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Summary (English)
More than half of the world’s population lives in cities, and the number is expected to rise in
the coming decades. Given the current population growth rate, it is necessary to optimise
how energy is used in the building stock to ensure sustainable urban development.

The building sector is being digitalised due to the appearance of cheaper monitoring de­
vices and an increase in computational power. The access to these data has caused a
rise of data­driven models to study how energy is used in buildings. These models aim
to disentangle the numerous processes governing energy flow to develop strategies to
increase energy efficiency.

Despite the advance in data­collecting methods, it is often challenging to use building
models that require numerous variables since relying on many sensors increases com­
plexity fast, and potential issues during installation and maintenance may occur. In ad­
dition, data is collected by different stakeholders, so access to consolidated databases
is scarce. Moreover, extensive monitoring of occupied buildings might raise privacy con­
cerns. Thus, we are in a transition period where on the one hand, we acknowledge the
need to take measurements from buildings, but, on the other hand, the available data do
not match the expectations.

This work explores modelling techniques to develop data­efficient building models that are
flexible, computationally light, and easy to interpret. We study traditional building models
based on physics principles and propose simpler model structures that hold physical in­
terpretation. In addition, we investigate statistical methods so our models can assimilate
complex phenomena that are often impossible to incorporate using traditional heat trans­
fer principles.

The results are two­fold: i) we see that the proposed methods are flexible and can en­
hance current building models to work with limited resources; ii) the modelling methods
discussed in this thesis serve as a foundation to tailor specific models to describe con­
crete processes that occur in occupied buildings. Thus, the outcomes of this thesis are
useful for researchers and practitioners that want to study building energy use on a large
scale. In particular, we discuss different applications such as characterising the building
stock, quantifying building energy flexibility, and simulation tools for urban planning.
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1 Introduction
This thesis focuses on combining building domain knowledge, physics and statistical meth­
ods to introduce practical, interpretable and computationally light building models to help
accelerate the much needed green transition.

1.1 Scope and motivation
The built environment is a significant contributor to the total energy consumption in devel­
oped countries [1]. This fact highlights the importance of increasing the share of clean
energy sources and improving the energy efficiency of the building sector. For this reason,
the European Commission set numerous decarbonisation targets to be climate­neutral by
2050 [2]. However, these targets are tight, and some indicators show that additional ef­
fort is needed to accelerate the green transition and minimise irreversible climatic damage
[3]. This situation puts pressure on researchers and practitioners to overcome the energy
sector’s main challenges.

There are multiple approaches to study energy management in buildings, though the fun­
damental idea remains: decoupling the numerous processes that govern the heat transfer
in buildings. To achieve this goal, the usage of data collected in­situ in operative buildings
has gained popularity in the past years due to the appearance of affordable data­collection
devices. This resource gives an insider’s perspective of how the energy is used in build­
ings.

A clear example of the faith put in data can be seen in Europe’s roll­out of electric smart
meters surpassing the 50% milestone by 2020; it is expected to increase a 7.2% each
year until 2026 [4]. Similarly, the number of gas smart meter installations will approach
70 million by 2026 [5].

The grown interest in research about data­driven building models can be easily seen in
Figure 1.1, which shows the yearly number of publications over the past 20 years focusing
on data­driven methods for building energy modelling.

Figure 1.1: Trend of annual publications that contain the following terms: ”building”, ”en­
ergy”, ”data­driven”, and ”modelling” (Source: Scopus).

The data collected in buildings is used to developmodels that can describe themost impor­
tant features of buildings, clusters of buildings, and the building stock. Yet, the collection
of data is not straightforward. Numerous agents intervene in building management, mak­
ing it challenging to access consolidated data sources with complete building information
[6]. Moreover, setting up the sensors and ensuring good maintenance can be costly. In
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addition, over­relying on an abundance of data can lead to models that are difficult to
generalise, given that the data used for one building might not be available for another.

Researchers might opt for using simulated data from buildings to bypass the problem of
data inconsistency. Traditional building simulationmodels rely on physics first principles to
describe the heating flow in buildings. However, since buildings are complex systems with
numerous interacting elements, this traditional approach leads to cumbersome models
that are computationally demanding. Still, this modelling approach is often used during
the building design phase and numerous authors have pointed out a gap between the
expected building performance and the measured performance during operation [7].

Thus, the issues mentioned above present a dilemma: on the one hand, we want to
use data from operative buildings, so our findings represent reality; on the other hand,
we want to keep the number of measured variables low to develop methods that can be
implemented easily. Moreover, we are interested in working with models that hold physical
interpretation, so they help understand better the fundamental processes that impact the
energy flow.

This thesis explores statistical methods that can reduce the data requirements in building
models to maximise their applicability in occupied buildings. Given the breadth of the
subject, this work reduces the problem into two main questions: how can we benefit from
current building physics knowledge to reduce model complexity? How can we generalise
building models efficiently?

We believe that answering these questions can accelerate the transition to a digitalised
building sector and help deploy energy­efficient strategies that positively impact the cur­
rent and future urban landscape.

1.2 Research Objectives
This thesis presents data­driven models to study the energy flow in buildings; the focus
is on data­efficient models that are scalable and easy to interpret. The research goals of
this thesis can be summarised as follows:

• Exploring tools to develop simplified grey­box models, i.e. low order models that
benefit from fundamental principles of energy dynamics in buildings. Thus, these
models should be easy to interpret and not require extensive data and information
from the building side.

• Identifying key parameters to characterise the energy use in buildings. The features
should be accessible using minimal non­intrusive data so the building stock can be
investigated on a broad scale.

• Introducing statistical methods to generalise current building models to be able to
study larger populations of buildings without sharply increasing the computational
requirements. These methods should be flexible and not be bound to a particular
modelling framework.

1.3 Thesis Structure
This work is divided into six chapters, followed by the Appendix. Figure 1.2 gives a
schematic representation of the flow of this thesis. It can be seen that Chapter 3 and
Chapter 4 contain the relevant content discussed in Chapter 5. The content chapters
give the basis for the presented publications as shown in Figure 1.2; the three tracks
presented in Section 1.2 intersect both content chapters.
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The content of each chapter is introduced below:

• Chapter 2 introduces the background of the work. First, the chapter gives an
overview of how data is currently captured and used to develop building models.
Then, the chapter presents basic principles of heating dynamics to introduce an
exhaustive model used in commercial software to describe the energy flow in build­
ings.

• Chapter 3 is dedicated to describing models that combine physics first principles and
statistical methods. This approach is often referred to as grey­box modelling; the
chapter describes an array of known modelling structures presented as simplified
grey­box models. Instead of delving into the technical details, the chapter highlights
the link between the different proposed methods to understand the physical assump­
tions behind each approach. For this reason, most of the mathematical details are
either formulated in the Appendix or cited from other sources. The methods intro­
duced in this chapter are most relevant in Paper A and Paper C.

• Chapter 4 proposes mathematical methods to quantify the impact of phenomena
that affect the building energy use and either cannot be explained by physical prin­
ciples or require numerous variables that might not be measured. The chapter is
divided into two parts: first, we focus on mixed­effects modelling, a general frame­
work to refine the quantification of model uncertainty; second, we propose different
methods to bypass data scarcity and lack of information in buildings. Mixed­effects
models are used in Paper B and Paper D. The presented support methods have
been used in all the publications that constitute this thesis.

• Chapter 5 contains the discussion of the main results obtained during this thesis.
Thus, the content presented in Chapter 3 and Chapter 4 is directly linked to the
presented publications.

• Chapter 6 concludes the work and summarises the primary outcomes of the thesis.

Although there are cross­references present, Chapter 3 and Chapter 4 can be read inde­
pendently. Each chapter represents one approach to address the same question: How
to develop data­efficient models to study energy efficiency in buildings.

(!) Concepts
The results of this thesis are transversal and combine different branches of build­
ing physics, time series analysis and dynamical systems. For this reason, the
discussion is intertwined with fundamental concepts explained in text boxes; the
reader can skip these if already familiar with the subject.
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2 Background on data and building
modelling

This thesis suggests statistical methods that, combined with building physics fundamen­
tals, reduce the data requirements to develop models to study the building energy flow.
To introduce the subject, this section discusses different types of measurements that can
be gathered in buildings and their typical sources; in addition, we discuss the potential
limitations of the information that can be extracted from operational buildings.

Then, the section gives a brief introduction of fundamental processes that govern the heat
flow in buildings. These principles will be the foundation to develop reduced data­efficient
models in the following chapter.

2.1 Data availability for data­driven modelling
Over the recent years, the use of data to model building energy use has been rising. This
has caused numerous authors to investigate the best methods to use data from buildings.
Collected data are to be used in numerous applications: from the development of smart
demand­side strategies [8], investigating the energy performance of building components,
identifying retrofitting opportunities [9] or urban energy planning [10].

Numerous authors have identified a performance gap between the expected building con­
sumption during the design phase of buildings and the measured consumption during
operation [11]. This difference suggests that simulation software is not able to reflect re­
ality completely. Moreover, measured data provides more information about a building’s
energy use than typical engineering audits [12].

Given the diverse nature of energy use in buildings, using data raises the question of which
variables should be measured. Even though some authors have suggested application­
independent building models [13], in general, the required variables will depend on the
application of the model.

Category Examples

Energy use Electric power, heating load, heat load, domestic hot water,...
Indoor conditions Temperature, humidity, CO2 concentration,...
Climatic conditions Temperature, humidity, solar radiation,...
Occupancy # of occupants, activity logs, comfort status, appliance use...
Architectural Blueprint of building, heating system, renovation,...
Socio­economic Personal details of occupants, socio­demographic details of the region,...

Table 2.1: Types of data from buildings.

Table 2.1 shows different categories of data found in literature. Notice that the type of
data ranges from qualitative concepts, e.g. comfort, to specific numeric variables, such
as indoor temperature readings. There are additional factors to take into account, like the
spatial and temporal resolution of the measurements, as well as, when dealing with user
activity, the reliability of the data; for instance, there exist region/nation­wide registries
of architectural details of the building stock, but it is not guaranteed that they are kept
updated [14].
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Given the numerous services that keep track of climatic conditions, weather data might
be regarded as easier to capture. Yet, the available weather stations might not be placed
in suitable locations rendering the data useless for our purposes [15].

Furthermore, when using data to describe the building energy flow, it is necessary to as­
sess how representative the measured data is of the variable that we want to capture. For
instance, the measured air temperature of a room might vary significantly due to poten­
tial temperature stratification. Hence, it is not only necessary to measure the appropriate
variables but locate the sensors correctly.

For this reason, numerous authors opt for using simulated data; a systematic review on
building models for energy flexibility by Li et al. [8] found that less than 15% of the evalu­
ated studies had measurements from field or experiments. On the other hand, Amasyali
and El­Gohary [16] found that 67% of the literature on prediction heating/cooling load used
real data; however, their review shows that normally prediction work uses external data,
i.e. climatic data, calendar data and consumption, which are often more accessible than
indoor variables.

Another option is to extract data from buildings built in research facilities that are devoted
to be laboratories [17]. This way, sensors can be deployed which gives researches and
practitioners freedom to complete specific experiments to fulfill a scientific purpose. Alter­
natively, data­driven models have focused on using measurements from buildings from
university campus [18, 19]; however, this represent a clear limitation since these stud­
ies can only focus on one building typology. Finally, best case scenario is to be able to
study fully functioning occupied buildings, since they have the complete information of
how energy is being used, however they tend to present data limitations due to privacy
and comfort concerns [20].

Moreover, the cases discussed so far focus on single buildings. Yet, the models being
developed should be scalable tomaximise the positive impact of current research. Studies
that manage to gather data from numerous buildings at urban or region level rely on utilities
and other stakeholders that can only share limited information [21].

The above­mentioned examples suggest that there is a gap between the data that we can
access easily at large scale and the information we want to retrieve. Thus, it is necessary
to investigate non­intrusive methods that are data­efficient so the building stock can be
investigated reliably.

2.2 Physics based multi­zone model
Multi­zone models are the foundation of many commercial building simulation software
[22]. These models reduce a building into a network of nodes that resembles an electric
circuit where heat is transferred. Each node represents a different heat­accumulating
element inside the building and has its thermal capacity; if heat transfer exists between
two parts, they are connected by thermal resistance. For this reason, this type ofmodelling
is also referred to as Resistance­Capacity (RC) models.

For every node, a heat balance equation is solved such that, for the jth node.

q̇in = q̇out + q̇acc (2.1)

where q̇x is the heat flux going in the node, going out the node and being accumulated
in the medium, respectively. Thus, a node x is described by the following differential
equation
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Cx
dTx

dt
= q̇in − q̇out (2.2)

where Tx is the temperature of an element x.

Each of the heat flux terms qx in Equation (2.1) is a combination of the three main heat
transfer processes: convection, conduction and radiation. These terms are described as,

• Conduction is the process of transferring heating energy through solid materials.
Mathematically it is described as

q̇cond = A(T1 − T2)/R (2.3)

whereA is the area orthogonal to the heat flow direction, R is the thermal resistance,
and Ti ∀i ∈ [1, 2] are the temperatures at both sides of the material.

• Convection is the propagation of heat through a liquid or gas. The convection
through a surface that is in contact with a mass of air is

q̇conv = hA(T1 − Ts) , (2.4)

with A being the area of the surface, h is the convective heat transfer, T1 the mean
air temperature and Ts the surface temperature. If the heat transfer occurs through
a stream of air, the appropriate model is

q̇conv = ṁcpρ(Tsys − T1) (2.5)

where ṁ, cp, ρ, Tsys are the mass flow­rate, specific heat, density and temperature
of the fluid, respectively.

• Radiation is the heat transfer through electromagnetic waves. The heat transfer
between two bodies follows

q̇rad =
σ(T 4

1 − T 4
2 )

1−ϵ1
A1ϵ1

+ 1
A1F1−2

+ 1−ϵ2
A2ϵ2

(2.6)

where σ is the Stefan­Boltzmann constant, T1 and T2 are the surface temperatures,
ϵ1, ϵ2 are emitances and F1−2 is the view factor– a coefficient that quantifies the
proportion of radiation that departs from surface 1 and hits surface 2, and vice versa.

When using the multi­zone framework, the modeller has the role of setting up the network
of building elements, so it represents the building of interest. A combination of Equations
(2.3)­(2.6) will be used to match the complexity of the building. This scheme already intro­
duces simplifications, such as the one­dimensional nature of heat transfer or the omission
of heating gradients in each element; the reader can find a complete description of the
method in Hensen and Lamberts [23]. Nevertheless, the multi­zone model potentially
allows the modeller to set a complex network to represent the heat transfer.

The multi­zone scheme is primarily used for the purpose of building design and it requires
a significant level of detail from the building components. For example, it is necessary to
know the materials, properties and spatial configuration of the different elements that are
part of the building.
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2.2.1 An example using ordinary differential equations
Next chapter introduces model assumptions to develop reduced­order models based on
data. Similar to the work of Rouchier [24], we use the example depicted in the Figure 2.1
to showcase the necessary assumptions.

Figure 2.1: Representation of the differential equation building model in Equation (2.7)
with its equivalent RC network.

The model in Figure 2.1 assumes that a building is well described as a single space with
two primary heat accumulative elements: the indoor air and a thermal mass which, in this
case, represents an aggregation of other building elements such as walls and furniture.
The solar irradiation comes directly through the window, which has no resistance; simi­
larly, the building has a heater with a direct heat transfer to the indoor air. Since surface
temperatures are disregarded, no radiative effects are taken into account. Finally, notice
that this model only considers a space­aggregated representative temperature, omitting
the inner flows inside a single element.

The system in Figure 2.1 can be expressed as the follows


Ci

dTi
dt

=
1

Ri
(Tm − Ti) +

1

Ra
(Tout − Ti) + Φ + IgAw

Cm
dTm

dt
=

1

Ri
(Ti − Tm) .

(2.7)

where Ti and Tm are the system variables that represent the indoor air temperature, re­
spectively. The system has three different inputs: the outdoor air temperature Tout, the
solar irradiation Ig and the heating load Φ. The parameters of the system are given by
the thermal resistances Ri and Ra, the thermal capacities Ci and Cm and the effective
window area Aw.

Equation (2.7) is a second order differential equation system. Defining xt = (Ti Tm)
⊤, it

can be written compactly as

dx
dt

= Ax+Bu , (2.8)

where A and B are constant matrices defined as
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A =


1

RiCi
−
(

1

RaCi
+

1

RiCi

)
−1

RiCm

1

RiCm

 ; B =


1

RaCi

1

Ci

Aw

Cm

0 0 0

 , (2.9)

and u = (Tout Φ Ig)
⊤ is the vector of deterministic inputs. The matrix A is called the

design matrix and it describes the internal dependencies of the system; B is often called
the input matrix and describes how the inputs are introduced in the system. The system
in Equation (2.8) is deterministic, meaning that, given the initial conditions x0, the future
values of the inputs and the matrices A and B, it is possible to track the state of the
system at any time. The state of the system is characterised by xt; for this reason, xt is
called the state vector.

The natural question is how well the model in Equation (2.7) represents an actual build­
ing. It is clear that buildings may contain numerous phenomena that affect the indoor air
temperature which are not accounted for in Equation (2.7). Similarly, the defined state
is a simplification of a more complex system as the defined thermal mass bundles multi­
ple unknown elements. When comparing real data to the model in Equation (2.7), these
omissions and assumptions will introduce noise and uncertainty.

Given the numerous factors that affect building energy modelling, even working with a
much more thorough building multi­zone model will still contain simplifications which will
cause differences between the predicted behaviour and the measured data. In addition,
a very detailed deterministic model of a single building will not be robust and will not scale
properly. Hence, instead of pursuing a detailed model like the multi­zone model, one can
go in the opposite direction and introduce uncertainty in the model. This is the base idea
of modelling buildings with stochastic differential equations and is the departing point of
the next chapter.
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3 Grey matter: leveraging physics to
develop simplified building models

Building energy modelling is a thoroughly studied and multi­faceted field. Numerous build­
ing components play an essential role in the energy flow: building materials, geometry,
climatic conditions, or building usage will affect the energy flow differently, which has moti­
vated years of research. The scientific output has caused an increase in modelling options
to consider all phenomena that affect building energy use.

This chapter outlines relevant assumptions and transformations to reduce the complex
building model described in Section 2.2 into more accessible and practical models. These
models are meant to be fit using measurements, so we introduce the necessary statistical
foundation for understanding and facilitating the model estimation. Given the physical
nature of the subject, special attention is put to the usage of modelling structures that will
hold physical interpretation.

The label grey­box describes building models that combine physical knowledge and statis­
tics. However, in practice, building­physics literature most often uses the term grey­box
modelling to refer to lumped RC models based on stochastic differential equations. This
section proposes a looser interpretation of the term since it is argued that other modelling
methods may still carry physical meaning.

The methods discussed in this chapter have been discussed in other sources like the
work by Jimenez and Madsen [25] and Madsen et al. [26]; yet, this chapter highlights the
links that bridge the different modelling options as described by Figure 3.1. We intend to
give the modeller the necessary tools to deduce practical information about the building
with limited data and resources by unveiling the latent hypotheses that render each model
structure relevant.

3.1 Stochastic differential equations
Setting up a deterministic building model that captures all phenomena that affect the en­
ergy flow is virtually impossible. Likewise, installing the necessary sensors to estimate the
model parameters is not feasible because such a complex model is not structural identifi­
able, especially when using data from the buildings’ regular operation [27]. This section
introduces stochastic differential equations (SDE) as a framework to develop more com­
pact and robust building models that leverage physical knowledge and statistics.

Stochastic differential equations are a natural continuation of ordinary differential equa­
tions, where a term is added to account for model uncertainty. This new term works
two­fold: i) it bundles together numerous processes that cause noise, which reduces the
model structure to only the necessary variables; ii) it allows the formulation of statistical
methods to estimate the model parameters and characterise the measured system. In
general, they present two terms

dx = f(x;u; t)dt︸ ︷︷ ︸
Drift

+

Diffusion︷ ︸︸ ︷
g(x;u; t)dω , (3.1)
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Figure 3.1: Map of extended grey­box space with relevant references.

wherew is a stochastic process. Normally,w is defined as a Wiener process, since it has
numerous computational benefits given that the process has independent increments.

White noise
A process {ε1, ε2, ε3, · · · , εN} is defined as white noise if it represents a series
of mutually uncorrelated and identically distributed random variables with mean
value equal to 0 and constant variance σ2

ε .

The drift term from Equation 3.1 describes the known dynamics of the system. In contrast,
the diffusion term captures the uncertainty of x given by model approximations and noise
present in the input measurements. This SDE structure is general and widely used to
describe, among others, financial markets, marine ecosystems, and pharmacokinetics;
hence, both f(·) and g(·) can be complex non­linear functions [28].

In this thesis, the focus is on linear SDEs since buildings are often considered linear
time­invariant systems [26]. It is known that non­linearities are found in the energy flow of
buildings, but in this work, the impact of non­linear phenomena is assumed to be negligible
or captured by the diffusion term.

Thus, the linear ODE system described in Equation (2.8) is transformed into an SDE by
the addition of the diffusion term such that

dx = (Ax+Bu)dt+Gdw (3.2)

where G is a constant matrix describing how the noise enters the system. Equation (3.2)
describes the inner dynamics of the system of interest, for this reason it is often referred
to as the system equation.
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In the ODE presented in Section 2.2.1, the state of the system, x, is described by a vector
of temperatures. Yet, the temperatures may or may not be measured directly since any
measurement will include noise. The uncertainty present during the process of measuring
the states is incorporated into the model by adding the observation equation, which de­
scribes the interaction between the state, the inputs and what is measurable in the system,
Y t. The inclusion of this equation leaves the final SDE model as

{
dx = (Ax+Bu)dt+Gdw
Y t = Cxt +Dut + et ,

(3.3)

where et is a stochastic variable, typically white noise. Matrix C and D give the linear
relationship between the observations and the state and input vector, respectively. Notice
that the observation equation is written in discrete­time; hence, the subscript t has been
added to denote the measurement of x and u at time t.

Equation (3.3) is called stochastic state­space formulation, since it describes the evolution
of a state variable, x, and its observations, Y t, over a space of probabilities (defined by
w and et). The state­space formulation will be further developed in Section 3.2, when
focusing on discrete dynamical systems.

Continuing with the example in Equation (2.7), notice that the matrices A and B are the
same as the deterministic model since the diffusion term is introduced additively. Assum­
ing that the system noise is independent, G = I; where I is the identity matrix. Further­
more, let’s assume that only the indoor temperature is measured and none of the inputs
influences the sensor; in such case, Y t represents the temperature of the sensor, and
the arrays of the observation equation are

C =

(
1 0

0 0

)
; D =

(
0 0 0

0 0 0

)
. (3.4)

In recent years, the use of SDEs to model building energy flow has been rising [29].
They offer a flexible framework that allows a thorough analysis of a building’s dynamic
behaviour. In addition, they are computationally efficient and give reliable parameter
estimations that are easy to interpret, which is advantageous when modelling physical
systems. For this reason, they have been used in numerous applications that can be
summarised in three categories: characterisation, control and simulation.

A second­order SDE such as the one described by {A,B,C,D} was studied by Madsen
and Holst [30] as a sufficient model structure to model heat dynamics in buildings. Bacher
and Madsen [31] fit multiple SDE structures using real measurements from a test house;
they suggested that even a complex building model is well­represented with a third­order
SDE. Furthermore, their work gives an overview of the building’s main components that
influence the energy flow.

Reynders, Diriken, and Saelens [32] studied the ability of SDE systems to cope with un­
certainty and different types of data. They proposed a fourth­order model as a good
representative of a single zone dwelling and argue that this model structure is robust and
a good choice to simulate and control buildings. Similarly, Himpe and Janssens [33] used
a fourth­order model to characterise the heat loss of a test house. These findings are in
line with the work of Rouchier, Rabouille, and Oberlé [34], who compared the estimation
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results of a deterministic and stochastic third­order RC model. They confirmed that the
stochastic structure increases the robustness of the parameter estimates and suggest that
this type of model will adapt better to changes in input weather variables. Finally, given
the uncertain nature of climatic conditions, Thilker, Madsen, and Jørgensen [35] proposed
an SDE model with embedded forecasts of weather variables for control applications.

Thus, numerous authors have proposed different SDE models using typical model build­
ing element combinations. To facilitate the model choice, Leprince et al. [36] proposed
an automated method for system identification based on CTSM­R [37]. Their selection
algorithm departs from a first­order model and tests different RCmodels up to the seventh­
order; the quality of the fit is based on the distribution of residuals in the frequency domain.
This methodology was tested in 247 buildings, and 188 resulted in a good model fit.

Lastly, it is important to remark that the general formulation of SDEs makes it possible
to incorporate other relevant processes and building components as state variables, i.e.
other than indoor temperature states. For example, Thilker et al. [38] included the flow
rate as a state vector to model the heating system of a school; the model was then used
to control the indoor climate in different classrooms. Jiménez et al. [39] and Friling et al.
[40] used a first­order a SDE system to model the heat transfer in a photovoltaic module.
Junker et al. [41] developed a general model to characterise the energy flexibility of a
system to participate in smart demand­response strategies; their proposed model was
tested using measurements from a water tower.

This section has presented SDEs as a flexible method to model physical systems using
measured data. The following section will show how, given their compact formulation and
clarity, SDEs represent a good departure point for developing simplified models that can
be used in case of data scarcity.

3.2 Discrete­time series models
By definition, data are discrete, making discrete­time series an appropriate option to study
measured phenomena. Furthermore, these models are easy to formulate and fit, repre­
senting an accessible and computationally light option to investigate dynamical systems.

Discrete­time models can be obtained as a simplification of known physical processes,
so understanding the latent dynamics of such systems will help identify suitable model
structures. This section departs from the stochastic continuous formulation described
in Section 3.1 and introduces the necessary tools to transform an SDE system into a
physically­interpretable discrete model. The examples presented are based on the RC
model in Section 2.2.1; thus, the methods are focused on linear time­invariant systems.

3.2.1 Stochastic sate­space modelling
A system governed by a known stochastic differential equation is discretised by integrating
over its sampling interval [t, t+s), where s represents the sampling time [42]. For simplicity,
in this work, we will assume the sampling time is constant s = 1. This makes it possible to
transform the continuous system equation of Equation (3.3) to its discrete­time equivalent

Xt+1 = A
∗Xt +B

∗U t + εt , (3.5)

with

A∗ = eA; B∗ =

∫ t+1

t
eA(t+1−s)Bds; εt =

∫ t+1

t
eA(t+1−s)dω(s) . (3.6)
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Figure 3.2: Schematic representation of the Kalman filter.

Notice the change in notation, where the superscript ∗ has been added to denote discrete
time. In addition, it is important to remark that, to arrive at Equation (3.5), it has been
assumed that the inputs are constant between the sampling time.

Recall that x characterised the system in continuous time, and so doesXt in discrete time.
As done in the continuous case, to complete the state­space formulation, the observation
equation is added to describe the relationship between the state and the variable that we
can measure, Y t,

Y t = CXt +DU t + et . (3.7)

The residual term εt is, again, considered white noise. Similarly, et is also white noise
and it is independent of εt.

The Kalman filter
State­space models are well suited to cope with missing and corrupt data since they can
be filtered. Filtering is a statistical method that reconstructs a process by leveragingmodel
predictions, observations and inputs. The filtering process uses measurements, Y t, of a
dynamic system,Xt, to reconstruct states simultaneously based on the relation between
variables described by Equations (3.5) and (3.7).

A notable filter for discrete linear time­invariant state­space models is the Kalman Filter
(KF), a filtering algorithm that was developed during the 1950s and 1960s, which primary
use was tracking spaceflight vessels during the space race [43].

The Kalman filter is based on the mathematical principle of linear projection and provides
the optimal reconstruction and prediction of the state variable, Xt, using observations
Y t. The idea behind the KF is to predict one step ahead and recursively compare the
available observations with the prediction. During the process, the uncertainty of the
model prediction is compared to the uncertainty of the observations to evaluate which of
the two is more reliable. This comparison is encapsulated in a ratio called the Kalman
Gain. The filtering process is schematically presented in Figure (3.2) and a more detailed
mathematical description can be found in Madsen [44].

Given that the Kalman filter provides the optimal reconstruction of Xt, it is often used
to estimate the model’s characteristic parameters. This is done by wrapping the Kalman
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Filter in an optimisation routine aimed at maximising the likelihood of the proposed model;
the likelihood function is used as the cost function since it describes how well a model fits
the available observations as a function of the model parameters.

Fitting a model by maximising the likelihood function is known as the Maximum Likeli­
hood Estimation (MLE) method. If the model noise is Gaussian and the system is in
steady­state, as shown in Appendix I, the parameter estimator that maximises the likeli­
hood minimises the sum of squared residuals.

Likelihood
The likelihood of a model represents the joint probability of having observed a
series of measurements Y = {y1, · · · , yN} given a parameter vector, θ.

Example: Given the model Y = µ + ϵt where ϵt ∼ N(0, σ2
ϵ ), the distribution fY

can be defined as

fY (yt, µ, σ
2
ϵ ) =

1

σϵ
√
2π

exp
(
−(yt − µ)2/2σ2

ϵ

)
(3.8)

Given the N observations of Y , the likelihood function of the model is

L(Y ;µ, σ2
ϵ ) =

N∏
t=1

fY
(
yt, µ, σ

2
ϵ

)
. (3.9)

Often, for model estimation, the logarithm of Equation (3.8) is used to ease the
computational requirements.

As above­mentioned, state­space models can be built directly by discretising an SDE
system, which leaves a linear model with no derivative terms that is easier to operate
with. This is easily seen writing explicitly the discrete state­space version of the model in
Equation (2.7),

Xt =

(
Ti,t
Tm,t

)
=

(
a11 a12
a21 a22

)(
Ti,t−1

Tm,t−1

)
+

(
b11 b12 b13
b21 b22 b23

)Tout,t
Φh,t

Ig,t

+

(
ϵ1,t
ϵ2,t

)
, (3.10)

where aij and bij ∀i, j ∈ [1, 2, 3] are the coefficients of matrices A∗ and B∗ respectively.
Given C andD described in Equation (3.4), the observation equation simply becomes

Yt =
(
1 0

)( Ti,t
Tm,t

)
+ e2,t . (3.11)

The resulting state­space model serves as a foundation for modelling related processes
using discrete systems, as shown in Paper A where a state­space system was reduced
into a univariate linear dynamic model. However, depending on the data availability, it
might not be necessary to use a discrete system that is a direct transformation of an SDE
model; instead, it might be sufficient to build a proxy model to fulfil the required application.
An example of this can be found in Paper C, where a discrete state­space was used
to reconstruct the indoor conditions of a building using only outdoor measurements and
consumption data.
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Often, it will be interesting to model the evolution of one variable, e.g. the room tem­
perature or the heating consumption of a building. Next section presents popular model
structures used to model univariate time series—as above­mentioned, acknowledging the
latent physical processes that govern the variables of interest will be highly beneficial in
developing any dynamic model.

3.2.2 The ARMAX model
This section introduces a general framework to model linear discrete­time dynamical sys­
tems known as the ARMAX model. ARMAX stands for Auto­Regressive model with Mov­
ing Average and eXogenous inputs, in general, this model category has the following
structure

Xt =ϕ1Xt−1 + · · ·+ ϕpXt−p+ → AR term
ω1U1,t + ω2U2,t + · · ·+ ωmUm,t+ → Inputs
εt + θ1εt−1 + · · ·+ θqεt−q , → MA term

(3.12)

where Xt is the measured dependent variable, Uj,t ∀j ∈ [1, · · · ,m] are measured inputs
and εt ∼ N(0, σ2

ε) represents the residuals. As indicated in Equation (3.12), this model
structure has three different components:

• An auto­regressive part (AR), which contains the lagged values of the output vari­
able. The parameter p is known as the order of the AR term and gives the maximum
lagged value of Xt.

• A moving­average term (MA) that contains the residuals and its lagged values. The
order of the MA term is characterised by the parameter q.

• Measured external inputs which are considered to be deterministic, i.e. their obser­
vations do not contain any source of noise. It is important to remark that Equation
(3.12) may contain lagged input variables; for the sake of brevity, these terms have
been omitted.

The ARMAX structure describes a linear time­invariant system; this model is highly adapt­
able and variations of the ARMAX can be found by slicing the general Equation (3.12)
into its essential components. Table 3.1 summarises some of the most well­known sub­
models; for an extended description of the different variants, the reader can checkMadsen
[44].

Given N observations ofXt and Uj,t, Box and Jenkins proposed an iterative procedure to
fit an ARMAX [45]. Before describing each step, let’s write the ARMAX model in compact
form as

X = Zβ + ε (3.13)

with
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X =(Xd+1 · · · XN )⊤

Z =


XN−1

...

...
Xd

· · ·

· · ·

XN−p+1

Xd−p+1

U1,N

...

...
U1,d

· · ·

· · ·

Um,N

...

...
Um,d

1

1

εN−1

εd

· · ·

· · ·

εN−q+1

...

...
εd−q+1


β =(ϕ1 · · · ϕp ω1 · · · ωn 1 θ1 · · · θq)⊤

(3.14)

where d = max(p, q). Now, to find an appropriate model structure that describes our data,
the following scheme is proposed:

1. Identification: exploring the available data and prior information of the system be­
haviour can be used to propose an initial model candidate, e.g. having knowledge
of a preceding state­space model that describes the variable of interest. To illustrate
this idea, we can use model in Equation (2.7) and its equivalent state­space formu­
lation in Equation (3.10). Let’s assume that we can take reliable measurements of
the thermal mass Tm so it can be considered an input; in that case, it is possible to
write a univariate time series model for the indoor temperature as

Ti,t =a11Ti,t−1 + a12

Tm,t−1︷ ︸︸ ︷(
a21Ti,t−2 + a22Tm,t−2 + · · ·

)
+

b11Ta,t + b12Φh,t + b13Ig,t + ϵ1,t .

(3.15)

Equation (3.15) has an ARX structure where p = 2; this model will have weather
variables, heating load and lagged values of the thermal mass as inputs. Moreover,
as detailed in Appendix II, any linear and time­invariant state­space formulation can
be translated into ARMAX formulation.

2. Estimation: we propose three different methods to estimate the parameters of
the linear model from Equation (3.13): least squares (LS), prediction error method
(PEM), and maximum likelihood estimation (MLE). When the model noise is Gaus­
sian and the system is in steady state, these three methods return the estimator, β̂,
defined as

β̂ = argmin
β

S(β) = (X −Zβ)⊤(X −Zβ) =
N∑

t=p+1

ε2t (β)

 . (3.16)

As shown in Table 3.1, the choice of estimation method depends mainly on the
model structure that is being used. In the absence of an MA(q) term, β is estimated
using the LS method. However, including an MA(q) term introduces residuals that
have not been computed yet in the matrix Z. For this reason, the PEM represents
a generalised version of the LS. MLE is the most general estimation method and it
will be discussed in more detail in the following chapter. Appendix I gives a more
detailed mathematical description of LS, PEM and MLE.

3. Validation: a model is considered adequate when εt(β̂) behaves like white noise,
since it suggests that the model has captured all observed system dynamics. There
are numerous tests to check whether a collection of observations behave like white
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noise; the reader is invited to check Madsen [44] for a detailed description of such
methods. In this thesis, we focus on two methods:

• Plotting the estimated residuals to visually inspect their behaviour. This in­
cludes studying the temporal evolution of the residual and their dependence
on other related variables.

• Comparing the residuals’ estimated autocorrelation function (ACF) to the ex­
pected ACF of a white noise process.

Auto­correlation function (ACF)
The ACF evaluates the correlation between present and past observations of
a random variable. Assuming N available observations of a time­series X =
{x1, · · · , xN}, the ACF is estimated by

ρ̂X(k) =
C(k)

C(0)
(3.17)

where

C(k) =
1

N

N−|k|∑
t=1

(xt − x)(xt+|k| − x) . (3.18)

The variable k represents the kth lag and x =
∑N

t=1 xt/N .

Notice that −1 ≤ ρ̂x(k) ≤ 1 and ρ̂X(0) = 1.

If Xt behaves like Gaussian distributed white noise, C(k) ≈ 0 ∀k > 0.

As depicted in Figure 3.3, in case the results of the validation are not adequate, it
is necessary to return to step 1 and repeat the procedure iteratively until the results
are satisfactory.

Figure 3.3: Schematic of the model­building procedure

Numerous authors have used ARMAX models to study the energy use in buildings. Rı́os­
Moreno et al. [46] tried different ARX and ARMAX structures to develop a model to predict
the indoor temperature in a school from Mexico. Their work already suggests that ARX
and ARMAX can be made simpler and more robust by incorporating physical knowledge.
As proposed in this section, Wu and Sun [47] departed from the continuous heat trans­
fer equations for a control volume, and reduced it to an ARX for predicting the indoor
temperature and suggest this type of model could be used for control. Lastly, Deconinck
and Roels [48] compared the reliability of different auto­regressive models and stochastic
differential equation systems to characterise the dynamical elements of a building.
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Model contains

AR term MA term Inputs Estimation
(p > 0) (q > 0) (Uj,t ̸= 0) method

ARMAX(p,q) ✓ ✓ ✓ PEM, MLE
ARMA(p,q) ✓ ✓ × PEM, MLE
ARX(p) ✓ × ✓ LS, MLE
AR(p) ✓ × × LS, MLE
MA(q) × ✓ × PEM, MLE

Table 3.1: Some of the model variations of the ARMAX model

Other authors opt for less physically­inspired models; similarly, instead of the proposed
scheme from Figure 3.3, they use automatised identification routines Piltan, Tayebi­
Haghighi, and Sulaiman [49]. Shakouri G, Kazemi, et al. [50] designed a fuzzy decision­
making algorithm to identify an ARMAX model to forecast the energy demand in Iran.
Jiang et al. [19] used climatic variables to develop a model for indoor comfort and indoor
temperature prediction.

Still, as previously discussed, basing a model on physical principles will aid and enhance
our interpretation of the results. Pakanen and Karjalainen [51] were able to estimate the
static heat loss of a building after fitting an ARMAX model. Senave et al. [52] studied the
accuracy of static characteristics obtained through an ARX model. Using minimal data,
they concluded that the model gives reasonably good results, of the overall heat loss of
a building.

Both Paper A and Paper C presented models that follow an ARX structure. The former
was used to describe the dynamics of the indoor air in absence of other inputs. The results
of this model were used as a departure point to develop the model in Paper C. The latter
was a proof­of­concept aimed at developing a dynamic model that was able to reconstruct
the trend of the indoor temperature of a building using only heating measurements and
weather data.

Input­Output formulation
In many cases, it might be relevant to study the direct dynamic effect that a particular
input has over the output. For instance, if we are modelling the indoor temperature of a
building, we might want to analyse how a particular weather variable affects it. This is the
principle behind the input­output formulation.

First, it is necessary to introduce the backshift operator B, defined as BnXt = Xt−n.
Depending on the field, other operators might be used. In control applications, the oper­
ator B = z−1 is used, hinting a connection between the input­output formulation and the
Z­transform.

The backshift operator makes it possible to write the ARMAX model in Equation (3.12) as

ϕ(B)Xt = ω1(B)U1,t + · · ·+ ωm(B)Um,t + θ(B)εt , (3.19)

where ϕ(B), ωj(B) and θ(B) are now polynomials in the backshift operator. Notice that,
ϕ(B) is a polynomial of order p and θ(B) has order q. Given that, Equation (3.12) did not
contain lagged inputs, ωj(B) are zeroth­order polynomials; still, pursuing generality they
are written as ωj(B).
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The input­output formulation is found by simply dividing both sides of Equation (3.19) by
ϕ(B) such that

Xt =
ω1(B)

ϕ(B)︸ ︷︷ ︸
H1(B)

U1,t + · · ·+ ωm(B)

ϕ(B)︸ ︷︷ ︸
Hm(B)

Um,t +
θ(B)

ϕ(B)
εt . (3.20)

In Equation (3.20), every term Hj(B) represents the transfer function of Uj,t, which de­
scribes the dynamic response of Xt given an impulse of Uj,t. To study this response, it is
necessary to introduce the zeros and poles of the transfer function, defined as the roots
of the numerator and denominator of Hj(B), respectively.

Studying the poles and zeros unveils the system’s stability: a system is considered stable
if all its poles qk ∀k ∈ [1, · · · , p] fall inside the unit circle. In addition, by computing the
poles, it is possible to compute the time constants of a system.

Notice that, a transfer function has as many poles as the order of ϕ(B), p. Moreover, it
can be shown that the number of poles is equal to the order of an equivalent state­space
system. This was already hinted in the example in Equation (3.15), where it can be seen
that Ti,t depends on Ti,t−1 and Ti,t−2; i.e. the polynomial ϕ(B) has order 2.

In Paper A and ARX model was transformed to input­output to characterise the heat
transfer between the indoor and outdoor air using two time constants. It was shown that
they contained information about the flexibility potential of the buildings.

Time constants
The time constants are a dynamic parameter that characterises the time it takes
forXt to reach stationary conditions after a step increase of Uj,t. As represented
in Figure 3.4, the larger a time constant is, the slower their associated process
is.

For positive real poles, the time constants are computed by

τk =

∣∣∣∣ s

log (qk)

∣∣∣∣ ∀k ∈ [1, · · · , p] , (3.21)

where s is the sampling time.

The time constants are recurrent parameters in different fields that study dynam­
ical systems, and they can be retrieved using other methods; Appendix III gives
an overview of the interpretation of the time constants in state­space.

Figure 3.4: Step response for three different first­order dynamical system with
three different time constants τ1, τ2 and τ3.
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3.3 Dynamic to static linear regression
This section connects the dynamical methods discussed previously in the chapter to one
of the most widespread model structures: the linear regression. In general, given N
observations of a random variable X and a series of m regressors, Uj ∀j ∈ [1, · · · ,m],
we can define a linear model such that

Xi = β1U1,i + · · ·+ βmUm,i + εi , (3.22)

where ε ∼ N(0, σ2
ε) is defined as white noise. In this case, the subscript i denotes the ith

observation of the variable X; the subscript has been changed from t to i to emphasise
that Equation (3.22) is not considered a time series.

Static linear models are easy to interpret since the effects of the regressors over the output
are straightforward. In addition, they are computationally light, and the parameters can be
estimated in closed form using the LS method. For these reasons, the linear regression
has been abundantly used to model the energy usage in buildings. In addition, access to
high­resolution data­gathering devices has been scarce, so models used to be static.

Static characteristics can be computed directly from dynamic models since a dynamic
model includes the information of the system behaviour in a stationary state. Notice
the similarities between Equation (3.22) and (3.20): the transfer functions from Equa­
tion (3.20) describe the response of Xt after a step increase of Um,t; after enough time
has passed, the effects of Um,t will converge to the stationary parameter multiplying Um,i

in Equation (3.22). Thus, developing dynamic models provides a complete understand­
ing of the energy usage inside a building. In addition, the ability to deduce static model
characteristics through dynamic models reduces the period for data collection.

A fundamental model used to evaluate a building’s energy performance is the energy sig­
nature (ES), which is based on linear regression. As described by Hammarsten [53], in
its simplest form, the ES describes the linear dependence between the heating load of a
building and the outdoor temperature. The ES is based on multiple assumptions based
on the stationary heat transfer equations. Paper C proposed a dynamic version of the ES
model, and showed that energy performance characteristics of the classic ES and the pro­
posed dynamic model matched. Another example of a physics­driven regression model
can be found in the work by Gianniou et al. [54], who developed a static linear regression
model to characterise the set­point temperatures in a population of Danish residential
buildings. Finally, Rasmussen et al. [55] proposed a nonlinear model to describe the heat
load of a building; their model was based on the classic ES model and used wind speed
and solar irradiation measures. In addition, Rasmussen et al. [55] identified that dynami­
cal effects were still present despite using daily­aggregated data, and suggest that these
effects are likely caused by the thermal inertia of the building. This result matched the
findings in Paper D, which will be discussed in the following chapter.

Final words on grey­box
It is worth mentioning that it was remarked in the work by Hammarsten [53] that if the
dynamic effects of a building could not be omitted, the expression for the energy signature
follows

Φt = ϕx,t + β0(Tout,t − Ti,t) + Ci
dTi
dt

+ εt , (3.23)
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where Φt represents the heating load of a building and the variable ϕx,t represents un­
modelled heat gains and losses, e.g. solar gains, ventilation losses, occupant activity.

Equation (3.23) emphasises that, at any given time, the necessary heating load in a build­
ing needs to match the losses to the outdoor air and take into account other factors that
are bundled in ϕx,t.

The inclusion of the derivative term echoes Equation (2.2) from Section 2.2. It is straight­
forward to rearrange Equation (3.23) such that,

Ci
dTi
dt

= ϕx,t + β0(Tout,t − Ti,t) + Φt + εt (3.24)

and notice indeed that Hammarsten [53] already suggested a SDE to study the building
energy dynamics. Moreover, the parameter ϕx,t becomes more transparent: according to
the model in Equation (2.7), ϕx,t would contain the heat transferred to the thermal mass
and the solar gains.

This example underlines the importance of acknowledging the assumptions behind well­
known building models. Despite having numerous mathematical tools to study the energy
use in buildings, the fundamental processes that describe the energy flow are the same.
Understanding this will allow the modeller to adapt the above­mentioned model structures
to numerous ”real­world” circumstances and develop new models that are compact, reli­
able and efficient.
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4 Out of the grey box: methods for
building model generalisation

The previous chapter was dedicated to describing models that can incorporate the thermo­
physical laws that govern energy use in buildings. This knowledge, coupled with crucial
assumptions, maximises the amount of information that can be extracted from limitedmea­
surements from buildings. The presented methods were dedicated to individual buildings;
however, to deploy impactful strategies to mitigate the effects of buildings energy over cli­
mate change, we must have tools that allow us to scale up our building models to study
the entire building stock.

There are already large­scale studies dedicated to planning energy demand [56], esti­
mating the needs for retrofit [57], or characterising the building stock [58]. These studies
rely on gathering data from numerous buildings to draw unified conclusions, complicating
the modelling task. A significant challenge of working with measurements from multiple
occupied buildings is that the differences in living habits and user needs will cause a con­
siderable amount of noise in the data. In addition, the concrete phenomena behind this
noise might be virtually impossible to model explicitly.

This chapter proposes methods to account for phenomena that affect the heat flow in
buildings, but we can not capture explicitly due to their randomness or complexity. The
chapter is divided into two main sections. First, the concept ofmixed effects is introduced,
a modelling framework that can be used to refine the analysis of the uncertainty of building
models; then, an array of different support methods are presented that can be adapted
to bypass typical challenges met when modelling a building’s energy flow. All methods
discussed are flexible and can be included in the models discussed in Chapter 3. Thus,
this chapter intends to work as an upgrade to a modeller’s toolbox to study how the energy
is used in occupied buildings.

4.1 Mixed effects models
This section presents the framework of mixed effects (ME) modelling. This modelling
approach makes it possible to expand individual building models and study a population
of buildings.

Section 4.1.1 gives a short conceptual description of ME models and their interpretation.
Then, Section 4.1.2 provides a more detailed mathematical description.

4.1.1 A conceptual introduction
The models presented in Chapter 3 depart from the assumption that all measured vari­
ables belong to the same building. Thus, a set of parameters, β, is unique and charac­
terises our proposed model. Paper A and Paper C are examples of such an approach
since, in both cases, we treated the buildings as a single unit, and we were interested in
deducing building­specific properties. In the rest of this chapter, we may refer to β as the
fixed effects of the model.

In a model that only contains fixed effects, the only source of uncertainty is the model
noise, ε, which quantifies the difference between the measured variable and the proposed
model.
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However, instead of focusing on one particular building, it might be interesting to study and
formulate a model for a population of buildings. This requires collecting data from multiple
buildings to fit a model for the entire population. It is reasonable to expect that there will
be differences in their energy consumption profiles caused by random phenomena even
though the buildings might be similar. Examples of such phenomena include arbitrary
circumstances, like the heating habits of the occupants or other effects, which are not
realistic to be included in large scale modelling due to e.g. complicated geometry and
furniture in a building. Thus, taking measures from multiple buildings introduces a new
layer of uncertainty to the model, given the variation observed in the entire population
of buildings. Ultimately, we want to account for differences between buildings during the
modelling process.

Since we assume the causes behind the intrinsic differences between buildings can not
be measured, their impact is modelled as a random variable, U , which represents the
random effects.

We consider that the random effects are consistent throughout measurements from the
same building, so the collected data is grouped by building. Given measurements from
M buildings, we will use the parameter β to describe building characteristics that are
common to all measurements; in addition, the jth individual building is characterised by a
realisation ofU , denoted by uj . Hence, we say that the fixed effects describe mean value
characteristics of the group of buildings, and the random effects quantify the difference
between one building from the mean. Since the model contains both fixed effects and
random effects, the model is called a mixed effects model.

In this work, we only group data by building since we want to account for differences at
the building level. However, depending on the system being modelled and the available
data, we could assign random effects to different rooms, cities, or climate zones.

Figure 4.1 represents a schematic of a ME model. Notice that, according to this model,
each available observation, Xij , is described by a function of the fixed effects β, the
random effects of one building uj , and the residual noise of that particular observation,
εij . Thus, this model structure assumes that there is an underlying random variable (other
than the residuals) that affects the output of our model.

Figure 4.1: Schematic representation of a mixed effects model.

Since U is a random variable, the objective is to estimate its latent distribution. Having
access to this distribution quantifies the uncertainty introduced in the model by random
phenomena that are building­specific.

4.1.2 The formal introduction
This section provides a mathematical description of ME modelling. As done in Chapter 3,
model noise is assumed to be Gaussian distributed. For a more general description, the
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Figure 4.2: Schematic representation of sampling and profiling procedures resulting from
mixed effects model estimation.

reader may refer to Thyregod and Madsen [59].

In its most general form, a Gaussian mixed effects model follows the structure

X|U =u ∼ N(µ(β,u),Σ(λ))

U ∼ N(0,Ψ(ψ))
(4.1)

where µ(β,u) represents an arbitrary function. The parameter vectors λ and ψ are con­
stant and characterise the covariance matricesΣ andΨ. As above­mentioned, given that
U is distributed around 0, the random effects characterise the differences with respect to
the mean µ(β,u = 0). Inspecting Equation (4.1), it can be noticed that ME models follow
a hierarchical structure: the random effects characterise a lower level which describes the
variability of observations between buildings; then, given uj , the upper level uncertainty
is characterised by the residuals that describe the uncertainty between observations of
the same building.

As mentioned in the previous chapter, given a set of N observations, x, we assess the
model using the likelihood function. However, in this case, the observations come from
M different buildings; thus, we write x = {x1,1, x2,1, · · · , xN−1,M , xN,M}. To estimate the
model in Equation (4.1), we introduce the hierarchical likelihood defined as

L(θ;u,x) = fX|u (x,u;β,λ) fU (u;ψ) . (4.2)

Notice that the hierarchical likelihood depends on constant parameters, θ = (β,λ,ψ),
the measured vector, x, and random effects, u; however, the random effects are, a priori,
unobserved since they are ”embedded” in the measurements vector. Hence, to estimate
θ we integrate out the random effects by introducing the marginal likelihood defined as

LM (θ;x) =

∫
Rq

L(θ;u,x)du , (4.3)

where q is the dimension of U . In order to reduce the computational complexity during
the estimation, often the log­likelihood l(·) = log(L(·)) is used instead.

The parameter vector θ is estimated by maximising the likelihood function; i.e. using the
MLEmethod. Recall that the estimated θ̂ includes the fixed effects, β̂, and the parameters
λ̂ and ψ̂ that characterise the distribution of U andX|U , respectively. The estimation of
θ̂ has two major outcomes:

Re­modelling buildings 29



• Sampling: given ψ̂, we are able to sample values,uk ∀k > M , fromU ∼ N(0,Ψ(ψ̂)).
Then, using µ(β̂,uk) it is possible to simulate buildings that behave similarly to the
M buildings that we have measurements from.

• Profiling: given the data from the M observed buildings, it is possible to estimate
what are the random effects of those buildings. Mathematically, this is written as

û = E[U |X = {x1,1, x2,1, · · · , xN−1,M , xN,M}] . (4.4)

Sampling and profiling are schematically presented in Figure 4.2. The methods used for
estimation, sampling and profiling depend on the complexity of the model structure µ(·).

Linear mixed effects
When the function µ(·) is a linear function, we may write the linear mixed effects model
as

Xij = Ziβ +RU j + εij . (4.5)

where the sub­index i denotes the ith observation and the sub­index j denotes the ob­
servation comes from the jth building. The vector Zi contains the ith observation of the
external variables.

The model in Equation (4.5) can be written in compact form as

X = Zβ +RU + ε , (4.6)

where Z and U now are constant matrices. It is easily seen that Equation (4.6) is a
straightforward extension of the classic linear model from Equation (3.13). As explained
in Thyregod and Madsen [59], the linear structure simplifies the model estimation since it
is possible to find a closed form solution to Equation (4.3) and obtain β̂. Lastly, β̂ can be
used to estimate û.

Non­linear mixed effects
Random effects can be used in more complex model formulations; in that case, it is often
necessary to use mathematical tools to reduce the computational requirements during the
estimation.

A popular method to reduce the computational requirements is to compute the Laplace
approximation of the log­likelihood of lM (·). The Laplace approximation uses the Taylor
expansion of the log­likelihood with respect to the unobserved random effects u. The
Taylor expansion is truncated at second­order and centred around the optimum û. Thus,
the marginal likelihood in Equation (4.3) can be simplified as

lM,LA(θ,u,y) = l(θ, ũ,x)− 1

2
log
∣∣∣∣H(û)

2π

∣∣∣∣ , (4.7)

where H(û) = −∂2l/∂u2|u=û. Notice that, as opposed to the linear case, since the
Laplace approximation of the likelihood is defined around û, the estimation of the fixed
effects, the variance parameters and random effects occurs simultaneously; hence, it is
necessary to use an efficient optimiser.
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Figure 4.3: Map representing different variants of the likelihood function

Figure 4.3 shows a schematic map of the different estimation methods that can be used
depending on the model structure. Additional details of the estimation process of mixed
effects models can be found in Thyregod and Madsen [59].

A linear mixed effects model was used in Paper B to simulate daily heating load pro­
files of office buildings; the model was a direct expansion of a fixed­effects linear model
developed by Lindberg, Bakker, and Sartori [60]. Paper D introduced a non­linear mixed
effects model to characterise the daily heating load of a population of buildings. Moreover,
given the estimated random effects, in Paper D it was possible to refine the characterisa­
tion of the initial population of buildings by estimating the random effects of the measured
schools. This was used as an alternative to more classic characterisation approach that
relies on qualitative data.

4.2 Support methods
This thesis has shown different model structures that can be used to develop data­driven
models which do not require extensivemeasurements and building information. So far, the
chapter has focused on mixed effects, which helps evaluating the impact of unobserved
phenomena on a particular model. Similarly, this section introduces different modelling
techniques to enhance the discussed models.

The tools presented here are not sorted in any specific order; they are independent and
can be used regardless of the modelling choice. These tools have been selected so a
modeller may incorporate them to improve a model’s ability to cope with events that are
challenging to capture.

Weighted least squares
Chapter 3 introduced the method of least squares (LS) to estimate the model parame­
ters for the linear model in Equation (3.13). The LS method implicitly assumes that the
model residuals are independently and identically distributed (iid); i.e, the residuals are
distributed by ε ∼ N(0,Σ = σ2I). This is known as the ordinary least squares (OLS).

However, unmodelled phenomena might affect the correlation of residuals, so the as­
sumption of independence is no longer reasonable. In that case, the residuals are going
to be correlated, and the correlation can be described by the matrix Σ. Then, given N
observations ofX and Z, to estimate β̂ we are interested in minimising

S(β) = (x−Zβ)⊤Σ−1(x−Zβ) . (4.8)
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Notice the difference with Equation (3.16). Then, the parameter estimator is found by
solving

(
Z⊤Σ−1Z

)
β = Z⊤Σ−1X , (4.9)

where Σ weights the influence of the different N residuals and includes the correlation
structure. For this reason this method is known as the weighted least squares method
(WLS); other source call this method generalised least squares.

In Paper A, the WLS method was used to minimise the effects caused by measurement
noise that the model could not capture. The paper compares the results obtained with
OLS and WLS, and it is seen that the latter provides a better fit.

Non­parametric methods: B­spline curves
B­splines are a family of n piecewise polynomial curves that are continuously differen­
tiable to a certain order. The n curves are defined over a given range and connected
through multiple particular points called knots. Given these curves’ smooth and continu­
ous properties, they can be used for interpolation and function smoothing.

It is important to remark that these curves are generated directly given a range x, n,
the number of knots and their position. Thus, they do not follow an explicit polynomial
formula. For this reason, the use of splines is often labelled as a non­parametric method;
more details about splines and other non­parametric methods can be found in Hastie,
Tibshirani, and Friedman [61].

The properties mentioned above make splines a good candidate for estimating variable
dependencies that are too complex to formulate explicitly. An example of using splines to
model is depicted in Figure 4.4; the left­most sub­figure shows arbitrary measurements
of a variable, y compared to measurements of another variable x; it can be seen that the
dependency between variables is clearly non­linear. Given the range x, we define a family
of n = 5 spline curves, Bi (solid black lines). Then, by fitting a simple linear model, using
the curves as input variables, it is possible to model the relationship between x and y.

Figure 4.4: Figure representing the fitting of non­linear relationship using spline curves.

In a building context, B­spline curves have been suggested to incorporate the effects
of solar irradiation in grey­box building models [62, 63] since solar gains change during
the day given the incidence angle potential shading, among other causes. In Paper D,
B­splines were used to model the effects of solar irradiation over the daily heating load.

Data selection and transformation
It is possible to maximise the information extracted from the available measurements
through careful selection. Similarly, data can be transformed to ease the estimation pro­
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cess. This section provides notable examples of literature that used selection and trans­
formation to improve their results.

A straightforward approach is to perform a data­oriented selection of the measurements.
Ghiaus [64] suggested selecting only data from the inner quantiles for using the energy
signature (ES) to predict the heating load of buildings; their method ensured more robust
results when applied to different data sets. Kamel, Sheikh, and Huang [65] confirmed
that the importance of different input variables changes when modelling heating and cool­
ing load and highlighted the importance of selecting the appropriate features to model a
system.

On the other hand, we can use domain knowledge to select data correctly. Since buildings
are known physical systems, it is possible to foresee potential biases in the data and
try to remove them through data selection. A clear example is the work of Vesterberg,
Andersson, and Olofsson [66], who paired data symmetrically around the winter solstice to
remove the effects of the solar gains in their model. Paudel et al. [67] used a dynamic time
warping (DTW) method to identify similar climatic days and improve their prediction of the
consumption of low energy buildings. Eriksson, Akander, and Moshfegh [68] developed a
variant of the ESmethod that included an estimate of the domestic hot water consumption;
they selected only measurements from 00:00­5:00 to reduce the noise caused by the
occupants.

Paper A used a hidden Markov model to select decaying indoor temperature data from
night periods. Thus, the chosen data belonged to periods where typical variables that
could affect the indoor conditions, such as solar irradiation and heating load, were negli­
gible.

Buildings are dynamic systems that contain multiple processes that evolve at different
frequencies; thus, choosing the correct temporal resolution may significantly impact the
results. Working with coarse­resolution data is beneficial for smoothing out disturbances
caused by events that only happen at higher frequencies: intra­day heating patterns and
dynamic effects of the building elements are omitted when data is logged or aggregated
coarsely enough [26]. Typically, if the resolution is daily or lower, one can consider the
measurements to be static, even though buildings with high inertia can still present dy­
namic effects that are longer than a day, as discussed in Rasmussen et al. [55] and
Paper D. Moreover, the potential importance of long­lasting dynamic effects had been
already hinted in Paper A, where the long time constants that characterised the heat loss
to the outdoor air were significantly larger than 24 hours.
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5 Discussion of contribution
This section presents the main findings of this thesis. As explained in Figure 1.2, the
results are split into three transversal tracks: simplified grey­box, reduced features and
scalable models.

5.1 Simplified grey­box
Paper A illustrates the benefits of acknowledging the fundamental processes that govern
the energy flow in buildings. The available data set contained only measurements of the
indoor air temperature of a population of Danish single­family houses. In addition, the
outdoor air temperature was measured. However, it was possible to retrieve valuable
insight into the energy performance of the buildings by developing a physics­based ARX
model.

Figure 5.1 shows one week of measured indoor temperature for one building. Notice that
it shows a continuous decay pattern during the night, matching the behaviour of buildings
with night setbacks.

Figure 5.1: Decays for three example buildings

During the night, it is expected that the noise in the data caused by occupants is minimal.
In addition, the solar gain is zero, and the outdoor air temperature is relatively stable. The
trend in Figure 5.1 suggests that the heating load is turned off during night hours. In these
conditions, the primary process governing the decay pattern in Figure 5.1 is the heat loss
to the outdoor air.

Departing from the SDE buildingmodel introduced in Figure 2.1, it was possible to develop
the following ARX model

Ti,t = θ1Ti,t−1 + θ2Ti,t−2 + ωTout,t−1 + εt (5.1)

that only relied on variables that we had measures from. The model was computation­
ally light and easy to interpret, so it was possible to use the outcome of the model to
characterise the potential of the different buildings as a thermal storage units.

To fulfil the above­mentioned assumptions, it was necessary to only select measurements
from continuous decaying periods. As explained in Paper A, a series of temperature in­
crements was computed using the time­series of indoor temperature measurements to
appropriately select the data; the increments that belonged to a period of continuous tem­
perature decay had a different distribution from the rest of the increments. This difference
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was used to identify and select only the data points that fulfilled our needs. The method
was inspired by the work of Wolf et al. [69], which detected the presence of occupants by
monitoring CO2 concentration.

The data used did not include occupancy data; yet, it was assumed that occupant related
activity was more likely to concentrate during the early hours of the night, causing more
noise in the indoor air measurements. This was introduced to the model by the means
of the weighted least squares (WLS) method so earlier measures had less weight in the
estimation.

The results showed that the proposed ARX models captured the main dynamics that gov­
ern the heat loss of the building, which, since the model was physics­based, made it
possible to evaluate the potential of the studied population of buildings to be used as
heat­storing units. Furthermore, it is seen that the model fit obtained using WLS is better
than using OLS.

The results of Paper A showed that, in the absence of other influential variables, the
energy dynamics of a building were well approximated by a second­order ARX system.
This outcome was a crucial assumption in Paper C, where, instead of using only indoor
air measurements, the main variable was the heating load.

The building used in Paper C was not occupied as it is part of a research facility. Thus,
the data set resulted from a series of experiments where the building heating system
was excited to simulate occupants’ activity. There were numerous sensor measurements
available in different rooms of the building; however, the building was treated as a single
unit for simplicity.

The ARX model used was

Φt = αt + β1Tout,t + φ1Tout,t−1 + φ2Tout,t−2 + εi (5.2)

where Φt is the heating load of a building and Tout is the outdoor air temperature. As
explained in Paper C, the variable αt is a function of passive gains and losses of the
building and the indoor air temperature value.

The main challenge of using Equation (5.2) was the inclusion of the variable αt since it is a
proxy dynamic variable that is not being observed. The ARX model was transformed into
a state­space formulation to have an estimation of the variable; where αt was defined as
a random walk. This made it possible to use the Kalman filter to reconstruct the variable
based on the given model structure using only weather data and consumption data.

Figure 7 in Paper C shows the reconstructed αt, compared to the distribution of indoor
temperatures from different sensors in the building. It can be noticed that the proxy vari­
able resembles the distribution of temperatures, which suggests that, with the appropriate
building model, it is possible to gather insights into the indoor conditions using only out­
door measurements.

The model in Paper C was conceived to be a dynamic version of the energy signature
(ES). Thus, the results obtained with the model in Equation (5.2) were compared with the
classic ES estimates. Figure 5.2 extends the comparison shown in Table 1 inPaper C, and
visualises the estimated energy signature computed with the static and dynamic method;
it is shown that the dynamic model provides a good representative of the studied building.
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Figure 5.2: Comparison of dynamic and static ES results

Still, it can be noticed that the data points in Figure 5.2 show considerable noise around
the estimated trends. Since the data comes from an experimental set­up from the test
building, the typical drivers of the heating load are mixed with the experiment purposes.
Moreover, notice that the uncertainty of the estimated parameters is larger for the dynamic
case, which suggests that the dynamic model is a better representative of the thermal
behaviour present in the data.

The current EU annual renovation rate is around 1%, and it should increase to about
2%­3% [70] to meet EU 2050 policy goals. However, identifying retrofitting opportunities
is not easy since the building databases are often either incomplete or not up to date.
The results shown in this section suggest that buildings can be studied at a large scale
using limited data resources. The proposed methodologies represent low­cost methods
to obtain insights into the energy performance of buildings in the operation phase. In
addition, reducing the required variable to a minimum will help ensure that the users’
privacy is respected.

5.2 Reduced features
In Paper A, a second­order ARX was proposed to model the heat loss of a population
of single­family houses. The linear second­order model structure made it possible to
describe the heat loss of each building using two time constants.

One of the time constants, the smallest, characterises the fast heat loss between the in­
door air and its surroundings, represented by the thermal mass. The largest time constant
describes the time it takes for the heat to be transferred to the ambient air.

It was shown that the two time constants describe the heat loss trend of the indoor air
temperature. Thus, reducing buildings to these two parameters presents the opportunity
to map populations of buildings, as shown in Figure 5.3. The map gives an easy­to­
interpret overview of the thermal behaviour of a population of buildings and could be used
by grid operators to select appropriate clusters to deploy a particular demand­response
strategy.

This was validated by developing a simulation framework where different building types
were simulated to follow different penalty signals and evaluate their flexibility. It was shown
that the buildings with the largest time constants could supply more flexibility.

In Paper D, the Gompertz curve was proposed to model the heating load of a building.
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Figure 5.3: map of time constants.

The curve is a monotonic function described as

y(x) = Aexp(C exp(x−Q)) , (5.3)

and it is characterised by three parameters {A,C,Q}. Using the non­linear curve to model
the heating load allowed: i) transitioning smoothly from heating regime to non­heating
regime, and ii) estimating the capacity of the heating system.

As described in Figure 2 in Paper D, each parameter in the Gompertz function charac­
terises a very distinct aspect of the curve, and it was possible to link them to known
weather variables that impact the heating load. Figure 7 in Paper D shows the fit of the
model for an arbitrary apartment block and the value of the parameters {A,C,Q}. Figure
5 in Paper D confirms that the three parameters completely describe the weather depen­
dence of a building, as the residuals do not show significant dependency. It is seen that
there is still auto­correlation in the residuals, which is likely caused by the thermal intertia
of the building. Given the purposes of the model in Paper D, this auto­correlation was
small enough to be disregarded.

Working with a low order model made it possible to include random effects in each of
the main parameters. Consequently, the estimated random effects were estimated for
a population of 45 Norwegian buildings. The random effects were clustered and two
sub­categories were identified in the initial training population. As shown in Figure 14 in
Paper D, one of the sub­categories contained low energy buildings.

The dataset used in Paper D had been carefully cleaned and presented good quality data;
it contained numerous hourly measurements and technical details of the measured build­
ings. Yet, the qualitative information about the buildings was incomplete and insufficient
to categorise all buildings in the training set. On the other hand, reducing the weather
response to a reduced number of characteristic parameters made it possible to study effi­
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Figure 5.4: Schematic of the model in Paper B

ciently the weather response of every building in the training population and improve the
initial categorisation.

5.3 Scalable models
All models discussed in this thesis have been developed aiming to overcome data limita­
tions using domain knowledge and statistical methods. Models that use fewer variables
will be easier to scale up because they do not require any complex installation of sensors.
In particular Paper C, Paper B and Paper D used heating consumption, which is, by de­
fault, stored by utility companies and weather measurements, which are often accessible
as there exist numerous weather services that provide weather­related data.

Even thoughPaper A requires indoor measurements, the estimationmethod only requires
measurements from night time, allowing the user to use the building as preferred during
the day. Buildings already use a night setback strategy to reduce energy use and increase
economic savings, so taking measurements during these periods and estimate the heat
loss behaviour is proposed as a less intrusive than other alternatives such as the QUB
method [71].

The ME framework was presented to overcome the data limitations of buildings. Occu­
pant preferences, complex geometries or poor craftmanship will impact the energy use in
buildings, but it is not realistic to measure these effects at a large scale.

Paper B used ME models to directly expand the work from Lindberg, Bakker, and Sar­
tori [60], who proposed a linear model to simulate hourly heat load profiles for building
categories. The initial model was a linear fixed effects model, and it was necessary to
create an extensive data set containing around 300 variables. The model was solved
using STATA, and it was deterministic. The ME alternative in Paper B reduced the model
structure considerably, requiring 52 variables.

The proposed model was divided into three main blocks, as depicted in Figure 5.4; one
block contained the hourly schedule of the heating system, another block contained the
seasonal base consumption, and the third block contained weather effects. Random ef­
fects were added to the seasonal base consumption and the effects of the weather; i.e.,
the model was built under the assumption that different buildings would have different
baseline consumption and would react differently to changes in climatic conditions.

The hierarchical characterisation of the model uncertainty worked two­fold: i) it provided
a stochastic simulation tool to generate realistic heat load profiles, and ii) allowed to draw
a confidence region for the heating load all year round. This refinement of the uncertainty
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of the model rendered the model as a more robust simulation tool to generate heating
load profiles.

Figure 5.5 shows a stochastic simulation using the model from Paper B of the hourly
heating load of an office building. The figure includes the confidence region and the actual
consumption of one test building. Including the uncertainty around the simulation is key
for planning possible consumption scenarios of the building stock. Notice that the trend
of the test building is captured. In addition, on the days the consumption deviated from
the simulated mean, it still falls inside the 90% confidence region.

Figure 5.5: Simulation hourly heating load profile

One of the main objectives of Paper D was to allow the uncertainty to change throughout
the year and adapt to the heating regime change since a symmetric uncertainty like de­
picted in Figure 5.5 is not realistic. Especially during warm periods, when the heating is
low, symmetric uncertainty would contain the possibility of predicting a negative heating
load.

Paper D used the logarithm of the heating load as the main output variable to work only
with a positive heating load and keep computational complexity as low as possible. Given
the exponential structure from Equation (5.3), the model used was

ỹ = log y(x) = logA+ C exp(x−Q) . (5.4)

InPaper D, y represented the heat consumption and x the outdoor temperature. Gaussian­
distributed random effects were added to Equation (5.4) which, when transforming back,
ỹ → y, guaranteed positive­skewed uncertainty that adapts to the heating regime change,
as can be seen in Figure 10 from Paper D. Moreover, the non­linear model structure
ensures that the uncertainty region narrows during the warmest periods, adapting to the
heating regime change.

The parameterQ describes the horizontal offset of the curve; hence, it is a proxy of passive
heat gains and losses. For this reason, in Paper D, it was assumed that Q was a function
of the solar irradiation. The structure of this function was not known since this would
require a detailed description of relevant factors like the building orientation or potential
shading. For this reason, Paper D uses spline curves to model the dependence between
Q and solar irradiation. Figure 10 in Paper D shows the fitted non­linear effect of the solar
irradiation; the inclusion of splines improved the quality of the fit and provided valuable
insight into the solar gains without burdening the computation.

Given the non­linear structure described in Paper D, it was necessary to use the Laplace
approximation to estimate the model. The fitted model was tested with a set of out­of­
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sample buildings, and it was shown that the model was robust and the estimated model
captured most of the test data.
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6 Conclusion and final words
Measured data in buildings is a crucial resource for investigating how energy is used in
operative, fully­functioning buildings. Monitoring devices and computational power have
become cheaper andmore accessible, so the usage of data­drivenmethods to study build­
ings has increased in recent years. Still, buildings are complex systems, and numerous
processes impact energy use, which poses the question of which variables need to be
measured and how.

Data collection is not homogeneous since many different stakeholders participate in the
energy management of buildings. Therefore, measuring a particular variable will require
the involvement of specific parties, which might cause challenges in collecting the neces­
sary information. Often, data collection campaigns can only gather partial details, making
it challenging to have a consolidated database of real buildings.

Furthermore, data­driven models based on classic building models often use abundant
data to try to capture the numerous processes that intervene in the heat transfer in build­
ings. Given the complexity of the heat flow in buildings, this classic approach leads to
building models that require measuring many processes.

The issues mentioned above represent a challenge for the application of data­intensive
models. Data scarcity is a recurrent problem which influences the potential developments
of new technologies. Thus, it is necessary to find methods to overcome these limitations.

A traditional alternative to data scarcity is to use building simulation tools to generate ar­
tificial data. On the other hand, many authors have identified differences between the
predicted consumption during the design phase and the actual consumption during oper­
ation. This performance gap suggests that using simulated data to develop data­driven
building models may not provide reliable results.

Buildings physics is a developed field, and there exists a solid understanding of the fun­
damental processes that govern the energy use in buildings. This domain knowledge
can be combined with statistical methods to overcome data limitations. This concept is
often referred to as grey­box modelling. In practice, the term is used to describe lumped
resistance­capacity models based on stochastic differential equations (SDE). However,
this thesis suggests that the description of grey­box modelling may fit other model struc­
tures; e.g. linear auto­regressive models are often treated as black­box, but they can be
derived from the typical classic SDE structure and hold physical interpretation.

Paper A proposed a model to describe the indoor air temperature decay of a population
of Danish houses. Since the underlying physical equations that describe the heat flow
are known, it was possible to describe the temperature decay with a second­order ARX
model that needed only indoor air and outdoor air temperature measurements. Moreover,
prior physical knowledge was necessary to select the appropriate data and fulfilled our
modelling goals.

The results of Paper A were used in Paper C to develop a dynamic model to estimate the
indoor conditions of a building. The proposed method was used to reconstruct a proxy
variable that contained information of the indoor conditions of the building. Given the prior
knowledge on building energy dynamics, it was possible to link the proxy variable to the
indoor temperature of the buildings, even though indoor air temperature measurements
were not used during its reconstruction.
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Preserving the physical interpretation of the models was crucial to reduce complex sys­
tems into simpler structures that could be characterised using a reduced number of fea­
tures. Paper A reduced the dynamics of residential buildings to two parameters that
characterised the potential of the buildings to participate in demand­response strategies.
Paper D proposed a non­linear structure to model the heating load of a building as a
function of climatic conditions. Even though the model was not directly derived from ther­
modynamic equations, given the prior knowledge of the main drivers of the heating load, it
was possible to reduce the weather response of a building to three parameters that were
easy to interpret.

Expanding the study of energy use to larger populations of buildings adds a layer of un­
certainty since energy will be used differently in different buildings. Thus, it is necessary
to quantify the diversity of the building stock to develop adequate strategies that optimise
the building energy use.

In particular, we proposed a mixed effects (ME) modelling framework, which proved to be
a flexible method to efficiently capture random differences in the building stock.

In Paper B, a model was proposed to describe heating profiles for a given building typol­
ogy. It was shown that, since ME captured the uncertainty caused by building differences,
themodel is amore robust stochastic simulation tool than its deterministic counterpart. Pa­
per D presented a non­linear model structure that adapted to the heating regime changes
throughout the year.

In addition, theMEmodelling framework was used to extend the knowledge of ameasured
population of buildings. Traditionally, buildings are categorised based on archetypes and
qualitative information. For example, literature uses the building typology, the year of
construction, and other static characteristics to divide the building stock into clusters of
buildings with similar energy use. However, this qualitative approach relies on data that is
easily missing or outdated. Moreover, using only qualitative characteristics overlooks in­
trinsic differences between buildings, such as the occupants’ preferences and built quality.
Yet, trying to assess the amount of detail necessary to describe the building stock com­
pletely is not feasible at a large scale due to technical factors and privacy concerns.

In Paper D, the ME framework was used to evaluate the differences between individual
buildings and the mean of the population. These differences were clustered and two sub­
groups were identified in the initial training population. This outcome suggested that the
initial categorisation was not accurate due to incomplete data from the building side.

Building energy modelling combines multiple study areas, which requires a partnership
between many different parties. Still, the end goals are shared among the participants,
namely, reducing energy waste, minimising the negative impact on climate and bringing
societal value.

In an effort to find the right solutions, we may aim as far as possible, assuming that,
since our scientific goals are so big, the answer shall be distant. However, progress can
still happen by focusing inwards. This thesis re­framed different modelling approaches
that benefit from well­known fundamentals to strengthen our insight into how we use en­
ergy in buildings. The results were obtained without abundant resources and keeping
the model complexity low. The presented outcome may help future research determine
what is needed to develop the building stock that ensures sustainable growth and living
conditions.
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Appendix
I LS, PEM and MLE
This section gives more complete description of the least squares method (LS), the pre­
diction error method (PEM) the maximum likelihood method (MLE).

First let’s introduce a series of N observations

(y1,x1)(y2,x2) · · · (yN ,xN ) ,

where yi is the output variable and xi a vector of input variables; with i ∈ [1, ..., N ].

To model this series of observations, we want to find a function µ(·) such that

yi = µ(θ;xi) + εi , (I.1)

where θ is the parameter vector that characterises µ(·) and εi ∼ N(0, σ2
ε). To reduce

notation, we introduce

y = {y1, y2, · · · , yN} (I.2)
x = {x1,x2, · · · ,xN} (I.3)

I.i Least squares (continued)
The LS method uses the sum of squared errors (SSE) as a measure of how close the
model, µ(·), is to the observed series. Thus, the parameters that better fit the model are
found solving the following optimisation problem

θ̂ = argmin
θ

S(θ) , (I.4)

where

S(θ) =
N∑
i=1

ε2i (θ) . (I.5)

The estimates of θ satisfy that

∇θS(θ = θ̂) = 0 . (I.6)

In case µ(·) is linear, as seen in Equation (3.16), the function S(θ) can be written as

S(θ) = (y − xθ)⊤Σ−1(y − xθ) . (I.7)

In addition, the linear structure allows to write Equation (I.6) as
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∇θS(θ) = −2x⊤Σ−1(Y − xθ) = 0 . (I.8)

Hence, solving Equation (I.8) allows writing the parameter estimator in closed for as

θ̂ = (x⊤x)−1x⊤y . (I.9)

I.ii Prediction error method
Notice that, in case the proposed model structure contains a MA term, the vector x will
contain values of past residuals, εt. In such case, Equation (I.9) can not be used to
compute the estimator due to, by definition, the value of the residuals are not known prior
model estimation.

The prediction error method is a generalisation of the LS estimation method were the
residuals are recursively estimated one­step ahead. In practice, there are two approaches
to use the prediction error method:

• Conditioned estimation. In this case, it is assumed that all residuals

εp = εp−1 = · · · = εp+1−q = 0 .

Then, at every time­step, εt can be computed.

• Unconditioned estimation. This estimation method defines a stationary model to
predict past residuals by back­forecasting.

More details on the estimation methods can be found in Madsen [44].

I.iii Maximum likelihood estimation
The MLE method aims at maximising the joint probability of observing y given the param­
eters θ and inputs x. In general, the likelihood function can be written as

L(y;θ, σ2
ε) =

N∏
i=1

f(µ(xi,θ), σ
2
ε) , (I.10)

where f(·) represents the distribution that characterise the residuals.

Thus, the MLE method requires an assumption about the distribution. Typically, it is as­
sumed that ε is normally distributed so f(·) can be written explicitly as

f(µ(xi,θ), σ
2
ε) =

1

σε
√
2π

exp(−ε2i (θ)/2σ
2
ε) . (I.11)

Inserting Equation (I.11) in Equation (I.10) yields

L(y;θ, σ2
ε) = (σ2

ε2π)
−N

2 exp

(
− 1

2σ2
ε

N∑
i=1

ε2i (θ)

)
, (I.12)

and taking the logarithm yields
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logL(y;θ, σ2
ε) =

N

2
log(σ2

ε)−
1

2σ2
ε

N∑
i=1

ε2i (θ) + c , (I.13)

where c is a constant. Then, in order to find the value of σ2
ε that maximises the log­

likelihood, we solve which gives the

∂ logL
∂σ2

ε

= 0 → σ̂2
ε =

∑N
i=1 ε

2
t (θ)

N
(I.14)

Finally, inserting σ̂2
ε in Equation (I.13) it is seen that the parameters θ that maximise the

likelihood are obtained by minimising S(θ) from Equation (I.5). Thus, for linear systems
with normally distributed noise the LS method is analogous to using the MLE.

II ARMAX to state space transformation
Chapter 3 proposed using state space models as a foundation to develop physics­based
ARMAX model. This section introduces a basic structure to showcase how to transform
an ARMAX(p,q) to state­space.

Consider the model defined as

Yt + ϕ1Yt−1 + · · ·+ ϕpYt−p = β1U1,t + · · ·+ βmUm,t + εt + θ1εt−1 + · · ·+ θqεt−q . (II.1)

First, let’s define the state vector as

Xt =
(
X1,t X2,t X3,t · · · Xd,t

)⊤
, (II.2)

and the vector of inputs

U t =
(
U1,t U2,t · · · · · · Um,t

)⊤
. (II.3)

Notice that, since the inputs are considered deterministic, past measurements of external
inputs can be re­arranged such that Ui,t−1 → Uj,t for an arbitrary i.

Then, it is possible to define the following matrices

A =


−ϕ1 1 0 · · · 0
−ϕ2 0 1 · · · 0
...

...
... . . . ...

−ϕd−1 0 0 · · · 1
−ϕd 0 0 · · · 0

 , G =


1
θ1
...

θd−1

 ,

B =


β1 0 · · · 0
0 β2 · · · 0
...

... . . . ...
0 0 · · · βm

 , C =
(
1 0 · · · 0

)
,

(II.4)

to write the following state space
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Xt =AXt−1 +BUt +Gεt

Yt =CXt
(II.5)

where d = max(p, q + 1) and additional parameters are set to zero.

For the sake of simplicity, the observation noise has been omitted. In case this assumption
is not valid, there might be issues with the uniqueness of the estimated model as the
observation noise and system noise might not be distinguishable.

III Time constants and eigenvalues
The time constants of a system can be computed using the eigenvalues of the design
matrix describing the system in state­space form. To present this approach and to link
it to the method described in Chapter 3, we use an arbitrary example. For the sake of
clarity, the example is based on a simple deterministic model; however the interpretation
is equally valid for the stochastic system with additive noise.

Given a linear system system defined by

dx
dt

= Ax (III.1)

with x being a state vector of dimension p, the general solution of the system in Equation
(III.1) is given by

x(t) = exp(A(t− t0))x0 , (III.2)

where x0 represents the initial conditions of the state and t0 the initial time; from now on,
it is assumed that t0 = 0. As discussed in Chapter 3, Equation (III.2) underlines that the
dynamic behaviour of x(t) is defined by the design matrix A.

The matrix A can be diagonalised such that

x(t) = exp(PΛP−1t)x0 , (III.3)

where P contains the eigenvectors of the system as columns and Λ is a diagonal matrix
with the eigenvalues in the diagonal.

Equation (III.3) can be further decomposed such that the solution of the ODE in Equation
(III.1) is written as a linear combination of the eigenvectors vk ∀k ∈ [1, · · · , p] as

x(t) = c1e
λ1tv1 + c2e

λ2tv2 + · · ·+ cpe
λptvp , (III.4)

where λk represent the eigenvalues and ck are constants that depend on the initial condi­
tions x0.

Finally, the time constants of the system in Equation (III.1) can be computed by

τk = − 1

λk
. (III.5)
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Equation (III.4) indicates that the temporal evolution of the state can be split into different
exponential processes. Then, the magnitude of each time constant quantifies the relative
importance of each different process as time advances; e.g. a small time constant ,τk, is
given by a large eigenvalue, λk, which suggests that the influence of the process defined
by vk diminishes fast.

Notice that the exponential terms in Equation (III.4) and the definition on Equation (III.5)
echo the definition of the time constants given a transfer function in Equation (3.21).

For a detailed example of the use of eigenvalues and eigenvectors to study the evolution
of indoor temperatures inside of a building, the reader may check Madsen and Holst [30].
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Abstract

Buildings account for a large portion of the total energy consumption and they might serve as a significant thermal storage
capacity that can be advantageous for the future energy grid. To utilise this capacity, it is necessary to characterise the thermal
dynamics in buildings using methods that are general enough to be applicable to a significant share of the building stock. This work
proposes a data-driven method to characterise thermal dynamics of thermostatically controlled buildings with night setback. The
method includes 1) using Hidden Markov Models to systematically select data periods when the indoor temperature decays steadily
during night; 2) model reduction of a Stochastic Differential Equations model of heat transfer to a discrete linear model which is
fitted by utilising the selected night-time data; and 3) computing one short time constant and one long time constant, which allows
to categorise buildings according to their thermal response. This method is applied to 39 different Danish residential buildings and
the results reveal that this simplified model captures the main processes governing the heat transfer: the one-step predictions for the
indoor air temperature return 95% of the residuals ∈ [−0.05°C, 0.05°C]. For all buildings, the short time constants are lower than
an hour, and the long time constants range from 20 hours to 100 hours. Finally, this method is used in simulated data to validate
that the time constants provide insight about the energy flexibility potential of a building. The results show that dynamic thermal
response of buildings can be discovered using limited data.

Keywords: Thermal building characterisation, data analysis, modelling, energy flexibility, demand response

Nomenclature

Variables
Ti Indoor air temperature [K]

Tm Thermal mass temperature [K]

Ta Outdoor air temperature [K]

Φh Space heating [kW]

Ig Solar irradiation [kW/m2]

ν(i)
t white noise term ∀i, j ∈ [1, 2] -

Parameters
Ri Thermal resistance: indoor air↔ thermal mass [K/kW]

Ra Thermal resistance: indoor air↔ outdoor air [K/kW]

Ci Thermal capacity of the indoor air [kWh/K]

Cm Thermal capacity of the thermal mass [kWh/K]

Aw Effective window area [m2]

σ1 Incremental variance of Ti [K]

σ2 Incremental variance of Tm [K]

∗Corresponding Author
Email address: jpre@dtu.dk
Postal Address: Anker Engelunds vej 1, Building 101A, 2800 Kongens Lyngby, Denmark

θi Auto-regressive parameter of order i ∀i ∈ [1, 2] -

Γi j Parameter of the discrete inputs matrix ∀i, j ∈ [1, 2] -

φi j Parameter of the discrete design matrix ∀i, j ∈ [1, 2] -

Acronyms
SDE Stochastic Differential Equation

DR Demand Response

FI Flexibility Index

FF Flexibility Function

AR Auto-Regressive

ARX Auto-Regressive with eXogenous inputs

HMM Hidden Markov Model

OLS Ordinary Least Squares

WLS Weighted Least Squares

TES Thermal Energy Storage

1. Introduction

In order to successfully transition from fossil fuel to renew-
able energy based supply at a large scale, it is necessary to
understand buildings’ thermal dynamics as they will be a key
asset in the future flexible energy systems [1].
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A main contributor to this green transition, will be the de-
ployment of Demand-Response (DR) strategies [2], i.e., alter-
ing the demand-side of the buildings energy load to match the
requirements of the grid. These requirements range from, bal-
ancing frequency, maximising the renewable energy share, or
reducing energy peaks [3].

Space heating takes a major part of the energy load in build-
ings, specially in colder regions. Then, in order to use DR
strategies, buildings need to be prepared to store and release
heat when needed, without affecting severely the comfort of
their users. Residential buildings in particular, can be used as
thermal storage units (TES), and heavy buildings are specially
suited for that task without risking indoor comfort [4]. In addi-
tion, the DR potential of residential buildings can be increased
through adequate retrofitting [5]. Thus, there is a need for tools
that can assess how buildings are able to store and release heat.
Moreover, these tools need to be general, considering the ex-
isting variety of residential buildings in place [6].

1.1. Literature review

There are several approaches for estimating the main indi-
cators of the building energy performance: the heat loss coef-
ficient (or its inverse, the thermal resistance) and the thermal
capacity [7]. The approach will depend on the chosen model
for the energy flow in the building. In their review, Foucquier
et al., separated the main modelling methods for buildings in
three categories: physics-based methods (white box), purely
statistical methods (black-box) and hybrid methods (grey-box)
[8].

In the first category, it is possible to find numerical tools,
such as the finite volume methods (FVM)[9]. This approach is
computationally expensive, and relies either on simulated data
or complex experimental assemble. Often, these methods re-
quire going into detail to component level to gain insight about
the building’s thermal characteristics, such as the outer wall
structure and its composition [10, 11]. A different approach,
was presented as the co-heating method [12]. This method is
based on simplified heating dynamic equations describing the
heat transfer inside a building. The co-heating method showed
accurate results assessing the energy performance of buildings;
however, it needs a meticulous experimental set up to control
and measure the temperature, and the experiment can take mul-
tiple days. In addition, the measurements are bound to the
external conditions during the experimental period. Finally,
due to the necessary infrastructure for the assessment, it can
only be performed in empty houses. Alternatively, Alzetto et
al. introduced a new method that could evaluate the building
thermal response in a two days experiment [13]. This repre-
sents an improvement from the traditional co-heating method.
Nevertheless, it still requires an extensive experimental set up.
In addition, there often exists a performance gap between the
model prediction using thermal parameters estimated with the
above methods and the real operational energy performance of
the building [14, 15].

Black-box methods have been commonly applied for pre-
dicting energy consumption of buildings. For example,

D’Amico et al. used Multi Criteria Decision-Making to com-
pare three different methods when forecasting energy demand
[16], and Finck et al. trained Artificial Neural Networks mod-
els in their simulation and demonstration work [17, 18]. Nev-
ertheless, these methods are not used for characterisation pur-
poses, as their outputs are difficult to interpret physically.
Thus, they have been omitted from this review.

For existing buildings, the grey-box model approach is often
used, as it takes into account building physics in data-driven
modelling. Bacher and Madsen studied multiple variations of
the lumped resistance-capacity (RC) model are presented [19].
In their work, it is shown that such models make it possible to
estimate the heat resistance and capacity for different compo-
nents of the house. This method allows the use of in-situ mea-
sures of operative houses. However, this approach still needs
a considerable amount of data to decouple the different pro-
cesses that are part of the energy flow. Also, the complexity of
these models can easily grow, burdening the computation. For
this reason, and specially when working with large data sets, it
is important to use strategies to reduce the order of the models,
as Goyal and Barooah suggested [20]. Even with high qual-
ity data, it could be difficult to gain insights into the building
dynamics. For instance, during the periods where the building
is thermostatically controlled, the impact of external variables
over the indoor air temperature might be masked by the effects
of the controller, which makes it impossible to estimate the
thermal capacities.

The thermal characteristics of buildings, can also be com-
puted statically, by using daily averages of the consumption
and outdoor temperature. Nielsen et al. and Rasmussen et
al. studied the impact of weather conditions in a set of danish
residential buildings [21, 22]. These approach relies on having
consumption data. In addition, by using daily values, they omit
the dynamic nature of using buildings thermal mass as TES.

1.2. Work description
In this study, we suggest a simple and efficient method to

scan residential buildings and retrieve their thermal charac-
teristics using only indoor and outdoor temperature measure-
ments. Specifically, we compute the time constants of the two
main dynamic processes that govern the heat loss in buildings.

Most of the characterisation work presented in the literature
review rely on complex model configurations that try to fit in
many building components taking part in the heat transfer of
buildings. Such studies are based on data sets with a large num-
ber of variables, e.g. temperatures of all components, which
are not commonly measured in existing buildings. In this work,
in an effort to pursue generality, we take the opposite direction
to build simple models that can capture energy dynamics of
buildings using scarce data that is easy to measure. Moreover,
this method does not require a particular experimental set-up
as it is developed based on the data that is available in many
existing dwellings in Denmark.

We focus the study to data periods that are following a night
setback schedule; i.e., periods with no heat input, where the
indoor temperature decays steadily. This schedule is a com-
monly used strategy to decrease the energy consumption dur-

2
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ing night with a lower temperature setpoint than during day-
time. During night, it can be assumed that there is no signifi-
cant influence on the indoor temperature from the users as they
most likely are asleep. There is also no solar irradiation affect-
ing the indoor temperature. Thus, the pattern of decreasing
temperature can be understood as a fingerprint that explains
the energy storage performance of the building.

There are multiple methods to identify decaying behaviours.
One example is the use of statistical change point detection
of the signal of interest [23]. In the present work, a Hidden
Markov Model (HMM) of the indoor temperatures to identify
the decaying periods. The same method was used by Wolf et
al. to detect various human activities using CO2 concentration
data [24]. The relevant data is selected and it is used to fit an
auto-regressive model. This model is derived from a Stochastic
Differential Equation system describing the thermal dynamics
in buildings.

Our method is general and can be applied to a significant
portion of the current building stocks. Moreover, the method
presented in this work is easily scalable and can be used
to identify groups of buildings with similar energy response.
Grouping buildings into clusters where the energy response is
known, can be specially relevant since it could reduce the un-
certainty of DR policies [25].

This study is divided into three sections, followed by a con-
clusion. In Section 2, the mathematical background of the ap-
plied method is explained; the model structure and its physical
interpretation are discussed, and the method for data selection
and the concepts used in the flexibility analysis are described.
Section 3 describes the data used in the study. Section 4 shows
the modelling results, an interpretation of the system dynam-
ics and the estimated values of time constant for a number of
buildings. In Section 5, a simulation framework is used to
show how the building intrinsic parameters affect the time con-
stants, and how the time constants provide information about
the flexibility potential of the building.

2. Method

In this section, it is shown how an auto-regressive model is
derived from a stochastic RC model. The purpose of this ap-
proach is to offer a physical interpretation of the parameters.
Then, it is explained how the time constants are computed us-
ing the transfer function form of the auto-regressive model.

Our proposed method only works for specific periods of
time; here, the method to select the relevant data periods is
presented.

Finally, the concepts of flexibility index (FI) and flexibility
function (FF) that we use in section 5 are presented.

2.1. Building as a second order dynamical system
Equation (1) describes a general continuous time model for

heat dynamics inside of a building. It tracks the temporal evo-
lution of two main variables inside the building: the indoor air
temperature, Ti, and the thermal mass temperature, Tm. The

model is represented as a second order linear stochastic differ-
ential equation (SDE) system. This system has three main ex-
ternal inputs: the outdoor temperature, Ta, the global solar irra-
diation, Ig, and the space heating input, Φh. This model has five
parameters {Ri,Ra,Ci,Cm, Aw} that are described in the nomen-
clature section. The uncertainty in the system is captured by
the stochastic term, dωi ∀i ∈ [1, 2]. This term represents a
Wiener process with incremental variances σ2

i ∀i ∈ [1, 2].
The external inputs affect only the indoor air temperature;

in turn, there is a heat transfer between the indoor air and the
thermal mass. Madsen described this model in detail [26].



dTi =
1
Ci

(
1
Ri

(Ti − Tm) −
1

Ra
(Ti − Ta) + Φh+

IgAw

)
dt + σ1dω1

dTm =
1

RiCm
(Tm − Ti) dt + σ2dω2

(1)

Since the system in Equation (1) is linear, it can be re-written
using the following matrix form,


dTi

dt

dTm

dt

 =


1

RiCi
−

(
1

RaCi
+

1
RiCi

)
−1

RiCm

1
RiCm




Ti

Tm

 (2)

+


1

RaCi

1
Ci

Aw

Cm

0 0 0




Ta

Φh

Ig

 +


σ1 0

0 σ2




dω1

dt

dω2

dt

 .

Now, the model variable is a vector: T(t) = (Ti(t), Tm(t))>, and
U(t) = (Ta(t), Φh(t), Ig(t))> is the vector of external inputs.
We can write Equation (2) in a compact form as

d
dt

T(t) = AT(t) + BU(t) + Σ
d
dt
ω(t) , (3)

where A is the design matrix describing the dynamic charac-
teristics of the building, and B describes how the input vari-
ables enter the system. Finally, ω(t) = (ω1(t), ω2(t))> is the
stochastic term, and Σ is the matrix of incremental variances.

In this work, only the indoor air temperature, Ti is observed.
It is important to notice that the system described in Equation
(1) has no measurement equation. Thus, we assume that the
error measurements for Ti are small enough to be disregarded.

2.2. From SDEs to auto-regressive

The system in Equation (3) can be discretized by integrating
over a sample interval, [t, t + s), where s is the sampling time
of the system. Then, assuming that the input (U(t)) is constant
in the sampling interval, the system can be re-written as

T(t + s) = Φ(s)T(t) + Γ(s)U(t) + ν(t, s) . (4)

3
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If the sampling time is small enough, the discrete time model
structure will capture the relevant dynamics described in the
continuous case. We can fix the sampling time to an arbitrary
time unit, s = 1, and find he explicit expression for the ele-
ments describing Equation (4):

Φ(s = 1) = exp(A · 1) =

(
φ11 φ12
φ21 φ22

)
(5)

Γ(s = 1) =

∫ s=1

0
exp(A · r)Bdr =

(
Γ11 Γ12 Γ13
Γ21 Γ22 Γ23

)
(6)

ν(t, s = 1) =

(
ν(1)

t

ν(2)
t

)
with ν(i)

t = N(0, ς2
i ) ∀i ∈ [1, 2] . (7)

In this case, Φ describes the discrete dynamics of the sys-
tem and Γ the effect from the external inputs. The vector ν
is normally distributed white noise with zero mean and vari-
ance ς2

i ∀i ∈ [1, 2], and it accounts for the stochastic part of the
system.

This study is focused on the dynamics of buildings with a
night heating setback. Thus, if there is no solar irradiation and
the space heating is turned off, the input term can be simpli-
fied to U = (Ta, 0, 0)>. It is then possible to write discrete
explicit expressions for the indoor air temperature and the ther-
mal mass: 

T i
t+1 = φ11T i

t + φ12T m
t + Γ11T a

t + ν(1)
t

T m
t+1 = φ21T i

t + φ22T m
t + Γ21T a

t + ν(2)
t ,

(8)

where the notation has been changed to highlight the discrete
nature of the expression. Notice that the terms from the ma-
trices described in equations (5)-(7), appear now in the trans-
formed difference equation system (8).

Now, we want to remove the thermal mass variable from the
model, since we do not have access to its associated temper-
ature measurements. In order to do this, the equations from
Equation (8) have been merged, adjusting the index t,

T i
t+1 = φ11T i

t + φ12

T m
t︷                                         ︸︸                                         ︷

(φ21T i
t−1 + φ22T m

t−1 + Γ21T a
t−1 + ν(2)

t−1) +

Γ11T a
t + ν(1)

t .

(9)

For houses with regular heating schedules that have not been
ventilated recently, the temperature of the thermal mass should
be very similar to the temperature of the indoor air [27]. As-
suming that T i

t−1 ≈ T m
t−1, it is possible to reduce the expression

to Equation (10), where all variables are observed.

T i
t+1 = φ11T i

t + (φ12φ21 + φ12φ22)T i
t−1+

Γ11T a
t + φ12Γ21T a

t−1 + ν(1)
t + φ12ν

(2)
t−1 .

(10)

In Denmark, the cold weather conditions of winter, present
slow outdoor temperature variations during night, as shown in

Figure 1: The lattice on the left shows the temporal evolution of the outdoor
temperature for 4 randomly selected nights. On the right, the temperature
hourly differences for all winter nights is shown.

Figure 1. For a small enough time step, there is little change
from one measurement to the next one, i.e. T a

t ≈ T a
t−1 ∀t. This

simplification allows us to reduce the system complexity:

T i
t+1 =

θ1︷︸︸︷
φ11 T i

t +

θ2︷                ︸︸                ︷
(φ12φ21 + φ12φ22) T i

t−1 +

ω︷           ︸︸           ︷
(Γ11 + φ12Γ21) T a

t +

ν(1)
t + φ12ν

(2)
t−1 ,

(11)

where the final model parameters, {θ1, θ2, ω}, have been intro-
duced.

Finally, a new stochastic variable is defined, νt = ν(1)
t−1 +

φ12ν
(2)
t−2. Since ν(1)

t and ν(2)
t are independent and normally dis-

tributed with zero mean ∀t; the new variable, νt, is also nor-
mally distributed with zero mean. Thus, it is possible to write
the final model as the following auto-regressive model,

T i
t = θ1T i

t−1 + θ2T i
t−2 + ωT a

t + νt , (12)

where the time index, t, has been adjusted for clarity. Figure 2
summarizes the process leading from equation (1) to equation
(12), highlighting the necessary assumptions.

Figure 2: Flowchart describing the method to transform the initial SDE system
into a reduced discrete linear model.
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2.3. A system with two time constants
In order to study the heat loss between the indoor air and

the outdoor air, we focus on the interaction between T i
t and

T a
t from model (12) using the transfer function as shown in

Equation (13),

T i
t =

ω

1 − θ1B − θ2B2︸             ︷︷             ︸
H(B)

T a
t , (13)

where B is the backshift operator defined as B jXt = Xt− j for an
arbitrary dynamic random variable {Xt}, and H(B) is the trans-
fer function of the system (12). As described in [28], in order
to compute the time constant of the system (12) it is necessary
to find the roots of the denominator of H(B), i.e., the poles of
the system. In this case, there are two poles, q1 and q2, as the
polynomial in the denominator is order two. Finally, each pole
has an associated time constant which can be computed as:

τ j =
s

ln |q j|
∀ j ∈ [1, 2] . (14)

Hence, in this case there are two different time constants that
characterize the heat flow between indoor air and outdoor air.
Each of these time constants has time units and they reveal in-
formation about the two processes described by the initial sys-
tem (2) as illustrated in Figure 3. In general, when the heating
is shut down, there is a quick heat transfer between the indoor
air and the thermal mass due to the low thermal capacity of the
air. The initial heat transfer is captured by the parameter τ1.
The heat transfer between indoor air and outdoor air is the sec-
ond process, which is characterized by τ2, is slower and will
dominate the dynamics as indoor temperature keeps decreasing
[26].

Figure 3: This figure shows a schematic of the two main processes govern-
ing the heat flow between indoor air and outdoor air. First, the heat transfers
from the indoor air to the thermal mass, characterized by τ1. Meanwhile, τ2
characterises the heat transferred from the indoor air to the outdoor air.

2.4. Identification of night setback temperature curves
Hidden Markov Models consist of two components: an ob-

served sequence of states and a corresponding hidden state se-

quence. The current state only depends on the state of the pre-
vious observation. The states change according to a fitted tran-
sition matrix, which is a matrix providing the probability of
a state change. For each state, the observations are Gaussian,
and the mean and variance depends on the state.

All studied houses showed a temperature decay of the indoor
air during night hours. The goal, was to identify the state where
the temperature is decaying constantly. In order to identify it, a
new variable was created to be used as an input for the model:

dt = T i
t − T i

t−1 . (15)

When temperature is continuously dropping, the data points
of dt are distributed differently from the rest, as can be seen in
Figure 4. The Viterbi algorithm [29] was used to find the most
likely sequence of states given a sequence of observed dt.

Figure 4: An example of the distribution of decay points for one arbitrary
building with night setback. The figure on the left shows that the decay states
distribute different from other states. The figure on the right shows the in-
door temperature of a day with the thicker curve indicating the decay period
identified using the HMM method.

For some houses, the selected periods are not only the long
night decaying periods, but also shorter decays during the day
time due to the dead-band of the controller. The long night
decays are selected with a threshold. This threshold was com-
puted by clustering all dt data points into two based on the
length of the period. In general, it is concluded that this pro-
cess is sufficient to reveal the natural split between short day-
time decays (unwanted) and long night decays, although the
time spans vary from house to house because of their different
time constants.

2.5. Flexibility index (FI) and Flexiblity Function (FF)

In order to gain insights into the relationship between the
time constant and the flexibility of a building, the concepts of
the Flexibility Index (FI) [30] and the Flexibility Function (FF)
[31] are used. The FI quantifies the savings caused by allocat-
ing energy consumption in a flexible way. This is done by
comparing the cost of the consumption adapted to a flexible
control signal (flexible cost) and the cost of the consumption
if the system was unaware of the price signal (ignorant cost).
The idea behind the FI can be seen in equation (16). FI = 1
characterizes a building with an extreme flexibility potential,
and FI = 0 the opposite.

5

60 Re­modelling buildings



FI = 1 −
Flexible cost
Ignorant cost

(16)

The flexibility function (FF) describes the energy that is
available at a particular moment, or state of charge; and the
resources it can allocate and how it can allocate them before
reaching the system limits. This function provides information
about how an energy system would adapt to changes in the
control signal or changes in its state of charge. Moreover, an
energy system has limited resources that can be turned on/off

in case of need, and the rate at which it is able to move those
resources depends on the dynamic characteristics of each sys-
tem. The FI and FF used in this work are based on the work
introduced by Junker et al. [30, 31].

When calculating the FI and FF in this work, the energy sys-
tems are buildings that have their indoor air temperature con-
trolled with an MPC controller. Then, the state of charge trans-
lates into the room temperature: the building is completely
charged when the indoor temperature reached its daily max-
imum inside the comfort boundaries and vice-versa. The heat-
ing input is controlled by a price signal which is built using the
wind speed data. This price signal can also be based on other
data and be used for other purposes such as peak shaving, or
lowering CO2 emissions.

3. Data description

This study is based on measurements from a set of 39 Dan-
ish single family houses in the Middelfart region in Denmark.
None of the studied buildings was built after 1980s, and their
construction years vary as described in figure 5. They also vary
in size and plant blueprint: the built area ranges from 80 to 226
m2. Most of the houses are detached family houses, although
there are also, semi-detached houses, town-houses and a few
farms. In this work, these details have been omitted as the fo-
cus is set on characterising the buildings solely based on how
they lose heat.
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Figure 5: Summary description of the studied set of 39 buildings. Almost half
of the buildings were built before 1950.

There are two data sets. The first data set contains the indoor
temperature measurements from December 2014 to December
2015. We used only the winter data between December 2014
and March 2015 and with a 10 min resolution. The second data
set consists of hourly outdoor temperature values. This data set
has been selected to match the dates of the indoor temperature

Figure 6: On the left, 4 day period for the three example households (A, B, C).
On the right, the lines corresponding to all decay periods present in the data
are shown. Each building has its clear decay pattern.

data. In order to compensate the lower resolution, the hourly
values are interpolated using linear interpolation. This inter-
polation are carried under the assumption that, during winter
nights the fluctuations in outdoor temperature are slow.

For better presentation and visualisation of the work, the rest
of this work focuses on three buildings with characteristic de-
cay patterns, as shown in Figure 6. The three buildings have
been chosen due to they present qualitative differences in their
continuous heat loss pattern. It can be noticed that building B
shows a sharp decay at the beginning and then a slower decay-
ing trend; building A has a fast temperature drop; and building
C has a shorter decay curve, but still steeper than the curve in
B. For all the three example buildings, the decaying patterns
are consistent during different nights. For instance, it can be
noticed that in building C, the decaying trend is similar in ev-
ery case even though the initial indoor temperature varies.

4. Results and discussions

This section presents the results from the modelling process.
These results are also discussed to understand how the thermal
dynamics are captured. Afterwards, this section offers a clas-
sification of the buildings based on their time constants.

4.1. Model validation

The parameters from the model in Equation (12) were esti-
mated using Ordinary Least Squares (OLS) method in the first
place, since the model is linear and the noise is supposed to
be normally distributed. This revealed that the term related to
the outdoor temperature, ω, was not significant in most of the
tested buildings. However, as presented in Section 2, the out-
door air temperature affects the heat loss dynamics. This im-
pact is more noticeable at the end of the decaying curve, when
the heat exchange with the outdoor air is more significant than
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the heat exchange with the thermal mass. In addition, at the be-
ginning of the decay trend, the assumption that T i

t ≈ T m
t is less

accurate, since in reality both temperatures converge over time.
Lastly, at the beginning of the decaying curve there is a higher
chance than the users might be awake. All these reasons sug-
gest that the noise over time, {νt}, might not be independent. In
fact, the system noise is expected to be at its maximum at the
beginning of the decay and then continuously decrease over
time. In order to cope with this, the weighted least squares
(WLS) method was used, where the models is fitted giving a
specific weight to each observation. These weights are pro-
portional to the time since the temperature decay started, given
that the observations become more reliable as time moves for-
ward. The following equation was used for the weighting pro-
cess,

w(k) = 1 −
1

α + (1 − α)k
with 0 ≤ α ≤ 1 , (17)

where k is an integer counting the number of measurements
since the beginning of the decay period and α is a tuning pa-
rameter. Notice that w ∈ [0, 1], it is minimum right at the be-
ginning of the decay period, w(1) = 0, and then grows mono-
tonically. The parameter α defines how fast is this growth; i.e.
how the weights are distributed along the decay period. Notice
that this parameter depends on the time constants of the build-
ing and it could be fine-tuned in a recursive method in order
to fit a particular building. Thus, it is important to remark that
this weighting function is not unique and it could be adapted
to each case.

Table 1 compares the results after fitting the model with OLS
and WLS. Notice how, after using WLS, the p-values of the
parameter estimates are below 0.1, confirming that the param-
eters are highly significant. It can also be noticed that the es-
timate of the contribution of the outdoor temperature, ω̂, in-
creased significantly using the WLS, especially for houses A
and C, which confirms the influence of the external conditions.

Estimate Std. error p-value

OLS WLS OLS WLS OLS WLS

θ̂1 1.768 1.779 0.016 0.017 <1E-16 <1E-16

A θ̂2 -0.769 -0.781 0.016 0.017 <1E-16 <1E-16

ω̂ 4.3E-4 3.3E-4 2.5E-4 2.9E-4 0.09 0.26

θ̂1 1.111 1.273 0.024 0.023 <1E-16 <1E-16

B θ̂2 -0.113 -0.275 0.024 0.023 <1E-16 <1E-16

ω̂ 1.8E-3 1.5E-3 2.4E-4 2.6E-4 <1E-16 <1E-16

θ̂1 1.624 1.707 0.015 0.015 <1E-16 <1E-16

C θ̂2 -0.625 -0.708 0.015 0.015 <1E-16 <1E-16

ω̂ 2.8E-4 1.3E-4 1.4E-4 1.7E-4 0.05 0.45

Table 1: Table comparing the parameter estimates for each example building.
The table compares the results using WLS (weighted with the function in (17))
and using OLS.

Figure 7 reveals that the ordinary residuals, after using the
WLS, behave like white noise regardless of the outdoor con-
ditions. It also can be seen that most of the residuals are in
the [−0.1, 0.1] range, which show the accuracy of the one-step
prediction. The values that fall outside of this range are from
the beginning of the decaying periods when it is expected to
be noisy, as explained previously. The distribution of residuals
can be seen in Figure 8, which shows that the errors are small
and centered around zero.

−3 0 3 6
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−2 2 5 9 −3 1 5 9
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Outdoor temperature [°C]
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Figure 7: The figure compares the outdoor temperature and the residuals using
the WLS model. The residuals from the first hour of each decay are marked
with an x. The trend of all residuals is plotted as a dashed line. All residuals
are centered around 0 and evenly spread across all temperature range.

Figure 8: Distribution of residuals after using the WLS model. The figures
include all the decays in the time span of interest ignoring the first hour of
each decay. For each building a smooth curve was plotted for better visibility.

In Figures 7 and 8 it is not possible to see if the residuals are
biased on a daily basis. For this reason, the evolution of resid-
uals are plotted for 3 arbitrary days picked at random for each
example building in Figure 9. It can be seen from this figure
that in all cases the prediction follows the same pattern. At the
beginning of the decay period, the model is over-predicting so
the residuals are negative and larger. This bias comes from the
simplification T i

t ≈ T m
t , since it forces the stochastic part to

account for the changes in T m
t . However, shortly after the start

the residuals converge to white noise, since T i
t → T m

t quickly
[26]. These transient periods are the cause of the larger resid-
uals seen in Figure 7.
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Figure 9: Temporal evolution of the residuals during each decay period. Only 3
decays are plotted for better visibility. It can be seen that the ordinary residuals
are larger at the beginning of the decay period, but shortly after there is no
observable trend.

4.2. Time constant of 39 houses

The time constants of the three example buildings are shown
in Table 2; it is important to notice that τ1 is expressed in min-
utes, whereas τ2 is expressed in hours. These results can be
compared with the qualitative behaviour observed in Figure 6.
In comparison with the other two, building B shows a flatter
decay trend at the end of each night. This translates into hav-
ing τ(B)

2 > τ(C)
2 > τ(A)

2 . In addition, the numerical results in
Table 2 reveal that building B loses energy swiftly at the be-
ginning of the decay, which is different from house A where
the heat transfer between the indoor air and thermal mass also
has a significant contribution to the decay period.

A B C

τ1 [min] 38.8 4.6 21.5
τ2 [hour] 36.7 65.6 49.7

Table 2: Results for the example houses.

Moreover, the results of house A were compared with the
results computed using a different method presented in [32],
where a more complex auto-regressive model (including heat-
ing data) was fitted using a time span of 11 days. The differ-
ence between results were smaller than an 8%. In addition,
it is important to remark that it is possible to further reduce
the difference between the results by fine-tuning the weighting
function (17), specifically for house A.

The simplicity and generality of this method has allowed us
to use it in the total pool of 39 buildings and to categorize their
parameters τ1 and τ2. Figure 10 shows the distribution of the
time constants for all 39 buildings. It can be observed that: i)
the long time constant, τ2, has the same order of magnitude as

Figure 10: Scatter plot of the two time constants for 39 buildings. As the result
of a K-means clustering, three regions are marked in the figure. In each cluster,
the example house is highlighted.

the time constant one would expect from Danish family houses
[33, 34]; ii) for the short time constant, τ1, all values are shorter
than one hour, which highlights the importance of a small time
step to capture this part of the dynamics. From Figure 10 it
can be seen that the 39 buildings are clustered in groups. K-
means clustering method [35] was used and as the result three
clusters are marked in the figure. Note that each of the three
selected buildings falls in different categories, confirming the
qualitative differences in their heat loss dynamics spotted at the
beginning of this work.

In Figure 10, one can get a clear picture at the available
classes of buildings in the studied set. On the short time con-
stant axis, τ1, the time values are mostly scattered, contrarily
to the τ2 where most of the values lie around the bottom half of
the plot. Furthermore, it can be seen how the main driver for
clustering comes from the long time constant τ2, i.e., the three
main regions reveal three different steps along the y-axis. The
difference among three clusters could be due to the difference
in insulation level, house size, the amount of thermal mass, etc.
However, to investigate this level of detail would require more
information about these houses which we do not have, thus it
was left out of the current study.

5. Flexibility assessment

This section shows the application of using the computed
time constants of the house to reveal its energy flexibility po-
tential based on simulations.

The simulations are based on the model described in (2)
and carried out using different parameter values to gain an
overview of their impact. Specifically, the parameters of the
indoor air heat resistance, Ri, and the capacity of the indoor
air, Ci, were fixed; while the heat resistance between the in-
door and outdoor air, Ra, and the capacity of the thermal mass,
Cm, were changed in each simulation. The first two parame-
ters depend on intrinsic magnitudes of the air; meanwhile, the
last two parameters are easier to interpret and they characterize
magnitudes from a building that are easier to correct through
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renovation. Finally, the only external output of the model, the
outdoor temperature, follows an arbitrary pattern that matches
the order of magnitude of danish winter time.

For each combination of parameters, a time series of four
days was simulated with a night-setback schedule. Using those
values, the time constants were computed, and the results can
be seen in Figure 11. It can be seen that both parameters are
directly proportional to the value of the time constants, as ex-
pected. Three cases have been highlighted (H1, H2 and H3)
to represent three buildings with a different parameter combi-
nation. These have been chosen to further assess the effects of
the parameters on the building thermal performance.
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4.43
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Figure 11: Resulting time constant values for different values of Cm and Ra.
The increase of Ra yields higher values of both time constants. The increase
of Cm benefits only τ2. H1, H2 and H3 represent three different houses with
different characteristics.

For each combination of parameters shown in Figure 11, we
simulated four days using two different control strategies: one
ignores the price signal and only tries to keep the indoor tem-
perature inside a defined comfort region. In the other simula-
tion, the heating system is controlled using Model Predictive
Control (MPC), where the control signal is the price of energy.
The MPC controller tries to minimize the operation cost using
the aforementioned price signal, while also keeping the indoor
temperature within the comfort region. These two strategies
represent the Ignorant Cost and Flexible Cost as described in
Section 2.

For the simulations, we created a price signal that depends
on the wind speed during an arbitrary period of time, to sim-
ulate a system powered by wind energy. The energy price de-
creases as the wind speed increases, assuming that energy sup-
ply is always sufficient.

The results of the controlled simulation for the three high-
lighted cases (H1, H2, H3) are presented in Figure 12. It can
be seen that when the price is low, the heating is switched on
and when the price increases the heating is turned off until the
temperature approaches the lower boundary. It can be noticed
that the heating in H3 could be turned off for a longer time due
to the building’s higher time constants. The indoor air temper-
ature in building H2 never reached the upper boundary of the
comfort region due to higher heat losses.

It can be seen in Figure 13 that the resistance Ra is the key

Figure 12: Simulation of the flexible control scenario for the representative
houses. The indoor temperature follows the the heat supply, which is con-
trolled by the price signal. It can be seen that H3, is able to keep indoor
temperature within the comfort region with the heating system running for a
shorter time comparing to H1 and H2.

parameter to increase savings using the flexibility of the build-
ing.
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Figure 13: Result-
ing Flexibility Index
value for different
values of Cm and Ra.
It can be noticed that
the main driver for
the FI is the ther-
mal resistance. H1,
H2 and H3 repre-
sent three different
houses with different
characteristics.

Lastly, the results of the flexibility function of the three
houses can be seen in Figure 14. This figure summarizes how
the three different houses react to a change in the two main
drivers of the energy consumption: the room temperature and
the energy price. This reaction is presented as the deviation
from the ignorant consumption; i.e. the consumption of the
system ignoring the flexible price signal. The three houses dis-
play a similar response to the state of charge: a flat section,
where the system ignores the variations of the indoor tempera-
ture, and two steep curves at the ends of the temperature range.
When the room temperature reached the low boundary, the sys-
tem was forced to increase consumption to maintain comfort;
similarly, the system decreases consumption when the room
temperature reached the high boundary. It can be noted that H3
is able to stay on the flat region for a wider temperature range
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Figure 14: The figure shows that the energy demand is affected by changes
on the state of the system (room temperature) and the variations in the control
signal (energy price). The curve above the dashed line means that the con-
sumption is increased, and vice-versa. It can be seen that H3 is more resilient
to changes in the room temperature, and it is able to consume less during the
most expensive hours.

than the other two. This suggests that H3 is more resilient to
changes in the room temperature than the H1 and H2.

The response to energy price follows a decreasing curve for
the three houses. For lower prices, the power demand of H1
is below H2 and H3. As the price increases, H3 consumption
gets below H1 and H2. This result is in line with the results
in Figure 13, and confirms that the high value of the FI of H3
is the result of avoiding expensive prices. The savings of H1
compared to H2 come mainly from decreasing consumption
during cheaper hours.

6. Conclusions

This study shows how one can obtain insights from the ther-
mal characteristics of a building with limited data. First of
all, Hidden Markov Models were used to select the relevant
periods to extract measurements from the periods with a night-
setback. By focusing on these long decaying periods, it has
been possible to transform a complete physical system to a
simple auto-regressive structure. This model structure only
uses the indoor air temperature and the outdoor air tempera-
ture, which are normally easy to measure.

It is important to use a high resolution sampling to capture
the fast dynamics inside the building. In this study, 10-minute
time interval data was used. This small time step made it pos-
sible to reduce the model structure by taking advantage of the
slow changes and small variations of the outdoor temperature.
Additionally, the resulting time constants highlighted the im-
portance of choosing a small time step. The only external
input of our model, the outdoor temperature, was measured
hourly and was transformed to 10-minute data using linear-
interpolation taking advantage of its slow dynamics. The lin-
ear interpolation is expected to represent accurately the real
outdoor temperature, without affecting the posterior analysis.

It is critical to understand the physical meaning of the
model. In order to fit the model, it was necessary to take into
account the decreasing trend of the system noise during the

night by using the WLS method. Only by doing this, all pa-
rameters in the model became significant. This is important
because the temperature decay inside of a building could po-
tentially be caused by other factors: such as the air mixing in
the same room, or a heat transfer to a much colder contiguous
room. The significance of the parameter corresponding to the
outdoor air confirms that the indoor air decreases due to a heat
loss to the outdoor air, which validates our model assumptions.

This method offers a general and computationally light
model that can be scaled to a large portion of the existing
building stocks. By visualising the two time constants for all
39 buildings as shown in Figure 10, three clusters of buildings
with similar characteristics could be easily found. In this study,
we used a simple clustering method to identify those building
clusters.

The usability of each time constant depends on the specific
problem. The long time constant is the one that gives a clearer
picture of buildings’ characteristics for thermal storage and it
is also closely related to the classical time constant used in
building physics. However, the short time constant could be
relevant for studying short term flexibility and indoor comfort.

Finally, it is confirmed that there is a clear connection be-
tween the time constants and the flexibility potential of build-
ings. It is shown that the long time constant dominates the
potential usage of a house as an energy storage unit in a flexi-
ble energy grid. Moreover, using the FF, it is possible to assess
qualitatively the flexible response of the simulated houses. In
conclusion, the results show that a house with higher values of
τ1 and τ2 can implement more flexible strategies.
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[34] J. Le Dréau and P. Heiselberg. Energy flexibility of residential buildings
using short term heat storage in the thermal mass. Energy, 111:991–
1002, 2016.

[35] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical
learning. chapter 13, page 460. Springer, 2009.

11

66 Re­modelling buildings



Simulating heat load profiles in buildings using

mixed effects models

J Palmer Real1, J Kloppenborg Møller1, C Rasmussen1, K B
Lindberg2, I Sartori2 and H Madsen1
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Abstract. The landscape of buildings is a diverse one and long-term energy system planning
requires simulation tools that can capture such diversity. This work proposes a model for
simulating the space-heating consumption of buildings using a linear mixed-effects model . This
modelling framework captures the noise caused by the differences that are not being measured
between individual buildings; e.g. the preferences of their occupants. The proposed model uses
outdoor temperature and space-heating consumption measured at hourly resolution; thus, the
model is able to predict the intra-day variations as well as longer effects. Given the stochastic
nature of the simulation, the prediction interval of the simulation can be estimated, which
defines a region where the consumption of any unobserved building will fall in. A whole year
has been simulated and compared to out-of-sample measurements from the same period. The
results show that the out-of-sample data is virtually always inside the estimated 90% prediction
interval. This work uses data from Norwegian schools, although the model is general and can
be built for other building categories. This amount of detail allows energy planners to draw a
varied and realistic map of the future energy needs for a given location.

1. Introduction
In order to plan and develop strategies for the future power market, it is necessary to create
tools that reliably represent it. Such tools need to be able to predict the energy consumption of
the different systems that form the energy landscape. The current tools dedicated to this task
are often based on trends based on historical data [1; 2; 3]. As the power sector shifts towards
a more flexible framework with high integration of renewable energy sources, it is necessary to
re-visit these methods used for long-term forecasting [4].

Buildings take a significant portion of the total energy use [5]; thus, modelling their
consumption is a key task in order to develop suitable forecasting tools. From the total energy
consumed in buildings, in Europe, the major part is dedicated to space heating [6], and there
exist an extensive literature focused on modelling it [7]. A well-known example is the energy
signature method (ES); a data driven approach that quantifies a building thermal performance
based, mainly, on the outdoor temperature [8]. In general, the ES is a static method, even
though their parameters might change over the course of the year [9].

The proposed model in this work aims to capture the dynamic nature of heat consumption;
given that, when predicting the energy use of a building, capturing the peaks that take place
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during the day is of particular interest. Similarly, it is crucial to see how this pattern changes
as buildings become more efficient.

There are factors that impact the heat consumption of a building that can be specially
difficult to measure. A clear example is the behaviour of the occupants; predicting it is far
from being trivial due to their noisy nature and intrusive measurement set ups [10]. A long-
term forecasting tool needs to account for such phenomena to be general enough to represent
the existing variety of the building stock. This means capturing the inherent differences from
building to building, caused by random unobserved events. In this work, this is done by using a
mixed effects model. We depart from the work done in [11], where a linear fixed model was fit
to generate an hourly profile of the energy consumption in buildings. Then, a random term is
added to the fixed model structure, to account for the individual differences between buildings.
This addition reduces model complexity, quantifies the differences between observed buildings
and facilitates predicting the consumption from unobserved ones.

The outline of this work is as follows: first, in section 2, the mixed effects model structure
is introduced and explained in the context of modelling building energy load; section 3 presents
the data used to fit the model; section 4 displays the results using mixed effects; finally, section
5 discusses the main results and presents the following steps.

2. Method
Mixed effects models allow to quantify the noise introduced by random qualities that are inherent
to the modelled system. This section introduces the main concepts, and later focuses on using
mixed effects for modelling the heat load of buildings.

2.1. Mixed models
Linear mixed effects models, or linear mixed models, are a generalization of the classical linear
model which follows the structure

Y = Xβ +ZU + ε ; (1)

where Y , X and Z are known matrices, ε ∼ N(0,Σ) and U ∼ N(0,Ψ). In Equation (1), β
represents the fixed effects, while U are the random effects. Therefore, these models follow a
hierarchical structure since there is an underlying model structure, defined by X and Z, which
is affected by a higher-level random variable, U . Then, an arbitrary observation of Y , Yij , has
two sources of noise: the random effects Ui ⊂ U , and the noise of the model, εij . Hence, given
the linear structure of Equation (1), Yij can be written as

Yij =
L∑
l=1

Xjlβl + ZiUi + εij . (2)

Notice that the sub-index i denotes a category of observations, which introduces the noise
Ui; whereas j marks the number of available observations. In addition, the term l ∈ {1, . . . , L}
represents the number of fixed effects.

When the measurements of the random variable, Yij , are taken at regular time intervals,
the model in Equation (2) can be interpreted as a time-series. In this case, the sub-index j is
substituted by t, to denote the time dependency. This formulation, has been extensively used in
pharmaco-kinetics, when testing a medicine in a subset of a population [12]. The metabolism of
each tested individual might affect the response to the medicine; however, there are latent effects
that are common to all subjects. In this simplified example, the latent effects are captured by β,
whereas U characterizes the variability of the results introduced solely by the individuals that
are part of the experiment. For more details and examples on mixed models, see [13].
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2.2. Mixed models for buildings
There are factors that affect the energy consumption of buildings that are difficult to identify and
measure; such as the preferences of the building users. Such factors cause random differences
between the energy behaviour of individual buildings. The cause of those differences can be
understood as a random effect. Then, using a mixed model, it is possible to identify the
distribution that characterizes the differences between individual buildings. As summarized
in Figure 1, estimating the distribution has two different outcomes:

• Profiling. Using the observations to estimate the random effects of each particular building
from the measured ensemble of buildings, i.e. estimating Ûi ∀i ∈ {1, . . . , k}.
• Sampling. Simulating a representative realization of a building that has not been observed,

using random effects sampled from the estimated distribution Û .

Figure 1: Schematic representation of the outcomes of fitting a mixed effects model

2.2.1. A mixed energy signature. The energy signature (ES) is a method to evaluate the energy
performance of buildings. The ES model is a linear model that, using coarse data aggregation,
returns the heat loss coefficient (HLC) and the base temperature (Tb). The former coefficient
quantifies the energy efficiency of a building, and the latter is the outdoor temperature at which
that building is in thermal balance. Thus, both parameters characterize the energy efficiency of
a single building. In its simplest form, the ES has the following structure

Φ =

{
α0 + β0Tout + ε if heating period

Φ0 + ε otherwise
, (3)

where Φ is the heat load, Tout is the outdoor temperature. The independent term, α0, represents
unmodelled heat losses; β0 is the HLC, and Tb = α0/β0; lastly, Φ0 represents the residual heat
load during periods where there is no weather dependence, i.e. Tout > Tb. Working with multiple
buildings, it is fair to assume that there will be differences in their parameters, {α0, β0,Φ0}, due
to un-measured differences across the building population. Then, the model in Equation (3) can
be extended to a mixed effect formulation to capture those differences as random effects. Hence,
the heating regime of Equation (3) becomes

Φi = α+ βTout︸ ︷︷ ︸
Fixed effects

+Ui,0 + Ui,1Tout︸ ︷︷ ︸
Random effects

+ε , (4)

where Ui,0 ∼ N(0, σ0) and Ui,1 ∼ N(0, σ1). Re-writing Equation (4) into

Φi = α+ Ui,0 + (β + Ui,1)Tout + ε , (5)

Re­modelling buildings 69



it can be notice that, the unmodelled heat losses now contain the random effects Ui,0; similarly,
the heat loss coefficient, depends on Ui,1. Then, using the model described in Equation (5),
it is possible to retrieve the heating performance parameters from each of the buildings of the
population. In other words, for each building, it is possible to obtain its heat loss coefficient,
βi = β + Ui,1, and its base temperature, Tb,i = (α+ Ui,0)/βi.

2.2.2. The simulation model. The objective of this work is creating a stochastic simulation tool,
that predicts the hourly consumption of buildings given the weather conditions. The model needs
to be dynamic and be able to predict consumption for the whole year. The proposed model for
simulating the heat load is

Φi,t =

Fixed hour effects→

 24∑
j=1

%jI{t∈j} +Wt

24∑
j=1

ρjI{t∈j}

 I{t∈ΩWD}+

Fixed seasonal intercepts→ θ1 + θ2Wt+

Fixed weather effects→ θ3∆Ti,t+ (6)

Random effects→ Ui,2 + Ui,3Wt + Ui,4∆Ti,t+

Residuals→ εi,t = ϕ1εi,t−1 + ξi,t ,

where, I{·} is the indicator function, which equals to 1 when the condition in {·} is fulfilled and
equals 0 otherwise. St = I{Tb,i<Tout,t}, Wt = I{Tb,i>Tout,t} and ∆Ti,t = (Tb,i − Tout,t)I{Tb,i>Tout,t};

lastly, ΩWD is the subset of work days. Hence, the model in Equation (6) uses the previously
introduced Tb,i, to discern between heating and non-heating season. The model accounts for
a fixed hourly schedule, which depends on the season. Additionally, each season has a fixed
heating baseline. Then, the weather effects are introduced through the variable ∆Ti,t, that is
positive during heating season, and zero otherwise. Furthermore, the variables {St,Wt,∆Ti,t}
have a random effect over the heat load; i.e. the seasonal heating intercept and the effects of
the weather might vary from building to building. Finally, given the hourly sampling, an auto-
correlation term has been added in the residuals. Thus, in the model described in Equation (6),
the estimated fixed parameters are β = {ρ1, . . . , ρ24, %1, . . . , %24, θ1, θ2, θ3, ϕ1}.

3. Description of the data set
The data set used in this work contains hourly measurements of the heat load of 33 different
Norwegian schools. The heating has been split into electric heating and space heating. In this
work, only the space heating is used. In addition, the outdoor temperature for the different
schools is available. For each building, the measurements span from 1 to 3 years with no gaps
in the data. Other general information about all buildings is known, this information contains
details like location, efficiency label and built area. In the following results, all schools have
the Regular efficiency label, which means that they do not comply with the TEK10 efficiency
standards and above. Lastly, to normalize the data, the heat load of the schools has been divided
by the area of each building, i.e. [Φi,t] = kWh/m2.

In order to validate the results of the stochastic simulation, the data has been split into two
sets: one for training and one for testing. The training set contains data from 25 buildings. In
order to have a balanced data set for training, one year has been chosen arbitrarily for each of
the 25 buildings. The final training set contains data from 2009, 2010, 2011, 2012 and 2017. On
the other hand, the test set contains data from 8 different buildings. The data from the test set
is all from 2010, to ensure consistency with the time stamps and weather data.
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4. Results
As explained in the method section, mixed effects models can be used to study the differences
between the measured buildings (profiling), or to simulate the behaviour of a new unobserved
building (sampling). In this section, both outcomes are presented: first, the results of fitting
model in Equation (5) are shown, which allows computing the variable Tb,i ∀i ∈ {1, . . . , 33}.
Then, the model in Equation (6) has been fit using the training set and the simulated
consumption has been compared to the test data.

4.1. Profiling energy performance
All buildings in this work have the same energy efficiency label, implying that their response to
weather conditions should be similar. Using the model in Equation (5) it has been possible to
retrieve energy performance parameters, {βi, Tb,i}, from all individual buildings and compare the
population of available buildings. The results can be seen in Figure 2, where it can be noticed
that, the base temperature, as well as the HLC, vary significantly from building to building. For
reference, a global Tb has been computed fitting the classical fixed effects ES, using data from
all schools simultaneously. Notice that, even though numerous buildings signature lie close to
the global one, the differences between individual buildings vary significantly, with the HLC of
some of the worst performers doubling the HLC of the best ones.
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Figure 2: Energy signature for the total building population of regular schools. Two arbitrary
buildings have been highlighted in red. It can be seen that the performance parameters change
significantly from building to building.

4.2. Sampling energy profiles
The previous section showed that mixed models allow us to assess the differences across
individual buildings that are present in the building population. This section, shows the results
simulating the consumption of an unobserved school. This simulation is based on the model in
Equation (6), that has been fit using data from 25 schools.

Figure 3 shows the model prediction given the temperatures of the month of February 2010;
where, it can be noticed that the model simulation follows closely the trend of the test data.
As expected, this trend shows clear peaks during the work days and a flatter trend during the
weekends. The simulation under-predicts the highest peaks taking place in the morning of work
days. When the morning peaks are captured, the valleys at night are over-predicted, which
highlights the difficulty of capturing sudden changes in heat consumption.
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Since the simulation is stochastic, the prediction interval (PI) of the simulation has been
computed. As expected, this prediction interval shows a constant width during the whole time-
series due to the assumption of normally distributed noise. It is easy to see that, in this February
example, the prediction interval includes practically all test data points.
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Figure 3: Comparison of the simulated data and a test set for the month of February 2010.

In addition, Figure 3 includes the daily profile of the prediction and the test data. It can
be observed that the typical day curve of the simulation is lower than the testing data during
the working hours. This damped trend in the simulation might be due to the range difference
between the training and testing set. As it can be seen that the hourly range of data points of
the training set is significantly wider than test set.

This model is fitted with data from all year round, so it has been possible to simulate heat
consumption for every month. Figure 4 shows the typical daily consumption for every month of
2010. The simulated curve and the test curve follow a similar pattern during the colder months.
Notice that the daily baseline consumption decreases during the summer, where only the hour
effects are present. During June, July and August the test consumption is virtually zero, and
the simulation still shows a low periodic hourly pattern. Nevertheless, Figure 4 also includes
the percentage of test data points that fall inside the 90% prediction interval of the simulation.
It can be seen that, for the whole year, practically all test data falls inside the expected region.
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data that falls inside the 90% prediction interval, denoted by ”In P.I.”.
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5. Discussion
The results in this work show the potential of mixed effects models to be used to forecast long-
term energy consumption of buildings. These models are a natural extension of fixed effects
models, that have been proven successful in past work. Mixed effects are able, not only to
generate a representative prediction of the heat consumption in buildings, but also they estimate
the inherent uncertainty of the simulation due to non-measured events.

Fitting a mixed effects version of the energy signature, has showed that the range of energy
performance varies significantly, even though all schools have the same efficiency label. This
result highlights the importance of working with stochastic simulations, given the wide variety
of energy performance in the building stock.

There is still room for improvement in the current version of the model. Although all
test values fall inside the prediction interval, the simulation mean shows damped peaks, when
compared to the test data. In addition, practically 100% of test data falls inside the 90%
prediction interval; which hints that such interval should be narrower. Similarly, it can be
seen that the interval is symmetric and constant. However, a more realistic model would have
a prediction interval that: i) is asymmetric since consumption can only take positive values;
and ii) is wider when consumption is expected to be higher. These limitations come from the
assumption that the modelled data follows a gaussian distribution. In the future, different
distribution families will be used, to take into account such issues. In addition, the dependence
of the weather can be improved, to make the base temperature variable over the year, and then
skip the need for fitting first the mixed effects energy signature. Despite the aforementioned
issues, the results are promising enough and the next steps well defined to pursue further this
methodology with a more complete model. Ultimately, given the generality of modelling with
mixed effects, the work presented here can be extended to other building categories to simulate
a broader energy landscape.
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Abstract

The energy signature (ES) model is a well-known
method to measure the energy performance of a build-
ing. This method uses coarse data aggregation that
omits valuable information about the dynamics of the
thermal elements of a building. This work presents a
method to reconstruct these hidden dynamics with-
out increasing the measuring complexity. The pro-
posed method uses a state space formulation of the
ES, that is filtered using hourly measurements of out-
door temperature and heat consumption. It is shown
that the reconstructed state variable works as a proxy
of the indoor temperature, and reacts to the weather
conditions. These results highlight the potential of
this method for real-time heating performance evalu-
ation, as well as anomaly detection.

Key innovations

• Implementing a dynamical version of the energy
signature method using high frequency measure-
ments.

• Reconstructing a dynamic variable that is a
proxy of the indoor temperature, i.e., measure-
ments of the indoor air temperature are not
needed.

Practical implications

High frequency data such as hourly resolution is re-
quired for the proposed method. Special attention
should be put on the reliability of the estimated hid-
den proxy of the indoor temperature state for new
case studies.

Introduction

The energy signature (ES) is a popular method used
to characterize the heat loss of a building. As ex-
plained by Hammarsten (1987), the method uses lin-
ear regression to estimate a set of parameters that
describe the energy performance of a building. In its
simplest form, the ES has the following structure

Φ =

{
α0 + β0Tout + ε if heating period

Φ0 + ε otherwise
, (1)

where Φ and Tout are the average heating power and
outdoor temperature, respectively, during a period
of time—typically 24 hours. Notice that the model
presents two different regimes. The first regime cor-
responds to periods with heat demand, where the
model is characterized by two parameters: α0, which
represents fixed passive heat losses; and the heat loss
coefficient, β0, that quantifies the heat losses to the
outdoor air. The second regime corresponds to peri-
ods without heating demand. For buildings without
a cooling system, such as the one used in this work,
the heat load during this regime is characterized by
a constant, Φ0. Both regimes have the error term,
ε ∼ N (0, σ0); where σ0 is an arbitrary standard devi-
ation. The model in Equation (1) assumes that there
is a constant outdoor temperature at which the build-
ing is in thermal balance; that is the base temperature,
Tb. Then, the base temperature works as a boundary
between both regimes: if Tout < Tb, there is heating
demand, therefore the first regime is used; otherwise,
the second regime is used. The model in Equation (1)
is static and it is based on the assumption that, using
coarse data aggregation, the contribution of dynamic
elements of the building get smoothed out. Hence,
fitting the model in Equation (1) reveals two key val-
ues: the previously introduced heat loss coefficient,
and the base temperature. This static approach al-
ready provides valuable insight about the energy per-
formance compared to other classic metrics like the
A-temp (Rohdin et al. (2018)).

As data collection in buildings has become eas-
ier, more refined versions of the ES method have
sprouted. For instance, Ghiaus (2006) compute the
energy performance parameters using quantile regres-
sion, in order to ensure robustness of the estimates.
Eriksson et al. (2020) proposed a method to fit the
energy signature selecting night data from heating
periods, which improved the parameter estimation.
Rasmussen et al. (2020) used a smoothing function to
create a smooth transition between the two regimes
in Equation (1); this yielded a continuous model that
can be fit using data from all year round. In addition,
they suggested that the estimated base temperature
is not constant, as they observe daily variations of
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this parameter throughout the year.

Nevertheless, the heat load of buildings is affected by
dynamic phenomena due to the inertia provided by
the thermal mass of the building. Revealing the im-
pact of such effects could help monitoring building
energy performance, detect anomalies in real time or
assess the potential of a building to be used as a short
term thermal storage unit. Therefore, it is of interest
to study the energy signature with higher time reso-
lution. As already discussed by Hammarsten (1987),
if faster dynamic effects are to be taken into account,
the basic ES structure would be

Φt = Φx,t + β0(Ti,t − Tout,t) + C
dTi
dt

+ εt , (2)

where the sub-index t has been added to highlight
the dynamic nature of the expression. Compared to
the static case, the most noticeable addition in Equa-
tion (2) is the indoor temperature, Ti,t, and its time
derivative. In addition, the independent term α0 has
been substituted by Φx,t, which represents passive
heat losses in the building, which now change over
time. This term represents a combination of all heat
gains and losses that are not being modelled; exam-
ples of these could be infiltration, ventilation losses,
solar gains or occupancy effects. These variables are
often difficult to measure and identify, which is one of
the main reasons that literature focuses on the static
case.

This work aims to capture the information that is
lost due to the static assumption. This is done by
reconstructing a proxy variable that is representa-
tive of the indoor thermal conditions. In order to
do so, the high resolution ES in Equation (2) is
transformed into an auto-regressive model with ex-
ogenous inputs (ARX). This time-series approach has
been widely used for characterizing the energy perfor-
mance in buildings (Senave et al. (2019), Palmer et al.
(2021)), and forecasting of energy load (Rasmussen
et al. (2016)). Then, the ARX model is written in
state space form, which allows to reconstruct non-
observed variables using only measurements of heat
consumption and outdoor temperature; i.e., with-
out increasing the number of measured variables.
These two variables can be collected non-intrusively,
which would facilitate large scale applications of the
method.

Method

In order to reconstruct the unobserved variables from
Equation (2), it is necessary to transform the system
to state space form. Then, a Kalman filter is used
to estimate the unobserved state variables using the
measurements of the observed variables. In addition,
the parameters of the model need to be estimated,
so the filtering process is wrapped around an opti-
mization algorithm that estimates the model param-

Figure 1: Flow chart of the suggested method. In
grey, the classic approach. In color, the proposed al-
ternative, that contains and expand the outcome of
using the static Energy Signature

eters by maximizing their likelihood. The outline of
the method presented in this article can be seen in
Figure 1. In this section, the transformation to state
space and the subsequent optimization are presented.
Lastly, the data used during the filtering process is
described.

Dynamic model

Before writing the state space formulation of the high
resolution ES, it is necessary to expand the current
model to account for short term dynamics. First, a
new variable is introduced, αt, defined as

αt = Φx,t + β0Ti,t . (3)

This variable quantifies the heat gains and losses in-
side the building, due to unmodelled effects. It also
takes into account the influence that the current in-
door temperature has on the heat load. Hence, αt
combines the variables that are often difficult to mea-
sure. This re-parametrization allows writing Equa-
tion (2) as

Φt = αt − β0Tout,t + C
dTi
dt

+ εt . (4)

When the resolution is high enough, it is fair to as-
sume that, the heating input is highly dependent of
the heating input during previous time steps. Thus,
a second order auto-regressive term has been added
for the main variable. Then, the ES model becomes

Φt = αt + β1Tout,t + ϕ1Φt−1 + ϕ2Φt−2 + εt . (5)

Where the coefficient that multiplies Tout,t has been
changed from β0 to β1 since the parameter value will
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change when changing the model structure. Addi-
tionally, the term C dTi

dt has been removed when trans-
forming Equation (4) to Equation (5); given that, in a
thermostatically-controlled building, such as the one
used in this work, the changes of indoor temperature
will be captured by Φt, Φt−1 and Φt−2. Equation (5)
represents an ARX model with the outdoor temper-
ature as an input. In order to compare this model to
the initial model in Equation (1), Equation (5) has
been transformed to steady state. This is done by:
i) introducing the backshift operator B (defined as
BXt = Xt−1, for an arbitrary random variable Xt),
which yields

(1− ϕ1B − ϕ2B
2)Φt = αt + β1Tout,t + εt ; (6)

and ii) writing the transfer function form and setting
B = 1. This transformation of Equation (5) results
in

Φt = 1
1−ϕ1−ϕ2

αt + β1

1−ϕ1−ϕ2
Tout,t + 1

1−ϕ1−ϕ2
εt , (7)

which can be re-parametrized to

Φt = ᾱt + β̄Tout,t + ε̄t . (8)

For more details on the steady state transformation,
see Madsen (2007).

Notice that the structure in Equation (8) echoes the
structure seen in the static ES in Equation (1). As
shown in Figure 1, using the dynamic ES, it is still
possible to retrieve the heat loss coefficient and the
base temperature. However, in Equation (8), ᾱt is
a dynamic variable, instead of a constant intercept.
Having access to this variable allows to study the dy-
namic variations of the heat consumption.

Kalman filter

Equation (5) already represents a high-resolution ver-
sion of the energy signature, however αt is not being
observed. In order to reconstruct αt, it is necessary
to transform the system into state space form and use
the Kalman filter. First, the state vector is defined
as

Xt =

 Φt
Φt−1

αt

 ; (9)

which contains all the information of the system at a
given time. Then, it is possible to write Equation (5)
as the following state space model:

Xt = AXt−1 +BU t +Gεt (10)

Y t = CY t−1 + et , (11)

where Equation (10) is the system equation and Equa-
tion (11) is the observation equation. Using this for-
mulation, the elements of the system are

A =

ϕ1 ϕ2 1
1 0 0
0 0 1

 ,B =

β1

0
0

 ,

G =

1 0
0 0
0 1

 ,U =
(
Tout,t

)
and C =

(
1 0 0

)
.

Lastly, et ∼ N (0, σe) and εt = (εt ωt)
>, which is

a two-dimensional normally distributed variable with
variance-covariance matrix,

Σ1 =

(
σ2
ε 0

0 σ2
ω

)
.

Notice that αt is a random walk,

αt = αt−1 + ωt , (12)

with ωt ∼ N (0, σω). This formulation allows αt to
adapt to the measured observations of Tout,t and Φt,
within the bounds dictated by the model structure of
Equations (10) and (11).

Optimization

The main model described in Equation (5) is
characterized by the set of parameters θ =
{ϕ1, ϕ2, β1, σε, σω, σe}. These parameters can be
estimated by maximizing the log-likelihood of θ
(log L(θ)), as explained in detail by Rouchier (2018).
Using this approach, the parameter estimator is de-
fined as

θ̂ =
{

max
θ

log L(θ;YN∗)
}
, (13)

where L(θ;YN∗) is the conditional likelihood given
the observations of the states. In practical terms, this
means that the filtering process is wrapped in an un-
constrained optimization routine that has L(θ;YN∗)
as cost function. When using the Kalman filter, this
cost function is computed using the one-step predic-
tion errors as described by Madsen (2007). Finally,

the process is filtered using θ̂ to reconstruct the state
variables.

Data description

The data used in this work comes from an experiment
realized in a test building at the Fraunhofer-Institut
in Holzkirchen, Germany, part of International En-
ergy Agency’s Energy in Buildings and Communi-
ties Programme (IEA EBC), Annex 71 (Kersken and
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Strachan (2019); Roels (2020)). A two-storey single
family house was monitored during the experiment
that lasted one month, starting December 2018. The
house was unoccupied and equipped with multiple
sensors and equipment to monitor and mimic real-
living condition. The measured variables included:
heat load from electric heaters, weather variables, in-
door air from different rooms, ventilation flow rates
and humidity. The heat load is divided in two cate-
gories: heating dedicated to space heating and heat-
ing to simulate the heat generated by occupants. All
measures were taken every 10 minutes, and they have
been aggregated to hourly values. In this work, the
variables used are the electric heating input from dif-
ferent heaters [kW ] and outdoor temperature [C]. Af-
terwards, indoor temperature measurements are used
for validating the results from αt. Figure 2 shows a 5
days period of the data used. It can be seen that there
are two clear heating patterns: the building is regu-
larly heated during the day, and the heat is turned
off during the night.

Figure 2: Subset of the data used in this work. A
clear night-setback pattern can be observed in the heat
consumption.

Pursuing generality, the entire test building has been
treated as a single unit. Hence, the heat load from dif-
ferent electric heaters have been aggregated to consti-
tute the main dependent variable, Φt. Those heaters
are electric, they are located in the different rooms
of the house, and they are the main source of space
heating. Other sources of heat, such as artificial oc-
cupants and solar gains, have been disregarded and
are not part of Φt. Similarly, this work focuses on
the analysis of one single output variable, which is
the re-constructed αt. Hence, this work characterizes
the whole test building by its hourly heat consump-
tion, and the output αt. Figure 3 shows a schematic
representation of the approach followed in this work,
using an arbitrary floor-plan.

Results

In order to validate the results, first the residuals of
the model in Equation (10) and (11) are presented.
Afterwards, the re-constructed state variable αt, from
the state vector in Expression (9), is analyzed.

Figure 3: Sketch of the procedure. The studied house
is treated as a single unit, with the aggregated con-
sumption from all heaters as dependent variable.

Analysis of residuals

After applying the Kalman filter to the model in
Equations (10) and (11), the resulting one-step pre-
diction errors are depicted in Figure 4. It can be
observed that the residuals are clearly non-gaussian,
due to the regular spike pattern they present. When
checking the auto-correlation function (ACF) and
partial auto-correlation function (PACF), it can be
seen that the value at lags 7, 17 and 24 are high,
whereas the rest fall very close to the 95% confidence
interval. The peaks are caused by the scheduled heat-
ing of the building, which is turned off at night during
a 7-hour period, as shown in Figure 2. These daily
variations have not been introduced in the modelling
process, therefore it is not surprising to see this pat-
tern in the residuals. Nevertheless, the rest of the
lag values in the ACF and PACF fall very close of
the confidence interval. Thus, the cause of the non-
gaussian effects in the residuals has been identified.
Therefore, as a preliminary result, we claim that the
rest of the relevant dynamics have been captured.

Figure 5 shows the hourly distribution of the residu-
als. Notice that during night hours, when the heating
system is turned off, the model tends to over-predict
the heat load. This phenomenon causes a distinct
pattern in the residuals, where the hourly residuals
are significantly less spread than during the rest of
the day. During night hours the heat is turned off;
then, recalling Equation (5), the contribution of the
auto-regressive terms is not present. Additionally, the
outdoor temperature contribution is fairly constant
due to its slow dynamics. These combined suggests
that, the decaying pattern in the night residuals is
caused mainly by αt.
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Figure 4: Residual analysis after using the Kalman
filter. The residuals are centered around 0 with con-
stant variance, except for a periodic pattern caused by
the setback schedule. This can be observed in the ACF
and PACF which have only three important peaks at
lag 7,17 and 24.

Figure 5: Hourly distribution of the residuals after
using the Kalman filter. The residuals are centered
around 0 during the day, but they show a decaying
pattern during night.

Analysis of αt

Figure 6 shows the reconstructed variable ᾱt for a
period over 3 weeks. It can be seen that the varia-
tions of ᾱt are centered around the static parameter
α0. When ᾱt is aggregated to coarser resolution, it
converges to the static α0. The reconstructed vari-
able shows a periodic pattern, that falls during night
hours and is maintained fairly constant during the
day, following the heating pattern observed in Figure
2.

Additionally, it has been possible to compare the
value of the model parameters for the static and dy-
namic cases, which can be seen in Table 1. Notice
that the static parameter, α0, is compared to the

mean of ᾱt over the filtering interval, ¯̄α =
∑T

t=1 ᾱt

T ,
where T is the number of data points. As hinted by
Figure 6, α0 is approximately the mean of ᾱt. On
the other hand, the value of heat loss coefficient in
the dynamic and static case are practically the same,
i.e. β0 ≈ β̄. In addition, table 1 shows that the
uncertainty of the dynamic model estimators are al-
ways larger than the static case. This increase is a
consequence of the larger number of parameters to

Figure 6: Evolution of the variable ᾱt compared to the
static parameter α0. In color, different aggregation
levels of ᾱt.

estimate through the filtering process: ¯̄α and β̄ are
function of the estimated parameters {β, ϕ1, ϕ2}, and
the random walk, αt.

Table 1: Parameter estimates comparison between dy-
namic and static models. In parentheses, the standard
deviation of the parameter estimators.

Static ES Dynamic ES

α [kW]
α0 ¯̄α

2.46 (0.07) 2.48 (0.16)

β [kW/K]
β0 β̄

0.064 (0.019) 0.065 (0.026)

Now, departing from Equation (8), and recalling the
definition of αt in Equation (3), it is possible to define
the indoor temperature as a function of αt and the
other internal heat gains and losses,

T̂i,t =
αt − Φx,t

β1
. (14)

For now, the contribution of Φx,t to Equation (14) is
difficult to assess, and that is out of the scope of this
work. Then, in order to compare T̂i,t to real mea-
surements of the indoor temperature, it has been as-
sumed that the Φx,t is a constant value K ≈ 0.35 kW.
The value of K has been chosen arbitrarily to make
T̂i,t ≈ 21 °C and facilitate visualization; nevertheless,
the order of magnitude of K matches the expected
losses in a system such as the one studied in this
work. Figure 7 compares T̂i,t(αt,K) to measurements
from sensors located at 40 different positions in the
house. It can be seen that the reconstructed variable
follows the same pattern as the indoor temperature:
showing flat periods during the daylight hours, and
a decay pattern during the night, when the heating
system is turned off. Notice that, comparing to T̂i,t,
the measured indoor temperature has larger decays
at night. This difference is caused by the assump-
tion that αt is a normally-distributed random walk,
while the heating data is clearly non-gaussian. This
damped decay in αt was already hinted in Figure 5,
where it can be noticed the residuals are systemati-
cally negative at night, highlighting that during those
hours, the model tend to over-predict.
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Figure 7: Comparison of the indoor temperature, and
the re-constructed αt, with K = 0.35 kW. Indoor
temperature is measured in N = 40 different loca-
tions and, for every hour, the quantile distribution is
shown.

Figure 8: Comparison of the reconstructed ᾱt and the
daily solar radiation. The distribution of indoor tem-
peratures is shown at the top of the figure.

As said earlier, Φx,t represents the heat gains in the
building that are not part of the model. Even though
its exact structure is not known, we know that a big
contributor to the heat gains of a building comes from
the solar radiation. Comparing the solar radiation
and the evolution of αt confirms this hypothesis, as
there is a clear correlation between both variables.
This can be seen in Figure 8, where ᾱt decreases
when the solar radiation increases. Additionally, no-
tice that the indoor temperature is kept constant
during the same interval. This echoes the relation-
ship between the ᾱt and the base temperature Tb,t:
when the solar gains are high, the outdoor tempera-
ture at which the building is in thermal balance, will
decrease.

Conclusion

Based on solely hourly heat consumption and outdoor
temperature time series measurements, this work
has proposed a method to reconstruct the hidden
dynamics—i.e. the indoor temperature and the re-
maining unknown net heat gain consisting of solar
gain, ventilation loss, etc.—that impact on the heat-
ing load of a building.

Departing from the classical energy signature
method, a state space model was fitted to reveal
the effects that were not accounted for explicitly in
the model. This approach represent a non-intrusive
way of monitoring the energy performance of a build-
ing, where the variations of the indoor temperature,
unknown heat losses and gains, are captured in the

proxy variable αt. The estimated variable αt reveals
that assuming a constant base temperature can be an
over-simplification; given that, αt presents significant
hourly and daily variations. This variable, that was
reconstructed using only weather and heating con-
sumption data, has been shown to replicate the fluc-
tuating indoor temperature to a high extent, given an
average unobserved net heat gain of 350 watts. The
dynamic behaviour of this reconstructed variable, αt,
displays a plateau during the daylight hours, followed
by a decay during the night, echoing the night setback
of the indoor temperature.

The lack of indoor information is a common issue
when monitoring the energy usage of a building. This
opacity complicates assessing the portion of the heat
load that is due to poor energy performance or sim-
ply caused by occupants’ preferences. The method
presented in this work allows computing the thermal
building performance parameters, as well as a recon-
structed variable that provides insight of the thermal
state inside the building, without increasing the data
requirements. Moreover, since the energy signature is
translated into a dynamic model, the time resolution
can be increased and the measuring period shorted.
The aforementioned reasons, and the reduced number
of variables involved, make the method easier to ap-
ply at large scale, compared to other alternatives for
evaluating energy performance. This is specially rel-
evant, considering that the presented method avoids
using the indoor temperature, which often represents
a variable difficult to capture reliably.

The proposed model still has room for improvement.
The analysis of residuals showed that the model fails
to reconstruct the dynamics of the system at night;
which is due to the non-gaussian structure of the heat
consumption.The choice of αt as a random walk is
not well suited for the abrupt changes that take place
around 23:00 and 06:00 every day. Moreover, the per-
formance parameters shown a larger uncertainty than
in the static case. Nevertheless, the authors believe
that the uncertainty is mainly caused by the quality
of the data used, and the parameters are still rep-
resentative of the building heating performance. The
next steps to take in this direction, will be to improve
the model so it can incorporate the setback schedule
that was present in the data. Furthermore, the model
will need to be tested in different data sets, to vali-
date its generality. Finally, more weather variables
will be incorporated into the state space model as
done by Rasmussen et al. (2020), to evaluate their
influence over the αt variable. Understanding the ef-
fects of other external variables over αt, will allow
to get better insight of the indoor temperature and
overall heating performance, using only the minimum
measurements.
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Abstract

Building archetypes are a common solution to study the energy demand of cities and districts. These are generally based on
building information such as construction year and function. However, there can be large differences in the energy demand of
buildings of the same archetype due to factors such as the preferences of occupants, quality of the building construction, and
unrecorded renovations. This work uses a non-linear mixed effects model to capture these random differences. The model uses
weather measurements to generate the daily heating load of buildings for the whole year. The model is generated and tested using
data from 56 Norwegian apartments. Results show that 91% of measurements from an out-of-sample test set fall inside the 95%
prediction interval. Additionally, the model allows us to compute a proxy of the heat loss coefficient, which characterises the
heating performance of the population of apartments. Finally, two sub-categories of apartments are identified by clustering the
model estimates for the studied population. The model is general, computationally light and uses existing data that are commonly
collected in many buildings. The suggested method offers a more robust and reliable method to segment building archetypes using
only weather data and energy demand.

Keywords: Building archetype, thermal characterisation, mixed-effects modelling, data-driven modelling

Nomenclature

Acronyms

ES Energy signature

EUI Energy use index, kWh/m2

GMM Gaussian mixture model

HLC Heat loss coefficient, kW/oC

ME Mixed effects

UBEM Urban building energy model

Indices

i Observation/measure

k Individual building

Variables

Φ Heat load, kW/m2

Φsol Solar irradiation, W/m2

T out Outdoor temperature, oC

Ws Wind speed, m/s
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1. Introduction

Around 55% of the world’s population live in cities, and this
number is expected to increase to 70% by 2050 [1]. This im-
plies higher energy demand in concentrated areas, thus metic-
ulous planning is necessary to guarantee sustainable growth.
Moreover, a city is a complex system, and to increase its sus-
tainability, it is necessary to understand its components and
how they interact. Buildings are a key factor to manage when
planning the energy use in cities; they represent 40% of the to-
tal energy demand in urban areas. Therefore, increasing build-
ings’ efficiency will reduce total energy use considerably. In
addition, buildings can be used to balance the energy supply
grid by using strategies such as demand response facilitated by
smart infrastructures [2]. When modelling districts and cities,
the inclusion of individual buildings is challenging, as this in-
creases the complexity of the model. A potential solution to
this is using urban building energy models (UBEM), which
aim to divide the building stock into categories (segmentation)
and capture their attributes to simulate a typical consumption
of each category of building (characterisation) [3].

In general, the categorisation is based on qualitative at-
tributes of the buildings, such as the year of construction, loca-
tion and the functionality. In each category, a building model is
calibrated to simulate the energy consumption of the specific
category [4]. Often, the building models used are based on
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previously identified archetypes, which are deterministic mod-
els that disregard the variability of the heat consumption inside
each category. However, buildings that are grouped based on
qualitative or quantitative characteristics, such as their usage
or year of construction, present significantly different heat re-
sponses [5, 6]. The causes behind these differences in energy
use inside a building can be difficult to identify. They may in-
clude occupant behaviour, different geometry, or renovations
that have not been declared [7, 8]. The effects of occupants
have been evaluated through measurements of CO2 concentra-
tion [9], tracking appliance usage [10] or survey activity diaries
[11]. Assessing the effects of geometry and renovation requires
data about the building construction that may not be up to date
or even accessible. Thus, monitoring the possible sources of
uncertainty is not always an option.

This study proposes using random effects to model the en-
ergy consumption of a population of similar buildings. The fo-
cus is set to characterise the heating load and generate stochas-
tic simulations; thus, we pursue a reduced-order model that
can be easily interpreted. Instead of seeking a model structure
that relies on extensive measured variables to incorporate the
causes behind differences in building consumption, this study
accepts those differences and aims to quantify their impact us-
ing limited data that is easy to access.

1.1. Review of hierarchical methods in building modelling

Random effects are used to model and quantify random dif-
ferences between individuals in a population. Often, they are
used to model the inner sample variations in clinical studies
[12]. In buildings science, a similar example is found in the
work by Rupp et al. [13], where they used random effects to
model impact of the occupants on the heating of an office in a
sub-tropical city in Brazil. In their work, they identified param-
eters that determine the level of comfort of the office workers,
such as the habit of drinking hot beverages or wearing warm
clothing. Since these attributes depend on individual prefer-
ences, random effects were added to the model to account for
them.

Random effects were also explored by Capozzoli et al. [14]
when they used a linear mixed effects model (LMEM) to sim-
ulate the annual energy consumption of healthcare buildings
in northern Italy. The mixed effects structure allowed them to
characterise a big ensemble of buildings with a single model
and capture their common attributes, despite the buildings pre-
senting qualitative differences. However, their model is only
able to simulate annual values, and it is designed for coarse en-
ergy benchmarking. The model proposed in the present work
uses daily values and takes into account the weather’s influ-
ence, thereby offering a richer simulation of the heating de-
mands of building categories.

Palmer et al. [15] presented a linear model that used ran-
dom effects to simulate stochastic hourly profiles of building
categories. The model was an extension of the work done by
Lindberg, Bakker, and Sartori [16] that developed a linear fixed
effect model to simulate the above-mentioned energy profiles.
The model by Palmer et al. [15] was linear and the uncertainty

was purely Gaussian, which limited the overall performance of
the simulation tool.

Mixed effects models are often formulated as hierarchical
models, where a random variable that describes a subset of a
population is nested inside a broader and more general model.
Cerezo et al. [17] compared methods to characterise building
archetypes to simulate yearly consumption. Starting with a
physics-based archetype model, they assigned a probability
distribution to its most uncertain parameters; later, they cal-
ibrated these parameters using a Bayesian approach. Their
work showed that a model based on this stochastic calibration
provided more reliable simulation results than a purely deter-
ministic method. The work by Cerezo et al. [17] was continued
by Sokol, Davila, and Reinhart [18], using a similar approach
to a different group of buildings in a different climate. In this
way, they validated the concept of using a hierarchical struc-
ture to define building archetypes. Additionally, they repeated
the experiment using yearly and monthly values of energy con-
sumption and found that simulating monthly values and later
aggregating provides more accurate estimation of the distribu-
tion of heating loads.

Kristensen, Hedegaard, and Petersen [19] suggested a hi-
erarchical approach to model a population of Danish houses.
In their work, they used a complex building model that re-
turns the hourly energy use. Given the model complexity, it
was only feasible to calibrate a subgroup of the model param-
eters for a segmented building population. De Jaeger, Lago,
and Saelens [20] proposed a stochastic characterisation of the
thermal performance of buildings by estimating the probability
distribution of the U-values for different Flemish building cat-
egories. To perform such a study, they needed to have access
to a region-wide energy certificate database.

Gholami et al. [21] used a Bayesian calibration method to
tune 11 different building archetypes from a neighbourhood in
the Italian city of Bologna. Their results showed robust long-
term prediction with an improvement in the computational re-
quirements. Still, their study focused on the annual energy use
index (EUI) and relied on a model structure provided by the
building modelling software Energy+.

A trend can be observed in the previous studies reviewed
here: they focus on assigning a density distribution to a sub-
set of parameters using established archetype building models,
and these distributions are then calibrated, so the building mod-
els account for random differences within building categories.
In the present study, the differences between buildings are cap-
tured by the random effects, as part of a reduced-order model.
The model is based on a non-linear sigmoid-based energy sig-
nature that, as stated by Nageler et al. [22], gives reliable sim-
ulation results when heating measurements are available. The
model uses daily energy consumption and weather data as in-
put and can simulate the daily heating load continuously for
the whole year. Since the uncertainty caused by buildings’ dif-
ferences is captured, it is separated from other sources of noise,
which renders the model fit more reliable.

The proposed model highlights the potential of mixed effects
(ME) models to study building populations. Instead of lim-
iting the use of hierarchical models for calibration of known
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building models, ME models can be developed in more gen-
eral model structures to satisfy specific goals; in this case, the
simulation of daily heating load and the characterisation of the
weather response of a category of buildings. The flexibility
of this framework is a valuable asset to develop reliable and
representative models for large districts and cities.

1.2. Paper outline

This paper is organised as follows. Section 2 introduces the
modelling method where, first, the non-linear model is pre-
sented for one single building; then, the model is extended with
the addition of random effects to model a building population.
To introduce the reader to the concept of random effects, Sec-
tion 2.2.1 presents an example studying the annual energy de-
mand of a population of schools. Section 3 presents the main
findings of this work and is divided in two sub-sections: first,
a fixed effects (FE) non-linear model is presented to study the
heating load pattern of an individual building and a detailed
description of the model is given to assess the quality of the fit.
The FE model is extended with the addition of random effects,
which converts it into a mixed effects (ME) model. Figure 1
schematically presents the workflow of this section, where one
can see that the outcome of the ME model is two-fold. On the
one hand, the ME model allows a richer study of the known
set of buildings used to train the model (profiling); on the other
hand, the ME model is used to generate new observations of
buildings (sampling), i.e., simulating unknown buildings. Sec-
tion 4 uses the outcome of the profiling to refine the segmen-
tation of the initial population of buildings. Finally, Section 5
discusses the major outcomes of this work.

2. Methods

This section introduces the model structure to model one
single building. Later, the model is extended to account for the
whole category.

2.1. One building: a continuous energy signature

The heating needs of buildings change throughout the year
as they are affected by weather conditions, which as a first ap-
proximation can be represented by the outdoor temperature;
thus, the outdoor temperature is considered the main driver of
the heating demand. In absence of cooling, the heating load
of a building presents the following trend: when the outdoor
temperature is high enough and there are no other heating re-
quirements, the heating load of a building is zero; as temper-
ature decreases, the load starts to increase; eventually, in the
coldest period of the year, the heating load curve will flatten
out because the heating system reaches its capacity. Quali-
tatively, this heating behaviour matches a monotonic increase
between two plateaus: one at zero heating demand and one at
the maximum heating capacity. This S-shape behaviour can be
modelled by a sigmoid curve, a model found in numerous and
diverse systems. Such curves are continuous functions that are
characterized using a small number of parameters.

Figure 1: Flowchart showing the main blocks of this work.

A specific type of sigmoid is the Gompertz curve. This
model has typically been used to model population growth
in biological systems [23], although it has also been used to
model wind power curves [24]. This model has the following
structure

y = Ae−e−C(x−Q)
, (1)

which describes a continuous curve that starts at y = 0 (at
x = ∞) and eventually reaches a horizontal asymptote. This
curve is characterised by three parameters: A > 0 represents
the upper asymptote (at x = −∞), C gives the growth rate
from 0 to A, lastly, Q acts as a horizontal offset of the curve.
The function from Equation (1) can be seen in Figure 2, where
different combinations of its parameters have been plotted to
visualise their effects on the shape of the curve.

−3 1 5 9

0.
0

0.
5

1.
0

A = A1
A = A2
A = A3

−3 1 5 9

C = C1
C = C2
C = C3

−3 1 5 9

Q = Q1
Q = Q2
Q = Q3

y

x

Figure 2: Comparison of different Gompertz curves for arbitrary values of its
defining parameters.

In this study, Equation (1) is used to model the heating load
curve of a building, where y represents the heating load of a

3

84 Re­modelling buildings



building, Φ, and x is the outdoor temperature, T out. Then,
Equation (1) becomes

Φi = A exp[− exp(−C(T out
i − Q))] + εi , (2)

where the notation is changed to improve the readability. In
Equation (2), the sub-index i represents the ith observation of
the heating load and the outdoor temperature; in addition, a
noise term is added, which is represented by the random vari-
able εi ∼ N(0, σ2).

The parameters {A,C,Q} describe how the daily heating de-
mand changes with the outdoor air temperature; still, this tem-
perature is coupled with other climatic variables that affect the
heating load of a building. In this work, we modelled these
effects by defining {A,C,Q} as a function of the weather con-
ditions. As introduced in Figure 2, each of these three param-
eters defines a distinct attribute of the heating load curve, so
each parameter has been handled separately as follows:

• The parameter A represents the heating capacity, thus it is
defined as constant regardless of the weather conditions.

• The parameter C characterises the slope of the heating
load curve. This dependence echoes the heat loss coef-
ficient, which is often influenced by the wind conditions
[25]. For this reason, the parameter C is modelled as a
linear function of the wind speed, Ws, such that

C → C(Ws) = α + βWs . (3)

• The parameter Q horizontally shifts the heating load
curve, which represents the passive heat gains and losses
in the building. In particular, the effects of solar irradi-
ation are a major contributor of the heat gains in highly
insulated buildings [26]. For this reason, the parameter Q
is defined as a function of the solar irradiation, Q(Φsol).
This relationship might not have an explicit expression,
since the effects of the solar irradiation depend on vari-
ables such as the incidence angle or the shading of nearby
objects. Here, we use B-spline curves to capture the non-
linear effects of the solar irradiation on the heating of a
building. Thus, the parameter Q(Φsol) is defined as

Q→ Q(Φsol) =
n∑
i

biB(Φsol) , (4)

where n is the chosen number of spline curves, B(·) the ba-
sis spline function and bi ∀i ∈ [1, .., n] are scalar parame-
ters representing the weight of each spline curve. The use
of spline curves offers flexibility to model complex re-
lationships between variables; more information on their
application is found in the work of Rasmussen et al. [27].

The newly defined {A,C(Ws),Q(Φsol)} introduced a lower
level of parameters, namely θ = {A, α, β, b1, ..., bn} which
represents the fixed effects parameter vector of the proposed
model:

Φi = A exp
[
−exp

[(
α+βWs

i

)(
T out

i −

n∑
i

biB(Φsol
i )
)]]
+εi . (5)

Notice that Equation (5) has the same non-linear structure as
Equation (1). Thus, for the sake of clarity, the final model can
be re-written as

Φi = A exp
[
− exp

(
−C(Ws

i )
(
T out

i − Q(Φsol
i )
))]
+ εi , (6)

where the parameters {C(Ws),Q(Φsol)} are given by Equations
(3)-(4).

2.1.1. Interpretability
The model introduced in Equation (6) captures the depen-

dence of the heating load on the outdoor temperature, wind
speed and solar irradiation. Often, the dependence between
the heating load of a building and the weather conditions is
modelled using a piece-wise differentiable model known as the
energy signature (ES), which is a well known method to assess
the thermal performance of buildings [28]. For buildings with-
out cooling, such as the ones studied in this work, this model
has the following expression

Φi =

HLC · (Tb − T out
i ) + ϵi if heating period

0 otherwise
, (7)

where {Tb,HLC} are model parameters and ϵi represents in-
dependent and identically normally distributed residuals. In
Equation (7), the parameter HLC stands for the heat loss co-
efficient, a performance indicator to evaluate the thermal insu-
lation of the envelope of the building. Thus, the energy sig-
nature assumes a linear relationship between the heating load
and the outdoor temperature in the heating regime. The change
of regime in Equation (7) depends on the relationship between
the outdoor air temperature and the parameter Tb: if T out < Tb

the building requires heat to maintain comfortable indoor con-
ditions; typically in Norwegian buildings Tb ≈ 17oC [29].
Hence, the classic ES requires prior knowledge from the mod-
eller to be able to separate the different heating regimes and
adjust the fitting of the curve [30].

The model introduced in this work is continuous and
presents a smooth transition between heating regimes. As
shown in Equation (6), the model has the following structure

Φi = f (T out
i ,Φ

sol
i ,W

s
i ) + εi , (8)

where f (·) captures the weather dependence of the heating
load. This makes it possible to define

g(T out
i ,Φ

sol
i ,W

s
i ) =

∂ f
∂T out , (9)

a closed form continuous function that is completely described
by the parameter {A,C(Ws),Q(Φsol)}.

4

Re­modelling buildings 85



The function in Equation (9) describes the change rate be-
tween the heating load and the outdoor temperature, and it can
be used to compute a proxy of the classic HLC. Yet, HLC
is a constant parameter, whereas g(·) is a continuous function
that is defined for the whole range of weather variables. As
seen in Figure 2, the Gompertz curve presents three different
regions: two plateaus at the ends, and a slope in the middle.
Near the inflection point, the middle region of the Gompertz
function is well approximated by a linear model. Then, we
define HLC∗ = g(T out∗), where T out∗ is the outdoor tempera-
ture at the inflection point of f (·). Hence, physical information
about the performance of the envelope of the building can be
computed directly from Equation (6).

2.2. One category: randomness at the building level

This section introduces random effects to the model of Equa-
tion (6). To illustrate this concept, Section 2.2.1 presents an
example where random effects are used to evaluate the differ-
ences in annual consumption of a population of schools. In
the example, a simple model is developed to introduce the ME
framework. The choice of schools is arbitrary, thus, this model
could be applied to other building categories. If the reader is
familiar with this type of modelling, they can skip this section
and jump to Section 2.2.2, where the model from Equation (6)
is extended using random effects.

2.2.1. A mixed-effects example
The energy usage index (EUI) is a metric that summarises

the annual energy consumption of a building per unit area.
Buildings that have similar characteristics will have a similar
EUI. If we are interested in estimating the mean value EUI of
a population of similar schools, a model (M0) would be

EUIi = µ + υi , (10)

where i denotes the ith observation of EUI and υi ∼ N(0, σ2
0)

represents residual noise. Equation (10) contains only one
fixed parameter, µ, also known as a fixed effect. Notice that,
since the model structure is chosen for its simplicity, it is as-
sumed that the EUI does not depend on any other variable and
it is distributed around the mean value, µ.

However, in reality, the yearly heating consumption of dif-
ferent schools is different from the mean value. Then, for indi-
vidual buildings, an alternative model (M1) would be

EUIi,k = µ + Uk + ϵi,k , (11)

where, ϵi,k ∼ N(0, σ2
1) and µ still represents the mean value

EUI for the given population. The added term, Uk, captures
the deviations of the individual kth building around the mean
value. Notice that, since Uk is added to Equation (11), the
residual term ϵi,k accounts only for the deviations of measure-
ments of EUIi,k coming from the same individual kth building.

In order to characterise a population of buildings, we study
how Uk varies, rather than its individual values. Thus, it is
modelled as a random variable Uk ∼ N(0, σ2

u), and it is called
the random effect of Equation (11). Notice that now, M1

Figure 3: Comparison of uncertainty for models M0 and M1. Figure A) shows
the distribution of the residuals. Figure B) compares the different estimated
variances, where the size of the rectangles is proportional to the variance.

is described by three parameters {µ, σ2
1, σ

2
u}. Since M1 con-

tains both fixed and random effects, it is called a mixed effects
model; for more details about this family of models please re-
fer to Madsen and Thyregod [31].

Figure 3 shows the results after fitting M0 and M1 using
data from different Norwegian schools (N = 21). Sub-figure
A) compares the estimated models over the distribution of the
used data; sub-figure B) offers a visual comparison of the vari-
ances of the three random variables υi, ϵi,k and Uk. In order to
ensure the data were normally distributed, the data were trans-
formed using the Box-Cox transformation [32]

h(yi) =
y−0.5

i − 1
−0.5

. (12)

Notice that the mean value of both M0 and M1 are the same,
and the main difference is found in the variances σ2

0 and σ2
1.

Since M1 includes the random effects, Uk, to account for the
differences in individual EUIi,k the residuals ϵi,k are smaller.
This can be clearly observed in sub-figure B) where it is shown
that in model M1, most of the noise is caused by Uk.

Fitting model M1 with data from 21 schools allows us to use
Equation (11) to estimate the value of the individual values of
uk ∀k ∈ [1, ..., 21]. As explained in Chapter 5 of Madsen and
Thyregod [31], the random effects are estimated by

ûk = E[Uk |EUIi = yk] = ωµ̂ + (1 − ω)ȳk (13)

where ω = 1/(1+nγ), with n being the number of observations
of the kth building, and γ = σ2

u/σ
2
1. It is important to highlight

that ûk is an estimated value, whereas Uk is a random variable.
In addition, as introduced in Figure 1, given the estimated pa-
rameters, it is possible to sample values from N(0, σ̂2

u). Intro-
ducing these sampled values to Equation (11) makes it possible
to simulate the energy usage index for similar schools that have
no available energy data.

2.2.2. Including the inner-category randomness in the heating
load curve

The heating load curve of a single building can be mod-
elled with Equation (6). This model is extended to represent
an entire category of buildings by including random effects,
defined in this work by the random variable U ∼ N(0,Σ).
This constitutes a non-linear mixed effects model where on
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the one hand, the mean heating load curve of a category of
buildings is characterised by θ and on the other hand, the de-
viations from the mean curve of the kth building are described
by uk = {uA,k, uα,k, uβ,k, uQ,k}, which is a sample from U.

The final mixed effects model is

Φi,k = (A0 + uA,k) exp
[
− exp

[(
α + uα,k + (β + uβ,k)Ws

i

)
×

(T out
i,k − (1 − uQ,k)

n∑
i

biB(Φsol
i,k ))
]]
+ εi,k ,

(14)

where, uk is included in Equation (6) under the following as-
sumptions:

• The variable uA,k accounts for the differences in the upper
limit of the heating load between individual buildings.

• The variables uα,k and uβ,k capture the small differences in
the effects of the wind on a individual building.

• The influence of the solar irradiation is modelled as a sum
of B-spline curves to adapt to possible non-linear effects.
The small differences around the mean value of Q(Φsol)
are captured by adding uQ,k.

Recalling the non-linear structure of the Gompertz curve,
Equation (14) can be re-parameterised, defining the three high-
level parameters as:

A→ Ak = A0 + uA,k

C → Ci,k = α0 + uα,k + (β0 + uβ,k)Ws
i

Q→ Qi,k = (1 − uQ,k) ·
∑n

j b jB(Φsol
i )

(15)

Notice that, for the sake of clarity, a sub-index is added to the
fixed effects so that θ → θ0. Adding the newly defined param-
eters in Equation (14) yields the final model,

Φi,k = Ak exp
[
− exp[Ci,k(T out

i − Qi,k)]
]︸                                    ︷︷                                    ︸

fME(T out
i,k ,Φ

sol
i ,W

s
i )

+εi,k , (16)

which characterises the daily heating load of a building cate-
gory using only the continuous function fME(·).

2.3. Data description
All data used in this work comes from the TREASURE

database supplied by SINTEF in the framework of the
Flexbuild project. This database contains hourly measures of
the heating load, outdoor temperature, wind speed and solar
irradiation for nearly 300 Norwegian buildings. The consump-
tion data was collected by a company that provides energy
management services (EMS), and the measurements range
from 2009 to 2018; the meteorological data was extracted from
the Norwegian Meteorological Institute (MET). The data was
cleaned so each measured building has continuous measure-
ments that span from 1 year up to 3 years. The data quality
is good, only the wind speed and solar irradiation presented

minor gaps in their measurements; the missing measurements
were addressed using linear interpolation. Since this work only
focuses on static characteristics, the data has been aggregated
to daily values.

The data set also includes building information, for example,
the geographic regions, building floor area, and functions. Ad-
ditionally, the buildings are labelled according to their energy
efficiency in one of the categories: E, T, R. Category E refers
to buildings with efficiency near the Passivhaus standards; cat-
egory T refers to buildings that have been recently renovated
and are compliant with the Norwegian standards TEK10 [33];
finally, the buildings labelled R do not comply with any of the
above two standards. Some of the buildings use district heat-
ing and others use electric heaters. Regardless of the heating
sources, this study focus on the space heating load normalised
using the area of each building with the unit of kW/m2.

The proposed model is developed using a subset of the main
database containing measurements from 56 apartment build-
ings. In order to validate the results, the data were split ran-
domly into a training set, containing 41 buildings, and a testing
set containing the remaining 15 buildings. The training set data
are from 2013, 2017 or 2018, depending on the availability of
the data for individual buildings; to ensure that the training set
is balanced, only one year of data is chosen for each building.
All measurements from the testing set are from 2017.

2.4. Parameter estimation

The parameters of the model in Equation (16) are estimated
by maximizing the likelihood function,

L(y;Θ) = fY (y1, y2, ..., yn;Θ) , (17)

where n is the number of observations and fY (·) is the density
function of the model. Thus, the likelihood function quanti-
fies the probability of observing y = [y1, y2, ..., yn] given the
parameters Θ.

In this work, y contains observations of the daily averaged
heating load for 41 different buildings, so Equation (17) be-
comes

L(y;Θ) =
41∏
i=1

· fY (yi;Θ) , (18)

where yi contains the observations of the ith building. For
models that contain only fixed effects, Θ includes the fixed
effects and the parameters that characterise the chosen model
distribution; typically, when the model is assumed to be Gaus-
sian, such distribution is completely characterised by the vari-
ance of the residuals. The inclusion of random effects adds a
new level of uncertainty which requires re-writing the density
function such that

fY (yi,uk;Θ) = fY |uk (yi|uk;Θ1) fU(uk;Θ2) , (19)

where Θ ≡ Θ1 ∪ Θ2 and uk is a vector of length q containing
the random effects of the kth building.

The formulation presented in Equation (19) is called hier-
archical likelihood, which splits the likelihood function in two
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terms, fU(·) and fY |uk (·), highlighting the hierarchical structure
of a mixed effects model. As depicted in Figure 4, there is
an underlying random variable, U, that follows the distribu-
tion fU(·); an observation of such random variable, uk, condi-
tions the upper layer of the model that follows the distribution
fY |uk (·). More details about the hierarchical function can be
found in Chapter 5 of Madsen and Thyregod [31].

As presented in Section 2.2.2, in this work both the indi-
vidual noise and the population noise are normally distributed,
with

fY |uk (yk; uk, θ0, σ1) =

1√
2πσ2

1

n exp

−1
2

∑n
i=1

(
yi,k − fME(uk,T out

i,k ,Φ
sol
i,k ,W

s
i,k)
)2

σ2
1


(20)

and

fU(uk;Σ) =
1

√
2π

q
detΣ

exp
[
−

1
2

u⊤k Σ
−1uk

]
. (21)

where Θ1 ≡ {θ0, σ1,uk} since Equation (20) contains the func-
tion fME(·), and Θ2 ≡ {Σ}.

The final expression of the likelihood function is obtained
by combining Equations (18) and (20)-(21), which leaves a
complicated non-linear product. To reduce the computational
requirements, the negative logarithm of the likelihood func-
tion is computed, so the product from Equation (18) becomes
a summation, and the maximisation becomes a minimisation.
The final objective function is

l(y,uk; θ0, σ1,Σ) = − log
[ 41∏

i=1

fY |uk (y; θ0, σ1) fU(uk;Σ)
]
,

(22)

which is still a complex non-linear function to minimise. To
ease this optimisation, in this work the TMB package is used
[34]. This package runs in R and uses the Laplace approxima-
tion to calculate the function l(·) and estimates its parameters.

2.5. Simulation and validation framework
The model proposed in this work is intended for simulation

purposes. Recalling Figure 1, the simulation is done by sam-
pling realisations from the random effects distribution. Then,
using outdoor air temperature, wind speed and solar irradiation
measurements for a given period, it is possible to simulate the
daily heating load of a building.

Figure 4: Schematic representation of the hierarchical likelihood structure
from Equation (19).

To study the uncertainty introduced by the differences
among individual buildings, the region that includes the 95%
of sampled buildings is computed. This uncertainty region is
computed using a Monte Carlo approach, where we simulate
numerous realisations and select the region containing 95% of
the sampled space. The performance of the proposed model
is evaluated using the reliability metric, which is computed by
measuring the % of test measurements that fall inside the 95%
uncertainty region.

3. Results

This section introduces the results of fitting the model in
Equation (6) using data from one single building. Then, the re-
sults of modelling a whole category of buildings with Equation
(16) are presented. The results at category level are divided
into two sub-sections: first, the model fit is analysed studying
the model results compared to the training set; later the model
is validated comparing the results with a set of measurements
from out-of-sample buildings. Finally, the proposed model is
used to study the thermal performance of a category of build-
ings.

3.1. One apartment

Figure 5 shows the fit of the training set for one apartment
building. It can be seen that the model accurately captures
the fluctuations of the daily heating load and presents a small
residual noise.

Evaluating the residuals of such a model confirms the qual-
ity of the fit. Figure 6 shows the residuals are centred around
zero and present no significant trends when compared with
the three weather variables. However, it is noticeable that
the variance decreases slightly for the outdoor temperature at
the warmer side of the plot. This shrinking of the variance
is caused by the change of heating behaviour during summer
days: when the outdoor temperature is very high the heating
load is very close to zero. The residuals term from Equation
(6) has a constant variance that is unable to adapt to such be-
havioural changes. Moreover, it can be noticed that the residu-
als are slightly narrower for high values of the solar irradiation;
this is caused by the coupling between bright days and high
outdoor air temperature. In addition, given that the data comes
from Norway, it is seen that most of the daily data points con-
centrate in the lower end of the solar irradiation, so it is more
likely to find larger residuals in that region. Similarly, focus-
ing on the wind speed, extreme values present small residuals,
but, given the low number of observations in this range, this is
not considered as a potential bias; as seen in Figure 7, changes
in the wind speed will have a limited impact over the heating
load.

Additionally, Figure 6 shows an exponential decay of the
auto-correlation function (ACF) and a significant partial auto-
correlation (PACF) in lag one. This indicates that the model
omits some structure (presumably an AR(1)); yet, given the
lag-one auto-correlation is only around 0.5, this is ignored. It
is important to recall that the proposed model is static and does
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Figure 5: Yearly evolution of the simulated heating load for one building compared to measurements of the heating load during that period.

Figure 6: Residuals analysis of an arbitrary apartment building. The top row of
plots show the dependence of the residuals with two main inputs. The bottom
row shows the ACF and PACF.

not take into account the effects of heating inertia, which might
be what causes this lag-one auto-correlation. Still, the results
of the model are satisfactory for the purpose of this study.

The relation between the estimated heating load and the out-
door temperature is shown in Figure 7. There, three different
curves are plotted for different weather conditions to evaluate
how the model adapts to changes in the weather variables. The
figure includes two sub-plots that show the dependence of pa-
rameters {C(Ws,Q(Φsol))} on the weather variables.

Figure 7: Main figure shows the dependence of fME(·) on the three weather
variables. Two sub-figures show the dependence of parameters C and Q on
wind speed and solar irradiation, respectively.

The C parameter grows slightly with the wind speed, con-
firming that the heat loss increases as wind speed increases;
however, the small slope suggests that changes in the wind
speed will not cause significant changes in the heating load.

The parameter Q follows a sharply decreasing trend that flat-
tens, then slightly increases during days with high solar irradi-
ation. The initial decrease suggests that, as the solar irradiation
increases (see trend from point I to point II), the heating load
curve is shifted to the left (see solid and dashed curve in Figure
7 left), since the building demands less heating due to the solar
gain. The increase of Q (see trend from point II to point III),
suggests that, for very bright days, the internal gains decrease
slightly. This is however a small and possibly not significant
effect. This could be caused by some behavioural changes of
the occupants during very bright days, such as an increase in
the heat loss caused by window opening.

3.2. Modelling results of all apartments

To model the apartment category, random effects are intro-
duced as described by Equation (16). After computing the
Akaike information criterion (AIC) for models with different
numbers of splines, the final choice was to use four spline
curves. Using four spline curves yields the final model with
seven fixed effects, θ̂0, which can be seen in Table 1. The p-
values confirm that all parameters are significant, proving the
dependence of the model on the three weather variables. Yet,
β0 presents a small value with the largest uncertainty, suggest-
ing the effects of the wind speed are weak.

Fixed effects Random effects

Mean Std. dev. p-value Std. dev.

Â0 23.60 1.08 <1e-16 ûA 1.64

α̂0 8.44e-2 2.8e-3 <1e-16 ûα 1.59e-2
β̂0 8.82e-4 5.2e-4 8.75e-2 ûβ 2.10e-3

- - - - ûQ 2.89e-1
b̂1 5.91 0.30 <1e-16 - -
b̂2 0.29 0.16 7.0e-2 - -
b̂3 1.52 0.23 8.53e-11 - -
b̂4 3.10 0.27 <1e-16 - -

Table 1: Fixed effects estimates (left). Diagonal of the covariance matrix of
random effects, Σ (right).

The random effects of the model are contained in a four-
dimensional random vector, uk, that is distributed following
a multivariate normal N(0,Σ). The right side of Table 1 in-
cludes the standard deviation of each component of uk. It can
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be observed that ûα ûβ present a large standard deviation, high-
lighting that the wind dependence varies significantly among
the training buildings.

As explained in Section 2.2.1, using the measurements in
the training set, it is possible to estimate the individual values
of uk for all the observed buildings. Studying the quantiles
of uk ∀k ∈ [1, ..., 41] confirms the estimated random effects
follow a Gaussian distribution, as can be seen in Figure 8.

Figure 8: Quantile plots of the estimated random effects. All of the quantile
points fall inside the 95% prediction interval confirming that the random ef-
fects follow a normal distribution.

The fixed effects shown in Table 1 give the mean value of
the heating load curve which can be seen in Figure 9. As the
parameters describing the curve depend on the solar irradiation
and wind speed, to improve visualisation, three snapshots are
plotted. Each sub-plot contains the observations for a range
of solar irradiation, and the mean curve uses the median solar
irradiation and the median wind speed of that range. There
is still a large uncertainty around the mean, which is caused
by the differences among the buildings. This is confirmed in
Figure 9 by including the individual building curves from the
buildings in the training set.

Figure 9: Three snapshots comparing the mean curve and the individual build-
ing curves for different values of the solar irradiation.

Thus, the random differences from building to building add
a new layer of uncertainty that is captured by the random ef-
fects, hence, it is separated from residual noise. To visualise
this result, two models were compared: the proposed model
with fixed effects and random effects, denoted by fME(·); and
another model with only fixed effects, that is, setting U = 0,
denoted by f0(·). The comparison of fME(·) and f0(·) can be
seen in Figure 10, where the regions defined by the 95% pre-
diction interval are highlighted for both models.

In the model without random effects, the uncertainty is con-
stant around the mean, since the only source of uncertainty
comes from the normally distributed residuals. When using the
random effects, the uncertainty changes with the outdoor tem-
perature due to the non-linear structure of the model. In the

Figure 10: Comparison of the uncertainty region of the ME model and a model
without random effects.

cold end of the temperature spectrum, the uncertainty is sig-
nificantly wider when compared to the model without random
effects, that is, during days with low outdoor temperatures the
heating load differs more from one building to the other. When
the outdoor temperature is high, the uncertainty is lower since
all buildings have lower heating loads. The uncertainty region
of fME includes more data points, which renders that model as
a better representative of the studied population.

3.3. Predicting observed buildings

The estimated fixed effects, θ̂0, and random effects, ûk, com-
pletely characterise the buildings in the training set. Then, their
only source of uncertainty is the residual noise, εi,k. Figure 11
shows the estimated individual curves of 6 buildings; to im-
prove readability, these curves are computed with a fixed solar
irradiation. Notice that the 95% prediction interval is much
narrower, when compared to Figure 10, due to the absence
of the building uncertainty. Still, most of the measured data
points are included in the uncertainty region, highlighting the
good fit of the model at the building level.

Figure 11: Heating load curves of six different buildings. The solar irradiation
and the wind speed are set as constants to ease readability.

3.4. Simulating unobserved buildings

If the 41 buildings of the training set are a representative
sample of the apartment population in Norway, then the un-
certainty region from Figure 10 marks the region where 95%
of observations from any unobserved Norwegian apartment
buildings will fall. Although it is not possible for the authors to
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examine the representativeness of these buildings, we can com-
pare the uncertainty region to measurements from 15 apart-
ment buildings that were not part of the training set. The daily
heating load measurements of those test buildings compared to
the uncertainty area of fME depicted in Figure 10. Given this
region, it is possible to compute the reliability measure, de-
fined as the percentage of data points that fall inside the 95%
prediction interval. Figure 12 shows the distribution of the in-
dividual scores, where one will note that most of the test build-
ings show a reliability over 90%.

Figure 12: Boxplot that shows the distribution of reliability measure for the 15
buildings in the testing set.

3.5. Assessing the thermal performance of the studied cate-
gory

The estimated parameters of Equation (16) were used to
compute the proxy heat loss coefficient, HLC∗ described in
Section 2.1.1. Given the presence of random effects, HLC∗

is not described by a single parameter but a distribution that
characterises the studied category of buildings. The density
distribution of HLC∗ was estimated using a Monte Carlo ap-
proach and is shown in Figure 13. It presents a wide bell curve
with a long tail in the higher side of the HLC range.

Figure 13: Distribution of the HLC∗ computed using model fME. The distri-
bution is compared to a dot plot of the classic HLC computed for the buildings
in testing and training sets.

For each building, in both the training and testing set, the
classic heat loss coefficient are computed following Equation
(7). The distribution of these individual values is included in
Figure 13 as a dot plot. Despite the low number of points,
the computed values resemble the distribution, indicating that
HLC∗ is a valid alternative for simulating the thermal perfor-
mance of the envelope of an unobserved apartment building.

4. Model application: Refining segmentation

As described in Section 3, with the proposed model it is pos-
sible to estimate the random effects, ûk, for each building in
the training set. This vector, along with θ0, completely char-
acterises a building’s response to the weather conditions, pro-
viding a deeper understanding of the set of buildings used to

train the model. In this work, we propose using ûk to group
buildings based on the likeness of their heating curve. This
approach offers a data-driven alternative to the conventional
segmentation procedure that groups buildings using qualitative
data that might be outdated or missing.

The buildings are grouped using a fuzzy analysis clustering
(FANNY method) [35] and two sub-categories of buildings are
found, named C1 and C2. Table 2 presents the available details
of the buildings contained in each cluster. Notice that, using
only qualitative details, no clear line can be drawn to separate
C1 and C2, since both include buildings with similar attributes.
Additionally, both clusters have buildings with missing details.

C1 (24 buildings) C2 (17 buildings)

Function Apartment block

Construction 2010, 2012-2016 Unknown, 1998,
years 2005-2006, 2011,

2013, 2015-2016
# of units 4-154 9-62
Location Unknown, Harstad, Harstad, Heimdal,

Jakobsli, Ranheim, Moss, Ranheim,
Trondheim Trondheim

Area [m2] 352-17457 640-5775
Eff. label R, T, E R

Table 2: Summary of characteristics found in the different buildings contained
in C1 and C2.

As outlined in Figure 1, these two clusters are studied sep-
arately by splitting the original training data set and repeating
the fitting process described in Section 3. This results in having
two different models: ME1 and ME2. Both models follow the
structure presented in Equation 16 and are governed by fME1
and fME2 respectively. Hence, ME1 and ME2 are described
by a different set of parameters θ(l)

0 , Σ(l) and σ(l) for l ∈ [1, 2].
Table 3 compares the fixed effects after fitting both models. It
is seen that ME2 presents a higher heating capacity and higher
wind dependence than ME1, suggesting that C1 contains build-
ings that are better insulated. This was already hinted at in
Table 2, where we noted that C1 contained buildings compli-
ant with high efficiency standards. Furthermore, notice that
the solar gains, reflected by the sum of splines, are higher for
buildings in C1, which indicates again that the impact of solar
irradiation is more significant in low-energy buildings.

Train. A(l) α(l) β(l) ∑n=4
i b(l)

i B(x)

ME1 C1 2.80 9e-2 1.2e-4 4.03
ME2 C2 3.66 7.72e-2 2.02e-3 3.72

Table 3: Fixed effects for the two clusters. Notice that the term
∑n=4

i biB(Φsol)
is defined for a range of solar irradiation; to improve interpretability, only the
values for x = 50W/m2 are given.

To assess how this finer segmentation represents the popu-
lation of apartments, the models ME1 and ME2 are compared
to the test set presented in Section 3.4. Since it is unknown
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Figure 14: Simulated yearly evolution of the heating load for the two clusters compared to the daily mean of the 15 test buildings.

which model represents each test building, the reliability of
both models is computed for each of the 15 buildings. When
the measurements of a test building show high reliability with
model ME1, it is assumed that the building belongs to C1 and
vice-versa. The results show that 13 of the 15 test buildings are
better described by ME1. Hence, the test set is split in two: one
subset contains 13 buildings to test ME1 and the other subset
contains only two buildings to test ME2.

Figure 14 shows one year of simulated heating load using
ME1 and ME2. It is seen that the heating load simulated using
ME2 is always higher that the trend simulated using ME1 and
presents more pronounced fluctuations; similarly, the predic-
tion interval of ME1 is wider. The figure includes measured
data from the individual test buildings, as well as their daily
averages by cluster. The averaged test data of buildings from
C1 (marked with ) falls very close to the simulated mean with
ME1, suggesting the model is a good representative of the sub-
category. On the other hand, the average of C2 test buildings
(marked with×) falls lower than the ME2 simulation; however,
it is important to recall that this average is computed using only
two test buildings, which does not allow us to have an accurate
heating trend for testing purposes.

Finally, the accuracy of each fitted model is quantified fol-
lowing ASHRAE guidelines 14-2014 [36]. These guidelines
propose the NMBE and CVRMSE metrics to evaluate the
model performance, and give boundaries for each metric to
guarantee a good fit. For each sub-category, the monthly av-
erage of its test buildings is computed and compared to the
simulated monthly heating load. The results can be seen in Ta-
ble 4, which confirms model ME1 as a good representative of
C1. The results for ME2 are significantly worse due to the low
number of test buildings.

NMBE [%] CVRMSE [%]

ASHRAE 14-2014 ≤ ±5 ≤ 15

Model ↓ Test set ↓

ME1 13 buildings (C1) 1.12 6.29
ME2 2 buildings (C2) -26.30 50.75

Table 4: Comparison of NMBE and CVRMSE metrics of the whole data set,
C1 and C2.

5. Conclusion

This work presents a methodology to model the heating load
of archetypes of buildings using existing weather and energy
meter data. The results from this model can be used to refine
segmentation of a population of buildings. First of all, a non-
linear model was introduced which captures the weather de-
pendency of buildings. Using this model, reliable results were
presented simulating the daily heating load of a single building
during the period of one year. The resulting simulation is con-
tinuous and adapts to the typical heating regime change from
heating season to non-heating season.

To model an entire category of buildings, the model was ex-
tended with the addition of random effects; in this work, a pop-
ulation of apartments was modelled. Results showed that the
simulated heating load accurately follows the measured trend
of the buildings in the training set. The non-linear model struc-
ture was able to adapt to the regime changes of the heating load
during the year, which cause high variance during colder peri-
ods compared to warmer ones. Thus, the model shows a high
uncertainty region during winter months which narrows as the
heating load approaches zero during the summer. This uncer-
tainty is caused by the random differences between apartments,
and quantifying it allowed us to compute the region where 95%
of measurements of the heating load will fall. This region was
validated using measurements from 15 out-of-sample build-
ings, capturing 91% of these test data. Thus, given the weather
conditions of an arbitrary period, the simulation using ME pro-
vides a reliable estimation of the range where the heating load
of any apartment might fall during such a period.

The model is based on known physical phenomena and is
easy to interpret. The estimated parameters give direct insights
into the effects of outdoor temperature, wind speed and solar
dependence. In addition, a proxy of the heat loss coefficient
can be computed through these parameters. The stochastic na-
ture of the proposed model allowed us to estimate how this
thermal performance is distributed for the studied category.

One of the major challenges of working with models that
aim to represent urban areas is finding a way to accurately seg-
ment the building stock. Working with a large enough data set,
the proposed model allows identifying sub-categories based on
the estimated random effects, which offers a richer description
of the building landscape. This method is purely data driven
and does not require having access to qualitative data of the
building (such as the geometry or year of construction) to seg-
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ment a population of buildings. The model completely charac-
terises the thermal response for a climatic year, and the build-
ings are directly grouped based on estimated random effects.
In addition, if partial qualitative information about the studied
set of buildings is available, this method can be used to fill the
gaps. In the presented work, it was possible to classify build-
ings lacking key information, such as their construction year or
clear efficiency labelling. The results indicate that this method
can also be used to complement and validate segmentation that
uses the classic archetype approach.

When working with mixed effects (ME) models, specially
with non-linear ME, it is recommended to use a low number of
random effects to ensure the computational feasibility. In this
work, it was possible to add a random effect for each major
parameter since the proposed model has a low order structure.
In case of using a more complex model, it will be necessary to
evaluate which parameter would be more affected by random
effects. Issues can also arise when dealing with long high-
frequency data sets; for instance, in the proposed model, the
trials to address the significant auto-correlation in the residuals
were unsuccessful due to computational limitations.

Segmenting a population of buildings based on data-driven
methods requires to be able to interpret the cause behind the
newly found categories. In the studied case, the model was
interpretable and the differences between sub-categories were
easy to identify, which allowed to recognise a sub-category
containing mostly low-energy buildings. However, the other
sub-category could not be properly validated since its test set
was too small and proved not to be representative. This arises
the question of how to categorise the buildings that are not part
of the training set.

Nevertheless, the results of this work are satisfactory and
suggest that mixed effects are an effective modelling frame-
work to develop urban models and adapt to the modelling
needs. In this case, pursuing generality, the model is relatively
simple as it uses daily values. Still, the results indicate that a
mixed effects approach can be applied to more complex appli-
cations.
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