the geometric series sum formula, we get

Pr
(
E≥tw

s

)
≤

∞∑
t=0

Pr
(
E(tw+t)

e

)
≤

∞∑
t=0

m−1e−a(1+ t
ℓ−1 )

= m−1 e−a

1− e−a/(ℓ−1)
≤ m−1 e−a

1− (1− a
2(ℓ−1) )

= m−1 2(ℓ− 1)

aea
,

where we have a ≤ ℓ− 1 and use the inequality e−x ≤ 1− x/2 for 0 ≤ x ≤ 1.

Since there are m edges, with probability 1 − 2(ℓ−1)
aea , there is no inclusion of

edges after their corresponding steps tw.

Moreover, if we set a ≥ ln(4(ℓ− 1)/δ), the probability is at least

1− 2(ℓ− 1)

ln(4(ℓ− 1)/δ) · 4(ℓ− 1)/δ
= 1− δ/2

ln(4(ℓ− 1)/δ)
≥ 1− δ

2
,

where we have ℓ > 2 and δ < 1.

In Lemma 8.7, we consider a time interval of length 4.21γmn ln(2m2/δ) + 1
starting from tw (for fixed a) and prove that at the end of this period, there are
no edges of weight at least w left that could be replaced by an edge of weight at
most w/(1+κ), where κ depends on the algorithm parameter ℓ and parameters
γ and a. We optimize these parameters later in this paper.

Lemma 8.7. Let γ > 1, δ < 1, ℓ > 2, a > 1. Consider a run of SA with
multiplicative cooling schedule with β = 1− 1/ℓ and T0 ≥ wmax on an instance
of the MST problem. Let tw be the earliest point of time when T (tw) ≤ w/a,
and assume that no further edges of weight at least w are added to the solution
from time tw. Let

1 + κ =
a exp

(
γ 4.21mn ln(2m2/δ)

ℓ−1

)
ln γ

.

Let nw be the number of connected components in the subgraph using only edges
with weight at most w/(1 + κ) in G. After time tw + 4.21γmn ln(2m2/δ), the
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number of edges in the current solution with weight at least w is at most nw − 1
with probability at least 1− δ/(2m).

Proof. Let Tbase = 4.21mn ln(2m2/δ). We analyze the steps tw, . . . , tw+γTbase.
The temperature during this phase is at least

T (tw)
(
1− 1

ℓ

)γTbase ≥ T (tw)e
− γTbase

ℓ−1 ,

so the probability to accept a chosen edge with weight at most w/(1+κ) in one
step is bounded from below by

exp

(
−w/(1 + κ)

T (tw)e
− γTbase

ℓ−1

)
= exp

(
−ae

γTbase
ℓ−1

(1 + κ)

)
= γ−1

during this phase. By our assumption in the statement, we do not include edges
of weight at least w.

Let us partition the set of edges with weight at least w in the current solution x,
that is, the graph Gx = (V,E(x)), into three disjoint subsets. An edge e = {u, v}
with weight at least w has one of the following three properties,

1. the edge e lies on a cycle in Gx;

2. the edge e does not lie on a cycle, but there is at least one edge e′ ∈ E\E(x)
with weight at most w/(1 + κ) such that e lies on a cycle in the graph
(V,E(x) ∪ {e′});

3. the edge e has neither of the two properties. In this case, we call this edge
essential for the current and forthcoming solutions.

As long as an edge with weight at least w is not essential, it can either be
removed from the current solution or become an essential edge. When the edge
disappears, since its weight is at least w, it will not appear again.

Also, when the edge becomes essential, it remains essential in the solution to
the end, because in order to create a cycle containing this edge, an edge with
weight at least w has to appear, which does not happen, and also removing this
edge makes the graph unconnected.

We claim that the number of essential edges does not exceed nw−1. In order to
prove this, we define the graph H = (VH , EH) as follows. There is a vertex in VH

for each connected component of the induced subgraph on the edges of weight
at most w/(1 + κ) in G, and there is an edge between two vertices vi, vj ∈ VH
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if there is an essential edge e = {u, v} in the solution that u and v belong to
the corresponding connected components Ci and Cj respectively. Formally, let
C = {C1, . . . , Cnw

} be the connected components of the induced subgraph on
the edges of weight at most w/(1 + κ). Then, VH = {v1, . . . , vnw

} and

EH = {{i, j} | ∃ essential e = {u, v}, u ∈ Ci, v ∈ Cj} .

We claim that there is no essential edge with both endpoints in the same Ci. To
prove this, we assume for contradiction that there is such an edge e = {u, v}.
Then, since e is essential, it cannot be on a cycle in the current solution. Let Su

and Sv denote the sets of vertices connected to u and v respectively using edges
in the solution but e. Su∪Sv = V (G) because the solution is always connected.
Since e is essential, there is no edge with weight at most w/(1+κ) in G from Su

to Sv (see the property (2)), so there is no such cheap edges in G from Su ∩ Ci

to Sv ∩ Ci, which results in that there is a partition of vertices of Ci that are
disconnected in the subgraph using only edges with weight at most w/(1 + κ)
in G, which contradicts the definition of Ci. Also, H has to be a forest since we
also know that essential edges are not on a cycle. Therefore, since there are nw

connected components, there are at most nw − 1 essential edges.

Now, in the next paragraphs, we state the number of steps needed to remove
edges with weight at least w or to make them essential. We consider some epochs
consisting of 2m iterations each and let Xt be the random variable denoting the
number of non-essential edges with weight at least w whose exclusion is possible
at epoch t. We claim that

∆t(s) := E (Xt −Xt+1 | Xt = s) ≥ s · (1− e−3)n−1

2γ
.

If no cycle with a non-essential edge e = {u, v} with weight at least w exists,
the probability of creating such a cycle by adding the cheap edge considered in
Case 2 between Su and Sv in each step is at least 1/(γm) and in m steps, is at
least

1−
(
1− 1

γm

)m

≥ 1− e−1/γ ≥ 1

2γ
,

where we have 1 + x ≤ ex for all x ∈ R and the inequality e−x ≤ 1 − x/2 for
0 ≤ x ≤ 1.

Then, after the cycle is created in the first m iterations, or the cycle already
existed, the probability of the exclusion of such an edge in m steps of the second
half of the epoch is only (1 − e−3)n−1 because the probability of observing
at least one edge from the cycle of length k in m steps is 1 − (1 − k/m)m ≥
1− (1− 3/m)m ≥ 1− e−3, and the probability that the edge selected is e equals
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1/n. Altogether, the probability of excluding a non-essential edge with weight
at least w is at least (1 − e−3)n−1/(2γ), which results in decreasing Xt by at
least one because removing e might also make some other edges essential. Since
there are s non-essential edges, we have ∆t(s) ≥ s · (1 − e−3)n−1/(2γ). Since
there can be at most m essential edges at the beginning, we have X0 ≤ m.
Assume Y denotes the number of epochs needed to have only essential edges
with weight at least w. Using the upper tail bound of multiplicative drift in
Theorem 8.2, we have

Pr

(
Y >

ln(2m/δ) + lnX0

(1− e−3)n−1/(2γ)

)
≤ e− ln(2m/δ) =

δ

2m
.

Since each epoch consists of 2m iterations,

2m · 2(1− e−3)−1nγ ln
(
2m2

δ

)
≤ 4.21γmn ln

(
2m2

δ

)
is sufficient to arrive at a solution where all edges of weight at least w are
essential.

SA does with high probability not accept an inclusion of any edge via Lemma 8.6
when the temperature is colder than wmin/a for some a that is still a parameter
chosen later. This is the time from when the solution is invariant. Let twmin be
the earliest time when T (wmin) ≤ wmin/a and tend := twmin

.

In the following lemma, we show that there is a bijective relation between the
edges of the solution at time tend and a MST such that the ratio between the
weights of corresponding edges is less than (1 + κ).

Lemma 8.8. Let δ < 1, γ > 1, ℓ = ω(1) and a ≥ ln(4(ℓ− 1)/δ). Let

1 + κ =
a exp

(
γ 4.21mn ln(2m2/δ)

ℓ−1

)
ln γ

.

Consider a run of SA with multiplicative cooling schedule with β = 1− 1/ℓ and
T0 ≥ wmax on an instance of the MST problem. Assume that T ∗ is a minimum
spanning tree and T ′ is the solution of SA at time tend where T (tend) ≤ wmin/a.

For an arbitrary spanning tree T , let wT = (wT (1), . . . , wT (n − 1)) be a de-
creasingly sorted list of the weights on its edges, i. e., wT (j) ≥ wT (i) for all
1 ≤ j ≤ i ≤ n− 1. With probability at least 1− δ, we have

wT ∗(k) ≤ wT ′(k) < (1 + κ)wT ∗(k) for each k ∈ [1..n− 1].
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Proof. We recall that tw is the earliest point of time when T (tw) ≤ w/a. With
probability 1−δ/2, edges of weight w are not included after their corresponding
times tw via Lemma 8.6. Thus conditional on this event, we can use Lemma 8.7
stating that with probability at least 1−δ/(2m), the number of edges with weight
at least w is at most nw − 1. This condition must hold for at most m distinct
values, happening with probability at least 1− δ/2 according to a union bound.
Altogether, since the event in Lemma 8.6 must happen with probability 1− δ/2
and the condition in Lemma 8.7 must hold for all weights, with probability at
least 1− δ, the statement in Lemma 8.7 is valid for all possible weights.

We use induction on the index k. The case k = 0 is trivial as the basic step.
Regarding the inductive step, assume that for all 0 ≤ k ≤ i − 1, the inequality
is valid. If i = n, the claim is proved. Otherwise, let wT ∗(i) be the next unique
largest weight and j be the largest index that wT ∗(j) = wT ∗(i). In fact, we
have

wT ∗(i− 1) < wT ∗(i) = · · · = wT ∗(j) < wT ∗(j + 1).

There are exactly j − i+ 1 edges with weight wT ∗(i) in the minimum spanning
tree T ∗. The number of connected components in G using only edges at most
wT ∗(i) is i since they are connected using i− 1 edges in T ∗. Using Lemma 8.7
with w = (1 + κ)wT ∗(i) and considering nw = i, there are at most i − 1 edges
with weight at least (1+κ)wT ∗(i) in T ′, which means that the rest of the weight
values in T ′ are less than (1+κ)wT ∗(i). Since we know that the graph cannot be
connected using less than j edges with weight at least wT ∗(i), we can conclude
that there are at least j edges with weight between wT ∗(i) and (1 + κ)wT ∗(i).
Therefore, for i ≤ k ≤ j, the inequality suggested above holds.

With the above lemmas at hand, we can prove the first theorem. Given ℓ,
Theorem 8.9 states the approximation ratio that the algorithm with cooling
schedule β = 1− 1/ℓ can obtain.

Theorem 8.9. Let δ < 1, γ > 1 and ℓ = ω(1). Consider a run of SA with
multiplicative cooling schedule with β = 1− 1/ℓ and T0 ≥ wmax on an instance
of the MST problem. For a ≥ ln(4(ℓ − 1)/δ), with probability at least 1 − δ, at
all times t ≥ (ℓ/2) ln (aT0/wmin) the current solution is a (1+κ)-approximation
where

1 + κ =
a exp

(
γ 4.21mn ln(2m2/δ)

ℓ−1

)
ln γ

.

Proof. We consider the time tend when T (tend) ≤ wmin/a and show the approx-
imation result for the current solution of SA at that time. Concretely, assume
that T ∗ is a minimum spanning tree and T ′ is the solution of the algorithm
at time tend. Assume w(T ) is the total weight of edges in the tree T . Using
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Lemma 8.8, with probability 1 − δ, we have wT ′ < (1 + κ)wT ∗(k) for each
k ∈ [1..n− 1]. Thus, we have

w(T ′) =

n−1∑
i=1

wT ′(i) <

n−1∑
i=1

wT ∗(i)(1 + κ) = (1 + κ)w(T ∗).

To complete the proof, we only have to find the time tend from when the tem-
perature is less than wmin/a, so after that, no edges are included anymore via
Lemma 8.6. Then tend satisfies

T0

(
1− 1

ℓ

)tend

=
wmin

a
.

Then
tend = log1−1/ℓ

(
wmin

aT0

)
=

ln(wmin/(aT0))

ln(1− 1/ℓ)
.

Using the inequality 1 − x/2 ≥ e−x for 0 ≤ x ≤ 1 with x = 2/ℓ, we can bound
tend from above by

tend ≤
ln(wmin/(aT0))

−2/ℓ
=

(
ℓ

2

)
ln

(
aT0

wmin

)
.

The formula for κ, which we obtained in Theorem 8.9, holds for all γ > 1. In
the following lemma, we suggest a value for γ, leading to the smallest value for
1 + κ. With the help of that, we give also some bounds on 1 + κ considering
different cases for ℓ.

Lemma 8.10. Let κ be defined as in Theorem 8.9 and Tbase :=
4.21mn ln(2m2/δ). Then the minimum value of κ is achieved by setting
γ = exp

(
W
(

ℓ−1
Tbase

))
, where W is the Lambert W function. Moreover, if

ℓ < eTbase + 1, 1 + κ ≥ e(1/e)−1a. Otherwise, if ℓ ≥ eTbase + 1,

1 + κ ≤ a

exp

((
ln
(

ℓ−1
Tbase

)) e
e−1 ln−1

(
ℓ−1

Tbase

)
−1
)

ln
(

ℓ−1
Tbase

)
− ln ln

(
ℓ−1
Tbase

) .

For ℓ = ω(Tbase), the last fraction is (1 + o(1)) a
ln(ℓ−1)−ln(Tbase)

.

The proof of Lemma 8.10 uses the first derivative to find the minimum value for
1 + κ. This method gives us the minimum value

a
ee

W (b)/b

W (b)
, (8.1)
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appearing at γ = exp (W (b)), where b = ℓ−1
Tbase

. By considering cases where
b ≥ e and b < e and using some inequalities on the Lambert W function, we
obtain the results.

Proof of Lemma 8.10. From the definition of κ in Theorem 8.9, for γ > 1, we
have

1 + κ = a
eγ/b

ln γ
, (8.2)

where b := ℓ−1
Tbase

.

Let f(x) = ex/b/ lnx for x > 1. Then its derivative is f ′(x) = ex/b

b ln(x) −
ex/b

x ln2(x)
.

For x > 1, we have the only root x = eW (b), where W is the Lambert W
function. Therefore, Equation (8.2) with γ = eW (b) gives us the minimum value
for (1 + κ) and equals

a
ee

W (b)/b

W (b)
. (8.3)

Now, we aim at finding some bounds on 1 + κ. We analyze Equation (8.3) for
two cases of b.

For b ≥ e, using the inequality

ln b− ln ln b+
ln ln b

2 ln b
≤W (b) ≤ ln b− ln ln b+

e

e− 1

ln ln b

ln b
,

from [HH08], we get

a
ee

W (b)/b

W (b)
≤ a

exp
(
b−1eln(b)e− ln ln be

e
e−1

ln ln b
ln b

)
ln(b)− ln ln(b)

= a
exp

(
e− ln ln be

e
e−1

ln ln b
ln b

)
ln(b)− ln ln(b)

= a
exp

(
(ln b)−1+ e

(e−1) ln b

)
ln(b)− ln ln(b)

.

For b = ω(1), the last expression equals a(1+o(1))
ln b−ln ln b = (1 + o(1)) a

ln b since

(ln b)−1+ e
(e−1) ln b =

e
e ln ln b

(e−1) ln b

ln b
≤ 1

ln b
= o(1).



8.4 SA as Approximation Scheme for the MST Problem 211

Regarding the case b < e, using the definition W (x)eW (x) = x, we have eW (x) =
x

W (x) . By applying these inequalities on Equation (8.3), we obtain

a
ee

W (b)/b

W (b)
= a

e(
b

bW (b) )

W (b)
= a

e1/W (b)

W (b)
.

From the definition again, we have W (b)eW (b) = b. Since for x ≥ 0, we have
ex ≥ 1, we can conclude W (b) ≤ b, resulting in W (b) < e. Thus the last
expression can be bounded from below by

a
e1/e

e
= e(1/e)−1a.

Finally, we give the proofs of the two main theorems in this paper.

Proof of Theorem 8.3. Using Theorem 8.9, we have

1 + κ =
a exp

(
γ Tbase

ℓ−1

)
ln γ

.

By setting a = ln(4(ℓ− 1)/δ) and using the upper bound on (1+κ) obtained in
Lemma 8.10 for ℓ = ω(Tbase) = ω(mn ln(m/δ)), we get

1 + κ ≤ (1 + o(1))
ln(4(ℓ− 1)/δ)

ln(ℓ− 1)− ln(4.21mn ln(2m2/δ))

= (1 + o(1)) · (1 + o(1))
ln((ℓ− 1)/δ)

ln(ℓ)− ln(mn ln(m/δ))

≤ (1 + o(1))
ln(ℓ/δ)

ln(ℓ)− ln(mn ln(m/δ))
.

In Theorem 8.3, we only consider the case ℓ = ω(Tbase) since the other cases for
ℓ cannot lead to constant approximation ratios and therefore are not interesting
to study. More precisely, let us assume ℓ = ω(1). In the case that ℓ < eTbase+1,
we have the lower bound Ω(ln(4(ℓ− 1)/δ)) = ω(1) on 1 + κ from Lemma 8.10.
Regarding the case that ℓ ≥ eTbase + 1 and ℓ = O(Tbase), it can be proved
that 1 + κ = Ω(a) = ω(1), since ℓ/Tbase = O(1) makes all terms constant
except a in Equation (8.3). Then again for a ≥ ln(4(ℓ− 1)/δ) and ℓ = ω(1), the
approximation ratio is ω(1).

Now, we give the proof of Theorem 8.4.
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Proof of Theorem 8.4. Let ℓ = (mn ln(m/δ))
1+1/ε. Via Theorem 8.3, we have

1 + κ ≤ (1 + o(1))
ln(ℓ/δ)

ln
(

ℓ
mn ln(m/δ)

)
= (1 + o(1))

(1 + 1/ε) ln (mn ln(m/δ)) + ln(1/δ)

(1/ε) ln (mn ln(m/δ))

= (1 + o(1))

(
1 + 1/ε

1/ε
+

ln(1/δ)

(1/ε) ln(mn ln(m/δ))

)
≤ (1 + o(1))

(
1 +

ln(1/δ)

ln(mn ln(m/δ))

)
(1 + ε) .

For δ−1 = o(mn lnn), the last expression can be bounded from above by (1 +
o(1)) (1 + ε).

A more straightforward result of Theorem 8.4 is stated in Corollary 8.5. In this
corollary, we are aiming at expressing an asymptotic time for the algorithm to
find the approximation, and we assume that ε is constant.

Proof of Corollary 8.5. Using Theorem 8.4, we will first prove the result for an
approximation ratio of (1 + o(1))(1 + ε′) for some constant ε′ > 0 and then
bound this by a ratio of at most 1 + ε such that (1 + o(1))(1 + ε′) ≤ 1 + ε for n
large enough.

Note that ℓ = (mn ln(m/δ))1+1/ε′ and δ = ω(1/(mn lnn)) and invoke Theo-
rem 8.4. The asymptotic bound on T ∗ is obtained in the following way: we note
that ln(n/δ) = O(lnn) since 1/δ = nO(1) by assumption and m ≤ n2. Since ε′ >
0 is constant, we have ln(ℓ) = O((1+1/ε′) ln(mn ln(mδ ))) = O((1+1/ε′) lnn))) =

O(lnn). Moreover, ℓ = O((mn ln(n/δ))1+ε′) = O((mn ln(n))1+ε′). Putting this
together, we have

T ∗ = O
(
(mn ln(n))1+1/ε′

(
ln lnn+ ln

(
T0

wmin

)))
.

We have that 1/ε′ = 1/ε+ o(1) since ε and ε′ are constants. Hence, we obtain
the statement of the corollary.

8.5 (1 + ε)-separated weights

In this section, we revisit the case that the weights w1, . . . , wm are (1 + ε)-
separated, i. e., there is a constant ε > 0 such that wj ≥ (1 + ε)wi if wj > wi
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for all i, j ∈ {1, . . . , n}. As mentioned in the introduction in Theorem 8.1,
Wegener proves that SA with high probability finds an MST for any instance
with (1 + ε)-separated weights if wmax ≤ 2m. More precisely, the proof of his
theorem considers a time span of O(m8+8/ε) steps and shows that SA constructs
an MST within this time span with probability 1−O(1/m).

In the following, we improve this result in two ways. As acknowledged by
Wegener himself, he did not optimize the parameters in the final bound on the
runtime. Therefore, we can give an improved time bound of

O((mn ln(n))1+1/ε+o(1)(ln lnn+ ln(T0/wmin))),

see Theorem 8.11 for the precise, more general result. Moreover, we replace
the assumption on the largest edge weight by the parameter wmax. Essentially,
we have done all work necessary to show the following theorem already in the
previous section, where we proved an approximation result. Now, the (1 + ε)-
separation implies that indeed an optimal solution is found with high probability.

Theorem 8.11. Let δ = ω(1/(mn ln(m))) and δ < 1, ε > 0 be a constant.
Consider a run of SA with multiplicative cooling schedule with β = 1 − 1/ℓ for
ℓ = (mn ln(m/δ))1+1/ε+o(1) and T0 ≥ wmax on an instance of the MST problem
with (1 + ε)-separated weights. With probability at least 1 − δ, at all times
t ≥ T ∗ := (ℓ/2) ln

(
ln(4(ℓ−1)/δ)T0

wmin

)
the current solution is optimal. Moreover,

T ∗ = O

(
(mn ln(n))1+1/ε+o(1)

(
ln lnn+ ln

(
T0

wmin

)))
.

Proof. We first prove the result for (1+o(1))(1+ε′)-separated weights for some
constant ε′ > 0. Then we prove the result for (1 + ε)-separated weights such
that (1 + o(1))(1 + ε′) ≤ (1 + ε) for n large enough.

Using Lemma 8.8, with probability 1 − δ, we have wT ∗(k) ≤ wT ′(k) < (1 +
κ)wT ∗(k) for each k ∈ [1..n − 1]. The (1 + κ)-separated graphs do not have
edge weight between wT ∗(k) and (1 + κ)wT ∗(k) except wT ∗(k). Therefore, the
algorithm finds an optimal solution.

We need to bound 1 + κ using the assumptions in the statement. By setting
a = ln(4(ℓ−1)/δ) and using Lemma 8.10 for ℓ = (mn ln(m/δ))

1+1/ε′ , we bound
1 + κ from above by (1 + o(1))(1 + ε′) similarly to the proof of Theorem 8.4.
Since ε and ε′ are constants and we have 1/ε′ = 1/ε+ o(1), we obtain the claim
for (1 + ε)-separated weights.

Regarding T ∗, since ε > 0 is constant, we have

ln(ℓ) = O((1+1/ε+o(1)) ln(mn ln(m/δ))) = O((1+1/ε+o(1)) lnn))) = O(lnn).
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Moreover, ℓ = O((mn ln(n/δ))1+ε+o(1)) = O((mn ln(n))1+ε+o(1)). Putting this
together, we have

T ∗ = O

(
(mn ln(n))

1+1/ε+o(1)

(
ln lnn+ ln

(
T0

wmin

)))
.

8.6 Conclusions

We have shown that simulated annealing is a polynomial-time approximation
scheme for the minimum spanning tree problem, thereby proving a conjecture
by Wegener [Weg05]. Our analyses use state-of-the-art methods and have led
to improved results in the case of (1 + ϵ)-separated weights, where simulated
annealing yields an optimal solution with high probability. Our main result
is one of the rare examples where simple randomized search heuristics, with a
straightforward representation and objective function, serve as polynomial-time
approximation scheme.

Since the runtime analysis of simulated annealing is still underrepresented in the
theory of randomized search heuristics, our understanding of its working princi-
ples is still limited. In particular, we do not have a clear characterization of the
fitness landscapes in which its non-elitism, along with a cooling schedule, is more
efficient than global search. The study of the Metropolis Algorithm for the DLB
problem in [WZD21] and our analysis on the minimum spanning tree problem
might indicate that landscapes with many, but easy to leave local optima are
beneficial; however, more research is needed to support this conjecture.
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