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Summary
Middle ear infection, also called otitis media, is extremely common in children with
around 80% having a case before school age. It is challenging even for trained spe-
cialists to diagnose otitis media, especially in the subclassifications acute otitis media
and otitis media with effusion. Untreated otitis media can cause hearing loss, delays
in language acquisition, poor school performance, and behavioral problems. At the
same time, otitis media is the leading contributor to antibiotic prescriptions and med-
ical costs in children. Historically, there has been a global tendency to over-prescribe
antibiotics in cases where middle ear effusion is present, but it is not clear if there is
an infection.

This PhD project aims to address the challenges of diagnosing otitis media by
developing deep learning methods for automatic diagnosis. The work is based on a
clinical dataset consisting of otoscopy images of the eardrum and wideband tympa-
nometry measurements, which are objective measurements of the acoustic function of
the middle ear.

The contributions of this thesis are manifold. Three classification models are
presented; one for the analysis of otoscopy images, one for the analysis of wideband
tympanometry measurements, and a final approach based on a combination of the
two modalities. It is shown that it is possible to determine the diagnosis based on
these two different types of patient data using a deep learning model.

Next, a generative model was developed for the generation of new artificial data
from both modalities in the dataset. Additionally, it was examined how to employ
a generative model to eliminate domain shifts in a medical image dataset. Domain
shifts can occur when, e.g., data is collected in different hospitals or using different
equipment.

Furthermore, the human inter-rater variability of the diagnosis of the cases in the
dataset was investigated. Each case was additionally diagnosed by four Ear-Nose-
and-Throat specialists based on the otoscopy images and wideband tympanometry
measurements from the patients. This allowed for the determination of the diagnostic
difficulty of each of the cases. A deep learning-based method for automatic estimation
of the diagnostic difficulty was then developed.

The methods presented in this thesis could potentially be used as a diagnostic
tool to assist medical professionals in the assessment of the condition of the eardrum,
and thus improve the diagnosis of otitis media in the future.
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Resumé
Mellemørebetændelse er meget almindelig hos børn, hvor omkring 80% har et til-
fælde før de starter i skole. Det er udfordrende selv for specialister at diagnosticere
mellemørebetændelse, især i subklassifikationen akut mellemørebetændelse og sekre-
torisk mellemørebetændelse. Ubehandlet mellemørebetændelse kan forårsage høretab,
forsinket udvikling af sprog, dårlig præstation i skolen og adfærdsproblemer. Samtidig
er mellemørebetændelse den førende bidragsyder til brug af antibiotika og medicinske
omkostninger hos børn.

Dette Ph.d.-projekt adresserer udfordringerne ved diagnosticering af mellemøre-
betændelse ved at udvikle metoder inden for dyb læring til automatisk diagnosticering.
Arbejdet er baseret på et klinisk datasæt bestående af otoskopibilleder af trommehin-
den og bredbåndstympanometrimålinger, som er objektive målinger af den akustiske
funktion af mellemøret.

Bidragene præsenteret i denne afhandling er mangfoldige. Der præsenteres tre
klassifikationsmodeller: én til analyse af otoskopibilleder, én til analyse af bredbånd-
stympanometrimålinger og en model baseret på en kombination af de to modaliteter.
Det bliver påvist, at det er muligt at diagnosticere mellemørebetændelse ud fra disse
to forskellige typer patientdata ved hjælp af dyb læring.

Derudover bliver der præsenteret en generativ model til generering af nye kunstige
data fra begge modaliteter i datasættet. Det bliver også undersøgt, hvordan man kan
anvende en generativ model til at eliminere domæneskift i et medicinsk billeddatasæt.
Domæneskift kan f.eks. forekomme, når data indsamles på forskellige hospitaler eller
ved brug af forskelligt udstyr.

Endvidere bliver interobservatør variabiliteten for diagnosen af patienterne i data-
sættet undersøgt. Hver patient blev diagnosticeret af yderligere fire øre-næse-hals
specialister baseret på otoskopibilleder og bredbåndstympanometrimålinger. Ud fra
disse ekstra annoteringer, kan den diagnostiske sværhedsgrad for hver af patienterne
bestemmes. En metode baseret på dyb læring til automatisk estimering af den diag-
nostiske sværhedsgrad blev derefter udviklet.

Metoderne præsenteret i denne afhandling kan potentielt bruges som et diagnos-
tisk værktøj til at hjælpe læger med at vurdere tilstanden af trommehinden og dermed
forbedre diagnosen af mellemørebetændelse i fremtiden.
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Preface
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CHAPTER 1
Introduction

Young children are prone to middle ear infections, called otitis media. This group
of diseases has a high incidence, and it is the leading contributor to antibiotic pre-
scriptions and medical costs in children. Therefore, they play a key role in the daily
practise of Ear, Nose, and Throat (ENT) specialists and other healthcare profession-
als. It is, however, challenging even for specialists to correctly diagnose otitis media in
the two subgroup diagnoses: acute otitis media and otitis media with effusion. A spe-
cific diagnosis is needed to provide proper treatment, and to avoid over-prescription
of antibiotics for cases where it is not needed. On the other hand, complications of
mistreated otitis media include hearing loss, ruptured tympanic membrane, speech
and language learning delays, and meningitis.

In the clinical practise, the diagnosis of otitis media is based on otoscopy; a visual
examination of the middle ear. The otoscope is a handheld device that can be inserted
into the ear canal, allowing the doctor to get a visual impression of the condition
of the middle ear. Modern otoscopes are digital and can capture videos and still
images of the eardrum. The interpretation of the otoscopy is subjective and it can
be challenging to correctly diagnose based solely on this examination. In addition to
otoscopy, another commonly used diagnostic tool is tympanometry. Tympanometry
is an objective measurement of the condition of the middle ear and the mobility of
the tympanic membrane. It is measured by inserting an acoustic probe into the ear
canal, which allows the device to alter the pressure in the middle ear and at the
same time present an acoustic stimulus. The device records the reflection of the
stimulus from the tympanic membrane, and this measurement can therefore evaluate
the transmission of acoustic energy through the middle ear. In recent years, this
diagnostic tool has been improved by employing a broadband stimulus. This is called
wideband tympanometry (WBT) and provides an analysis of the acoustic absorbance
over a wide frequency range, which encompasses the most functionally important
audiometric frequencies.

These two clinical instruments require specialized training for both operation of
the equipment and interpretation of the results. Previous studies show that pediatri-
cians distinguished correctly between normal, otitis media with effusion, and acute
otitis media 50% of the time, while the accuracy of ENTs was 75% [53], and that an
ENT is less likely to diagnose acute otitis media compared with the general practi-
tioner (44% compared to 64% of the cases) [8]. With these low accuracy rates for
medical professionals without specific ENT training, an automatic diagnostic tool
would be of great value in the clinical practise.
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Deep learning methods are widely used in medical image analysis and specifically
for computer-aided diagnosis. Deep neural networks can learn the characteristics of
the diagnostic groups in a dataset, and then perform classification of unseen cases.
A computer-aided diagnostic system can thus be used to quickly analyse biomedical
data and help physicians make the correct medical decisions. There are, however,
many other aspects of a computer-aided diagnostic system besides the diagnostic
classification output. It is, for example, valuable for the medical professional to gain
insight into the decision process of the neural network to gain trust in the diagnostic
tool. This could be with the use of explainability methods, such as classification
saliency maps. Additionally, it would be helpful to estimate the diagnostic difficulty
of a certain case. This allows the user of the diagnostic tool to assess whether this is
a standard case, which is easy to diagnose, or a difficult case. This could be used to
refer difficult cases to an ENT specialist for further examination. A diagnostic tool
like this can therefore have two different fields of application. First, it can assist the
medical professional in making a diagnostic decision and, second, it can work as an
educational tool for untrained practitioners with the use of explainability methods or
a difficulty estimate for each case.

This PhD project aims to address the challenges of diagnosing otitis media by
developing deep learning methods for the analysis of the two modalities: otoscopy im-
ages and WBT measurements. In this project, various deep learning methods will be
employed, with the main focus on deep metric learning. However, the contributions
of this thesis also include classification networks and generative models, both varia-
tional autoencoders and generative adversarial networks. Through the seven included
contributions, the above-mentioned aspects and challenges of a computer-aided diag-
nostic tool are addressed from both a technical and clinical perspective.

1.1 Thesis outcome
The outcome of this PhD project is two-fold: the academic outcome and the industrial
outcome related to a potential diagnostic tool using the developed methods. The
academic outcome is presented in seven publications, of which at the time of writing
three are published journal papers, two are technical reports, one is in submission,
and one is in preparation. These publications all contribute to the overall objectives
of this project of developing automatic tools for the diagnosis of otitis media.

This project was conducted in collaboration with the company Interacoustics,
which develops diagnostic equipment for the assessment of hearing and balance. The
models and methods developed in this project have been transferred to the research
and development department at the company. There is a significant interest in deep
learning for diagnosing ear and hearing-related conditions at Interacoustics, and this
PhD project has laid the ground for further investigations within this field.

The publications included in this thesis are separated into sections based on top-
ics, which are also used in Chapter 4. The following is a brief description of the papers.
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Computer-aided diagnosis of otitis media
Paper A: Deep metric learning for otitis media classification
This paper presents work on the analysis of otoscopy images using deep neural net-
works. The class imbalance in the dataset is overcome with the use of deep metric
learning, and it is shown that it is possible to distinguish between acute otitis media
and otitis media with effusion based on otoscopy images. In the paper, different loss
functions for the classification task are compared, and it is demonstrated that deep
metric learning achieves the best performance, while allowing interpretation of the
model output.

Paper B: A deep learning approach for detecting otitis media in wideband
tympanometry measurements
In this paper, a deep learning model is presented for the prediction of otitis media
based on WBT measurements. The use of various types of augmentation for biomedi-
cal data to improve classification performance is demonstrated. Classification saliency
maps are computed, allowing interpretation of the classification output of each mea-
surement. It is demonstrated how the WBT measurements can be used to distinguish
between otitis media and no effusion, but that more clinical information is needed for
the subclassification of otitis media.

Generative models
Paper C: EyeLoveGAN: Exploiting domain-shifts to boost network learn-
ing with cycleGANs
This paper shows how to handle data from different data sources when training a
deep neural network - more specifically when applying a model trained on images
from one camera to a test dataset of images from another camera. CycleGANs are
employed for domain shifts, and artificially generated data are used to train neural
networks for three different tasks: segmentation, point detection, and classification.
This paper documents my participation in the Retinal Fundus Glaucoma challenge at
the International Conference on Medical Image Computing and Computer Assisted
Intervention (MICCAI) 2020.

Paper D: Multi-modal data generation with a deep metric variational au-
toencoder
In this paper, a multi-modal generative model is presented for the generation of pairs
of otoscopy images and WBT measurements from the three diagnostic groups. A
variational autoencoder architecture is employed and metric learning in the latent
space of the model is introduced to allow for conditional data generation. The use
of the model is demonstrated with generated pairs of otoscopy images and WBT
measurements from each of the three diagnostic groups.
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Diagnostic difficulty
Paper E: Inter-rater reliability of the diagnosis of otitis media based on
otoscopic images and wideband tympanometry measurements
This paper presents a study conducted with the help of four ENTs from Skåne Univer-
sity Hospital. In the study, the four ENTs diagnosed the cases in our clinical dataset
based on otoscopy images and WBT measurements and rated their certainty of each
diagnosis. The paper presents an analysis of the annotations, investigating the agree-
ment between the ENTs, the self-reported certainty, and the diagnostic value of the
WBT measurements in addition to the otoscopy images.

Paper F: Was that so hard? Estimating human classification difficulty
Based on the annotations from Paper E, we can define the diagnostic difficulty. If
the four additional ENTs all agree with the original ENT on the diagnosis, the case
is easy, but if the ENTs are split on the decision, the case is more difficult. In this
paper, the ground truth difficulties are used to develop methods for estimating how
hard it is for a medical professional to diagnose a case, both when ground-truth diffi-
culties are available for the model and when they are not. The methods are based on
embeddings generated by neural networks trained using deep metric learning. The
methods are evaluated on two medical datasets: the otoscopy dataset from this PhD
project, and a skin lesion dataset.

Combining it all
Paper G: Multi-modal deep learning for diagnosing otitis media and esti-
mating diagnostic difficulty
This paper presents the final classification model, which ties together most of the
previous contributions from this PhD project. The classification pipeline is based
on both otoscopy and WBT data, and the model is used to predict both diagnoses
and estimate the diagnostic difficulty of each case. In the paper, the use of a multi-
task neural network for the classification and difficulty estimation tasks is compared
with an deep metric learning approach, showing the strengths of deep metric learning.
Furthermore, the further challenges of diagnosing otitis media are discussed, such as
detecting mild cases of otitis media.



CHAPTER 2
Background

This chapter provides the required background knowledge needed to understand the
contributions of this thesis. The first part describes the clinical background including
the anatomy of the ear, the two modalities used in this project: otoscopy images
and wideband tympanometry measurements, and the medical condition otitis media.
Second, a technical background is provided, focussing on the field of deep metric
learning and generative models.

2.1 Clinical background
The human ear, seen in Figure 2.1(Left), is typically described as consisting of three
parts: the outer ear, the middle ear cavity, and the inner ear. The outer ear is the
external part of the ear, including the auricle and the auditory canal. The middle ear
consists of an air-filled cavity with the three ossicles (stapes, incus, malleus), which
are the smallest bones in the human body. The middle ear connects to the upper
throat through the opening of the auditory tube (also called the Eustachian tube).
The inner ear is where the cochlea lies, which is a spiral shell-shaped organ responsible

Figure 2.1: Left: anatomy of the human ear. Right: anatomy of the eardrum.
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for the transduction of sound to a neural code that propagates through the auditory
pathway to the auditory cortex in the brain.

The eardrum, also called the tympanic membrane, is a thin layer of tissue that
separates the outer and middle ear cavity. The eardrum receives sound vibrations
through the auditory canal and transmits these to the ossicles, causing movement of
the fluid in the cochlea. In the cochlea, mechanical vibration is converted to electrical
activation in the auditory nerve, which propagates through the brainstem and into the
hearing centres of the brain. The ossicles also provide a degree of impedance matching
between the air-propagated sound in the ear canal and the fluid propagated sound
transmission in the cochlea. Middle ear pathologies that result in pressure offsets
relative to ambient and/or fluid that interferes with the motion of these bones will
negatively impact their performance and reduce the hearing threshold.

The shape of the tympanic membrane can vary from round to oval, and the edges of
the membrane are attached to a bone ring (annulus tympanicus). Figure 2.1(Right)
shows the anatomical structure of the eardrum. The most important features are
labelled on the schematic presentation, and include the malleus bone, umbo, and
cone of light, which is the reflection of light from the otoscope. These characteristics
are important when examining an eardrum for middle ear diseases, as those diseases
are typically diagnosed depending on the appearance and mobility of the membrane.

2.1.1 Diagnostic tools for ear examination
Changes in physical appearance and function of the tympanic membrane, or the
ear canal, can indicate various diseases, and several diagnostic tools for examining
this exist. Otoscopy is a widely used diagnostic tool for visualisation of the tympanic
membrane, while wideband tympanometry assesses the acoustic function of the middle
ear.

2.1.1.1 Otoscopy

An otoscope is a medical device used to obtain a visual impression of the tympanic
membrane through the ear canal. The most commonly used otoscope is a handheld
version consisting of a handle and a head, containing a light source, a magnifying lens,
and a disposable ear speculum. The ear speculum is inserted into the ear canal, as
seen in Figure 2.2, while the doctor straightens the ear canal by pulling the auricle or
earlobe. The doctor looks through the lens to get a view of the tympanic membrane
highlighted by the light source. Modern otoscopes are digital and can capture videos
and still images of the eardrum. Examination can be challenged by the presence of
foreign bodies, pus, cerumen (earwax), or canal skin edema, since these obscure the
view of the tympanic membrane. Some otoscopes are designed with tools to remove
such obstructions so that it does not compromise the examination. Furthermore,
children with narrow or curved ear canals are challenging to examine, as it is not
straightforward to insert the otoscope.
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Figure 2.2: Otoscopy examination with a handheld otoscope.

Another type of commonly used otoscope is a pneumatic otoscope. This kind of
otoscope has a rubber bulb and tubing, and the speculum is designed to fit tightly
into the ear canal in order to create an airtight seal. The doctor can then squeeze
and release the bulb to change the pressure in the ear canal to examine the mobility
of the tympanic membrane in response to positive and negative pressure. This gives
additional information about the characteristics of the tympanic membrane beside
the visual appearance. As ENTs examine both ear, nose, and throat, it can be more
convenient to use the same device for all three examinations. This can be solved by
utilising an endoscope. An endoscope is a long, flexible instrument used to look into
body openings. An endoscope will usually have a light at the end, to light up the
examination area. Figure 2.3, 2.6 and 2.7 show examples of images of the tympanic

Figure 2.3: Otoscopy images of a normal tympanic membrane with no effusion.
Photo credit: Kamide ENT clinic, Shizouka, Japan.
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membrane captured with an endoscope. These images show a part of the ear canal
and the tympanic membrane. The orientation of the membrane varies slightly, and
both left and right ears are shown.

2.1.1.2 Wideband tympanometry

Tympanometry is an examination of the condition of the middle ear and the mobility
of the tympanic membrane. It is an objective test of middle ear function, evaluat-
ing the energy transmission through the middle ear, but it does not as such assess
the sensitivity of hearing. A standard tympanometry measurement is performed by
presenting a 226 Hz tone into the ear canal, where the sound strikes the tympanic
membrane, causing vibration of the middle ear. Some of this sound is reflected back
and picked up by the instrument, as indicated in Figure 2.4. The test is performed by
inserting an airtight tympanometer probe into the ear canal. The instrument changes
the pressure in the ear, typically from +200 to -400 daPa, generates a pure tone, and
measures the eardrum responses to the sound at different pressures. This produces a
series of data showing how the proportion of acoustic energy absorbed by the middle
ear varies with pressure, which is plotted as a tympanogram.

Tympanometry provides quantitative information, which can indicate the pres-
ence of fluid in the middle ear and assess the mobility of the tympanic-ossicular

Figure 2.4: Tympanometry measurement setup. The components include a micro-
phone, a pressure regulation system, and a loudspeaker. Figure inspired
by [26].
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system. The method does have limitations, including a lack of specific norms for
different populations (children, infants, adults), since the eardrum and the external
ear are anatomically different in children compared to adults [26]. For infants of
approximately 6 months of age, measurements with a high-frequency tone (1000 Hz)
can be more sensitive in identifying middle-ear changes than those conducted with a
226 Hz probe tone. However, the 1000 Hz tympanometry trace is different from the
traditional trace at 226 Hz. For many subjects, the 1000 Hz trace presents a double
peak, and its clinical interpretation can be quite complicated.

The use of a wideband stimulus (e.g., an acoustic click or chirp) has been shown
to be more efficient and precise for the evaluation of the middle ear by providing
more detailed information on the mechanical and acoustic status of the middle ear
than the standard 226 Hz tympanogram [51]. This measurement is called a wideband
tympanogram (WBT), and evaluates the middle ear function with a transient stimulus
and displays the results in the frequency range of 226 to 8000 Hz. Assessment of
middle-ear function over such a broad bandwidth provides detailed information on the
middle-ear status and can assist considerably in any needed diagnosis. Furthermore, it
simultaneously provides the tympanometric information over a wide frequency range
in an equivalent test time to standard single frequency tympanometry.

Examples of WBT measurements are shown in Figure 2.5. Higher absorbance
values suggest a more efficient middle ear, in the sense that more acoustics energy
potentially is transferred, as seen in Figure 2.5(Left). Lower values mean that the
tympanic membrane cannot move properly, suggesting otitis media, as seen in the
middle and right plot in Figure 2.5.

2.1.2 Otitis media
Otitis media is a group of diseases in the middle ear. Otitis media can manifest itself
in different ways, leading to two of the major diagnostic groups: acute otitis media

Figure 2.5: Examples of wideband tympanometry measurements from each of the
three diagnostic groups. Left: no effusion (NOE), middle: otitis media
with effusion (OME), right: acute otitis media (AOM).
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(AOM) and otitis media with effusion (OME). AOM is an acute infection in the middle
ear with a rapid onset of signs and symptoms, whereas otitis media with effusion
(OME) is an inflammation in the middle ear with a collection of fluid in the middle
ear cavity. OME patients have no signs of infection or perforation of the tympanic
membrane. Table 2.1 gives an overview of the most important characteristics of AOM,
OME, and no effusion (NOE).

2.1.2.1 Acute otitis media

AOM is the second most common reason for a visit to the doctor and accounts for
10-15% of all childhood visits to the doctor [82]. AOM has a very high prevalence
in young children, with around 80% of children having an episode during the first
year of life [15]. It is most common in very young children, and the incidence rate de-
creases rapidly after 5 years of age. The aetiology of AOM includes infectious, allergic,
and environmental factors. Infection has been found to be associated with genetic
predisposition, anatomic abnormalities, cochlear implants, vitamin A deficiency, im-
munodeficiencies, bacterial pathogens, viral pathogens, allergies, lack of breastfeeding,
passive exposure to smoke, attendance at the daycare, and lower socioeconomic status
[15]. AOM starts as an inflammatory process, which obstructs the narrowest part of
the Eustachian tube. This leads to a decrease in ventilation, causing a cascade of
increase in negative pressure, accumulation of mucosal secretions, and colonisation of
bacterial and viral organisms in the middle ear [15]. This can cause a visible bulging
of the tympanic membrane. The condition is clinically diagnosed considering oto-
scopy findings and other symptoms. Symptoms appear with rapid onset and include
ear pain, fever, ear discharge, vomiting, and diarrhoea. Otoscopy findings include red
eardrum, clear inflammation, bulging, potentially not visible malleus, lack of airspace,
or pus-filled middle ear cavity, as also seen in Table 2.1, and shown in Figure 2.6.

AOM is typically a self-limiting condition and will recover by itself within 3-7 days.
Diagnosis is difficult because no standard diagnostic criterion exists, nor any specific
medical or laboratory test to confirm the diagnosis. The severe ear pain makes it a
challenging task to examine a small child using an otoscope, especially a pneumatic

Characteristics AOM OME NOE
Visible malleus no yes yes
TM shape bulging retracted neutral
Colour pale yellow, red amber, grey, opaque pearly white/grey
Fluid can be present yes no
Cone of light can be visible can be visible visible
Translucency opaque opaque translucent

Table 2.1: Key characteristics of the tympanic membrane for the three diagnostic
groups [38, 49].
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Figure 2.6: Otoscopy images of tympanic membrane with AOM. Photo credit:
Kamide ENT clinic, Shizouka, Japan.

otoscope. Treatment is highly debated in the medical literature, as AOM is the single
diagnosis responsible for most antibiotic prescriptions [82, 9]. There are controversies
about prescribing antibiotics in the early stages of AOM. Watchful waiting is the best
practise in most of Europe, and this approach does not show an increased incidence
of complications. However, watchful waiting has not gained wide acceptance in the
United States, where antibiotics are still the most common treatment [15].

2.1.2.2 Otitis media with effusion

OME is the most common cause of acquired hearing loss in childhood [58]. OME
accounts for 25% to 35% of all cases of otitis media, and about 80% of all children
younger than 4 years have had at least one episode of OME. The prevalence declines
drastically beyond 8 years of age. OME occurs more frequently in the fall and winter
months. Contributing factors to OME include upper respiratory tract infection and
narrow upper respiratory airways. Risk factors also include a large number of siblings,
having a cold, attending daycare, passive exposure to smoke, and bottle feeding. The
development of OME is related to the position of the Eustachian tube, which is more
horizontal in younger children. As the child grows, the tube elongates, and the angle
changes. The Eustachian tube helps to equalise pressure between the external ear
and the middle ear. A clogged Eustachian tube prevents normal drainage of fluid
from the middle ear, causing a build-up of fluid in the middle ear cavity. Conditions
that change the development of the Eustachian tube, such as Down syndrome and
cleft palate, increase the risk of developing OME [72].

Signs and symptoms of OME vary greatly and can vary in intensity over time,
but often include hearing difficulties, loss of balance, or delayed speech development.
Unlike AOM, patients with OME will not experience pain, fever, or malaise, making
the diagnosis of OME difficult. The child is often brought to the doctor due to
parents’ concern regarding the child’s behavior, performance in school, or language
development [12]. OME is diagnosed based on an otoscopy of the tympanic membrane.
Examples of OME cases are shown in Figure 2.7, and common characteristics include
a retracted membrane with visible fluid build-up. The color of the membrane can
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Figure 2.7: Otoscopy images of the tympanic membrane with OME. Photo credit:
Kamide ENT clinic, Shizouka, Japan.

vary from amber to grey, and it will usually be opaque. These characteristics are also
summarised in Table 2.1.

OME is typically a self-limiting condition, and 50% of the cases will be resolved
within 3 months, 95% within 1 year. In these prolonged cases, complications such as
tympanic membrane perforation, tympanosclerosis, ear discharge, and hearing deficits
can occur. Treatment for cases that persists for longer than 3 months will usually
be an insertion of a tympanostomy tube to drain the fluid, which will solve the issue
until the Eustachian tube is developed enough to allow for natural drainage [12].

2.2 Technical background
This PhD project works with various models, but the common theme of the proposed
methods is deep learning. A general introduction to deep learning will, however,
not be given in this thesis. The focus of most of the work has been on the field
of deep metric learning, and this section will therefore give an introduction to this
topic. Additionally, a brief introduction to generative models is provided, as these
are employed in Paper C and D.

2.2.1 Metric learning
Metric learning is based on a distance metric evaluating the similarity of the data
examples, which have been mapped to an embedding, or feature, space. The goal
is to learn an embedding space in which similar data examples are moved together
and the dissimilar examples are moved further apart. In deep metric learning, the
embeddings are acquired using a neural network as a feature extractor. The network
architecture is thus different from a standard classification network, as the output is a
feature vector of, e.g., dimensionality 32, representing the input sample. The training
process of a deep metric learning embedding space is shown in Figure 2.8.

Deep metric learning have been used for various tasks, such as face recognition
[59], person re-identification [86], and retrieval tasks [85]. These tasks usually have a
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Figure 2.8: Schematic representation of the training process of the embedding space
in a deep metric neural network. The colours indicate three different
classes.

high number of classes and few samples, or images, in each class. Deep metric learning
increases the size of the data for training by employing pairs or triplets [32], which
makes these methods well suited for these tasks. This also makes deep metric learning
well-suited for small datasets with high class imbalance, which is very common in
medical image analysis.

Using deep metric learning, a higher level of representation of the data is pro-
vided, compared to a standard classification network. A feature vector describing the
model input is acquired which can be interpreted or used for further analysis, such as
classification. Training the network based on similarities, instead of with a specific
classification goal, grants a better ability to represent the data, and results in a more
meaningful and interpretable model.

It is, for example, possible to plot the feature vectors of the full dataset and
evaluate the placement of each sample in the feature space in relation to each other.
In, e.g., a medical image classification task, the disease patterns should be similar in
the different diagnostic groups. By visualising the feature vectors of the dataset, the
distribution can be investigated. There may be a diagnostic group that is slightly
divided into two subgroups in this feature space, because the condition can appear
with different signs or other underlying features of the dataset that can be inferred
from the feature space.

Deep metric neural networks are trained with loss functions designed to manipu-
late the embedding space to move examples of the same class closer together, and to
push examples of different classes away from each other, as seen in Figure 2.8. There
are various loss functions designed to learn this transformation. The most simple
loss function is contrastive loss [24]. This loss function is computed based on the
Euclidean distance between two embedding vectors. If the two input examples are
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from the same class (positive pairs), the embedding vectors will be moved closer to
each other, and further apart if they are from two different classes (negative pairs).
The loss function is a measure of the distance between the two embedding vectors,
which ideally should be yi = 0 for positive pairs and yi = 1 for negative pairs. The
loss function can be written as [24]:

Lc =
N∑

i=1
(1 − yi)(||f1,i − f2,i||2)2 + yi{max(0, m − ||f1,i − f2,i||2)}2 , (2.1)

where f1,i, f2,i represents the embedding vectors generated by the network for each
input, N is the number of pairs, and m is the margin, usually set to 1.0. The margin
is the desired distance between the clusters, and it is used both for the loss function
and for sampling. It is shown in Figure 2.9.

A further development of contrastive loss is the triplet loss [59], which optimises
both positive and negative samples at the same time. To calculate this loss, three
embedding samples, called a triplet, are used. A triplet consists of an anchor fa, from
which similarities are computed, a positive sample fp, and a negative example fn.
The triplet loss function is computed based on distances between the samples, given
as [59]:

Ltriplet =
N∑

i=1
max(0, m + ||fa,i − fp,i||22 − ||fa,i − fn,i||22) . (2.2)

Multi-class N-pair loss [64] is a generalisation of triplet loss, which takes into
account j = N − 1 negative samples in each iteration, instead of only one. N is
the number of available pairs in a mini-batch. For N = 2, the loss highly resembles
triplet loss. The loss function reduces the computational cost by optimising over the
distance, computed as the cosine similarity, against all classes in one iteration, and it
is given as [64]:

Lm-c =
N∑

i=1
log(1 +

N−1∑
j ̸=i

exp(fa,ifn,j − fa,ifp,i)) . (2.3)

A schematic representation of these three loss functions is shown in Figure 2.9.
When training with deep metric loss functions, the sample selection of the pairs is
crucial [59]. If the neural network is trained with all possible pairs in the dataset
for every epoch, the training time would be very long. Efficient sampling, also called
mining, is, therefore, a key part of the training process to ensure that all pairs are
informative to the network. Figure 2.9 on the right shows three different situations for
the sampling of negative samples. Negative sample 1 is a hard negative because the
distance from the anchor to the negative sample is smaller than to the positive sample.
Semi-hard sampling was proposed by Schroff et al. [59], and selects the negative
samples within the margin defined as the distance between the anchor and the positive
sample plus a margin m, shown with the negative sample 2 in the figure. Sample 3 in
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Figure 2.9: Schematic representation of deep metric loss functions and sampling.
The points represent three different classes (green, orange, and purple),
and the arrows indicate the desired transformation for each of the loss
functions. For sampling, the green point in the middle is the anchor,
the other green point is the positive example, and the orange points are
negative samples. Orange point 1 is a hard negative, orange point 2 is
a semi-hard negative, and orange point 3 is an easy negative. Modified
from [68] and [32].

the figure is an easy sample, further away from the anchor than the positive sample
plus the margin m. This would therefore not contribute any information if used for
training. The semi-hard sampling strategy is widely used for triplet loss training.

As stated by Kaya et al. [32], the benefits of N-pair loss are lost when the num-
ber of classes decreases. Since we have a limited number of classes, three, in our
dataset, we might not benefit greatly from N-pair loss. Another loss function is the
multi-similarity loss [79], which considers both self-similarity and relative similari-
ties, allowing for more efficient and accurate sampling of pairs during training. With
the proposal of multi-class loss, the authors also introduced a new mining strategy
claimed superior to previous strategies, and a general pair weighting framework for
analysing pair-wise loss function. Like the N-pair loss function, the multi-class loss
uses the cosine similarity as the distance function. I recommend reading the paper
by Wang et al. [79] for a detailed description of the multi-similarity loss.

There are many other deep metric loss functions, but the ones mentioned here,
are employed in this PhD project. Kaya et al. [32] provide a good overview of deep
metric learning in general and some of the many other deep metric loss functions.

2.2.2 Generative models
Deep generative models are deep neural networks trained to synthesise artificial data
from the distribution of the training data. There are many different types of genera-
tive models, but the most widely used are Variational Autoencoders (VAEs) [35] and
Generative Adversarial Networks (GANs) [21].
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2.2.2.1 Variational autoencoder

This is a brief introduction to VAEs from a neural network perspective. This section
will not go into the mathematical background or motivation for these models. A VAE
is a neural network designed to reduce the high-dimensional input data to a latent
representation, and then reconstruct the input data from this latent representation.
An illustration of a standard VAE is shown in Figure 2.10. In the VAE, the input data
is mapped to a certain distribution through the encoder. The training of the network
is regularised to ensure that this latent space follows a standard normal distribution,
enabling easy generation of new samples. Instead of a standard autoencoder, where
the encoder output is the latent representation of the input, the output of the vari-
ational encoder is a distribution in the latent space. During training, a point from
this distribution is then sampled at each iteration, which is reconstructed through
the decoder.

The loss function of a standard VAE consists of two parts: a reconstruction term
and a regularisation term. The reconstruction term penalises the reconstruction by
comparing the input data with the reconstructed data, thus improving the generative
performance of the model. The reconstruction loss could be e.g. mean squared error,
structural similarity [80] or based on perceptual similarity [14]. The regularisation
term penalises the predicted distributions and enforces a standard normal distribution.
It is expressed as the Kullback-Leibler divergence [37] between the latent distribution
and a standard Gaussian.

Once the model is trained, new latent vectors can be sampled from the standard
Gaussian distribution and run through the decoder for the generation of new data.
VAEs are theoretically appealing, as it is a well-defined statistical model. A major
challenge of VAEs is, however, that the generated images tend to be blurry. This
is partially due to the bottleneck of a small latent dimension in the model, and the
use of loss functions based on mean squared error, causing imperfect reconstruction.
Several works have focused on solving this problem, such as the VQ-VAE-2 model
[55], which can generate high-resolution images. Other applications of VAEs include
semi-supervised classification [84] and denoising [28].

Figure 2.10: Basic structure of a VAE model.
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2.2.2.2 Generative adversarial network

A GAN model consists of two neural networks: a generator and a discriminator, as
seen in Figure 2.11. The networks are trained simultaneously, and the goal is to learn
to transform random noise into realistic artificial data examples from the training data
distribution. The generator learns to capture the data distribution and transforms
the input noise into realistic data examples, and the discriminator estimates the
probability that the input data is a generated image or from the training dataset.
Training these two networks is a delicate balance, as the discriminator needs to be
able to distinguish between real and fake images, and the generator needs to generate
realistic data to fool the discriminator [20].

After training, the generator model can be used without the discriminator to
generate new examples from the training distributions. GANs are very capable gen-
erative models and produce highly realistic fake images. The GAN training process
is, however, one of the main drawbacks of these models. GANs suffer from several
issues such as mode collapse, imbalance between the generator and discriminator caus-
ing overfitting, vanishing gradients, and they are highly sensitive to hyperparameter
selections [20].

Just like the VAE, many variations of GANs have been developed: the conditional
GAN, which generates data with some desired feature, such as images from certain
classes [47]; the text-2-image network, which generates images from text descriptions
[56]; the SRGAN, generating photo-realistic super-resolution (SR) images [39]; and
the cycleGAN, which is an unpaired image-to-image translation model [87].

The cycleGAN learns a mapping between two image distributions, for example,
domain X and Y , without the use of paired examples. The network follows the basic
structure of a GAN model, but with two generators, F and G, and two discriminators,
DX and DY , as seen in Figure 2.12. The networks are trained on two datasets from
domain X and domain Y , and as it is an unpaired model, image correspondence
between the two domains is not needed. This makes this model much more accessible
and easier to train. During training, the two generators learn to transfer images
between the two domains, while the discriminators evaluate the quality of the mapped

Figure 2.11: Basic structure of a GAN model.
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images. Figure 2.12 also show the cycle-consistency loss that enforces the intuition
that an image mapped from, e.g., domain Y to X, and back to Y , should look the same
as the original image. Once the networks are trained, the two generators can thus be
used to transfer images from one domain to another. More details on the cycleGAN
model are found in the paper by Zhu et al. [87]. As shown in the paper, the cycleGAN
model can be used for style transfer, such as turning Monet paintings into naturally
realistic photos, object transfiguration, where, e.g., images of zebras are turned into
images of horses, or photo enhancement. In medical image analysis, cycleGANs have
been used for, e.g., unpaired translation between T1 and T2 weighted MRI scans [5],
and for generating synthetic CT scans from PET scans [17]. Another application is
to rectify domain shifts when the medical data used for a deep learning model are
acquired at different hospitals or with different equipment. This was addressed by,
e.g., Wollmann et al. [81], and will be the focus of Paper C of this thesis.

Figure 2.12: Structure of the cycleGAN model. Left: the two generators F and G
between domain X and Y , and the two discriminators. Right: map-
ping between the domains. Figure inspired by Zhu et al. [87].



CHAPTER 3
Related works

This chapter presents the current state of the art of otitis media diagnosis. Each
contribution included in this thesis contains presentations of the related works for
the specific research area of the individual contributions. Thus, this chapter is an
introduction to the overall theme of this PhD project focussing on the clinical practise
for the diagnosis of otitis media and other works on automated diagnosis based on
otoscopy images or WBT measurements.

Treatment and diagnosis of otitis media are highly debated in the medical liter-
ature, due to the large increase in recent years of drug-resistant infections in acute
otitis media. Historically, there has been a global tendency to over-prescribe antibi-
otics in cases where middle ear effusion is present, but it is not clear if there is an
infection. The usual high prevalence of not fully adhering to a full course of antibi-
otics and the very high general prevalence of OME and AOM in young children has
led to a rise in drug-resistant bacteria and the desire to reduce general antibiotic use.
The differentiation of AOM and OME has therefore become more critical in an era
of increased resistance to antibiotics among bacterial pathogens that cause AOM.

Several studies have investigated the diagnostic process and accuracy of the di-
agnosis of otitis media by different medical professionals. Jensen et al. [30] found
that general practitioners (GP) were certain of their diagnosis of AOM in 67% of
new cases in children younger than 2 years of age. For children over 2 years of age,
the diagnostic certainty increased to 75%. Pichichero et al. [53] discovered that pae-
diatricians correctly distinguished between NOE, OME, and AOM 50% of the time,
while the accuracy of the ENTs was 75%. Blomgren et al. [8] found that four medical
professionals agreed on the diagnosis in 64% of the AOM diagnosis and that the ENT
was less likely to diagnose AOM, compared to the GP (44% compared to 64% of the
cases).

These studies all show how challenging the diagnosis of otitis media is, no matter
the clinical background of the doctors. The studies report specific challenges in the
diagnostic process, such as familiarisation with the pneumatic otoscope, which in-
creases diagnostic performance [53], or access to tympanometry equipment [8]. Thus,
diagnostic accuracy depends on specific training, experience, and available diagnos-
tic equipment. But even with the correct diagnostic tools, diagnosis is still highly
subjective and diagnostic performance differs greatly between medical professions.
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3.1 Clinical practise
In order to streamline the diagnosis and treatment of diseases, clinical practise guide-
lines are published in many countries. These guidelines include recommendations
intended to optimise patient care for a specific disease. They are based on a system-
atic review of evidence and assess the benefits and harms of different care options.
For otitis media, guidelines are often focused on OME or AOM. These guidelines show
the worldwide differences in clinical practise, and many reviews and comparisons of
these guidelines have been conducted.

3.1.1 Diagnosis of AOM
Tamir et al. [73] compared national guidelines, consensus papers, and position doc-
uments from 62 countries. All guidelines discussed diagnostic criteria for AOM, the
pillars of diagnosis being the characteristics of the tympanic membrane (bulging, red,
opaque, or position) and the coexistence of acute onset of symptoms such as fever and
ear pain. Developed countries generally recommend using pneumatic otoscopy for fur-
ther examination, while in developing countries, this is rarely mentioned. Similarly,
many developed countries recommend the use of tympanometry as a supplementary
tool for the diagnosis of AOM when the tympanic membrane is not visible, while this
tool is barely mentioned in developing countries. In developing countries and remote
regions of developed countries, cases of AOM are often diagnosed and treated by GPs
or paediatricians rather than ENTs, and the diagnosis is based on symptoms rather
than otoscopic evaluation. Differences in clinical practise therefore often originate
from variations in accessibility to local healthcare services.

The AOM clinical guideline published by the American Academy of Pediatrics
(AAP) and the American Academy of Family Physicians [41] is widely used and is
referenced in many other guidelines. Baumer et al. [6] compared the AAP guideline
and the Scottish guideline [60]. Both guidelines are based on current best practices
but set in two different healthcare systems. There is strong agreement between the
two guidelines, indicating that most developed countries in the world follow a similar
clinical practise, as also shown by Tamir et al. [73]. The Scottish guideline does,
however, make a stronger statement against antibiotics in children under 2 years of
age, compared to the American guideline.

Despite the development of national guidelines to enforce a streamlined clinical
practise for the diagnosis of AOM, many cases of overdiagnosis of AOM, and thus
overprescription of antibiotics, still occur. This could be due to a lack of adherence
to the guidelines. Célind et al. [9] raise concerns about the adherence to treatment
guidelines and the need for an effective strategy of guideline implementation. The
study focused on Sweden, where watchful waiting is recommended for most children
over 2 years of age with AOM, while antibiotics are recommended for children younger
than 2 years. The way in which the AOM guideline is followed was evaluated in a busy
paediatric emergency department. Adherence to the guidelines was greater in patients
under 2 years of age, compared to those older than 2 years. This shows that when
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the recommendation is to give antibiotics, the guidelines were followed. An intense
information campaign was carried out, due to the assumption that this deviation
from the recommendations was caused by a lack of knowledge. The campaign did
not, however, produce any significant improvement. The fear of complications could
outweigh the guilt over bad adherence to guidelines, especially when the treatment
guideline is to do nothing, as when the child is older than 2 years. This study
raises questions about how these guidelines should be implemented since an intense
information campaign is not enough to enforce these recommendations.

Similarly, Marchisio et al. [44] conducted a study concerning Italian paediatricians
and ENTs and their attitude and adherence to the Italian AOM guideline. Only 9%
of the 2012 included physicians had received any specific AOM medical education
during medical school, but in post-residency, the percentage increased to 53%. 40%
reported a positive attitude towards the AOM guideline, but only 21% reported an
appropriate diagnostic method for AOM (pneumatic otoscopy). This survey shows
how these guidelines have not been extensively integrated into the practices of Italian
pediatricians or ENTs. Very similar results are seen in equal studies performed in
the US [77, 78] and Israel [57], where most physicians are familiar with the AOM
guideline, but fail to follow the diagnosis and treatment recommendations. Chandler
et al. [11] examined how well clinical trials from 1994 to 2005 met the AOM guidelines
from AAP [41]. They found that only 17% of the clinical trials met the three criteria
of AAP for a certain diagnosis; a history of acute onset of symptoms, the presence
of effusion in the middle ear, and signs of inflammation in the middle ear indicated
by redness or ear pain. However, 80% of the clinical trials required at least one AAP
criteria for diagnosis, and the most commonly used symptom was middle ear effusion.

3.1.2 Diagnosis of OME
Most clinical practise guidelines are focusing on AOM, since AOM is treated with
antibiotics. In order to prevent over-prescription of antibiotics, a correct diagnosis of
AOM is needed. OME is usually not treated with antibiotics but with a tympanos-
tomy tube to drain the effusion. But even without the social problem of drug-resistant
bacteria, it is still important to properly diagnose and treat OME to avoid complica-
tions and challenges related to persistent episodes of OME.

Stewart et al. [65] conducted a study on practise patterns of physicians when
diagnosing OME. The overall performance in answering questions about the guideline
was very poor, with only around 50% correct answers on average. This study was
performed five years after the publication of a national guideline and shows the lack
of integration of these guidelines in the clinical practice.

The AAP OME guideline [3] addresses the need for adequate documentation when
children with OME visit the doctor. Kalu et al. [31] examined clinical compliance
with these recommendations related to documentation of presence, laterality, resolu-
tion, persistence, and surveillance for hearing loss or speech decay. It was found that
the initial diagnosis of OME had a high documentation rate, but continuity of care
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and follow-up visits were poorly documented. This study also found that contrary
to recommendations, 43% chose to prescribe antibiotics for children without risk of
speech or language decays, where watchful waiting is recommended.

Cullas Ilarslan et al. [13] investigated how Turkish ENTs and paediatricians ad-
here to the clinical practise guideline. Turkey does not have a national guideline for
OME, but most medical professionals follow the AAP guideline [3]. A high level of
self-confidence was recognised when surveying the medical professionals, even though
low adherence to the clinical practise guidelines was found. Only half of the physicians
could correctly define pneumatic otoscopy findings for OME, while 17% employed a
pneumatic otoscope in their practice. They also found that older and more expe-
rienced physicians are less likely to prescribe antibiotics. This can be related to
insecurity in younger physicians, but it also shows how important proper training is,
in order for younger physicians to know how to handle OME cases.

With the publication of these AOM and OME guidelines, the attempt is to provide
evidence-based recommendations to assist medical professionals in making diagnostic
and treatment decisions. However, as seen with these reviews of implementation and
integration of the guidelines, this is a challenging task. One study found that 21%
of paediatricians never used guidelines, 44% sometimes used them, and only 35%
routinely consulted guidelines [19]. With statistics like this, it is very difficult to
change the practice of pediatricians or ENTs, in order to limit the use of antibiotics
and get the children the best treatment.

As mentioned, many countries publish national guidelines and since data for this
project are collected in Japan, the Japanese AOM and OME guidelines [36, 29] will
be adhered to during the diagnostic process of the patients included in this project.

3.2 Automatic otitis media detection
As discussed above, the diagnosis of otitis media is still highly subjective, in spite
of the publication of clinical practise guidelines. Key problems in the diagnostic
process have been shown to be lack of specific training, limited availability of necessary
diagnostic tools [30, 53], lack of experience in handling cases of otitis media, and lack
of adherence to clinical guidelines, sometimes due to the attitude and behaviour of
physicians about guidelines [9, 19]. A diagnosis support system would thus be of
great value in order to improve the diagnosis and treatment of otitis media and
ensure adherence to the diagnostic guidelines.

With machine learning growing rapidly in many fields, including medical image
analysis, it has also taken an impact on the field of automatic otitis media detection.
This task is in many cases performed by classifying an otoscopy image of the tympanic
membrane into a diagnostic group, but there has also been some work in classification
based on tympanometry measurements. Some studies have focussed on AOM and
OME, as we are focusing on in this PhD project, but other diagnostic groups such
as chronic suppurative otitis media, tympanic perforation, or attic retraction are also
included in some studies.
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3.2.1 Otoscopy analysis
Some of the first published approaches for the detection of otitis media are based on
hierarchical rule-based decision trees to determine if an otoscopy image is from an
OME, AOM, or NOE patient [38, 49]. The decision trees are of varying complexity
but are based on hand-made, manually selected features. The features include color,
bulging, translucency, light, bubbles, the presence of malleus, and concavity. The
decision trees were manually constructed, which means that the decision is purely
based on the decision process of the person designing the decision tree. This method
mimics the decision process of an ENT and achieves performance ranging from 80 to
85%. Other works are also based on manually selected features [63, 48], but they use
other classification methods such as neural networks or Adaboost, which outperform
decision trees with a performance of around 86-88%.

Mironica et al. [46] evaluated different machine learning methods for classifica-
tion of otitis media, including k-nearest neighbour, decision tree, linear discriminant
analysis, Bayes, multi-layer neural network, and support vector machines. The meth-
ods were only designed to distinguish between normal and abnormal tympanic mem-
branes. The results showed that neural networks and support vector machine have
the highest performance on this classification task. Similarly, Myburgh et al. [48]
found that a neural network outperformed their previous method using a decision
tree [49]. This is similar to the overall trend in the field of machine learning, where
deep neural networks outperform previous methods in many fields. This has also in-
fluenced the methods used for otitis media detection and analysis of otoscopy images.
The first publications employing neural networks employ simple networks, such as
fully connected neural networks, while the newer publications employ convolutional
neural networks. Senaras et al. have published two papers on the classification of
normal and abnormal tympanic membranes, one using deep neural networks [62] and
the other employing a fuzzy stacked generalisation algorithm [61]. Tran et al. [75]
employed a multi-task joint sparse representation-based algorithm to classify based
on a tympanic membrane segmentation and manually selected, but automatically
extracted, features. During the extent of this PhD project, many studies on deep
learning-based detection of ear diseases have been published. This includes Cha et al.
[10], who collected a large otoscopy database of over 10.000 images, covering six differ-
ent middle ear diseases - although not AOM. They employ pre-trained convolutional
neural networks fine-tuned for the classification task and show impressive results on
these diagnostic groups. Khan et al. [34] showed a similar approach for the classifica-
tion of chronic suppurative otitis media, OME, and normal tympanic membrane, and
Alhudhaif [2] classified AOM, chronic suppurative otitis media, earwax, and normal
tympanic membrane. Only Wu et al. [83] have focussed on the same subclassification
of otitis media, as we have (AOM, OME, and normal) and employed deep neural
networks for the classification task. They demonstrated their approach on a large
dataset of over 10.000 otoscopy images, achieving an accuracy of 97%. They show an
impressive classification performance on all three classes. It is important to notice
how the dataset for the different studies are created. For the work presented by Wu
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et al. [83], several inclusion criteria were enforces such as consensus diagnosis by two
otologists, clear image details, no out-of-focus images, and images had to cover the
full tympanic membrane. An extensive review of artificial intelligence-based methods
for the classification of ear diseases based on otoscopy images can be found in the
paper by Habib et al. [23].

3.2.2 WBT analysis
Automatic classification of tympanometry measurements is not as extensively inves-
tigated as otoscopy images. Terzi et al. [74] employed a receiver operating char-
acteristic (ROC) test to distinguish between NOE and OME cases based on WBT
measurements from pediatric patients. Ellison et al. [18] analysed the measurements
only at ambient pressure using a likelihood ratio classifier and found that absorbance
is sensitive to stiffness of the middle ear and middle ear effusion. Aithal et al. [1]
showed that wideband absorbance at ambient pressure and tympanometry peak pres-
sure can be used successfully to detect OME, although not significantly better than a
226 Hz tympanogram. These studies lay the ground for the development of an auto-
matic classification model, as there is clearly relevant diagnostic information available
in the WBT measurements.

Recent studies have thus shown an interest in the automatic classification of WBT
measurements. Merchant et al. [45] created a multivariate prediction model based on
the three first principal components using logistic regression, showing good results for
otitis media and NOE classification. Binol et al. [7] automatically detected NOE or
OME based on a combination of otoscopy imaging and tympanograms. Their analysis
used a random forest classifier on hand-selected features (peak admittance, peak pres-
sure, tympanogram width, and ear canal volume) of a standard 226 Hz tympanogram,
which was combined using majority voting with the output of a convolutional neural
network predicting diagnosis based on the patient’s otoscopy image. Grais et al. [22]
showed that convolutional neural networks can be used to analyse and classify WBT
measurements into OME and NOE classes. No studies have attempted to classify
AOM, OME, and NOE based on WBT measurements, except ours. Helenius et al.
[27] investigated the discrimination of diagnosis into the subgroups AOM and OME
based on standard 226 Hz tympanometry, and found that this measurement can be
used to distinguish between NOE and otitis media cases, but not to diagnose specific
types of otitis media.



CHAPTER 4
Contributions

This chapter will discuss the contributions included in this thesis, relate the papers to
each other, and put the work into a broader perspective. Details on the work in each
contribution will therefore not be presented but can be found in the publications in
appendices A to G.

The work presented in this thesis is based on a clinical dataset collected at Kamide
ENT clinic in Shizuoka, Japan. The dataset consists of otoscopy images captured us-
ing an endoscope and WBT measurements performed using the Titan system (Inter-
acoustics, Denmark) from patients aged between 2 months and 12 years. Each case
was diagnosed by Dr. Kamide when the patient was examined in the clinic based
on symptoms, patient history, otoscopy, and WBT measurements. The diagnostic
groups included in the dataset are acute otitis media (AOM), otitis media with ef-
fusion (OME), and no effusion (NOE). In addition to the diagnoses, Dr. Kamide
also noted whether AOM or OME was mild or severe, based on the appearance of the
symptoms. The dataset has evolved during the PhD project, as data has continuously
been collected. The number of cases has therefore increased over the duration of the
project.

4.1 Computer-aided diagnosis of otitis media
Otoscopy and WBT measurements are the most commonly used diagnostic tools for
the diagnosis of otitis media in the clinic. Both tools require specialised training for
operation and interpretation of the results, and the diagnosis of otitis media can be
challenging, even for trained specialists. The two papers in this section, Paper A and
Paper B, thus focus on computer-aided diagnosis of otitis media based on otoscopy
images and WBT measurements, respectively.

4.1.1 Otoscopy classification (Paper A)
Paper A addresses the problem of diagnosing otitis media based on otoscopy images
of the tympanic membrane. This work considers several challenges of this clinical
problem: The images in the dataset have a large imbalance among the three classes:
AOM, OME, and NOE; the images are of varying diagnostic difficulty and image
quality; and there is bound to be some label noise, as the ground truth labels are
based on the diagnosis made by a single doctor.
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We proposed employing deep metric learning for this classification task and showed
that a triplet-based neural network handled the class imbalance better than, e.g.,
one based on class weighted cross-entropy loss. Another benefit of the deep metric
learning approach is the output embedding features of all image examples. A plot
of the embedding space is shown in Figure 4.1 using t-SNE dimensionality reduction
[76]. A plot like this allows interpretation of the distribution of the data. The AOM
and OME cases were further labelled mild and severe. This graduation of the severity
is also plotted in the figure and shows how the most severe test cases are generally in
the center of the cluster, while the milder cases can be found in other class clusters or
on the border between the clusters. This shows that the model is more certain of the
diagnosis of severe cases, most likely due to the clear diagnostic signs in the otoscopy
images. This relationship between the distribution in the embedding space and the
diagnostic difficulty was further examined in Paper F.

The embeddings were used to classify the test cases into the three diagnostic
groups, and the overall accuracy of the approach was 86%. This is a similar per-
formance as similar earlier studies. Senaras et al. [62] diagnosed healthy and otitis
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Figure 4.1: Visualizations of train and test embeddings from Paper A. The colored
points show the test dataset, while the grey points show the training
dataset.
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media ears, without the subclassification of AOM and OME, with an accuracy of
84.4%, Kuruvilla et al. [38] predicted AOM, OME, and NOE with an accuracy of
85.6%, and Wu et al. [83] achieved a 97.8% accuracy on the same three classes. It
is, however, impossible to directly compare the performance of these studies, as no
benchmark dataset is available. The performance relies heavily on the quality of the
input images and ground truth labels. The ground truth labels for the study by
Kuruvilla et al. [38] was provided by a panel of three clinical experts, while it was
a consensus diagnosis evaluated by two clinical experts for the study by Wu et al.
[83]. Furthermore, Wu et al. [83] excluded blurry images and images where the full
tympanic membrane was not visible. This ensures high quality images in the dataset,
but it also removes the challenging cases. The performance might therefore not reflect
the realistic performance of the trained model on standard clinical data. We decided
to include all images in the dataset to include a natural variance in image quality,
diagnostic difficulty, etc. This means that there probably is a limit for the achiev-
able accuracy on our dataset, but it also allows us to develop methods to identify
challenging cases, and examine the diagnostic challenges further.

We still want to find ways to improve this diagnostic model and identify the
challenges of this classification task. Table 3 in Paper A shows the confusion matrix
of the full dataset. The correctly classified images in the green cells show textbook
examples of the three conditions of the middle ear, whereas the diagnostic signs and
image quality of the misclassified images in the red cells are much more varied. The
misclassified images show common otoscopy challenges, such as earwax, narrow ear
canals, and blurry images. These image examples raised questions such as whether
there was an upper limit for the achievable performance of this task. Since the
ground truth diagnosis is based on manual annotations from only one ENT, there are
bound to be some annotation errors. We also do not know whether crucial diagnostic
information is missing when only the image is assessed. The ground truth diagnosis is
based on a full examination of the patient, and the ENT will therefore have additional
information that the model does not have access to. These results and considerations
motivated the human inter-rater study presented in Paper E and will be discussed
further in Section 4.3.1. Paper A thus shows that classification of otitis media based
on otoscopy images is possible, but this work also raised many other questions and
relevant research areas related to the development of a deep learning model for this
task.

4.1.2 WBT classification (Paper B)
Besides the otoscopy images, the dataset also contains WBT measurements from the
patients. Paper B presents our approach for automatic classification of otitis media
based solely on these WBT measurements. As mentioned in Section 3.2.2, Helenius
et al. [27] showed that standard 226 Hz tympanometry measurements do not allow
discrimination of specific types of otitis media, but are useful in distinguishing be-
tween no effusion (NOE) and otitis media (OM). Based on this knowledge, the first
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approach presented in our paper is the classification of NOE and OM based on the
WBT measurements. Some of the main contributions of this paper include the pre-
processing procedure for WBT measurements and experiments with various types of
data augmentation for this specific type of data. WBT measurements differ from the
standard image input for convolutional neural networks. We are analysing physical
data, where the measurement grid is the same for all input examples. Standard data
augmentation using geometric transformations is thus not feasible, as it would change
the nature of the data. The paper presents experiments with a variety of noise dis-
tortions and intensity manipulations for data augmentation in both 2D and 1D for
the proposed approaches, showing how this improves the performance of the model.

Our approach for binary classification of NOE and OM shows a very good classifi-
cation accuracy of 92.6%, and we show that the network trained on full WBT measure-
ments achieves higher performance than networks trained on either tympanogram or
ambient absorbance alone. For the second approach, where we attempt to distinguish
between AOM, OME, and NOE, the accuracy drops drastically to 70.9%. Recall and
precision are still high for the NOE class, but the AOM and OME classifications show
low performance. This shows that the WBT does not contain diagnostic information
on the specific type of otitis media and that more patient information is needed for
the subclassification. However, the high performance of the binary classification task
suggests that WBT would add great value to an automatic diagnostic model in com-
bination with other patient data. These results thus inspired the work presented in
Paper G, where we combine otoscopy images and WBT measurement into a single
classification model.

Another important part of this work is the utilisation of GradCAM for the inter-
pretation of the model output. These saliency maps show the key feature areas in
the input WBT, leading to the final diagnostic decision made by the model, and can
be generated for each input example. Examples of saliency maps are found in Figure
4.2. This adds great value to a diagnostic system, as it guides the user of the model
and instils trust in the model. At the same time, it can be used as a training tool for
medical professionals without specific WBT training, as they will be presented with
the most important diagnostic features of each WBT, as the model analyses them.
As seen in the top row of Figure 4.2, the most important features of the NOE cases
are around the tympanic peak pressure and in frequencies of 500 to 1000 Hz, while
the OM cases in the bottom row have key features in the low-frequency area and on
the full pressure axis. Thus, it is important for diagnosing the OM cases to evaluate
whether or not there is an alteration in absorbance along the pressure axis. These
observations correspond well to the known features of WBT measurements, as also
discussed in Paper B.

4.2 Generative models
Paper C and D investigate two different aspects of generative models. Paper C
shows the use of generated data examples for neural network training and presents a
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Figure 4.2: Examples of WBT measurements with the saliency map plotted as
heatmaps. Top row: NOE, bottom row: OM.

solution to a specific use case for this type of model. The work focusses on domain
shifts, which are commonly found in medical image analysis, when models trained on
a specific training dataset have to be used on data from, e.g., a different hospital or
equipment. Paper D presents a model for the generation of the specific data used in
this project.

4.2.1 Domain shifts (Paper C)
The main challenge addressed in Paper C is related to the issue of having two different
data distributions in the training and test set, i.e., domain shifts. When collecting
medical data, it is very common for data to be acquired with different systems, such
as different scanners or cameras. The modality is the same, but the specific systems
and/or settings are different, which leads to poor generalization and models that do
not work in practice. This contribution was part of the Retinal Fundus Glaucoma
Challenge [50, 40], held as part of the MICCAI 2020 conference, in which the objec-
tive was to evaluate and compare automated algorithms for glaucoma detection and
optic disc, and cup segmentation on a common dataset of retinal fundus images. The
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challenge had three tasks: glaucoma classification, optic disc and cup segmentation,
and fovea detection. The challenge dataset was collected at different sources: the
training data was collected using two different cameras, while the test data was col-
lected using a third camera. This is a very likely scenario for a medical image analysis
case. Normally, it would be very challenging to train a neural network, or any other
prediction model, on a training set and then apply it to data from another camera at
test time. A neural network is a data-driven model and thus learns the descriptive
features of the training data set, and these features cannot easily be transferred to
data from another distribution.

CycleGAN is an unpaired image-to-image translation model that learns a mapping
between two image domains, as described in Section 2.2.2.2. The model does not
require pairs of images from each domain as it learns the special characteristics of
the original domains from a set of examples and figures out how to translate these
characteristics into the other domain. As shown in Paper C, this generative model
is used to translate image examples between the three domains and generate fake
images from the test domain for training. Table 1 in the paper shows examples
of both real and fake images, and these clearly indicate the impressive generative
performance of the cycleGAN model. This approach allows the neural networks for
the three different tasks to be trained on fake images from the test domain, while
at the same time increasing the size of the training dataset drastically, whereby the
networks learn descriptive features and characteristics of the test domain.

This work demonstrates how a cycleGAN can be used for a clinical problem, and
even though it is shown in the specific task of retinal fundus images, it is applicable
in many fields. The artificial extension of training data is a key issue to keep in mind
when employing a neural network in a new test dataset. This is especially important
in medical image analysis, where it is time-consuming and expensive to acquire data,
and where data likely will stem from different sources, for example, various hospitals.
It is also crucial for this PhD project, as the data used for training is from a single
clinic with annotations from one ENT. Should this model be employed in another
clinic or with different equipment, domain adaptation would probably be needed.

4.2.2 Data augmentation (Paper D)
Another widely used application of generative models is data augmentation. Data
augmentation is especially important in medical image analysis since the available
datasets are usually quite small. Neural networks typically have millions of param-
eters that are tuned during training, but this process relies on a large amount of
training data. It can be challenging to acquire data for certain medical conditions,
for example, if the group of patients is small for rare diseases, while it is easier to
acquire normal data. It is therefore valuable to be able to generate data in specific
classes to equalize class imbalance in order to improve the training of classification
models.

The specific dataset used in this project also has a class imbalance problem, as
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the dataset contains fewer AOM cases compared to NOE and OME. In Paper A,
we included simple data augmentation during training, such as geometric transfor-
mations (flipping, rotation) and colour alterations of the input images. In Paper
B, geometric transformations were not fitting for the input WBT data, and instead
we experimented with various types of noise as data augmentation. In both papers,
it was shown that even simple data augmentation increased the performance of the
trained networks. Therefore, we wanted to explore more advanced methods for data
augmentation, more specifically generative models.

Paper D presents our work on developing a generative model which can generate
pairs of otoscopy images and WBT measurements in each of the three diagnostic
groups: AOM, OME, and NOE. This is achieved by employing a variational autoen-
coder with a metric learning loss function in the embedding space. During training,
the embedding space will be enforced to generate class clusters, which can be used
for sampling new embedding vectors for generating new data. The implementation
details of this model are explained in the paper.

There is, of course, great variability in the appearance of both otoscopy images and
WBT measurements, depending on the severity of the symptoms. The generated data
show the same range from mild to severe symptoms, and the generated pairs show
that the two modalities are representing the same severity. This is shown in Figure
4.3. Figure 4.3 a) and c) show mild cases of AOM and OME, where the respective
otoscopy image shows no severe signs of otitis media, and the absorbance in the WBT
is also high. On the other hand in Figure 4.3 b) and d) the otoscopy images show a
severe infection in the AOM case and effusion in the OME case, accompanied by very
low absorption values in both WBT measurements.

This paper indicates that it is possible to generate correlated pairs of data. The

Figure 4.3: Generated pairs of otoscopy images and WBT measurements. a) mild
AOM case, b) severe AOM case, c) mild OME case, d) severe OME
case, e) NOE case, and f) NOE case.
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model is currently restricted to generating 64 × 64 pixel images, which is much lower
than the resolution required to train the classification models in Paper A (299 × 299).
Furthermore, there is still a challenge with blurry generated images for the proposed
model. The practical use of the generated data is thus left for future work due to
research priorities. For the time being, this is a proof-of-concept of the triplet-based
variational autoencoder for pairwise data generation.

4.3 Diagnostic difficulty
Otitis media is a challenging disease to diagnose, even for trained specialists. This
has been well established by previous studies, as described in Chapter 3. However,
it has not been investigated how the availability of a WBT affects the diagnostic
difficulty, nor do we know the difficulty of cases in the dataset. This is investigated
in the human inter-rater study presented in Paper E. Furthermore, we developed a
method to predict this diagnostic difficulty from embeddings obtained using deep
metric learning, which is presented in Paper F.

4.3.1 Human inter-rater study (Paper E)
The main goals of Paper E were to investigate which cases in the otitis media dataset
are more difficult than others and to determine a reinforced ground truth diagnosis
of each case in the dataset by eliminating the human annotator errors. The diagnoses
of the original dataset were determined by one expert ENT based on otoscopy exami-
nation, WBT measurements, symptoms, and patient history. This study thus allows
an investigation of how other expert ENTs would diagnose each of the cases if only
presented with the otoscopy image and the WBT.

The ”true” ground truth diagnosis of otitis media can only be determined by
performing a myringotomy, which is an incision in the eardrum, and analysing the
content of the middle ear. Since this information is not available, we have to rely on
the diagnosis made non-invasively by doctors. There are bound to be some human
errors in the annotation of a large dataset of cases, and the idea was to attempt to
eliminate these errors by obtaining several diagnoses for each case from a panel of
expert ENTs. As seen in Table 2 of Paper E, there is, however, large discrepancies
between the diagnostic assessment made by the original ENT, Dr. Kamide, who
examined the patients, and the annotations by the four ENTs in the study. The
majority voting among the four ENTs shows that several cases that were diagnosed
as NOE by Dr. Kamide, were now diagnosed as OME. As discussed in the paper,
ENTs who only examine the otoscopy images and WBT measurements seem to be
more prone to detect disease than no effusion. The four ENTs agreed with the Dr.
Kamide’s diagnosis in 65.1% of the cases on average (min: 60.5%, max: 72.3%) on the
test dataset. This low agreement, and the predisposition to diagnose OM, indicate
that these annotations cannot be used to establish a better ground truth diagnosis.
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There are clearly some challenges for the ENTs in the diagnostic process when they
are only presented with the image and WBT and do not have the possibility to
examine the patient. Instead of using the annotations to estimate a new ground
truth, we can instead use them to determine the diagnostic difficulty of each case. If
the ENTs all agree with the original diagnosis, it is expected that the case is easy
to diagnose, whereas if some of the ENTs disagree with the original diagnosis, the
case is probably more challenging. This human inter-rater study also shows that self-
evaluated diagnostic certainty correlates well with the agreement between the ENTs,
and that certainty and agreement increased when presented with both the otoscopy
image and WBT, compared to only evaluating the image. These observations validate
the use of agreement and certainty as a measurement of diagnostic difficulty, which
is further explored in Paper F.

This human inter-rater study evaluated the specific clinical dataset employed in
this PhD project, and these additional annotations create a state-of-the-art clinical
dataset. The annotations establish a performance benchmark for our deep learning
models since the expert ENTs only evaluated the otoscopy image and WBT measure-
ment. This allows one to determine a realistic performance based on this limited
patient information.

4.3.2 Estimating human annotation difficulty (Paper F)
The annotations collected in the human inter-rater study in Paper E were used to
estimate the difficulty of each otoscopy image in the dataset, which was further ex-
plored in Paper F. The difficulty is computed based on the annotations of diagnosis
and self-assessed certainty from the ENTs. If all four ENTs agree with the original
diagnosis made by Dr. Kamide and they rated high certainty, the diagnostic difficulty
is low. On the other hand, if the four ENTs do not all agree with Dr. Kamide, and
rated a lower certainty, the diagnostic difficulty is higher. It is computed as

D = 1 − µcorrect · µcertainty , (4.1)
where µcorrect is the fraction of correct ENT answers and µcertainty is the average
self-evaluated certainty.

The difficulties were evaluated using a “leave-one-annotator-out” analysis, where
the difficulty estimated from one annotator and the estimate from the other three
were compared. The Kendall’s τ of the difficulty from one annotator against the
difficulty estimated from the rest shows how consistent the annotations are among
the annotators. Table 4.1 shows the results of this evaluation of the test dataset
used in the paper, which consists of 204 images annotated by all four ENTs. In
previous studies, only the fraction of incorrect diagnoses from the raters, or µcorrect,
has been used to define difficulty [4]. Table 4.1 therefore includes the evaluation
of difficulty computed with and without certainty. The results show that including
certainty in the definition of difficulty increases the consistency of the estimated
difficulty. Kendall rank correlation coefficient, also called Kendall’s τ [33], is a non-
parametric measurement of the correlation between two ranked variables. It evaluates
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Mean Min Max
Difficulty consistency (Kendall’s τ)
Difficulty with certainty 0.570 ± 0.036 0.513 0.611
Difficulty without certainty 0.548 ± 0.057 0.456 0.607

Prediction accuracy 69.5 ± 2.5% 67.2% 73.5%

Table 4.1: Top: Kendall’s τ for the comparisons of responses of one annotator to
the difficulties estimated from the remaining annotators. The number
after ± indicates the standard deviation. Bottom: The accuracy of the
annotators.

the relationship between the two variables based on the ordering, or ranking, of the
samples. It is thus not important to achieve the same specific difficulty value as the
ground truth, but the ordering has to be the same in order to achieve a high Kendall’s
τ . A Kendalls τ of 0.570 corresponds to having ranked 78.5% of the images in the
correct order. The small standard deviation also shows that no annotator stands out
from the group with a much lower agreement than the rest. Furthermore, the table
shows that the four ENTs only agree with the original diagnosis made by Dr. Kamide
in 69.5% of the cases.

In Paper F, we present methods for estimating the diagnostic difficulties of medical
images based on the embedding of the image obtained using deep metric learning. We
evaluate our methods on both the otoscopy data from this PhD project, and on a
skin lesion dataset. In this paper, we show that there is a correlation between the
placement of an input image in the embedding space and the diagnostic difficulty.
This concept is shown in Figure 4.4. The intuition is that the three dark blue points
increase in difficulty as they move out of the blue cluster and into the red cluster. The
difficulty can thus be estimated on the basis of the position in the embedding space
and the ground truth class. We show that we can estimate the difficulty unsupervised
based on this principle of distance in the embedding space, and we also present
supervised methods for difficulty estimation.

This relationship between the diagnostic difficulty of a case and the embedding
space was briefly discussed in Paper A. At the time of writing Paper A, we did not
have the additional annotations, but Dr. Kamide evaluated whether the otitis media
cases were mild or severe. We expect that the severe cases are easier to diagnose,
as the diagnostic signs and symptoms are clearer compared to the mild cases, where
the diagnostic signs are not as pronounced and the diagnosis could be made based
on symptoms like ear pain, which is not included in our recorded information about
the patients. The average difficulty of the mild AOM and OME cases in the dataset
is 0.60 and 0.34, respectively, and for the severe AOM and OME cases, it is 0.23
and 0.25, respectively, so our expectations were correct. In Figure 4.1, the severity
is included in the plot of the embeddings, and the pattern is similar to the one seen
in Figure 2 of Paper F: the mild cases, which are also more difficult to diagnose, are
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Figure 4.4: Samples from two classes (red and blue) are visualized in a two-
dimensional space. The arrow shows how the difficulty increases, as
the blue point moves into the red cluster. Classification difficulty thus
depends not only on the position in the space but also on the ground
truth class.

generally placed furthest away from the cluster center or even within other clusters,
while the severe and easier cases are primarily placed within the class cluster.

The diagnostic difficulty is another valuable output of a future diagnostic tool.
Being able to estimate the difficulty of every analysed case allows the operator to
better assess the patient and the model output. If the estimated difficulty is high, it
can be recommended to refer the patient to an expert ENT for further examination.
It could also mean that the quality of the input data is too low for the model to
infer a diagnosis. As seen in Figure 1 in Paper F, the diagnostic difficulty is clearly
affected by the quality of the images. In such cases, the operator could remove ear
wax or other obstructions from the ear canal, or simply redo the otoscopy and WBT
measurements and run the analysis again.

4.4 Combining it all (Paper G)
Paper G ties together several previous contributions for otitis media classification
and difficulty estimation based on both otoscopy images and WBT measurements.
The network architecture employed in this paper is a combination of the network
architecture for otoscopy image classification from Paper A and the WBT network
from Paper B. Paper G also concerns itself with the estimation of diagnostic difficulty,
defined for each case in the dataset based on the annotations from the human inter-
rater study presented in Paper E. Deep metric learning is employed for the training of
a multi-modal embedding network, and from the embedding space, the methods from
Paper F are utilised for classification and difficulty estimation, respectively. The deep
metric learning approach is compared with the performance of a multi-task neural
network, which also predicts both diagnostic group and difficulty. As seen in Paper
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E, the diagnostic certainty and agreement of the ENTs is increased when presented
with both otoscopy image and WBT, compared to otoscopy alone. The assumption
was that this will also be the case for the prediction models.

The results presented in Paper G show that both classification and difficulty es-
timation performance is increased when including both otoscopy images and WBT
measurements in the model, compared to a model trained solely on the individual
modalities. The improvement from combining the modalities is not drastic, but still
worth pursuing. The performance table and confusion matrices in Paper G show that
detection of AOM is improved by adding WBT measurements to the model, which is
crucial to ensure proper treatment.

The annotations by Dr. Kamide are used as the ground truth labels for the evalua-
tion of the models. The best performing network achieves a classification performance
of 86.5%, while the average accuracy of the four ENTs who also examined only the
otoscopy images and WBT measurements from Paper E was 64.0%. Despite the fact
that our deep learning models have the same limited information as the ENTs, the
models are able to achieve a much better performance. This is very promising for a
future diagnostic tool and shows the strength of deep learning models.

A further investigation of the performance of the model compared to the four
ENTs is shown in Table 4.2. The table show how the true positive rate (TPR) of the
network predictions and ENT annotations differ between the diagnostic groups, and
both ground truth and estimated difficulty are also shown. As discussed in Paper G,
the TPR and difficulty are very different among diagnostic groups. Both network and
ENT TPR is lower for the mild cases than for the severe, and the diagnostic difficulty
is thus higher for the mild cases. It is seen in the table that the average predicted
difficulty for each of the groups is close to the ground truth difficulties computed
from the ENT annotations. The lower performance in cases of mild otitis media is
a challenge if this model is to be used as a diagnostic tool. It is expected that this
limitation arises from the limited patient information available for both the models
and ENTs in Paper E. Additional patient information, such as a list of symptoms or

OME AOM NOE
Mild Severe Mild Severe

Network predictions
True positive rate [%] 73.2 92.0 62.3 85.1 91.5
Average predicted difficulty 0.35 0.24 0.48 0.32 0.66

ENT annotations
True positive rate [%] 82.2 88.1 52.1 88.7 49.3
Average difficulty 0.34 0.25 0.60 0.23 0.67

Table 4.2: True positive rate and average difficulty for each diagnostic group for
network predictions and ENT annotations on the full dataset.
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patient temperature, is clearly necessary for proper identification of mild cases.
Paper G demonstrate some of the strengths of deep metric learning over the stan-

dard classification, or multi-task, networks. As also shown in Paper A, the deep
metric learning approach handles class imbalance better than the standard classi-
fication network, which means that the prediction of AOM is improved. Another
strength is the fact that a full dataset of ground truth difficulties is not needed for
the training of the neural network, as the embeddings are only based on diagnostic
class. This allows the training dataset to include cases where ground truth difficulties
are not known, thus reducing the cost of acquiring the training dataset. This makes it
possible to add new cases to the dataset, possibly improving the model even further,
without the need for four additional ENTs to evaluate each case.

4.5 Further challenges
This project is a proof-of-concept for the diagnosis of otitis media based on this high-
quality dataset from the Kamide ENT clinic. While the methods presented in the
contributions show impressive results and performance, models like these are not
ready to be deployed directly in a diagnostic tool to be used in the clinic. There are
many remaining challenges regarding the implementation of deep learning methods
in the clinic, as also discussed in the review paper by Habib et al. [23]. The chal-
lenges highlighted by Habib et al. include acquiring properly labelled datasets based
on consensus among multiple independent experts, and evaluation of real-life test
performance and applicability in daily clinical practice. Pichichero also raised several
concerns regarding automatic diagnosis based on otoscopy in a recent commentary
paper [54]. Thus questions were raised related to the practicalities of a digital diagnos-
tic tool in the clinic, such as whether these models would still be better than doctors
to diagnose otitis media even if ear wax obscures the view of the tympanic membrane,
or whether the doctor would want to use a digital diagnostic tool if the examination
time is increased. These are all very valid points of concern and it is important to
ensure a good and time-efficient workflow for doctors with a future digital diagnostic
tool.

For the deployment of deep learning models, the most important thing to ensure
is a good training dataset. The dataset used for this PhD project works very well
for a proof-of-concept but is limited by being collected in only one specific clinic,
annotated by only one ENT, collected with the same equipment for all patients,
from a very specific patient group of Japanese children. Furthermore, the otoscopy
equipment used captures high-quality images, beyond what is common in a standard
clinic. Since deep learning models are data-driven models, they do not generalise well
to unseen data from other distributions, even though the task is the same. Therefore,
models trained in this data set are likely limited to work on data from this clinic
with specific equipment, and the model has learnt to mimic the decision process of
the ENT, who annotated all cases. For the use of these models in other clinics, the
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cycleGAN-based domain adaptation used in Paper C could be used to fine-tune the
model on images from the new domain.

Another challenge, raised by both Habib et al. and Pichichero, is to ensure proper
data quality for the models when a model is being used in the clinic. A digital
diagnostic system is not expected to be able to analyse all otoscopy images, and a
certain image quality must be ensured for a proper analysis result. This could be
done with a screening tool, which could prompt the operator to retake the image
if the quality is not good enough, or if ear wax obscures the view of the tympanic
membrane. A preliminary investigation of this idea was undertaken in terms of the
BSc project ”Image-based quality evaluation of otoscopy images”, where the student
developed an algorithm for detecting blurry images, together with an application
prompting the user to retake the image, if the image is too blurry [52]. There is,
however, still much more work to be done on this topic.



CHAPTER 5
Conclusion

In this thesis, we have introduced and discussed the research that was carried out as
a part of this PhD project. The work resulted in several scientific publications related
to the automatic diagnosis of otitis media. This overall theme was investigated in
various ways, from both a technical and clinical point of view, and with various
methods for classification, data generation, and diagnostic difficulty estimation.

The thesis contributes with new methods for automatic diagnosis of otitis media,
which can be used to improve the diagnostic process in the clinic. Paper A, B, and
G present the three models constituting the originally intended outcome of this PhD
project. Paper A contributes to a growing field of interest in deep learning-based
approaches for otoscopy image analysis, while Paper B was one of the first to present a
deep learning model for WBT classification. Similarly, Paper G is the first publication
to present a multi-modal classification approach based on otoscopy images and WBT
measurements. These publications show potential for the development of a diagnostic
tool based on these two types of data.

During the work on the classification models, several challenges were encountered.
The first issue to be addressed was the class imbalance in the dataset. This was
addressed in the design of the classification model in Paper A, but this also sparked
an interest in developing a generative model for multi-modal data generation. Paper
D delivers just that, by utilizing deep metric learning to develop a conditional multi-
modal generative model. Secondly, during the work on Paper A, it quickly became
obvious that there was a limit to the achievable performance based on the current
diagnostic labels. This started a discussion on the best way to conduct an evaluation
of the dataset and possibly reinforce the ground truth labels. This resulted in the
human inter-rater study presented in Paper E. This study shed light on the clinical
aspects of this PhD project, as it became evident that even ENTs find it difficult to
diagnose patients only based on otoscopy images and WBT measurements; not having
the patient in front of them is a serious disadvantage. Instead of using the annotations
to improve the ground truth diagnosis, they were utilised to determine the diagnostic
difficulty for each of the cases in the dataset. These difficulty ratings were then used
for the work in Paper F, which presents a difficulty estimation approach based on
image embeddings.

In the summer of 2020, I participated in the Retinal Fundus Glaucoma challenge
together with two fellow PhD students, which resulted in Paper C. This was a side
project not directly related to the PhD project, but the theme of domain shifts in
medical image datasets fits well into the common thread of this PhD.
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The main contributions from the work in this PhD project can be summarized as
follows:

• Presented a deep learning model for otitis media classification based on otoscopy
images (Paper A).

• Showed that deep metric learning handles class imbalance better than the stan-
dard deep learning loss functions (Paper A and G).

• Demonstrated the use of various types of data augmentation for biomedical
non-image data based on noise and intensity manipulation (Paper B).

• Presented a deep learning model, including GradCAM for generation of saliency
maps, for the classification of otitis media based on WBT measurements (Paper
B).

• Showed that cycleGANs can be applied for domain shifts in order to handle the
classic medical image analysis challenge of datasets from various sources (Paper
C).

• Developed a triplet-based variational autoencoder for conditional generation of
multi-modal data (Paper D).

• Conducted a human inter-rater study on the diagnosis of otitis media and pre-
sented a statistical analysis of the responses from four ENTs (Paper E).

• Developed methods for both unsupervised and supervised estimation of diag-
nostic difficulty based on image embeddings (Paper F).

• Presented the first multi-modal classification model for the diagnosis of otitis
media based on otoscopy images and WBT measurements (Paper G).

This PhD project is an example of applied research conducted in close collabora-
tion with industry. The Interacoustics supervisors have expert domain knowledge on
otoscopy and WBT, and the applications of these diagnostic tools, which has been
a huge help during the project, while the DTU supervisors have provided guidance
in the technical part of the project. Furthermore, we have collaborated with clinical
experts; Dr. Kamide and the ENTs from Lund University Hospital. These collabora-
tions have allowed us to provide new insights into the automatic diagnosis of otitis
media, both from a clinical and technical point of view.
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a b s t r a c t 

In this study, we propose an automatic diagnostic algorithm for detecting otitis media based on otoscopy 

images of the tympanic membrane. A total of 1336 images were assessed by a medical specialist into 

three diagnostic groups: acute otitis media, otitis media with effusion, and no effusion. To provide proper 

treatment and care and limit the use of unnecessary antibiotics, it is crucial to correctly detect tympanic 

membrane abnormalities, and to distinguish between acute otitis media and otitis media with effusion. 

The proposed approach for this classification task is based on deep metric learning, and this study com- 

pares the performance of different distance-based metric loss functions. Contrastive loss, triplet loss and 

multi-class N-pair loss are employed, and compared with the performance of standard cross-entropy and 

class-weighted cross-entropy classification networks. Triplet loss achieves high precision on a highly im- 

balanced data set, and the deep metric methods provide useful insight into the decision making of a 

neural network. The results are comparable to the best clinical experts and paves the way for more ac- 

curate and operator-independent diagnosis of otitis media. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Otitis media is a group of diseases in the middle ear, which can 

be divided into two major diagnostic groups: acute otitis media 

(AOM) and otitis media with effusion (OME). Each year, around 

11% of the world’s population suffer from AOM ( Monasta et al., 

2012 ), and it is the second most common reason for a visit to 

the doctor ( Worrall, 2007 ). Acute otitis media is an acute middle- 

ear infection with a rapid onset, characterized by a bulging and 

red eardrum, due to a pus-filled middle-ear cavity, with a clear 

indication of inflammation, as shown in Fig. 1 (a). Symptoms in- 

clude fever, otalgia, otorrhea, vomiting, and diarrhea. The disease 

is usually treated with antibiotics, and it is the single diagnosis re- 

sponsible for most prescriptions of antibiotics ( Worrall, 2007 ), even 

though ’watch-and-wait’ is advised by many clinical guidelines to 

limit the overuse of antibiotics. 

Otitis media with effusion is the most common cause of ac- 

quired hearing loss in childhood ( Robb and Williamson, 2016 ) and 
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80% of all children younger than 4 years old have had at least one 

episode of the disease. An example of an eardrum with OME is 

shown in Fig. 1 (b), which shows a build-up of fluid in the mid- 

dle ear and a retracted and opaque tympanic membrane. Signs and 

symptoms of OME vary greatly and change in intensity, but often 

include hearing difficulties, loss of balance, and delayed speech de- 

velopment. Otitis media with effusion does not cause pain, fever or 

malaise, and is therefore more difficult to detect and diagnose. The 

effusion is not an infection, and should therefore not be treated 

with antibiotics. The condition is self-limiting, and in persistent 

cases a tube can be inserted to drain the fluid. For comparison, 

Fig. 1 (c) shows a healthy eardrum with no effusion (NOE). 

Otitis media is mostly diagnosed with the use of an otoscope, 

which is a small handheld medical device with a light source and a 

magnifying lens, allowing the general practitioner (GP) to get a vi- 

sual impression of the tympanic membrane. Otolaryngologists/Ear- 

Nose-Throat specialists (ENTs) usually use an endoscope or micro- 

scope to diagnose otitis media, as they are trained to use more 

advanced and specialized tools. Modern otoscopes and endoscopes 

are equipped with digital cameras, as shown in Fig. 2 , making the 

images suited for automated enhancements and computer-aided 

diagnostics. Examples of images captured with an otoscope are 

https://doi.org/10.1016/j.media.2021.102034 
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Fig. 1. Otoscopy images of tympanic membrane with acute otisis media (a), otitis media with effusion (b), and no effusion (c). 

shown in Fig. 1, Table 3 , and Fig. 6 . The diagnosis is decided by the 

ENT based on the appearance of the tympanic membrane, med- 

ical history, and other signs and symptoms, such as fever or ear 

pain. To provide proper care and treatment, doctors must be able 

to distinguish between AOM and OME, but it can be challenging for 

them to do so. In addition, differentiation of AOM from OME has 

become more critical in the current era that sees rising antibiotic 

resistance among bacterial pathogens that cause AOM, and there- 

fore a desire to reduce general use of antibiotic drugs ( Pichichero, 

20 0 0 ). The rise in drug-resistant bacteria is related to many pa- 

tients not adhering to a full course of antibiotics and to the high 

general prevalence of OME and AOM in young children. 

Treatment and diagnosis of otitis media is highly debated in the 

medical literature. Historically, there has been a global tendency 

to over-prescribe antibiotics in cases where middle-ear effusion 

is present, even when it is not clear if there is infection ( Cullas 

Ilarslan et al., 2018 ). The diagnosis of otitis media is still highly 

subjective, in spite of the publication of clinical practice guide- 

lines in many countries around the world. Key problems in the 

diagnostic process include lack of specific training, lack of expe- 

rience in handling otitis media cases, limited availability of neces- 

sary diagnostic tools ( Jensen and Lous, 1999; Pichichero and Poole, 

2001 ), and lack of adherence to clinical guidelines, which can be 

due to physicians’ attitude and behaviour concerning guidelines 

( Célind et al., 2014; Flores et al., 20 0 0 ). Studies have compared di- 

agnostic accuracy across different medical professionals. Pichichero 

and Poole (2001) compared the diagnostic accuracy of paediatri- 

cians with that of ENTs. Paediatricians correctly distinguished be- 

tween NOE, OME, and AOM 50% of the time, while the accuracy 

of the ENTs was 75%. The biggest issue for paediatricians was the 

fact that they were usually not familiar with the pneumatic oto- 

scope, which is known to increase the diagnostic performance. 

Fig. 2. Sketch of an otoscopic examination with a modern otoscope. The image of 

the tympanic membrane is shown on an external monitor. Image from Interacous- 

tics A/S. 

These results indicate the need for ENTs or properly trained pri- 

mary care physicians to better diagnose otitis media. Jensen and 

Lous (1999) studied the performance of GPs and found that they 

were certain about their diagnosis in 67% of new AOM cases re- 

garding children younger than 2 years old. For children over 2 

years old, the self-evaluated diagnostic certainty increased to 75%. 

A diagnostic support system would be of great value for a GP 

or pediatrician with limited training in otitis media, in order to 

streamline the diagnosis and treatment, to ensure adherence to 

clinical practice guidelines, and to limit the prescription of unnec- 

essary antibiotics. This requires an automatic system that is able to 

distinguish between AOM, OME, and NOE. Image-based diagnos- 

tics based on digital otoscopy images has shown to be a promis- 

ing approach. Previous approaches have primarily focused on hier- 

archical rule-based decision trees ( Kuruvilla et al., 2013; Myburgh 

et al., 2016 ). The features for the decision trees were manually se- 

lected, and included colour, bulging, translucency, light, bubbles, 

presence of malleus, and concavity of the membrane. The decision 

trees were then manually constructed, mimicking the decision pro- 

cess of an ENT. Other studies are also based on manually selected 

features, but employ more advanced classification methods, such 

as neural networks or Adaboost, which outperform decision trees 

( Shie et al., 2014; Myburgh et al., 2018 ). 

In more recent studies, deep neural networks or other ad- 

vanced machine learning algorithms have been employed to de- 

tect eardrum abnormalities. Tran et al. (2018) performed segmen- 

tation of the tympanic membrane, from which relevant features 

such as colour and shape were extracted. These features were 

used to classify AOM, OME, and NOE by employing multitask joint 

sparse representation-based classification. Shie et al. (2015) per- 

formed classification of otitis media using hand-crafted features 

and automatically extracted features from a convolutional neural 

network. Mironica et al. (2011) evaluated many different machine 

learning methods for classification of normal and abnormal tym- 

panic membranes, including k-nearest neighbour, decision tree, lin- 

ear discriminant analysis, na ̇ove Bayes classifier, multi-layer neural 

network, and support vector machine. Neural network and support 

vector machine were found to be superior, as also seen in the gen- 

eral trend in the field of machine learning, where deep neural net- 

works are gaining ground in medical image analysis and computer 

vision in general ( Litjens et al., 2017 ). 

Most previous attempts at classification of tympanic membrane 

diseases have been based either solely on manually extracted fea- 

tures, or a combination of learned and manual features, but in re- 

cent years more studies have focused on using deep neural net- 

works for classification. Senaras et al. (2018) employed deep neu- 

ral networks for both feature extraction and classification, as they 

utilized an ensemble model of a pre-trained Inception V3 network 

and a convolutional auto-encoder for the classification of normal 
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or abnormal eardrum. Similarly, Binol et al. (2020) employed a 

pre-trained Inception-ResNet-v2 network for otoscopy image clas- 

sification combined with analysis of tympanometric measurements 

for the classification of normal or abnormal eardrum. Other stud- 

ies have focused on other diseases of the tympanic membrane, in- 

cluding Cha et al. (2019) , who used an ensemble of convolutional 

neural networks to classify eardrums into six categories of ear dis- 

eases: NOE, OME, perforation, attic retraction, myringitis and EAC 

tumour. Xiao et al. (2019) employed fine-grained visual classifica- 

tion to classify NOE, secretory otitis media, active chronic suppura- 

tive otitis media and static chronic suppurative otitis media. These 

studies detail the applicability of a broad range of deep neural net- 

works in the analysis of otoscopy images of the tympanic mem- 

brane. 

The present paper focuses on deep neural networks, as they 

have not yet been employed for the classification of AOM, OME, 

and NOE, and since deep neural networks may help distinguish 

between OME and AOM, which would in turn help ensure proper 

treatment of patients. This distinction between OME and AOM is, 

as mentioned earlier, clinically very challenging, since the signs 

and symptoms vary greatly within each diagnostic group, and no 

clear diagnostic guidelines are available. Furthermore, the current 

methods for this classification task employing manual features are 

time consuming and less effective than newer automatic feature 

extraction approaches, for example the approaches that use deep 

neural networks. In this paper, we present a deep neural network 

approach that aims to eliminate manually selected features and 

perform the classification of NOE, OME, and AOM automatically by 

employing advanced deep metric learning methods that have not 

been utilised before in this field. 

Metric learning, or similarity learning, is the overall expres- 

sion for machine learning approaches based directly on similari- 

ties between samples. An example is large margin nearest neigh- 

bor, which learns a pseudometric for k-nearest neighbor classifi- 

cation ( Weinberger and Saul, 2009 ), increasing the distance be- 

tween samples from different classes and creating dense clusters 

of same-class samples. As mentioned, deep learning is making an 

impact in many areas of image analysis and machine learning in 

general, and metric learning is no exception, with the introduction 

of deep metric learning. The first attempts at deep metric learn- 

ing were used for face recognition and person re-identification, 

as these similarity-based methods hold many advantages when 

working with only few image examples of each target. This re- 

sulted in the presentation of siamese and triplet networks ( Chopra 

et al., 2005; Schroff et al., 2015 ). Deep metric learning has also 

gained ground over the last few years in analysis of images, videos, 

speech, and text ( Kaya and Bilge, 2019 ). In deep metric learning, 

an embedding representation of the input image is computed us- 

ing a convolutional neural network, and the similarity of differ- 

ent images can be evaluated using these embedding representa- 

tions. With deep metric learning for medical image analysis and, 

more specifically, diagnosis detection, it is possible to get an in- 

sight into the decision-making of the neural network, and thus get 

a sense of how widely spread each diagnostic group is. The clus- 

ters of the embedding representations provide insight into each di- 

agnostic group, since the centre of the cluster will be the textbook 

examples of a certain disease, while the examples surrounding the 

cluster will be variations of this diagnostic group. This can be used 

to determine clear signs and symptoms for each diagnostic group. 

The embedding representations can also be used for outlier detec- 

tion, and sanity checks of the diagnostic decision for each example. 

As these methods were developed for face recognition, we be- 

lieve that deep metric learning is a well-suited approach for our 

classification task, as the data set is highly unbalanced. Thus, the 

goal is to capture the variation of the under-represented class as 

well as the larger classes. In this work, we propose employing deep 

metric learning for automatic detection of otitis media in otoscopy 

images. 

The main contribution of this paper is the application of state- 

of-the-art deep metric learning methods for otitis media classi- 

fication on a state-of-the-art data set of otoscopy images. Three 

different distance-based loss functions are evaluated for the task, 

and compared with the widely used cross-entropy loss and class- 

weighted cross-entropy loss. This paper investigates the use of 

deep metric learning (developed for one-shot learning) for the 

classification task, and shows the advantages of these methods 

when working with a highly imbalanced data set for disease de- 

tection. 

2. Material and methods 

In deep metric learning, the output of the neural network is an 

embedding representation of the input, instead of a one-hot en- 

coded vector or a soft-max output, as with standard classification 

networks. These embedding representations are learnt by the net- 

work to keep inputs from the same class close together in embed- 

ding space, and create a margin between the different classes, thus 

creating clusters of examples from each class. 

A key element in metric learning is the definition of an appro- 

priate loss function, in order to ensure fast convergence and op- 

timise the global minimum search. There are many different sug- 

gestions for loss functions, including contrastive loss, triplet loss, 

and multi-class N-pair loss, which are all based on the Euclid- 

ian distance between the training inputs in embedding space. A 

schematic representation of the loss functions is shown in Fig. 3 . 

2.1. Loss functions 

Contrastive loss focuses on either negative or positive pairs for 

each training iteration. Positive pairs of same-class examples are 

penalized to move closer together, while negative pairs of two 

different classes are pushed away from each other, as shown in 

Fig. 3 a. The loss function is a measure of the distance between 

two embedding vectors, which ideally should be y i = 0 for posi- 

tive pairs and y i = 1 for negative pairs. The loss function is defined 

as ( Hadsell et al., 2006 ): 

L c (x 1 ,i , x 2 ,i ) = 

N ∑ 

i =1 

[(1 − y i ) || f 1 ,i − f 2 ,i || 2 
+(y i ) { max (0 , m − || f 1 ,i − f 2 ,i || 2 ) } 2 ] , (1) 

where x 1 ,i , x 2 ,i is the training input from two classes, f 1 ,i , f 2 ,i rep- 

resents the embedding vectors generated by the network to each 

training input, N is the number of samples, and m is the margin, 

usually set to 1.0. 

Triplet loss employs three training examples for each iteration. 

A triplet contains an anchor, x a , from which the distances are com- 

puted, and a positive sample, x p and a negative example, x n . This 

loss function simultaneously penalizes a short distance between an 

anchor and a negative sample and a long distance between an an- 

chor and a positive sample, and is given as ( Schroff et al., 2015 ): 

L triplet (x a i , x 
p 
i 
, x n i ) = 

N ∑ 

i =1 

max (0 , m + || f a i − f p 
i 
|| 2 2 − || f a i − f n i || 2 2 ) . 

(2) 

For triplet loss, the selection of triplets is crucial to improve con- 

vergence. Therefore, semi-hard or hard triplets, where the nega- 

tive sample is closer to the anchor than the positive, are selected, 

which enforces the network to handle challenging triplet constel- 

lations. 
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Fig. 3. Illustration of each loss function. Arrows indicate direction of successful 

optimization, with red indicating increasing distance between differently labelled 

samples and green indicating a decreasing distance between same-class samples. 

Multi-class N-pair loss is a generalization of triplet loss, which 

takes into account negative samples from j = N − 1 negative 

classes in each iteration, instead of only one, as shown in Fig. 3 . 

The loss function reduces the computational cost by optimizing 

over the distance against all classes in one iteration, and it is given 

as ( Sohn, 2016 ): 

L m-c (x a i , x 
p 
i 
, x n j ) = 

N ∑ 

i =1 

log (1 + 

N−1 ∑ 

j � = i 
exp ( f a i f n j − f a i f p 

i 
)) . (3) 

Besides these three loss functions, classification is also per- 

formed using a standard cross-entropy and a class-weighted cross- 

entropy loss function for comparison. 

2.2. Network architecture and training details 

The network architecture employed for this work is the Incep- 

tion V3 network ( Szegedy et al., 2016 ) initialized with weights pre- 

trained on the ImageNet dataset. Other network structures (ResNet 

and VGG) were also evaluated, but Inception V3 was found su- 

perior on this task, and this architecture was also used by both 

Senaras et al. (2018) and Cha et al. (2019) for otitis media clas- 

sification. When fine-tuning a pre-trained neural network on a 

smaller data set, a standard approach is to freeze some of the 

weights. Experiments with various amounts of frozen weights were 

conducted, and an optimal setting was found by freezing the first 

half of the network (first four inception modules and the first 

grid size reduction). A final linear layer was added to the net- 

work, where the output dimensions were set to the desired di- 

mensions of the embedding representation, in this case 32. Classi- 

fication of test examples was performed using k-nearest neighbor 

with k = 25 in the embedding space based on the ground truth 

labels of the training examples. The size of the embedding vector 

and k were empirically chosen, and variations of these parameters 

are explored in Table 2 . 

The input size for this network architecture is 299x299x3, as 

the images are RGB images. All networks were trained using the 

Adam optimizer ( Kingma and Ba, 2014 ), with decreasing learning 

rate with a factor of 0.1 every eighth epoch. The initial learning 

rate was set to 0.001 for cross-entropy and contrastive loss, and 

0.0 0 01 for triplet and multi-class N-pair loss. The networks were 

trained using early stopping, and the average number of epochs 

was 66.0 epochs for cross-entropy loss, 90.8 epochs for contrastive 

loss, 21.2 epochs for triplet loss, and 79.4 epochs for multi-class N- 

pair loss. All trained networks had an average training time per 

epoch around 17 seconds, when trained on an NVIDIA Quadro 

P50 0 0 16GB GPU. 

For each training epoch, balanced mini-batches were created 

with 30 training examples from each class in each batch. For each 

iteration in an epoch, the training pairs/triplets were generated 

for each mini-batch and used for training. For contrastive loss, 

negative pairs were randomly generated to match the number of 

positive pairs in the batch. For triplet loss and multi-class N-pair 

loss, the pair/triplet generation scheme from the original papers 

( Sohn, 2016; Schroff et al., 2015 ) was followed to ensure optimal 

pair/triplet selection. The approaches were implemented in Pytorch 

using libraries from Bielski (2018) and Musgrave et al. (2019) . 

2.3. Data 

The data used for this study include otoscopy images of the 

tympanic membrane collected at Kamide ENT clinic, Shizouka, 

Japan, from patients aged between 2 months and 12 years. The 

images were captured with an endoscope. The data set consists of 

1336 images of both left and right ear from 519 patients, shared 

between the three diagnostic groups: NOE (658 images), OME 

(533 images), and AOM (145 images). Diagnosis was decided by 

an experienced ENT specialist based on signs and symptoms, pa- 

tient history, otoscopy examination, and, when applicable, wide- 

band tympanometric measurements ( Hein et al., 2017 ). Further- 

more, the ENT graded the severity of OME and AOM as either mild 

or severe, with the following frequencies: AOM - 76 mild, 69 se- 

vere, OME - 274 mild, 259 severe. This grading was not used for 

classification, but for validation of the results. The data were col- 

lected during visits to the clinic, and for 27% of the patients, data 

were collected for more than one visit (up to five visits). For 74% of 

individual visits, two images, one of each ear side, were captured. 

In 20% of visits, only one image was captured, usually because the 

other ear side was healthy, and for the final 6% of the visits, three 

to six images were captured, usually to capture different angles of 

the tympanic membrane if the view was obstructed, for example 

by earwax. It was ensured that data from one patient was only 

used for either training or testing, as images captured of the same 

ear at different times will undoubtedly be very similar. 

The original image size was 640x480 pixels, which was cropped 

to a square to limit the amount of background. Cropping was per- 

formed by detecting the outline of the circular image using the cir- 

cular Hough transform ( Yuen et al., 1990 ), and cropping a square 

around the detected circles. The images were then downsampled 

to 299x299, to fit the Inception V3 network structure. Data aug- 

mentation was employed in a manner imitating the natural vari- 

ance of the data set with a certainty of p = 0.5 for each epoch. 

Horizontal flipping was performed to ensure ear side invariance, 

together with random erasing ( Zhong et al., 2017 ). This data aug- 

mentation method randomly erases one region in the input image 

with a proportion from 0.02 to 0.33 of the erased area against the 

input image. The erased region also has various aspect ratios from 

0.3 to 3.3. This augmentation method was utilised to force the net- 

work to learn features in all areas of the input image. 

Due to the limited number of images in the data set, a stratified 

five-fold cross validation scheme was employed to evaluate each 

method. The train-test splits were created on a patient level, to 

ensure that images from one patient were only present in either a 

training or testing fold. The same train-test splits were used for all 

methods, which makes the performances directly comparable. 

3. Results 

We evaluate the classification performance of each loss func- 

tion by computing the accuracy for all classified images, and the 

recall and precision of each class (AOM, OME, and NOE). The per- 

formance measures are computed as the average across the five 

validation folds, and the standard deviation represents the varia- 

tion across the five folds, and is shown in Table 1 . 

The test accuracy is not significantly different for the five loss 

functions as determined by one-way ANOVA ( F (4 , 20) = 0 . 94 , p = 

. 46 ), neither is the AOM precision ( F (4 , 20) = 1 . 56 , p = . 22 ). Nor- 

mal distribution of the residuals were ensured by evaluating the 
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Table 1 

Five-fold cross-validated classification performance (mean ± standard deviation) of the neural networks trained with 

five different loss functions. 

AOM OME NOE Acc. [%] 

Recall Precision Recall Precision Recall Precision Training Test 

CE 74 ± 9 67 ± 10 82 ± 10 85 ± 3 89 ± 3 90 ± 4 89 ± 2 85 ± 2 

Class-weighted CE 72 ± 8 72 ± 9 84 ± 4 82 ± 4 87 ± 3 89 ± 2 94 ± 2 84 ± 2 

Contrastive 50 ± 9 76 ± 13 78 ± 4 84 ± 5 94 ± 3 84 ± 3 99 ± 0 84 ± 3 

Triplet 61 ± 8 82 ± 6 86 ± 5 84 ± 3 92 ± 3 89 ± 3 98 ± 1 86 ± 1 

Multi-class 58 ± 8 74 ± 8 87 ± 5 79 ± 5 87 ± 3 89 ± 4 91 ± 2 84 ± 3 

QQ-plots, thus fulfilling the requisites of the ANOVA test. A one- 

way ANOVA on the recall of AOM reveals that one or more loss 

functions are significantly different from the others at a 0.05 signif- 

icance level ( F (4 , 20) = 6 . 7651 , p = . 0013 ), and a Tukey’s post-hoc 

test shows that contrastive loss recall is significantly lower than 

that of both cross-entropy ( p = . 003 ) and class-weighted cross- 

entropy ( p = . 006 ), while multi-class loss recall is significantly 

lower than that of cross-entropy ( p = . 006 ). This shows, that con- 

trastive and multi-class loss functions perform worse than the 

standard cross-entropy on this task. There is, however, no signif- 

icant difference between the performance of triplet loss and either 

cross-entropy or class-weighted cross entropy. In spite of the fact 

that the differences among these three loss functions are not sta- 

tistically significant, Table 1 shows that the precision of AOM does 

increase from 67 ± 10 by the cross-entropy loss, to 72 ± 9 by the 

class-weighted cross-entropy loss and then again to 82 ± 6 by the 

triplet loss. The results show that utilising class-weighted cross- 

entropy has increased the precision on the under-represented class 

by 5%, at the expense of a lower AOM recall compared to standard 

cross-entropy loss, which was expected when introducing class- 

weights in the loss function, while the rest of the performance 

measures are very similar to those of the standard cross-entropy 

measure. Precision and recall are linked, and it is thus often a 

trade-off between one or the other, as recall usually decreases as 

precision increases and vice versa, which is also seen in the case 

of AOM recall and precision for these three loss functions. We will 

return to this trade-off in the discussion. As triplet loss is the best 

performing metric for learning loss function, although not signifi- 

cantly better than cross-entropy measures, the rest of the results 

will be presented for the network trained with the triplet loss 

function. 

The method described by Kuruvilla et al. (2013) was tested on 

the images from our study. Unfortunately, it was not possible to 

achieve comparable results to the results reported in the Kuruvilla 

et al. (2013) paper. The method is based on manual feature selec- 

tion and a careful selection of hyperparameters, for example, splits 

in a decision tree. Apparently, the nature of the images in this 

publication and the images used by Kuruvilla et al. (2013) are of 

such different quality and nature that the hyperparameter settings 

found in Kuruvilla et al. (2013) made the approach fail in a major- 

ity of the images in our data set. 

Test accuracy of variations of the proposed method using triplet 

loss is shown in Table 2 . The proposed method is the neural net- 

work trained with triplet loss function, with k = 25 , embedding di- 

mensions 32, with data augmentation and trained with five-fold 

cross validation, and this table shows the results with variations of 

these parameters. The classification accuracy is very stable for var- 

ious values of k in the range 10–50, and decreases at higher and 

very low k -values. The classification accuracy decreases for both 

halved and doubled embedding dimensions, and Table 2 shows 

how data augmentation increases the accuracy. The pipeline was 

also evaluated with 10-fold cross validation, which showed very 

similar results to those of five-fold cross validation, although the 

standard deviation increased. 

Table 2 

Test accuracy of setting and hyperparameter variations of 

the triplet loss neural network. Proposed approach is the 

neural network trained with triplet loss function, with k = 

25 , embedding dimensions 32, with data augmentation, 

and trained with five-fold cross validation (CV). 

Variations of settings and hyperparameters Acc. [%] 

Proposed approach 86 ± 1 

k = 10 86 ± 1 

k = 55 85 ± 1 

Embedding dim. = 16 83 ± 2 

Embedding dim. = 64 83 ± 1 

No augmentation 84 ± 3 

10 fold CV 85 ± 4 

Fig. 4 shows the embeddings created with the triplet loss func- 

tion for both training data and test data for the fold with preci- 

sion closest to the overall average precision. As the embeddings 

are of dimension 32, a t-SNE dimensionality reduction ( Van Der 

Maaten and Hinton, 2008 ) was performed to obtain this visual- 

ization. Each point in the plots represents an otoscopy image of a 

tympanic membrane. The clusters are not positioned exactly simi- 

larly for the train and test 2D plot, due to the nature of the t-SNE 

reduction. The t-SNE dimensionality reduction is generated sepa- 

rately for the two sets of embeddings, which will create two differ- 

ent mappings from the high dimensional space to 2D. The clusters 

will therefore be placed similarly in the high dimensional space, 

but not in completely the same position in this plot. The grading 

of OME and AOM into mild or severe is plotted as well, to show 

which cases are most commonly misclassified. 

The train embeddings in Fig. 4 (a) show clear clustering of the 

images into the three diagnostic groups, but there are a few out- 

liers of OME images around the NOE and AOM clusters. The test 

embeddings also show a clear clustering pattern, but with consid- 

erably more misclassifications. Here, the clusters blend together in 

the middle, with no clear boundary between them. In this area, 

mostly mild AOM and OME mixed with the NOE cases are found, 

while the severe cases of AOM and OME are primarily kept in the 

separate clusters. This indicates again that when strong cues are 

present in the otoscopy image in the severe cases, they are more 

easily classified. 

Fig. 5 shows the pairwise standard Euclidean distance of the 32 

dimensional embedding vectors for the same train/test split, as in 

Fig. 4 . Fig. 5 (a) shows three clear training-set groups, while there 

are still images with smaller distance to images in another diag- 

nostic group, especially between NOE and OME. It is clear from 

this plot that NOE and OME are closest to each other in embed- 

ding space, compared to AOM. Fig. 5 (b) shows a similar image of 

the three test-set groups, where specially AOM looks very differ- 

ent. From this figure, it appears that AOM has a few different sub- 

groups, where one of them appears more like OME. Furthermore, 

a sub-group of OME images has smaller distance to NOE than any 

other class. 
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Fig. 4. t-SNE visualizations of train (a) and test (b) embeddings created with triplet loss function. Grey is NOE, pink is mild AOM, red is severe AOM, light blue is mild OME, 

and dark blue is severe OME. 

Fig. 5. Pair-wise distance matrix between images in embedding space. Images are grouped by their ground truth label. 

To further investigate how triplet loss manages to classify the 

otoscopy images, a confusion matrix is shown in Table 3 of the 

test set from each fold, thus including the full data set. The main 

errors are false negatives, where AOM- or OME-labelled images 

are classified as NOE. Furthermore, the neural network does not 

detect all AOM cases (88 out of 145 are detected), as also seen 

in the recall performance of AOM, but it does not have a ten- 

dency to over-diagnose AOM, as only 3 NOE and 17 OME cases 

were classified as AOM, as also seen in the high AOM precision. 

Of the 57 AOM cases that were misclassified as OME or NOE, 44 

were diagnosed as mild AOM. Similarly, for the 56 OME cases mis- 

classified as NOE, 44 of them were diagnosed as mild OME. This 

shows, as in Fig. 4 , that the severe cases of AOM and OME were 

classified correctly to a higher degree, and mainly initial stages 

of mild AOM or OME were misclassified. The table also shows 

typical image examples for each type of error or correctly classi- 

fied images. The three correctly classified images are classic ex- 

amples of: AOM, with a bulging and red membrane; OME, with 

retracted membrane and visible fluid; and NOE, with translucent 

membrane with no signs of inflammation. The misclassified images 

show signs in between these three conditions, and have thus been 

challenging to diagnose with the algorithm. The example images of 
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Table 3 

Confusion matrix for the neural network trained with triplet loss. The first number in each cell shows the number of images for 

each type of result, and the numbers in the parentheses represent the number of mild and severe cases for each cell (mild/severe). 

An image example of each type of result is furthermore shown. 

OME and NOE misclassified as AOM are both very red with clear 

blood vessels around the membrane, and in the OME image, the 

effusion is visible behind the tympanic membrane. For the AOM 

image misclassified as OME, the blood vessels are clearly seen, but 

the inflammation is not as clear. Furthermore, ear wax can chal- 

lenge the diagnosis, as seen in the NOE image misclassified as 

OME, where the membrane is not fully visible due to ear wax. The 

inherent challenges of otoscopy images will be further discussed 

below. 

4. Discussion 

The results show that otitis media can be classified with a high 

accuracy with all five loss functions. The data set is highly un- 

balanced, and some of the loss functions struggle to capture the 

variance of the under-represented class AOM. The Tukey’s pairwise 

comparison test showed that contrastive and multi-class achieved 

significantly lower recall on the AOM class. Triplet loss, however, 

achieves the highest recall among the deep metric methods, and 

the highest precision over all loss functions on AOM images. As 

mentioned, precision and recall are interlinked, and it is a trade- 

off when training a model, as precision will decrease, as recall in- 

creases. It is therefore important to optimize the metric most im- 

portant for the specific application, while keeping a balance be- 

tween the two. Precision is important, when false positives are ex- 

pensive, whereas recall is important in cases where false negatives 

are expensive. In this case, where otitis media diagnosis is consid- 

ered, the premium is on over-diagnosing AOM, since the problem 

we want to solve is the over-prescription of antibiotics. Therefore, 

we want to be very sure that the patients that are diagnosed with 

AOM actually have AOM, which is why precision is crucial. It does 

not cost much to have a false negative, because AOM usually re- 

solves itself after 3–7 days. In persistent cases, the patient will 

return to their doctor to be checked, probably presenting clearer 

signs and symptoms that would make AOM detectable. The mis- 

takes made by the neural network are primarily false negatives of 

mild cases of OME and AOM. The biggest issue in the clinic today is 

that AOM is over-diagnosed in up to 30% of children, as shown by 

Blomgren and Pitkäranta (2003) , which increases the unnecessary 

use of antibiotics. In the present study, using deep metric learn- 

ing with triplet loss had a high precision, and is thus less-likely to 

over-diagnose AOM compared to the standard cross-entropy loss 

functions. The higher standard deviation of the AOM class seen 

in Table 1 is somewhat related to the class imbalance, since this 

metric is highly susceptible to the specific split of the five cross 

validation folds. Since the dataset only contains 145 AOM images, 

and some of the images are very challenging to classify, the stan- 

dard deviation is dependent on the kind of images in each test set. 

This is not as big a concern for the larger classes of OME and NOE, 

where the test set in each fold is much bigger. 

Deep metric learning was originally created for face detection, 

and is therefore designed to classify from only a few images per 

class. This is very beneficial for the present case, where AOM 

is under-represented. Triplet loss performs well in this task, and 

manages to classify each class with above 80% precision, and with 

the highest test accuracy. Unbalanced data is a very common issue 

in medical diagnosis classification, as data from one disease class 

can be challenging to acquire. This is therefore a relevant aspect of 

the application of deep metric learning in classification tasks. The 

overall accuracy of otitis media classification with the triplet loss 
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Fig. 6. Examples of quality variations of clinical otoscopy images. 

implementation was 86%, which is a satisfying result, when com- 

pared to the reported performance of GPs and ENTs, which ranges 

from 50 to 75% ( Pichichero and Poole, 2001 ). This suggests that an 

automatic diagnostic support system can improve the performance 

of otitis media diagnosis in the clinic. 

When employing deep metric learning for classification, the 

pipeline has two steps. First the clusters are generated by the neu- 

ral network, and then a clustering algorithm classifies based on 

the generated clusters, as opposed to standard classification net- 

works where the network directly classifies each image. Generally, 

the precision is increased for the under-represented class when us- 

ing deep metric learning loss functions, compared to cross-entropy 

loss functions. This increase in precision is due to the fact that only 

images located at a certain cluster are classified as belonging to 

that cluster. Then the model will miss some cases, as seen in the 

lower recall, because the class is limited to the images located at 

the cluster centre. Which method would be best will therefore de- 

pend on the application. If recall is important, then these results 

indicate that the cross-entropy loss functions would be a better 

choice. 

It is very challenging to examine otitis media patients, as they 

are primarily children or babies in pain. Thus, capturing a fo- 

cused images of the tympanic membrane when a child is mov- 

ing, screaming, and crying is almost impossible. There are other 

inherent challenges to acquiring high quality otoscopy images of 

the tympanic membrane, and some examples are shown in Fig. 6 . 

Fig. 6 (a) and (b) show blurry images of the tympanic membrane, 

where only a few features can be distinguished. Fig. 6 (c) and (d) 

show examples of narrow ear canals, which can make it chal- 

lenging, and sometimes impossible, to insert the endoscope deep 

enough into the ear canal, or to get the proper angle, in order 

to get a high-quality image of the tympanic membrane. Another 

common problem during ear examinations is ear wax, as shown 

in Fig. 6 (e) and (f). Ear wax can either be found around the ear 

canal, as in (e), where the ENT sometimes can navigate around 

it or remove it during the examination, or it can cover the tym- 

panic membrane, as in (f). A high-quality image of the tympanic 

membrane, with the membrane in focus and with no obstructions 

or other disruptive elements, is very important to ensure a proper 

analysis of the image. The images seen in Fig. 6 are, however, re- 

alistic images of what would be found in ENT clinics, and they 

need to be included in the pipeline alongside the high-quality im- 

ages. The quality variation in otoscopy images currently constitutes 

a major and unsolved clinical challenge. It can be more challenging 

to examine children with AOM that OME or NOE patients, as they 

are generally in more pain. This makes it difficult to get a high 

quality image of the tympanic membrane, as the child is scream- 

ing, crying and moving around. This is clearly visible in our dataset, 

with more blurry images of AOM cases, and would also account for 

some of the variation seen in the performance in Table 1 . 

The data used for this study were assessed and classified by 

an experienced ENT. Using only one expert opinion in the diag- 

nosis creates a potential bias, since the diagnosis of otitis media 

is highly subjective and no objective examination exists. Blomgren 

and Pitkäranta (2003) found that four medical professionals (a GP, 

an ENT, and two experienced clinicians) agreed on the diagnosis 

in 64% of the AOM cases. This uncertainty and lack of objective 

measurements is a major challenge when working with automatic 

otitis media diagnosis, and many other medical conditions. It is 

important to note that the diagnostic decisions for this data set 

were made by an ENT with many years of experience with otitis 

media cases, but despite this, we cannot be fully confident in all 

cases. There might therefore be misdiagnosis in the ground truth 

data set, which is a common issue in medical image analysis. An 

improvement of this pipeline would be to perform a human inter- 

operator study to have a second opinion on each diagnosis from 

other experienced ENTs, and to be able to evaluate the certainty 

of the diagnosis of each case. It is a future goal of this research to 

perform such a study. 

5. Conclusion 

In this work, we demonstrate that it is possible to do auto- 

mated classification of otitis media, and thus develop a diagnos- 

tic tool for detecting acute otitis media, otitis media with effusion, 

or no effusion. This study compares the performance of five loss 

functions: cross-entropy, class-weighted cross-entropy, contrastive, 

triplet and multi-class loss. The results show that the deep metric 

loss functions achieve a high precision on the under-represented 

class at the expense of a lower recall. Triplet loss achieved the 

highest precision on the AOM class without a significant drop in 

recall, compared to class-weighted cross-entropy loss. Triplet loss 

has therefore shown good results on this classification task, where 

the ultimate goal is to reduce the over-prescription of antibiotics 

by achieving a high precision on the diagnostic predictions. The 

developed approach shows a high classification accuracy of 85%, 

thus paving the way for more accurate and operator-independent 

diagnosis of otitis media. 

Declaration of Competing Interest 

The authors declare the following financial interests/personal 

relationships which may be considered as potential competing in- 

terests: 

Søren Laugesen, Pete Bray, James Harte and Chiemi Tanaka 

works for the Demant Group that develop and manufacture oto- 

scopy equipment. 

CRediT authorship contribution statement 

Josefine Vilsbøll Sundgaard: Conceptualization, Methodology, 

Software, Visualization, Writing - original draft. James Harte: Con- 

ceptualization, Supervision. Peter Bray: Conceptualization, Super- 

vision. Søren Laugesen: Supervision, Writing - review & edit- 

ing. Yosuke Kamide: Data curation. Chiemi Tanaka: Data cura- 

tion. Rasmus R. Paulsen: Conceptualization, Supervision, Valida- 

tion, Writing - review & editing. Anders Nymark Christensen: 

8 



J.V. Sundgaard, J. Harte, P. Bray et al. Medical Image Analysis 71 (2021) 102034 

Conceptualization, Supervision, Validation, Writing - review & edit- 

ing. 

Acknowledgments 

We would like to thank William Demant Fonden (Denmark) for 

financially supporting this study. 

References 

Bielski, A., 2018. Siamese and triplet networks. 

Binol, H., Moberly, A.C., Niazi, M.K.K., Essig, G., Shah, J., Elmaraghy, C., Teknos, T., 
Taj-Schaal, N., Yu, L., Gurcan, M.N., 2020. Decision fusion on image analysis 

and tympanometry to detect eardrum abnormalities. Proc. SPIE 11314, Medical 
Imaging 2020: Computer-Aided Diagnosis (March) doi: 10.1117/12.2549394 . 

Blomgren, K., Pitkäranta, A., 2003. Is it possible to diagnose acute otitis media accu- 

rately in primary health care? Fam. Pract. 20 (5), 524–527. doi: 10.1093/fampra/ 
cmg505 . 

Célind, J. , Södermark, L. , Hjalmarson, O. , 2014. Adherence to treatment guidelines for 
acute otitis media in children. the necessity of an effective strategy of guideline 

implementation. Int. J. Pediatr. Otorhinolaryngol. 78 (7), 1128–1132 . 
Cha, D., Pae, C., Seong, S.B., Choi, J.Y., Park, H.J., 2019. Automated diagnosis of ear 

disease using ensemble deep learning with a big otoendoscopy image database. 

EBioMedicine 45, 606–614. doi: 10.1016/j.ebiom.2019.06.050 . 
Chopra, S., Hadsell, R., LeCun, Y., 2005. Learning a similarity metric discrimina- 

tively, with application to face verification. In: Proceedings - 2005 IEEE Com- 
puter Society Conference on Computer Vision and Pattern Recognition, CVPR 

2005 doi: 10.1109/CVPR.2005.202 . 
Cullas Ilarslan, N.E. , Gunay, F. , Topcu, S. , Ciftci, E. , 2018. Evaluation of clinical ap- 

proaches and physician adherence to guidelines for otitis media with effusion. 
Int. J. Pediatr. Otorhinolaryngol. 112, 97–103 . 

Flores, G. , Lee, M. , Bauchner, H. , Kastner, B. , 20 0 0. Pediatricians’ Attitudes, beliefs, 

and practices regarding clinical practice guidelines: a national survey. Pediatrics 
105 (3), 496–501 . 

Hadsell, R., Chopra, S., LeCun, Y., 2006. Dimensionality reduction by learning an in- 
variant mapping. In: Proceedings of the IEEE Computer Society Conference on 

Computer Vision and Pattern Recognition doi: 10.1109/CVPR.2006.100 . 
Hein, T.A.D., Hatzopoulos, S., Skarzynski, P.H., Colella-Santos, M.F., 2017. Wideband 

Tympanometry. In: Advances in Clinical Audiology doi: 10.5772/67155 . 

Jensen, P.M. , Lous, J. , 1999. Criteria, performance and diagnostic problems in diag- 
nosing acute otitis media. Fam. Pract. 16 (3), 262–268 . 

Kaya, M. , Bilge, H.S. , 2019. Deep metric learning: a survey. Symmetry (Basel) 11 (9) . 
Kingma, D.P. , Ba, J.L. , 2014. Adam: a method for stochastic optimization. arXiv 

preprint arXiv:1412.6980 . 
Kuruvilla, A. , Shaikh, N. , Hoberman, A. , Kova ̌cevi ́c, J. , 2013. Automated diagnosis of 

otitis media: vocabulary and grammar. Int. J. Biomed. Imaging . 

Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A .A .A ., Ciompi, F., Ghafoorian, M., van der 
Laak, J.A., van Ginneken, B., Sánchez, C.I., 2017. A survey on deep learning in 

medical image analysis. 10.1016/j.media.2017.07.005 
Mironica, I. , Vertan, C. , Gheorghe, D.C. , 2011. Automatic pediatric otitis detection by 

classification of global image features. 2011 E-Health and Bioengineering Con- 
ference, EHB 2011 1–4 . 

Monasta, L. , Ronfani, L. , Marchetti, F. , Montico, M. , Brumatti, L. , Bavcar, A. , Grasso, D. , 
Barbiero, C. , Tamburlini, G. , 2012. Burden of disease caused by otitis media: sys- 

tematic review and global estimates. PLoS ONE 7 (4) . 
Musgrave, K., Lim, S.-N., Belongie, S., 2019. PyTorch Metric Learning. 

Myburgh, H.C. , Jose, S. , Swanepoel, D.W. , Laurent, C. , 2018. Towards low cost au- 
tomated smartphone- and cloud-based otitis media diagnosis. Biomed. Signal 

Process. Control 39, 34–52 . 
Myburgh, H.C. , van Zijl, W.H. , Swanepoel, D.W. , Hellström, S. , Laurent, C. , 2016. Oti- 

tis media diagnosis for developing countries using tympanic membrane image–

Analysis. EBioMedicine 5, 156–160 . 
Pichichero, M.E. , 20 0 0. Acute otitis media: part II. treatment in an era of increasing 

antibiotic resistance.. Am. Fam. Physician 61 (8), 2410 . 
Pichichero, M.E. , Poole, M.D. , 2001. Assessing diagnostic accuracy and tympanocen- 

tesis skills in the management of otitis media. Archives of Pediatrics and Ado- 
lescent Medicine 155 (10), 1137–1142 . 

Robb, P.J. , Williamson, I. , 2016. Otitis media with effusion in children: current man- 

agement. Paediatr. Child Health (Oxford) 26 (1), 9–14 . 
Schroff, F. , Kalenichenko, D. , Philbin, J. , 2015. FaceNet: A unified embedding for face 

recognition and clustering. In: Proceedings of the IEEE Computer Society Con- 
ference on Computer Vision and Pattern Recognition, pp. 815–823 . 

Senaras, C. , Moberly, A.C. , Teknos, T. , Essig, G. , Elmaraghy, C. , Taj-Schaal, N. , Yua, L. , 
Gurcan, M.N. , 2018. Detection of eardrum abnormalities using ensemble deep 

learning approaches. Proceedings SPIE, Medical Imaging 2018: Computer-Aided 

Diagnosis 10575 . 
Shie, C.K. , Chang, H.T. , Fan, F.C. , Chen, C.J. , Fang, T.Y. , Wang, P.C. , 2014. A hybrid fea- 

ture-based segmentation and classification system for the computer aided self–
diagnosis of otitis media. 36th Annual International Conference of the IEEE En- 

gineering in Medicine and Biology Society 4655–4658 . 
Shie, C.K. , Chuang, C.H. , Chou, C.N. , Wu, M.H. , Chang, E.Y. , 2015. Transfer represen- 

tation learning for medical image analysis. Proceedings of the Annual Inter- 

national Conference of the IEEE Engineering in Medicine and Biology Society 
711–714 . 

Sohn, K. , 2016. Improved deep metric learning with multi-class N-pair loss objec- 
tive. Adv. Neural Inf. Process. Syst. 1857–1865 . 

Szegedy, C. , Vanhoucke, V. , Ioffe, S. , Shlens, J. , Wojna, Z. , 2016. Rethinking the Incep- 
tion Architecture for Computer Vision. In: Proceedings of the IEEE Computer So- 

ciety Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 . 

Tran, T.T. , Fang, T.Y. , Pham, V.T. , Lin, C. , Wang, P.C. , Lo, M.T. , 2018. Development of 
an automatic diagnostic algorithm for pediatric otitis media. Otology and Neu- 

rotology 39 (8), 1060–1065 . 
Van Der Maaten, L. , Hinton, G. , 2008. Visualizing data using t-SNE. Journal of Ma- 

chine Learning Research . 
Weinberger, K.Q., Saul, L.K., 2009. Distance metric learning for large margin near- 

est neighbor classification. Journal of Machine Learning Research doi: 10.1145/ 

1577069.1577078 . 
Worrall, G. , 2007. ARI Series acute otitis media. Canadian Family Physician . 

Xiao, L., Yu, J.G., Ou, J., Liu, Z., 2019. Fine-Grained Classification of Endoscopic Tym- 
panic Membrane Images. In: Proceedings - International Conference on Image 

Processing, ICIP doi: 10.1109/ICIP.2019.8802995 . 
Yuen, H., Princen, J., Illingworth, J., Kittler, J., 1990. Comparative study of 

hough transform methods for circle finding. Image Vis. Comput. doi: 10.1016/ 
0262- 8856(90)90059- E . 

Zhong, Z. , Zheng, L. , Kang, G. , Li, S. , Yang, Y. , 2017. Random erasing data augmenta- 

tion. arXiv preprint arXiv:1708.04896 . 

9 



CONTRIBUTIONB
A deep learning

approach for detecting
otitis media in wideband

tympanometry
measurements

Authors Josefine Vilsbøll Sundgaard, Peter Bray, Søren Laugesen, James Harte,
Yosuke Kamide, Chiemi Tanaka, Anders Nymark Christensen, and Rasmus R. Paulsen.

Journal IEEE Journal of Biomedical and Health Informatics, 2022

Status Published early access. The included paper below is the postprint.

DOI 10.1109/JBHI.2022.3159263



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2022.3159263, IEEE Journal of
Biomedical and Health Informatics

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XXXX 2021 1

A deep learning approach for detecting otitis
media from wideband tympanometry

measurements
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Anders Nymark Christensen*, and Rasmus R. Paulsen*

Abstract— Objective: In this study, we propose an auto-
matic diagnostic algorithm for detecting otitis media based
on wideband tympanometry measurements. Methods: We
develop a convolutional neural network for classification of
otitis media based on the analysis of the wideband tym-
panogram. Saliency maps are computed to gain insight into
the decision process of the convolutional neural network.
Finally, we attempt to distinguish between otitis media with
effusion and acute otitis media, a clinical subclassifica-
tion important for the choice of treatment. Results: The
approach shows high performance on the overall otitis
media detection with an accuracy of 92.6%. However, the
approach is not able to distinguish between specific types
of otitis media. Conclusion: Out approach can detect otitis
media with high accuracy and the wideband tympanogram
holds more diagnostic information than the commonly used
techniques wideband absorbance measurements and sim-
ple tympanograms. Significance: This study shows how
advanced deep learning methods enable automatic diag-
nosis of otitis media based on wideband tympanometry
measurements, which could become a valuable diagnostic
tool.

Index Terms— computer-aided diagnosis, convolutional
neural network, deep learning, wideband tympanometry

I. INTRODUCTION

Otitis media (OM) is an inflammation in the middle ear.
The condition is divided clinically into two diagnostic groups:
acute otitis media (AOM) and otitis media with effusion
(OME). Acute otitis media is characterized by an acute in-
fection with a rapid onset, while OME is characterized by the
presence of fluid in the middle ear. Both types are extremely
common among children, and OM is one of the most common
reasons for medical consultations for children at primary-care
physicians [1].
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Even though AOM and OME are similar, their clinical
classification is important because antibiotics are only rec-
ommended for the treatment of AOM, which is caused by
infections. Antibiotics are not used to treat OME as it is self-
limiting and is not an infection. Diagnosing which type of
OM a patient has is challenging. The condition is usually
assessed with an otoscope that allows the doctor to obtain
a visual impression of the patient’s eardrum. This technique
requires specific training and diagnosis has been shown to
be highly subjective [2]. In response to these challenges, the
present authors have previously demonstrated the advantages
of applying deep learning methods for automatic identification
of otitis media in otoscopy images [3].

In this paper, we turn our attention to another technique
that can be used to diagnose middle ear conditions - tympa-
nometry.This technique characterizes the ear canal acoustically
by using a range of positive and negative pressure offsets.
From this, one can derive conclusions about both eardrum
mobility and middle ear condition. Tympanometry objectively
evaluates the energy transmission through the middle ear
without assessing the sensitivity of hearing.

Standard absorbance tympanometry is performed by using
an acoustic probe with an airtight seal in the ear canal, as
shown in Fig. 1. This probe presents a tone into the ear canal,
typically at a frequency of 226 Hz or 1 kHz and around 85
dB SPL (sound pressure level), and uses a microphone to
measure the sound. The choice of frequency depends on the
patient, 226 Hz is used for adults, whereas 1 kHz is used
in pediatric tympanometry. The resultant sound pressure level
in the ear canal is determined by the relative proportions of
absorbed and reflected sound energy. During the measurement,
the instrument changes the pressure in the ear canal, typically
from +200 to -400 daPa. The proportion of absorbed energy
changes as the changes in pressure alter the eardrum tension
and displace the attached middle ear structures. These changes
are typically plotted as a tympanogram [4], which is a graph
of admittance versus pressure, since this provides the greatest
diagnostic utility.

Wideband tympanometry (WBT) is an extension to standard
tympanometry in that it measures the ear canal’s acoustic
properties over a range of frequencies [5], [6]. The use of a
wideband stimulus (i.e., short duration rectangular pulse or a
chirp covering the range of 226Hz to 8000Hz) has been shown
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to be more efficient and precise for middle ear assessment
[7]–[11] than a normal 226 Hz or 1 kHz tympanogram, since
it simultaneously determines the characteristics of the middle
ear over the full range of the audiometrically most important
frequencies. Because of the presence of multiple frequencies
in the transient stimuli, WBT is less susceptible to myogenic
noise, which originates from the patient’s movements [4].

Absorbance

Pressure (Pa)

Sound (Hz)

Fig. 1: Measurement of a WBT. The pressure in the middle ear
is changed while a sound at specific frequencies is presented.
The instrument then records the reflected sound from the
eardrum and thus computes the absorbance.

Assessment of middle ear function over this broad band-
width provides detailed information on the middle ear status
and can assist considerably with diagnosis. Higher absorbance
values suggest a more efficient middle ear transmission of
sound, as shown in Fig. 2(c). Fig. 2(a) and (b) show how
lower values mean that the eardrum cannot move properly,
which could be caused by increased stiffness in the ossicular
chain, or a fluid-filled middle ear. Fig. 2(c) shows a WBT of a
patient with no effusion (NOE), and thus a healthy middle
ear. The average NOE WBT shows change in absorbance
on the pressure axis. Fig. 2(a) and (b) presents with a flat
absorbance across various pressure values, indicating reduced

eardrum mobility due to otitis media.
Clinical assessment of OM using WBT could benefit from

an automatic diagnostic system designed to assist medical
experts when diagnosing patients. As described above, WBT
is an objective measurement, and it has been established that
it can be successfully used to diagnose OM. Further, its
traditional use requires specific training of hearing care pro-
fessionals to allow them to interpret WBT results to diagnose
OM. Thus an automatic diagnostic system could prove a useful
clinical tool.

The contributions of this paper include the development of
a 2D convolutional neural network designed and trained to
perform fully automatic classification of OM from WBT mea-
surements. The analysis is conducted on the full WBT without
the need for any manual feature extraction. We compare the
diagnostic value of the full WBT measurements with that of
the more traditional measurements: ambient absorbance and
the 0.375-2 kHz averaged tympanogram.

We are the first to include AOM in our classification
pipeline, and our proposed approach outperforms previous
state-of-the-art methods for binary classification of OM and
NOE. We compute saliency maps for the WBT classification
to investigate the most important features of the WBT for
the diagnosis of OM and compare the key regions with
the findings in previous studies. The tools we present in
this paper can be used by clinicians to diagnose OM with
92.6% accuracy. Furthermore, by inspecting the saliency maps,
clinicians can gain valuable insights into the decision process
of the neural network.

A. Related works
Tympanometry provides quantitative information about the

presence of fluid in the middle ear, about the mobility of
the tympanic-ossicular system, and about the volume of the
external auditory canal. The standard tympanometry method
has limitations, including lack of specific norms for different
population types (children, infants, adults), as the eardrum
and external ear canal are anatomically different in children
and adults [4], and specific norms for different diagnostic
conditions such as OM. The accuracy of tympanometry in

(a) AOM (b) OME (c) NOE

Fig. 2: Average WBT across all subjects in the dataset: acute otitis media (a), otitis media with effusion (b), and no effusion
(c) cases. Color scale shows the variance across the measurements within each class.
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detecting OME has been examined by Palmu et al. [12] and
Harris et al. [13]. Both studies concluded that tympanometry
has both high sensitivity to and specificity for OME. [13] has
shown that WBT provides more detailed information on the
mechanical and acoustic status of the middle ear than the
standard 226 Hz tympanogram. Terzi et al. [10] employed
a receiver operating characteristic (ROC) test to distinguish
between NOE and OME cases based on WBT measurements
from pediatric patients, and compared the diagnostic value
of averaging the absorbance values centered at different fre-
quencies and using different frequency ranges. The highest
diagnostic value was found for the 0.375-2 kHz average,
followed by the 1 kHz mean and the 1.5 kHz mean. Ellison et
al. [8] analyzed measurements only at ambient pressure using
a likelihood-ratio classifier and found that the absorbance is
sensitive to middle ear stiffness and middle ear effusion. They
found that the highest classification performance was achieved
when employing the full frequency range (0.25 Hz to 8 kHz),
while the bandwidth of frequencies from 800 Hz to 2 kHz
was the one most affected by eardrum stiffness. Aithal et al.
[14] showed that wideband absorbance at ambient pressure
and tympanometry peak pressure can successfully be used to
detect OME, although not significantly better than a 226 Hz
tympanogram.

Recent studies have thus shown an interest in automatic
classification of these measurements. So far, this has been
limited to the binary classification of OM and NOE. Merchant
et al. [15] created a multivariate prediction model based on
the three first principal components using logistic regression,
showing good results. Their study concludes that wideband
absorbance is a strong and sensitive indicator of the effusion
volume.

More advanced machine learning and, in particular, deep
learning models are the state of the art for most classification
tasks in all data domains, as seen in the current literature [16]–
[18]. This development is also seen in the field of tympanome-
try classification. Binol et al. [19] automatically detected NOE
or OME based on a combination of otoscopy imaging and
tympanograms. Their analysis used a random forest classifier
on selected features (peak admittance, peak pressure, width of
the tympanogram, and ear canal volume) from a standard 226
Hz tympanogram, which was combined using majority voting
with the output of a convolutional neural network predicting
diagnosis based on the otoscopy image of the patient. Grais et
al. [20] employed several machine learning methods to analyze
the WBT measurements, and found the convolutional neural
network to be the best performing approach. They also used
a random forest model to produce class activation maps that
were used to interpret the diagnostic decision.

II. DATA

The data used for this study include WBT measurements
collected at Kamide ENT clinic, Shizouka, Japan, from pa-
tients aged between 2 months and 12 years. The data collection
had ethical approval from the Non-Profit Organization MINS
Institutional Review Board (reference number 190221). The
measurements were performed using the Titan system (Intera-

coustics, Denmark). Similarly to standard absorbance tympa-
nometry, a WBT measurement is performed by inserting, and
hermetically sealing, an acoustic probe with an appropriately
sized silicone ear tip into the patient’s ear canal. The probe
repeatedly presents a transient stimulus with a frequency
range encompassing 226 Hz to 8 kHz while modifying the
pressure in the external acoustic canal from 200 to -300 daPa
[4]. Diagnosis was decided by an experienced ear-nose-throat
(ENT) specialist based on signs, symptoms, patient history,
otoscopy examination, and the WBT measurement.

A WBT measurement was excluded from the dataset if the
minimum pressure was above -280 daPa, or the maximum
pressure was below 180 daPa, or if the measurement consisted
of less than 20 pressure samples. If these conditions were not
met, it was assumed that there had been an air leak between
the probe and the ear canal during measurement, and the
pressurization therefore failed. Across WBT measurements,
pressure intervals are not uniformly sampled, as a pressure
sweep (gradual increase and then decrease) is applied while
acoustic stimuli are presented in series. The total number of
measurements on the pressure axis therefore varies between
measurements. For the purpose of analysis, the frequency axis
sampled regularly on a logarithmic scale for each measure-
ment. Measurements above 4 kHz are very prone to noise,
and little diagnostic value is found in this high frequency
range [21]. A common grid is therefore defined from 180
daPa to -280 daPa in 84 steps on a linear scale, and from
226 Hz to 4 kHz in 84 steps sampled on a logarithmic scale.
All WBT measurements are resampled to fit this grid using
bilinear interpolation.

The dataset thus consists of 1014 WBT measurements from
both left and right ears, separated into the three diagnostic
groups: no effusion (NOE, 488 measurements), otitis media
with effusion (OME, 372 measurements), and acute otitis
media (AOM, 154 measurements). The average WBT mea-
surements for each diagnostic group and variance within each
group are shown in Fig. 2. The dataset was split into training
(80%) and test (20%) sets, and the training set was further
split into a training (80%) and validation (20%) set. It was
ensured that data from each patient were only used for either
training, validation, or testing.

From the WBT measurement, it is possible to extract a
simple tympanogram and an absorbance measurement, which
are also commonly used to assess middle ear conditions. The
absorbance measurement is extracted at ambient pressure and
displays the absorbance across frequency without pressure
alterations. A simple tympanogram shows the absorbance
change as a function of the pressure variation in the middle
ear at a certain frequency. Based on the findings from [10], the
average absorbance over the range 0.375-2 kHz was selected to
create the averaged tympanogram. These two measures were
extracted from all WBT measurements in the dataset after
preprocessing. Fig. 3 shows the average ambient absorbance
and averaged tympanogram for each of the three diagnostic
groups together with the standard deviation within each group,
showing considerable overlap across all frequencies, but clear
morphological differences.
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Fig. 3: Average ambient absorbance measurements (a) and 0.375-2 kHz averaged tympanogram (b) of each diagnostic group:
OME (green), NOE (orange), and AOM (blue). The faded background curves show the standard deviation of each group.

III. METHODS

The first approach is developed to classify no effusion
(NOE) and otitis media (a combined group of AOM and
OME, denoted OM). The conditions AOM and OME show
considerable overlap and similarities, and we therefore start
by separating the overall groups NOE and OM. Later, we
will attempt to automatically distinguish between AOM and
OME. This section is divided into the following parts: WBT
classification using a 2D convolutional neural network; am-
bient absorbance and averaged tympanogram classification
using a 1D convolutional neural network; data augmentation;
comparison with related methods; saliency maps for WBT
classification; and finally, classification of AOM, OME and
NOE.

A. WBT classification
A 2D convolutional neural network is employed for the

classification of NOE and OM. The network structure is
shown in Fig. 4, and more details about each layer are
presented in Table I. The input to the network is the one-
channel 84 × 84 WBT. Through repeated 2D convolution
and max pooling, features are extracted from the WBT, and
finally the output of the network indicates the probability of
OM presence. The architecture of the network was designed
specifically for the characteristics of the WBT measurements,
with inspiration from the AlexNet architecture [22]. State-of-
the-art convolutional neural networks such as ResNet [23],
VGG [24], or Inception V3 [25] are all large-scale networks
for image classification. PyTorch provides pre-trained versions
of these networks, trained on the ImageNet database [26] with
input dimensions of 224 × 244, or 299 × 299, depending
on the network architecture. This is helpful when limited
data are available for training for an image classification
task. However, the WBT data are of a completely different
nature than the images of the ImageNet database, as the WBT
measurements are measured signals, not images. Furthermore,
the WBT data are rather simple compared to an image, and

do not require a large-scale network for classification. The
input dimensions are much lower (84 × 84), the input only
consists of one channel, and the measurements consist of
fewer details compared to images, as seen in Fig. 2. It is
therefore not feasible, nor necessary, to employ a pre-trained
network for this task. Since the network employed for this
classification task has to be trained end-to-end, we need to
limit the amount of parameters, and thus the size of the model.
We have therefore designed a 2D convolutional neural network
for this specific classification task for WBT measurements,
customized to the input WBT size and requirements of this
data type.

The neural network is trained end-to-end with a binary
cross entropy loss function using the Adam optimizer [27]
with a learning rate of 0.0001, which is decreased with a
multiplicative factor of 0.1 every 8th epoch. Batch size is set
to 16, all training inputs are shuffled for each epoch, and early
stopping is employed with a patience of 20 epochs. The final
classification is obtained from the probability output with a
threshold value of 0.5.

TABLE I: 2D neural network structure

Output size
(ch, w, h) Details

Input (1, 84, 84)
2D convolution (64, 42, 42) Kernel: 5x5, stride: 2, pad: 2
Max pooling (64, 20, 20) Kernel: 3x3, stride: 2
2D convolution (192, 20, 20) Kernel: 5x5, stride: 2, pad: 2
Max pooling (192, 9, 9) Kernel: 3x3, stride: 2
2D convolution (384, 9, 9) Kernel: 3x3, stride: 1, pad: 1
2D convolution (256, 9, 9) Kernel: 3x3, stride: 1, pad: 1
2D convolution (256, 9, 9) Kernel: 3x3, stride: 1, pad: 1
Max pooling (256, 7, 7) Kernel: 3x3, stride: 1
Dropout + Linear
layer + ReLu (4096) Dropout: 0.5

Dropout + Linear
layer + ReLu (4096) Dropout: 0.5

Dropout + Linear
layer + ReLu (1000) Dropout: 0.5

Linear layer (1) Dropout: 0.5
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Fig. 4: 2D network architecture. The first number at the bottom of each block is the number of features, the second number
shows the dimension (the dimension is the same for height and width of the feature maps). Details about each layer are
provided in Table I.

B. Absorbance and tympanogram classification
Two 1D convolutional neural networks with a similar struc-

ture to the 2D networks for WBT classification are employed
for the classification of ambient absorbance measurements
and 0.365-2 kHz averaged tympanograms. Two 1D networks
are trained separately for the two tasks. The networks have
the same architecture as shown in Table I, only using 1D
operations instead of 2D operations. The input is a (1, 84)
tensor (absorbance or tympanogram), and thus all output sizes
in the table are the same, except using only one dimension
instead of two. The last linear layers have output dimensions
(1024), (1024), (1000), and (1) due to the reduced input
dimensions. The training parameters are also the same as for
the WBT neural network.

C. Data augmentation
Extensive data augmentation is employed to improve train-

ing and to avoid overfitting [28]. When performing image
classification using convolutional neural networks, data aug-
mentation usually consists of geometric transformations. How-
ever, the WBT measurements will always be specified on the
same grid, i.e., the features of the WBT will be in the same
location of the measurement across different measurements.
Geometric transformations such as rotation and translation are
therefore not appropriate for this application. Instead, various
types of noise and other distortions are generated: Random
Gaussian noise is added to the input with intensities up to 0.1
of the maximum value in the measurement; exponential noise
with exponentially increasing intensity across the frequency
axis, and with no change across the pressure axis; intensity
shift, where a constant between -0.2 and 0.2 is added to all
intensities in the input; intensity manipulation, where the input
is multiplied with a constant between 0.8 and 1.2; random

erasing, where a randomly selected region of the input is
erased by setting all values in the region to the mean value of
the input measurement [29]; and Gaussian hilly terrain, where
a mixture of Gaussian functions with various intensities are
added to the input to generate noise affecting a larger area
in the input than the random noise. Note that Gaussian hilly
terrain changes the landscape of the input to a larger extent
than the other distortion methods.

Each of the distortion methods are added to the measure-
ments during training with a probability of 0.5. After perform-
ing the augmentation, the intensity of the input is ensured to
be between 0 and 1, which are the natural boundaries of WBT.
The various types of data augmentation can be performed in
both 2D and 1D, and are therefore employed during training
for all classification networks. It is, however, unknown whether
all types of data augmentation increase performance in both
1D and 2D. Experiments were therefore run with all three
networks, examining each type of data augmentation.

D. Comparisons
Besides our proposed methods, we have also run exper-

iments with the methods proposed by Merchant et al. [15]
and Grais et al. [20] for comparison. These methods were
trained and tested using our dataset to ensure a proper com-
parison. Merchant et al. [15] propose an approach based on a
multivariate logistic classification model based on the three
first principal components of the WBT measurements. We
trained the binary classification model to predict OM or NOE,
and tested it on our test dataset. Grais et al. [20] compared
several machine learning methods for the classification of
OM and NOE based on WBT measurements. They show that
the CNN is superior to a fully connected neural network,
random forest model, support vector machine, and a k-NN.
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Since they have provided this detailed comparison with other
machine learning algorithms, we will refrain from performing
the same experiments, and compare our approach with their
best performing CNN. The CNN is implemented as described
in the paper, and trained and tested on our dataset.

E. Saliency maps
A saliency map is a representation of the unique importance

of each pixel or neuron in the network input. The purpose
of these maps is to visualize the feature maps of a neural
network, and thus use the visual representation to interpret the
decision process of a neural network. This attempt to interpret
and analyze the output of a neural network can build trust
in the model amongst its users, enable understanding of the
model, and ease the integration of systems such as this into,
for example, clinical practice.

A variety of methods for output explanation from deep
neural networks exist, as seen in the survey by Singh et al.
[30]. For this pipeline, the widely used method of GradCAM
[31] is implemented and applied to the WBT classification
network. GradCAM is a generalization of class activation
maps (CAM), in which gradient information from the last
convolutional layer of the convolutional neural network is
used to understand the importance of each neuron in the
feature maps. Convolutional neural networks retain spatial
information throughout the network until it is lost in the
final fully connected layers. The last convolutional layer will
therefore have the best trade-off between high-level features
and detailed spatial information.

The saliency maps are generated in several steps. The
first step is to compute the gradient of the class score for
each feature map in the last convolutional layer. A weighted
combination of all feature maps is computed using the class
scores as weights, and finally, a ReLU activation is performed
to ensure that only positive influences on the output class are
included. This results in a coarse saliency map of the same
size as the feature maps in the last convolutional layer (in
this case 9× 9). The coarse map is upsampled using bilinear
interpolation to obtain a full input size heat map of 84× 84.

F. Classification of AOM and OME
Finally, an approach to distinguish between AOM, OME,

and NOE based on the full WBT measurement is investigated.
It has not previously been shown or demonstrated that it is
possible use WBT to distinguish the two types of otitis media.
Other studies such as [8], [10], [20] only include OME cases,
and not AOM. Helenius et al. [32] investigated discrimina-
tion of diagnosis based on standard 226 Hz tympanometry,
and found that this measurement can be used to distinguish
between NOE and OM cases, but not to diagnose specific
types of OM. The present study therefore examines if the
additional information provided by WBT (compared to a 226
Hz tympanogram) allows for a specific diagnosis of types of
OM.

This approach follows the same architecture as the binary
classification network for WBT classification described in
Section III-A. The only changes are the input data, which

are now from three different classes, because the OM class is
divided into OME and AOM, and the class-weighted cross-
entropy loss function is utilized during training to cope with
the imbalance in the dataset due to fewer AOM cases.

IV. RESULTS

The performance of OM detection on the test set with
the three different models is presented in Table II. The
performance metrics include accuracy, area under the curve
(AUC) (which shows how well the model separates the two
classes), sensitivity, specificity, and F1-score. Since sensitivity
and specificity are inversely proportional to each other, there
is always a trade-off between the two measures. The F1-score
(the harmonic mean of the precision and recall of a test)
is therefore computed to ease comparison. The models were
trained using the best-suited data augmentation methods for
each method, as shown in Table III, and for the full WBT
CNN, the performance results in Table II are shown both
with and without augmentation. The same comparison can
be found in Table III for the 1D networks. The rest of the
presented results are generated with the full WBT approach,
as this approach shows the highest performance. Examples
of misclassified measurements are shown in Fig. 5, separated
into false positives (representative selection from eight mea-
surements) and false negatives (representative selection from
nine measurements).

TABLE II: Otitis media classification performance for WBT,
ambient absorbance (absorb.), and averaged tympanogram
(tymp.) networks on the test set. Performance for approaches
proposed by Merchant et al. [15] and Grais et al. [20] on
the test set are also included. Bold font marks the highest
performance within each metric.

Acc. AUC Sens. Spec. F1-score
Merchant et al. [15] 73.4% 0.84 73.3% 73.5% 73.6%
Grais et al. [20] 88.2% 0.92 87.9% 88.5% 88.3%
Ambient absorb. 86.5% 0.94 91.4% 81.4% 87.2%
Averaged tymp. 90.0% 0.96 92.2% 87.6% 90.3%
WBT w/o aug. 90.0% 0.97 88.8% 91.2% 90.0%
WBT 92.6% 0.97 92.2% 92.9% 92.6%

Table III shows the effect of the different types of data
augmentation employed during training of the three different
neural networks. For each classification approach, the aug-
mentation methods that improve the performance are marked
with *. The last row shows the final performance for each of
the three with a combination of the augmentation types best
suited for the particular network (those marked with *). This
shows how the combination of various types of augmentation
outperforms each individual type of augmentation. The final
combination of augmentation is used for the results presented
in both Table II and IV.

Saliency maps are generated for each WBT measurement in
the test set using the 2D network for binary classification. An
average saliency map is then generated for each class (NOE
and OM) to evaluate the most important features for each
diagnostic group. This would not be possible in normal image
classification networks, since the object in a natural image
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TABLE III: Effect on classification accuracy of various types of
data augmentation on the three neural networks: WBT with 2D
augmentation, ambient absorbance and averaged tympanogram
(tymp.) with 1D augmentation.

WBT Ambient absorbance Averaged tymp.
No aug. 90.0% 85.2% 88.2%
Random noise 90.0% * 85.2% * 88.2% *
Exp. noise 90.1% * 84.3% 88.6% *
Intensity man. 88.6% 86.0% * 88.2% *
Random erasing 91.7% * 85.2% * 90.4% *
Intensity shift 89.5% 84.8% 88.2% *
Hilly terrain 90.3% * 85.6% * 89.0% *
* together 92.6% 86.5% 90.0%

can be positioned in various locations in the image. The WBT
measurements are however resampled to the same grid, and the
features will thus be in the same position across measurements.
This means we can compare the saliency maps directly. Fig. 6
shows the average saliency maps for NOE measurements (b)
and OM measurements (c). The saliency maps are projected
onto the average WBT of each class to ease interpretation of
the most important features.

The final approach described in Section III-F attempts to
separate the OM classification into either OME or AOM. The
performance is shown in Table IV and shows the precision and
recall for each class and the overall classification accuracy.
The results clearly show how challenging it is to distinguish
between AOM and OME based on only the WBT measurement
from a patient.

TABLE IV: Performance of multi-class classification (NOE,
AOM, and OME). The table shows recall and precision for
each class and the overall accuracy.

NOE AOM OME Acc.
Recall Precision Recall Precision Recall Precision
90.3% 90.3% 36.4% 52.2 % 80.7% 72.0% 79.0%

V. DISCUSSION

The classification results in Table II show very high perfor-
mance in all performance metrics for the WBT approach to
classifying NOE from OM cases. The averaged tympanogram
and ambient absorbance approaches are inferior to WBT,
except for sensitivity, where the WBT and averaged tym-
panogram approaches are tied. It is clear from the F1-score
that the WBT approach has the highest overall performance.
The AUC summarizes the overall diagnostic accuracy, and an
AUC above 0.9 is considered outstanding [33].

The method proposed by Merchant et al. [15] has the lowest
performance, and is also the simplest method, as it is based
on principal component analysis and logistic regression. The
performance of the 2D CNN for WBT classification proposed
by Grais et al. [20] is comparable to our performance, but
still lower. The proposed CNN architecture is simpler than
ours, as they employ fewer layers (both convolutional and fully
connected layers) and larger convolution kernels in each layer.
We show that even without our extensive use of augmentation,
our network architecture has a higher performance.

The false positive and negative examples in Fig. 5 show a

(a) (b) (c)

(d) (e) (f)

Fig. 5: Examples of false positive i.e. NOE classified as OM (a, b, c) and false negative i.e. OM classified as NOE (d, e, f)
measurements.
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(a) Difference between NOE and OM WBT (b) NOE saliency map (c) OM saliency map

Fig. 6: Saliency maps for otitis media classification network. (a) shows the average NOE WBT with a color map showing the
relative difference between average NOE and OM WBTs. (b) and (c) shows the saliency map projected onto the average WBT
for each of the two classes. Red areas indicate high importance areas, while blue indicates low importance.

selection of challenging WBT measurements. These examples
show that not all WBT measurements look like the average
WBT measurements presented in Fig. 2, and that WBT mea-
surements can have unusual shapes. For example, Fig. 5(c)
and (f) look quite similar, but are annotated differently by the
ENT. This could indicate that in (f), the primary signs of OM
were found in the additional patient data available, such as
the otoscopy examination or the patient-reported symptoms,
and that WBT does not provide enough information for that
particular diagnosis.

Deep learning is generally considered a ’black box’ ap-
proach for classification problems, yet there are several meth-
ods that allow users to interpret the decision making behind
the results. This is particularly important when developing
a diagnostic tool for clinical professionals, to allow them to
understand the decision process and trust the decisions made
by the neural network. The saliency maps in Fig. 6 introduce
valuable insight into the decision strategy of the trained neural
network. The average NOE saliency map in Fig. 6(b) clearly
shows that the region between 1 and 2 kHz is the key area for a
normal WBT measurement, which coincides with the findings
in [8], [10], [20]. This corresponds with the physiological
resonance frequency of the eardrum around 1 kHz [34], which
is affected by membrane stiffness and middle ear fluid present
in otitis media cases. Thus, this peak in importance between
1 and 2 kHz can be used to distinguish between a healthy and
unhealthy eardrum. The average OM saliency map in Fig. 6(c)
shows that the frequency region from 500 Hz to 2 kHz is a key
area for this class in a large area on the pressure axis as well,
compared to the NOE saliency map. It is clear that abnormal
WBT measurements have a much flatter appearance across
the pressure axis, together with generally lower absorbance
levels, compared to the normal WBT measurement. From the
OM saliency map it is clear that the neural network determines
the diagnosis of OM from the changes on the pressure axis
and the slope from the low to high frequencies.

Heat maps like these allow the expert ENT to evaluate every
decision made by the model, and to check that the highlighted
regions correspond to the clinical findings. The heat maps can

also be used as a training tool for new ENTs or primary-case
physicians to learn how to analyze WBT measurements. There
are therefore many possible applications of these heat maps.

The results from these heat maps could also explain the
lower performance of the tympanometry and wideband ab-
sorbance approaches. Since the wideband absorbance measure-
ment does not include knowledge about the variation across
pressure, valuable information is missing that is important for
the classification. The type of tympanometry considered in
this study includes this variation across pressure because it
is calculated as an average from 0.375 to 2 kHz, and is also
the highest-performing approach of the two 1D approaches.
These results show that pressurization during measurement is
very valuable and adds diagnostic value to the test.

Our final experiment shows that there are limitations to
the diagnostic value of a WBT measurement. While the
performance of binary NOE/OM classification is very high, the
neural network is challenged when attempting to distinguish
between AOM and OME, as seen in Table IV. It is not
surprising that this is a difficult task, as indicated by the plots
shown in Fig. 3. The plots clearly show that there is substantial
overlap between all three groups, but especially the AOM and
OME groups have a major overlap. In the lower frequencies of
the absorbance measure, the two groups are almost identical,
and only a slight difference is seen from 1 to 2 kHz. A similar
picture is seen in the averaged tympanograms, where they
are both flat but with a slightly different mean absorbance
level. A similar result was also found by Helenius et al. [32],
who only evaluated 226 Hz tympanograms. The results of
the present study show that WBT does not demonstrate high
performance in diagnosing specific types of OM despite the
fact that WBT introduces new information to the diagnosis
process. It is, however, satisfying that the neural network has
not just over-fitted to the dataset by finding hidden features
and creating complex decision strategies in order to perform
the classification, when it is clinically questionable that it is
possible.

As previously mentioned, WBT measurements will vary
between patients of different ages, as the ear structures develop
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with age. Our dataset covers children from 2 months to 12
years and will thus include different age profiles. It is expected
that the neural network learns to model these variations
and differences between age groups, and thus incorporates
them into the model. It was investigated whether there is a
correlation between misclassifications and a certain age group,
but none was found. The misclassifications are randomly
distributed across ages. It is therefore concluded that age-
related changes are not an issue for our approach.

VI. CONCLUSION

The results of this study show that WBT measurements can
be used to determine whether OM is present. The classification
results show very high performance, and since this approach
is fully automatic with no human input, this bodes well for
applying the approach in an automatic diagnostic tool for OM
detection. Our study shows that WBT measurements provide
more diagnostic information than both the ambient absorbance
measure and the 0.375-2 kHz averaged tympanogram. As
expected on the basis of clinical practice and pathological
studies related to OM, we found that WBT has to be combined
with other sources of information about the patient to diagnose
specific types of OM.
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Abstract. This paper presents our contribution to the REFUGE chal-
lenge 2020. The challenge consisted of three tasks based on a dataset of
retinal images: Segmentation of optic disc and cup, classification of glau-
coma, and localization of fovea. We propose employing convolutional
neural networks for all three tasks. Segmentation is performed using a
U-Net, classification is performed by a pre-trained InceptionV3 network,
and fovea detection is performed by employing stacked hour-glass for
heatmap prediction. The challenge dataset contains images from three
different data sources. To enhance performance, cycleGANs were utilized
to create a domain-shift between the data sources. These cycleGANs
move images across domains, thus creating artificial images which can
be used for training.

Keywords: Glaucoma detection · cycleGAN · Convolutional neural net-
work

1 Introduction

Glaucoma is a group of eye conditions that damage the optic nerve. It is one
of the leading causes of irreversible, but preventable, blindness [6], and the in-
cidence is expected to increase. The condition is typically caused by a high
pressure in the eye, which damages the optic nerve with no warning signs. The
condition of the retina, and thus the optical nerve, is examined using color fun-
dus photography. This imaging technique is both economical and non-invasive.
The Retinal Fundus Glaucoma Challenge (REFUGE2) [3] is a competition held
as part of the Ophthalmic Medical Image Analysis (OMIA) workshop at the
International Conference on Medical Image Computing and Computer Assisted
Intervention (MICCAI) 2020. The goal of this challenge is to provide key tools
for diagnosing glaucoma by releasing a large scale database. The challenge con-
sists of three tasks: optic disc and cup segmentation, glaucoma classification,
and fovea localization. The problem is challenged by the fact that the data is
acquired from three different data sources. The training dataset is acquired with
two different cameras, and the test dataset is acquired using a third camera. This

? These authors contributed equally to this work.
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paper presents our contribution to this challenge. Segmentation is performed us-
ing a U-Net, classification is performed by a pre-trained InceptionV3 network,
and fovea detection is performed by employing stacked hour-glass for heatmap
prediction of fovea location. To enhance performance and cope with the chal-
lenges of different data sources, cycleGANs are utilized to create a domain-shift
between the data sources. These cycleGANs move images across domains, thus
creating artificial images which can be used for training.

2 Data

The approach is trained on the REFUGE challenge data consisting of 1200 anno-
tated images from two different cameras (400 from one, 800 from another). The
test dataset consists of 400 images from a third camera. The camera used for the
first set of training images (later called domain 1) have the image dimensions
2124x2056, while the dimensions of the other part of the training dataset (later
called domain 2) have the dimensions 1634x1634, and the test dataset (later
called domain 3) has dimensions 1940x1940. Image examples from all three do-
mains are seen in Figure 1.

(a) Domain 1 (b) Domain 2 (c) Domain 3

Fig. 1: Image examples from the three different domains in the challenge dataset

For training of the various neural networks for this proposed method, the
training data is split into training and validation using a 90/10 split. As the
dataset is highly unbalanced with only 10% of glaucoma cases, a class-wise strat-
ified train-validation split was employed. The split was also generated to ensure
that 10% of images in each of the two training domains were used for validation.

For classification of glaucoma and optic disc and cup segmentation, a region
of interest is cropped out of the original images. The region is detected using a
stacked hour-glass neural network for heatmap prediction of the center of the
optic disc. This methods is explained in detail in Section 3.1. A region of 500x500
pixels is cropped of the area of the optic nerve head, and this was used as training
inputs.
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3 Methods

As the dataset consist of images from three different domains, we decided to
incorporate domain-shift into our approach. The goal is to train an unpaired
domain-shift network, in order to create training examples from the domain of
the otherwise unlabelled test domain, to generalize the classification and seg-
mentation networks by learning robust features across domains.

The full pipeline is shown in Figure 2. For the first step of ROI detection and
fovea localization, we employ the stacked hourglass neural network trained on
the original annotated training data from domain 1 and 2. The cropped input
images in all three domains are then used to train three cycleGAN’s for domain
transfer across all three domains. An example of each image is artificially created
in each domain, resulting in an increase in training and test data by a factor of
3. A combination of artificial domain-transferred images and original images are
used to train an Inception V3 network for glaucoma classification and a U-net
for optic disc and cup segmentation. All the steps of the proposed method will
be described in details in the following sections.

Fig. 2: Schematic representation of proposed method

The proposed method was implemented in Python using the deep learning
framework Pytorch, and trained using a GeForce GTX 1070 8GB RAM graphics
card.

3.1 ROI detection and fovea localization

Detecting the region-of-interest around the optic nerve head and locating fovea
is carried out together using a stacked hourglass network [2] with two stacks.
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The network was originally proposed for human pose estimation and is chosen
due to its ability to incorporate the interrelationship between the position of the
optic nerve head and fovea. This setup allows the network to not only use image
features for predicting the position of fovea and the optic nerve head, but also
their relative position. In the training images the center of the optic cup is found
from the segmentation maps and a heatmap is created as a 2D gaussian placed at
the optic cup center with a variance of 100 pixels. Similarly, a heatmap is created
with a gaussian at the fovea location. The input image and heatmaps are resized
to 256x256 and normalized to the range [0, 1]. During training the images are
augmented using the following transforms: random affine transformations with
up to 20 degrees rotation, 100 pixels translation both vertical and horizontal
and scaling with up to 20%, color jitter which randomly changes hue (±10),
saturation ([−0.2, 0.5]), and value (±0.3), and horizontal and vertical flip. The
transformation were applied with a probability of 0.5.

The network was trained using the Adam optimizer [1] with decreasing learn-
ing rate with a factor of 0.1 every 50th epoch. The initial learning rate was set to
0.001, and trained with early stopping with a patience of 10 epochs. The network
makes use of spatial dropout with a dropout rate of 0.2. The batch size was set
to 8 and all input images were shuffled during training.

Location of fovea and center of optic cup are determined as pixel with the
maximum intensity in each of the predicted heatmaps. The region of interest is
constructed as 500x500 pixels cropped around the optic cup center.

3.2 Domain shift using cycleGAN

To create the domain shifts between the image domains, several cycleGAN’s
were trained. The cycleGAN is a image-to-image translation model, where a
mapping between an input and an output image is learned without the use of
paired examples [7]. The cycleGAN models are trained using a group of images
from the source domain and from the target domain, and the model learns to
transfer images between these two domains. As seen in Figure 2, three cycle-
GAN’s were needed to transfer between all combinations of the three domains.
The standard implementation of cycleGAN was employed, with no modifications
from the original implementation from [7]. No data augmentation was used, only
the cropped region-of-interest from each of the three domains. The advantage
of using cycleGAN is the fact that no labels are needed, as the domain shift
is unpaired. The neural network will learn the representation of each domain
without other information than the images. This is a big advantage for this ap-
plication, where we have an unlabelled test dataset from a different domain than
the training dataset. The results of domain transfer of three image examples can
be seen in Figure 1. The images in the diagonal shows the original images from
each of the domains, while the off-diagonal images show artificial images created
by the cycleGAN. The figure shows that the cycleGAN creates artificial images
that preserves the features of the original image (ie. the vessels and cup/disc size
and shape) while incorporating features from the new domain (ie. colors).
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The neural networks for classification and segmentation were trained on the
fixed training data, consisting of images from both domain 1 and 2. These images
were transferred into each of the other domains, e.g. an image in domain 1 is
transferred into both domain 2 and 3. The neural networks were therefore trained
on image examples from all three domains, although many of them are artificially
generated by the cycleGAN. This increases the size of the training dataset by a
factor of 3, and ensures that the neural network learns the characteristics of the
unlabelled test dataset.

Table 1: Image examples from each of the three domains, and the domain-shifted
images

Domain 1 Domain 2 Domain 3

Image from
domain 1

Image from
domain 2

Image from
domain 3

3.3 Glaucoma classification

Classification of glaucoma was performed using the Inception V3 network [5]
for binary classification initialized with weights pre-trained on the ImageNet
dataset. The weighted cross-entropy loss function was employed to enforce the
network to learn to classify the under-represented class, glaucoma. The last layer
of the neural network was changed to have the output dimensions two, to match
the number of classes. Furthermore, the first half of the network (first four incep-
tion modules and the first grid size reduction) was frozen during training, and
only the last half of the network was fine-tuned for the glaucoma classification
task.



6 J. V. Sundgaard et al.

The input size for this network architecture is 299x299x3, as the images are
RGB images. Thus the 500x500 input regions were resized to fit the network
input. The network was trained using the Adam optimizer [1] with decreasing
learning rate with a factor of 0.1 every eighth epoch. The initial learning rate
was set to 10−4, and trained with early stopping with a patience of 10 epochs.
The batch size was set to 60 and all input images were shuffled during training.

Data augmentation was employed with a variation of transformations: ran-
dom affine transformations with up to 20 degrees rotation, 60 pixels translation
both vertical and horizontal, and scaling with up to 20%, color jitter which
randomly changes brightness (±10), contrast (±10), saturation (±10), and hue
(±10), grey scale transformations, random perspective, and horizontal and verti-
cal flips. The transformations were applied in a random order with a probability
of 0.5. Before training, the images were also normalized with the standard pa-
rameters for the pre-trained Inception V3 network for Pytorch.

For prediction on the 400 test images, test-time augmentation was employed.
In test-time augmentation, the test image is evaluated by the neural network
several times with different transformations applied. The same transformations
were used as during training, though only one transformation at a time, and each
input image was evaluated with 10 different transformations. Besides the test-
time augmentation, each image was also evaluated in each of the three domains.
The final prediction of glaucoma risk is computed by averaging the output of all
30 prediction (10 transformations in each of the three domains), and applying a
softmax activation to obtain the probability for the two output classes.

3.4 Optic disc and cup segmentation

Segmentation of the optic disc an cup is carried out using a standard U-net
[4]. The input image and heatmaps are resized to 256x256 and normalized to
the range [0, 1]. During training the images are augmented using the following
transforms: random affine transformations with up to 20 degrees rotation, 60
pixels translation both vertical and horizontal, and scaling with up to 20%,
color jitter which randomly changes hue (±10), saturation ([−0.2, 0.5]), and value
(±0.3) and horizontal and vertical flip. The transformations were applied with
a probability of 0.5.

The network was trained using the Adam optimizer [1] with decreasing learn-
ing rate with a factor of 0.1 every 50th epoch. The initial learning rate was set to
0.001, and trained with early stopping with a patience of 10 epochs. The batch
size was set to 8 and all input images were shuffled during training.

At prediction time, the image is evaluated 10 times in each of the three do-
mains with different transformations similar to the augmentations used during
training. In total the 30 different segmentation proposals are combined by av-
eraging the network outputs before applying a softmax activation to obtain the
final segmentation.
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4 Challenge evaluation

Our contribution was evaluated in the semi-final leaderboard with a overall rank-
ing of 13 out of 22 contributions. For the classification task, our contribution
ranked 13th with an AUC of 0.95. Optic disc and cup segmentation resulted in a
mean cup dice of 0.86, a mean disc dice of 0.96 and cup-to-disc ratio relative mean
error (CDR RME) of 0.04. On the segmentation task, our contribution ranked
11th out of 23 contributions. For fovea localization our contribution ranked 18th
with a average euclidian distance of 29.7.
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We present a deep metric variational autoencoder for multi-modal data generation.
The variational autoencoder employs triplet loss in the latent space, which allows for
conditional data generation by sampling in the latent space within each class cluster.
The approach is evaluated on a multi-modal dataset consisting of otoscopy images of
the tympanic membrane with corresponding wideband tympanometry measurements.
The modalities in this dataset are correlated, as they represent different aspects of the
state of the middle ear, but they do not present a direct pixel-to-pixel correlation. The
approach shows promising results for the conditional generation of pairs of images
and tympanograms, and will allow for efficient data augmentation of data from multi-
modal sources.

I. Introduction
Deep generative models can generate new data within
the distribution of the training dataset, and can be
used for advanced data augmentation in cases where
data are costly to annotate or difficult to acquire [1].
A widely used model is the variational autoencoder
(VAE). The VAE is a probabilistic model, consisting
of an encoder that learns an approximation of the
posterior distribution of the data, and a decoder that
learns to reconstruct the original input from a latent
representation. An advantage of VAEs over generative
adversarial networks (GANs) is that the VAE learns
a smooth latent representation of the input data. The
latent space can therefore be used for sampling new
latent representations and thus be used to generate
new examples from the distribution of the training
dataset.

Conditional data generation, e.g., the conditional
VAE [2], allows us to specify which class in the
dataset to generate data from. Here, both the latent
representations and the input data are conditioned by,
e.g., class label. Instead of conditioning the model

for class specific data generation, Karaletsos et al. [3]
proposed the triplet-loss based VAE for generation of
interpretable latent representations that separate the
classes in the latent space with deep metric learning.
Karaletsos et al. [3] put their main focus on learning
the latent representations, whereas we are interested in
using the triplet-loss based VAE for data generation.

We propose a generative approach using a triplet-
loss based VAE, and we expand the network archi-
tecture and training process to allow for multi-modal
data generation. The multi-modal dataset consists of
pairs of otoscopy images of the tympanic membrane
and wideband tympanometry (WBT) measurements,
examples of which are presented in Figure 1. The two
types of data are very different, as the first is an image
from a camera, and the other is the results of an acous-
tic measurement. Furthermore, they reflect different
aspects of the state of the middle ear. The otoscopy
image shows the visual impression of the tympanic
membrane, which can show signs of e.g. infection
or effusion, while the WBT measurement provides
quantitative indications about the presence of fluid in
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Figure 1. Examples from the dataset and generated examples: otoscopy images (top) and WBT measurements
(bottom). Acute otitis media (left two images), otitis media with effusion (middle two images), no effusion
(right two images).

the middle ear, the mobility of the tympanic-ossicular
system, and the volume of the external auditory canal.
The two types of data are therefore correlated but
do not have a direct pixel-to-pixel relation, and they
reflect two different aspects of the state of the middle
ear.

Otitis media can be separated into two main diag-
nostic groups: acute otitis media (AOM) and otitis
media with effusion (OME). Figure 1 shows the dif-
ference between these two groups, where AOM is an
acute infection with redness and a bulging eardrum,
and OME is a build-up of fluid in the middle ear. An
example of a normal eardrum with no effusion (NOE)
is also shown. The WBT measurements in Figure 1
show how the absorbance across the pressure axis does
not change in AOM or OME measurements, whereas
the NOE measurements typically show a general in-
crease in absorbance around 0 daPa, compared to
negative or positive relative pressures. Furthermore,
the general absorbance level at lower frequencies is
lower for AOM and OME, than for NOE measure-
ments. These two types of data can both be used
for the diagnosis of otitis media. Several studies
have developed different approaches for otitis media
classification based on either otoscopy images [4–6]
or WBT measurements [7, 8]. A combined deep
learning classification approach based on standard
single-frequency tympanograms and otoscopy images
was proposed by Binol et al. [9].

The aim of this paper is to generate new pairs of

otoscopy images and WBTs from each of the three
diagnostic groups: AOM, OME, and NOE, and for
this task, we propose the multi-modal triplet VAE.
The generated otoscopy image and WBT pairs can be
used as advanced data augmentation for a multi-modal
classification pipeline. Our multi-modal generative
model can also be used in other domains such as pairs
of cardiac images and electrocardiograms, or brain
scans and electroencephalograms. These modalities
have a correlation, while reflecting different aspects -
visual and functional - of the condition of the examined
organ. This work can also be used for the training of
doctors and models while preserving patient privacy.
Generated data ensures anonymity and allows for data
to be shared without regulations such as EU’s GDPR,
and some studies have already shown the usability of
variational autoencoders in this field [1, 10].

II. Methods
The multi-modal triplet VAE consists of two encoders
and two decoders - one for each modality, and the
structure is shown in Figure 2 together with the struc-
ture of the upsampling and downsampling blocks used
to construct the encoders and decoders. The encoders
consist of five residual downsampling blocks using
2D average pooling, and take the 64× 64× 3 otoscopy
images and the 64 × 64 × 1 WBT measurements as
input. They start with 64 features in the first block,
and double the number of features in each consecutive
block. The output feature maps from each encoder
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Figure 2. Structure of the multi-modal triplet VAE.
Top figure shows the overall structure with two en-
coders, concatenation of the outputs, sampling, and
two decoders. Bottom figure shows the residual blocks
used in both encoders and decoders. BN refers to
batch normalization.

(2 × 2 × 512) are concatenated, and two 2 × 2 con-
volutional layers are used to obtain the mean and
variance in the 128-dimensional latent space. Us-
ing the reparameterization trick [2], a latent vector
is sampled, which is passed to both decoders. The
decoders consist of six residual upsampling blocks
using nearest neighbour upsampling, and the number
of features is halved for each block starting at 512.
The final layer is a single 3 × 3 convolutional layer
going from 32 feature maps to the desired number of
channels of the output - one channel for WBTs and
three for the otoscopy images. Because the encoder
outputs are concatenated, we achieve a common latent
space for both modalities, which allows for sampling
in the latent space to generate new pairs from each
class. The decoders will thus receive information
from both image and WBT for the reconstruction of
each modality.

The training loss function consists of several parts.
The difference between reconstructed WBT and input
WBT is penalized using binary cross entropy (BCE)
loss. The reconstruction of the image is evaluated us-
ing structured similarity index (SSIM) loss [11], which
is a local measurement comparing the reconstruction
and original image based on luminance, contrast, and
structural information. In the latent space, both Kull-
back–Leibler (KL) divergence and triplet loss [12]
are computed. The KL divergence forces the latent
embeddings close to a standard normal distribution,
while the triplet loss forces examples from the same
class to cluster together and pushes examples from
different classes further apart [12]. The loss function

terms related to the embedding space are weighted
lower than the rest of the terms, and the value 0.1
was experimentally chosen, leading to a loss function
defined as:

𝐿𝑜𝑠𝑠 = 𝐿𝑆𝑆𝐼𝑀 + 𝐿𝐵𝐶𝐸 + 0.1 · (𝐿𝐾𝐿 + 𝐿𝑡𝑟𝑖 𝑝𝑙𝑒𝑡 ) (1)

Balanced sampling is performed during training,
with a batch size of 60 (20 pairs from each class)
to ensure a balanced representation of every class in
each training batch and to cope with the class im-
balance in the dataset. The triplets are sampled in
each batch using semi-hard mining [12] based on the
encoder-generated mean vector from each input pair.
The VAE is trained for 5000 epochs using the Adam
optimizer [13] with a learning rate of 0.0004. Data
augmentation is performed using random erasing [14]
on both image and WBT measurement, while hori-
zontal flipping and rotation with ±20 degrees is also
performed on the images.

Once the network is trained, the test set is passed
through the encoders, obtaining the latent represen-
tation of each image and WBT pair in the test set.
In order to sample new latent vectors for generation
of data pairs in each class, the distribution of each
class in the latent space is approximated using kernel
density estimation for each class. Kernel density esti-
mation estimates the probability density function in
the latent space by placing a Gaussian kernel on each
sample. The bandwidth of the kernel is fine-tuned
using five-fold cross validation. The kernel density
estimation is performed only on the test set. When the
distribution of each class is estimated, new samples
can be generated. The sampled latent vectors are then
run through both decoders, to generate new pairs of
images and WBTs.

A. Data
The dataset consists of 1420 pairs of images and WBT
measurements collected at Kamide ENT clinic, Shi-
zouka, Japan, from patients aged between 2 months
and 12 years. Each pair was assigned one of the three
classes: NOE (537 pairs), OME (419 pairs), and AOM
(211 pairs) by an experienced ENT specialist based on
signs, symptoms, patient history, otoscopy examina-
tion, and WBT measurements. The data was collected
and handled under the ethical approval from the Non-
Profit Organization MINS Institutional Review Board
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(reference number 190221), with either opt-out con-
sent, or informed consent from all participants or their
parent or guardian.

An otoscopy image is captured using an endoscope
(dedicated video otoscope) inserted into the ear canal,
allowing a visual inspection of the tympanic mem-
brane. The original image size was 640 × 480 pixels,
which was cropped to a square to limit the amount of
black background and then downsampled to 64 × 64
to fit the proposed architecture. A WBT measurement
is performed by inserting and hermetically sealing an
acoustic probe with an appropriately sized silicone ear
tip into the patient’s ear canal. The probe repeatedly
presents a transient stimulus with a frequency range
encompassing 226 Hz to 8 kHz while modifying the
pressure in the external acoustic canal relative to the
ambient pressure from 200 to -300 daPa [15]. The
measurements were performed using the Titan system
(Interacoustics, Denmark). From the WBT measure-
ment, it is possible to derive conclusions about both
tympanic membrane mobility and middle ear con-
dition, and thus additional diagnostic power can be
gained over visual inspection alone. WBT measure-
ments were bilinearly resampled to a common grid
from 180 daPa to -280 daPa in 64 steps on a linear
scale for the pressure axis, and from 226 Hz to 4 kHz
in 64 steps for the frequency axis. Examples of both
images WBT measurements are shown in Figure 1.

The dataset is split into a train (80%) and test (20%)
set. It was ensured that data from one patient was
only used for either training or testing, to prevent data
leakage.

III. Results
The test embeddings are shown in Figure 3. The
128-dimensional latent representation of each image
has been reduced to two dimensions using t-SNE
dimensionality reduction [16] in order to visualize
the latent space. The test embeddings clearly show
three clusters, but they do blend in the transition
areas between the classes, as the images and WBTs
can look quite similar across the diagnostic groups.
Some of the overlap could also arise from the drastic
dimensionality reduction from 128 to two dimensions.
The clusters will likely be more separable in the high-
dimensional space.

New latent representations are sampled in the full

128-dimensional space within the three class distri-
butions estimated with kernel density estimation, and
examples of generated otoscopy images and WBTs
are plotted in Figures 4 and 5.

Figure 4 shows examples of generated images in the
three diagnostic groups. The images look realistic, as
they all contain a tympanic membrane, clear diagnostic
markers, and the malleus bone is seen in several
examples. The top row of AOM images shows signs
of redness and bulging eardrum, and the OME cases
clearly have effusion behind the eardrum. The NOE
cases appear pale and translucent, as expected.

Other examples of generated pairs of otoscopy
images and WBTs are shown side by side with original
examples from the dataset in Figure 1. These are
not reconstructions, but new generated images. In
this figure, it is possible to compare the diagnostic
markers of the conditions across modalities, while
also comparing the generated examples with original
examples. Figure 1(a-b) show similar signs of AOM
redness and infection and reduced absorbance in the
WBT, which is relatively flat across the pressure
axis. The two OME cases in Figure 1(c-d) show
very similar diagnostic signs on both the original
and generated data with yellow effusion behind the
tympanic membrane. Likewise, the absorbance is
much lower with very little variation across pressures.
The NOE cases in Figure 1(e-f) show normal tympanic
membranes and high absorbance in the WBT with a

Figure 3. t-SNE visualization of test data latent
embeddings.
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Figure 4. Examples of generated otoscopy images.
Top row: AOM, middle row: OME, bottom row: NOE.
Best viewed with zoom.

change across pressure.
The generation of WBT measurements is summa-

rized in Figure 5, where generated examples are shown
together with the average WBT of the generated sam-
ples as well as the original dataset for each of the
three diagnostic groups. The average of the generated
samples is computed from 500 samples in each diag-
nostic group. The two average WBT measurements
look very similar. This shows that the generated WBT
measurements within each diagnostic group follow
the same pattern as the mean of the original dataset,
thus the distribution of the classes has been captured
quite well. The generated examples also indicate great
variation within each class.

IV. Discussion and Conclusion
The proposed multi-modal triplet-loss based VAE
is able to generate highly realistic conditional pairs
of otoscopy images and WBT measurements. The
generated images examples in Figures 1 and 4 show
that the proposed triplet-loss based VAE generates
images with a large variation in appearance, and with
clear diagnostic markers. The generated images does
appear a bit blurry, which is a common VAE prob-
lem [17]. The use of SSIM loss [11] has improved
the quality of the generated images drastically, com-
pared to employing BCE loss. Other studies have
found ways to improve the quality even further, and
have thus synthesized high resolution images using

Figure 5. Overview of generated WBT measurements.
Top row: AOM, middle row: OME, bottom row: NOE.
Best viewed with zoom.

VAEs [18, 19]. However, incorporating this into our
approach remains future work. The WBT is a simpler
type of data to generate, as it does not contain the
same level of detail as an image. BCE loss is therefore
sufficient for this modality, and the results in Figures 1
and 5 show that the generated WBTs corresponds very
well to the appearance and structure of the original
WBTs.

In this study, we propose a VAE structure for con-
ditional multi-modal data generation, even when no
direct pixel-to-pixel correlation is present in the two
modalities. This multi-modal VAE structure is very
flexible, as the encoder and decoder for each modality
are completely de-coupled from the other modal-
ity. This allows different architectures to be used for
each modality depending on the specific needs of the
modalities. The employed network architecture for the
otoscopy images could be changed to allow for genera-
tion of larger and more high-quality images. Likewise,
the architecture could be altered to fit temporal data,
such as electrocardiograms or electroencephalograms,
if this method was to be employed in other domains.

Furthermore, the results show how conditional data
generation can be accomplished when employing
triplet loss in the latent space of the VAE. This way,
conditioning the input or latent space is not needed, as
one can simply sample within a certain class cluster.
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A B S T R A C T   

Objectives: This study aims to investigate the inter-rater reliability and agreement of the diagnosis of otitis media 
with effusion, acute otitis media, and no effusion cases based on an otoscopy image and in some cases an 
additional wideband tympanometry measurement of the patient. 
Methods: 1409 cases were examined and diagnosed by an otolaryngologist in the clinic, and otoscopy exami
nation and wideband tympanometry (WBT) measurement were conducted. Afterwards, four otolaryngologists 
(Ear, Nose, and Throat doctors, ENTs), who did not perform the acute examination of the patients, evaluated the 
otoscopy images and WBT measurements results for diagnosis (acute otitis media, otitis media with effusion, or 
no effusion). They also specified their diagnostic certainty for each case, and reported whether they used the 
image, wideband tympanometry, or both, for diagnosis. 
Results: All four ENTs agreed on the diagnosis in 57% of the cases, with a pairwise agreement of 74%, and a 
Light’s Kappa of 0.58. There are, however, large differences in agreement and certainty between the three di
agnoses. Acute otitis media yields the highest agreement (77% between all four ENTs) and certainty (0.90), while 
no effusion shows much lower agreement and certainty (34% and 0.58, respectively). There is a positive cor
relation between certainty and agreement between the ENTs across all cases, and both certainty and agreement 
increase for cases where a WBT measurement is shown in addition to the otoscopy image. 
Conclusions: The inter-rater reliability between four ENTs was high when diagnosing acute otitis media and lower 
when diagnosing otitis media with effusion. However, WBT can add valuable information to get closer to the 
ground-truth diagnosis without myringotomy. Furthermore, the diagnostic certainty increases when the WBT is 
examined together with the otoscopy image.   

1. Introduction 

Otitis media is very common in children, with around 80% of chil
dren having at least one episode during their first years of life [1]. The 
diagnosis of otitis media is challenging because the two main conditions, 
otitis media with effusion (OME) and acute otitis media (AOM), can 
appear with various signs and symptoms. Furthermore, performing 

specialized examinations of patients requires specific training and tools 
such as an endoscopic examination of the tympanic membrane, pneu
matic otoscope, or tympanometry equipment. It is, however, crucial to 
diagnose the two conditions correctly, since clinical guidelines only 
recommend antibiotics for AOM, whereas OME will resolve on its own. 
AOM is the single diagnosis responsible for most prescriptions of anti
biotics [2,3], and there are controversies about prescribing antibiotics in 
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early acute otitis media. Watchful waiting is considered best practice in 
most of Europe, and this approach shows no increased incidence of 
complications. However, watchful waiting has not gained wide accep
tance in the United States, where antibiotics is still the most common 
treatment [1]. 

Historically, there has been a global tendency to overprescribe an
tibiotics in cases where middle ear effusion is present, even if it is not 
clear that there is an infection [4]. The diagnosis of otitis media is still 
highly subjective, despite the publication of clinical practice guidelines 
in many countries around the world. Key problems in the diagnostic 
process include lack of specific training, lack of experience in handling 
otitis media, limited availability of necessary diagnostic tools [5,6], and 
lack of adherence to clinical guidelines, which can be due to the attitude 
and behavior of the physicians concerning guidelines [3,7]. 

Several studies have investigated the diagnostic process and accu
racy of the diagnosis of otitis media by various medical professionals. 
Jensen et al. [5] assessed the performance of AOM diagnosis of Danish 
general practitioners (GPs) based on surveys. The study included 368 
children with AOM and 151 GPs, and the study found that the GPs’ 
certainty was 67% of new AOM cases regarding children younger than 2 
years old. For children over 2 years old, the diagnostic certainty 
increased to 75%. Key criteria for the diagnosis included symptoms of 
earache, fever, elevated audiometric threshold, and findings of bulging 
or red eardrum and purulent otorrhea. These signs and symptoms were 
present in more than 80% of the AOM cases. This suggests that diag
nostic certainty is highly correlated with the visibility of the eardrum 
and with the use of pneumatic otoscopy. 

Pichichero et al. [6] compared diagnoses by 14 pediatricians with 
those of 188 ENTs by viewing nine videotaped pneumatic otoscopic 
examinations. This study focused on the distinction between AOM and 
OME, and found that pediatricians correctly distinguished between 
normal, OME, and AOM 50% of the time, while the accuracy of the ENTs 
was 75%. Lack of experience with pneumatic otoscopy was the biggest 
issue for pediatricians, and more experience would have increased the 
diagnostic performance. These results indicate the need for ENTs or 
properly trained primary care physicians to distinguish between AOM or 
OME. 

A similar study was performed by Blomgren el al. [8], who compared 
the diagnosis of 50 children examined by a GP, an expert ENT, and two 
experienced clinicians. The GP and ENT doctor performed an exami
nation of the patient individually, while the two experts examined im
ages of the tympanic membrane and a tympanogram and made their 
diagnosis from this information without examining the patient them
selves. The four medical professionals agreed on the diagnosis in 64% of 
the AOM cases, and the ENT was less likely to diagnose AOM compared 
with the GP (44% compared to 64% of the cases). The two experts 
agreed on the diagnosis more often when both image and tympanogram 
were available, compared to only examining the image of the tympanic 
membrane. This study concluded that the diagnostic accuracy of AOM 
could possibly be increased if primary care clinics had access to 
appropriate equipment, such as tympanometry and pneumatic oto
scopes, and that proper education is crucial when using these diagnostic 
tools. 

Pichichero [9] further compared the diagnostic accuracy across pe
diatricians in different countries, including Italy, Greece, South Africa, 
and the USA. Each pediatrician assessed nine videos of otoscopic ex
aminations of the tympanic membrane, and their ability to distinguish 
between OME, AOM, and no effusion (NOE) was then evaluated. The 
correct diagnosis was found by each group of pediatricians with the 
following frequencies: Italy 54%, Greece 36%, South Africa 53%, and 
USA 51%, and the frequency of over-diagnosed AOM was: Italy 18%, 
Greece 34%, South Africa 23%, and USA 26%. These results show how 
OME is frequently misdiagnosed as AOM. 

The great inter-variability in the presented studies shows how chal
lenging it can be to establish the correct diagnosis based only on the 
opinions of doctors. The ground-truth diagnosis can only be found by 

performing myringotomy, where an incision is created in the tympanic 
membrane to relieve pressure or drain effusion, and then analyzing the 
content of the middle ear. Since this is not desirable, or ethical, in many 
cases, it is necessary to rely on the diagnosis of doctors. Since even 
specialized ENTs identify the condition correctly in only 75% of the 
cases [6], this is a challenging task. 

The presented work is part of a larger study aiming to provide an 
automated pipeline for otitis media diagnosis using deep learning. 
However, a ground-truth diagnosis is needed in order to employ su
pervised learning. As predictive models require a large amount of 
training data, it is not feasible to use only myringotomy-confirmed cases. 
The ground-truth diagnosis can therefore only be established based on 
annotations by ENTs, where it is assumed that using annotations from 
several ENTs will provide the best possible estimated ground-truth. The 
automated analysis can be based on otoscopic images [10] and/or 
wideband tympanometry (WBT) [11]. WBT is a fairly new method of 
measuring the middle-ear absorbance as a function of both frequency 
and pressurization of the ear canal [12,13], where the normal tympa
nogram only measures the absorbance at 226 or 1000 Hz. 

This study evaluates agreement among four experienced ENTs when 
diagnosing NOE, OME, and AOM cases. The aim is to evaluate how well 
the ENT doctors agree on the diagnosis of otitis media cases, and 
whether a WBT can add additional information valuable in the diag
nosing process. Furthermore, we aim to establish an estimated ground- 
truth diagnosis for a large number of cases based on annotations by 
several ENTs. 

2. Materials and methods 

2.1. Study design 

The study includes 1409 cases collected during the clinical routine at 
Kamide ENT clinic, Shizouka, Japan, from patients aged between 2 
months and 12 years. The data was collected under ethical approval 
from the non-profit organization MINS Institutional Review Board 
(reference number 190221), and with either opt-out consent, or 
informed consent from all participants or their parent or guardian. The 
otoscopic images were captured with a digital endoscope. Fig. 1 shows 
examples from each diagnostic group. WBT measurements were per
formed using the Titan system (Interacoustics, Denmark) in the range 
from +200 to − 300 daPa pressure and from 226 Hz to 4 kHz frequency. 
WBTs were not measured in patients that reported pain in their ears. The 
grand averages of the WBT measurements for each of the three diag
nostic classes are shown in Fig. 2. 

During the clinical routine, an experienced ENT diagnosed each case 
based on otoscopic image, WBT, signs and symptoms, and patient his
tory. These diagnostic labels were used to create the experimental study 
design. To decrease the amount of work for the four additional ENTs 
who annotated the cases, the study design was split into two parts. The 
first part consisted of 204 cases annotated by all four ENTs in a balanced 
and complete study design outlined in Table 1. The second part con
sisted of 1205 cases, each annotated by two ENTs in a balanced 
incomplete block design. The second part is included as supplementary 
material in order to support the analysis made on the balanced and 
complete study of the 204 cases, but it is not a part of the main analysis 
presented in the paper. 

The 204 cases were equally divided among AOM, OME, and NOE, in 
which half of the cases only included an otoscopic image and the other 
half included both image and WBT. This even distribution among clas
sification categories was recommended by Mitani et al. [14] in order to 
employ Kappa coefficients for inter-rater reliability estimation (as dis
cussed later). The 204 cases were randomly selected from a larger pool 
of patient data from the normal clinical routine. The cases were not 
selected on a patient basis, rather each ear was selected individually. 
This was done to ensure the correct distribution across diagnostic groups 
and with/without WBT. Therefore, the cases were not necessarily from 
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both ears of a patient and can be from both left and right ears. 
The four ENTs never performed the physical examination of the 

patients in the present study, and are not related to the clinic where the 
data was collected, although they are all experienced with otoscopy and 
tympanometry for the diagnosis of otitis media. The ENTs have 
completed training for interpretation of WBTs, and they use the standard 
tympanogram regularly. The ENTs evaluated all 204 cases, resulting in a 
fully crossed study. The ENTs were presented with one case at a time and 
were shown the otoscopy image, the full WBT, the absorbance curve at 
ambient pressure, and the more familiar standard 226-Hz tympanogram, 
as shown in Fig. 3. They were asked to determine the diagnosis (AOM, 
OME, NOE, or Unknown), what data they used to decide the diagnosis of 
the current case (image, WBT, or both), and finally to perform a self- 
evaluation of the certainty of the diagnosis (very low, low, medium, 
moderate, or high), similar to the approach regarding certainty evalu
ation found in Ref. [5]. 

2.2. Statistical methods 

One of the goals of this study is to determine the most correct 
diagnosis of each of the cases in the dataset, under the understanding 
that the ground-truth (determined from myringotomy) is not available. 

The final diagnosis is determined based on majority voting weighted by 
the certainty reported by each ENT. Thus, votes with higher reported 
certainty counted more towards the final diagnosis than votes with low 
reported certainty. The ENTs were allowed to answer Unknown diag
nosis if they could not determine the diagnosis from the otoscopic image 
and WBT measurement. If a majority of the ENTs reported Unknown 
diagnosis on a case, the case was removed from the rest of the analysis. 

The statistical inter-rater reliability was computed to evaluate 
agreement across the four ENTs. Light’s Kappa [15] was employed, as 
the annotation data is categorical and the agreement between several 
raters was evaluated [16]. Light’s Kappa is computed as the arithmetic 
mean of the Cohen’s Kappa [17,18] for all rater pairs, which provides an 
overall metric of agreement. The Kappa coefficient ranges between 
0 and 1, and the scale of interpretation is [19]: slight agreement (0–0.2), 
fair agreement (0.21–0.4), moderate agreement (0.41–0.6), substantial 
agreement (0.61–0.8), and perfect agreement (0.81–1). The advantage 
of Kappa over percentage agreement is the ability to account for chance 
agreement, but it can be more challenging to interpret. As suggested by 
McHugh [20], both percent agreement and Kappa is reported for this 
study, as they both have advantages and limitations. 

The Mann Whitney U test was used to examine whether the changes 
in certainty and time spent on evaluation between different groups are 
statistically significant. The Mann Whitney U test is a non-parametric 
statistical significance test comparing two independent samples from a 
population with the same distribution. 

3. Results 

The weighted majority voting results for all cases are presented in 
Table 2 as a confusion matrix relative to the original annotations used to 
set up the study. This table shows that the OME group is now much 

Fig. 2. Grand average WBT of acute otitis media (a), otitis media with effusion (b), and no effusion (c) cases. Color scale shows the variance across the mea
surements. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 1 
Overview of the balanced and complete study design consisting of 204 cases, 
divided equally between the three diagnostic groups, and between cases with 
and without a WBT.   

AOM OME NOE Total 

Image and WBT 34 34 34 102 
Only image 34 34 34 102 
Total 68 68 68 204  

Fig. 1. Otoscopy images of tympanic membrane with acute otitis media (a), otitis media with effusion (b), and no effusion (c).  
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larger, as 12 AOM and 31 NOE cases were moved to the OME group. 
Furthermore, six cases were removed from the study as they have been 
labelled as Unknown diagnosis and will not be used in the rest of the 
analysis. These cases are of such low data quality, that it is not possible 
to diagnose based on the data. This could be because the tympanic 
membrane is not visible, the image is too blurry, or similar. 

The overall agreement was evaluated and shows that all four ENTs 
agree on 57% of the cases, at least three of them agree on 81% of the 
cases, and they are split two and two on 19% of the cases. Table 3 shows 
Cohen’s Kappa together with the percentage-wise agreement on the 
diagnosis for each ENT pair. Based on the Kappa interpretation scale 
[19], the agreement ranges from moderate to substantial, with the pairs 
ENT2/ENT3 and ENT1/ENT4 achieving substantial agreement. Light’s 
Kappa (arithmetic mean of all pairwise Cohen’s Kappa) is 0.58, which is 
at the high end of the moderate range of agreement between the four 
ENTs on the otitis media diagnosis. The average pairwise agreement is 
74%. 

The relationships among the three variables, agreement, average 
certainty, and average time spent per annotation is evaluated using 
Pearson’s correlation coefficient. A moderately strong positive correla
tion of 0.62 (p < 0.001) is found between average certainty and per
centage agreement. The violin plot of the two variables in Fig. 4 (left) 
also shows that certainty increases as agreement increases. Similarly, the 
correlation with the time spent on each case was investigated. This 
resulted in a correlation between agreement and average time of − 0.27 
(p < 0.001) shown in Fig. 4 (middle), and between average time and 
average certainty of − 0.46 (p < 0.001) shown in Fig. 4 (right). All 
correlations are thus statistically significant, but only agreement and 
average certainty show a strong correlation, whereas time shows weak 
relationship with agreement and certainty. 

The certainty reported by each ENT can reflect several challenging 
aspects of the image or WBT. In Fig. 5, the five images with the lowest 
average certainty are shown. Some of the images such as a, b, d, and e 

are challenging since the eardrum is not clearly visible, and in some 
cases earwax is blocking the view, while other cases such as c show 
diagnostic signs that are not specific for a certain diagnosis. 

As presented in Table 1, the dataset was split into two groups: 102 
cases with both otoscopy image and WBT, and 102 cases only with an 
otoscopy image. Table 4 shows the agreement, average certainty, and 
average time spent per annotation for the cases in each of these two 
groups from each of the diagnostic groups. The table shows that in all 
three diagnostic groups, the agreement, certainty, and time increases 
when a WBT is presented together with the image. Statistical tests were 
run to examine whether the changes are significant. The χ2-contingency 
test was employed to determine whether agreement is different between 
the groups. The tests show that agreement is not significantly different 
for either of the diagnostic groups between with or without WBT. Thus, 
agreement does not significantly increase, as more information (the 
WBT) is presented for the cases. The Mann Whitney U tests indicate that 
both certainty and time is significantly increased when presenting the 
WBT compared with presenting only the image, except for the time in 
NOE cases, and certainty in AOM cases. 

Table 4 also presents clear differences among the diagnostic groups. 
Agreement and certainty are higher for the AOM and OME cases, while 
NOE shows much lower agreement and certainty. The time spent also 
varies a lot between AOM and NOE, where AOM is much faster to di
agnose than NOE, and OME is in the middle between the two other 
groups. 

For the 102 cases with both image and WBT, the ENTs answered 
which data they used to determine their diagnosis. The ENTs reported 
that they used both image and WBT in 57% of the annotated cases, only 
otoscopy image in 38% of the annotated cases, and only WBT in 5% of 
the annotated cases. 

The supplementary material includes the analysis presented in this 
section performed on the balanced incomplete block study of 1205 
cases. The analysis in the supplementary materials shows the same 
tendencies as presented in this section. 

Table 2 
Confusion matrix between the original annotations used to set up the study and 
the majority voting results for all cases in the dataset.   

Original diagnosis  

OME AOM NOE Unknown Total 

Majority voting OME 63 12 31 0 106 
AOM 2 55 0 0 57 
NOE 3 0 32 0 35 
Unknown 0 1 5 0 6 
Total 68 68 68 0 204  

Table 3 
Pairwise Cohen’s Kappa and percentage-wise agreement for each ENT pair.   

ENT1 ENT2 ENT3 ENT4 

ENT1 – 0.56/72% 0.55/71% 0.71/83% 
ENT2 – – 0.65/77% 0.51/69% 
ENT3 – – – 0.52/70% 
ENT4 – – – –  

Fig. 3. Interface of the annotation system, which filled the entirety of a standard 17-inch computer screen monitor. To the left, the otoscopy image, WBT, ambient 
absorbance, and standard 226-Hz tympanogram are shown. To the right, the questions for the ENT are presented with response buttons. 
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4. Discussion 

The average pairwise agreement between the four ENTs of 74% 
compares quite well with the 75% accuracy of ENTs reported by Pichi
chero et al. [6]. The two measurements do not directly correspond, as 
one is agreement, and the other is accuracy compared to a ground-truth, 
but both show that ENTs disagree on the diagnosis of around 25% of 
cases. Our results also correspond well with the agreement reported by 
Blomgren et al. [8], who reported that all four medical professionals 
agreed on the diagnosis in 64% of the cases, whereas the four ENTs in 
our study agreed in 57% of the cases. However, their study only included 
AOM, for which all four of our ENTs agreed on 77% of all cases. The 
responses of this study show a higher certainty regarding the diagnosis 
of AOM compared to the 75% certainty found by Jensen et al. [5]. In our 
study, the reported certainty of AOM cases was 90%. 

When comparing with previous work, it is important to note that this 
study only includes images and WBTs from the normal clinical routine. 
Thus, the quality of the data will vary greatly, as shown in Fig. 5. The 

image examples with the lowest certainties show some of the common 
issues with otoscopy images, such as earwax, blurry images, or lack of 
appropriate illumination to obtain a clear visual impression of the 
tympanic membrane. This is a very different dataset than the data used 
by Pichichero et al. [6], for example, where all cerumen was removed 
before examination. 

The reported certainties, computed agreement, and time for anno
tations were further examined, and the correlations indicate relation
ships between all three variables. These correlations are as expected, as 
time increases with lower certainty and lower agreement, indicating 
that more time is spent on annotating challenging cases. Furthermore, a 
strong positive correlation was found between agreement and certainty, 
which shows that self-reported certainty is a good indicator of how 
difficult a specific case is to diagnose. 

This study examines how ENTs diagnose when only presented with 
an image and a WBT, without examining the actual patient, similar to 
the study design of Blomgren et al. [8]. There is, of course, a huge dif
ference in the diagnostic process if the face-to-face patient examination 
with a detailed medical history is not included. Thus, the results from the 
a posteriori examination of the four ENTs are more representative of 
what can be expected in a remote-care scenario, and moreover they 
correspond exactly with the conditions for the deep learning diagnostic 
system described in the introduction. Table 2 shows how the weighted 
majority voting diagnosis and the original diagnosis by the ENT who 
examined the patients differ. The largest differences are found in the top 
row, which shows that 31 NOE cases and 12 AOM cases have moved to 
OME when diagnosed only by studying the image and WBT. This 
observation, together with the low agreement and certainty for NOE 
cases, suggests that the ENTs struggled to differentiate between otitis 
media and NOE. It is possible that the ENTs were biased towards 
choosing a diagnosis, due to the design of the study. It is also possible 
that it is easier to spot symptoms than the lack thereof. It is therefore 
hypothesized that the ENTs were reluctant to diagnose NOE, and in
clined to diagnose either AOM, or in most cases, OME. Furthermore, the 

Fig. 4. Violin plots between agreement and certainty, agreement and time, and certainty and time. Purple dot marks the medians, and the regression lines are 
computed based on the median values, as the data does not follow a normal distribution. The y-axis on the middle graph is the same as that of the left graph. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 5. Low certainty images. Average certainty from left: 0.063, 0.31, 0.31, 0.31, and 0.38. Earwax and restricted visibility of the tympanic membrane due to 
anatomical constraints affects certainty of the diagnosis. 

Table 4 
Agreement, certainty, and time for annotations in each of the three diagnostic 
groups with either only image or image and WBT.    

Image and WBT Only image p-value 

OME All 4 ENTs agree 56% 51% 0.8 
Min. 3 ENTs agree 80% 81% – 
Average certainty 0.72 0.67 0.03 
Average time 16.1 s 12.1 s <0.001 

AOM All 4 ENTs agree 77% 77% 0.6 
Min. 3 ENTs agree 96% 90% – 
Average certainty 0.91 0.88 0.1 
Average time 13.2 s 9.0 s 0.003 

NOE All 4 ENTs agree 47% 20% 0.24 
Min. 3 ENTs agree 73% 40% – 
Average certainty 0.65 0.51 0.001 
Average time 17.6 s 15.9 s 0.08  

J.V. Sundgaard et al.                                                                                                                                                                                                                           



International Journal of Pediatric Otorhinolaryngology 153 (2022) 111034

6

most common sign of OME is lack of movement of the tympanic mem
brane during pneumatic otoscopy examination. Since the ENTs were 
only presented with a static image, even the slightest signs of effusion 
would count towards an OME diagnosis, instead of NOE. Contrary to the 
belief that OME is frequently misdiagnosed as AOM, and that AOM is 
usually over-diagnosed [9], the results of our study show that the most 
common error is that NOE is misdiagnosed as OME. This is not as serious 
an issue, however, as long as doctors follow clinical guidelines and do 
not prescribe antibiotics for the treatment of OME. 

Blomgren et al. [8] showed that agreement increased when pre
senting a WBT with the otoscopy image. Our results show that the time 
increased as expected, as the ENTs had to study and analyze more data 
when presented with both image and WBT. The results generally show 
that the ENTs are more confident in their diagnosis when the WBT is 
presented, which is likely to lead to higher confidence when advising the 
following treatment. However, agreement across examiners did not in
crease significantly when the WBT was added. The ENTs responded that 
the WBT was the sole basis for the diagnosis in 5% of the cases, and 
contributed to the diagnostic decision in 57% of the cases, which sug
gests that the WBT does add diagnostic value, especially in cases where 
the image is not useful, or in challenging cases. The WBT measurements 
are mostly used for OME cases, and rarely for AOM, since the children 
are in too much pain to perform the measurement. The signs for AOM 
are also much clearer in the otoscopy image, which explains the higher 
agreement and certainty for the AOM cases, as well as why the differ
ence in certainty between with or without WBT is not significant for this 
diagnostic group. 

The results show that it is challenging to correctly identify otitis 
media in children from a static image and a WBT alone, and that ENTs do 
not always agree on the diagnosis. This makes it challenging to develop 
an automatic diagnostic tool, due to the lack of a consistent ground-truth 
definition based only on non-invasive examination. There are different 
ways of defining an approximate ground-truth when myringotomy- 
confirmed cases are not available. Some studies, such as Myburgh 
et al. [21], only included the cases where two specialists agree on the 
diagnosis. This ensures the most correct diagnosis of each case, but also 
removes a lot of challenging cases. This means that the performance of 
the diagnostic system is boosted but might not properly represent the 
performance of such a tool in real life cases. It also does not allow the 
diagnostic system to learn how to handle challenging cases. Based on the 
results from this study, that would mean removing 25–40% of the cases 
obtained from the normal clinical routine. On the other hand, if the 
ground-truth is based only on one ENT’s opinion, it will be biased, and 
possibly include 25% incorrect diagnoses. For this study, we decided to 
do a majority voting between the ENTs weighted with their 
self-evaluated certainties. A normal majority voting could also be 
employed without the weighting, but as we have an equal number of 
raters, the vote will in some cases be tied. The weighting thus allows for 
a diagnosis to be determined even when the raw voting is tied. 

4.1. Strengths and limitations 

This study has several major strengths. First, a large number of cases 
are included compared to the references studies, and the statistical 
analysis is more extensive than seen in previous studies. Furthermore, 
the study is blinded, as the ENTs did not have any prior knowledge about 
the patients. The quality of the data is generally good from both oto
scopy images and WBT measurements. Finally, some cases include both 
otoscopic image and wideband tympanometry measurements, while 
others only include otoscopic image, potentially affecting the inter-rater 
agreement, as seen in Blomgren et al. [8], although they used a standard 
tympanometry, not a WBT. The main limitation of this study is that no 
myringotomy was performed, and thus no ground-truth diagnosis is 
available for comparison. Furthermore, despite the high quality of the 
data, the ENTs were only presented with static images. Thus, the ENTs in 
this study did not benefit from observing the full otoscopy examination, 

nor from gaining additional diagnostic information by interacting with 
the patient. 

5. Conclusion 

This study illustrates that, under these conditions, it is challenging to 
diagnose otitis media with effusion when the ENT is only provided with 
static images and WBT data. The inter-rater reliability between the four 
ENTs was high when diagnosing acute otitis media and lower when 
diagnosing otitis media with effusion. However, WBT can add valuable 
information to get closer to the ground-truth diagnosis without myr
ingotomy. It was furthermore shown that diagnostic certainty increased 
significantly when showing both image and WBT, compared to when 
only presenting the image. This study provides a useful comparison 
benchmark for future work on an automated deep learning approach 
using the same diagnostic inputs, as well as an estimate of the ground- 
truth diagnosis for each case. 
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[8] K. Blomgren, A. Pitkäranta, Is it possible to diagnose acute otitis media accurately 
in primary health care? Fam. Pract. 20 (5) (2003) 524–527. 

[9] M.E. Pichichero, Diagnostic accuracy of otitis media and tympanocentesis skills 
assessment among pediatricians, Eur. J. Clin. Microbiol. Infect. Dis. 22 (9) (2003) 
519–524. 

[10] J.V. Sundgaard, et al., Deep metric learning for otitis media classification, Med. 
Image Anal. 71 (2021). 

[11] J.V. Sundgaard, et al., A deep learning approach for detecting otitis media from 
wideband tympanometry measurements, In submission (2022). 

[12] J.C. Ellison, M. Gorga, E. Cohn, D. Fitzpatrick, C.A. Sanford, D.H. Keefe, Wideband 
acoustic transfer functions predict middle-ear effusion, Laryngoscope 122 (4) 
(2012) 887–894. 

[13] T.A.D. Hein, S. Hatzopoulos, P.H. Skarzynski, M.F. Colella-Santos, “Wideband 
Tympanometry,” in Advances in Clinical Audiology, 2017. 

[14] A.A. Mitani, P.E. Freer, K.P. Nelson, Summary measures of agreement and 
association between many raters’ ordinal classifications, Ann. Epidemiol. 27 (10) 
(2017) 677–685. 

[15] R.J. Light, Measures of response agreement for qualitative data: some 
generalizations and alternatives, Psychol. Bull. 76 (5) (1971) 365–377. 

[16] K.A. Hallgren, Computing inter-rater reliability for observational data: an overview 
and tutorial, Tutor. Quant. Methods Psychol. 8 (1) (2012) 23. 

[17] J. Cohen, A coefficient of agreement for nominal scales, Educ. Psychol. Meas. 20 
(1) (1960) 37–46. 

J.V. Sundgaard et al.                                                                                                                                                                                                                           



International Journal of Pediatric Otorhinolaryngology 153 (2022) 111034

7

[18] L. Cyr, K. Francis, Measures of clinical agreement for nominal and categorical data: 
the kappa coefficient, Comput. Biol. Med. 22 (4) (1992) 239–246. 

[19] J.R. Landis, G.G. Koch, The measurement of observer agreement for categorical 
data, Biometrics (1977) 159–174. 

[20] M.L. McHugh, Interrater reliability: the kappa statistic, Biochem. Med. 22 (3) 
(2012) 276–282. 

[21] H.C. Myburgh, S. Jose, D.W. Swanepoel, C. Laurent, Towards low cost automated 
smartphone- and cloud-based otitis media diagnosis, Biomed. Signal Process 
Control 39 (2018) 34–52. 

J.V. Sundgaard et al.                                                                                                                                                                                                                           



CONTRIBUTION F
Was that so hard?
Estimating human

classification difficulty
Authors Morten Rieger Hannemose∗, Josefine Vilsbøll Sundgaard*, Niels Kvorning,
Rasmus R. Paulsen, and Anders Nymark Christensen.

Status In submission

Link https://arxiv.org/abs/2203.11824

∗Authors contributed equally



Was that so hard? Estimating human
classification difficulty

Morten Rieger Hannemose⋆1, Josefine Vilsbøll Sundgaard⋆1, Niels Kvorning
Ternov2, Rasmus R. Paulsen1, and Anders Nymark Christensen1

1 Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Kgs. Lyngby, Denmark
2 Department of Plastic Surgery, Copenhagen University,

Herlev and Gentofte Hospital, Copenhagen, Denmark

Abstract. When doctors are trained to diagnose a specific disease, they
learn faster when presented with cases in order of increasing difficulty.
This creates the need for automatically estimating how difficult it is for
doctors to classify a given case. In this paper, we introduce methods for
estimating how hard it is for a doctor to diagnose a case represented by
a medical image, both when ground truth difficulties are available for
training, and when they are not. Our methods are based on embeddings
obtained with deep metric learning. Additionally, we introduce a practi-
cal method for obtaining ground truth human difficulty for each image
case in a dataset using self-assessed certainty. We apply our methods to
two different medical datasets, achieving high Kendall rank correlation
coefficients, showing that we outperform existing methods by a large
margin on our problem and data.

Keywords: Difficulty estimation · Deep metric learning · Human clas-
sification.

1 Introduction

When doctors are diagnosing patients, not all cases have the same difficulty. A
case can be very easy if there are clear diagnostic signs. However, if the typical
signs are missing or give conflicting information, a doctor will be more likely
to assign an incorrect diagnosis. When doctors are trained to diagnose certain
diseases, they learn faster when starting with easy cases and then gradually
progressing to harder cases [23]. Knowing how hard each case is to classify is
thus useful in an educational context. This concept is well-known in pedagogy [8]
and applies to many other areas such as language training, mathematics, etc.

In this paper, we present a novel approach for estimating human difficulty
in image classification using deep metric learning. In deep metric learning, high-
dimensional data (in our case, images) are mapped to a lower-dimensional em-
bedding that captures similarities between the training examples: Similar images
⋆ These authors contributed equally
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Fig. 1. Image examples from the skin lesion (top row) and eardrum (bottom row)
datasets. The difficulty increases from left to right from 0 to 1 in steps of 0.25 for each
image. For the skin lesion dataset, only images from the melanoma class are shown,
while the eardrum images are from all three diagnostic classes, see Section 3.

cluster together, and dissimilar images are pushed apart. In our paper, we define
metrics in the embedding space that capture human classification difficulty. We
evaluate our methods on two different medical datasets, one containing images
of skin lesions and the other of eardrums, see Fig. 1.

The term difficulty is used in various ways in image analysis. Difficulty can
be defined as how hard it is for machine learning to reach high accuracy on a
given dataset [26], how challenging it is to automatically segment an image [16],
visual complexity and clutter in the image [20], the time needed for a human to
segment an image [34], or the human response time for a visual search task [32].
The latter definition was employed by Ionescu et al. [32], who proposed a method
based on a pretrained neural network for feature extraction, followed by support
vector regression to estimate the difficulty score. They presented a dataset with
difficulty scores on the PASCAL VOC2012 dataset evaluated by 736 raters.
Ma et al. [17] presented an approach on the same dataset using an end-to-
end multi-loss network trained to optimize Kendall’s τ coefficient to predict the
difficulty scores. Both approaches achieved high Kendall’s τ coefficients of 0.472
and 0.476, respectively. In contrast to our approach, neither of these use any
knowledge about the ground truth class of the image but instead estimated the
difficulty directly from image features. By using both the ground truth class and
an embedding space our approach becomes more interpretable [25].

In some clinical problems, a specific difficulty scale is already defined. Yoo et
al. [37] predict the difficulty of extracting a mandibular molar from a panoramic
radiographic image using a pretrained convolutional neural network. In their
study, the Pederson difficulty score is used, which is a pre-defined difficulty scale
for extracting mandibular molars. However, this score is purely related to the
difficulty of performing the required procedure and not the difficulty of diag-
nosis. André et al. [1] propose a method to estimate interpretation difficulty in
endomicroscopy videos. Their approach is based on the content-based video re-
trieval method known as bag-of-visual-words, and the difficulty is given by the
percentage of false diagnoses among annotators compared to a ground truth di-
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agnosis from biopsies. We define human difficulty, similarly to André et al. [1], as
the fraction of incorrect classifications from people familiar with the classifica-
tion task. For one of our datasets, we use a self-evaluated certainty of all raters
to obtain a less noisy estimated difficulty ground truth with few annotators.

We compare our work to methods in active learning and curriculum learning.
Active learning accelerates labeling efficiency by selecting the most useful sam-
ples from an unlabeled dataset for labeling, thus reducing the labeling cost [22].
The intuition behind the most commonly used approach, the uncertainty-based
approach, is that with a lower certainty on a specific example, a higher amount
of informativeness will be added to the classifier when utilizing the example for
training [36]. Curriculum learning is inspired by the learning process of humans,
where examples are presented with increasing order of difficulty. This concept
is transferred to neural networks to increase training speed and performance by
introducing easy examples at the beginning of training, and to gradually increase
the difficulty of the training examples [2].

In this paper, we present a new procedure for obtaining ground truth human
difficulty from several annotators by including a self-evaluated certainty. We also
propose a new method for estimation of human difficulty based on embeddings of
images learned using deep metric learning, which outperforms existing methods
by a large margin. We propose methods that both utilize ground truth difficulties
and methods that do not. Finally, we are the first to utilize the ground truth
class label for human difficulty estimation, which increases the performance of
our methods even further.

2 Estimating image difficulty

Our difficulty estimation models are all based on the embedding space learned
using a deep neural network, trained using metric learning. By training a model
this way, instead of as a classification network, we learn the similarities in the
training dataset. The output from the network is an embedding vector, mapping
each individual image to the embedding space. The idea is that easy cases will
be placed far from decision boundaries in the embedding space, while difficult
cases will be further away from the class cluster center, and possibly closer to
other cluster classes. We separate our proposed methods into two categories de-
pending on whether or not they utilize ground truth difficulties during training.
An overview of these methods is in Table 1.

Methods without ground truth difficulties are all based on embeddings
of samples, extracted using a trained neural network. As our neural networks are
trained using cosine similarity, our methods for estimating difficulties are thus
also based on cosine similarities. As difficulties should be high for points far from
their cluster, we refer to inverse similarity which is one minus the similarity. The
methods still apply to neural networks trained using Euclidean distances, and in
that case, one would use the Euclidean distance in the embedding space instead.

Inverse similarity is a naïve approach to estimating the difficulty, found by
taking the similarity between the sample and the cluster center of its ground
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truth class. This is intuitive, as samples less similar to the cluster center are
typically more similar to other class clusters, and thus harder to classify. To find
the difficulty, and not the easiness, we report the inverse of the similarity.

Inverse softmax of similarity is an improvement of inverse similarity. Samples
can have low similarity to their cluster center without being close to other classes.
To handle this, we compute the similarity between the sample and all cluster
centers and normalize these with softmax. The difficulty is the inverse of the
softmax output corresponding to the ground truth class. This method is related
to decision margin sampling in active learning [33], except we can go on both
sides of the decision boundary since the ground truth label is known.

Sample classification power is an alternative way of obtaining an estimate of
image difficulty. Here, we evaluate how many of the neighboring points in the
embedding space belong to the ground truth class of a certain sample. To do that
for a single sample s from class c, we imagine classifying the closest k samples
as c, and classifying the rest as not c. By varying k from one to the number of
samples, we can draw a receiver operating characteristic (ROC) curve. We then
use the area under the curve (AUC) of this ROC curve as our estimate of the
difficulty of s. To handle class imbalance, we use the weighted ROC curve, with
the weights being the inverses of the class frequencies.

Normalization is carried out on the estimated difficulties, by introducing
the assumption that each class has the same average difficulty. To enforce this
assumption, we propose normalizing the difficulty on a per-class basis by dividing
it by the average estimated difficulty of that class. We refer to this as “norm”.

Methods with ground truth difficulties are methods, where the ground
truth difficulties of a training set are employed. We set up a regression problem to
predict the difficulty scores directly from the pre-trained image embeddings. We
employ the tree-based ensemble model extra trees [9] for the regression problem.
In addition to only predicting from the embeddings, we also fit a model using
the ground truth label as additional input. The ground truth label will allow the
model to learn that samples placed close to incorrect class clusters should have
a higher difficulty, than samples within their correct class cluster.

3 Datasets

To validate our method, we have performed experiments on two medical image
datasets, examples of which are shown in Fig. 1. We have obtained estimates of
the human difficulty for a number of images from both datasets, which we use
as our test-sets for evaluating our proposed approaches.

The skin lesion dataset consists of dermoscopic images of skin lesions di-
vided into eight diagnoses, which include benign (nevus [NV], keratoses [BKL],
vascular lesions [VASC], dermatofibromas [DF]), pre-malignant (actinic kerato-
ses), and malignant (melanoma [MEL], squamous cell carcinoma [SCC], basal
cell carcinoma [BCC]). The diagnoses were determined by histopathology or as
the consensus between two to three domain experts. We have a dataset of 52 292
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images from the 2019 ISIC Challenge training set [31,4,5] 3 and our own dataset
(Permission to access and handle the patients’ data was granted by the Danish
Patient Safety Authority (Jr.# 3-3013-2553/1) and the Data Protection Agency
of Southern Denmark (Jr.# 18/53664)).

Skin lesion difficulties are obtained for 1723 images from our own dataset,
based on diagnoses from 81 medical students with an interest in dermatology
(Ethical waiver: Jr.#: H-20066667, data handling agreement case #: P-2019-
556). On average, each student diagnosed 609 randomly sampled images. It was
ensured that at least eight students diagnosed each case.

The images were diagnosed into seven different categories, as we expected
actinic keratoses would be too difficult for the medical students. We estimate
the difficulty of a case as the fraction of students answering incorrectly.

The eardrum dataset contains 1409 images collected during the standard
clinical routine at an Ear-Nose-and-Throat (ENT) clinic. The data was collected
under the ethical approval from the Non-Profit Organization MINS Institutional
Review Board (ref.# 190221). The images show the patients’ eardrum captured
using an endoscope and are diagnosed into three different diagnoses: acute otitis
media, otitis media with effusion, and no effusion by an experienced ENT spe-
cialist. The dataset is split into a training and test set of 1209 and 204 images.

Eardrum difficulties were estimated by getting the test set of 204 equally class
sampled eardrum images analyzed and diagnosed by four additional experienced
ENTs. The ENTs diagnosed each case as one of the three diagnoses or “unknown”,
counting as an incorrect diagnosis. Furthermore, each ENT rated their certainty
of each diagnosis on the scale: very low, low, medium, moderate, or high, which is
converted to a scale from 0 to 1. More details on this dataset are in Sundgaard et
al. [29]. For a case, µcorrect is the fraction of correct ENT answers and µcertainty

is the average self-evaluated certainty. The difficulty of each case is then

1− µcorrect · µcertainty. (1)

We evaluate the difficulties with “leave-one-annotator-out”. This gave an average
Kendall’s τ of 0.548 based only on the fraction of correct ENT answers, which
increased to 0.570 when including the self-evaluated certainty, showing that this
improves the estimated difficulties.

4 Experiments

The embeddings of the images in our proposed methods are computed using neu-
ral networks trained with a metric loss function. All experiments are conducted
in PyTorch (v. 1.10) using the PyTorch metric learning library [19]. The neural
networks are trained using the multi-similarity loss function [35] (α = 2, β = 50,
base = 1) and a multi similarity miner (ϵ = 0.1) using cosine similarity to opti-
mize the selection of training pairs. Our models are pretrained on the ImageNet
database [7] and trained using the Adam optimizer [13]. The fully connected
3 License: CC-BY-NC
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layer before the final softmax of the model is replaced by a fully connected layer
without an activation function, which returns the embedding space. The output
embeddings are L2 normalized.

The skin lesion network is based on a ResNet-50 model [11], with a 64-
dimensional embedding space. The model is trained for 350 epochs with a learn-
ing rate of 10−5. The input images (256 × 256) are color normalized using the
Minkowski norm (p = 6). Data augmentation consists of flips, rotations, scaling,
and color jitter. We do inference with the same augmentations, and compute
each prediction as the average of 64 random augmentations.

The eardrum network is based on the Inception V3 network [30], with a
32-dimensional embedding space. The Inception V3 network has been used by
several others for similar images [3,28]. The parameters of the first half of the
network (until first grid size reduction) were frozen to avoid over-fitting. The
initial learning rate (10−3) is decreased by a factor of 0.1 every 50th epoch.
Training is continued until the training loss has not decreased for 20 epochs,
resulting in 111 training epochs. Data augmentation consists of horizontal flips,
rotations, color jitter, and random erasing. Images are resized to 299× 299.

We use Kendall’s τ [12] to evaluate how well our methods can predict the
ground truth difficulties. This is a non-parametric measurement of the correlation
between two ranked variables. As it only compares how the images are ranked,
it is not important to achieve the exact same difficulty as the ground truth
estimate, as long as the ordering of samples is correct.

We use Extra trees [9] for supervised difficulty estimation, with five-fold cross-
validation. This allows us to obtain predictions for all samples in the test set, and
thus compute a single Kendall’s τ for the entire test set. All our experiments with
extra trees use 500 trees, with 10 as the minimum number of samples required
to split an internal node.4

Comparisons are made between our methods and methods from both active
and curriculum learning using a standard trained classification network, and with
the approach proposed by Ionescu et al. [32]. The classification networks employ
the same architecture as our embedding networks, but the dimension of the
output is the number of classes in each dataset. The networks are trained with
cross-entropy loss weighted by the inverse frequency of each class, but otherwise
using the same setup as described for the embedding networks.

Visual search difficulty proposed by Ionescu et al. [32] is used for comparison.
We replicate their method by passing each image (299× 299) through VGG-16
[27] once and using the penultimate features to fit a ν-support vector regression.4

We compare to the following approaches from active learning, all based on
the softmax output of a classification network: classification uncertainty, which
is one minus the maximum value of the softmax [14]; entropy of the softmax
probabilities [6]; and classification margin found by computing the difference
between the second-highest and highest probabilities of the softmax [15].

We also compare to three approaches from curriculum learning: standard de-
viation of the images [24]; transfer scores obtained by running all images through

4 Unspecified parameters are the defaults in Scikit-Learn v. 0.24.2 [21].
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Table 1. Kendall’s τ for all methods on both datasets. It is indicated which methods
utilize: the ground truth class label for prediction (L) or a training set of ground truth
difficulties (D). Bold indicates the significantly best performance, and bold with a star
indicates the methods without D performing significantly better than the rest. We used
bootstrap based hypothesis testing with 50 000 replicates and α = 5%.

Method Uses Skin lesion Eardrum

Visual search difficulty [32] D 0.142 0.117
Curriculum learning

Std. of image [24] −0.070 0.011
Transfer scoring [10] L 0.115 0.213
Self-taught scoring [10] L 0.176 0.261

Active learning
Classification uncertainty [14] 0.094 0.217
Entropy of probabilities [6] 0.118 0.216
Classification margin [15] 0.068 0.215

Ours
Inverse similarity L 0.137 −0.140
Inverse softmax of similarity L 0.239* 0.354
Inverse softmax of similarity norm. L 0.239* 0.380
Sample classification power L 0.201 0.143
Sample classification power norm. L 0.247* 0.440*
Extra trees: embeddings D 0.322 0.465
Extra trees: embeddings + label L D 0.398 0.517

a pretrained Inception V3 network using the penultimate features to train a sup-
port vector classifier to obtain the confidence of the model [10]; and one minus
the softmax output of the ground truth class from our classification network [10].

5 Results

The Kendall’s τ for all experiments is reported in Table 1. The table also gives an
overview of whether the ground truth label is used for prediction, and whether
a training set of ground truth difficulties has been used. The embeddings for
the two datasets are shown in the top of Figure 2. For the eardrum data, we
see how most easy examples are located within the class clusters, while the
difficult examples are the ones located in another class cluster, or at the edge of
the clusters. The same tendencies are visible in some classes of the skin lesion
embeddings. The bottom of Figure 2 shows scatter plots of the ground truth
difficulties versus predicted difficulties for both datasets.

6 Discussion and conclusion

We have shown that neural networks trained using metric learning can be used to
estimate diagnostic difficulty. Our methods for difficulty estimation outperform
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Fig. 2. Left: skin lesion dataset. Right: eardrum dataset. Top: visualization of the
embeddings in two dimensions with t-SNE [18]. The transparency of each point indi-
cates the ground truth difficulty with very transparent being the easiest. Grey points
are the training samples for the eardrum data. Bottom: scatter plots of ground truth
difficulties and difficulties estimated with the embeddings + label approach, together
with the least squares regression lines.

all existing methods in both active and curriculum learning. Ionescu et al. [32]
report a Kendall’s τ of 0.472, while their method achieves 0.142 and 0.117 on
our datasets. Our methods are significantly better, with our best achieving a
Kendall’s τ of 0.398 and 0.517. This corresponds to 69.9% and 75.8% of pairs
being ordered correctly, which is an improvement of 12.8 and 11.1 percentage
points from the best performing existing method (self-taught scoring).

Table 1 shows that our contribution of incorporating the ground truth class
greatly increases performance. A similar tendency is seen in the higher perfor-
mance of self-taught scoring compared to classification uncertainty, as the only
difference between these two methods is the knowledge about the ground truth
class. This intuition is also visible in Fig. 2, especially for the eardrum dataset,
where the most difficult examples are often placed in the extremities of the clus-
ters, or placed inside other clusters. This indicates that the embedding has a
relation to difficulty, and shows the relevance of including the ground truth class
label when estimating difficulty. Our methods have demonstrated great potential
in the estimation of human classification difficulty of medical images, which can
be used to optimize and improve the training of medical professionals.
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In this study, we propose a diagnostic model for automatic detection of otitis media based
on a combined input of otoscopy images and wideband tympanometry measurements.
We present a neural network-based model for the joint prediction of otitis media, in
the subclassifications acute otitis media and otitis media with effusion, and diagnostic
difficulty. The proposed approach is based on deep metric learning, and we compare
this with the performance of a standard multi-task network. The proposed deep
metric approach shows good performance on both tasks, and it is shown that the multi-
modal input increases the performance for both classification and difficulty estimation,
compared to the models trained on the modalities individually. An accuracy of 86.5%
is achieved for the classification task, and a Kendall rank correlation coefficient of 0.45
is achieved for difficulty estimation, corresponding to a correct ranking of 72.6% of
the cases. This study shows that deep metric learning enables detection of otitis media
with high performance, and demonstrates the strengths of a multi-modal diagnostic
tool using both otoscopy images and wideband tympanometry measurements.

I. Introduction
Automatic diagnosis of otitis media has been tackled in
various ways. Previous studies have employed datasets
of otoscopy images [1–4], tympanometry measure-
ments [5–7], optical coherence tomography [8], or
computed tomography [9]. The approaches have fo-
cussed on a single modality, and utilised a variety of
machine learning algorithms for the data analysis and
classification task, progressing from simpler methods
such as random forest [10] and support vector ma-
chines [11], to deep neural networks [1, 5, 7, 12, 13].
However, when a doctor examines a patient, the diag-
nostic decision is rarely based solely on one modality
of the clinical examination. Binol et al. [14] was the
first to combine otoscopy images and standard tympa-
nometry measurements for the classification of normal

∗Shared senior authorship

or abnormal tympanic membrane. The standard tym-
panometry analysis was based on manually selected
features including peak admittance, peak pressure,
tympanometric width, and ear canal volume, which
were fed to a random forest model. The otoscopy anal-
ysis was based on a pre-trained Inception-ResNet-V2
network, fine-tuned for the specific classification task.
The classification decisions of these two models were
fused using majority voting for the final classification.
The method was demonstrated on a limited dataset
of 73 cases, and the evaluation was thus performed
using leave-one-out cross-validation. They showed
that the combination of otoscopy images and standard
tympanograms outperformed the classification based
on the individual modalities.

Wideband tympanometry (WBT) has shown to be
more efficient in evaluating the condition of the middle
ear, and it provides more detailed information on the
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mechanical and acoustic status of the middle ear than
the standard 226 Hz tympanogram [15]. Furthermore,
a higher classification accuracy can be achieved using
WBT measurements for detection of otitis media,
compared to both ambient absorbance and standard
tympanograms [7]. In the present paper, we propose
the use of WBT measurements in combination with
otoscopy images for the diagnosis of otitis media in the
diagnostic groups: otitis media with effusion, acute
otitis media, and no effusion. Examples of images
and WBT measurements from the three groups are
shown in Figure 1.

We are the first to propose a purely neural network-
based model for the analysis of otoscopy images and
WBT measurements combined in a single model.
Furthermore, our models are developed for joint pre-
diction of otitis media, in the subclassifications acute
otitis media and otitis media with effusion, and diag-
nostic difficulty. This subclassification is important
to ensure proper treatment.

There has been an increasing interest in neural
network-based diagnosis of otitis media, and other

middle ear conditions, based on otoscopy images.
Habib et al. [16] recently published a review on this
topic including 39 papers published over the past 10
years. They conclude that these classification models
have been shown to be more accurate than human
assessors and that the next big task in this field is
to implement these methods into a clinical tool that
doctors can and want to use. An important aspect of
this step is to allow the user of a clinical tool to learn
more from the model than just the diagnosis. Several
studies have employed saliency maps to allow the user
to learn about the decision process of the model by
identifying the most important features of the input
data [7, 17]. Another valuable output would be an
estimate of the diagnostic difficulty of the input case.
This allows the operator to assess the output of the
model and to evaluate whether to redo the otoscopy
or WBT or refer the patient to an expert ENT for
further examination. The estimation of diagnostic
difficulty was investigated by Hannemose et al. [18]
based on image embeddings from a metric learning-
based neural network. In the paper, several supervised

(a) OME image (b) AOM image (c) NOE image

(d) OME WBT (e) AOM WBT (f) NOE WBT

Figure 1. Otoscopy images and WBT measurements from patients otitis media with effusion (a and d), acute
otitis media (b and e), and no effusion (c and f).
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and unsupervised methods are presented to estimate
the difficulty from the distribution of the dataset in
the embedding space.

The goal of the present work is to predict both
diagnostic class and difficulty for each case, and
we will evaluate two methods for this task. One
of the proposed methods is a deep metric learning
approach, where the diagnostic class and difficulty
will be predicted from the embedding space, using
the supervised method presented by Hannemose et
al. [18], and the other is a multi-task network for the
joint prediction.

II. Methods
We propose a single network for the combined analysis
of otoscopy images and WBT measurements. The
network architecture, seen in Figure 2, consists of a pre-
trained Inception V3 [19] network for the otoscopy
image input, and a network designed specifically
for the analysis of WBT measurements, using the
architecture proposed by Sundgaard et al. [7]. The
outputs of both these networks are feature vectors of
size 1024, which are concatenated and sent through a
series of fully connected layers. These fully connected
layers ensure that the network learns to combine the
feature vectors of the two different inputs into a single
decision. The size of the layers gradually decreases
through the network until the final 32-dimensional
vector.

In this paper, we will compare the use of a multi-task
neural network for simultaneous prediction of otitis
media and diagnostic difficulty with a deep metric
learning model, where the output embeddings of the
test set are used to predict the otitis media diagnostic
and to estimate the diagnostic difficulty. In deep metric
learning, the output of the network is an embedding
vector representing the combination of the two inputs:
image and WBT. In the proposed network architecture,
this is the 32-dimensional output of the final layer in
Figure 2. In deep metric learning, the goal is to learn
similarities in the dataset by measuring the distances
between different samples in the embedding space.
During training, the network learns to move similar
cases together and move dissimilar cases further apart,
thus creating clusters of the different classes in the
embedding space. When training a network with
deep metric learning, the output of the network is a
lower-dimensional representation of the input, instead
of a probability for a certain class. This allows us to
use this embedding space for either classification or
derivation of other metrics, like diagnostic difficulty.

The deep metric learning network is trained using
the multi-similarity loss function [20] (𝛼 = 2, 𝛽 =
50, base = 1) and a multi-similarity miner (𝜖 = 0.1)
using cosine similarity to optimise the selection of
training pairs. Classification is performed in the
embedding space by assigning the class with the
closest training data cluster centre to the current test

Inception V3
network

WBT network

concat

Embedding network

Difficulty estimation
using Extra Trees

Class prediction
using kNN

Multi-task network

1

3

Difficulty

Class label

2048

512

256

128

32

32

321024 1024

Figure 2. Network architecture of the multi-modal otoscopy image and WBT network. Numbers below the
boxes indicate the size of the layer. The boxes to right show the final layers of the multi-task approach and the
embedding network approach.
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example. Difficulty estimation is performed with the
supervised method employing extra trees [21] with
both embeddings and ground truth labels as input
[18].

The other approach is the multi-task network. The
output of this network consists of two fully connected
layers, one with a single output for the difficulty, and
another with a softmax output with size 3 for prediction
of the classification output. During training, the loss
function for this network has two terms: an L1-loss
for the difficulty output and a class weighted cross-
entropy loss for the class prediction, using the inverse
frequency of each class as weights.

All networks were trained with a learning rate of
0.0001, decreased by a factor of 0.1 every 50th epoch.
The training is stopped using early stopping with a
patience of 50 epochs. During training, data augmen-
tation of both input modalities was performed. For
input images, transformations include horizontal flips,
random rotation, colour jitter, and random erasing.
For the WBT measurements, we employ the trans-
formations shown to improve training of the WBT
network [7]: random Gaussian noise, noise increasing
exponentially in intensity across the frequency axis,
random erasing, and Gaussian hilly terrain, where a
mixture of Gaussian functions with various intensities
are added to the input to generate noise affecting a
larger area in the input than the random noise.

A. Data
The dataset consists of 1014 pairs of otoscopy im-
ages and WBT measurements collected at Kamide
ENT clinic, Shizuoka, Japan, from patients between
2 months and 12 years of age. Otoscopy images were
captured with an endoscope, and WBT measurements
were performed using the Titan system (Interacoustics,
Denmark). Each case was diagnosed with one of three
different diagnoses: no effusion (NOE, 484 pairs), oti-
tis media with effusion (OME, 375 pairs), and acute
otitis media (AOM, 155 pairs) by an experienced
ENT specialist based on signs, symptoms, patient his-
tory, otoscopy examination, and WBT measurements.
The data was collected and handled under the ethical
approval from the Non-Profit Organization MINS In-
stitutional Review Board (reference number 190221),
with either opt-out consent, or informed consent from
all participants or their parent or guardian.

The otoscopy images are of size 640 × 480 pixels
but are cropped to a square, as the sides are mostly
black, and downsampled to 299×299. The WBT mea-
surements are not necessarily uniformly sampled in
regard to pressure, and the measured pressure values
will change slightly from measurement to measure-
ment. All measurements in the dataset were therefore
resampled to a common grid using bilinear interpola-
tion. The grid is defined from 180 daPa to -280 daPa
in 84 steps on a linear scale, whereas the frequency
grid goes from 226 Hz to 4 kHz in 84 steps on a
logarithmic scale.

After data collection, four additional ENTs eval-
uated all cases in the dataset. They were shown an
otoscopy image and WBT measurement pair for each
patient and diagnosed with one of the three diagnoses
(OME, AOM, or NOE), or ’unknown’. Furthermore,
they responded with their self-reported certainty on
their diagnosis on the scale: very low, low, medium,
moderate, or high, which was converted to a numerical
scale ranging from 0 to 1. These annotations allow
computation of the difficulty of each case based on
the fraction of correct ENT answers (compared to the
original ENT) 𝜇correct, and the average self-evaluated
certainty 𝜇certainty. The difficulty of each case is then
given as [18]

𝐷 = 1 − 𝜇correct · 𝜇certainty. (1)

More details on the human inter-rater study with the
four ENTs can be found in Sundgaard et al. [22].

Due to the limited number of cases in the dataset,
all experiments were performed with 5-fold cross-
validation. This allows computation of performance
metrics on the full dataset, instead of only a fraction
of it. It was ensured that eventual multiple data pairs
from one patient were only present in either a training
or validation fold.

III. Results
Figure 3 shows the embeddings of the train and test
data generated for one of the cross-validation folds
for the image + WBT model in two dimensions using
t-SNE dimensionality reduction [23]. From these
embeddings, classification and difficulty estimation
were performed. Table 1 shows the performance in
both tasks: otitis media classification and estimation
of the diagnostic difficulty for all proposed models.
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Figure 3. Visualization of embeddings. The trans-
parency of each point indicates the ground truth dif-
ficulty with very transparent being the easiest. Grey
points are the training samples.

For classification, both accuracy and class-wise F1-
scores are computed. The F1-score is the harmonic
mean of the precision and recall. Kendall rank cor-
relation coefficient [24], also called Kendall’s 𝜏, was
used to evaluate the estimation of difficulty. It is a
non-parametric measurement of the correlation be-
tween two ranked variables. It only evaluates the
ranking of cases, not the specific difficulty values.
The stated performance values in the table are the

average performances across the five cross-validation
folds.

Table 2 shows confusion matrices for the three
embedding models. The numbers in the table are the
sum of the confusion matrices across all five test folds,
such that the full dataset is represented in each table.

As seen in Table 1, the highest classification perfor-
mance is achieved by the image + WBT model, as both
accuracy and each class-wise F1-score is superior to
the other methods. It is also clear that Kendall’s 𝜏

for difficulty estimation is increased when the model
is trained on both images and WBT measurements.
A Kendall’s 𝜏 of 0.45 corresponds to having ranked
72.6% of the cases correctly. The following results
are generated using the image + WBT embedding
model and the supervised prediction model. Figure 4
shows a scatter plot of ground truth difficulties versus
estimated difficulties.

The average ground truth difficulty for the full
dataset is 0.51. For the 877 correctly classified cases,
the average ground truth difficulty is 0.48, while for the
137 misclassified cases, it is 0.68. Similarly, Kendall’s
𝜏 for predicting the difficulty of correctly classified
cases is 0.480, corresponding to 74.0% correctly
ranked cases, while for misclassified cases it is 0.163,
corresponding to only 58.2% correctly ranked cases.
These results show that the most difficult cases for the
ENTs to diagnose are also challenging for the model
to classify and that when the network fails to predict
the correct class, the difficulty estimation typically
also suffers.

Table 1. Performance of the proposed models: Accuracy (Acc.) and F-1 score of the classification task and
Kendall’s 𝜏 of the estimated diagnostic difficulty. Each performance metric is the average across all five
cross-validation folds. Bold font marks the highest performance in each column.

Method Acc. [%] F1-score Difficulty 𝜏

OME AOM NOE

Image multi-task 85 ± 4 0.82 ± 0.05 0.78 ± 0.05 0.88 ± 0.03 0.39 ± 0.03
Image embedding 85 ± 3 0.83 ± 0.04 0.77 ± 0.02 0.90 ± 0.02 0.43 ± 0.01

WBT multi-task 74 ± 2 0.69 ± 0.04 0.53 ± 0.05 0.87 ± 0.03 0.42 ± 0.03
WBT embedding 68 ± 3 0.51 ± 0.10 0.51 ± 0.03 0.87 ± 0.03 0.36 ± 0.07

Image + WBT multi-task 85 ± 4 0.83 ± 0.05 0.77 ± 0.05 0.90 ± 0.03 0.40 ± 0.02
Image + WBT embedding 86 ± 2 0.84 ± 0.04 0.82 ± 0.04 0.90 ± 0.02 0.45 ± 0.02
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Table 2. Confusion matrices for the three embedding models: image, WBT, and image + WBT.

Image WBT Image + WBT

Target
Pred.

OME AOM NOE OME AOM NOE OME AOM NOE

OME 306 24 45 162 175 38 307 18 50
AOM 23 117 15 25 121 9 21 124 10
NOE 34 7 443 56 20 408 31 7 446

Total 363 148 503 243 316 455 359 149 506

When the patients were initially diagnosed in the
clinic, the ENT classified the diagnosis of AOM and
OME as mild or severe, depending on the severity of
the symptoms. The ground truth difficulty for mild
cases is generally higher than for severe cases (0.60
versus 0.23 for AOM, respectively, and 0.36 versus
0.25 for OME, respectively). It is found that the
classification true positive rate (TPR), or sensitivity,
also differs between mild and severe cases. For AOM,
the TPR is 62.3% and 85.1% for mild and severe cases,
respectively, while for OME it is 73.2% and 92.0%,
respectively.

IV. Discussion and Conclusion
When inspecting the results, it is clear that the embed-
ding networks outperform the multi-task network for
both classification and difficulty estimation. Table 1
shows that, in addition to the overall superior perfor-

Figure 4. Scatter plot of ground truth difficulties and
difficulties estimated with the supervised approach,
together with the least-squares regression line.

mance, the combined embbedding network manages
to improve the classification of AOM, from a F1-score
of 0.77 for the combined multi-task network, to 0.82.
The class imbalance in the dataset makes it challeng-
ing to diagnose AOM, but these results show that deep
metric learning handles this class imbalance better
than a network trained with standard class-weighted
cross-entropy loss functions. This was also previously
shown by Sundgaard et al. [1].

The confusion matrix for the WBT model in Table
2 shows that the WBT model struggles with separat-
ing AOM and OME, but it detects NOE very well.
Despite this, the recall of AOM is very high, which
is surprising, given the AOM and OME classification
results presented in previsous studies [7, 25]. Thus,
when WBT measurements and images are combined
into one multi-modal model, the biggest classification
improvement from the image-only model is found for
the AOM class. This is an important improvement, as
AOM is often difficult to diagnose and as distinguish-
ing between OME and AOM is crucial in deciding
whether or not to prescribe antibiotics for the patient.

The results show that mild cases are more difficult to
diagnose based only on the otoscopy image and WBT
measurement than severe cases. This is evident for
both the trained model and the four ENTs, as indicated
by the higher ground truth diagnostic difficulty. It
shows that the mild symptoms are not captured by
these two modalities and that more information from
the patient is needed to improve the prediction. It is
an important limitation of this model, that symptoms
have to reach a certain severity or intensity before the
model can detect otitis media.

These results show that the multi-modal model
performs better for both classification and difficulty
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estimation compared to the models trained on the
modalities separately. The four ENTs in the human
inter-rater study [22] achieved a 64.0% accuracy on
this dataset based on the same amount of patient in-
formation used in the multi-modal embedding model,
which achieved 86.5%. This substantial increase in
performance is very promising for a future diagnostic
tool and shows the strength of deep learning models
for medical image analysis.
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