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Summary

Despite tremendous progress over the past decade, deep learning methods generally
fall short of human-level systematic generalization. It has been argued that explicitly
capturing the underlying structure of data should allow connectionist systems to
generalize in a more predictable and systematic manner. Indeed, evidence in humans
suggests that interpreting the world in terms of symbol-like compositional entities
may be crucial for intelligent behavior and high-level reasoning. Another common
limitation of deep learning systems is that they require large amounts of training
data, which can be expensive to obtain. In representation learning, large datasets
are leveraged to learn generic data representations that may be useful for efficient
learning of arbitrary downstream tasks.

This thesis is about structured representation learning. We study methods that learn,
with little or no supervision, representations of unstructured data that capture its
hidden structure. In the first part of the thesis, we focus on representations that
disentangle the explanatory factors of variation of the data. We scale up disentan-
gled representation learning to a novel robotic dataset, and perform a systematic
large-scale study on the role of pretrained representations for out-of-distribution gen-
eralization in downstream robotic tasks. The second part of this thesis focuses on
object-centric representations, which capture the compositional structure of the in-
put in terms of symbol-like entities, such as objects in visual scenes. Object-centric
learning methods learn to form meaningful entities from unstructured input, enabling
symbolic information processing on a connectionist substrate. In this study, we train
a selection of methods on several common datasets, and investigate their usefulness
for downstream tasks and their ability to generalize out of distribution.
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Resumé

På trods af enorme fremskridt i løbet af det seneste årti er deep learning generelt ikke i
stand til at opnå systematisk generalisering på menneskeligt niveau. Det er en udbredt
opffattelse, at eksplicit indfangning af den underliggende struktur i data skulle gøre
det muligt for connectionistiske systemer at generalisere på en mere forudsigelig og
systematisk måde. Faktisk tyder resultater fra eksperimenter med mennesker på, at
det kan være afgørende for intelligent adfærd og ræsonnementer på højt niveau, at
fortolke verden i form af symbollignende sammensatte enheder, der kan sammensættes
og varieres. En anden almindelig begrænsning ved deep learning-systemer er, at de
kræver store mængder træningsdata, som kan være dyrt at fremskaffe. I representation
learning udnyttes store datasæt til at lære generiske datarepræsentationer, som kan
være nyttige til effektiv indlæring af vilkårlige efterfølgende opgaver.

Denne afhandling omhandler indlæring af strukturerede repræsentationer. Vi under-
søger metoder, der med lidt eller ingen supervision lærer repræsentationer af ustruk-
turerede data, som opfanger den skjulte, underliggende struktur. I den første del af
afhandlingen fokuserer vi på repræsentationer, der udreder de forklarende faktorer
for variation i dataene. Vi opskalerer indlæringen af udredte repræsentationer (di-
sentangled representations) til et nyt robotdatasæt og gennemfører en systematisk,
stor-skala undersøgelse af rollen, som forudindlærte repræsentationer spiller for gene-
ralisering uden for fordelingen til efterfølgende robotopgaver. Den anden del af denne
afhandling fokuserer på objektcentrerede repræsentationer, som indfanger inputets
kompositoriske struktur i form af symbollignende enheder, såsom objekter i visuelle
scener. Objektcentrerede indlæringsmetoder lærer at uddrage meningsfulde enheder
fra ustruktureret input, hvilket muliggør symbolsk informationsbehandling på et con-
nectionistisk substrat. I denne undersøgelse træner vi et udvalg af metoder på flere
ofte anvendte datasæt og undersøger deres anvendelighed til efterfølgende-opgaver og
deres evne til at kunne generalisere uden for fordelingen.
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CHAPTER 1
Introduction

Despite the extraordinary progress made in the last decade in deep learning, human-
level intelligence still seems out of reach. Major limitations of most contemporary
methods include poor data efficiency and a lack of systematic generalization. Repre-
sentation learning provides a possible way to alleviate the efficiency issue by learning
to extract meaningful patterns in the data and represent them in a compact and
reusable way, which should facilitate solving arbitrary downstream tasks, such as
classification, abstract reasoning, planning, or robotic manipulation. In particular,
representations that explicitly capture some of the structure in the data are believed
to be beneficial for interpretability, efficiency of downstream learning, fairness, and
human-level systematic generalization. In this dissertation, we will focus on areas of
representation learning that are concerned with learning this structure: disentangled
and object-centric representation learning.

Disentangled representations separately encode the ground-truth generative factors
of variation of the data in a compact and reusable manner. Although recent years
have seen several experimental studies on disentangled representation learning for
image data, some questions remain unanswered. For example, (i) the generalization
in downstream tasks is rarely investigated thoroughly, and (ii) these studies largely
focus on toy datasets. One contribution of this thesis is a rigorous analysis of the
generalization of disentangled representations in more realistic settings, including a
large-scale study on the role of pretrained representations for the generalization in
downstream robotic tasks. Chapter 3 provides an overview of these studies and a
discussion of the key results. The original publications (Dittadi et al., 2021b; 2022b;
referred to as Papers I and II in this dissertation) are included in Chapters 5 and 6.
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Following an analogous line of reasoning, in a multi-object setting, representations
should ideally capture the compositional structure of visual scenes in terms of ob-
jects. Separately representing objects and interpreting them as compositional build-
ing blocks should, in principle, enable complex symbolic reasoning, causal inference,
and human-like systematic generalization. However, since object-centric learning de-
veloped relatively recently as a subfield of representation learning, there is still lim-
ited understanding of (i) the inductive biases for learning good object representations
without supervision, (ii) their usefulness for downstream tasks, and (iii) their out-of-
distribution generalization. In this dissertation, we present a systematic empirical
study that thoroughly investigates how useful these representations are in practice,
and how well common object-centric representation learning methods generalize out
of distribution (points (ii) and (iii) above). Chapter 4 provides an overview of the
study and a discussion of the major results. The original publication (Dittadi et al.,
2022a; Paper III in this dissertation) is included in Chapter 7. In an additional paper
not included in this thesis but briefly discussed in Section 4.2 (Papa, Winther, and
Dittadi, 2022), we investigate architectural inductive biases that may help successfully
separate objects with complex textures (point (i) above).

1.1 Thesis outline

The main body of this dissertation consists of three parts: In the first part (Chapter 2),
we provide relevant background on the topics underlying the remainder of the thesis.
In the second part (Chapters 3 and 4), we summarize our contributions, present the
most salient results, and discuss them in depth. The third part (Chapters 5 to 7) con-
tains Papers I, II, and III. We outline the structure of this thesis more in detail below.

Chapter 2 introduces the relevant background for this dissertation. After a brief
overview of the history and motivation of representation learning, we discuss some
desirable properties of learned representations. We focus in particular on their format,
and introduce the concept of disentanglement. We then introduce variational autoen-
coders, a popular approach for generative modeling. We continue with a review of
common approaches for disentangled representation learning based on variational au-
toencoders, and present the disentanglement metrics used in this thesis. Finally, we
introduce unsupervised object-centric representation learning, and present a selection
of popular methods that are relevant for this thesis.
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Chapter 3 summarizes the main contributions of Papers I and II. These papers focus
on learning (disentangled) representations in a robotic setting. In two large-scale
studies, we investigate the relationship between properties of the representations, the
performance on downstream tasks from simple factor prediction to challenging robotic
tasks, and the generalization on these downstream tasks. We start by discussing our
proposed dataset and the robotics context on which these publications are based. We
then motivate and present the experimental studies, and discuss the key results and
takeaways, leaving a more detailed analysis for Chapters 5 and 6.

Chapter 4 summarizes the main contributions of Paper III, where we perform an
empirical study on unsupervised object-centric representation learning. In this study,
we formulate three hypotheses based on common assumptions in the literature that
are however typically left implicit, and systematically test them. More specifically,
we investigate the usefulness of object representations for downstream models solving
prediction tasks, and analyze their generalization under different types of distribution
shifts at test time. Similarly to Chapter 3, in this chapter we discuss the key results
and takeaways, leaving a more detailed analysis for Chapter 7.

Chapters 5, 6 and 7 contain Papers I, II, and III, respectively. Finally, we con-
clude in Chapter 8 by summarizing and discussing the main contributions of this
dissertation.
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CHAPTER 2
Background

This chapter provides the relevant background for the contributions of this disserta-
tion. We start in Section 2.1 by discussing the main motivations for representation
learning, some key challenges in terms of generalization, and properties that are
widely believed to be desirable in learned representations, such as disentanglement.
In Section 2.2, we then provide an overview of variational autoencoders, which form
the basis for some of the methods employed in this thesis, especially in the context of
disentangled representation learning. We then continue in Section 2.3 with a review
of disentangled representation learning, including common disentanglement metrics
and a weakly supervised learning method that we will employ in Papers I and II (see
Chapters 3, 5 and 6). Finally, in Section 2.4 we motivate and introduce object-centric
representations and discuss a selection of recent methods for learning them without
supervision (these will be used in Paper III; see Chapters 4 and 7).

2.1 Representation learning

2.1.1 The importance of data representation

The performance of machine learning algorithms is strongly affected by the way their
input data is represented (Bengio, Courville, and Vincent, 2013; John, Kohavi, and
Pfleger, 1994; Murphy, 2012; Ragavan et al., 1993). Representations that focus on
relevant aspects of the data are easier to learn from, because the learning algorithm
is spared the burden of having to infer which information is relevant for the task,
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and isolate this information from irrelevant content. Moreover, such representations
should be more robust to changes in the input that are irrelevant to the task at hand.
These irrelevant changes are not necessarily noise in the classical signal processing
sense (Oppenheim and Schafer, 2009; Rabiner and Gold, 1975); they can also be
alterations in nuisance variables (or nuisance factors), i.e., proper factors of variation
in the data that are coincidentally irrelevant for the task under consideration but may
be relevant for others (Meehl, 1970; Fawzi and Frossard, 2016; Achille and Soatto,
2018, Section 2.2).

Traditionally, most machine learning applications involved linear models on top of
hand-engineered features (Bengio, Courville, and Vincent, 2013; LeCun, Bengio, and
Hinton, 2015; LeCun et al., 1998), whose purpose was to enrich or replace parts of
the data in order to facilitate solving the task at hand. Feature engineering can
be time-consuming as it typically relies on significant domain expertise and is often
carried out manually by humans (LeCun, Bengio, and Hinton, 2015; Murphy, 2012,
Section 1.2). For this reason, automated feature engineering has been the focus of a
considerable amount of research in the past (Aha, 1991; Belongie, Malik, and Puzicha,
2001; Dalal and Triggs, 2005; Freeman and Roth, 1995; Freeman et al., 1996; Hirsh
and Japkowicz, 1994; Lowe, 1999; Markovitch and Rosenstein, 2002; Matheus and
Rendell, 1989; Scott and Matwin, 1999; Sutton and Matheus, 1991; Viola, Jones,
and Snow, 2005), and is still relevant in some domains (Khurana, Samulowitz, and
Turaga, 2018; Khurana et al., 2016; Lam et al., 2017; Nargesian et al., 2017; Zöller
and Huber, 2021).

2.1.2 Deep neural networks

Deep learning approaches (LeCun, Bengio, and Hinton, 2015; Schmidhuber, 2015)
do away with this expensive, often problem-specific feature engineering, and instead
learn to extract data representations that are suitable for the task, together with
the task itself. Such methods are based on Deep Neural Networks (DNNs), which
consist of compositions of non-linear transformations, typically called layers. Each
transformation computes a more abstract representation of the data using the less
abstract, lower-level representations from the previous layers (Ballard, 1987). The
deeper the layer—i.e., the further removed from the data—the more abstract and
useful its representation of the data can be, as “more abstract concepts can be often
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be constructed in terms of less abstract ones” (Bengio, Courville, and Vincent, 2013).1

Furthermore, the complexity of the set of functions learnable by deep networks can
grow exponentially with the network’s depth (Eldan and Shamir, 2016; Montufar
et al., 2014; Pascanu, Montufar, and Bengio, 2013; Raghu et al., 2017; Safran and
Shamir, 2017; Telgarsky, 2016; but see also Håstad (1986), Håstad and Goldmann
(1991), and Wegener (1987) for related results before the deep learning era) since the
features at different layers can be re-used and composed in exponentially many ways
(Bengio, Courville, and Vincent, 2013, Section 3.4).

Therefore, in addition to eliminating the need for the labor-intensive feature engi-
neering on which traditional machine learning methods rely, DNNs can learn very
flexible, abstract representations that are potentially even more suitable for a given
task than problem-specific hand-engineered features—and they can do this directly
from unstructured data. Their increased flexibility and ease of applicability have led
DNNs to redefine the state of the art in a broad range of domains, with notable
early successes in, e.g., image and video recognition (Ciresan et al., 2011; Krizhevsky,
Sutskever, and Hinton, 2012; Sermanet et al., 2013; Simonyan and Zisserman, 2014;
Zeiler and Fergus, 2014), natural language processing (Bordes, Chopra, and Weston,
2014; Collobert et al., 2011; Jean et al., 2014; Mikolov et al., 2011; Schwenk, Rousseau,
and Attik, 2012; Seide, Li, and Yu, 2011; Socher et al., 2011; Sutskever, Vinyals, and
Le, 2014), speech recognition (Hinton et al., 2012; Le et al., 2012; Mohamed, Dahl,
and Hinton, 2011; Sainath et al., 2013), generation of images (Denton et al., 2015;
Goodfellow et al., 2014; Mirza and Osindero, 2014) and raw audio (Oord et al., 2016),
and reinforcement learning from unstructured visual input (Lillicrap et al., 2015;
Mnih et al., 2015; Schulman et al., 2015a).

2.1.3 Learning generic representations for downstream tasks

Deep networks have also been employed to learn generic representations that are
not tailored to a specific task and can be later used for arbitrary downstream tasks
(Bengio, Courville, and Vincent, 2013). The learned representation function r, which
maps a data point x to its representation r(x), is then typically used as a black box
for downstream learning (Brown et al., 2020a; Finn et al., 2016; Ha and Schmidhuber,
2018; Kingma et al., 2014; Peters et al., 2018; Stooke et al., 2021) or adapted (fine-
1This abstraction can be explicitly built into the architecture (e.g., pooling in convolutional neu-
ral networks), but it should also naturally occur when the task to be solved ultimately requires
abstraction (e.g., classification of high-level concepts from raw unstructured data).
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tuned) to the task at hand (Hinton and Salakhutdinov, 2006; Kolesnikov et al., 2020;
Zbontar et al., 2021; Zhai et al., 2019). This approach is simply called representation
learning (Bengio, Courville, and Vincent, 2013; Hamilton, 2020; Lesort et al., 2018;
Rumelhart, Hinton, and Williams, 1986; Tschannen, Bachem, and Lucic, 2018; Wang
and Isola, 2020), with the implication that no further objective is of interest at this
stage, other than learning r itself.2 These generic representation functions can be
learned without supervision (Bengio et al., 2006; Chen et al., 2020a; Donahue and
Simonyan, 2019; Hinton and Salakhutdinov, 2006; Radford et al., 2018; Ranzato et
al., 2007; 2006), with self-supervision—i.e., technically unsupervised but trained with
supervised learning using, e.g., auxiliary tasks (Ahmed et al., 2008; Doersch, Gupta,
and Efros, 2015; Dosovitskiy et al., 2014; Gidaris, Singh, and Komodakis, 2018;
Kolesnikov, Zhai, and Beyer, 2019) or contrastive methods (Chen et al., 2020b; He
et al., 2020; Oord, Li, and Vinyals, 2018; Tian et al., 2020; Zbontar et al., 2021)—or
with supervision on another dataset where numerous labeled examples are available
(Girshick et al., 2014; Joulin et al., 2016; Kolesnikov et al., 2020; Sharif Razavian
et al., 2014; Sun et al., 2017; Van Den Oord, Dieleman, and Schrauwen, 2014; Zeiler
and Fergus, 2014).

A primary reason to do representation learning is that learning from raw data typically
requires a large amount of labeled examples, which may be expensive or impossible
to obtain. One way to alleviate this issue is to leverage other sources of data that
at least partially share the structure of the target task. This paradigm is broadly
referred to as transfer learning (Pan and Yang, 2009; Pratt and Jennings, 1996; Tan
et al., 2018) as it involves transferring knowledge learned on one or more source tasks
to a target task. The source task may or may not be supervised, and there may be
a covariate distribution shift, a change in the task definition (e.g., unsupervised to
supervised, or a different conditional distribution of the labels, or even a different
label space), or both.

For example, Zhai et al. (2019) conduct a study of transfer learning in vision, where
deep networks are trained on supervised, unsupervised, or self-supervised tasks on
ImageNet (Deng et al., 2009), and the target tasks differ from the source tasks in terms
of both the covariate distribution and the label space. Another example is domain
adaptation (Pan et al., 2010; Wang and Deng, 2018), where the source and target

2In these cases, even if the representations are learned by training a DNN to solve a specific super-
vised (or self-supervised) task—such as classification on a massive dataset of real-world images—the
ultimate goal is not to solve these (auxiliary) tasks as much as it is to learn meaningful representa-
tions for later use.
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tasks are exactly the same (e.g., the conditional distribution of the classification labels
p(y |x) is unchanged) but the covariates x undergo a distribution shift. It may also be
the case that the source and target tasks differ while the data distribution p(x) does
not: for example, the source task could be unsupervised or self-supervised, and the
target task may be classification or reinforcement learning (Grill et al., 2020; Laskin,
Srinivas, and Abbeel, 2020). This can be seen as an instance of semi-supervised
learning (Chapelle, Schölkopf, and Zien, 2006; Van Engelen and Hoos, 2020; Zhu,
2005).3 Examples of this scenario include Papers I, II, and III (Dittadi et al., 2022a;
2021b; 2022b) as well as some of our works not included in this dissertation (Dittadi,
Drachmann, and Bolander, 2021; Papa, Winther, and Dittadi, 2022; Träuble et al.,
2021); however, in some of these works we also include experiments where the data
distribution changes, e.g. with unseen values of the factors of variation (Dittadi et al.,
2022a; 2021b; 2022b), synthetic image manipulations (Dittadi et al., 2022a), or from
simulated data to the real world (Dittadi et al., 2021b; 2022b). Finally, an increasingly
common approach in transfer learning is to train very large DNNs on massive generic
datasets and adapt them to a wide range of downstream tasks (Brown et al., 2020b;
Chen et al., 2020b; Devlin et al., 2019; Hénaff et al., 2021; Radford et al., 2021b; and
see a discussion on the so-called foundation models in Bommasani et al. (2021)).

Even if data from the target task is available, learning from raw data may nevertheless
be very inefficient when the task to be solved is particularly difficult, or when the
function we are trying to learn is complex and highly-varying (Bengio, 2009, Section 2).
This issue lies at the heart of the challenge of training deep architectures (Bengio,
Courville, and Vincent, 2013, Section 10.1), which until the early 2010s was mostly
based on layerwise unsupervised pretraining (Erhan et al., 2010). For example, even
after recent significant significant progress in training very deep models, reinforcement
learning algorithms are often trained from learned low-dimensional representations
(Dittadi et al., 2022b; Finn et al., 2016; Stooke et al., 2021) or from the ground-
truth state of the environment, if available (Ahmed et al., 2021; Lee, Hu, and Lim,
2021; Vinyals et al., 2019; Yu et al., 2020). Finally, even if learning end-to-end from
raw data were practically feasible, it would still be advantageous (e.g., in terms of
data and compute) to reuse a representation function that captures all the salient
information in the data, rather than learn every new task from scratch.

3Roughly falling into the unsupervised preprocessing category of semi-supervised learning, more
specifically feature extraction and pretraining (Van Engelen and Hoos, 2020, Section 5).
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2.1.4 Desirable properties of learned representations

We introduced and motivated representation learning, and argued that pretrained rep-
resentations can be beneficial for efficient learning of downstream tasks, in particular
when obtaining target task data is costly. We will now consider desirable properties
of the learned representation functions, more specifically in terms of their information
content and their structure.

2.1.4.1 Information content

When learning a representation to be used for a downstream task, the representation
should be sufficient for the task, i.e., it should retain all necessary information to
solve it. On the other hand, we would like the representation to be minimal—i.e., to
omit any information about the data that is not relevant for the task—and therefore
invariant to irrelevant changes in the input (Bengio, Courville, and Vincent, 2013).
Achille and Soatto (2018, Section 2.1) define a representation z of the data x to be suf-
ficient for a task y (the target variable we wish to predict) if I(z; y) = I(x; y), i.e., the
representation z contains as much information about the task as the data x itself (or,
equivalently, x and y are conditionally independent given z). Among the sufficient
representations, the one that minimizes I(x; z) is said to be minimal, because it con-
tains just enough information about the data to allow solving the task, and is therefore
invariant to the effect of nuisance factors (Achille and Soatto, 2018, Section 3).

The problem is that these notions are task-dependent: A sufficient representation for
a task may not be sufficient for another task if the representation omits information
that is irrelevant for the first task but necessary for the second. Even in a multi-
task setting (Caruana, 1997; Ruder, 2017), a representation that is sufficient for all
training tasks while minimizing I(x; z) might be insufficient for a test task. This
points to a fundamental trade-off between generality (usefulness for as many tasks
as possible) and usefulness for specific tasks (potentially giving up usefulness for
other tasks). Since future tasks are not necessarily known ahead of time, a sensible
approach is to learn generic task-agnostic representations that make it possible to
solve any downstream task that might be reasonably expected.4

4Different tasks “provide different views on the same underlying reality” (Bengio, 2009).
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2.1.4.2 Structure

We now shift our focus from what information is in the representation to how this
information is represented. To do so, we consider the generative aspect of the data.
A common assumption is that the data is the result of a generative process where the
factors of variation of the data tend to vary independently of each other, and typically
few of them at a time vary in consecutive real-world inputs (Bengio, Courville, and
Vincent, 2013; Schölkopf et al., 2021). These explanatory variables of the data, which
we denote by the vector g, are then mixed in a potentially highly complex and non-
linear way according to a conditional distribution p(x |g), to give rise to the observed
data x. Ideally, given a data point x, we would like to find the ground-truth factors
g that generated it—or, following a Bayesian approach, the posterior distribution

p(g |x) = p(g)p(x |g)∫
g p(g)p(x |g)dg

(2.1)

of such factors. As we typically do not have access to the true generative model, nor
to the ground-truth generative factors g underlying each observed data point x, we
learn representations z = r(x), with x ∼ p(x |g), that are in general different from g.

Under the assumptions above, a good task-agnostic representation should preserve as
much information as possible about the data, while separating, or disentangling, its
explanatory factors of variation (Bengio, Courville, and Vincent, 2013, Section 3.5) in
a compact and reusable manner (see Devereux et al. (2014) for evidence in humans).
Although there is no generally agreed-upon definition of disentanglement, the core
idea is that each specific factor zj in a disentangled representation z = r(x) should
only reflect the state of one ground-truth generative factor of variation gi.5 Intuitively,
this should enable downstream processing systems (e.g., a classifier) to flexibly access
the subset of factors in g that are relevant for the given task. In practice, disentan-
gled representations have proven useful, e.g., for interpretability (Adel, Ghahramani,
and Weller, 2018; Higgins et al., 2018), fairness of downstream models (Locatello
et al., 2019a; Träuble et al., 2021), efficient downstream learning for reasoning tasks
(Steenkiste et al., 2019), and generalization (Dittadi et al., 2021b; Locatello et al.,
2020b).
5Sometimes, the definition of disentanglement is taken to be the converse, i.e., a change in one factor
gi should only affect one dimension of the representation (Chen et al., 2018). Arguably, this does
not reflect the intuitive notion of disentanglement, since it allows multiple explanatory factors to be
reflected in a single dimension of the representation. It has been termed completeness by Eastwood
and Williams (2018), since a representation satisfying this definition would consist of elements that
completely describe one (or more) factors of variation of the data.
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Computer graphics provides a related perspective, where the data is generated by
a known simulator given the generative factors g, i.e., p(x |g) is available. These
graphics codes present a compact description of a scene that aligns well with the
desired representational properties discussed above. From this point of view, the task
of inferring the generative factors of the data is sometimes also known as inverse
graphics (Kulkarni et al., 2015), and has also been applied to inverting a known
generative process such as a graphics engine (Eslami et al., 2016; Wu et al., 2017;
Wu, Tenenbaum, and Kohli, 2017).

2.1.5 Challenges for generalization

Despite the benefits in terms of efficient learning of downstream tasks, especially when
obtaining target task data is costly, there are practical issues when learning represen-
tations from raw data. First, there may be correlations or biases in the data that will
be captured by the representations (Mehrabi et al., 2021; Torralba and Efros, 2011;
Träuble et al., 2021), thereby limiting their generality and applicability.6 Second,
it might be desirable for learned representations to be invariant to some changes in
the input, e.g., in terms of nuisance (task-irrelevant) variables in classification under
domain shift (Anselmi et al., 2016; Pei et al., 2018) or in downstream reinforcement
learning tasks (Zhang et al., 2020); if such invariances cannot be inferred from the
training data distribution—e.g., if a nuisance variable such as lighting conditions in a
scene is constant across the entire dataset—the learned representation function will
not naturally exhibit them.

These issues can be problematic for generalization. For example, if a representation
function is not invariant to lighting conditions, the representation r(x) of an image x
with unseen lighting conditions at test time may inaccurately represent other relevant
information in the image. This issue is tackled, for example, in Papers I and II
(Dittadi et al., 2021b; 2022b). Regarding correlations, a training dataset may for
example contain images of a mountain landscape only in daylight, while city scenes
are uniformly collected during day and night. Representation functions trained on
such a dataset might not generalize well to photographs taken in the mountains at
night, even though both mountain images and nighttime images are included in the

6This is also related to “shortcut learning” of surface statistics and spurious correlations. Relevant
work in computer vision includes Hendrycks et al. (2021), Ilyas et al. (2019), Jo and Bengio (2017),
and Xiao et al. (2021).
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training data. In Träuble et al. (2021), we discuss training data correlations in the
context of disentangled representation learning.

A conceptually simple solution is to collect more training data (Henighan et al., 2020;
Kaplan et al., 2020; Sutton, 2019), assuming that in the limit of infinite data the
spurious correlations and biases will disappear. However, despite the impressive gen-
eralization results of recent large-scale models trained on massive datasets (Brown et
al., 2020a; Chowdhery et al., 2022; Radford et al., 2021a; Ramesh et al., 2022; 2021),
their significance is sometimes called into question (Bender et al., 2021, Section 6.1;
Heaven, 2021; Marcus, 2022), while bias (Abid, Farooqi, and Zou, 2021; Bender et al.,
2021, Section 6.2) and training data memorization (Carlini et al., 2021) appear to
persist.7 An alternative solution is to attempt to directly resolve these biases during
data collection and preprocessing, or in the learning algorithm itself (Mehrabi et al.,
2021, Section 5.1).8 Finally, we can mitigate some of these issues by introducing
inductive biases (Mitchell, 1980), e.g., in the model architecture, in the training ob-
jective, or in the optimization procedure (Geirhos et al., 2020). Intuitively, among
the many possible ways an algorithm could generalize, inductive biases should help
choose one (an inductive bias is “any basis for choosing one generalization over an-
other, other than strict consistency with the observed training instances” (Mitchell,
1980)). They typically derive from assumptions we make about the data or from
potential constraints or requirements in the learning problem.

As discussed in Section 2.1.4, it has been argued that capturing and disentangling all
factors of variation underlying the data—rather than attempting to build invariances
in the representations—should lead to robust representations that generalize better
(Bengio, Courville, and Vincent, 2013; Schölkopf et al., 2021). In Section 2.3, we will
discuss the learning and evaluation of disentangled representations. Many popular
disentanglement learning methods, including those in this dissertation, are based on
variational autoencoders, which are covered next.

7It should be noted that the concept of generalization itself may be ill-posed as the training distri-
butions become ever wider. What appear to be strong generalization capabilities might in fact be
explained by (arguably very complex) interpolation. On the other hand, it becomes increasingly
more difficult to define meaningful generalization tasks, since the training distributions are so wide.

8Note that there are other sources of bias and discrimination than the data itself (Mehrabi et al.,
2021, Section 3.1).
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2.2 Variational autoencoders

This section introduces variational autoencoders, a framework for variational inference
in generative models that can be used for representation learning. In Section 2.3, we
will then discuss common disentangled representation learning methods that are based
on variational autoencoders.

Latent variable models. Latent variable models (LVMs) are probabilistic models
with unobserved variables. In the following, we will denote the observed variables by
x, and the unobserved latent variables by z. For simplicity, both x and z can be
assumed to be vectors. The marginal distribution over the observed data is:

pθ(x) =
∫

z
pθ(x, z)dz (2.2)

where pθ(x, z) is the joint distribution over observed and latent variables, and θ is a
vector of model parameters. This probability distribution is typically called marginal
likelihood or model evidence. Note that this is the marginal likelihood of a single data
point. We are typically interested in the expectation of this quantity over the true
data distribution, or more pragmatically, over the empirical data distribution q(x):

Eq(x) [pθ(x)] = 1
N

N∑
i=1

pθ(x) = 1
N

N∑
i=1

∫
z(i)

pθ(x(i), z(i))dz(i) (2.3)

where N is the size of the data set and the superscript denotes different data points.
We will omit this outer expectation in the following, unless noted otherwise.

A simple and rather common structure for LVMs is:

pθ(x, z) = pθ(x |z)pθ(z) (2.4)

where pθ(z) is the prior distribution over the latent variables and pθ(x |z) is the condi-
tional distribution of a data point given the latent variables, typically called likelihood.
This structure suggests a generative interpretation of latent variable models: a data
point x arises from a generative process (see Section 2.1.4.2) whereby latent variables
z are first sampled from the prior pθ(z) and then used for conditional sampling of an
observation x according to the conditional distribution pθ(x |z).

Posterior inference. From the representation learning point of view (Section 2.1),
it is typically of interest to invert this generative process and infer the posterior distri-
bution of the latent variables given the observed data, i.e., intuitively, find the value
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of the latent variables that gave rise to the observation (see Section 2.1.4.2, where
in (2.1) we write the posterior of the latent variables of the ground-truth generative
model). This is typically known as posterior inference.

The posterior distribution of the latent variables:

pθ(z |x) = pθ(x |z)pθ(z)
pθ(x)

= pθ(x |z)pθ(z)∫
z pθ(x |z)pθ(z)dz

(2.5)

is often intractable—e.g., when the likelihood is a non-linear function parameterized
by a deep neural network—due to the lack of a practical estimator of, or an analytical
solution to the integral in (2.2), which appears as denominator in (2.5).

Approximating the posterior with variational inference. The issue of the
intractability of the latent posterior is addressed by approximating it with sampling
methods or variational inference. Methods in the former class, such as Markov Chain
Monte Carlo (MCMC), yield samples from the exact posterior distribution in the
limit of infinite samples, so the approximation simply derives from having finite com-
putational resources. The main limitation of these methods is that they do not scale
well with dataset size and model complexity.

On the other hand, variational inference trades sampling for optimization, and pro-
vides a deterministic approximation to the posterior. In variational inference, we
define a variational distribution qϕ(z), with parameters ϕ, that approximates the
posterior pθ(z |x), and is therefore also known as approximate posterior. The varia-
tional distribution is then optimized to minimize a divergence from the true posterior,
typically the Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951):

DKL(qϕ(z) ∥ pθ(z |x)) = Eqϕ(z)

[
log qϕ(z)

pθ(z |x)

]
(2.6)

which is a non-negative quantity and is equal to 0 if and only if qϕ(z) = pθ(z |x)
almost everywhere. Note that, in the standard case, qϕ(z) approximates the posterior
distribution for a single data point x, and is derived or optimized separately for
each example. In practice, the approximate posterior is restricted to a family of
distributions that are flexible enough to yield a good approximation, but simple
enough to allow for efficient optimization.

For any choice of qϕ, we have:

log pθ(x) = logEqϕ(z)

[
pθ(x, z)
qϕ(z)

]
≥ Eqϕ(z)

[
log pθ(x, z)

qϕ(z)

]
= LELBO

θ,ϕ (x) (2.7)
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using Jensen’s inequality and the fact that the logarithm is a concave function. The
quantity LELBO

θ,ϕ (x) is called Evidence Lower BOund (ELBO) as it is a lower bound
to the marginal log-likelihood (or model evidence).

Crucially, maximizing this lower bound with respect to the variational parameters
ϕ is equivalent to minimizing the KL divergence between the true and approximate
posterior distributions in (2.6). This can be shown by decomposing the log-likelihood
as follows:

log pθ(x) = Eqϕ(z) [log pθ(x)]

= Eqϕ(z)

[
log pθ(x, z)

pθ(z |x)
qϕ(z)
qϕ(z)

]
= Eqϕ(z)

[
log pθ(x, z)

qϕ(z)

]
+ DKL(qϕ(z) ∥ pθ(z |x)) . (2.8)

Now, observe that the l.h.s. log pθ(x) is fixed as we are only optimizing the approxi-
mate posterior. We can therefore conclude that maximizing the ELBO (2.7), which
is the first term in (2.8), is equivalent to minimizing the KL divergence in the sec-
ond term. Since the KL divergence is non-negative, this also provides an alternative
derivation of the ELBO without using Jensen’s inequality (cf. Eq. (2.7)).

Variational autoencoders. In contrast to traditional variational inference meth-
ods, where each data point has its own variational parameters that are optimized
separately, amortized variational inference (Gershman and Goodman, 2014) uses
function approximators like neural networks to share variational parameters across
data points. Beside improving learning efficiency and allowing variational inference
to scale to massive datasets, this amortization enables efficient inference on new data
points at test time, whereas in traditional variational inference this would require an
expensive optimization of the ELBO. In amortized variational inference, the approxi-
mate posterior of the latent variables is conditional on the observed data and denoted
by qϕ(z |x), so the ELBO for one data point can be written as follows:

LELBO
θ,ϕ (x) = Eqϕ(z |x)

[
log pθ(x, z)

qϕ(z |x)

]
≤ log pθ(x) . (2.9)

Variational Autoencoders (VAEs) (Kingma and Welling, 2014; Rezende, Mohamed,
and Wierstra, 2014) are a framework for amortized stochastic variational inference,
in which the expectation of the ELBO over the dataset

Eq(x)
[
LELBO

θ,ϕ (x)
]

(2.10)
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is maximized by jointly optimizing the inference model and the LVM (i.e., ϕ and θ,
respectively) with stochastic gradient ascent. The ELBO (2.9) to be maximized can
be decomposed as follows (for one data point):

LELBO
θ,ϕ (x) = Eqϕ(z |x) [log pθ(x |z)] − Eqϕ(z |x)

[
log qϕ(z |x)

pθ(z)

]
= Eqϕ(z |x) [log pθ(x |z)] − DKL(qϕ(z |x) ∥ pθ(z)) (2.11)

where the first term can be interpreted as negative expected reconstruction error,
and the second term is the KL divergence from the prior pθ(z) to the approximate
posterior. In this setting, qϕ(z |x) is often called inference model or encoder, while the
likelihood pθ(x |z) is called decoder. Typically, the prior is a fixed, isotropic Gaussian
distribution with unit variance, such that the dependency on the parameters θ can
be dropped:

p(z) = N (z; 0, I) . (2.12)

The approximate posterior qϕ(z |x) is also a Gaussian with diagonal covariance matrix,
but here the means and variances of each component are the output of an encoder
network that takes the data as input:

qϕ(z |x) = N (z; µϕ(x), diag(σϕ(x))) . (2.13)

VAE optimization. A crucial issue with the approach presented above is that the
gradients of the ELBO cannot be naively backpropagated through the sampling step.
However, for a rather large class of probability distributions (Kingma and Welling,
2014), a random variable can be expressed as a differentiable, deterministic trans-
formation of an auxiliary variable with an independent marginal distribution. For
example, if ϵ ∼ N (0, 1) and z = σϕ(x) ϵ + µϕ(x), then z is a sample from a Gaus-
sian random variable with mean µϕ(x) and standard deviation σϕ(x). Thanks to
this reparameterization, z can be differentiated with respect to ϕ by standard back-
propagation. This widely used approach, called pathwise gradient estimator, tends to
exhibit lower variance than the alternatives, which are typically based on the score
function gradient estimator (Ranganath, Gerrish, and Blei, 2014; Williams, 1992).9

9However, the variance of this estimator can be reduced via control variates (Glasserman, 2004)—see,
e.g., Mnih and Gregor (2014), Mnih and Rezende (2016), and Tucker et al. (2017). Additionally,
there is a line of work that focuses on using multiple stochastic samples of the ELBO (Burda, Grosse,
and Salakhutdinov, 2015, importance-weighted ELBO) to improve gradient estimates (Rainforth et
al., 2018; Roeder, Wu, and Duvenaud, 2017); this includes our own work on optimal control variates
for importance-weighted bounds (Liévin et al., 2020).
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In the standard case, z follows a simple multivariate probability distribution such
as a Gaussian with diagonal covariance. However, we can incorporate knowledge or
assumptions about the generative process by defining a more structured probabilis-
tic model. We apply this to object-centric generative modeling (see Section 2.4) in
Dittadi and Winther (2019).

Rate–distortion tradeoff. From an information theory perspective, optimizing
the variational lower bound (2.11) involves a tradeoff between rate and distortion,
where the reconstruction term represents distortion and the divergence term repre-
sents rate (Alemi et al., 2018). A straightforward way to control the rate–distortion
tradeoff is to use the β-VAE framework (Higgins et al., 2017a), in which the training
objective (2.9) is modified by scaling the KL term with a scalar β > 0:

Lθ,ϕ,β(x) = Eqϕ(z |x) [log pθ(x |z)] − βDKL(qϕ(z |x) ∥ p(z)) . (2.14)

In Section 2.3.1, we will review more fine-grained modulations of the KL term that
have been proposed to encourage learning disentangled representations.

2.3 Disentanglement

In Section 2.1, we have discussed the importance of data representations and some
desirable properties such as disentanglement. A substantial body of work spanning
multiple decades has argued or demonstrated that learning disentangled representa-
tions is beneficial for a variety of purposes (e.g., Barlow, 1989; Bengio, Courville, and
Vincent, 2013; Kulkarni et al., 2015; Lake et al., 2017; Locatello et al., 2019a; Peters,
Janzing, and Schölkopf, 2017; Schmidhuber, 1992; Schölkopf et al., 2021; Steenkiste
et al., 2019; Tschannen, Bachem, and Lucic, 2018). In this section, we provide an
overview of common modern methods for learning disentangled representations, as
well as popular metrics to assess their degree of disentanglement.

2.3.1 Learning disentangled representations

Most state-of-the-art methods for unsupervised disentanglement learning are based
on the variational autoencoder (VAE) framework introduced in Section 2.2. The rela-
tive success of VAEs in disentanglement may be explained by the stochasticity of the
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encoder, which promotes local orthogonality due to its diagonal covariance structure
(Rolinek, Zietlow, and Martius, 2019). While approaches based on generative adver-
sarial networks (GANs) exist, these typically only disentangle style and content and
require some form of weak supervision (Chen et al., 2016; Lee et al., 2018; Mathieu
et al., 2016). In the following, we present several VAE-based approaches for learning
disentangled representations.

β-VAE. The β-VAE (see Eq. (2.14)) modulates the bottleneck capacity—i.e., the
amount of information the model is allowed to represent in the latent variables—by
modifying the KL divergence term of the ELBO (2.11) which intuitively acts as a
regularizer for the approximate posterior. Increasing β encourages more structured
(Burgess et al., 2018) but less informative representations, and corresponds to a lower
rate and a higher distortion from the point of view of the rate–distortion tradeoff
(Alemi et al., 2018). Decreasing β, on the other hand, leads to a higher rate and
a lower distortion—i.e., more information in the latent variables and more accurate
data reconstructions—but too weak a regularization may result in less structured
and less useful representations (Bengio, Courville, and Vincent, 2013; Higgins et
al., 2017a). Indeed, in our work we have observed that higher values of β tend to
encourage disentanglement (Chen et al., 2021; Dittadi et al., 2021b; 2022b; Träuble
et al., 2021), confirming previous results (Burgess et al., 2018; Higgins et al., 2017a).
However, this behavior is not robust and it appears to strongly depend on the dataset
(Locatello et al., 2019b, Fig. 15).

AnnealVAE. While this approach may be promising, a crucial issue is that the
rate–distortion trade-off is, in some sense (and with some vigorous handwaving), in-
dependently present for each factor of variation. More concretely, let us assume there
are two discrete factors of variation with the same number of possible values, and both
affecting the color of an object. If the sizes of these objects differ significantly (e.g.,
one object constitutes the entire background while the other is a small cube in the fore-
ground), the two factors will affect the reconstruction term pθ(x |z) in the objective
function to dramatically different extents. Given a bottleneck with limited capacity
(i.e., a strong regularization in latent space, attainable for example by choosing β ≫ 1)
the factor with a minimal effect on the likelihood would be ignored. In general, the
inference model will simply ignore the factors of variation that are not worth being
modeled—in other words, those that require too high a rate compared to the modest
reduction in distortion that modeling them would bring. We have observed this while
running experiments for Dittadi et al. (2021b, not shown in the paper): some of the
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β-VAEs trained with β = 4 did not model the rotation of the cube, and the learned
generative model produced a cylinder (with the correct color and location), which
can be interpreted as a cube averaged over all its possible rotations.

Noticing this issue, Burgess et al. (2018) proposed to address it by introducing the
AnnealVAE, where the bottleneck capacity is progressively increased. The objective
function then becomes:

Lθ,ϕ,γ(x) = Eqϕ(z |x) [log pθ(x |z)] − γ |DKL(qϕ(z |x) ∥ p(z)) − C| (2.15)

where γ > 0 plays a similar role to β, and C is annealed from 0 (which corresponds
to a β-VAE with β = γ) to a potentially large positive value.

β-TCVAE and FactorVAE. Let us now consider the KL term of the ELBO (2.11),
and decompose its expectation with respect to the data distribution q(x) as follows:

Eq(x) [DKL(qϕ(z |x) ∥ p(z))]

= Eq(x)Eqϕ(z |x)

[
log qϕ(z |x)

p(z)

]
= Eq(x)Eqϕ(z |x)

[
log qϕ(z |x)

p(z)
q(x)qϕ(z)

∏
i qϕ(zi)

q(x)qϕ(z)
∏

i qϕ(zi)

]
= DKL(qϕ(z |x)q(x) ∥ qϕ(z)q(x))︸ ︷︷ ︸

or Eq(x)[DKL(qϕ(z |x) |qϕ(z))]

+ Eqϕ(z)

[
log qϕ(z)∏

i qϕ(zi)

]
+ Eqϕ(z)

[
log

∏
i qϕ(zi)∏
i p(zi)

]
= I(x; z) + DKL

(
qϕ(z)

∥∥∥ ∏
i
qϕ(zi)

)
+

∑
i
DKL (qϕ(zi) ∥ p(zi)) (2.16)

where zi denotes the ith dimension of the latent variable z.10 This expression appears
with a negative sign in the VAE objective function (i.e., the expected ELBO over
the entire dataset (2.10)), and is therefore minimized. The first term is the mutual
information between x and z with x, z ∼ qϕ(z |x)q(x). It is zero when qϕ(z |x) =
qϕ(z) almost everywhere, i.e., when the approximate posterior does not depend on
the input. Penalizing this mutual information through the information bottleneck
has been found to encourage compact and disentangled representations (Achille and
Soatto, 2018; Burgess et al., 2018). On the other hand, it has also been argued that
this term should not be penalized at all (Kim and Mnih, 2018; Makhzani et al., 2015;
10In fact, this decomposition holds for any partition of the dimensions of z, but we focus on the case
where each zi is a scalar variable.
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Zhao, Song, and Ermon, 2017). The second term is the total correlation (TC) of
the variables {zi} under the distributions {qϕ(zi)}. This is a generalization of the
mutual information to multiple variables (Watanabe, 1960) and in this case penalizes
aggregate posteriors

qϕ(z) = Eq(x) [qϕ(z |x)] = 1
N

N∑
i=1

qϕ(z(i) |x(i)) (2.17)

that do not factorize. Finally, the third term is the dimension-wise KL divergence
from the prior to the aggregate posterior, which encourages each component of qϕ(z |x)
to be close to its prior (which is typically N (zi; 0, 1)).

Chen et al. (2018) argue that the total correlation term is what should be regularized
in order to encourage disentanglement, and is the reason why β-VAEs tend to learn
more disentangled representations when β is increased. Both the β-TCVAE (Chen
et al., 2018) and the FactorVAE (Kim and Mnih, 2018) modify the standard ELBO
objective by scaling the total correlation by a factor γ > 1, albeit using different
estimators for this quantity. The objective function to be maximized can then be
rewritten in terms of the original ELBO objective (2.11) as follows:

Eq(x) [Lθ,ϕ,γ(x)] = Eq(x)Eqϕ(z |x) [log pθ(x |z)] − I(x; z)

− γ DKL

(
qϕ(z)

∥∥∥ ∏
i
qϕ(zi)

)
−

∑
i
DKL (qϕ(zi) ∥ p(zi))

= Eq(x)
[
LELBO

θ,ϕ (x)
]

− (γ − 1) DKL

(
qϕ(z)

∥∥∥ ∏
i
qϕ(zi)

)
(2.18)

where we explicitly include the expectation over the dataset, which is necessary for
the decomposition in Eq. (2.16). The additional regularizer on the total correlation
vanishes when γ = 1, resulting in the standard VAE objective.

DIP-VAE. Finally, Kumar, Sattigeri, and Balakrishnan (2018) claim that the stan-
dard VAE objective is not sufficient to encourage disentanglement, and propose to
explicitly regularize a divergence between the prior and the aggregate posterior, to
encourage the latter to be disentangled. The desired objective function (including
the expectation over the data distribution) is then:

Eq(x) [Lθ,ϕ,γ(x)] = Eq(x)
[
LELBO

θ,ϕ (x)
]

− γ D (qϕ(z) ∥ p(z)) (2.19)

where D is an arbitrary divergence. Note that, when D is the KL divergence,
D (qϕ(z) ∥ p(z)) is equal to the sum of the second and third terms in (2.16). Ku-
mar, Sattigeri, and Balakrishnan (2018) introduce two ways of approximating the
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additional divergence term, corresponding to two distinct optimization objectives:
DIP-VAE-I and DIP-VAE-II.

2.3.2 Measuring disentanglement

Although a consensus has yet to be reached on a precise definition of disentangle-
ment, various quantitative metrics have been proposed in an attempt to measure
disentanglement based on the intuitive notions discussed earlier. Crucially, common
disentanglement metrics do not always agree with each other in practice (Locatello
et al., 2020c). While it is clear that some of them measure different notions than
others, not all discrepancies are easily explained, especially in terms of the different
results observed across datasets. Locatello et al. (2020a) present a thorough analysis
and discussion, and provide recommendations for practitioners.

A first distinction to be made is whether a metric relies on interventional data—where
we are allowed to perform interventions on the ground-truth factors of variation and
assess how these affect the representations—or observational data—where we must
estimate the statistical relationships between the learned representations and the
ground-truth factors given a set of (annotated) examples.

In the interventional setting, two properties that are typically assessed are consistency
and restrictiveness as defined by Shu et al. (2020), which measure the effect that inter-
vening on a single factor of variation (or group of factors) has on the representation.
In a consistent representation function, fixing a factor (or group of factors) and vary-
ing the others corresponds to fixing a subset of dimensions in the representation. In
a restrictive representation function, changing a factor (or group of factors) with the
others fixed corresponds to varying only a subset of dimensions in the representation.

In the observational setting, the metrics presented in this section typically focus on
disentanglement and completeness in the sense of Eastwood and Williams (2018).
Each dimension of a disentangled representation captures at most one factor of vari-
ation of the data: one factor may be encoded into multiple dimensions, but each
of these dimensions must not encode any other factor. Conversely, in a complete
representation, each factor of variation corresponds to at most one dimension in the
representation: different factors may be mixed in one representation dimension, but
no factor may be split over multiple dimensions.
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The four properties outlined above are illustrated in Locatello et al. (2020a, Fig. 11).
In the following, we introduce some of the most popular disentanglement metrics.

BetaVAE. The BetaVAE metric (Higgins et al., 2017a) is computed as the accuracy
of a classifier that predicts which factor of variation has been fixed in a batch of image
pairs. More specifically, for each batch, we choose a factor of variation i at random
and sample a batch of pairs (x1, x2) such that the ith factor has the same value
in x1 and x2. All pairs in the batch have the same factor fixed, but the value can
differ across pairs. For each image pair, we then compute the absolute value of the
difference between the encoded representations of the two images, and finally average
over the batch. The resulting vector:

1
B

B∑
n=1

|r(x(n)
1 ) − r(x(n)

2 )| , (2.20)

where B is the batch size, is the input to the logistic regression model; the regression
target is the index i of the factor that has been fixed in all the pairs in the batch.
Each batch yields one data point for the downstream training of the regressor.

FactorVAE. Kim and Mnih (2018) discuss some weaknesses of the BetaVAE metric
and propose to address them with the FactorVAE score, computed as follows: We first
estimate the variance of each latent dimension and exclude unused dimensions (those
with a small variance) from all subsequent computations. Then, we generate batches
of samples where one randomly chosen factor is constant in each batch. For each
generated batch, we estimate the representation dimension that encodes the fixed
factor as the one that has the smallest variance (normalized by the global variance
across the entire training set). The estimated dimension is one training sample for
a majority vote classifier, and the (known) fixed factor is the corresponding target.
The classifier rule is then defined as taking for each latent dimension the ground-truth
factor that has the most votes from the training set.11 The FactorVAE score is then
the accuracy of this classifier on a held-out test set.

DCI. Eastwood and Williams (2018) argue that three distinct notions are relevant
in this context: disentanglement, completeness, and informativeness. All three met-
rics are based on classifiers such as random forests or gradient boosted trees, one
11This can be achieved by repeating the step above for many batches, and constructing a matrix
of size K × D (with K the number of factors and D the latent space dimensionality) where each
entry denotes the number of times a given dimension was estimated to correspond to a specific
factor. For each dimension d, the factor with most votes is the argmax of the dth column.
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per factor of variation, each trained to predict the ground-truth factor value from
the data representation r(x). Informativeness is simply the average accuracy of the
classifiers on a held-out test set. Disentanglement and completeness are based on
the importance matrix obtained by concatenating the feature importances of each
classifier. This matrix consists of the predictive importance of each representation
dimension for each ground-truth factor. Disentanglement is maximized when each
latent dimension has a positive importance for only one factor. Completeness mea-
sures the converse: it is maximized when only one latent dimension has a positive
predictive importance for any given factor, i.e., each factor is only captured by one
dimension in the representation. This framework is named DCI after the three met-
rics introduced. For simplicity, we will refer to the disentanglement metric defined
by Eastwood and Williams (2018) as DCI.

MIG. Chen et al. (2018) propose to measure disentanglement with the Mutual
Information Gap (MIG), based on the mutual information between each ground-truth
factor of variation and each latent dimension. The mutual information gap for one
ground-truth factor is defined as the difference between the highest and second-highest
mutual information, normalized by the estimated entropy of that factor. When a
factor is only represented by one latent dimension, this quantity is 1. The MIG score
is then obtain by averaging over all ground-truth factors. Note that this metric in
fact measures completeness (see p. 22).

Modularity and explicitness. Ridgeway and Mozer (2018) introduce modularity
and explicitness. Modularity is computed in a similar fashion to the MIG, except that
the gap is measured over factors of variation and for a given latent dimension, rather
than the opposite. Modularity intuitively corresponds to disentanglement as defined
in Section 2.1.4.2 and in Eastwood and Williams (2018). However, empirically, it
appears to measure a different notion of disentanglement than other metrics (Locatello
et al., 2020a, Section 6.1). Explicitness, on the other hand, measures how easily the
factors of variation can be predicted from the representation (loosely corresponding to
informativeness in Eastwood and Williams (2018)). It is computed for each factor of
variation as the ROC-AUC (area under the receiver operating characteristic curve) of
a logistic regression classifier trained to predict the ground-truth value of that factor.
The global explicitness is the average of this quantity over all factors of variation.
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SAP. The Separated Attribute Predictability (SAP) score proposed by Kumar, Sat-
tigeri, and Balakrishnan (2018) is computed as follows: First, for each combination
of factor of variation and latent dimension, we train a regression model or a classi-
fier (depending on whether the factor is continuous or discrete) to predict the factor
from the latent dimension. These result in a K × D score matrix containing the R2

score (for continuous factors) or the accuracy (for discrete ones) for all combinations,
computed on a test set. For each factor of variation, we then compute the difference
between the highest and second-highest score. The SAP score is the average differ-
ence over all factors of variation. This difference will be maximal when each factor is
only predictable from one dimension of the representation. Therefore, like the MIG, it
measures completeness in the sense of Eastwood and Williams (2018) (see also p. 22).

IRS. The Interventional Robustness Score (IRS) proposed by Suter et al. (2019)
performs interventions on the factors of variation and measures resulting changes in
the representation. The post-interventional disagreement in a representation com-
ponent zk due to a generative factor gj given a fixed value of gi is defined as the
distance (e.g., the ℓ2-norm) between the expectation of zk when we only fix gi and
when we also fix gj (with i ̸= j). Intuitively, we fix gi and observe how robust zk is
when gj changes. The IRS score then measures the (normalized) expected maximum
disagreement over all factors of variation and their distributions, to assess the worst-
case effect a change in nuisance factors (such as gj) might have on the representation
of gi. Note that the interventional setting (see Pearl’s do-calculus (Pearl, 2009)) is
not necessary when there are no confounding correlations in the generative process,
since in that case interventions are equivalent to regular conditioning. Suter et al.
(2019, Section 5) also propose a method for estimating the IRS from purely observa-
tional data. Locatello et al. (2020a, Section 6.1) note that the IRS is not consistently
correlated with the other disentanglement metrics.

2.3.3 Disentangling with limited supervision

Locatello et al. (2019b, Theorem 1) show that disentangled representation learning
is impossible without supervision or appropriate inductive biases. They support this
empirically in a large-scale experimental study, where they train the models presented
in Section 2.3.1 on several synthetic datasets for disentanglement learning. In this
study, they observe that hyperparameters and random seed appear to matter signifi-
cantly more than the model type. Furthermore, since unsupervised model selection is
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particularly challenging, it is necessary to directly evaluate disentanglement with the
ad hoc metrics introduced in Section 2.3.2, which require ground-truth annotations
of the factors of variation.

However, when some label information is available, it may be reasonable to use it
instead as a direct supervision signal for learning disentangled representations: When
a few observations are fully-labeled, this corresponds to the semi-supervised setting
(Khemakhem et al., 2020; Locatello et al., 2020c; Sorrenson, Rother, and Köthe, 2020;
but see also Klys, Snell, and Zemel (2018), Paige et al. (2017), and Reed et al. (2014)
for previous related work). In Träuble et al. (2021, Section 5), we explore a different
instantiation of semi-supervised learning (see Section 2.1.3) where representations
learned in an unsupervised fashion are adapted (or aligned) to reflect new ground-
truth information about the factors. On the other hand, when only weak labels are
available (typically for the entire dataset), we can exploit them to learn disentangled
representations by constructing a weakly supervised learning setting (Bouchacourt,
Tomioka, and Nowozin, 2018; Hosoya, 2019; Locatello et al., 2020b; Shu et al., 2020),
discussed below.

Weakly supervised disentanglement. We will briefly present here the weakly
supervised approach proposed by Locatello et al. (2020b) that we will employ in
Chapters 5 and 6 (Papers I and II). The key idea behind this method is that, while
the ground-truth factors of variation are provably not identifiable in the i.i.d. case,
they become identifiable given pairs of observations that differ in a subset of factors
of size k. This subset of changing factors may differ from pair to pair, and even the
number k of changing factors need not be fixed across all pairs. A possible justification
for this setting is that changes in natural environments are caused by changes in a few
factors of variation at a time (Földiák, 1991; Wiskott and Sejnowski, 2002), which is
related to the sparse mechanism shift hypothesis (Schölkopf, 2019; Schölkopf et al.,
2021). Unlike previous weakly supervised approaches that rely on group information
(e.g., knowing which factors are changing between two observations), the method by
Locatello et al. (2020b) only requires the number k of changing factors for each pair
of observations to be known. In fact, they propose a practical algorithm that relaxes
even this assumption by estimating k via a simple heuristic.

More concretely, the method computes approximate posterior distributions of the
latent variables for a pair of images (x(1), x(2)), and then selects the k latent dimen-
sions that differ the most in the posteriors of the two images, in terms of the KL
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divergence DKL(qϕ(zi |x(1)) ∥ qϕ(zi |x(2))). We assume fully factorized approximate
posteriors, and zi denotes the ith dimension of z. The k dimensions with a large KL
divergence are considered to be changing between the two observations, while the oth-
ers are considered to be unchanged. Since the KL divergence introduces an unnatural
ordering in the input pair, in Papers I and II we modify the original definition by
Locatello et al. (2020b) and use the symmetrized KL divergence (see Appendix B.1).

Then, given a symmetric averaging function a, the modified posterior distribution for
the latent dimension j, and for i ∈ {1, 2}, is defined as follows:

q̃
(i)
ϕ (zj |x(1), x(2)) =

{
qϕ(zj |x(i)) if zj is inferred to be changing
a(qϕ(zj |x(1)), qϕ(zj |x(2))) if zj is inferred to be shared

such that the posteriors of the dimensions that are inferred to be unchanged between
the two inputs are collapsed into the same distribution. The averaging function
forces the approximate posterior of the shared latent variables to be the same for
the two observations. Locatello et al. (2020b) propose to use the averaging functions
from the Multi-Level VAE (ML-VAE) (Bouchacourt, Tomioka, and Nowozin, 2018)
or from Group-VAE (GVAE) (Hosoya, 2019), and call the resulting methods Ada-ML-
VAE and Ada-GVAE, respectively. In this dissertation, we will focus on Ada-GVAE
(with the minor difference that we use a symmetrized KL divergence, as mentioned
above), where the averaging function consists of averaging the means and variances
of the (Gaussian) posteriors. The objective function for the pair of observations is a
straightforward modification of the standard β-VAE objective:∑

i∈{1,2}

(
E

q̃
(i)
ϕ

(z |x(1),x(2)) log(pθ(x(i) |z)) − βDKL

(
q̃

(i)
ϕ

(
z |x(1), x(2)) ∥∥∥ p(z)

))
(2.21)

and it is optimized by drawing samples (x(1), x(2)) from a non-i.i.d. data distribution
that accounts for the weak supervision assumptions discussed above.12

The authors empirically show that this approach (in both its variants) significantly
improves the disentanglement of the learned representations, and that model selection
can be successfully performed without explicit label supervision (i.e., the metrics from

12More formally, we can define the empirical joint distribution of each pair as follows:

q(x(1), x(2)) = q(x(1), x(2) |k)q(k) , (2.22)

where q(x(1), x(2) |k) selects a random pair of images that differ in k factors of variation and q(k)
is a distribution over k. In Chapters 5 and 6, we take k = 1 deterministically, or equivalently
q(k) = δ(k − 1).
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Section 2.3.2 are not needed). We remark, however, that in practice it seems to be
necessary to show several pairs of observations with only one changing factor. This is
evident from the original publication itself (Locatello et al., 2020b), where half of the
training pairs are always differing only in one factor: when k > 1, the observations
actually still have k = 1 with probability 0.5. We reached a similar conclusion while
running experiments in Papers I and II (Dittadi et al., 2021b; 2022b), where k = 1
often yielded perfectly disentangled factors, while even k = 2 (without forcing k = 1
for half of the pairs) resulted in a dramatic performance drop.

2.4 Object-centric representations

2.4.1 Motivation

In Section 2.3, we introduced disentanglement and discussed how disentangled rep-
resentations should be beneficial for downstream learning and generalization. The
underlying assumption is that the data comes from a structured generative process
with a few underlying factors of variation, and we wish to invert such a process by
disentangling these factors. Although there is currently no precise definition of disen-
tanglement, the consensus is that distinct factors of variation in the data should be
represented separately from each other.

In general, however, visual scenes may contain a variable number of objects, which
makes it less straightforward to define a plausible generative model of the data within
the framework introduced so far. For example, if we learn a disentangled represen-
tation of visual scenes with one object such as the robotic setup in Papers I and II
(Chapters 5 and 6; see Fig. 3.1), what should the representation of a scene with two
objects be? When a second object is placed into the arena, either the representa-
tion stops being disentangled, or new factors of variation have to be introduced in
order to represent the new object. One might argue that, if the task were to learn
a representation of scenes where no more than one object is ever observed, it would
be unreasonable to expect a model to generalize to multiple objects. However, the
issue persists even when training on data with a variable number of objects: since
there can always be more objects than ever observed in the training distribution, a
robust model must have learned a mechanism to cope with the compositional struc-
ture of data that has discrete object-like building blocks. It is unclear how this may
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be possible unless the representation has a modular structure and its size adapts to
the corresponding observation.13

A second motivation for learning object representations can be found in the successes
of symbolic artificial intelligence (AI) methods. Symbolic AI revolves around the
idea that the abstractions necessary for reasoning and intelligent behavior are best
represented by symbols. Historically, this approach has been at the basis of many
of artificial intelligence’s early successes, e.g., in automated planning (Fikes and Nils-
son, 1971; Ghallab, Nau, and Traverso, 2004), theorem proving (Gelernter, 1959;
Newell and Simon, 1956), and knowledge-based systems (Buchanan, Sutherland, and
Feigenbaum, 1969). Despite their advantages, such as theoretical guarantees, inter-
pretability, and systematic generalization, symbolic AI methods still require symbolic
inputs and often rely on expert domain knowledge: Symbols have to be defined and
grounded in the real world—this is known as the symbol grounding problem (Harnad,
1990; Searle, 1980; Steels, 2008)—and knowledge, in terms of domain-specific facts
and rules, must be entered by humans into the system using a formal language (e.g.,
STRIPS (Fikes and Nilsson, 1971) and PDDL (Drew, 1998) in automated planning,
or description logics (Baader and Nutt, 2003)).14 While this approach may be reason-
able in some cases, it is not acceptable in more general contexts that heavily involve
learning and low-level perception. Because of these limitations, symbolic AI research
has fallen out of favor in the deep learning era. However, many of these approaches
are used to this day as part of the standard computer science toolbox, and many argue
that symbol manipulation capabilities are necessary for overcoming the challenges of
modern machine learning in terms of systematic generalization (Battaglia et al., 2018;
Greff, Steenkiste, and Schmidhuber, 2020; Lake et al., 2017; Marcus, 2018; Marcus,
2003; Pearl, 2018; Schölkopf et al., 2021).

13Since the human working memory has a limited capacity and cannot hold more than a few objects
simultaneously (Cowan, 2001; Fukuda, Awh, and Vogel, 2010; Kibbe and Leslie, 2019; Miller, 1956;
Oberauer, 2019), we could also assume that the number of objects to be represented is bounded.
However, here we focus on the general problem of representation learning in the multi-object
setting, without necessarily limiting ourselves to scenarios that are realistic for human learning.

14Although in some cases this knowledge can be learned, observations are typically still required to
be symbolic. This is the case, e.g., in action model learning for automated planning (Cresswell,
McCluskey, and West, 2013; Mourao et al., 2012; Pasula, Zettlemoyer, and Kaelbling, 2007; Walsh
and Littman, 2008; Yang, Wu, and Jiang, 2007; Zhuo et al., 2010). Note that, in Dittadi, Bolander,
and Winther (2018), we do in fact learn a simple neural transition model in Sokoban from non-
symbolic observations and successfully use it in a tree search algorithm for planning. However,
(1) this approach relies on assumptions on the transition function for the domain, and (2) having
a non-symbolic transition model prevents us from using optimized off-the-shelf planners that can
automatically derive powerful heuristics to significantly improve planning efficiency.
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On a similar note, machine learning methods have also been shown to benefit from
symbol-like observations and from explicitly incorporating structure in a connection-
ist model. Recent successes can be found, e.g., in reinforcement learning (Ahmed et
al., 2021; Berner et al., 2019; Vinyals et al., 2019) or in physical reasoning (Battaglia
et al., 2016; Sanchez-Gonzalez et al., 2020) where structured observations are avail-
able via the internal state of a simulator. This access to ground-truth structured
data is often necessary to solve complex tasks that require high-level skills such as
reasoning and planning. Looking forward, it will be crucial to relax the assumption
that ground-truth information about the state of the world is available, and learn to
extract it instead.

Furthermore, there is evidence in cognitive psychology and neuroscience that humans
perceive the world in a structured way, in terms of objects and their interactions
(Spelke, 1990; Téglás et al., 2011; Wagemans, 2015). In fact, learning and reasoning
about objects has been shown to develop in humans at an early age (Baillargeon,
Spelke, and Wasserman, 1985; Dehaene, 2020; Spelke and Kinzler, 2007). Objects
constitute compositional building blocks for higher-level cognitive tasks, and naturally
enable systematic generalization outside of prior experiences (Dehaene, 2020).

Taking once again inspiration from human cognition, it has also been proposed that
artificial intelligence should take a hybrid, neuro-symbolic approach, where direct
sensory information is integrated with complex abstractions that allow for reasoning
and planning (Marcus, 2018, Section 5.2). In this context, symbol manipulation can
be performed by purely symbolic methods (Asai and Fukunaga, 2018; Ayton and Asai,
2021; Dittadi, Drachmann, and Bolander, 2021; Mao et al., 2019; Yi et al., 2018) or
within a connectionist framework (Battaglia et al., 2018; Evans and Grefenstette,
2018; Greff, Steenkiste, and Schmidhuber, 2020; Pollack, 1990; Smolensky, 1990).

In general, object-centric representations are likely to play a crucial role in artifi-
cial learning systems that are able to reason, plan, and generalize systematically
beyond their experience. In the remainder of this thesis, we will focus on how these
representations are obtained from perceptual data alone, without any supervision,
and regardless of how higher-level cognitive functions that manipulate these repre-
sentations may be implemented. Note, however, that these issues are more generally
related to the binding problem in neural networks, i.e., the “inability of contemporary
neural networks to effectively form, represent, and relate symbol-like entities” (Greff,
Steenkiste, and Schmidhuber, 2020).



2.4 Object-centric representations 31

2.4.2 Object-centric learning

In object-centric representation learning, we assume the data comes from a struc-
tured generative process based on discrete entities, their relationships, and a set of
properties defining such entities and relationships. While disentangled representation
learning (Section 2.3) is concerned with learning a uniform collection of factors of vari-
ation underlying the data, here we shift our focus to the compositional structure of
data in terms of building blocks that we call objects. In this dissertation, we will focus
on the most natural and intuitive case in the image domain, where objects are indeed
concrete objects that are visually perceived in the world. However, the term “object”
could be interpreted more generally as, e.g., spoken words or utterances, remembered
entities, or abstract concepts and categories (Greff, Steenkiste, and Schmidhuber,
2020, Section 2.3).

The goal of object-centric learning is to obtain data representations that combine the
richness of neural representations with the compositionality of symbols: for example,
new objects can be created from unseen feature combinations, and objects can be com-
posed in novel ways without their features interfering with each other (this is related
to the “superposition catastrophe” (Bowers et al., 2014; Von Der Malsburg, 1986)).
Although, intuitively, object-centric learning is strictly related to disentanglement
learning—or may even be considered a special case thereof (Schölkopf et al., 2021,
Section 6)—the traditional disentanglement framework cannot be straightforwardly
applied in this case, as it assumes flat representations with a fixed vector format that
imposes an arbitrary ordering of the dimensions.

The typical setting in object-centric representation learning is to assume the genera-
tive factors are a set of latent vectors {zi}N

i=1 where N is the number of objects and
each zi contains the representation of one object in the observation x. This separation
(Greff, Steenkiste, and Schmidhuber, 2020, Section 3.1.1) of object representations is
crucial for compositionality at the scene level. The number of objects could even be
treated as a (discrete) generative factor of variation that defines the number of factors
of variation for a given data point—e.g., in Dittadi and Winther (2019), a discrete
random variable controls the number of latent vectors (slots) representing objects in
each observation. Note that this slot-based approach to object separation is only one
of the possible ways to tackle the problem—see Greff, Steenkiste, and Schmidhuber
(2020, Section 3.3) for a discussion of more sophisticated strategies.
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Although this thesis focuses on the common autoencoding setting for static images,
object representations can also be learned via contrastive (Kipf, Pol, and Welling,
2019) or adversarial (Chen, Artières, and Denoyer, 2019b; Steenkiste et al., 2020)
methods, or as intermediate representations in a larger model that is trained on
a supervised task (Locatello et al., 2020d). Additional inductive biases can also be
introduced through data, e.g., exploiting temporal information by observing sequences
or by interacting with an environment (Kabra et al., 2021; Kipf et al., 2021; Kipf,
Pol, and Welling, 2019; Löwe et al., 2020).

In the slot-based case considered here, all object representations zi have a common
representational format achieved by weight sharing across slots (Greff, Steenkiste,
and Schmidhuber, 2020, Section 3.1.2). The shared format allows generalization be-
tween objects when using the representations downstream. This should lead, e.g., to
the generalization of relations between objects independently of the context, which
is relevant for reasoning, planning, and other high-level tasks. Finally, following the
arguments in Section 2.3, it may be desirable for each object’s features to be disen-
tangled. This, together with the common representational format, is hypothesized
to be beneficial for generalization to unseen feature combinations (Greff, Steenkiste,
and Schmidhuber, 2020, Section 3.1.3).

2.4.3 Slot-based methods relevant for this thesis

In this section, we provide a brief overview of slot-based models and a high-level
description of the methods relevant for this thesis. This section is based on parts of
Paper III (Chapter 7) and its supplementary material (Appendix C).

Slot-based methods for object-centric learning can be categorized according to their
approach to object separation (Greff, Steenkiste, and Schmidhuber, 2020). In models
that use instance slots, each slot is used to represent a different part of the input.
This introduces a routing problem, because all slots are identical but they cannot all
represent the same object, so a mechanism needs to be introduced to allow slots to
communicate with each other. In models based on sequential slots, the representa-
tional slots are computed in a sequential fashion, which solves the routing problem
and allows to dynamically change the number of slots, but introduces dependencies
between slots. In models based on spatial slots, a spatial coordinate is associated
with each slot, introducing a dependency between slot and spatial location. In this
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work, we focus on four scene-mixture models as representative examples of approaches
based on instance slots (Slot Attention), sequential slots (MONet and GENESIS), and
spatial slots (SPACE). What follows is a high-level overview of these four models.

MONet. In MONet (Burgess et al., 2019), attention masks are computed by a re-
current segmentation network that takes as input the image and the current scope,
which is the still unexplained portion of the image. For each slot, a variational autoen-
coder (the component VAE) encodes the full image and the current attention mask,
and then decodes the latent representation to an image reconstruction and mask. The
reconstructed images are combined using the attention masks (not the masks decoded
by the component VAE) into the final reconstructed image. The reconstruction loss is
the negative log-likelihood of a spatial Gaussian mixture model (GMM) with one com-
ponent per slot, where each pixel is modeled independently. The overall training loss
is a (weighted) sum of the reconstruction loss, the KL divergence of the component
VAEs, and an additional mask reconstruction loss for the component VAEs.

GENESIS. Similarly to MONet, GENESIS (Engelcke et al., 2020) models each
image as a spatial GMM. The spatial dependencies between components are modeled
by an autoregressive prior distribution over the latent variables that encode the mix-
ing probabilities. From the image, an encoder and a recurrent network are used to
compute the latent variables that are then decoded into the mixing probabilities. The
mixing probabilities are pixel-wise and can be seen as attention masks for the image.
Each of these is concatenated with the original image and used as input to the compo-
nent VAE, which finds latent representations and reconstructs each scene component.
These are combined using the mixing probabilities to obtain the reconstruction of the
image. While in MONet the attention masks are computed by a deterministic segmen-
tation network, GENESIS defines an autoregressive prior on latent codes that are de-
coded into attention masks. GENESIS is a proper probabilistic generative model, and
it is trained by maximizing a modification of the ELBO introduced by Rezende and Vi-
ola (2018), which adaptively trades off the log-likelihood and KL terms in the ELBO.

Slot Attention. As our focus is on the object discovery task, we use the Slot
Attention autoencoder model proposed by Locatello et al. (2020d). The encoder
consists of a CNN followed by the Slot Attention module, which maps the feature
map to a set of slots through an iterative refinement process. At each iteration,
dot-product attention is computed with the input vectors as keys and the current
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slot vectors as queries. The attention weights are then normalized over the slots,
introducing competition between the slots to explain the input. Each slot is then
updated using a GRU that takes as inputs the current slot vectors and the normalized
attention vectors. After the refinement steps, the slot vectors are decoded into the
appearance and mask of each object, which are then combined to reconstruct the
entire image. The model is optimized by minimizing the MSE reconstruction loss.
While MONet and GENESIS use sequential slots to represent objects, Slot Attention
employs instance slots.

SPACE. Spatially Parallel Attention and Component Extraction (SPACE; Lin
et al., 2020b) combines the approaches of scene-mixture models and spatial atten-
tion models. The foreground objects are segregated using bounding boxes computed
through a parallel spatial attention process. The parallelism allows for a larger num-
ber of bounding boxes to be processed compared to previous related approaches. The
background elements are instead modeled by a mixture of components. The use of
bounding boxes for the foreground objects could lead to under- or over-segmentation
if the size of the bounding box is not tuned appropriately. An additional boundary
loss tries to address the over-segmentation issue by penalizing splitting objects across
bounding boxes.

2.4.4 Measuring object separation

In this section, we define the segmentation metrics which we use in this dissertation
to measure object separation. This section is based on the supplementary material
for Paper III (see Appendix C).

Adjusted Rand Index (ARI). The Adjusted Rand Index (ARI) (Hubert and
Arabi, 1985) measures the similarity between two partitions of a set (or clusterings).
Interpreting segmentation as clustering of pixels, the ARI can be used to measure the
degree of similarity between two sets of segmentation masks. Segmentation accuracy
is then assessed by comparing ground-truth and predicted masks. The expected
value of the ARI on random clustering is 0, and the maximum value is 1 (identical
clusterings up to label permutation). As in prior work (Burgess et al., 2019; Engelcke
et al., 2020; Locatello et al., 2020d), we only consider the ground-truth masks of
foreground objects when computing the ARI. Below, we define the Rand Index and
the Adjusted Rand Index in more detail.
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The Rand Index is a symmetric measure of the similarity between two partitions
of a set (Hubert and Arabi, 1985; Rand, 1971; Wagner and Wagner, 2007). It is
inspired by traditional classification metrics that compare the number of correctly
and incorrectly classified elements. The Rand Index is defined as follows: Let S be a
set of n elements, and let A = {A1, . . . , AnA

} and B = {B1, . . . , BnB
} be partitions

of S. Furthermore, let us introduce the following quantities:

• m11: number of pairs of elements that are in the same subset in both A and B,

• m00: number of pairs of elements that are in different subsets in both A and B,

• m10: number of pairs of elements that are in the same subset in A and in
different subsets in B,

• m01: number of pairs of elements that are in different subsets in A and in the
same subset in B.

The Rand Index is then given by:

RI(A, B) =
m11 + m00

m11 + m00 + m10 + m01
=

2(m11 + m00)
n(n − 1)

(2.23)

and quantifies the number of elements that have been correctly classified over the
total number of elements.

The Rand Index ranges from 0 (no pair classified in the same way under A and B)
to 1 (A and B are identical up to a permutation). However, the result is strongly
dependent on the number of clusters and on the number of elements in each cluster.
If we fix nA, nB , and the proportion of elements in each subset of the two partitions,
then the Rand Index will increase as n increases, and even converge to 1 in some
cases (Fowlkes and Mallows, 1983). The expected value of a random clustering also
depends on the number of clusters and on the number of elements n.

The Adjusted Rand Index (ARI) (Hubert and Arabi, 1985) addresses this issue by
normalizing the Rand Index such that, with a random clustering, the metric will be
0 in expectation. Given the same conditions as above, let ni,j = |Ai ∩ Bj |, ai = |Ai|,
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and bi = |Bi|, with i = 1, . . . , nA and i = 1, . . . , nB . The ARI is then defined as:
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∑
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which is 0 in expectation for random clusterings, and 1 for perfectly matching parti-
tions (up to a permutation). Note that the ARI can be negative.

Segmentation covering metrics. Segmentation Covering (SC) (Arbelaez et al.,
2010) uses the intersection over union (IOU) between pairs of segmentation masks
from the sets A and B. How the segmentation masks are matched depends on whether
we are considering the covering of B by A (denoted by A → B) or vice versa (B → A).
We use the slightly modified definition by Engelcke et al. (2020):

SC(A → B) = 1∑
RB∈B |RB |

∑
RB∈B

|RB | max
RA∈A

iou(RA, RB) , (2.25)

where |R| denotes the number of pixels belonging to mask R, and the intersection
over union is defined as:

iou(RA, RB) = |RA ∩ RB |
|RA ∪ RB |

. (2.26)

While standard (weighted) segmentation covering weights the IOU by the size of the
ground truth mask, mean (or unweighted) segmentation covering (mSC) (Engelcke
et al., 2020) gives the same importance to masks of different size:

mSC(A → B) = 1
|B|

∑
RB∈B

max
RA∈A

iou(RA, RB) , (2.27)

where |B| denotes the number of non-empty masks in B. Since a high SC score can still
be attained when small objects are not segmented correctly, mSC is considered to be
a more meaningful and robust metric across different datasets (Engelcke et al., 2020).

Note that neither SC nor mSC are symmetric: Following Engelcke et al. (2020), we
consider A to be the predicted segmentation masks and B the ground-truth masks
of the foreground objects. As observed by Engelcke et al. (2020), both SC and mSC
penalize over-segmentation (segmenting one object into separate slots), unlike the
ARI. Both SC and mSC take values in [0, 1].



CHAPTER 3
Study on representation learning

in a robotic setting

After having introduced the necessary background in Chapter 2, we briefly outline
the main contributions of this thesis. Here we take a more focused approach than in
the original papers, and discuss the key motivations, conclusions, and limitations of
the studies.

In this chapter, we introduce the motivation and experimental setting of Papers I
and II (Chapters 5 and 6), summarize a few main results, and discuss the key take-
aways. The most relevant background for this chapter is in Sections 2.1 to 2.3. We
take a similar approach in Chapter 4, which is concerned with the experimental study
in Paper III (Chapter 7).

3.1 Introduction and study design

In Papers I and II (Chapters 5 and 6), we focus on representation learning for down-
stream tasks in the context of robotics. We scale disentangled representation learning
to a robotic setting and analyze the link between properties of the learned represen-
tations and different flavors of generalization in downstream tasks, spanning from
ground-truth factor prediction to robotic pushing.

The setting is a simulated robotic platform consisting of a bowl-shaped stage with
a flat floor, a monochromatic cube with a range of possible colors, and a robotic
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arm with three degrees of freedom (Fig. 3.1, left). We consider two tasks: reaching
the cube, or pushing it to a given target location. The platform has a real-world
counterpart which we use for sim-to-real generalization experiments.1 Images from
the real-world platform are shown in the right panel in Fig. 3.1.

3.1.1 Dataset

Our first contribution, introduced in Paper I (Chapter 5), is a new annotated dataset
for learning and evaluating disentangled representations in the robotic setting intro-
duced above. A main advantage of this dataset is that it has a direct downstream
application to real-world robotics. This has the beneficial side effect that on this
dataset it is more difficult to learn useful representations that accurately capture the
underlying structure of the data. Consequently, our dataset also provides a valuable
testbed to challenge state-of-the-art methods for disentangled representation learning.

There are several aspects to the difficulty of our dataset:

1. It has a higher resolution (128x128) than most other datasets commonly used
in disentangled representation learning (Fidler, Dickinson, and Urtasun, 2012;

Figure 3.1. Random samples from the simulated (left) and real (right) dataset proposed
in Paper I (Dittadi et al., 2021b).

1Our setting is derived from a more general setup with three robotic fingers that enables studying a
wide range of robotic tasks from reaching to dexterous manipulation. This corresponds to Causal-
World (Ahmed et al., 2021) in simulation and the TriFinger robot (Wüthrich et al., 2020) in the
real world.
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Gondal et al., 2019; Higgins et al., 2017a; Kim and Mnih, 2018; Reed et al.,
2015), with the exception of SmallNORB (LeCun, Huang, and Bottou, 2004)
that has the same resolution. Note that in this comparison we only consider
datasets with precise annotations of the factors of variation: while there are
datasets with labeled factors, such as CelebA (Liu et al., 2015), these have only
qualitative annotations and, therefore, do not allow for quantitative evaluations
or fine-grained control over the factors.

2. Our dataset has seven fully-annotated, fine-grained factors of variation; other
datasets have fewer, except for MPI3D (Gondal et al., 2019) that also has seven.

3. Some of these factors of variation have correlations due to the interactions of
the finger with the cube and the stage floor: the finger cannot be completely
extended vertically and it cannot go through the cube. In another work not
included in this dissertation (Träuble et al., 2021), although with simpler cor-
relation structures, we show theoretically and empirically that disentangled
representation learners might struggle when some factors of variation are corre-
lated. However, we observe that the weakly supervised approach introduced in
Section 2.3.3, which we also use in Papers I and II, may resolve this issue.

4. Some factors of variation have a significantly larger impact on the pixel-wise
reconstruction loss. This could make it challenging to find the “sweet spot”
for regularization strength in autoencoder-based disentanglement learners. In
fact, we observe that the cube rotation—the factor with the smallest impact—
is sometimes not captured by the representations when the regularization is
too strong. See the related discussion in Section 2.3.1, in the paragraph that
introduces AnnealVAE (p. 19).

5. Unlike most previous datasets, this dataset presents heavy occlusions. E.g., the
tip of the finger may be hidden by the cube (or even exit the field of view,
although this is not technically an occlusion), or the cube might be almost
entirely hidden by the finger (see Fig. 3.1).

6. The factors of variations in the dataset are significantly more fine-grained than
other datasets. This results in over 1.5 billion possible combinations of the
seven factors, while the largest among the common disentanglement datasets
only has one million combinations.
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7. The fine granularity of the factors implies that our representations are trained
on a rather small portion (less than 0.1%) of the space of possible combinations.
By contrast, previous works on other datasets report training on the entire
datasets, i.e., on all factor combinations.

A further advantage of our dataset is that it enables sim-to-real evaluation: in addition
to one million annotated images of the simulated platform, it also includes over 1,800
annotated images of the real platform (Fig. 3.1, right).

3.1.2 Learning representations

To learn compact representations of simulated camera observations from our robotic
platform, we choose the β-VAE for its simplicity. As discussed in Section 2.3.1, this
is an extension to the variational autoencoder (VAE) that allows for the modula-
tion of the information bottleneck capacity, thereby encouraging disentanglement. In
addition to training β-VAEs in the standard unsupervised setting, we also use the
Ada-GVAE approach proposed by Locatello et al. (2020b) to introduce weak supervi-
sion in the training procedure (see Section 2.3.3).

As mentioned above, this dataset is challenging for common disentanglement methods,
which in our preliminary experiments failed to reconstruct the input images. For
this reason, we increased the encoder and decoder depths and ran a hyperparameter
sweep to determine the best configuration (including depth and width of the networks,
presence and parameterization of residual connections, weight initialization of the
networks, batch normalization, and dropout). The final architecture is over 4 times as
deep as standard convolutional autoencoders for disentanglement learning (Locatello
et al., 2020a), and it has over 20 times as many parameters (see Appendix A.1).
Proposing a practical way to scale up disentanglement learning to more challenging
settings constitutes our second contribution.

3.1.3 Study on generalization in downstream tasks

As a third contribution of Paper I (Chapter 5), we perform a reproducible large-scale
study in which we train 1,080 variational autoencoders varying several hyperparam-
eters, including supervision method (unsupervised or weakly supervised), bottleneck
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capacity, and presence of noise in the input. The latter was an attempt—which turned
out to be relatively successful—to learn encoders that would be more robust to strong
distribution shifts such as sim-to-real. Further details on the hyperparameter search
are presented in Section 5.3 and Appendix A.1.

In both Papers I and II, we leverage the learned representation functions (the encoders)
to learn downstream tasks, and investigate the relationship between representation
properties and performance on downstream tasks, with a particular focus on out-of-
distribution generalization. The representation functions are pretrained and frozen,
and a downstream model is trained to solve a specific task given the (learned) data
representation as input. In Paper I, the task is to predict the ground-truth factors of
variation; in Paper II, the task is either to reach the cube with the robotic finger, or
to move it to a given location.

We formulate a framework for measuring generalization based on two scenarios:

• OOD1: The downstream model is evaluated out of distribution with respect to
its training distribution, but the representation functions are still in distribution.
This means that the representation r(x) of an input x in the OOD1 set will be as
good as representations of data in the downstream models’ training distribution.
Therefore, here we purely test the generalization of downstream models trained
on representations with different structures and properties.

• OOD2: The downstream model is evaluated out of distribution with respect to
both its own training distribution and that of the representation function. The
key observation here is that, since the representation functions are deep neural
networks, they are prone to well-known generalization issues. Therefore, for a
data point x in the OOD2 set (when the encoders are out of distribution), the
corresponding representation r(x) may not faithfully represent x.

Although often overlooked, this distinction is crucial when discussing generalization
in representation learning, as it allows us to separately study (1) the structure and
properties of representations, and (2) the generalization of representation functions.

For the sake of clarity, we now briefly introduce the concrete distribution shifts studied
in Chapters 5 and 6 in the simulated setting.2 We treat the cube color as a nuisance

2Although we also consider sim-to-real shifts, these cannot be precisely characterized in terms of
factors of variations of the dataset. This could be solved, e.g., by introducing a binary factor of
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factor (see Section 2.1.1) and consider distribution shifts affecting only this factor. In
our setup, the cube color can take 12 possible values (with uniformly distributed hue
in the HSV space, and maximum saturation and value). As shown in Fig. 3.2, we train
the representation functions on 8 of these colors, chosen at random before running
the study, and kept fixed. The held-out colors are used for OOD2 evaluation, i.e.,
with the representation function out of distribution. The downstream tasks—e.g.,
predicting the cube’s position, or pushing the cube to a target location—are then
trained on a subset of the colors that were used when training the representations
(the 4 leftmost colors in the example in Fig. 3.2). When evaluating on the OOD1
colors, we gauge the generalization abilities of the downstream task, since in this case
the representations should be accurate. When evaluating on the OOD2 colors, by
contrast, we measure the generalization of the encoders as well. In Chapter 5, we
consider three different splits of the VAE training colors. The “extrapolation” split
shown in Fig. 3.2 (from downstream training colors to OOD1 colors) is the one we
focus on in Chapter 6.

3.2 Key findings on disentanglement and factor prediction

In this section, we present and discuss the main results from Paper I on learning
disentangled representations and solving downstream factor prediction tasks.

First, we demonstrate that the proposed architecture allows VAEs to reconstruct all
relevant details of input images (see input–reconstruction pairs in Fig. 3.3(a)). This
suggests that the latent representations in the trained models accurately capture all
relevant information in the data (see Section 2.1.4.1). Arguably, this is necessary if

Figure 3.2. Illustration of the cube colors in the studies from Papers I and II.

variation that denotes simulation or real world, or by describing simulated and real settings via a
set of complex factors of variation, such as surface characteristics and lighting conditions. This is,
however, out of the scope of this dissertation and the research papers it is based on.
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(a) Inputs and reconstructions. (b) Random samples.

Figure 3.3. Input–reconstruction pairs and random samples of a VAE from our study.

we want to draw meaningful conclusions about the usefulness of representations with
diverse structures (see Section 2.1.4.2): if relevant information is not retained by some
representation functions, these will likely be less useful regardless of the structure of
the information they do retain. In addition, although generative modeling is not a
goal of this research effort, we remark that most of the learned models can also sample
new high-quality images, as shown in Fig. 3.3(b).

Another key finding is that weak supervision as defined in Ada-GVAE (see Sec-
tion 2.3.3) can successfully learn fully disentangled representations, as seen by visual
inspection and from the remarkably high DCI Disentanglement scores (often above
0.99). The failure cases (when representations are not fully disentangled) typically
occur when the latent space regularization is too strong and therefore one factor—
the cube rotation, which contributes the least to the reconstruction error—is ignored
(see discussion in Section 2.3.1). Conveniently, this allows for model selection in the
weakly supervised case, since the entangled models are very likely to have worse unsu-
pervised metrics (reconstruction loss and ELBO). Even in the cases where one factor
of variation is ignored, those that are not ignored are often disentangled. In contrast,
none of the unsupervised models learn disentangled representations, and almost all
of them have lower DCI and MIG scores than any weakly supervised model (of the
four disentanglement metrics considered in this study,3 these are the one that we em-
pirically observed, via visual inspection, to better correspond to our intuitive notion

3We can only compute observational metrics (DCI Disentanglement, MIG, Modularity, and SAP) on
this dataset, as opposed to interventional metrics (see Section 2.3.2), because it does not provide
interventional capabilities (it consists of a fixed set of images that is a rather small subset of all
possible combinations of the factors of variation).
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of disentanglement).

Thanks to this combination of unsupervised and weakly supervised approaches, we
learn a collection of encoders that extract highly diverse representations. This allows
us to draw sound conclusions from the observed relationships between relevant met-
rics. We will now focus in particular on disentanglement metrics and downstream
factor prediction: How does the disentangling capability of the upstream represen-
tation function r affect the OOD performance of a downstream model that predicts
the ground-truth factors of variation? A key insight from our findings—which are
discussed below—is that the effect of disentanglement on generalization is not as
straightforward as typically assumed.

First, as discussed above, it is crucial to define in what sense we are measuring gen-
eralization: If the representation function is OOD, the resulting representations will
not be disentangled—in fact, they may not even be faithful to the data. For example,
if the cube color in the input image never appeared in the VAE’s training distribution,
it is arguably unreasonable to expect the encoder to correctly interpret the unseen
color. Indeed, in our experiments, encoders are typically unreliable out of distribution,
as they sometimes fail at inferring even in-distribution factors. For example, when
the color is OOD, the cube rotation is very often inferred incorrectly (see Fig. 3.4).
This appears to hold regardless of the degree of disentanglement, which suggests that
any disentanglement capabilities are lost when the data distribution shifts.

Figure 3.4. Each pair shows an OOD2 input (left) and reconstruction (right) by a VAE with
perfectly disentangled factors of variation. The VAE was trained without input noise. Since
the cube colors are out of distribution with respect to the encoder’s training distribution,
the mapping from an input image to a latent representation is not well defined. The encoder
is especially likely to fail if the input color is not “similar enough” to a color in the training
distribution (e.g., when the cube is yellow). Unsurprisingly, the generative model always
reconstructs colors that were present in the training set.
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Second, when the downstream model is an MLP, the degree of entanglement does
not seem to matter at all. This is not surprising, since an MLP can be expected
to disentangle factors of variation that are entangled in a representation. However,
we observe a surprising phenomenon in the OOD1 case (i.e., when the encoder is
not OOD): when the representation function perfectly disentangles the factors, the
downstream models reliably attain a very low error on the task, while in other cases we
observe a significant variance (see Fig. 5.4, left). On the other hand, disentanglement
is not correlated with the OOD2 generalization of a downstream MLP, i.e., when the
encoder is OOD (see Fig. 5.5).

In summary, in our experiments disentanglement appears to matter only for OOD1
generalization, and what matters is mostly whether the representation is fully dis-
entangled or not. A possible explanation is that, when the prediction target is a
(relatively simple) non-linear function of a single input feature, the optimization eas-
ily and reliably converges to the optimal solution where all other input features are
ignored, including those that might be OOD at test time.

Another interesting observation is that adding random noise to the input of the rep-
resentation function during training significantly improves its generalization, both in
simulation (OOD cube colors) and to the real world. This is not entirely surprising, as
noisy inputs have been shown theoretically and empirically to improve the robustness
of neural networks. However, the extent of the improvement is undoubtedly signifi-
cant, as seen qualitatively by comparing Fig. 3.4 and Fig. 3.5. Note that this falls into
the OOD2 generalization category, and is particularly useful in practice in sim-to-real
scenarios—Fig. 3.6 shows examples of the effectiveness of input noise for zero-shot
sim-to-real generalization. Quantitative results are presented in Section 5.5 (Fig. 5.6).

3.3 Study on robotic tasks

In Paper II (Chapter 6), we investigate the role of pretrained representations on the
performance and generalization of downstream reinforcement learning agents in the
robotic setup introduced earlier, both in simulation and in the real world. To the
best of our knowledge, this is the first systematic and extensive account of the OOD
generalization of downstream reinforcement learning agents in robotics, and how this
generalization is affected by characteristics of the upstream pretrained representation
functions. In this section, we briefly outline the experimental setup for this study.



46 3 Study on representation learning in a robotic setting

Figure 3.5. Each pair shows an OOD2 input (left) and reconstruction (right) by a VAE
with perfectly disentangled factors of variation. The VAE was trained with input noise.
Unsurprisingly, the generative model always reconstructs colors that were present in the
training set. However, unlike in the noiseless case in Fig. 3.4, the other factors of variation
are inferred relatively well.

We then discuss a few key insights in Section 3.4, leaving a more extended exposition
for Chapter 6.

In this study, we evaluate distribution shifts within a framework that is analogous
to the one in Paper I. However, the experimental study in this robotic setting is
significantly more complex and demanding:

• The downstream task is considerably more challenging: While predicting one
factor of variation involves training a downstream model on 10k samples for a
few thousand steps, we train our reinforcement learning policies for 3M steps
for pushing.

• While in the simple prediction task we can precompute the representations of the
entire training and test sets, in the reaching and pushing tasks we must encode
each input image at runtime. This is an additional source of computational
cost, besides the mere fact that the task is harder.

• Since the objective function in reinforcement learning is typically based on some
form of expected cumulative reward, its gradients with respect to the model pa-
rameters are not computable in closed form and have to be estimated (Mohamed
et al., 2020). Gradients in reinforcement learning are thus generally harder to
estimate than in supervised learning tasks such as factor prediction, where the
training loss is directly differentiable with respect to all parameters. This, to-
gether with the fact that the tasks are harder in the first place, require us to
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(a) Trained without noise.

(b) Trained with noise.

Figure 3.6. Each pair shows a real-world image input (left) and its reconstruction by
trained VAEs (right). This is an OOD2 scenario. The model trained with input noise (b)
infers the ground-truth factors of variation significantly more accurately than the model
trained without noise (a).

use many (10 for pushing, 20 for reaching) random seeds for downstream RL
training. This further increases the already high overall computation time by
one order of magnitude.

Thus, we opt to reduce the computational burden by limiting the number of pretrained
representations, and use only a subset of the models trained for Paper I.

We train reinforcement learning policies with SAC (Haarnoja et al., 2018b) to either
reach the cube in the arena or push it to a given target location. For reaching, we
measure success by the fractional progress made by the tip of the robot finger from
its initial position to the surface of the cube. For pushing, we measure the fractional
volumetric overlap between the cube and the goal (which is defined as a cube of the
same size).

We select a subset of the representation functions from Paper I and train 11,520
downstream policies in total. For each encoder, we use 20 random seeds for training
downstream policies on reaching, and 10 seeds on pushing. Since disentanglement is
one of the central themes of this study, we also explore the effect of L1 regulariza-
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tion on the input, in an attempt to encourage the downstream policies to disregard
nuisance factors and therefore be more robust to distribution shifts.

The input to the downstream policies is the concatenation of: (1) the input rep-
resentation r(x), where r is the frozen, pretrained representation function, (2) the
ground-truth angles and velocities of the robot joints, and (3) the target position and
orientation of the cube, in the pushing task. The cube’s position and orientation are
thus the only pieces of information that must be contained in r(x), since all other
relevant quantities are available in the ground-truth state observation. Despite this,
solving these tasks proved to be difficult—in fact, they can be challenging even from
complete ground-truth information (Ahmed et al., 2021).

3.4 Key findings on robotic tasks

One of the motivations for introducing the annotated robotics dataset in Paper I
was to scale up disentangled representation learning to more realistic settings and
eventually evaluate its usefulness on more relevant downstream tasks than factor
prediction on toy datasets, such as reinforcement learning on a robot. In Paper II,
we deliver on this promise. However, since the results on disentanglement are mostly
negative, we expand our study to investigate more in general how the generalization
of downstream policies relates to a variety of metrics that can be computed on the
representations before training the policies.

We start by analyzing the effect of disentanglement on the generalization of the trained
policies. In Paper I, we observed that disentanglement is not beneficial in the OOD2
scenario, but it can be helpful for OOD1 generalization (i.e., when the encoder is in
distribution) only when the representations are perfectly disentangled. In Paper II,
on the other hand, we find the role of disentanglement to be negligible: it appears not
to be beneficial even when the encoder is kept in distribution and even if it perfectly
disentangles the factors of variation.

As in Paper I, we test the encoder’s robustness (OOD2 generalization) by evaluating
the policies on unseen cube colors in simulation, as well as on the real robot. Here we
also test on an unseen shape (a sphere) both in simulation and in the real world. In
simulation, where it is feasible to evaluate a large number of policies on hundreds of
episodes each, we observe that training the representation functions with input noise
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significantly improves OOD2 generalization, which is in line with the conclusion we
reach on the simpler prediction setting of Paper I. In particular, some of the policies
trained in simulation generalize surprisingly well zero-shot to the real robot, without
any fine-tuning or domain randomization during training. Crucially, the best policies
in the real-world setting tend to be the best ones in the OOD2 setting in simulation, for
example with unseen cube colors. Therefore, we can use a policy’s OOD2 performance
in simulation to predict how it will perform on the real robot.

Perhaps the most valuable takeaway from this study, however, is that we can interpret
the out-of-distribution performance on the simple downstream tasks from Paper I as
generalization scores, to be added to the collection of representation metrics. Thus,
if we are interested in a specific type of generalization for downstream policies—e.g.,
corresponding to a specific training distribution and test-time distribution shift—we
can simply replicate a similar train/test scenario on a simple prediction task and
expect the OOD performance on such a task to be predictive of the policies’ OOD
performance. We can use the toy task as a proxy task to predict the performance
of downstream models on a target task. Notably, the distribution shift need not be
exactly the same in the proxy and target tasks: for example, the results on sub-
stantially different OOD2 shifts—OOD cube colors in simulation, OOD shape in
simulation, and sim-to-real shift—appear to be correlated.

Let us consider a concrete example to highlight the relevance of these results. As-
sume we have trained a large number of representation functions to be used as vision
backbones for downstream reinforcement learning. We train downstream policies in
simulation and deploy them on a real robot. It is reasonable to assume that we
should train many policies for each representation function, varying hyperparameters
and random seed. Fortunately, our study suggest that we can leverage simple proxy
tasks to drastically reduce the number of policies that need to be trained: First, we
train factor prediction models for all representation functions and evaluate them on
images from the real robot. Then, we select the encoders with the best OOD per-
formance and run a hyperparameter sweep for the policies using only this subset of
encoders as upstream models. Note that, since the OOD2 performance of the policies
in simulation and in the real world are also correlated, we could then further reduce
the cost of deploying multiple policies to the real robot by filtering out the ones that
do not perform particularly well on the simulated OOD2 setting. However, the most
impactful advantage is arguably the possibility to pre-select representations that are
more likely to lead to robust downstream policies.
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Finally, although not discussed in the paper, it would not be surprising if these results
held beyond reinforcement learning in robotics. In fact, we could hypothesize that
the correlations between the performances on proxy and target tasks may primarily
depend on how similar the downstream models and tasks are.

Regarding the similarity of downstream models, in Paper II we indeed observe signif-
icant correlations only when the downstream model for factor prediction is an MLP,
like the neural networks in the RL agents. Note that this is probably a soft constraint:
First, each RL agent actually consists of multiple MLPs (the policy, value, and Q net-
works), therefore a direct comparison is not straightforward. Second, in Paper I we ob-
serve that the behaviors of MLPs with up to 3 hidden layers are similar to each other,
but different from gradient boosted trees, random forests, and k-nearest neighbors.

The similarity of the proxy and target downstream tasks can probably be expressed
in terms of the mutual information between the prediction targets of the two tasks.
Assume that the data is defined by a set of ground-truth (generative) factors G, and
that solving the proxy task Tp and the target task Tt requires information about
two subsets Gp, Gt ⊂ G of factors.4 We might then observe that models for Tp that
are downstream of a representation function r tend to exhibit some properties, e.g.,
good in-distribution performance or robustness to a specific kind of distribution shift.
Intuitively, if Gp and Gt are “similar”, we may expect the same properties to hold
to some extent for models that are trained downstream of r to solve task Tt.5 Note
that, if the tasks are entirely unrelated (i.e., Gp ∩ Gt = ∅), some properties may still
be consistent: for example, if r is robust to distribution shifts, downstream models
trained on Tp and Tt might both exhibit good OOD2 performance; and if r is not
robust, both downstream models will probably not perform well in an OOD2 setting.
Although these relationships are not straightforward to characterize, we found some
empirical evidence that partially supports this hypothesis: The OOD1 performance
of the policies is particularly correlated with the OOD1 accuracy when predicting the
factors that are not included in the ground-truth state, i.e., those that necessarily have
to be inferred from the learned representation (see Fig. 6.4), while the correlation with
the prediction performance of other factors is significantly milder. A similar result
holds for OOD2 scenarios.

4For simplicity we could refer to the factors by some arbitrary indices such that G ⊂ N.
5Denoting by yp and yt the prediction targets of the proxy and target tasks, respectively, we could
attempt to formalize this notion using the mutual information I(yp; yt). In reinforcement learning,
for example, the prediction target might be the reward (or expected discounted return) for a state–
action pair or the action probabilities of an optimal stochastic policy.



CHAPTER 4
Study on object-centric

representations

In this chapter, we motivate and outline the design of the study in Paper III, and
discuss its main results. Further details can be found in the paper (Chapter 7)
and in the corresponding supplementary material (Appendix C). The most relevant
background for this chapter is in Sections 2.1 and 2.4.

4.1 Introduction

Compositional generalization is widely recognized as a fundamental issue in deep
learning (Greff, Steenkiste, and Schmidhuber, 2020; Lake et al., 2017). The object-
centric learning literature is mainly concerned with proposing new methods, while
assuming that learning about objects may (at least partially) solve the issue of general-
ization. In Paper III (Dittadi et al., 2022a), we investigate this claim via a systematic
empirical study on unsupervised object-centric learning, with a focus on image data.

4.1.1 Overview of the study design

We start by formulating three hypotheses about the unsupervised learning of object-
centric representations, roughly following assumptions made in previous work but
largely left implicit. In summary, an encoder that separates objects should:
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1. Separately represent each object’s properties in a complete and accurate manner,
and therefore be useful for arbitrary downstream tasks.

2. Be robust to distribution shifts affecting a single object per image, in the sense
that the representations of all other objects should still be reliable, even if the
affected object has out-of-distribution properties.

3. Be robust to distribution shifts globally affecting the input, such as introduc-
ing occlusions, cropping the input image, or increasing the number of objects
beyond the maximum number observed in the training distribution.

To investigate these hypotheses, we design a systematic experimental study in which
we train and evaluate object-centric learning models on multi-object datasets that
are annotated with segmentation masks and object properties.

Models. We focus on slot-based models, a popular approach for unsupervised
object-centric learning (see Section 2.4.3), but we include models covering differ-
ent approaches to object separation: instance slots (Slot Attention), sequential slots
(MONet and GENESIS), and spatial slots (SPACE). Moreover, we train standard
variational autoencoders (Section 2.2) in an attempt to gauge the downstream useful-
ness of non-object-centric representations (see Section 4.1.2).

Datasets. We train and evaluate the models on five multi-object datasets that
have been used in the literature as benchmarks for object-centric models. All of them
have segmentation masks; four of them have annotations for all object properties. In
Fig. 4.1 (top row), we show examples from the datasets (see Fig. C.1 in Appendix C.2
for more details).

Evaluation. We use segmentation masks to directly assess how a trained model sep-
arates objects. The object property annotations allow us to evaluate representations
via a downstream task that consists in predicting the ground-truth factors of variation
of all objects. This task is similar to downstream prediction tasks that are common
in the disentanglement literature, including Papers I and II. The general idea is that,
if this information can be retrieved efficiently from the representation, it stands to
reason that any arbitrary downstream task that depends on these underlying factors
should also be solvable.
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Figure 4.1. Top: examples from the five datasets considered in the study. Bottom: Exam-
ple of distribution shifts applied to CLEVR. Figure from Paper III (Dittadi et al., 2022a).

Probing generalization. Finally, to assess how object separation and usefulness
of the representations are affected by distribution shifts (Hypotheses 2 and 3), we
evaluate segmentation accuracy and downstream task performance after introduc-
ing these shifts. In Fig. 4.1 (bottom row), we show examples of distribution shifts
considered in our study (see Fig. C.2 in Appendix C.3.3 for a complete overview).

4.1.2 On the comparison with non-object-centric models

In Chapter 3 (see Papers I and II in Chapters 5 and 6) we have discussed that
disentanglement may not necessarily always be useful for downstream tasks. Similarly,
in Paper III, we investigate the extent to which object properties can be accurately
predicted from the “flat” distributed representations of VAEs, as opposed to object-
centric representations. To this end, we train VAEs with a latent space size that is
comparable with the global representation size of slot-based models, and attempt a
direct comparison on downstream task performance.

While it is not straightforward to gauge the fairness of this comparison, there are
a few crucial points that should be discussed. The first point concerns the size of
the models. We performed a light hyperparameter search (mostly on model depth)
to obtain models that would at least reconstruct the input relatively well. Since
some of these datasets are relatively complex—although this may not be clear from
their visual appearance—the final VAEs employed in our study are relatively large.
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(Interestingly, Multi-dSprites turned out to be the most challenging dataset in this
hyperparameter search, possibly due to the visual complexity and heavy occlusions.)
This may raise questions regarding the fairness of the comparison. On the other
hand, we should note that: (i) the decoder now faces the challenge of generating the
entire image at once, while typically in slot-based models a simpler decoder is applied
independently to each slot to generate a single object in the scene; (ii) the object-
centric models considered in this study are already rather diverse in terms of size and
the largest ones are even comparable to our VAEs in terms of parameter count.

A second observation is that the downstream task typically considered in object-
centric learning is in some sense meant for object-centric models. In fact, in a multi-
object setting, predicting the properties of all objects is effectively a set prediction
task. In a slot-based object-centric representation where all slots have a common
format, one can apply a simple downstream model to each slot and then match the
predictions to the ground-truth labels to minimize the total loss. In other words, we
can directly exploit the set-like structure of the representations. Conversely, in the
VAE setting, a single vector represents the entire scene, so the same setup is not
directly applicable.

A possible approach to overcome this issue, as suggested by Greff et al. (2019), is to
use the whole-scene representation to predict the properties of all objects at once, such
that the objects are sorted lexicographically according to their properties. Potential
issues with this approach are:

1. The model’s input and output size are substantially different and there is no
weight sharing.

2. The model must learn to sort objects, which could be relatively challenging.

3. On the other hand, since the target is sorted according to object properties,
there is a bias that can be exploited by the model to predict object properties
better than by random chance.

4. When testing such a model with more objects than seen during training, we are
in effect probing the generalization capabilities (extrapolation, in some sense)
of the model. Conversely, in the slot-based case, matching more slots to more
objects has nothing to do with the downstream model, as it is simply performed
by a combinatorial optimization algorithm (e.g., the Hungarian algorithm).
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Another possible solution is to have the model output a flat vector containing pre-
dicted properties of all objects in no particular order, and then match the predictions
to ground-truth object properties using the loss function, as we do in the slot-based
case. This has similar issues and biases as the method discussed above.

In summary, when using set prediction as a downstream task, comparing object-
centric and distributed representations is a challenging problem. Although we at-
tempt to adapt this task to distributed representations in a relatively simple manner
in order to minimize potential confounding effects, the comparison is arguably still
not entirely fair.

4.1.3 Library

A side product of this study is a PyTorch-based (Paszke et al., 2019) Python library
for training and evaluating object-centric learning methods. Since the five chosen
datasets are not necessarily straightforward to use in general (e.g., the ones from the
DeepMind dataset suite (Kabra et al., 2019) require TensorFlow (Abadi et al., 2016)),
we repackaged all datasets into a common, general-purpose format. We adapted the
official PyTorch implementations of GENESIS and SPACE to our framework, and re-
implemented MONet and the Slot Attention autoencoder. Note that, since none of the
models was originally tested on all the datasets considered here, some hyperparameter
sweeps were necessary for some model–dataset combinations. After training a model,
the library allows for automatic evaluation of segmentation metrics and reconstruction
error, as well as downstream property prediction with various matching strategies and
downstream models. All these evaluations can be performed out of the box on new
models or datasets, as long as they implement the standard interface defined in our
library.

4.2 Main results and discussion

In this section, we summarize and discuss the key findings of our study.

We find strong correlations between the ARI and the MSE across all five datasets:
given a set of models trained on the same dataset, those that reconstruct the input
more accurately also tend to separate objects better according to the ARI. Therefore,
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the MSE can be a useful proxy metric to select high-ARI models, when ground-truth
validation masks are not available. Other segmentation metrics (SC and mSC) agree
with the ARI to a varying extent depending on the dataset, and their correlation
with the MSE is milder and inconsistent across datasets (see Fig. 7.3). However,
as discussed below, we found that the ARI appears to be a generally more useful
segmentation metric than the others considered in our study.

Segmentation may not be the ultimate goal, and we might be interested in learn-
ing object-centric representations for downstream tasks (see Section 2.1.3). This is
related to our first hypothesis above: object representations should contain useful
information for downstream tasks, and information about different objects should be
stored separately. Indeed, in our experiments, we observe that good performance on
object property prediction can be achieved by downstream models that receive learned
object-centric representations as input. Interestingly, we find the ARI to be the only
segmentation metric that consistently has a strong correlation with downstream per-
formance across all datasets, object properties, and downstream models. This points
to the ARI as a valuable metric for model selection when ground-truth segmenta-
tion masks are available for validation. The MSE is also significantly correlated with
downstream performance—which is unsurprising, considering its correlation with the
ARI—but to a lesser extent and less consistently than the ARI. Although less effec-
tive than the ARI, the reconstruction error can therefore be useful for model selection
when masks are not available.

Note, however, that in more realistic scenarios there may be irrelevant details in the
image (possibly on the objects themselves) that are in effect nuisances with respect
to the downstream tasks of interest (see the discussion on nuisance factors in Sec-
tions 2.1.1 and 2.1.4.1). In such cases, accurate reconstruction might be practically
unrelated to correct object separation and downstream usefulness of the representa-
tions. In Papa, Winther, and Dittadi (2022), we confirm this hypothesis. We test
different variations of MONet and Slot Attention on datasets with complex textures
added to the objects via neural style transfer, and study the relationship between
reconstruction quality, segmentation accuracy, and downstream performance on the
same tasks considered in Paper III. We find that the ARI is still consistently corre-
lated with downstream performance, while the MSE is not. It follows that, unsur-
prisingly, reconstructing detailed textures is largely irrelevant for downstream tasks
that focus on higher-level object properties, while segmentation quality remains cru-
cial. In conclusion, the ARI may be a valuable and relatively robust proxy metric for
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the downstream usefulness of object-centric representations, even when objects have
complex textures. Conversely, the reconstruction MSE is not necessarily informative
when objects have a more complex appearance such as in the presence of diverse
textures (Papa, Winther, and Dittadi, 2022).

Next, we are interested in comparing the downstream performance attainable from
object-centric representations and from “flat”, distributed ones. As discussed in Sec-
tion 4.1.2, making a fair comparison is challenging, since the set prediction task con-
sidered here is particularly well-suited for set-like representations in the first place.
In order to make a sensible assessment of distributed representations, we set up sim-
ple experiments where the downstream predictions are initialized to a random vector
of object properties for all objects in the scene, and are optimized with the standard
training procedure for downstream tasks for distributed representations. We find that
the baseline performance for distributed representations is often remarkably higher
than the standard “random guess” baseline we would use for object-centric represen-
tations (although in some cases it is approximately equal). Despite this advantage,
downstream predictors from object-centric representations tend to outperform those
from distributed representations. Although the task may arguably be more difficult
for a single downstream MLP that has to predict all objects at once (see Section 4.1.2),
we also observe that the performance typically does not improve significantly when
increasing model size up to three hidden layers.

Our second hypothesis is that, when one object is out of distribution, the represen-
tations of other objects should be robust, i.e., they should still faithfully represent
those objects’ properties. First, we observe that the models tend to be able to seg-
ment the scene correctly in this single-OOD-object scenario. Then, we focus on the
representations of the objects in the scene, and use the downstream prediction perfor-
mance to assess how they are affected by distribution shifts. Our results, presented
in Section 7.4.3, indicate that:

• Property prediction for out-of-distribution objects deteriorates. Moreover, the
representations of the out-of-distribution objects are not reliable, since even
retraining the downstream model after the distribution shift has occurred does
not significantly improve performance.

• The downstreammodel can correctly predict the properties of the in-distribution
objects, as if the distribution shift did not occur at all—this suggests that the
representations of the in-distribution objects are largely unaffected by one ob-
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ject being out of distribution.

Our third hypothesis is that object-centric models are robust even when a distribution
shifts affects global properties of the scene. First, we look for a potential degradation
of segmentation performance at test time when the data undergoes a distribution
shift of this type. Unlike for single-object shifts, for global shifts we observe varying
results depending on the specific shift. For example, cropping and enlarging the
scene often harms segmentation quality, while occlusions appear to have a minor effect.
Interestingly, when the number of objects increases at test time (in CLEVR), we see a
relatively small drop in the ARI for object-centric models, and the reconstruction error
increases less significantly than for the vanilla VAE models. This is presumably due to
the strong inductive bias of object-centric models towards treating objects separately.
However, what may seem surprising is that VAEs trained with up to 6 objects can
generate rather coherent samples that contain more. This suggests that they might be
capable of representing more objects than observable in the training distribution. In
fact, given an image with more objects they seem to be able to reconstruct the correct
number of objects, as shown in Fig. 4.2. On the other hand, some of these objects
have incorrect properties, suggesting that this extrapolation behaviour—where object-
centric models have a clear advantage by design—is limited. We present a quantitative
analysis in Paper III (Chapter 7), and Appendix C.4 includes additional qualitative
and quantitative results.

Regarding the informativeness and usefulness of the object representations under
global distribution shifts, our findings are mostly negative: in all datasets and for all
models, the prediction performance deteriorates significantly for most object proper-
ties (although to varying degrees), and cannot be recovered even by adjusting the
downstream model post hoc on the OOD data.

A point that merits discussion is that, while the definition of single-object shifts
is clear—one object is OOD an the others are ID—it is not as straightforward to
characterize global distribution shifts. Cropping is essentially equivalent to an object-
wise distribution shift that enlarges all objects. On the other hand, if we accept this
interpretation, we also have to view this distribution shift as affecting the number
of objects in the scene, their relative spatial arrangement (their centers are farther
apart), and the fact that, on average, more objects than usual may be partially out
of the field of view. Finally, note that cropping may be more simply seen as a shift
in a global property of the scene such as camera view—from this point of view, it is
more easily interpreted as global shift. Occlusion, another global distribution shift in
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Figure 4.2. Input and reconstructions of 4 randomly selected CLEVR images with more
than 6 objects by VAEs trained with up to 6 objects. Leftmost column: input image. Other
columns: reconstructions by the 10 VAEs in our study that were trained on CLEVR6. Note
that some of the variability comes from sampling z rather than using the posterior mean
(which is typically used as representation in VAEs), but this does not explain that a few
object properties are sometimes inferred incorrectly. On the other hand, it is worth noting
that all VAEs seem to be able to produce coherent samples with more objects than observed
during training.

our categorization, could also be viewed as adding a new object that is very different
from any previously seen object, while leaving other objects untouched. From this
perspective, it is not particularly surprising that object-centric models seem to exhibit
at least partial robustness to this shift. Finally, the number of objects can easily be
interpreted as a global property of the scene. However, considering one object at
a time, there is in fact no distribution shift at all. This partly explains why some
object-centric models tend to be relatively robust to this distribution shift. On the
other hand, most of these models still have to compute visual features and, most
importantly, some form of attention mask, from the entire image: this, following the
argument on OOD2 generalization from Chapter 3 and Papers I and II, may explain
the minor drop in performance.

In fact, all distribution shifts considered in this study bring the encoders out of dis-
tribution, and therefore correspond to the OOD2 setting in Papers I and II. However,
the fact that both segmentation and representation quality are affected to a widely
varying degree suggests that there might be inductive biases in the models that make
representation functions more robust to some shift types than to others. In particular,
object-centric models do not appear to be significantly affected when only one object
is out of distribution. In future work, it would be relevant to investigate this further
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by comparing the generalization of object-centric models and other models in a fairer
way, and by testing a broader range of distribution shifts.

On a related note, it would be interesting to consider the OOD1 scenario from Pa-
pers I and II: given a class of representation functions trained on a large enough data
distribution (such that they are never out of distribution at test time), do downstream
models generalize better if the representations are object-centric? For example, we
could learn representation functions on the full CLEVR dataset, and then train down-
stream models on a subset of CLEVR that contains few objects, or on another subset
that does not contain red objects. We would then be able to investigate which type
of representation shows more potential for the OOD generalization of downstream
models. Arguably, this is in fact the flavor of generalization that should be enabled
by structured, or even causal, representations of the data. What good is a represen-
tation function that perfectly inverts the data generating process if we use it out of
distribution, where it no longer works reliably?

Another type of distribution shift we are not considering in this study is a shift in
correlations between factors of variation. One example is a correlation between factors
within each object, as we have explored in Träuble et al. (2021) for disentanglement
learning. In the multi-object setting, a similar correlation has been investigated by
Greff et al. (2019), who test IODINE on held-out images from CLEVR containing
green spheres. It would be interesting to test the robustness of object-centric models
to this shift, and study whether per-object disentanglement plays a role (see the
generalization results in Träuble et al. (2021)). Another example that specifically
applies to the multi-object setting is object co-occurrence. E.g., if all images either
have zero or two red spheres, will an object-centric model represent two red spheres
in the same slot? Should it not? Will it be able to generalize to images that only
show one red sphere? This scenario, which includes the special case of object–part
hierarchies, also brings up the question of how the notion of object should be defined
(Greff, Steenkiste, and Schmidhuber, 2020).

Beside distribution shifts, further considerations should be made on the different
ways models and representations could be evaluated. While a clear advantage of
object-centric representations is the possibility of performing separate interventions
on single objects,1 this is in fact not feasible in a sensible, coherent manner in many
existing object-centric models (e.g., MONet blends generated objects into a single
1This includes, for example, performing latent traversals on one slot at a time, or replacing two slots
with a convex combination of the two to smoothly interpolate between them.



4.2 Main results and discussion 61

image using alpha masks that are inferred directly from the input). In addition,
as discussed in Section 4.1.2, although factor prediction is a reasonable proxy task,
testing learned representations on more complex and practically relevant downstream
tasks (e.g., relational question answering or reinforcement learning) would improve
our understanding of models trained on multi-object data.

We have also observed that distributed representations (in our case, obtained by
training standard VAEs) might in fact be more useful than expected, but we could
not draw definitive conclusions because of the fundamental incompatibility of these
representations with the set prediction task in our study. Moreover, we found object-
centric models to be rather sensitive to hyperparameters and random seeds, probably
because they are structured models with discrete components. When the optimiza-
tion goes wrong, and a model does not segment the scene in a meaningful way, the
suitability for downstream tasks may decrease drastically. By contrast, although sim-
pler models like VAEs lack some of the beneficial inductive biases of object-centric
models, they are generally easier to optimize and require less hyperparameter tuning.
Especially in light of the recent progress made by focusing on scaling and engineering
rather than methodology, an open question is whether these simpler models may in-
deed be sufficient, given enough data and large enough models. For these reasons, a
more thorough comparison of object-centric and distributed representations is needed.
New downstream tasks should ideally make this comparison fairer and sounder, and
further inform future research efforts.
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Abstract. Learning meaningful representations that disentangle the underlying
structure of the data generating process is considered to be of key importance in
machine learning. While disentangled representations were found to be useful for
diverse tasks such as abstract reasoning and fair classification, their scalability and
real-world impact remain questionable. We introduce a new high-resolution dataset
with 1M simulated images and over 1,800 annotated real-world images of the same
setup. In contrast to previous work, this new dataset exhibits correlations, a com-
plex underlying structure, and allows to evaluate transfer to unseen simulated and
real-world settings where the encoder i) remains in distribution or ii) is out of distri-
bution. We propose new architectures in order to scale disentangled representation
learning to realistic high-resolution settings and conduct a large-scale empirical study
of disentangled representations on this dataset. We observe that disentanglement is
a good predictor for out-of-distribution (OOD) task performance.
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5.1 Introduction

Figure 5.1. Images from the simulated
dataset (left) and the real-world setup (right).

Disentangled representations hold the
promise of generalization to unseen sce-
narios (Higgins et al., 2017b), increased
interpretability (Adel, Ghahramani, and
Weller, 2018; Higgins et al., 2018) and
faster learning on downstream tasks (Lo-
catello et al., 2019a; Steenkiste et al.,
2019). However, most of the focus
in learning disentangled representations
has been on small synthetic datasets
whose ground truth factors exhibit per-
fect independence by design. More real-
istic settings remain largely unexplored. We hypothesize that this is because real-
world scenarios present several challenges that have not been extensively studied to
date. Important challenges are scaling (much higher resolution in observations and
factors), occlusions, and correlation between factors. Consider, for instance, a robotic
arm moving a cube: Here, the robot arm can occlude parts of the cube, and its end-
effector position exhibits correlations with the cube’s position and orientation, which
might be problematic for common disentanglement learners (Träuble et al., 2021).
Another difficulty is that we typically have only limited access to ground truth labels
in the real world, which requires robust frameworks for model selection when no or
only weak labels are available.

The goal of this work is to provide a path towards disentangled representation learn-
ing in realistic settings. First, we argue that this requires a new dataset that captures
the challenges mentioned above. We propose a dataset consisting of simulated obser-
vations from a scene where a robotic arm interacts with a cube in a stage (see Fig. 5.1).
This setting exhibits correlations and occlusions that are typical in real-world robotics.
Second, we show how to scale the architecture of disentanglement methods to perform
well on this dataset. Third, we extensively analyze the usefulness of disentangled rep-
resentations in terms of out-of-distribution downstream generalization, both in terms
of held-out factors of variation and sim-to-real transfer. In fact, our dataset is based
on the TriFinger robot from Wüthrich et al. (2020), which can be built to test the
deployment of models in the real world. While the analysis in this paper focuses on
the transfer and generalization of predictive models, we hope that our dataset may
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serve as a benchmark to explore the usefulness of disentangled representations in
real-world control tasks.

The contributions of this paper can be summarized as follows:

• We propose a new dataset for disentangled representation learning, containing
1M simulated high-resolution images from a robotic setup, with seven partly
correlated factors of variation. Additionally, we provide a dataset of over 1,800
annotated images from the corresponding real-world setup that can be used
for challenging sim-to-real transfer tasks. These datasets are made publicly
available.1

• We propose a new neural architecture to successfully scale VAE-based disentan-
glement learning approaches to complex datasets.

• We conduct a large-scale empirical study on generalization to various transfer
scenarios on this challenging dataset. We train 1,080 models using state-of-
the-art disentanglement methods and discover that disentanglement is a good
predictor for out-of-distribution (OOD) performance of downstream tasks.

5.2 Related Work

Disentanglement methods. Most state-of-the-art methods for disentangled rep-
resentation learning are based on the framework of variational autoencoders (VAEs)
(Kingma and Welling, 2014; Rezende, Mohamed, and Wierstra, 2014). A (high-
dimensional) observation x is assumed to be generated according to the latent variable
model pθ(x|z)p(z) where the latent variables z have a fixed prior p(z). The genera-
tive model pθ(x|z) and the approximate posterior distribution qϕ(z|x) are typically
parameterized by neural networks, which are optimized by maximizing the evidence
lower bound (ELBO):

LV AE = Eqϕ(z|x)[log pθ(x|z)] − DKL(qϕ(z|x)∥p(z)) ≤ log p(x) (5.1)

As the above objective does not enforce any structure on the latent space except for
some similarity to p(z), different regularization strategies have been proposed, along

1http://people.tuebingen.mpg.de/ei-datasets/iclr_transfer_paper/robot_finger_datasets.
tar (6.18 GB)
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with evaluation metrics to gauge the disentanglement of the learned representations
(Burgess et al., 2018; Chen et al., 2018; Eastwood and Williams, 2018; Higgins et al.,
2017a; Kim and Mnih, 2018; Kumar, Sattigeri, and Balakrishnan, 2018). Recently,
Locatello et al. (2019b, Theorem 1) showed that the purely unsupervised learning of
disentangled representations is impossible. This limitation can be overcome without
the need for explicitly labeled data by introducing weak labels (Locatello et al., 2020b;
Shu et al., 2020). Ideas related to disentangling the factors of variation date back to
the non-linear ICA literature (Bach and Jordan, 2002; Comon, 1994; Gresele et al.,
2019; Hyvarinen and Morioka, 2016; Hyvarinen, Sasaki, and Turner, 2019; Hyvärinen
and Pajunen, 1999; Jutten and Karhunen, 2003). Recent work combines non-linear
ICA with disentanglement (Khemakhem et al., 2020; Klindt et al., 2020; Sorrenson,
Rother, and Köthe, 2020).

Evaluating disentangled representations. The BetaVAE (Higgins et al., 2017a)
and FactorVAE (Kim and Mnih, 2018) scores measure disentanglement by performing
an intervention on the factors of variation and predicting which factor was intervened
on. The Mutual Information Gap (MIG) (Chen et al., 2018), Modularity (Ridgeway
and Mozer, 2018), DCI Disentanglement (Eastwood and Williams, 2018) and SAP
scores (Kumar, Sattigeri, and Balakrishnan, 2018) are based on matrices relating
factors of variation and codes (e.g. pairwise mutual information, feature importance
and predictability).

Datasets for disentanglement learning. dSprites (Higgins et al., 2017a), which
consists of binary low-resolution 2D images of basic shapes, is one of the most com-
monly used synthetic datasets for disentanglement learning. Color-dSprites, Noisy-
dSprites, and Scream-dSprites are slightly more challenging variants of dSprites. The
SmallNORB dataset contains toy images rendered under different lighting conditions,
elevations and azimuths (LeCun, Huang, and Bottou, 2004). Cars3D (Reed et al.,
2015) exhibits different car models from Fidler, Dickinson, and Urtasun (2012) under
different camera viewpoints. 3dshapes is a popular dataset of simple shapes in a 3D
scene (Kim and Mnih, 2018). Finally, Gondal et al. (2019) proposed MPI3D, con-
taining images of physical 3D objects with seven factors of variation, such as object
color, shape, size and position available in a simulated, simulated and highly realistic
rendered simulated variant. Except MPI3D which has over 1M images, the size of
the other datasets is limited with only 17, 568 to 737, 280 images. All of the above
datasets exhibit perfect independence of all factors, the number of possible states
is on the order of 1M or less, and due to their static setting they do not allow for
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dynamic downstream tasks such as reinforcement learning. In addition, except for
SmallNORB, the image resolution is limited to 64x64 and there are no occlusions.

Other related work. Locatello et al. (2020b) probed the out-of-distribution gen-
eralization of downstream tasks trained on disentangled representations. However,
these representations are trained on the entire dataset. Generalization and transfer
performance especially for representation learning has likewise been studied in Ar-
jovsky et al. (2019), Dayan (1993), Gowal et al. (2020), Heinze-Deml and Meinshausen
(2017), Krueger et al. (2020), Li et al. (2018), Muandet, Balduzzi, and Schölkopf
(2013), Rojas-Carulla et al. (2018), and Suter et al. (2019). For the role of disentan-
glement in causal representation learning we refer to the recent overview by Schölkopf
et al. (2021). Träuble et al. (2021) systematically investigated the effects of correla-
tions between factors of variation on disentangled representation learners. Transfer
of learned disentangled representations from simulation to the real world has been re-
cently investigated by Gondal et al. (2019) on the MPI3D dataset, and previously by
Higgins et al. (2017b) in the context of reinforcement learning. Sim-to-real transfer
is of major interest in the robotic learning community, because of limited data and
supervision in the real world (Andrychowicz et al., 2020; James et al., 2019; Peng
et al., 2018; Rusu et al., 2017; Tobin et al., 2017; Yan et al., 2020).

Table 5.1. Factors of variation in the proposed dataset. Values are linearly spaced in the
specified intervals. Joint angles are in radians, cube positions in meters.

FoV Values
Upper joint 30 values in [−0.65, +0.65]
Middle joint 30 values in [−0.5, +0.5]
Lower joint 30 values in [−0.8, +0.8]
Cube position x 30 values in [−0.11, +0.11]
Cube position y 30 values in [−0.11, +0.11]
Cube rotation 10 values in [0◦, 81◦]
Cube color hue 12 values in [0◦, 330◦]
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5.3 Scaling Disentangled Representations to Complex
Scenarios

A new challenging dataset. Simulated images in our dataset are derived from
the trifinger robot platform introduced by Wüthrich et al. (2020). The motivation
for choosing this setting is that (1) it is challenging due to occlusions, correlations,
and other difficulties encountered in robotic settings, (2) it requires modeling of fine
details such as tip links at high resolutions, and (3) it corresponds to a robotic setup,
so that learned representations can be used for control and reinforcement learning in
simulation and in the real world. The scene comprises a robot finger with three joints
that can be controlled to manipulate a cube in a bowl-shaped stage. Fig. 5.1 shows
examples of scenes from our dataset. The data is generated from 7 different factors
of variation (FoV) listed in Table 5.1. Unlike in previous datasets, not all FoVs are
independent: The end-effector (the tip of the finger) can collide with the floor or the
cube, resulting in infeasible combinations of the factors (see Appendix A.2.1). We
argue that such correlations are a key feature in real-world data that is not present
in existing datasets. The high FoV resolution results in approximately 1.52 billion
feasible states, but the dataset itself only contains one million of them (approximately
0.065% of all possible FoV combinations), realistically rendered into 128×128 images.
Additionally, we recorded an annotated dataset under the same conditions in the real-
world setup: we acquired 1,809 camera images from the same viewpoint and recorded
the labels of the 7 underlying factors of variation. This dataset can be used for out-
of-distribution evaluations, few-shot learning, and testing other sim-to-real aspects.

Model architecture. When scaling disentangled representation learning to more
complex datasets, such as the one proposed here, one of the main bottlenecks in cur-
rent VAE-based approaches is the flexibility of the encoder and decoder networks. In
particular, using the architecture from Locatello et al. (2019b), none of the models we
trained correctly captured all factors of variation or yielded high-quality reconstruc-
tions. While the increased image resolution already presents a challenge, the main
practical issue in our new dataset is the level of detail that needs to be modeled. In
particular, we identified the cube rotation and the lower joint position to be the fac-
tors of variation that were the hardest to capture. This is likely because these factors
only produce relatively small changes in the image and hence the reconstruction error.

To overcome these issues, we propose a deeper and wider neural architecture than
those commonly used in the disentangled representation learning literature, where the
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encoder and decoder typically have 4 convolutional and 2 fully-connected layers. Our
encoder consists of a convolutional layer, 10 residual blocks, and 2 fully-connected
layers. Some residual blocks are followed by 1x1 convolutions that change the number
of channels, or by average pooling that downsamples the tensors by a factor of 2 along
the spatial dimensions. Each residual block consists of two 3x3 convolutions with a
leaky ReLU nonlinearity, and a learnable scalar gating mechanism (Bachlechner et al.,
2020). Overall, the encoder has 23 convolutional layers and 2 fully connected layers.
The decoder mirrors this architecture, with average pooling replaced by bilinear in-
terpolation for upsampling. The total number of parameters is approximately 16.3M.
See Appendix A.1 for further implementation details.

Experimental setup. We perform a large-scale empirical study on the simulated
dataset introduced above by training 1,080 β-VAE models.2 For further experimental
details we refer the reader to Appendix A.1. The hyperparameter sweep is defined as
follows:

• We train the models using either unsupervised learning or weakly supervised
learning (Locatello et al., 2020b). In the weakly supervised case, a model is
trained with pairs of images that differ in k factors of variation. Here we fix
k = 1 as it was shown to lead to higher disentanglement by Locatello et al.
(2020b). The dataset therefore consists of 500k pairs of images that differ in
only one FoV.

• We vary the parameter β in {1, 2, 4}, and use linear deterministic warm-up
(Bowman et al., 2015; Sønderby et al., 2016) over the first {0, 10000, 50000}
training steps.

• The latent space dimensionality is in {10, 25, 50}.

• Half of the models are trained with additive noise in the input image. This
choice is motivated by the fact that adding noise to the input of neural networks
has been shown to be beneficial for out-of-distribution generalization (Bishop,
1995; Sietsma and Dow, 1991).

• Each of the 108 resulting configurations is trained with 10 random seeds.

2Training these models requires approximately 2.8 GPU years on NVIDIA Tesla V100 PCIe.
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Figure 5.2. Latent traversals of a trained model that perfectly disentangles the dataset’s
FoVs. In each column, all latent variables but one are fixed.

Can we scale up disentanglement learning? Most of the trained VAEs in
our empirical study fully capture all the elements of a scene, correctly model heavy
occlusions, and generate detailed, high-quality samples and reconstructions (see Ap-
pendix A.2.2). From visual inspections such as the latent traversals in Fig. 5.2, we
observe that many trained models fully disentangle the ground-truth factors of vari-
ation. This, however, appears to only be possible in the weakly supervised scenario.
The fact that models trained without supervision learn entangled representations is
in line with the impossibility result for the unsupervised learning of disentangled
representations from Locatello et al. (2019b). Latent traversals from a selection of
models with different degrees of disentanglement are presented in Appendix A.2.3.
Interestingly, the high-disentanglement models seem to correct for correlations and
interpolate infeasible states, i.e. the fingertip traverses through the cube or the floor.

Summary: The proposed architecture can scale disentanglement learning to more
realistic settings, but a form of weak supervision is necessary to achieve high disen-
tanglement.

How useful are common disentanglement metrics in realistic scenarios?
The violin plot in Fig. 5.3 (left) shows that DCI and MIG measure high disentangle-
ment under weak supervision and lower disentanglement in the unsupervised setting.
This is consistent with our qualitative conclusion from visual inspection of the models
(Appendix A.2.3) and with the aforementioned impossibility result. Many of the mod-
els trained with weak supervision exhibit a very high DCI score (29% of them have
>99% DCI, some of them up to 99.89%). SAP and Modularity appear to be ineffec-
tive at capturing disentanglement in this setting, as also observed by Locatello et al.
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Figure 5.3. Left: Disentanglement metrics aggregating all hyperparameters except for
supervision type. Right: Spearman Rank correlations of the disentanglement metrics with
the ELBO, the reconstruction loss, and the test error of a GBT classifier trained on 10,000
labelled data points. The upper rank correlations correspond to the unsupervised models
and the lower ones to the weakly supervised models.

(2019b). Finally, note that the BetaVAE and FactorVAE metrics are not straight-
forward to be evaluated on datasets that do not contain all possible combinations of
factor values. According to Fig. 5.3 (right), DCI and MIG strongly correlate with
test accuracy of GBT classifiers predicting the FoVs. In the weakly supervised set-
ting, these metrics are strongly correlated with the ELBO (positively) and with the
reconstruction loss (negatively). We illustrate these relationships in more detail in
Appendix A.2.4. Such correlations were also observed by Locatello et al. (2020b) on
significantly less complex datasets, and can be exploited for unsupervised model selec-
tion: these unsupervised metrics can be used as proxies for disentanglement metrics,
which would require fully labeled data.

Summary: DCI and MIG appear to be useful disentanglement metrics in realistic
scenarios, whereas other metrics seem to fall short of capturing disentanglement or
can be difficult to compute. When using weak supervision, we can select disentangled
models with unsupervised metrics.
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5.4 Framework for the Evaluation of OOD Generalization

Previous work has focused on evaluating the usefulness of disentangled representa-
tions for various downstream tasks, such as predicting ground truth factors of vari-
ation, fair classification, and abstract reasoning. Here we propose a new framework
for evaluating the out-of-distribution (OOD) generalization properties of representa-
tions. More specifically, we consider a downstream task—in our case, regression of
ground truth factors—trained on a learned representation of the data, and evaluate
the performance on a held-out test set. While the test set typically follows the same
distribution as the training set (in-distribution generalization), we also consider test
sets that follow a different distribution (out-of-distribution generalization). Our goal
is to investigate to what extent, if at all, downstream tasks trained on disentangled
representations exhibit a higher degree of OOD generalization than those trained on
entangled representations.

Let D denote the training set for disentangled representation learning. To investigate
OOD generalization, we train downstream regression models on a subset D1 ⊂ D to
predict ground truth factor values from the learned representation computed by the
encoder. We independently train one predictor per factor. We then test the regression
models on a set D2 that differs distributionally from the training set D1, as it either
contains images corresponding to held-out values of a chosen FoV (e.g. unseen object
colors), or it consists of real-world images. We now differentiate between two scenarios:
(1) D2 ⊂ D, i.e. the OOD test set is a subset of the dataset for representation learning;
(2) D and D2 are disjoint and distributionally different. These two scenarios will be
denoted by OOD1 and OOD2, respectively. For example, consider the case in which
distributional shifts are based on one FoV: the color of the object. Then, we could
define these datasets such that images in D always contain a red or blue object, and
those in D1 ⊂ D always contain a red object. In the OOD1 scenario, images in D2

would always contain a blue object, whereas in the OOD2 case they would always
contain an object that is neither red nor blue.

The regression models considered here are Gradient Boosted Trees (GBT), random
forests, and MLPs with {1, 2, 3} hidden layers. Since random forests exhibit a similar
behavior to GBTs, and all MLPs yield similar results to each other, we choose GBTs
and the 2-layer MLP as representative models and only report results for those. To
quantify prediction quality, we normalize the ground truth factor values to the range
[0, 1], and compute the mean absolute error (MAE). Since the values are normalized,
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we can define our transfer metric as the average of the MAE over all factors (except
for the FoV that is OOD).

5.5 Benefits and Transfer of Structured Representations

Experimental setup. We evaluate the transfer metric introduced in Section 5.4
across all 1,080 trained models. To compute this metric, we train regression models
to predict the ground truth factors of variation, and test them under distributional
shift. We consider distributional shifts in terms of cube color or sim-to-real, and we do
not evaluate downstream prediction of cube color. We report scores for two different
regression models: a Gradient Boosted Tree (GBT) and an MLP with 2 hidden layers
of size 256. In Appendix A.1 we provide details on the datasets used in this section.

In the OOD1 setting, we have D2 ⊂ D, hence the encoder is in-distribution: we are
testing the predictor on representations of images that were in the training set of the
representation learning algorithm. Therefore, we expect the representations to be
meaningful. We consider three scenarios:

• OOD1-A: The regression models are trained on 1 cube color (red) and evaluated
on the remaining 7 colors.

• OOD1-B: The regression models are trained on 4 cube colors with high hue in
the HSV space, and evaluated on 4 cube colors with low hue (extrapolation).

• OOD1-C: The regression models are again trained and evaluated on 4 cube
colors, but the training and evaluation colors are alternating along the hue
dimension (interpolation).

In the more challenging setting where even the encoder is out-of-distribution (OOD2,
with D2 ∩ D = ∅), we train the regression models on a subset of the training set D
that includes all 8 cube colors, and we consider the two following scenarios:

• OOD2-A: The regression models are evaluated on simulated data, on 4 cube
colors that are out of the encoder’s training distribution.

• OOD2-B: The regression models are evaluated on real-world images of the
robotic setup, without any adaptation or fine-tuning.
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Figure 5.4. Higher disentanglement corresponds to better generalization across all OOD1
scenarios, as seen from the transfer scores (left). The transfer score is computed as the mean
absolute prediction error of ground truth factor values (lower is better). This correlation
is particularly evident in the GBT case, whereas MLPs appear to exhibit better OOD1
transfer with very high disentanglement only. These results are mirrored in the Spearman
rank correlations between transfer scores and disentanglement metrics (right).

Is disentanglement correlated with OOD1 generalization? In Fig. 5.4 we
consistently observe a negative correlation between disentanglement and transfer er-
ror across all OOD1 settings. The correlation is mild when using MLPs, strong when
using GBTs. This difference is expected, as GBTs have an axis-alignment bias whereas
MLPs can—given enough data and capacity—disentangle an entangled representation
more easily. Our results therefore suggest that highly disentangled representa-
tions are useful for generalizing out-of-distribution as long as the encoder
remains in-distribution. This is in line with the correlation found by Locatello
et al. (2019b) between disentanglement and the GBT10000 metric. There, however,
GBTs are tested on the same distribution as the training distribution, while here we
test them under distributional shift. Given that the computation of disentanglement
scores requires labels, this is of little benefit in the unsupervised setting. However, it
can be exploited in the weakly supervised setting, where disentanglement was shown
to correlate with ELBO and reconstruction loss (Section 5.3). Therefore, model se-
lection for representations that transfer well in these scenarios is feasible based on
the ELBO or reconstruction loss, when weak supervision is available. Note that, in
absolute terms, the OOD generalization error with encoder in-distribution (OOD1) is
very low in the high-disentanglement case (the only exception being the MLP in the
OOD1-C case, with the 1-7 color split, which seems to overfit). This suggests that dis-
entangled representations can be useful in downstream tasks even when transferring
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out of the training distribution.

Summary: Disentanglement seems to be positively correlated with OOD generaliza-
tion of downstream tasks, provided that the encoder remains in-distribution (OOD1).
Since in the weakly supervised case disentanglement correlates with the ELBO and
the reconstruction loss, model selection can be performed using these metrics as prox-
ies for disentanglement. These metrics have the advantage that they can be computed
without labels, unlike disentanglement metrics.

Is disentanglement correlated with OOD2 generalization? As we can ob-
serve in Fig. 5.5, the negative correlation between disentanglement and GBT transfer
error is weaker when the encoder is out of distribution (OOD2). Nonetheless, we
observe a non-negligible correlation for GBTs in the OOD2-A case, where we inves-
tigate out-of-distribution generalization along one FoV, with observations in D2 still
generated from the same simulator. In the OOD2-B setting, where the observations
are taken from cameras in the corresponding real-world setting, the correlation be-
tween disentanglement and transfer performance appears to be minor at best. This
scenario can be considered a variant of zero-shot sim-to-real generalization.

Summary: Disentanglement has a minor effect on out-of-distribution generalization
outside of the training distribution of the encoder (OOD2).

Figure 5.5. Disentanglement affects generalization across the OOD2 scenarios only mini-
mally as seen from transfer scores (left) and corresponding rank correlations with disentan-
glement metrics (right).
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Figure 5.6. Noise improves generalization across the OOD2 scenarios and less so for the
OOD1 scenarios as seen from the transfer scores. Top row: Spearman rank correlation
coefficients between transfer metrics and presence of noise in the input.

What else matters for OOD2 generalization? Results in Fig. 5.6 suggest that
adding Gaussian noise to the input during training as described in Section 5.3 leads to
significantly better OOD2 generalization, and has no effect on OOD1 generalization.
Adding noise to the input of neural networks is known to lead to better generalization
(Bishop, 1995; Sietsma and Dow, 1991). This is in agreement with our results, since
OOD1 generalization does not require generalization of the encoder, while OOD2
does. Interestingly, closer inspection reveals that the contribution of different factors
of variation to the generalization error can vary widely. See Appendix A.2.5 for further

Figure 5.7. Zero-shot trans-
fer of our models trained
in simulation to real images.
Left: input; right: reconstruc-
tion.

details. In particular, with noisy input, the position of
the cube is predicted accurately even in real-world im-
ages (<5% mean absolute error on each axis). This is
promising for robotics applications, where the true state
of the joints is observable but inference of the cube po-
sition relies on object tracking methods. Fig. 5.7 shows
an example of real-world inputs and reconstructions of
their simulated equivalents.

Summary: Adding input noise during training appears
to be significantly beneficial for OOD2 generalization,
while having no effect when the encoder is kept in its
training distribution (OOD1).
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5.6 Conclusion

Despite the growing importance of the field and the potential societal impact in the
medical domain (Chartsias et al., 2018) and fair decision making (Locatello et al.,
2019a), state-of-the-art approaches for learning disentangled representations have so
far only been systematically evaluated on synthetic toy datasets. Here we introduced
a new high-resolution dataset with 1M simulated images and over 1,800 annotated
real-world images of the same setup. This dataset exhibits a number of challenges
and features which are not present in previous datasets: it contains correlations
between factors, occlusions, a complex underlying structure, and it allows for eval-
uation of transfer to unseen simulated and real-world settings. We proposed a new
VAE architecture to scale disentangled representation learning to this realistic setting
and conducted a large-scale empirical study of disentangled representations on this
dataset. We discovered that disentanglement is a good predictor of OOD generaliza-
tion of downstream tasks and showed that, in the context of weak supervision, model
selection for good OOD performance can be based on the ELBO or the reconstruc-
tion loss, which are accessible without explicit labels. Our setting allows for studying
a wide variety of interesting downstream tasks in the future, such as reinforcement
learning or learning a dynamics model of the environment. Finally, we believe that
in the future it will be important to take further steps in the direction of this paper
by considering settings with even more complex structures and stronger correlations
between factors.
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Abstract. Building sample-efficient agents that generalize out-of-distribution (OOD)
in real-world settings remains a fundamental unsolved problem on the path towards
achieving higher-level cognition. One particularly promising approach is to begin
with low-dimensional, pretrained representations of our world, which should facilitate
efficient downstream learning and generalization. By training 240 representations and
over 10,000 reinforcement learning (RL) policies on a simulated robotic setup, we
evaluate to what extent different properties of pretrained VAE-based representations
affect the OOD generalization of downstream agents. We observe that many agents
are surprisingly robust to realistic distribution shifts, including the challenging sim-
to-real case. In addition, we find that the generalization performance of a simple
downstream proxy task reliably predicts the generalization performance of our RL
agents under a wide range of OOD settings. Such proxy tasks can thus be used to
select pretrained representations that will lead to agents that generalize.
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6.1 Introduction

Robust out-of-distribution (OOD) generalization is one of the key open challenges
in machine learning. This is particularly relevant for the deployment of ML models
to the real world, where we need systems that generalize beyond the i.i.d. (indepen-
dent and identically distributed) data setting (Azulay and Weiss, 2019; Barbu et
al., 2019; Djolonga et al., 2021; Funk et al., 2021; Gulrajani and Lopez-Paz, 2020;
Hendrycks and Dietterich, 2019; Koh et al., 2021; Michaelis et al., 2019; Roy et al.,
2018; Schölkopf et al., 2021). One instance of such models are agents that learn
by interacting with a training environment and we would like them to generalize to
other environments with different statistics (Ahmed et al., 2021; Cobbe et al., 2019;
Ke et al., 2021; Pfister, Bauer, and Peters, 2019; Zhang et al., 2018). Consider the
example of a robot with the task of moving a cube to a target position: Such an agent
can easily fail as soon as some aspects of the environment differ from the training
setup, e.g. the shape, color, and other object properties, or when transferring from
simulation to real world.

Humans do not suffer from these pitfalls when transferring learned skills beyond a
narrow training domain, presumably because they represent visual sensory data in
a concise and useful manner (Anand et al., 2019; Gordon and Irwin, 1996; Lake
et al., 2017; Marr, 1982; Spelke, 1990). Therefore, a particularly promising path is
to base predictions and decisions on similar low-dimensional representations of our
world (Barreto et al., 2017; Bengio, Courville, and Vincent, 2013; Dittadi, Drachmann,
and Bolander, 2021; Finn et al., 2016; Kaiser et al., 2019; Stooke et al., 2021; Vinyals
et al., 2019). The learned representation should facilitate efficient downstream learn-
ing (Anand et al., 2019; Eslami et al., 2018; Steenkiste et al., 2019; Stooke et al.,
2021) and exhibit better generalization (Srinivas, Laskin, and Abbeel, 2020; Zhang
et al., 2020). Learning such a representation from scratch for every downstream task
and every new variation would be inefficient. If we learned to juggle three balls, we
should be able to generalize to oranges or apples without learning again from scratch.
We could even do it with cherimoyas, a fruit that we might have never seen before.
We can effectively reuse our generic representation of the world.

We thus consider deep learning agents trained from pretrained representations and
ask the following questions: To what extent do they generalize under distribution
shifts similar to those mentioned above? Do they generalize in different ways or to
different degrees depending on the type of distribution shift, including sim-to-real?
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Can we predict the OOD generalization of downstream agents from properties of the
pretrained representations?

To answer the questions above, we need our experimental setting to be realistic, di-
verse, and challenging, but also controlled enough for the conclusions to be sound. We
therefore base our study on the robot platform introduced by Wüthrich et al. (2020).
The scene comprises a robot finger with three joints that can be controlled to manip-
ulate a cube in a bowl-shaped stage. Dittadi et al. (2021b) conveniently introduced
a dataset of simulated and real-world images of this setup with ground-truth labels,
which can be used to pretrain and evaluate representations. To train downstream
agents, we adapted the simulated reinforcement learning benchmark CausalWorld
from Ahmed et al. (2021) that was developed for this platform. Building upon these
works, we design our experimental study as follows (see Fig. 6.1): First, we pretrain
representations from static simulated images of the setup and evaluate a collection
of representation metrics. Following prior work (Eslami et al., 2018; Ghadirzadeh
et al., 2017; Ha and Schmidhuber, 2018; Nair et al., 2018; Van Hoof et al., 2016;
Watter et al., 2015), we focus on autoencoder-based representations. Then, we train
downstream agents from this fixed representation on a set of environments. Finally,
we investigate the zero-shot generalization of these agents to new environments that
are out of the training distribution, including the real robot.

The goal of this work is to provide the first systematic and extensive account of
the OOD generalization of downstream RL agents in a robotic setup, and how this is
affected by characteristics of the upstream pretrained representations. We summarize
our contributions as follows:

• We train 240 representations and 11,520 downstream policies,1 and systemati-
cally investigate their performance under a diverse range of distribution shifts.2

• We extensively analyze the relationship between the generalization of our RL
agents and a substantial set of representation metrics.

• Notably, we find that a specific representation metric that measures the general-
ization of a simple downstream proxy task reliably predicts the generalization of
downstream RL agents under the broad spectrum of OOD settings considered

1Training the representations required approximately 0.62 GPU years on NVIDIA Tesla V100. Train-
ing and evaluating the downstream policies required about 86.8 CPU years on Intel Platinum
8175M.

2Additional results and videos are provided at https://sites.google.com/view/ood-rl.
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here. This metric can thus be used to select pretrained representations that
will lead to more robust downstream policies.

• In the most challenging of our OOD scenarios, we deploy a subset of the trained
policies to the corresponding real-world robotic platform, and observe surprising
zero-shot sim-to-real generalization without any fine-tuning or domain random-
ization.

6.2 Background

In this section, we provide relevant background on the methods for representation
learning and reinforcement learning, and on the robotic setup to evaluate out-of-
distribution generalization.

Variational autoencoders. VAEs (Kingma andWelling, 2014; Rezende, Mohamed,
and Wierstra, 2014) are a framework for optimizing a latent variable model pθ(x) =∫

z pθ(x |z)p(z)dz with parameters θ, typically with a fixed prior p(z) = N (z; 0, I),
using amortized stochastic variational inference. A variational distribution qϕ(z |x)
with parameters ϕ approximates the intractable posterior pθ(z |x). The approximate
posterior and generative model, typically called encoder and decoder and parameter-
ized by neural networks, are jointly optimized by maximizing a lower bound to the
log likelihood (the ELBO):

log pθ(x) ≥ Eqϕ(z |x) [log pθ(x |z)] − DKL (qϕ(z |x)∥p(z)) = LELBO
θ,ϕ (x) . (6.1)

In β-VAEs, the KL term is modulated by a factor β to enforce a more structured
latent space (Burgess et al., 2018; Higgins et al., 2017a). While VAEs are typically
trained without supervision, we also employ a form of weak supervision (Locatello
et al., 2020b) that encourages disentanglement.

Reinforcement learning. A Reinforcement Learning (RL) problem is typically
modeled as a Partially Observable Markov Decision Process (POMDP) defined as a
tuple (S, A, T, R, Ω, O, γ, ρ0, H) with states s ∈ S, actions a ∈ A and observations
o ∈ Ω determined by the state and action of the environment O(o|s, a). T (st+1|st, at)
is the transition probability distribution function, R(st, at) is the reward function, γ

is the discount factor, ρ0(s) is the initial state distribution at the beginning of each
episode, and H is the time horizon per episode. The objective in RL is to learn a
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Figure 6.1. Overview of our experimental setup for investigating out-of-
distribution generalization in downstream tasks. (1) We train 240 β-VAEs on the
robotic dataset from Dittadi et al. (2021b). (2) We then train downstream policies to solve
object reaching or pushing, using multiple random RL seeds per VAE. The input to a policy
consists of the output of a pretrained encoder and additional task-related observable vari-
ables. Crucially, the policy is only trained on a subset of the cube colors from the pretraining
dataset. (3) Finally, we evaluate these policies on their respective tasks in four different sce-
narios: (a) in-distribution, i.e. with cube colors used in policy training; (b) OOD1, i.e. with
cube colours previously seen by the encoder but OOD for the policy; (c) OOD2-sim, having
cube colours also OOD to the encoder; (d) sim-to-real zero-shot on the real-world setup.

policy π : S×A → [0, 1], typically parameterized by a neural network, that maximizes
the total discounted expected reward J(π) = E

[ ∑H
t=0 γtR(st, at)

]
. There is a broad

range of model-free learning algorithms to find π∗ by policy gradient optimization or
by learning value functions while trading off exploration and exploitation (Fujimoto,
Hoof, and Meger, 2018; Haarnoja et al., 2018b; Schulman et al., 2015a; b; 2017;
Silver et al., 2014; Sutton et al., 1999). Here, we optimize the objective above with
Soft Actor Critic (SAC), an off-policy method that simultaneously maximizes the
expected reward and the entropy H(π(·|st)), and is widely used in control tasks due
to its sample efficiency (Haarnoja et al., 2018b).

A robotic setup to evaluate out-of-distribution generalization. Our study
is based on a real robot platform where a robotic finger with three joints manipulates
a cube in a bowl-shaped stage (Wüthrich et al., 2020). We pretrain representations
on a labeled dataset introduced by Dittadi et al. (2021b) which consists of simulated
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and real-world images of this setup. This dataset has 7 underlying factors of variation
(FoV): angles of the three joints, and position (x and y), orientation, and color of the
cube. Some of these factors are correlated (Dittadi et al., 2021b), which may be
problematic for representation learners, especially in the context of disentanglement
(Chen et al., 2021; Träuble et al., 2021). After training the representations, we train
downstream agents and evaluate their generalization on an adapted version of the
simulated CausalWorld benchmark (Ahmed et al., 2021) that was developed for the
same setup. Finally, we test sim-to-real generalization on the real robot.

Our experimental setup, illustrated in Fig. 6.1, allows us to systematically investigate
a broad range of out-of-distribution scenarios in a controlled way. We pretrain our
representations from this simulated dataset that covers 8 distinct cube colors. We
then train an agent from this fixed representation on a subset of the cube colors, and
evaluate it (1) on the same colors (this is the typical scenario in RL), (2) on the held-
out cube colors that are still known to the encoder, or (3) OOD w.r.t. the encoder’s
training distribution, e.g. on novel colors and shapes or on the real world.

We closely follow the framework for measuring OOD generalization proposed by Dit-
tadi et al. (2021b). In this framework, a representation is initially learned on a
training set D, and a simple downstream model is trained on a subset D1 ⊂ D to pre-
dict the ground-truth factors from the learned representation. Generalization is then
evaluated by testing the downstream model on a set D2 that differs distributionally
from D1, e.g. containing images corresponding to held-out values of a chosen factor
of variation (FoV). Dittadi et al. (2021b) consider two flavors of OOD generalization
depending on the choice of D2: First, the case when D2 ⊂ D, i.e. the OOD test set
is a subset of the dataset for representation learning. This is denoted by OOD1 and
corresponds to the scenario (2) from the previous paragraph. In the other scenario,
referred to as OOD2, D and D2 are disjoint and distributionally different. This
even stronger OOD shift corresponds to case (3) above. The generalization score
for D2 is then measured by the (normalized) mean absolute prediction error across
all FoVs except for the one that is OOD. Following Dittadi et al. (2021b), we use a
simple 2-layer Multi-Layer Perceptron (MLP) for downstream factor prediction, we
train one MLP for each FoV, and report the negative error. This simple and cheap
generalization metric could serve as a convenient proxy for the generalization of more
expensive downstream tasks. We refer to these generalization scores as GS-OOD1,
GS-OOD2-sim, and GS-OOD2-real depending on the scenario.

The focus of Dittadi et al. (2021b) was to scale VAE-based approaches to more real-
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istic scenarios and study the generalization of these simple downstream tasks, with
a particular emphasis on disentanglement. Building upon their contributions, we
can leverage the broader potential of this robotic setup with many more OOD2 sce-
narios to study our research questions: To what extent can agents generalize under
distribution shift? Do they generalize in different ways depending on the type of
shift (including sim-to-real)? Can we predict the OOD generalization of downstream
agents from properties of the pretrained representations such as the GS metrics from
Dittadi et al. (2021b)?

6.3 Study design

Robotic setup. Our setup is based on TriFinger (Wüthrich et al., 2020) and con-
sists of a robotic finger with three joints that can be controlled to manipulate an
object (e.g. a cube) in a bowl-shaped stage. The agent receives a camera observation
consistent with the images in Dittadi et al. (2021b) and outputs a three-dimensional
action. During training, which always happens in simulation, the agent only observes
a cube of four possible colors, randomly sampled at every episode (see Fig. 6.1, step 2).

Distribution shifts. After training, we evaluate these agents in 7 environments:
(1) the training environment, which is the typical setting in RL, (2) the OOD1 setting
with cube colors that are OOD for the agent but still in-distribution for the encoder,
(3) the more challenging OOD2-sim setting where the colors are also OOD for the en-
coder, (4-6) the OOD2 settings where the object colors are as in the 3 previous settings
but the cube is replaced by a sphere (a previously unseen shape), (7) the OOD2-real
setting, where we evaluate zero-shot sim-to-real transfer on the real robotic platform.

Tasks. We begin our study with the object reaching downstream control task, where
the agent has to reach an object placed at an arbitrary random position in the arena.
This is significantly more challenging than directly predicting the ground-truth factors,
as the agent has to learn to reach the cube by acting on the joints, with a scalar
reward as the only learning signal. Consequently, the compute required to learn
this task is about 1,000 times greater than in the simple factor prediction case. We
additionally include in our study a pushing task which consists of pushing an object to
a goal position that is sampled at each episode. Learning this task takes one order of
magnitude more compute than object reaching, likely due to the complex rigid-body
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dynamics and object interactions. To the best of our knowledge, this is the most
challenging manipulation task that is currently feasible on our setup. Ahmed et al.
(2021) report solving a similar pushing task, but require the full ground-truth state
to be observable.

Training the RL agents. The inputs at time t are the camera observation ot and
a vector of observable variables xt containing the joint angles and velocities, as well
as the target object position in pushing. We then feed the camera observation ot into
an encoder e that was pretrained on the dataset in Dittadi et al. (2021b). The result
is concatenated with xt, yielding a state vector st = [xt, e(ot)]. We then use SAC to
train the policy with st as input. The policy, value, and Q networks are implemented
as MLPs with 2 hidden layers of size 256. When training the policies, we keep the
encoder frozen.

Model sweep. To shed light on the research questions outlined in the previous
sections, we perform a large-scale study in which we train 240 representation models
and 11,520 downstream policies, as described below. See Appendix B.1 for further
implementation details.

• We train 120 β-VAEs (Higgins et al., 2017a) and 120 Ada-GVAEs (Locatello
et al., 2020b) with a subset of the hyperparameter configurations and neural
architecture from Dittadi et al. (2021b). Specifically, we consider β ∈ {1, 2, 4},
β annealing over {0, 50000} steps, with and without input noise, and 10 random
seeds per configuration. The latent space size is fixed to 10 following prior work
(Chen et al., 2018; Kim and Mnih, 2018; Locatello et al., 2020b; Träuble et al.,
2021).

• For object reaching, we train 20 downstream policies (varying random seed) for
each of the 240 VAEs. The resulting 4,800 policies are trained for 400k steps
(approximately 2,400 episodes).

• Since pushing takes substantially longer to train, we limit the number of policies
trained on this task: We choose a subset of 96 VAEs corresponding to only 4
seeds, and then use 10 seeds per representation. The resulting 960 policies are
trained for 3M steps (about 9,000 episodes).

• Finally, for both tasks we also investigate the role of regularization on the policy.
More specifically, we repeat the two training sweeps from above (5,760 policies),
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with the difference that now the policies are trained with L1 regularization on
the first layer.

Limitations of our study. Although we aim to provide a sound and extensive em-
pirical study, such studies are inevitably computationally demanding. Thus, we found
it necessary to make certain design choices. For each of these choices, we attempted
to follow common practice, in order to maintain our study as relevant, general, and
useful as possible. One such decision is that of focusing on autoencoder-based rep-
resentations. To answer our questions on the effect of upstream representations on
the generalization of downstream policies, we need a diverse range of representations.
How these representations are obtained is not directly relevant to answer our re-
search question. Following Dittadi et al. (2021b), we chose to focus on β-VAE and
Ada-GVAE models, as they were shown to provide a broad set of representations,
including fully disentangled ones. Although we conjecture that other classes of rep-
resentation learning algorithms should generally reveal similar trends as those found
in our study, this is undoubtedly an interesting extension. As for the RL algorithm
used in this work, SAC is known to be a particularly sample-efficient model-free RL
method that is a popular choice in robotics (Haarnoja et al., 2018a; Kiran et al.,
2021; Singh et al., 2019). Extensive results on pushing from ground-truth features
on the same setup in Ahmed et al. (2021) indicate that methods like TD3 (Fujimoto,
Hoof, and Meger, 2018) or PPO (Schulman et al., 2017) perform very similarly to
SAC under the same reward structure and observation space. Thus, we expect the
results of our study to hold beyond SAC. Another interesting direction is the study
of additional regularization schemes on the policy network, an aspect that is often
overlooked in RL. We expect the potential insights from extending the study along
these axes to not justify the additional compute costs and corresponding carbon foot-
print. However, with improving efficiency and decreasing costs, we believe these could
become worthwhile validation experiments in the future.

6.4 Results

We discuss our results in three parts: In Section 6.4.1, we present the training results
of our large-scale sweep, and how policy regularization and different properties of
the pretrained representations affect in-distribution reward. Section 6.4.2 gives an
extensive account of which metrics of the pretrained representations predict OOD
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generalization of the agents in simulated environments. Finally, in Section 6.4.3 we
perform a similar evaluation on the real robot, in a zero-shot sim-to-real scenario.

6.4.1 Results in the training environment

Fig. 6.2 shows the training curves of all policies for object reaching and pushing in
terms of the task-specific success metric. Here we use success metrics for interpretabil-
ity, as their range is always [0, 1]. In object reaching, the success metric indicates
progress from the initial end effector position to the optimal distance from the center
of the cube. It is 0 if the final distance is not smaller than the initial distance, and 1
if the end effector is touching the center of a face of the cube. In pushing, the success
metric is defined as the volumetric overlap of the cube with the goal cube, and the
task can be visually considered solved with a score around 80%.

From the training curves we can conclude that both tasks can be consistently solved
from pixels using pretrained representations. In particular, all policies on object
reaching attain almost perfect scores. Unsurprisingly, the more complex pushing
task requires significantly more training, and the variance across policies is larger.
Nonetheless, almost all policies learn to solve the task satisfactorily.

Figure 6.2. Top: Average training success, aggregated over all policies from the sweep (me-
dian, quartiles, 5th/95th percentiles). Bottom: Rank correlations between representation
metrics and in-distribution reward (evaluated when the policies are fully trained), in the
case without regularization. Correlations are color-coded in red (positive) or blue (negative)
when statistically significant (p<0.05), otherwise they are gray.
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To investigate the effect of representations on the training reward, we now compute
its Spearman rank correlations with various supervised and unsupervised metrics of
the representations (Fig. 6.2 bottom). By training reward here we mean the average
reward of a fully trained policy over 200 episodes in the training environment (see
Appendix B.1). On object reaching, the final reward correlates with the ELBO and
the reconstruction loss. A simple supervised metric to evaluate a representation is
how well a small downstream model can predict the ground-truth factors of variation.
Following Dittadi et al. (2021b), we use the MLP10000 and GBT10000 metrics (simply
MLP and GBT in the following), where MLPs and Gradient Boosted Trees (GBTs)
are trained to predict the FoVs from 10,000 samples. The training reward correlates
with these metrics as well, especially with the MLP accuracy. This is not entirely
surprising: if an MLP can predict the FoVs from the representations, our policies
using the same architecture could in principle retrieve the FoVs relevant for the task.
Interestingly, the correlation with the overall MLP metric mostly stems from the cube
pose FoVs, i.e. those that are not included in the ground-truth state xt. These results
suggest that these metrics can be used to select good representations for downstream
RL. On the more challenging task of pushing, the correlations are milder but most of
them are still statistically significant.

Summary. Both tasks can be consistently solved from pixels using pretrained repre-
sentations. Unsupervised (ELBO, reconstruction loss) and supervised (ground-truth
factor prediction) in-distribution metrics of the representations are correlated with
reward in the training environment.

6.4.2 Out-of-distribution generalization in simulation

In- and out-of-distribution rewards. After training, the in-distribution reward
correlates with OOD1 performance on both tasks (especially with regularization), but
not with OOD2 performance (see Fig. 6.3). Moreover, rewards in OOD1 and OOD2
environments are moderately correlated across tasks and regularization settings.

Unsupervised metrics and informativeness. In Fig. 6.4 (left) we assess the
relation between OOD reward and in-distribution metrics (ELBO, reconstruction
loss, MLP, and GBT). Both ELBO and reconstruction loss exhibit a correlation with
OOD1 reward, but not with OOD2 reward. These unsupervised metrics can thus be
useful for selecting representations that will lead to more robust downstream RL tasks,
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Figure 6.3. Correlations between training (in distrib.) and OOD rewards (p<0.05).

as long as the encoder is in-distribution. While the GBT score is not correlated with
reward under distribution shift, we observe a significant correlation between OOD1
reward and the MLP score, which measures downstream factor prediction accuracy
of an MLP with the same architecture as the one parameterizing the policies. As in
Section 6.4.1, we further investigate the source of this correlation, and find it in the
pose parameters of the cube. Correlations in the OOD2 setting are much weaker, thus
we conclude that these metrics do not appear helpful for model selection in this case.
Our results on pushing confirm these conclusions although correlations are generally
weaker, presumably due to the more complicated nature of this task. An extensive
discussion is provided in Appendix B.2.2.

Figure 6.4. Rank correlations of representation properties with OOD1 and OOD2 reward
on object reaching without regularization. Numbering when splitting metrics by FoV: (1)
cube color; (2–4) joint angles; (5–7) cube position and rotation. Correlations are color-coded
as described in Fig. 6.2.
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Correlations with generalization scores. Here we analyze the link between gen-
eralization in RL and the generalization scores (GS) discussed in Section 6.2, which
measure the generalization of downstream FoV predictors out of distribution, as op-
posed to the MLP and GBT metrics considered above. For both OOD scenarios, the
distribution shifts underlying these GS scores are the same as the ones in the RL tasks
in simulation. We summarize our findings in Fig. 6.4 (right) on the object reaching
task. Reward in the OOD1 setting is significantly correlated with the GS-OOD1 met-
ric of the pretrained representation. We observe an even stronger correlation between
the reward in the simulated OOD2 setting and the corresponding GS-OOD2-sim and
GS-OOD2-real scores. On a per-factor level, we see that the source of the observed
correlations primarily stems from the generalization scores w.r.t. the pose parameters
of the cube. The OOD generalization metrics can therefore be used as proxies for
the corresponding form of generalization in downstream RL tasks. This has practical
implications for the training of RL downstream policies which are generally known to
be brittle to distribution shifts, as we can measure a representation’s generalization
score from a few labeled images. This allows for selecting representations that yield
more robust downstream policies.

Disentangled representations. Disentanglement has been shown to be helpful
for downstream performance and OOD1 generalization even with MLPs (Dittadi et
al., 2021b). However, in object reaching, we only observe a weak correlation with some
disentanglement metrics (Fig. 6.5). In agreement with (Dittadi et al., 2021b), disen-
tanglement does not correlate with OOD2 generalization. The same study observed
that disentanglement correlates with the informativeness of a representation. To un-
derstand if these weak correlations originate from this common confounder, we inves-
tigate whether they persist after adjusting for MLP FoV prediction accuracy. Given
two representations with similar MLP accuracy, does the more disentangled one ex-
hibit better OOD1 generalization? To measure this we predict success from the MLP
accuracy using kNN (k=5) (Locatello et al., 2019a) and compute the residual reward
by subtracting the amount of reward explained by the MLP metric. Fig. 6.5 shows
that this resolves the remaining correlations with disentanglement. Thus, for the RL
downstream tasks considered here, disentanglement per se does not seem to be useful
for OOD generalization. We present similar results on pushing in Appendix B.2.2.

Policy regularization and observation noise. It might seem unsurprising that
disentanglement is not useful for generalization in RL, as MLP policies do not have
any explicit inductive bias to exploit it. Thus, we attempt to introduce such induc-
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Figure 6.5. Box plots: fractional success on object reaching split according to low (blue),
medium-high (orange), and almost perfect (green) disentanglement. L1 regularization in
the first layer of the MLP policy has a positive effect on OOD1 and OOD2 generalization
with minimal sacrifice in terms of training reward (see scale). Correlation matrix (left):
although we observe a mild correlation between some disentanglement metrics and OOD1
(but not OOD2) generalization, this does not hold when adjusting for representation infor-
mativeness. Correlations are color-coded as described in Fig. 6.2. We use disentanglement
metrics from Chen et al. (2018), Eastwood and Williams (2018), Kumar, Sattigeri, and Bal-
akrishnan (2018), and Ridgeway and Mozer (2018).

tive bias by repeating all experiments with L1 regularization on the first layer of the
policy. Although regularization improves OOD1 and OOD2 generalization in general
(see box plots in Fig. 6.5), we observe no clear link with disentanglement. Further-
more, in accordance with Dittadi et al. (2021b), we find that observation noise when
training representations is beneficial for OOD2 generalization. See Appendix B.2.2
for a detailed discussion.

Stronger OOD shifts: evaluating on a novel shape. On object reaching, we
also test generalization w.r.t. a novel shape by replacing the cube with a sphere. This
corresponds to a strong OOD2-type shift, since shape was never varied when training
the representations. Surprisingly, the policies appear to be robust to the novel shape.
In fact, when the sphere has the same colors that the cube had during policy training,
all policies get closer than 5 cm to the sphere on average, with a mean success metric
of 95%. On sphere colors from the OOD1 split, more than 98.5% move the finger
closer than this threshold, and on the strongest distribution shift (OOD2-sim colors,
and cube replaced by sphere) almost 70% surpass that threshold with an average
success metric above 80%.
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Summary. (1) In- and out-of-distribution rewards are correlated, as long as the rep-
resentation remains in its training distribution (OOD1). (2) Similarly, in-distribution
representation metrics (both unsupervised and supervised) predict OOD1 reward, but
are not reliable when the representation is OOD (OOD2). (3) Disentanglement does
not correlate with generalization in our experiments, while (4) input noise when train-
ing representations is beneficial for OOD2 generalization. (5) Most notably, the GS
metrics, which measure generalization under distribution shifts, are significantly cor-
related with RL performance under similar distribution shifts. We thus recommend
using these convenient proxy metrics for selecting representations that will yield ro-
bust downstream policies.

6.4.3 Deploying policies to the real world

We now evaluate a large subset of the agents on the real robot without fine-tuning,
quantify their zero-shot sim-to-real generalization, and find metrics that correlate
with real-world performance.

Reaching. We choose 960 policies trained in simulation, based on 96 representa-
tions and 10 random seeds, and evaluate them on two (randomly chosen, but far apart)
goal positions using a red cube. While a red cube was in the training distribution, we
consider this to be OOD2 because real-world images represent a strong distribution
shift for the encoder (Dittadi et al., 2021b; Djolonga et al., 2021). Although sim-to-
real in robotics is considered to be very challenging without domain randomization

Figure 6.6. Zero-shot sim-to-real on object reaching on over 2,000 episodes. Left:
Rank-correlations on the real platform with a red cube (color-coded as described in Fig. 6.2).
Middle: Training encoders with additive noise improves sim-to-real generalization. Right:
Histogram of fractional success in the more challenging OOD2-real-{green,blue} scenario
from 50 policies across 4 different goal positions.



94 6 Paper II

or fine-tuning (Finn et al., 2017; Rusu et al., 2017; Tobin et al., 2017), many of our
policies obtain a high fractional success without resorting to these methods. In addi-
tion, in Fig. 6.6 (left) we observe significant correlations between zero-shot real-world
performance and some of the previously discussed metrics. First, there is a positive
correlation with the OOD2-sim reward: Policies that generalize to unseen cube colors
in simulation also generalize to the real world. Second, representations with high
GS-OOD2-sim and (especially) GS-OOD2-real scores are promising candidates for
sim-to-real transfer. Third, if no labels are available, the weaker correlation with
the reconstruction loss on the simulated images can be exploited for representation
selection. Finally, as observed by Dittadi et al. (2021b) for simple downstream tasks,
input noise while learning representations is beneficial for sim-to-real generalization
(Fig. 6.6, middle).

Based on these findings, we select 50 policies with a high GS-OOD2-real score, and
evaluate them on the real world with a green and a blue cube, which is an even
stronger OOD2 distribution shift. In Fig. 6.6 (right), where metrics are averaged
over 4 cube positions per policy, we observe that most policies can still solve the
task: approximately 80% of them position the finger less than 5 cm from the cube.
Lastly, we repeat the evaluations on the green sphere that we previously performed
in simulation, and observe that many policies successfully reach this completely novel
object. See Appendix B.2.3 and the project website for additional results and videos
of deployed policies.

Figure 6.7. We select pushing policies with high GS-OOD2-real score. When deployed
on the real robot without fine-tuning, they succeed in pushing the cube to a specified goal
position (transparent blue cube).
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Pushing. We now test whether our real-world findings on object reaching also hold
for pushing. We again select policies with a high GS-OOD2-real score and encoders
trained with input noise. We record episodes on diverse goal positions and cube
colors to support our finding that pushing policies in simulation can generalize to the
real robot. In Fig. 6.7, we show three representative episodes with successful task
completions and refer to the project site for video recordings and further episodes.

Summary. Policies trained in simulation can solve the task on the real robot with-
out domain randomization or fine-tuning. Reconstruction loss, encoder robustness,
and OOD2 reward in simulation are all good predictors of real-world performance.
For real-world applications, we recommend using GS-OOD2-sim or GS-OOD2-real
for model selection, and training the encoder with noise.

6.5 Other related work

A key unsolved challenge in RL is the brittleness of agents to distribution shifts in
the environment, even if the underlying structure is largely unchanged (Ahmed et al.,
2021; Cobbe et al., 2019). This is related to studies on representation learning and
generalization in downstream tasks (Chaabouni et al., 2020; Dittadi et al., 2022a; Es-
maeili et al., 2019a; Gondal et al., 2019; Steenbrugge et al., 2018), as well as domain
generalization (see Wang et al. (2021) for an overview). More specifically for RL, Hig-
gins et al. (2017b) focus on domain adaptation and zero-shot transfer in DeepMind
Lab and MuJoCo environments, and claim disentanglement improves robustness. To
obtain better transfer capabilities, Asadi, Abel, and Littman (2020) argue for dis-
cretizing the state space in continuous control domains by clustering states where the
optimal policy is similar. Kulkarni et al. (2015) propose geometric object representa-
tions by means of keypoints or image-space coordinates and Wulfmeier et al. (2021)
investigate the effect of different representations on the learning and exploration of
different robotics tasks. Transfer becomes especially challenging from the simulation
to the real world, a phenomenon often referred to as the sim-to-real gap. This is par-
ticularly crucial in RL, as real-world training is expensive, requires sample-efficient
methods, and is sometimes unfeasible if the reward structure requires accurate ground
truth labels (Dulac-Arnold, Mankowitz, and Hester, 2019; Kormushev, Calinon, and
Caldwell, 2013). This issue is typically tackled with large-scale domain randomization
in simulation (Akkaya et al., 2019; James et al., 2019).
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6.6 Conclusion

Robust out-of-distribution (OOD) generalization is still one of the key open challenges
in machine learning. We attempted to answer central questions on the generalization
of reinforcement learning agents in a robotics context, and how this is affected by
pretrained representations. We presented a large-scale empirical study in which we
trained over 10,000 downstream agents given pretrained representations, and exten-
sively tested them under a variety of distribution shifts, including sim-to-real. We
observed agents that generalize OOD, and found that some properties of the pre-
trained representations can be useful to predict which agents will generalize better.
We believe this work brings us one step closer to understanding the generalization
abilities of learning systems, and we hope that it encourages many further important
studies in this direction.
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Abstract. The idea behind object-centric representation learning is that natural
scenes can better be modeled as compositions of objects and their relations as op-
posed to distributed representations. This inductive bias can be injected into neural
networks to potentially improve systematic generalization and performance of down-
stream tasks in scenes with multiple objects. In this paper, we train state-of-the-art
unsupervised models on five common multi-object datasets and evaluate segmentation
metrics and downstream object property prediction. In addition, we study general-
ization and robustness by investigating the settings where either a single object is out
of distribution—e.g., having an unseen color, texture, or shape—or global properties
of the scene are altered—e.g., by occlusions, cropping, or increasing the number of
objects. From our experimental study, we find object-centric representations to be
useful for downstream tasks and generally robust to most distribution shifts affecting
objects. However, when the distribution shift affects the input in a less structured
manner, robustness in terms of segmentation and downstream task performance may
vary significantly across models and distribution shifts.
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7.1 Introduction

In object-centric representation learning, we make the assumption that visual scenes
are composed of multiple entities or objects that interact with each other, and ex-
ploit this compositional property as inductive bias for neural networks. Informally,
the goal is to find transformations r of the data x into a set of vector representations
r(x) = {zk} each corresponding to an individual object, without supervision (Burgess
et al., 2019; Chen, Deng, and Ahn, 2020; Crawford and Pineau, 2019; Engelcke et al.,
2020; Eslami et al., 2016; Greff et al., 2019; Greff, Steenkiste, and Schmidhuber, 2017;
Gregor et al., 2015; Kosiorek et al., 2018; Lin et al., 2020b; Locatello et al., 2020d;
Mnih, Heess, Graves, et al., 2014; Weis et al., 2020; Yuan, Li, and Xue, 2019). Rely-
ing on this inductive bias, object-centric representations are conjectured to be more
robust than distributed representations, and to enable the systematic generalization
typical of symbolic systems while retaining the expressiveness of connectionist ap-
proaches (Bengio, Courville, and Vincent, 2013; Greff, Steenkiste, and Schmidhuber,
2020; Lake et al., 2017; Schölkopf et al., 2021). Grounding for these claims comes
mostly from cognitive psychology and neuroscience (Spelke, 1990; Téglás et al., 2011;
Wagemans, 2015). E.g., infants learn about the physical properties of objects as en-
tities that behave consistently over time (Baillargeon, Spelke, and Wasserman, 1985;
Spelke and Kinzler, 2007) and are able to re-apply their knowledge to new scenarios
involving previously unseen objects (Dehaene, 2020). Similarly, in complex machine
learning tasks like physical modelling and reinforcement learning, it is common to
train from the internal representation of a simulator (Battaglia et al., 2016; Sanchez-
Gonzalez et al., 2020) or of a game engine (Berner et al., 2019; Vinyals et al., 2019)
rather than from raw pixels, as more abstract representations facilitate learning. Fi-
nally, learning to represent objects separately is a crucial step towards learning causal
models of the data from high-dimensional observations, as objects can be interpreted
as causal variables that can be manipulated independently (Schölkopf et al., 2021).
Such causal models are believed to be crucial for human-level generalization (Pearl,
2009; Peters, Janzing, and Schölkopf, 2017), but traditional causality research as-
sumes causal variables to be given rather than learned (Schölkopf, 2019).

As object-centric learning developed recently as a subfield of representation learning,
we identify three key hypotheses and design systematic experiments to test them.
(1) The unsupervised learning of objects as pretraining task is useful for downstream
tasks. Besides learning to separate objects without supervision, current approaches
are expected to separately represent information about each object’s properties, so
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that the representations can be useful for arbitrary downstream tasks. (2) In object-
centric models, distribution shifts affecting a single object do not affect the represen-
tations of other objects. If objects are to be represented independently of each other
to act as compositional building blocks for higher-level cognition (Greff, Steenkiste,
and Schmidhuber, 2020), changes to one object in the input should not affect the
representation of the unchanged objects. This should hold even if the change leads
to an object being out of distribution (OOD). (3) Object-centric models are generally
robust to distribution shifts, even if they affect global properties of the scene. Even
if the whole scene is OOD—e.g., if it contains more objects than in the training
set—object-centric approaches should be robust thanks to their inductive bias.

In this paper, we systematically investigate these three concrete hypotheses by re-
implementing popular unsupervised object discovery approaches and testing them
on five multi-object datasets.1 We find that: (1) Object-centric models achieve good
downstream performance on property prediction tasks. We also observe a strong corre-
lation between segmentation metrics, reconstruction error, and downstream property
prediction performance, suggesting potential model selection strategies. (2) If a sin-
gle object is out of distribution, the overall segmentation performance is not strongly
impacted. Remarkably, the downstream prediction of in-distribution (ID) objects
is mostly unaffected. (3) Under more global distribution shifts, the ability to sepa-
rate objects depends significantly on the model and shift at hand, and downstream
performance may be severely affected.

As an additional contribution, we provide a library2 for benchmarking object-centric
representation learning, which can be extended with more datasets, methods, and
evaluation tasks. We hope this will foster further progress in the learning and evalu-
ation of object-centric representations.

7.2 Study design and hypotheses

Problem definition: Vanilla deep learning architectures learn distributed represen-
tations that do not capture the compositional properties of natural scenes—see, e.g.,
the “superposition catastrophe” (Bowers et al., 2014; Greff, Steenkiste, and Schmid-

1Training and evaluating all the models for the main study requires approximately 1.44 GPU years
on NVIDIA V100.

2https://github.com/addtt/object-centric-library
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huber, 2020; Von Der Malsburg, 1986). Even in disentangled representation learn-
ing (Chen et al., 2018; Eastwood and Williams, 2018; Higgins et al., 2017a; Kim and
Mnih, 2018; Kumar, Sattigeri, and Balakrishnan, 2018; Ridgeway and Mozer, 2018),
factors of variations are encoded in a vector representation that is the output of a stan-
dard CNN encoder. This introduces an unnatural ordering of the objects in the scene
and fails to capture its compositional structure in terms of objects. Formally defining
objects is challenging (Greff, Steenkiste, and Schmidhuber, 2020) and there is no con-
sensus even outside of machine learning (Green, 2019; Smith, 1998). Greff, Steenkiste,
and Schmidhuber (2020) put forth three properties for object-centric representations:
separation, i.e., object features in the set of vectors r(x) do not interact with each
other, and each object is individually captured in a single element of r(x); common
format, i.e., each element of r(x) shares the same representational format; and dis-
entanglement, i.e., each element of r(x) is represented in a disentangled format that
exposes the factors of variation. In this paper, we consider representations r(x) that
are sets of vectors with each element sharing the representational format. We take a
pragmatic perspective and focus on two clear desiderata for object-centric approaches:

Desideratum 1: Object embodiment. The representation should contain informa-
tion about the object’s location and its embodiment in the scene. As we focus on
unsupervised object discovery, this translates to segmentation masks. This is related
to separation and common format, as the decoder is applied to the elements of r(x)
with shared parameters.

Desideratum 2: Informativeness of the representation. Instead of learning disen-
tangled representations of objects, which is challenging even in single-object scenarios
(Locatello et al., 2019b), we want the representation to contain useful information
for downstream tasks, not necessarily in a disentangled format. We define objects
through their properties as annotated in the datasets we consider, and predict these
properties from the representations. Note that this may not be the only way to define
objects (e.g., defining faces and edges as objects and deducing shapes as composition
of those). The fact that existing models learn informative representations is our first
hypothesis (see below).

Design principle: These desiderata offer well-defined quantitative evaluations for
object-centric approaches and we want to understand the implications of learning
such representations. To this end, we train four different state-of-the-art methods on
five datasets, taking hyperparameter configurations from the respective publications
and adapting them to improve performance when necessary. Assuming these models
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succeeded in learning an object-centric representation, we investigate the following
hypotheses.

Hypothesis 1: The unsupervised learning of objects as pretraining task is useful for
downstream tasks. Existing empirical evaluations largely focus on our Desideratum 1
and evaluate the performance at test time in terms of segmentation metrics. The hope,
however, is that the representation would be useful for other downstream tasks besides
segmentation (Desideratum 2). We test this hypothesis by training small downstream
prediction models on the frozen object-representations with shared parameters to pre-
dict the object properties. We match the predictions to the ground-truth properties
with the Hungarian algorithm (Kuhn, 1955) following Locatello et al. (2020d).

Hypothesis 2: In object-centric models, distribution shifts affecting a single object
do not affect the representations of other objects. A change in the properties of one
object in the input should not affect the representation of the other objects. Even
OOD objects with previously unseen properties should be segmented correctly by a
network that learned the notion of objects (Greff, Steenkiste, and Schmidhuber, 2020;
Schölkopf et al., 2021). We test this hypothesis by (1) evaluating the segmentation of
the scene after the distribution shift, and (2) training downstream models to predict
object properties, and evaluating them on representations extracted from scenes with
one OOD object. More specifically, we test changes in the shape, color, or texture of
one object.

Hypothesis 3: Object-centric models are generally robust to distribution shifts, even
if they affect global properties of the scene. Early evidence (Romijnders et al., 2021)
points to the conjecture that learning object-centric representations biases the net-
work towards learning more robust representations of the overall scene. Intuitively,
the notion of objects is an additional inductive bias for the network to exploit to
maintain accurate predictions if simple global properties of the scene are altered. We
test this hypothesis by training downstream models to predict object properties, and
evaluating them on representations of scenes with OOD global properties. In this case,
we test robustness by cropping, introducing occlusions, and increasing the number of
objects.
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Figure 7.1. Top: examples from the five datasets in this study. Bottom: distribution
shifts in CLEVR.

7.3 Experimental setup

Here we provide an overview of our experimental setup. After introducing the rel-
evant models and datasets, we outline the evaluation protocols for segmentation ac-
curacy (Desideratum 1) and downstream task performance (Desideratum 2). Then,
we discuss the distribution shifts that we use to test robustness—the aforementioned
evaluations are repeated once again under these distribution shifts. We conclude with
a discussion on the limitations of this study.

Models and datasets. We implement four state-of-the-art object-centric models—
MONet (Burgess et al., 2019), GENESIS (Engelcke et al., 2020), Slot Attention (Lo-
catello et al., 2020d), and SPACE (Lin et al., 2020b)—as well as vanilla variational
autoencoders (VAEs) (Kingma and Welling, 2014; Rezende, Mohamed, and Wierstra,
2014) as baselines for distributed representations. We use one VAE variant with a
broadcast decoder (Watters et al., 2019) and one with a regular convolutional decoder.
See Appendix C.1 for an overview of the models with implementation details. We
then collect five popular multi-object datasets: Multi-dSprites, Objects Room, and
Tetrominoes from DeepMind’s Multi-Object Datasets collection (Kabra et al., 2019),
CLEVR (Johnson et al., 2017), and Shapestacks (Groth et al., 2018). The datasets
are shown in Fig. 7.1 (top row) and described in detail in Appendix C.2. For each
dataset, we define train, validation, and test splits. The test splits, which always con-
tain at least 2000 images, are exclusively used for evaluation. We train each model
on all datasets, using 10 random seeds for object-centric models and 5 for each VAE
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variant, resulting in 250 models in total.

Metrics. We evaluate the segmentation accuracy of object-centric models with
the Adjusted Rand Index (ARI) (Hubert and Arabi, 1985), Segmentation Covering
(SC) (Arbelaez et al., 2010), and mean Segmentation Covering (mSC) (Engelcke et al.,
2020). For all models, we additionally evaluate reconstruction quality via the mean
squared error (MSE). Appendix C.3.1 includes detailed definitions of these metrics.

Downstream property prediction. We evaluate object-centric representations by
training downstream models to predict ground-truth object properties from the rep-
resentations. More specifically, exploiting the fact that object slots share a common
representational format, a single downstream model f can be used to predict the
properties of each object independently: for each slot representation zk we predict
a vector of object properties ŷk = f(zk). As in previous work on object property
prediction (Locatello et al., 2020d), each model simultaneously predicts all properties
of an object. For learning, we use the cross-entropy loss for categorical properties
and MSE for numerical properties, and denote by ℓ(ŷk, ym) the overall loss for a
single object, where ym are its ground-truth properties. Here k ∈ {1, . . . , K} and
m ∈ {1, . . . , M} with K the number of slots and M the number of objects. In order
to optimize the downstream models, the vector ŷk (the properties predicted from the
kth representational slot) needs to be matched to the ground-truth properties ym of
the mth object. This is done by computing a M × K matrix of matching losses for
each slot–object pair, and then solving the assignment problem using the Hungarian
algorithm (Kuhn, 1955) to minimize the total matching loss, which is the sum of
min(M, K) terms from the loss matrix. As matching loss we use either the negative
cosine similarity between predicted and ground-truth masks (as in Greff et al. (2019)),
or the downstream loss ℓ(ŷk, ym) itself (as in Locatello et al. (2020d)). In the follow-
ing, we will refer to these strategies as mask matching and loss matching, respectively.
For property prediction, we use 4 different downstream models: a linear model, and
MLPs with up to 3 hidden layers of size 256 each. Given a pretrained object-centric
model, we train each downstream model on the representations of 10 000 images. The
downstream models are then tested on 2000 held-out images from the test set, which
may exhibit distribution shifts as discussed below. Further details on this evaluation
are provided in Appendix C.3.2

Evaluating distributed representations. Since in non-slot-based models, such
as classical VAEs, the representations of the single objects are not readily available,
matching representations to objects for downstream property prediction is not triv-
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ial. Although this is an inherent limitation of distributed representations, we are
nevertheless interested in evaluating their usefulness. Using the matching framework
presented above, we require the downstream model f to output the predicted proper-
ties of all objects, and then match these with the true object properties to evaluate
prediction quality. Our downstream model in this case will thus take as input the
entire representation z = r(x) (which is now a single vector rather than a set of
vectors) and output the predictions for all objects together as a vector f(z). Finally,
we split f(z) into K vectors {ŷk}K

k=1, where K loosely corresponds to the number
of slots in object-centric models. At this point, we can compute the loss ℓ(ŷk, ym)
for each pair, as usual. We now consider two matching strategies: As before, loss
matching simply defines the matching loss of a slot–object pair as the prediction loss
itself. In the deterministic matching strategy, following Greff et al. (2019), we lexico-
graphically sort objects according to a canonical order of object properties. Calling
π the permutation that defines this sorting, the kth slot is deterministically matched
with the mth object, where m = π−1(k).

Baselines. To correctly assess performance on downstream tasks, it is fundamental
to compare with sensible baselines. Here we consider as baseline the best perfor-
mance that can be achieved by a downstream model that outputs a constant vector
that does not depend on the image. When predicting properties independently for
each object (in slot-based models), the optimal solution is to predict the mean of
continuous properties and the majority class for categorical ones. When using de-
terministic matching in the distributed case, the downstream model can exploit the
predefined total order to predict more accurately than random guessing even without
using information from the input (this effect is non-negligible only for the properties
that are most significant in the order). Finally, in a few cases, loss matching for
distributed representations can be significantly better than deterministic matching.3

For simplicity, for both matching strategies in the distributed case, we directly learn
a vector ŷ by gradient descent to minimize the prediction loss. As this depends on
random initialization and optimization dynamics, we repeat this for 10 random seeds
and report error bars in the plots.

Distribution shifts. We test the robustness of the learned representations under two
classes of distribution shifts: one where one object goes OOD, and one where global
properties of the scene are changed. All such distribution shifts occur at test time,

3Intuitively, a (constant) diverse set of uninformed predictions {ŷk} might be sufficient for the
matching algorithm to find suitable enough objects for most predictions.
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i.e., the unsupervised models are always trained on the original datasets. To evaluate
generalization to distribution shifts affecting a single object, we systematically induce
changes in the color, shape, and texture of objects. To change color, we apply a ran-
dom color shift to one random object in the scene, using the available masks (we do
not do this in Multi-dSprites, as the training distribution covers the entire RGB color
space). To test robustness to unseen textures, we apply neural style transfer (Gatys,
Ecker, and Bethge, 2016) to one random object in each scene, using The Great Wave
off Kanagawa as style image. When either a new color or a new texture is introduced,
prediction of material (in CLEVR only) and color is not performed. To introduce a
new shape, we select images from Multi-dSprites that have at most 4 objects (in gen-
eral, they have up to 5), and add a randomly colored triangle, in a random position,
at a random depth in the object stack. In this case, shape prediction does not apply.
Finally, to test robustness to global changes in the scene, we change the number of
objects (in CLEVR only), introduce occlusions (a gray square at a random location),
or crop images at the center and restore their original size via bilinear interpolation.
See Fig. 7.1 for examples, and Appendix C.3.3 for further details.

Limitations of this study. While we aim to conduct a sound and informative ex-
perimental study to answer the research questions from Section 7.3, inevitably there
are limitations regarding datasets, models, and evaluations. Although the datasets
considered here vary significantly in complexity and visual properties, they all con-
sist of synthetic images where object properties are independent of each other and
independent between objects. Regarding object-centric models, we only focus on
autoencoder-based approaches that model a scene as a mixture of components. As of-
ficial implementations are not always available, and none of the methods in this work
has been applied to all the datasets considered here, we re-implement these methods
and choose hyperparameters following a best-effort approach. Finally, we only con-
sider the downstream task of object property prediction, and assess generalization
using only a few representative single-object and global distribution shifts.

7.4 Results

In this section, we highlight our findings with plots that are representative of our main
results. The full experimental results are presented in Appendix C.4. In Section 7.4.1
we focus on the different evaluation metrics and the performance we obtained re-
training the methods considered in this study. We then focus on our three hypotheses
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in Sections 7.4.2 to 7.4.4.

7.4.1 Learning and evaluating object discovery

Since all methods included in our study were originally evaluated only on a subset of
the datasets and metrics considered here, we first test how well these models perform.

Fig. 7.2 shows the segmentation performance of the models in terms of ARI across
models, datasets, and random seeds. Fig. C.3 in Appendix C.4 provides an overview
of the reconstruction MSE and all segmentation metrics. Although these results are
in line with published work, we observe substantial differences in the ranking between
models depending on the metric. This indicates that, in practice, these metrics are
not equivalent for measuring object discovery.

This is confirmed in Fig. 7.3, which shows rank correlations between metrics on dif-
ferent datasets (aggregating over different models). We also observe a strong nega-
tive correlation between ARI and MSE across models and datasets, suggesting that
models that learn to more accurately reconstruct the input tend to better segment
objects according to the ARI score. This trend is less consistent for the other seg-
mentation metrics, as MSE significantly correlates with mSC in only three datasets
(Multi-dSprites, Objects Room, and CLEVR), and with SC in two (Multi-dSprites
and Objects Room). SC and mSC measure very similar segmentation notions and
therefore are significantly correlated in all datasets, although to a varying extent.
However, they correlate with ARI only on two and three datasets, respectively (the
same datasets where they correlate with the MSE).

CLEVR Multi-dSprites Objects Room Shapestacks Tetrominoes
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Figure 7.2. ARI of all models and datasets on 2000 test images. Medians and 95%
confidence intervals with 10 seeds.
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Figure 7.3. Spearman rank correlations between evaluation metrics across models and
random seeds (color-coded only when p<0.05).

Summary: We observe strong differences in performance and ranking between the
models depending on the evaluation metric. In the tested datasets, we find that
the ARI, which requires ground-truth segmentation masks to compute, correlates
particularly well with the MSE, which is unsupervised and provides training signal.

7.4.2 Usefulness for downstream tasks (Hypothesis 1)

To test Hypothesis 1, we first evaluate whether frozen object-centric representations
can be used to train downstream models measuring Desideratum 2 from Section 7.2.
As discussed in Section 7.3, this type of downstream task requires matching the true
object properties with the predictions of the downstream model. In the following,
we will only present results obtained with loss matching, and show results for other
matching strategies in Appendix C.4.

Figure 7.4. Comparison of downstream property prediction performance for object-centric
(slot-based) and distributed (VAE) representations, using an MLP with one hidden layer as
downstream model. The metric is accuracy for categorical properties or R2 for numerical
ones. The baselines in gray indicate the best performance that can be achieved by a model
that outputs a constant vector that does not depend on the input. The bars show medians
and 95% confidence intervals with 10 random seeds.
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Fig. 7.4 shows downstream prediction performance on all datasets and models, when
the downstream model is a single-layer MLP. Although results vary across datasets
and models, accurate prediction of object properties seems to be possible in most of
the scenarios considered here. Fig. C.5 in Appendix C.4 shows similar results when
using a linear model or MLPs with up to 3 hidden layers.

In Fig. 7.4, we also compare the downstream prediction performance from object-
centric and distributed representations. We observe that VAE representations tend
to achieve lower scores in downstream prediction, although not always by a large
margin. In particular, color and size in CLEVR and color in Tetrominoes are pre-
dicted relatively well, and significantly better than the baseline. On the other hand,
in many cases where VAE representations perform well, they have in fact a consider-
able advantage if we take the baselines into account (scale in Multi-dSprites, color in
Shapestacks, x and y in CLEVR, Multi-dSprites, and Tetrominoes). Moreover, per-
formance from distributed representations often does not improve significantly when
using a larger downstream model (see Fig. C.6). In conclusion, although the two
classes of representations are difficult to compare on this task, these results suggest
that the quantities of interest are present in the VAE representations, but they appear
to be less explicit and less easily usable.

Finally, we investigate the relationship between downstream performance and evalu-
ation metrics. Fig. 7.5 shows the Spearman rank correlation of the segmentation and
reconstruction metrics with the test performance of downstream predictors. For all
datasets and object properties, downstream performance is strongly correlated with
the ARI. On the other hand, SC and mSC exhibit inconsistent trends across datasets.
Models that correctly separate objects according to the ARI are therefore useful for
downstream object property prediction, confirming Hypothesis 1. Downstream pre-
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Figure 7.5. Spearman rank correlations between evaluation metrics and downstream per-
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diction performance is also significantly correlated with the reconstruction MSE in all
datasets. This is not particularly surprising, since the representation of a model that
cannot properly reconstruct the input might not contain the information necessary
for property prediction. However, the correlation is generally stronger with the ARI
than with the MSE, suggesting that having a notion of objects is more important for
downstream tasks than reconstruction accuracy. This is consistent with the findings
by Papa, Winther, and Dittadi (2022), where the ARI still correlates strongly with
downstream performance when objects have complex textures, while the MSE does
not. When segmentation masks are available for validation, ARI should therefore be
the preferred metric to select useful representations for downstream tasks. Fig. C.7
in Appendix C.4 shows analogous results for mask matching and for the three other
downstream models—these results are broadly similar, except that correlations with
ARI tend to be stronger when using mask matching (perhaps unsurprisingly) or larger
downstream models.

Summary: Models that accurately segment objects allow for good downstream pre-
diction performance. Despite often having an advantage, distributed representations
generally perform worse, but not always significantly: the information is present but
less easily accessible. The ARI is consistently correlated with downstream perfor-
mance, and is therefore useful for model selection when masks are available. The
MSE can be a practical unsupervised alternative on these datasets, but it may be less
robust on complex textures.

7.4.3 Generalization with one OOD object (Hypothesis 2)

To test Hypothesis 2, we construct settings where a single object is OOD and the
others are ID. We change the object style with neural style transfer, change the
color of one object at random (only in CLEVR, Tetrominoes, and Shapestacks), or
introduce a new shape (only in Multi-dSprites). The unsupervised models are always
trained on the original datasets. Then we train downstream models to predict the
object properties from the learned representations. We consider two scenarios for this
task: (1) train the predictors on the original datasets and test them on the variants
with a modified object, (2) train and test the predictors on each variant. In both
cases, we test the predictors on representations that might be inaccurate, because the
representation function (encoder) is OOD. However, since in case (2) the downstream
model is trained under distribution shift, this experiment quantifies the extent to
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which the representation can still be used by a downstream task that is allowed to
adapt to the shift—although the representation might no longer represent objects
faithfully, it could still contain useful information.

For Desideratum 1, we observe in Fig. 7.6 that the models are generally robust to
distribution shifts affecting a single object. Introducing a new color or a new shape
typically does not affect segmentation quality (but note Slot Attention on Tetromi-
noes), while changing the texture of an object via neural style transfer leads to a
moderate drop in ARI in some cases. In Fig. C.8 (Appendix C.4) we observe that SC
and mSC show a compatible but less pronounced trend, while the MSE more closely
mirrors the ARI. We conclude that the encoder is still partially able to separate
objects when one object undergoes a distribution shift at test time.

For Desideratum 2, we observe in Fig. 7.7 (left) that property prediction performance
for objects that underwent distribution shifts (color, shape, or texture) is often sig-
nificantly worse than in the original dataset, whereas the prediction of ID objects is
largely unaffected. This is in agreement with Hypothesis 2: changes to one object
do not affect the representation of other objects, even when these objects are OOD.
Extensive results, including further splits and all downstream models, are shown in
Fig. C.10 in Appendix C.4. On the right plot in Fig. 7.7, we observe that retrain-
ing the downstream models after the distribution shifts does not lead to significant
improvements. This suggests that the shifts introduced here negatively affect not
only the downstream model, but also the representation itself. This result also holds
with different downstream models and with mask matching (see Figs. C.11 and C.13).
While in principle we observe a similar trend for VAEs (see e.g. Figs. C.18 and C.19
in Appendix C.4), their performance is often too close to the respective baseline
(Fig. 7.4) for a definitive conclusion to be drawn.
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Figure 7.6. Effect of single-object distribution shifts on the ARI. Medians and 95% confi-
dence intervals with 10 random seeds.
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Figure 7.7. ID vs OOD downstream performance with single-object distribution
shifts. All datasets, models, and object properties are shown. Metrics: accuracy for cate-
gorical attributes, R2 for numerical attributes. The downstream model (an MLP with one
hidden layer) is tested zero-shot out-of-distribution (left) or retrained after the distribution
shift has occurred (right).

Summary: The models are generally robust to distribution shifts affecting a sin-
gle object. Downstream prediction is largely unaffected for ID objects, but may be
severely affected for OOD objects. Finally, there seems to be no clear benefit in
retraining downstream models after the shifts, indicating that the deteriorated repre-
sentations cannot easily be adjusted post hoc.

7.4.4 Robustness to global shifts (Hypothesis 3)

Finally, we investigate the robustness of object-centric models to transformations
changing the global properties of a scene at test time. Here, we consider variants of
the datasets with occlusions, cropping, or more objects (only on CLEVR). We train
downstream predictors on the original datasets and report their test performance on
the dataset variants with global shifts. As before, we also report results of downstream
models retrained on the OOD datasets.

For Desideratum 1, Fig. 7.8 shows that segmentation quality is generally only marginally
affected by occlusion, but cropping often leads to a significant degradation. In
CLEVR, the effect on the ARI of increasing the number of objects is comparable to
the effect of occlusions, which suggests that learning about objects is useful for this
type of systematic generalization. These trends persist when considering SC and mSC,
but appear less pronounced and less consistent across datasets (see Fig. C.9 in Ap-
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Figure 7.8. Effect of distribution shifts on global scene properties on the ARI. Medians
and 95% confidence intervals with 10 seeds.

pendix C.4 for detailed results). As might be expected, when the number of objects is
increased in CLEVR, the MSE increases more conspicuously for VAEs than for object-
centric models (Fig. C.9, bottom left), likely due to their explicit modeling of objects.
However, Fig. C.32 shows that VAEs may, in fact, generalize relatively well to an
unseen number of objects, although not nearly as well as some object-centric models.

For Desideratum 2, we train a downstream model on the original dataset and test
it under global distribution shifts. These shifts generally have a negative effect on
downstream property prediction (Fig. 7.9, left), although this is comparable to the
effect on OOD objects when only one object is OOD. This is in agreement with the
observation made in Section 7.4.3 that these shifts negatively affect the representation,
which is no longer accurate because the encoder is OOD (cf. the “OOD2” scenario
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Figure 7.9. ID vs OOD downstream performance with global distribution shifts.
All datasets, models, and object properties are shown. Metrics: accuracy for categorical
attributes, R2 for numerical attributes. The downstream model (an MLP with one hidden
layer) is tested zero-shot out-of-distribution (left) or retrained after the distribution shift
has occurred (right).
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in dittadi2020transfer). When retraining the downstream models on the OOD
datasets while keeping the representation frozen, the performance improves slightly
but does not reach the corresponding results on the training distribution (Fig. 7.9,
right), as in Section 7.4.3. These observations also hold for different downstream
models and with mask matching (Figs. C.14 to C.17), as well as for distributed
representations (see, e.g., Fig. C.22) although with similar caveats as in Section 7.4.3.

Summary: The impact of global distribution shifts on the segmentation capability
of object-centric models depends on the chosen shift; e.g., cropping consistently has
a significant effect. Moreover, the usefulness for downstream tasks decreases substan-
tially in many cases, and the performance of downstream prediction models cannot
be satisfactorily recovered by retraining them.

7.5 Other related work

Recent years have seen a number of systematic studies on disentangled representa-
tions (Locatello et al., 2019a; b; Steenkiste et al., 2019; Träuble et al., 2021), some of
which focusing on their effect on generalization (Dittadi et al., 2021b; 2022b; Esmaeili
et al., 2019b; Gondal et al., 2019; Montero et al., 2021). In the context of object-
centric learning, Engelcke, Jones, and Posner (2020) investigate their reconstruction
bottlenecks to understand how these models can separate objects from the input in
an unsupervised manner. In contrast, we specifically test some key implications of
learning object-centric representations.

Slot-based object-centric models can be classified according to their approach to sep-
arating the objects at a representational level (Greff, Steenkiste, and Schmidhuber,
2020). In models that use instance slots (Chen, Artières, and Denoyer, 2019a; Goyal
et al., 2019; Greff et al., 2019; 2016; Greff, Steenkiste, and Schmidhuber, 2017; Huang
et al., 2020; Kipf et al., 2021; Kipf, Pol, and Welling, 2019; Le Roux et al., 2011; Lo-
catello et al., 2020d; Löwe et al., 2020; Racah and Chandar, 2020; Steenkiste et al.,
2018; 2020; Yang, Chen, and Soatto, 2020), each slot is used to represent a different
part of the input. This introduces a routing problem, because all slots are identical
but they cannot all represent the same object, so a mechanism needs to be intro-
duced to allow slots to communicate with each other. In models based on sequential
slots (Burgess et al., 2019; Engelcke et al., 2020; Engelcke, Parker Jones, and Pos-
ner, 2021; Eslami et al., 2016; Kosiorek et al., 2018; Kossen et al., 2019; Stelzner,
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Peharz, and Kersting, 2019), the representational slots are computed in a sequential
fashion, which solves the routing problem and allows to dynamically change the num-
ber of slots, but introduces dependencies between slots. In models based on spatial
slots (Crawford and Pineau, 2019; 2020; Deng et al., 2021; Dittadi and Winther, 2019;
Jiang* et al., 2020; Lin et al., 2020a; b; Nash et al., 2017), a spatial coordinate is
associated with each slot, introducing a dependency between slot and spatial location.
In this work, we focus on four scene-mixture models as representative examples of
approaches based on instance slots (Slot Attention), sequential slots (MONet and
GENESIS), and spatial slots (SPACE).

7.6 Conclusions

In this paper, we identify three key hypotheses in object-centric representation learn-
ing: learning about objects is useful for downstream tasks, it facilitates strong gen-
eralization, and it improves overall robustness to distribution shifts. To investigate
these hypotheses, we re-implement and systematically evaluate four state-of-the-art
unsupervised object-centric learners on a suite of five common multi-object datasets.
We find that object-centric representations are generally useful for downstream object
property prediction, and downstream performance is strongly correlated with segmen-
tation quality and reconstruction error. Regarding generalization, we observe that
when a single object undergoes distribution shifts the overall segmentation quality
and downstream performance for in-distribution objects is largely unaffected. Fi-
nally, we find that object-centric models can still relatively robustly separate objects
even under global distribution shifts. However, this may depend on the specific shift,
and downstream performance appears to be more severely affected.

An interesting avenue for future work is to continue our systematic investigation of
object-centric learning on more complex data with diverse textures, as well as a wide
range of more challenging downstream tasks. Furthermore, it would be interesting
to compare object-centric and non-object-centric models more fairly: while learning
about objects offers clear advantages, the full potential of distributed representations
in this context is still not entirely clear, particularly when scaling up datasets and
models. Finally, while we limit our study to unsupervised object discovery, it would be
relevant to consider methods that leverage some form of supervision when learning
about objects. We believe our benchmarking library will facilitate progress along
these and related lines of research.



7.6 Conclusions 115

Acknowledgements

We would like to thank Thomas Brox, Dominik Janzing, Sergio Hernan Garrido
Mejia, Thomas Kipf, and Frederik Träuble for useful comments and discussions, and
the anonymous reviewers for valuable feedback.



116



CHAPTER 8
Conclusion

8.1 Summary

The central theme of this thesis is learning representations that reflect the data’s
underlying structure—e.g., by disentangling the ground-truth generative factors of
variation or by separately representing objects in a modular fashion—with little or
no supervision. In particular, we focused on the potential usefulness of these represen-
tations for learning downstream tasks, where models such as classifiers or reinforce-
ment learning agents are trained downstream of pretrained representation functions.
Moreover, learning structured representations holds the promise of better systematic
generalization, which is a significant issue in modern deep learning. In this disserta-
tion, we investigated to what extent this may help in practice.

In the first two papers, we noted that disentanglement has been shown to be bene-
ficial for a variety of purposes, but thorough quantitative studies have so far largely
focused on (1) toy datasets and (2) simple contrived downstream tasks. In Paper I,
we took a step towards a more practically relevant scenario: robotic manipulation.
We proposed a new dataset and showed that fully disentangled representations can be
learned in this more complex setting by using weak supervision and more expressive
neural architectures. We then investigated the role of disentanglement for generaliza-
tion in simple downstream tasks that consist in predicting the ground-truth factors of
variation. In Paper II, we extended this work to challenging robotic tasks, and studied
the relationship between properties of the pretrained representations, the generaliza-
tion of simple downstream tasks, and the generalization of downstream reinforcement
learning agents.
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We found that the the quality of the representations is generally affected by distribu-
tion shifts in the data, largely due to a lack of robustness of the learned representation
function. We called this scenario “OOD2” and showed that training with input noise
is a simple but effective strategy to improve encoder robustness. This is beneficial
both for simple downstream prediction tasks and for more complex robotic manipu-
lation, and allows for zero-shot sim-to-real transfer in both cases. Crucially, we did
not find evidence of other representation properties being particularly helpful for this
generalization scenario.

In contrast, when the representation function is in distribution but the downstream
model is out of distribution, we are effectively testing the OOD generalization of the
downstream model itself because, in this case, the representations can be assumed to
be accurate and meaningful. With this test scenario, which we called “OOD1”, we
want to answer the following question: are there properties of the pretrained represen-
tations that lead downstream models to be generally robust to systematic distribution
shifts? A positive answer comes from Paper I, where we observed that representation
functions that perfectly separate the true factors of variation tend to lead to robust
downstream models for factor prediction (as long as the encoder remains in distribu-
tion). On the other hand, when the representations are not fully disentangled, their
degree of entanglement does not seem to affect downstream generalization.

In the more challenging robotic tasks in Paper II, disentanglement does not seem to
be beneficial for downstream policies. However, we found that, given a pretrained rep-
resentation function, downstream factor predictors and reinforcement learning agents
generalize in similar ways. This can be very convenient in practice: to obtain a down-
stream model that is robust to a specific class of distribution shifts, we can pre-select
promising upstream representation functions using a simpler proxy task where we
mirror the desired generalization scenarios of the target downstream task.

Finally, in Paper III, we considered images with multiple objects and studied the
implications of learning object-centric representations, with a particular focus on gen-
eralization. We observed that object-centric models that successfully separate objects
learn useful representations for simple downstream set-prediction tasks. Regarding
generalization, we found that object-centric models are particularly robust to dis-
tribution shifts that are in some sense related to the compositional structure of an
image—e.g., when the number of objects increases, or when a single object is out of
distribution—while the picture appears less clear when the shifts affect the data in a
less structured manner.
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8.2 Discussion

In this dissertation, we have studied representations that explicitly encode some of the
structure found in the data. Disentangled representations (at least in their traditional
formulation) separate factors of variation; object-centric representations, which are
strictly related to the former, focus on separating objects and are more suitable for
multi-object settings. A typical argument in favor of explicitly representing structure
in this manner is that it should facilitate systematic generalization, thereby narrowing
the gap with human-level intelligence. However, based on the findings and discussions
in this dissertation, a few remarks are in order.

First, while it may generally be true that encoding structure is beneficial for general-
ization, the role of disentanglement appears to depend on both the downstream task
and the downstream model. A relevant direction for future work includes validat-
ing our results on a broader range of representation learning methods, downstream
tasks (e.g., abstract reasoning), and downstream models (e.g., different reinforcement
learning algorithms).

Second, in the multi-object setting, unstructured models (variational autoencoders in
our case) seem to generalize better than expected, although object-centric approaches
still have an edge due to their explicit inductive biases. Since quantitative compar-
isons between these two classes of models are not entirely fair in our setup, future
work should attempt to fill this gap in order to clarify more precisely when and how
structured models are more useful than unstructured ones.

Finally, the argument that structured representations benefit generalization is not nec-
essarily valid when the representation function itself is out of distribution (the OOD2
setting), since in that case it may not even be encoding information correctly. In
fact, we have shown in a variety of settings—both disentanglement and object-centric
learning; both in property prediction and in robotic tasks; and under various distri-
bution shifts—that the main bottleneck for OOD2 generalization is the robustness of
the encoder, rather than the format of the representations it computes. On the other
hand, our study on object-centric learning in Paper III suggests there may be some
useful inductive biases in object-centric models that make them relatively robust to
some distribution shifts (e.g., one OOD object). An interesting avenue for future work
is to systematically investigate these biases. As an orthogonal but related direction,
it would be valuable to study how different choices in the architecture, objective, and
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optimization affect the learning of useful and modular object representations, in order
to discover inductive biases that could enable scaling object-centric learning to real
data with minimal supervision.
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APPENDIX A
Supplementary material for

Chapter 5

A.1 Implementation Details

Training. We train the β-VAEs by maximizing the following objective function:

Lβ
V AE = Eqϕ(z|x)[log pθ(x|z)] − βDKL(qϕ(z|x)∥p(z)) ≤ log p(x)

with β > 0 using the Adam optimizer (Kingma and Ba, 2014) with default parameters.
We use a batch size of 64 and train for 400k steps. The learning rate is initialized
to 1e-4 and halved at 150k and 300k training steps. We clip the global gradient
norm to 1.0 before each weight update. Following Locatello et al. (2019b), we use
a Gaussian encoder with an isotropic Gaussian prior for the latent variable, and a
Bernoulli decoder. Our implementation of weakly supervised learning is based on
Ada-GVAE (Locatello et al., 2020b), but uses a symmetrized KL divergence:

D̃KL(p, q) = 1
2

DKL(p∥q) + 1
2

DKL(q∥p)

to infer which latent dimensions should be aggregated.

The noise added to the encoder’s input consists of two independent components, both
iid Gaussian with zero mean: one is independent for each subpixel (RGB) and has
standard deviation 0.03, the other is a 8×8 pixel-wise (greyscale) noise with standard
deviation 0.15, bilinearly upsampled by a factor of 16. The latter has been designed
(by visual inspection) to roughly mimic observation noise in the real images due to
complex lighting conditions.
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Neural architecture. Architectural details are provided in Tables A.1 and A.2,
and Fig. A.1 provides a high-level overview. In preliminary experiments, we observed
that batch normalization, layer normalization, and dropout did not significantly affect
performance in terms of ELBO, model samples, and disentanglement scores, both in
the unsupervised and weakly supervised settings. On the other hand, layer normaliza-
tion before the posterior parameterization (last layer of the encoder) appeared to be
beneficial for stability in early training. While using an architecture based on residual
blocks leads to fast convergence, in practice we observed that it may be challenging to
keep the gradients in check at the beginning of training.1 In order to solve this issue,
we resorted to a simple scalar gating mechanism in the residual blocks (Bachlechner
et al., 2020) such that each residual block is initialized to the identity.

Datasets and OOD evaluation. Because we evaluate OOD generalization in
terms of cube color hue (except in the sim2real case), we first sampled 8 color hues at
random from the 12 specified in Table 5.1. The chosen hues are: [0◦, 120◦, 150◦, 180◦,

210◦, 270◦, 300◦, 330◦]. Then, the dataset D used for training VAEs is generated by
randomly sampling values for the factors of variation from Table 5.1, with the color
hue restricted to the above-mentioned values. This makes OOD2 evaluation possi-
ble, specifically OOD2-A where the learned predictors are tested on representations
extracted from images with held-out values of the cube hue.

For evaluation of out-of-distribution generalization, we train the downstream predic-
tors on a subset D1 ⊂ D of the representation training set. The downstream training
set D1 is sampled at random from D but only contains a (not necessarily proper) sub-
set of the 8 cube colors. This subset contains 1 color in the OOD1-A case, 4 colors
in OOD1-B and OOD1-C, all 8 colors in OOD2 (in this case D1 is simply a random
subset of D). Then we test the downstream predictors on a set D2 distributionally
different from D1 in terms of cube color (all OOD1 scenarios as well as OOD2-A) or
sim2real (OOD2-B). In the OOD1 case, D2 is also a subset of D and is generated the
same way. In each OOD1 case, the test set D2 is paired with its corresponding D1

that was used to train the downstream predictors. D2 contains all colors in D minus
those in D1. In the OOD2-A case, D2 is a separate dataset containing 5k simulated
images like those in D, except that these only contain the 4 colors that were left out
from the VAE training set D (hue in [30◦, 60◦, 90◦, 240◦]). In the OOD2-B case, the

1This instability may also be exacerbated in probabilistic models by the sampling step in latent
space, where a large log variance causes the decoder input to take very large values. Intuitively,
this might be a reason why layer normalization before latent space appears to be beneficial for
training stability.
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set D2 is the dataset of real images. Following previous work (e.g. the GBT10000
metric in Locatello et al. (2019b)), the training set D1 and test set D2 for downstream
tasks contain 10k and 5k images, respectively, except in the OOD2-B case, where the
size is limited by the size of the real dataset.
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Table A.1. Encoder (left) and decoder (right) architectures. The latent space dimension-
ality is denoted by d, and K = 3 indicates the number of image channels. Last line in
the encoder architecture: the fully connected layer parameterizing the log variance of the
approximate posterior distributions of the latent variables has custom initialization. The
weights are initialized with 1/10 standard deviation than the default value, and the biases
are initialized to −1 instead of 0. Empirically, this together with (learnable) LayerNorm
was beneficial for training stability at the beginning of training.

Encoder
Operation Output Shape
Input 128×128×K
Conv 5x5, stride 2, 64 ch. 64×64×64
LeakyReLU(0.02) —
2x ResidualBlock(64) —
Conv 1x1, 128 channels 64×64×128
AveragePool(2) 32×32×128
2x ResidualBlock(128) —
AveragePool(2) 16×16×128
2x ResidualBlock(128) —
Conv 1x1, 256 channels 16×16×256
AveragePool(2) 8×8×256
2x ResidualBlock(256) —
AveragePool(2) 4×4×256
2x ResidualBlock(256) —
Flatten 4096
LeakyReLU(0.02) —
FC(512) 512
LeakyReLU(0.02) —
LayerNorm —
2x FC(d) 2d

Decoder
Operation Output Shape
Input d
FC(512) 512
LeakyReLU(0.02) —
FC(4096) 4096
Reshape 4×4×256
2x ResidualBlock(256) —
BilinearInterpolation(2) 8×8×256
2x ResidualBlock(256) —
Conv 1x1, 128 channels 8×8×128
BilinearInterpolation(2) 16×16×128
2x ResidualBlock(128) —
BilinearInterpolation(2) 32×32×128
2x ResidualBlock(128) —
Conv 1x1, 64 channels 32×32×64
BilinearInterpolation(2) 64×64×64
2x ResidualBlock(64) —
BilinearInterpolation(2) 128×128×64
LeakyReLU(0.02) —
Conv 5x5, K channels 128×128×K

Table A.2. Architecture of a residual block. The scalar gate is implemented by multiplying
the tensor by a learnable scalar parameter before adding it to the block input. Initializing the
residual block to the identity by setting this parameter to zero has been originally proposed
by Bachlechner et al. (2020). The tensor shape is constant throughout the residual block.

Residual Block
Input: shape H×W ×C
LeakyReLU(0.02)
Conv 3x3, C channels
LeakyReLU(0.02)
Conv 3x3, C channels
Scalar gate
Sum with input
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Figure A.1. Schemes of the encoder (top) and decoder (bottom) architectures. In both
schemes, information flows left to right. Blue blocks represent convolutional layers: those
labeled “conv” have 5x5 kernels and stride 2, while those labeled “1x1” have 1x1 kernels.
Each orange block represents a pair of residual blocks (implementation details of a residual
block are provided in Table A.2). Green blocks in the encoder represent average pooling with
stride 2, and those in the decoder denote bilinear upsampling by a factor of 2. Red blocks
represent fully-connected layers. The block labeled “norm” indicates layer normalization.
Dashed lines denote tensor reshaping.
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A.2 Additional Results

A.2.1 Dataset Correlations

Figure A.2. Feasible states of the 2nd and 3rd DoF when the angle of the 1st DoF is 0.
Angles are in radians.

Figure A.3. Density of feasible states of 2nd and 3rd DoF over the whole training dataset.
Darker shades of blue indicate regions of higher density. Angles are in radians.
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A.2.2 Samples and Reconstructions

Figure A.4. Samples generated by a trained model (selected based on the ELBO).

Figure A.5. Input reconstructions by a trained model. This model was selected based on
the ELBO. Image inputs are on odd columns, reconstructions on even columns.
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A.2.3 Latent Traversals

Figure A.6. From top to bottom: latent traversals for a model with low (0.15), medium
(0.5), and high (1.0) DCI score.
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A.2.4 Unsupervised Metrics and Disentanglement

Figure A.7. Scatter plots of unsupervised metrics (left: ELBO; right: reconstruction
loss) vs disentanglement (top: MIG; bottom: DCI) for 1,080 trained models, color-coded
according to supervision. Each point represents a trained model.
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A.2.5 Out-of-Distribution Transfer

Figure A.8. Transfer metric in OOD2-A (top) and OOD2-B (bottom) settings, decomposed
according to the factor of variation and presence of input noise. When noise is added to
the input during training, the inferred cube position error is relatively low (the scores are
the mean absolute error, and they are normalized to [0, 1]). This is particularly useful in
the OOD2-B setting (real world) where the joint state is anyway considered known, while
object position has to be inferred with tracking methods.
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A.2.6 Out-of-Distribution Reconstructions

Figure A.9. From top to bottom: reconstructions of real-world images (OOD2-B) for a
model with low (0.15), medium (0.5), and high (1.0) DCI score.
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Figure A.10. Reconstructions of simulated images with out-of-distribution encoder (OOD2-
A) for a model with low (0.15), medium (0.5), and high (1.0) DCI score.
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B.1 Implementation details

Task definitions and reward structure. We derive both tasks, object reaching
and pushing, from the CausalWorld environments introduced by Ahmed et al. (2021).
We pretrain representations on the dataset introduced by Dittadi et al. (2021b), and
allow only one finger to move in our RL experiments. We introduce the object reaching
environment that involves an unmovable cube. We used reward structures similar to
those in Ahmed et al. (2021):

• object reaching: rt = −750 [d(gt, et) − d(gt−1, et−1)]

• pushing: rt = −750 [d(ot, et) − d(ot−1, et−1)]−250 [d(ot, gt) − d(ot−1, gt−1)]+ρt

where t denotes the time step, ρt ∈ [0, 1] is the fractional overlap with the goal cube
at time t, et ∈ R3 is the end-effector position, ot ∈ R3 the cube position, gt ∈ R3 the
goal position, and d(·, ·) denotes the Euclidean distance. The cube in object reaching
is fixed, i.e. ot = gt for all t. The time limit is 2 seconds in object reaching and 4
seconds in pushing.

Success metrics. Besides the accumulated reward along episodes, that is deter-
mined by the reward function, we also report two reward-independent normalized
success definitions for better interpretability: In object reaching, the success metric
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indicates progress from the initial end effector position to the optimal distance from
the center of the cube. It is 0 if the final distance is greater than or equal to the
initial distance, and 1 if the end effector is touching the center of a face of the cube.
In pushing, the success metric is defined as the volumetric overlap of the cube with
the goal cube, and the task can be visually considered solved with a score around
80%. We observed that accumulated reward and success are very strongly correlated,
thus allowing us to use one or the other for measuring performance.

Training and evaluation details. During training, the goal position is randomly
sampled at every episode. Similarly, the object color is sampled from the 4 specified
training colors from D1 that correspond to the OOD1-B split from Dittadi et al.
(2021b).

For each policy evaluation (in-distribution and out-of-distribution variants), we av-
erage the accumulated reward and final success over 200 episodes with randomly
sampled cube positions and the respective object color in both tasks.

SAC implementation. Our implementation of SAC builds on stable-baselines,
a Python package introduced by Hill et al. (2018). We use the same SAC hyperpa-
rameters used for pushing in Ahmed et al. (2021). When using L1 regularization,
we add to the loss function the L1 norm of the first layers of all MLPs, scaled by
a coefficient α. We gradually increase regularization by linearly annealing α from 0
to 5 · 10−7 over 200,000 time steps in object reaching, and from 0 to 6 · 10−8 over
3,000,000 time steps in pushing.

B.2 Additional results

B.2.1 Training environment

Fig. 6.2 in Section 6.4.1 shows correlations of unsupervised and supervised metrics
with in-distribution reward for object reaching and pushing, only in the case without
regularization. In Fig. B.1 we also show these results in the case with regularization,
as well as when adjusting for MLP informativeness.
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Figure B.1. Rank correlations between metrics and in-distribution reward, with and with-
out adjusting for informativeness. Correlations are color-coded as described in Fig. 6.2.

B.2.2 Out-of-distribution generalization in simulation

In Section 6.4.2 we discussed rank-correlations of OOD rewards with unsupervised,
informativeness and generalization scores on object reaching without regularization.
In Fig. B.2 we also show these results for the case with regularization and on push-
ing, as well as when adjusting for MLP informativeness. Without regularization, we
observe on pushing very similar correlations along all metrics as we observed on ob-
ject reaching, confirming our conclusions on this more complex task. When using
regularization, rank correlations are very similar across both tasks. Interestingly, the
correlation between GS-OOD2 scores and OOD2 generalization of the policy is even
stronger when using L1 regularization. In contrast to our observations without regu-
larization, we find that the correlation between GS-OOD1 and OOD1 generalization
of the policy vanishes when adjusting for the MLP metric.

B.2.2.1 Disentangled representations

As discussed in Section 6.4.2 for object reaching without regularization, we observe in
Fig. B.2 a weak correlation between some disentanglement metrics and OOD1 reward,
which however vanishes when adjusting for MLP informativeness. In agreement with
Dittadi et al. (2021b), we observe no significant correlation between disentanglement
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Figure B.2. Rank correlations between metrics and OOD reward, with and without ad-
justing for informativeness. Correlations are color-coded as described in Fig. 6.2.

and OOD2 generalization, for both tasks, with and without regularization. From
Fig. B.3 we see that in some cases, especially without regularization, a very high
DCI score seems to lead to better performance on average. However, this behavior
is not significant (within error bars), as opposed to the results shown in simpler
downstream tasks by Dittadi et al. (2021b). Furthermore, this trend is likely due to
representation informativeness, since the correlations with disentanglement disappear
when adjusting for the MLP score, as discussed above.

B.2.2.2 Regularization

As seen in Fig. B.3, regularization generally has a positive effect on OOD1 and OOD2
generalization, which is particularly prominent in the OOD1 setting. On the other
hand, it leads to lower training rewards both in object reaching and in pushing. In
the latter, the performance drop is particularly significant, while in object reaching it
is negligible.
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Figure B.3. Fractional success on object reaching (top) and pushing (bottom), split
according to low (blue), medium-high (orange), and almost perfect (green) disentanglement.
Results for object reaching are also reported in Fig. 6.5 in Section 6.4.2.

B.2.2.3 Sample efficiency

In addition to the analysis reported in the main paper, we investigate how represen-
tation properties affect sample efficiency. Specifically, we store checkpoints of our
policies at t ∈ {20k, 50k, 100k, 400k} for object reaching and t ∈ {200k, 500k, 1M, 3M}
for pushing. We then evaluate policies at these time step on the same three environ-
ments as before: (1) on the cube colors from training; (2) on the OOD1 cube colors;
and (3) on the OOD2-sim cube colors. Results are summarized in Fig. B.4 for object
reaching and Fig. B.5 for pushing.

On object reaching (Fig. B.4), we observe very similar trends with and without regular-
ization: Unsupervised metrics (ELBO and reconstruction loss) display a correlation
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Figure B.4. Sample efficiency analysis for object reaching. Rank correlations of rewards
with relevant metrics along multiple time steps. Correlations are color-coded as described
in Fig. 6.2.

Figure B.5. Sample efficiency analysis for pushing. Rank correlations of rewards with
relevant metrics along multiple time steps. Correlations are color-coded as described in
Fig. 6.2.

with the training reward, as do the supervised informativeness metrics (GBT and
MLP). This is strongest on early timesteps, meaning these scores could be important
for sample efficiency. Similarly, we observe a correlation with the disentanglement
scores DCI, MIG and SAP. With the help of the additional evaluation of rewards
adjusted for MLP informativeness, we can attribute this correlation again to this
common confounder. Crucially, we see that the generalization scores (GS) are corre-
lated with generalization of the corresponding policies under OOD1 and OOD2 shifts
for all recorded time steps, confirming the results in the main text.
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On pushing (Fig. B.5), many correlations at early checkpoints are significantly re-
duced, especially with regularization. This behavior might be due to the more com-
plicated nature of the task, which involves learning to reach the cube first, and then
push it to the goal. Correlations are primarily seen towards the end of training, with
similar spurious correlations with disentanglement as elaborated above. Importantly,
correlations between generalization scores (GS) and policy generalization under the
same distribution shifts remain strong and statistically significant, corroborating the
analysis in the main text.

B.2.2.4 Generalization to a novel shape

As mentioned in Section 6.4.2, on the object reaching task, we also test generalization
w.r.t. a novel object shape by replacing the cube with an unmovable sphere. This
corresponds to a strong OOD2-type shift, since shape was never varied when training
the representations. We then evaluate a subset of 960 trained policies as before, with
the same color splits. Surprisingly, the policies appear to handle the novel shape as
we see from the histograms in Fig. B.6 in terms of success and final distance. In fact,
when the sphere has the same colors that the cube had during policy training, all
policies get closer than 5 cm to the sphere on average, with a mean success metric of
about 95%. On sphere colors from the OOD1 split, more than 98.5% move the finger
closer than this threshold, and on the strongest distribution shift (OOD2-sim colors
and cube replaced by sphere) almost 70% surpass that threshold with an average
success metric above 80%.

B.2.3 Deploying policies to the real world

In Fig. B.7 we show three representative episodes of testing a reaching policy on the
real robot for the strong OOD shift with a novel sphere object shape instead of the
cube from training. We present the respective videos in the project page. There we
also present videos of additional real-world episodes on pushing and reaching cubes
of different colors.
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Figure B.6. Testing policies for object reaching under the same in-distribution, OOD1,
and OOD2 evaluation protocols regarding object color in simulation, but replacing the cube
with a sphere, which was never used in training.

Figure B.7. Transferring policies for object reaching to the real robot setup without any
fine-tuning on a green sphere (unseen shape and color). Correlations are color-coded as
described in Fig. 6.2.



APPENDIX C
Supplementary material for

Chapter 7

C.1 Models

In this section, we give an informal overview of the models included in this study and
provide details on the implementation and hyperparameter choices.

C.1.1 Overview of the models

MONet. In MONet (Burgess et al., 2019), attention masks are computed by a
recurrent segmentation network that takes as input the image and the current scope,
which is the still unexplained portion of the image. For each slot, a variational
autoencoder (the component VAE) encodes the full image and the current attention
mask, and then decodes the latent representation to an image reconstruction and
mask. The reconstructed images are combined using the attention masks (not the
masks decoded by the component VAE) into the final reconstructed image. The
reconstruction loss is the negative log-likelihood of a spatial Gaussian mixture model
(GMM) with one component per slot, where each pixel is modeled independently. The
overall training loss is a (weighted) sum of the reconstruction loss, the KL divergence
of the component VAEs, and an additional mask reconstruction loss for the component
VAEs.
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GENESIS. Similarly to MONet, GENESIS (Engelcke et al., 2020) models each
image as a spatial GMM. The spatial dependencies between components are modeled
by an autoregressive prior distribution over the latent variables that encode the mix-
ing probabilities. From the image, an encoder and a recurrent network are used to
compute the latent variables that are then decoded into the mixing probabilities. The
mixing probabilities are pixel-wise and can be seen as attention masks for the image.
Each of these is concatenated with the original image and used as input to the compo-
nent VAE, which finds latent representations and reconstructs each scene component.
These are combined using the mixing probabilities to obtain the reconstruction of
the image. While in MONet the attention masks are computed by a deterministic
segmentation network, GENESIS defines an autoregressive prior on latent codes that
are decoded into attention masks. GENESIS is therefore a proper probabilistic gener-
ative model, and it is trained by maximizing a modification of the ELBO introduced
by Rezende and Viola (2018), which adaptively trades off the likelihood and KL terms
in the ELBO.

Slot Attention. As our focus is on the object discovery task, we use the autoen-
coder model proposed in the Slot Attention paper (Locatello et al., 2020d). The
encoder consists of a CNN followed by the Slot Attention module, which maps the
feature map to a set of slots through an iterative refinement process. At each it-
eration, dot-product attention is computed with the input vectors as keys and the
current slot vectors as queries. The attention weights are then normalized over the
slots, introducing competition between the slots to explain the input. Each slot is
then updated using a GRU that takes as inputs the current slot vectors and the nor-
malized attention vectors. After the refinement steps, the slot vectors are decoded
into the appearance and mask of each object, which are then combined to reconstruct
the entire image. The model is optimized by minimizing the MSE reconstruction loss.
While MONet and GENESIS use sequential slots to represent objects, Slot Attention
employs instance slots.

SPACE. Spatially Parallel Attention and Component Extraction (SPACE) (Lin
et al., 2020b) combines the approaches of scene-mixture models and spatial atten-
tion models. The foreground objects are segregated using bounding boxes computed
through a parallel spatial attention process. The parallelism allows for a larger num-
ber of bounding boxes to be processed compared to previous related approaches. The
background elements are instead modeled by a mixture of components. The use of
bounding boxes for the foreground objects could lead to under- or over-segmentation
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if the size of the bounding box is not tuned appropriately. An additional boundary
loss tries to address the over-segmentation issue by penalizing splitting objects across
bounding boxes.

VAE baselines. We train variational autoencoders (VAEs) (Kingma and Welling,
2014; Rezende, Mohamed, and Wierstra, 2014) as baselines that learn distributed
representations. Following Greff et al. (2019), we use two different decoder architec-
tures: one consisting of an MLP followed by transposed convolutions, and one where
the MLP is replaced by a broadcast decoder (Watters et al., 2019). The VAEs are
trained by maximizing the usual variational lower bound (ELBO).

C.1.2 Implementation details

We implement our library in PyTorch (Paszke et al., 2019). All models are either
re-implemented or adapted from available code, and quantitative results from the lit-
erature are reproduced, when available. As shown in Table C.1, all methods included
in our study were originally evaluated only on a subset of the datasets considered in
our study. Thus, the recommended hyperparameters for a given model are likely to
be suboptimal in the datasets on which such model was not evaluated. When a model
performed particularly bad on a dataset, we attempted to find better hyperparameter
values for the sake of the soundness of our study. We provide implementation and
training details for each model below.

MONet. We re-implement MONet following the implementation details in Burgess
et al. (2019). In order to make this model work satisfactorily on Shapestacks and

Table C.1. Datasets used for quantitative and/or qualitative evaluation in the publications
corresponding to the four object-centric models considered in this study. Here we train and
evaluate all models on all datasets.

CLEVR Multi-dSprites Objects Room Shapestacks Tetrominoes
MONet ✓ ✓∗ ✓
Slot Attention ✓ ✓ ✓
GENESIS ✓∗ ✓ ✓
SPACE
∗These publications use a variant of Multi-dSprites with colored background as opposed to grayscale.
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Tetrominoes—the two datasets where MONet was not originally tested—we ran a
grid search over hyperparameters on both datasets, as follows:

• Optimizer: Adam or RMSprop, both with default PyTorch parameters.

• β ∈ {0.1, 0.5}.

• Learning rate in {3e-5, 1e-4}.

• (σbg, σfg) ∈ {(0.06, 0.1), (0.12, 0.18), (0.2, 0.24), (0.25, 0.3), (0.3, 0.36)}.

A summary of the final hyperparameter choices is shown in Table C.2.

Slot Attention. We re-implement the Slot Attention autoencoder based on the
official TensorFlow implementation and the corresponding publication (Locatello et
al., 2020d). We mostly use the recommended hyperparameter values and learning
rate schedule. On Objects Room and Shapestacks, we use the same parameters as for
Multi-dSprites, which has the same resolution. On CLEVR, we make a few changes
to accommodate the larger image size. For the decoder, we follow the approach in
Locatello et al. (2020d) and use the broadcast decoder from a broadcasted shape of
8 × 8 rather than 128 × 128, and use four times a stride of 2 in the decoder. For the
encoder, we follow the set prediction architecture in Locatello et al. (2020d) and use
two strides of 2 in the encoder. Finally, we use a batch size of 32 rather than 64.

Table C.2. Overview of the main hyperparameter values for MONet. When dataset-specific
values are not given, the defaults are used.

Hyperparameter Default value Dataset-specific values
CLEVR Shapestacks Tetrominoes

Optimizer Adam RMSprop RMSprop —
Learning rate 1e-4 3e-5 — —
Batch size 64 32 — —
Training steps 500k — — —
σbg 0.06 — 0.2 0.3
σfg 0.1 — 0.24 0.36
β 0.5 — 0.1 —
γ 0.5 — — —
Latent space size 16 — — —
U-Net blocks 5 6 — 4



Appendix C.1 Models 147

GENESIS. We re-implement GENESIS based on the official implementation and
the corresponding publication (Engelcke et al., 2020), and use the recommended hy-
perparameter values. On Objects Room, we use the same hyperparameters as de-
scribed in the paper for Multi-dSprites and Shapestacks, which have the same resolu-
tion. On CLEVR, which has 128 × 128 images, we use an additional stride of 2 in the
convolutional layer at the middle of both encoder and decoder (the output padding
in the decoder is adjusted accordingly). In this case we also reduce the batch size
from 64 to 32. On Tetrominoes (32 × 32 images), we change the first stride in the
encoder and the last stride in the decoder from 2 to 1.

SPACE. We adapt the official PyTorch implementation of SPACE to integrate it in
our library. While in Lin et al. (2020b) the authors train SPACE for 160k steps, here
we train it for 200k. Since SPACE was not tested on any of the five datasets considered
here (see Table C.1), we perform a hyperparameter sweep for all datasets. For each
dataset, we run a random search over hyperparameters by training 100 models for
100k steps. Table C.3 shows the random search definition, the hyperparameter values
used for each dataset, and how they differ from those used in the original publication
for the 3D-Rooms dataset (although we omit some hyperparameters that we leave
unchanged).

VAEs. The architecture details for the VAEs are presented in Tables C.4 to C.6.
These are used for Shapestacks, Multi-dSprites, and Objects Room. For CLEVR, an
additional ResidualBlock with 64 channels and a AvgPool2D layer is added at the
end of the stack of ResidualBlocks, to downsample the image one more time. This
is mirrored in the decoder, where a ResidualBlock with 256 channels and a (bilinear)
Interpolation layer is added at the beginning of the stack of ResidualBlocks. The
same happens in the broadcast decoder case. For Tetrominoes, the number of layers
is the same, but the last AvgPool2D layer is removed from the encoder and the first
Interpolation layer is removed from the decoder, to have one less downsampling and
upsampling, respectively. The latent space size is chosen to be 64 times the number of
slots that would be used when training an object-centric model on the same dataset.
Note that the default number of slots varies depending on the dataset, as shown in
Table C.7.1

1Here we consider the default for MONet, Slot Attention, and GENESIS, and we disregard SPACE.
Although SPACE has a much larger number of slots, this is not comparable with the other models
because of the grid-based spatial attention mechanism.
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Table C.3. Hyperparameters for SPACE experiments. Here we show: the hyperparameters
recommended by Lin et al. (2020b) for the 3D-Rooms dataset on the official code reposi-
tory; the hyperparameter space considered for our random search; the chosen default values
across datasets; the dataset-specific values for CLEVR and Tetrominoes, which override
the defaults. We omit some of the hyperparameters that we left unchanged from Lin et al.
(2020b).

Hyperparameter Original
(3D-Rooms) Sweep values Default value Dataset-specific values

CLEVR Tetrominoes
FG optimizer RMSprop RMSprop RMSprop — —
FG learning rate 1e-5 {3e-6, 1e-5, 3e-5, 1e-4} 3e-5 1e-4 1e-4
BG optimizer Adam Adam Adam — —
BG learning rate 1e-3 1e-3 1e-3 — —
Batch size 12 {16, 32} 32 — —
σbg 0.15 {0.05, 0.15, 0.35} 0.15 0.05 —
σfg 0.15 {0.02, 0.05, 0.15, 0.35} 0.15 0.05 —
G (FG grid size) 8 {4, 8} 8 — 4
K (BG n. of slots) 5 {1, 5} 5 — —
Boundary loss off step 100k {20k, 100k} 20k — 100k
τ anneal end step 20k {20k, 50k} 50k 20k —
Mean of p(zpres)
(start/end values) (0.1, 0.01) {(0.1, 0.01), (0.5, 0.05)} (0.5, 0.05) (0.1, 0.01) (0.1, 0.01)

Mean of p(zscale)
(start/end values) (−1, −2) {(−1, −2), (0, −1)} (0, −1) — —
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Table C.4. Structure of the encoder for both the vanilla and broadcast VAE, excluding
the final linear layer that parameterizes µ and log σ2 of the approximate posterior.

Encoder
Type Size/Ch. Notes
Input: x 3
Conv 5 × 5 Stride 2, Padding 2
LeakyReLU

Residual Block 64 2 Conv layers
Residual Block 64 2 Conv layers
Conv 1 × 1 128
AvgPool2D Kernel size 2, Stride 2

Residual Block 128 2 Conv layers
Residual Block 128 2 Conv layers
AvgPool2D Kernel size 2, Stride 2

Residual Block 128 2 Conv layers
Residual Block 128 2 Conv layers
Conv 1 × 1 256

Residual Block 256 2 Conv layers
Residual Block 256 2 Conv layers

Flatten
LeakyReLU
Linear 512
LeakyReLU
LayerNorm
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Table C.5. Structure of the decoder for the vanilla VAE.

Vanilla Decoder
Type Size/Ch. Notes
Input: z 64× num. slots
LeakyReLU
Linear 512
LeakyReLU
Unflatten

Residual Block 256 2 Conv layers
Residual Block 256 2 Conv layers
Conv 1 × 1 128
Interpolation Scale 2

Residual Block 128 2 Conv layers
Residual Block 128 2 Conv layers
Interpolation Scale 2

Residual Block 128 2 Conv layers
Residual Block 128 2 Conv layers
Conv 1 × 1 64
Interpolation Scale 2

Residual Block 64 2 Conv layers
Residual Block 64 2 Conv layers
Interpolation Scale 2

LeakyReLU
Conv 5 × 5 Image channels Stride 1, Padding 2
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Table C.6. Structure of the decoder for the broadcast VAE. One less Interpolation is
required, because the final image size for this architecture is 64 and the broadcasting is to a
feature map of size 8.

Broadcast Decoder
Type Size/Ch. Notes
Input: z 64× num. slots
Broadcast 64× num. slots +2 Broadcast dim. 8

Residual Block 256 2 Conv layers
Residual Block 256 2 Conv layers
Conv 1 × 1 128

Residual Block 128 2 Conv layers
Residual Block 128 2 Conv layers
Interpolation Scale 2

Residual Block 128 2 Conv layers
Residual Block 128 2 Conv layers
Conv 1 × 1 64
Interpolation Scale 2

Residual Block 64 2 Conv layers
Residual Block 64 2 Conv layers

LeakyReLU
Conv 5 × 5 Image channels Stride 1, Padding 2
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C.2 Datasets

We collected 5 existing multi-object datasets and converted them into a common
format. Multi-dSprites, Objects Room and Tetrominoes are from DeepMind’s Multi-
Object Datasets collection, under the Apache 2.0 license (Kabra et al., 2019). CLEVR
was originally proposed by Johnson et al. (2017), with segmentation masks intro-
duced by Kabra et al. (2019). Shapestacks was proposed by Groth et al. (2018) under
the GPL 3.0 license. Details on these datasets are provided in the following sub-
sections. See Fig. C.1 for sample images and ground-truth segmentation masks for
these datasets. In Table C.7, we report dataset splits, number of foreground and
background objects, and number of slots used when training object-centric models.

C.2.1 CLEVR

This dataset consists of 128 × 128 images of 3D scenes with up to 10 objects, possibly
occluding each other. Objects can have different colors (8 in total), materials (rubber
or metal), shapes (sphere, cylinder, cube), sizes (small or large), x and y positions,
and rotations. Objects can be occluded by others. On average, 6.2 objects are visible.
As in previous work (Greff et al., 2019; Locatello et al., 2020d), we learn object-
centric representations on the CLEVR6 variant, which contains at most 6 objects.
There are 100 000 samples in the full dataset, and 53 483 in the CLEVR6 variant (at
most 6 objects). The CLEVR dataset has been cropped and resized according to the
procedure detailed originally by Burgess et al. (2019).

Each object is annotated with the following properties:

• color (categorical): 8 colors:
– Red. RGB:[173, 35, 35]

– Cyan. RGB:[41, 208, 208]

– Green. RGB:[29, 105, 20]

– Blue. RGB:[42, 75, 215]

– Brown. RGB:[129, 74, 25]

– Gray. RGB:[87, 87, 87]

– Purple. RGB:[129, 38, 192]
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– Yellow. RGB:[255, 238, 51]

• material (categorical): The material of the object: rubber or metal.
• shape (categorical): The shape of the object: sphere, cylinder or cube.
• size (categorical): The size of the object: small or large.
• x (numerical): The x coordinate in 3D space.
• y (numerical): The y coordinate in 3D space.

C.2.2 Multi-dSprites

This dataset is based on the dSprites dataset (Matthey et al., 2017). Following
previous work (Greff et al., 2019; Locatello et al., 2020d), we use the Multi-dSprites
variant with colored sprites on a grayscale background. Each scene has 2–5 objects
with random shapes (ellipse, square, heart), sizes (6 discrete values in [0.5, 1]), x and
y position, orientation, and color (randomly sampled in HSV space). Objects can
occlude each other. The intensity of the uniform grayscale background is randomly
sampled in each image. Images have size 64 × 64.

Each object is annotated with the following properties:

• color (numerical): 3-dimensional RGB color vector.
• scale (numerical): Scaling of the object, 6 uniformly spaced values between

0.5 and 1.
• shape (categorical): The shape type of the object (ellipse, heart, square).
• x (numerical): Horizontal position between 0 and 1.
• y (numerical): Vertical position between 0 and 1.

C.2.3 Objects Room

This dataset was originally introduced by Eslami et al. (2018) and consists of 64 × 64
images of 3D scenes with up to three objects. Since this dataset includes masks
but no labels for the object properties, we can use it only to evaluate segmentation
performance.
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Figure C.1. Examples of images from the datasets considered in this work. The leftmost
column represents the original image, the other columns show all the objects in the scene ac-
cording to the ground-truth segmentation masks. Top to bottom: CLEVR6, Multi-dSprites,
Objects Room, Shapestacks, Tetrominoes.
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Table C.7. Dataset splits, number of foreground and background objects, and number of
slots used when training object-centric models.

Dataset Name Train Validation Test Background Foreground Slots
Size Size Size Objects Objects

CLEVR6 49483 2000 2000 1 3–6 7∗

Multi-dSprites 90000 5000 5000 1 2–5 6∗

Objects Room 90000 5000 5000 4 1–3 7∗

Shapestacks 90000 5000 5000 1 2–6 7∗

Tetrominoes 90000 5000 5000 1 3 4†

∗In SPACE we use 69 slots: 5 background slots, and a grid of 8 × 8 foreground slots.
†In SPACE we use 21 slots: 5 background slots, and a grid of 4 × 4 foreground slots.

C.2.4 Shapestacks

This dataset consists of 64×64 images of 3D scenes where objects are stacked to form
a tower. Each scene is available under different camera views. Object properties are
shape (cube, cylinder, sphere), color (6 possible values), size (numerical) and ordinal
position in the stack.

Each object is annotated with the following properties:

• shape (categorical): shape of the object: cylinder, sphere or cuboid.
• color (categorical): 6 colors:

– Blue. RGB:[0, 0, 255]

– Green. RGB:[0, 255, 0]

– Cyan. RGB:[0, 255, 255]

– Red. RGB:[255, 0, 0]

– Purple. RGB:[255, 0, 255]

– Yellow. RGB:[255, 255, 0]

C.2.5 Tetrominoes

This dataset consists of 32×32 images (cropped from the original 35×35 for simplicity)
of 3D-textured tetris pieces placed on a black background. There are always 3 objects
in a scene, and no occlusions. Objects have different shapes (19 in total), colors (6
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fully saturated colors), x and y position.

Each object is annotated with the following properties:

• shape (categorical): 19 shapes:
– Horizontal I piece.
– Vertical I piece.
– L piece pointing downward.
– J piece pointing upward.
– L piece pointing upward.
– J piece pointing downward.
– L piece pointing left.
– J piece pointing left.
– J piece pointing right.
– L piece pointing right.
– Horizontal Z piece.
– Horizontal S piece.
– Vertical Z piece.
– Vertical S piece.
– T piece pointing upward.
– T piece pointing downward.
– T piece pointing left.
– T piece pointing right.
– O piece.

• color (categorical): 6 colors:
– Blue. RGB:[0, 0, 255]

– Green. RGB:[0, 255, 0]

– Cyan. RGB:[0, 255, 255]

– Red. RGB:[255, 0, 0]

– Purple. RGB:[255, 0, 255]

– Yellow. RGB:[255, 255, 0]

• x (numerical): Horizontal position.
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• y (numerical): Vertical position.

C.3 Evaluations

In this section, we discuss in more detail the chosen reconstruction and segmentation
metrics (Appendix C.3.1), provide implementation details on the downstream prop-
erty prediction task (Appendix C.3.2), and more closely examine the distribution
shifts considered in this study (Appendix C.3.3).

C.3.1 Reconstruction and segmentation metrics

Mean reconstruction error. Since all models in this study are autoencoders, we
can use the reconstruction error to This is potentially an informative metric as it
should roughly indicate the amount and accuracy of information captured by the
models and present in the representations. All models include some form of recon-
struction term in their losses, but they may take different forms. We then choose to
evaluate the reconstruction error with the mean squared error (MSE), defined for an
image x and its reconstruction x̂ as follows:

MSE (x, x̂) = ∥x − x̂∥2
2 = 1

D

D∑
i=1

(xi − x̂i)2 (C.1)

where for simplicity we assume a vector representation of x and x̂, both with dimen-
sion D equal to the number of pixels times the number of color channels.

Adjusted Rand Index (ARI). The Adjusted Rand Index (ARI) (Hubert and
Arabi, 1985) measures the similarity between two partitions of a set (or clusterings).
Interpreting segmentation as clustering of pixels, the ARI can be used to measure the
degree of similarity between two sets of segmentation masks. Segmentation accuracy
is then assessed by comparing ground-truth and predicted masks. The expected
value of the ARI on random clustering is 0, and the maximum value is 1 (identical
clusterings up to label permutation). As in prior work (Burgess et al., 2019; Engelcke
et al., 2020; Locatello et al., 2020d), we only consider the ground-truth masks of
foreground objects when computing the ARI. Below, we define the Rand Index and
the Adjusted Rand Index in more detail.
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The Rand Index is a symmetric measure of the similarity between two partitions
of a set (Hubert and Arabi, 1985; Rand, 1971; Wagner and Wagner, 2007). It is
inspired by traditional classification metrics that compare the number of correctly
and incorrectly classified elements. The Rand Index is defined as follows: Let S be a
set of n elements, and let A = {A1, . . . , AnA

} and B = {B1, . . . , BnB
} be partitions

of S. Furthermore, let us introduce the following quantities:

• m11: number of pairs of elements that are in the same subset in both A and B,

• m00: number of pairs of elements that are in different subsets in both A and B,

• m10: number of pairs of elements that are in the same subset in A and in
different subsets in B,

• m01: number of pairs of elements that are in different subsets in A and in the
same subset in B.

The Rand Index is then given by:

RI(A, B) =
m11 + m00

m11 + m00 + m10 + m01
=

2(m11 + m00)
n(n − 1)

(C.2)

and quantifies the number of elements that have been correctly classified over the
total number of elements.

The Rand Index ranges from 0 (no pair classified in the same way under A and B)
to 1 (A and B are identical up to a permutation). However, the result is strongly
dependent on the number of clusters and on the number of elements in each cluster.
If we fix nA, nB , and the proportion of elements in each subset of the two partitions,
then the Rand Index will increase as n increases, and even converge to 1 in some
cases (Fowlkes and Mallows, 1983). The expected value of a random clustering also
depends on the number of clusters and on the number of elements n.

The Adjusted Rand Index (ARI) (Hubert and Arabi, 1985) addresses this issue by
normalizing the Rand Index such that, with a random clustering, the metric will be
0 in expectation. Given the same conditions as above, let ni,j = |Ai ∩ Bj |, ai = |Ai|,
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and bi = |Bi|, with i = 1, . . . , nA and i = 1, . . . , nB . The ARI is then defined as:

ARI(A, B) =

∑
i,j

(
ni,j

2
)

−
∑

i

(
ai

2
) ∑

j

(
bj

2
)(

n
2
)

1
2

[∑
i

(
ai

2
)

+
∑

j

(
bj

2
)]

−
∑

i

(
ai

2
) ∑

j

(
bj

2
)(

n
2
) (C.3)

which is 0 in expectation for random clusterings, and 1 for perfectly matching parti-
tions (up to a permutation). Note that the ARI can be negative.

Segmentation covering metrics. Segmentation Covering (SC) (Arbelaez et al.,
2010) uses the intersection over union (IOU) between pairs of segmentation masks
from the sets A and B. How the segmentation masks are matched depends on whether
we are considering the covering of B by A (denoted by A → B) or vice versa (B → A).
We use the slightly modified definition by Engelcke et al. (2020):

SC(A → B) = 1∑
RB∈B |RB |

∑
RB∈B

|RB | max
RA∈A

iou(RA, RB) , (C.4)

where |R| denotes the number of pixels belonging to mask R, and the intersection
over union is defined as:

iou(RA, RB) = |RA ∩ RB |
|RA ∪ RB |

. (C.5)

While standard (weighted) segmentation covering weights the IOU by the size of the
ground truth mask, mean (or unweighted) segmentation covering (mSC) (Engelcke
et al., 2020) gives the same importance to masks of different size:

mSC(A → B) = 1
|B|

∑
RB∈B

max
RA∈A

iou(RA, RB) , (C.6)

where |B| denotes the number of non-empty masks in B. Since a high SC score can
still be attained when small objects are not segmented correctly, mSC is considered
to be a more meaningful and robust metric across different datasets (Engelcke et al.,
2020).

Note that neither SC nor mSC are symmetric: Following Engelcke et al. (2020), we
consider A to be the predicted segmentation masks and B the ground-truth masks
of the foreground objects. As observed by Engelcke et al. (2020), both SC and mSC
penalize over-segmentation (segmenting one object into separate slots), unlike the
ARI. Both SC and mSC take values in [0, 1].
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C.3.2 Downstream property prediction

Here we start by briefly summarizing the downstream property prediction task pre-
sented in the main text, and then provide additional details on the models and eval-
uation protocol.

Overview of the property prediction task. As outlined in Section 7.3, we
evaluate scene representations by training downstream models to predict ground-
truth object properties from the representations. Exploiting the fact that object slots
share a common representational format, a single downstream model f can be used to
predict the properties of each object independently: for each slot representation zk we
predict a vector of object properties ŷk = f(zk). This vector represents predictions for
all properties of an object. We then match each slot’s prediction to a corresponding
ground-truth object using mask matching or loss matching (see main text). In non-
slotted models such as the VAE baselines considered in this study, we do not have
access to separate object representations {zk}K

k=1. Therefore, the downstream model
f in this case takes as input the overall distributed representation z, which is a flat
vector, and outputs a prediction of all objects at once: ŷ = f(z). This is then split
into K vectors, which are matched to ground-truth objects with either loss matching
or deterministic matching (see main text).

Implementation details. We use 4 different downstream models: a linear model,
and MLPs with up to 3 hidden layers of size 256 each. Let P be the size of the
ground-truth property vector, which includes all numerical and categorical2 properties
according to an order specified by the dataset. We denote by K be the number of slots
and d the dimensionality of a slot representation zk in object-centric models. Note
that we must include in zk all representations related to a slot, possibly including
different latent variables that are explicitly responsible for modeling, e.g., the location,
appearance, or presence of an object. The downstream model f has input size d and
output size P , and is applied in parallel (with shared weights) to all slots. In non-
slotted models, we always define the dimensionality of the distributed representation
z in terms of K for fair comparison with slot-based models, hence we can write the
latent dimensionality of such models as d · K. In this case, the input and output
sizes of the downstream model (d and P , respectively) are multiplied by K, and we
apply this model only once, to the entire scene representation. The linear downstream

2Here we use the one-hot representation of categorical properties.
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model is implemented as a linear layer. MLP models (with at least one hidden layer)
have hidden size 256 and LeakyReLU nonlinearities, as shown in Table C.8.

Data splits. Let Ds be a source dataset and Dt a target dataset. When doing in-
distribution evaluation, we train and test the downstream model without distribution
shifts, so we simply have Ds = Dt. Given a representation function r, and a matching
strategy to match the slots with ground-truth objects, we consider:

• a train split of 10 000 images from Ds ,

• a validation split of 1000 images from Ds ,

• a test split of 2000 images from Dt .

The test split only contains images that were not used when training the upstream
unsupervised models.

Training. We then train the downstream model to predict ŷ from z = r(x) using
the Adam optimizer with an initial learning rate of 1e-3 and a batch size of 64, for a
maximum of 6000 steps. The learning rate is halved every 2000 steps. We perform
early stopping as follows: We use the validation set to compute the (in-distribution)
validation loss every 250 training steps—if the loss does not decrease by more than 0.01
for 3 evaluations (750 steps), training is interrupted. In this stage, the representation
for each image is fixed, i.e. the representation function r is never updated. The loss
is computed independently for each object property, and is a sum of MSE and cross-
entropy terms, depending on whether an object property is numerical or categorical.

Table C.8. Architecture of the downstream MLP models for property prediction. The
third and fourth items are repeated 0 or more times, depending on the required number of
hidden layers.

Layer type Input size Output size
Linear d or d · K 256
LeakyReLU(0.01) 256 256
Linear 256 256

}
repeated 0 or
more timesLeakyReLU(0.01) 256 256

Linear 256 P or P · K
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Downstream training and evaluation under distribution shifts. As men-
tioned earlier, when doing in-distribution evaluation we simply have Ds = Dt. In the
general case, we may for example train on the original Multi-dSprites dataset, and
test on the Multi-dSprites variant that has an unseen shape or an occlusion. In the
special case in which we allow retraining of the downstream model (see Sections 7.4.3
and 7.4.4), we still have Ds = Dt, but they are both OOD with respect to the original
“clean” dataset used for training the unsupervised models.

Under distribution shifts, the representations r(x) might be inaccurate, which might
bias our downstream results. Although there is no perfect solution to this issue, we
attempt to reduce as much as possible the potential effect of distribution shifts on
the training and evaluation of downstream models. When distribution shifts affect
global scene properties, there is no alternative but to train and evaluate the models
as usual. When distribution shifts affect single objects, however, we can assume that
the representations of the ID objects are not as severely affected by the shift, and
only use these for training downstream models.

Here we consider the case where the test dataset Dt has an object-level distribution
shift, and the training dataset Ds is either the original “clean” dataset or the same as
Dt. At train time, we ignore OOD objects (if any) both when matching slots with
objects and when training downstream property prediction models. Note that, when
the training dataset Ds is the original “clean” dataset, the downstream models are
always trained as usual because there are no OOD objects. At test time, there are
a few cases depending on the matching strategy:

• When using mask matching, we consider all objects for matching, and evaluate
the downstream models on all objects. We then report test results on ID and
OOD objects separately.

• When using loss matching, we cannot match all ground-truth objects, since
the OOD objects might have OOD categorical properties (in our setup, the
downstream models cannot predict classes that were not seen during training).
Therefore, we resort to a two-step matching approach: we first match slots to
all objects using the prediction loss computed only on the properties that are ID
for all objects. We then keep only the matches for OOD objects, and repeat the
usual loss matching with the remaining slots and objects, using all properties.
The OOD objects are thus matched in a relatively fair way, while the matching
of the ID objects can be refined at a later step using all available properties.
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• When using deterministic matching, we cannot exactly follow the two-step
matching strategy presented above. Instead, we modify the lexicographic order
to give a higher weight to OOD features of OOD objects, so the correspond-
ing objects are pushed down in the order while maintaining the order given by
more significant (according to the order) properties. Note that the downstream
model in this case might be at a disadvantage if it is trained on a dataset with
object-level distribution shifts: the model is now trained to predict only ID
objects, so at test time there will be one more target object on average.

C.3.3 Distribution shifts for OOD evaluation

Here we present more in detail the distribution shifts we apply to images in order to
test OOD generalization in different scenarios. Examples are shown in Fig. C.2.

Occlusion. A gray square is placed on top of the scene. The position is determined
by picking 5 locations uniformly at random (such that the entire square is in the im-

Figure C.2. Distribution shifts applied to the different datasets to test generalization.
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age) and selecting the one that occludes less (in terms of total area) of the foreground
objects. The size of the occlusion is (⌊0.4 · H⌋, ⌊0.4 · W ⌋) with H and W the height
and width of the image, respectively. Occluded objects have their mask updated to
reflect the occlusion. The occlusion is categorized as background (or first background
object in case there are multiple background objects such as in Objects Room). The
RGB color of the square is [0.2, 0.2, 0.2] for CLEVR and [0.5, 0.5, 0.5] for all other
datasets.

Object color. An object is selected uniformly at random and its color is changed
by randomly adjusting its brightness, contrast, saturation, and hue, using torchvi-
sion’s ColorJitter transform with arguments [0.5, 0.5, 0.5, 0.5] for the four above-
mentioned parameters. This transformation is not performed on Multi-dSprites, since
the object colors in this dataset cover the entire RGB color space. The color and
material properties (when relevant) are not used in downstream tasks.

Crop. The image and mask are cropped at the center and resized to match their
original size. The crop size is (⌊ 2

3 H⌋, ⌊ 2
3 W ⌋) with H and W the original height and

width of the image, respectively. When resizing, we use bilinear interpolation for the
image and nearest neighbor for the mask.

Object style. We implement style transfer based on Gatys, Ecker, and Bethge
(2016) and on the PyTorch tutorial by Jacq and Herring (2021). The first 100k sam-
ples in all datasets are converted using as style image The Great Wave off Kanagawa
from Hokusai’s series Thirty-six Views of Mount Fuji. The style is applied only to
one foreground object using the object masks. The color and material properties
(when relevant) are not used in downstream tasks.

Object shape. For the Multi-dSprites dataset, a triangle is placed on the scene
with properties sampled according to the same distributions defined by the Multi-
dSprites dataset. This is performed only on the images where at most 4 objects are
present, to mimic changing the shape of an existing object. The depth of the triangle
in the object stack is selected uniformly at random as an integer in [1, 5]. All objects
from the selected depth and upwards are moved up by one level to place the new
shape underneath them. The objects masks are adjusted accordingly for both the
added shape and the objects below it.
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C.4 Additional results

In this section, we report additional quantitative results and show qualitative perfor-
mance on all datasets for a selection of object-centric models and VAE baselines.

C.4.1 Performance in the training distribution

Fig. C.3 shows the distributions of the reconstruction MSE and all the segmentation
metrics, broken down by dataset and model. The relationship between these metrics
is also shown in scatter plots in Fig. C.4. As discussed in Section 7.4.1, we observe
that segmentation covering metrics are correlated with the ARI only in some cases,
and the models are ranked very differently depending on the chosen segmentation
metric. In particular, we observe here that Slot Attention achieves a high ARI score
and significantly lower (m)SC scores on CLEVR, Multi-dSprites, and Tetrominoes.
This is because Slot Attention on these datasets tends to model the background
across many slots (see Appendix C.4.3), which is penalized by the denominator of
the IOU in the (m)SC scores (see (C.4) to (C.6) in Appendix C.3.1). This behavior
should not have a major effect on downstream performance, which is confirmed by
the strong and consistent correlation between ARI and downstream performance (see
also Section 7.4.2 and Fig. C.7).

Fig. C.5 shows an overview of downstream factor prediction performance on all la-
beled datasets (one per column), using as downstream predictors a linear model or
an MLP with up to 3 hidden layers (one model per row). The MLP1 results are
also shown in Section 7.4.2 (Fig. 7.4). We report results separately for each object-
centric model and for each ground-truth object property. The metrics used here are
accuracy for categorical attributes and R2 for numerical attributes. We generally
observe consistent trends across downstream models. In Fig. C.6, we show the same
results in a different way, to directly compare downstream models (here the median
baselines for slot-based and distributed representations are shown as horizontal lines
on top of the relevant bars). Using larger downstream models tends to slightly im-
prove test performance but, interestingly, in many cases the effect is negligible. There
are however a few cases in which using a larger model significantly boosts test per-
formance in object property prediction. In some cases it seems sufficient to use a
small MLP with one hidden layer instead of a linear model (e.g., color prediction
in CLEVR with Slot Attention, shape prediction in CLEVR with MONet and Slot
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Attention, color prediction in Tetrominoes with MONet, GENESIS, and SPACE, or
location prediction in Multi-dSprites with SPACE), while in other cases we get fur-
ther gains by using even larger models (e.g., shape prediction in Multi-dSprites with
SPACE, and shape prediction in Tetrominoes with all models except Slot Attention
which already achieves a perfect score with a linear model). Results for VAEs are
generally less interpretable because the performance is often too close to the naive
baseline. However, in some cases using deeper downstream models has clear benefits:
e.g., shape prediction in Tetrominoes and color prediction in Shapestacks improve
from baseline level when using a linear model to a relatively high accuracy when us-
ing one or two hidden layers. In other cases, a linear model already works relatively
well even from distributed representations—although significantly worse than object-
centric representations—and using deeper downstream models is not beneficial (e.g.,
color and size prediction in CLEVR). Finally, in many other cases, larger downstream
models do not seem to be sufficient to improve performance from VAE representa-
tions, confirming that often the relevant information may not be easily accessible and
suggesting that object-centric representations may be generally beneficial.

In Fig. C.7 we show the Spearman rank correlations between evaluation metrics and
downstream performance with all considered combinations of slot matching (loss- and
mask-based) and downstream model (linear, MLP with 1, 2, or 3 hidden layers). The
trends are broadly consistent in all combinations, except that correlations with ARI
tend to be stronger (perhaps unsurprisingly) when using mask matching, and when
using larger downstream models.
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Figure C.3. Overview of segmentation metrics (ARI ↑, mSC ↑, SC ↑) and reconstruction
MSE (↓) in distribution (test set of 2000 images). The bars show medians and 95% confidence
intervals with 10 random seeds.
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by dataset. Diagonal plots: kernel density estimation (KDE) of the quantities on the x-axes.
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Figure C.5. Overview of downstream performance in the training distribution (test set of
2000 images) for object-centric models and VAEs, with respective baselines. The metrics on
the y-axes are accuracy (↑) for categorical properties and R2 (↑) for numerical features. Each
row show results for a different downstream prediction model. From top to bottom: linear,
MLP with 1, 2, and 3 hidden layers (see annotation on the right). We use loss matching
(see Section 7.3) for all models. The bars show medians and 95% confidence intervals with
10 random seeds.
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Figure C.6. Comparing property prediction performance of different downstream models
(linear, MLP with 1 to 3 hidden layers), using loss matching (see Section 7.3). Results on
a test set of 2000 images in the training distribution of the upstream unsupervised models.
Each plot shows the test performance on one feature of a dataset. We show results for all
object-centric models and VAEs, and indicate the baseline (see Section 7.3) with a horizontal
line (not visible when the baseline is 0). The metrics on the y-axes are accuracy (↑) for
categorical properties and R2 (↑) for numerical features. The bars show medians and 95%
confidence intervals with 10 random seeds.
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Figure C.7. Spearman rank correlations between evaluation metrics and downstream
performance with all considered combinations of slot matching (loss- and mask-based) and
downstream model (linear, MLP with 1, 2, or 3 hidden layers). The correlations are color-
coded only when p<0.05.
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C.4.2 Performance under distribution shifts

C.4.2.1 Segmentation and reconstruction

In Fig. C.8, we report the distributions of the reconstruction MSE and segmentation
metrics in scenarios where one object is OOD. Results are split by dataset, model,
and type of distribution shift. As discussed in Section 7.4.3, the SC and mSC scores
show a compatible but less pronounced trend, while the MSE more closely mirrors
ARI. Notably, in many cases when we alter object style or color, the reconstruction
MSE increases significantly while the ARI is only mildly affected. This suggests that
the models are still capable of separating the objects but, unsurprisingly, they fail
at reconstructing them properly as they have features that were never encountered
during training.

Fig. C.9 shows analogous results when the distribution shift affects global scene prop-
erties. Here we observe that segmentation performance is relatively robust to oc-
clusion although the MSE increases significantly (as expected, the occlusion cannot
be reconstructed properly). Segmentation metrics are also robust to increasing the
number of objects in CLEVR—here the MSE also increases, but to a lesser extent,
especially for SPACE.
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Figure C.8. Overview of segmentation metrics (ARI ↑, mSC ↑, SC ↑) and reconstruction
MSE (↓) on OOD dataset variants where one object undergoes distribution shift (test set
of 2000 images). The bars show medians and 95% confidence intervals with 10 random seeds.
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Figure C.9. Overview of segmentation metrics (ARI ↑, mSC ↑, SC ↑) and reconstruction
MSE (↓) on OOD dataset variants where global properties of the scene are altered (test
set of 2000 images). The bars show medians and 95% confidence intervals with 10 random
seeds.



Appendix C.4 Additional results 175

C.4.2.2 Downstream performance

In Figs. C.10 to C.25, we show the relationship between ID and OOD downstream
prediction performance for the same model, dataset, downstream predictor, and ob-
ject property. Assume a pretrained unsupervised object discovery model is given, and
a downstream model is trained from said model’s representations to predict object
properties. These plots answer the following question: given that the downstream
model predicts a particular object property (e.g., size in CLEVR) with a certain ac-
curacy (on average over all objects in all test images), how well is it going to predict
the same property when the scene undergoes one of the possible distribution shifts
considered in this study? And in case the distribution shift only affects one object,
how well is it going to predict that property in the ID objects as opposed to the OOD
objects? These 16 figures show all combinations of the following 4 factors (hierarchi-
cally in this order): object-centric/distributed representations; loss/mask matching
for object-centric representations or loss/deterministic for distributed representations;
without/with retraining of the downstream model after the distribution shift has oc-
curred; single-object/global distribution shifts. In each figure, we show results for
each of the 4 downstream models considered in this study (linear, and MLP with up
to 3 hidden layers). For each of these, we show splits in terms of ID/OOD objects
(when applicable), dataset, upstream model, type of distribution shift.
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Figure C.10. Generalization of object-centric representations in downstream pre-
diction, using loss matching and without retraining the downstream model after the
distribution shift. Here the distribution shift affects one object. On the x-axis: prediction
performance (accuracy or R2) for one object property on one dataset, averaged over all ob-
jects, on the original training set of the unsupervised object discovery model. On the y-axis:
the same metric in OOD scenarios. Each data point corresponds to one representation model
(e.g., MONet), one dataset, one object property, one type of distribution shift, and either ID
or OOD objects. For each x (performance on one object feature in the training distribution,
averaged over objects in a scene and over random seeds of the object-centric models) there
are multiple y’s, corresponding to different distribution shifts and to ID/OOD objects. In
the top row, we separately report (color-coded) the performance over ID and OOD objects.
In the following rows, we only show OOD objects and split according to dataset, model, or
type of distribution shift. Each column shows analogous results for each of the 4 considered
downstream models for property prediction (linear, and MLPs with up to 3 hidden layers).
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Figure C.11. Generalization of object-centric representations in downstream predic-
tion, using loss matching and retraining the downstream model after the distribution
shift. Here the distribution shift affects one object. On the x-axis: prediction performance
(accuracy or R2) for one object property on one dataset, averaged over all objects, on the
original training set of the unsupervised object discovery model. On the y-axis: the same
metric in OOD scenarios. Each data point corresponds to one representation model (e.g.,
MONet), one dataset, one object property, one type of distribution shift, and either ID or
OOD objects. For each x (performance on one object feature in the training distribution,
averaged over objects in a scene and over random seeds of the object-centric models) there
are multiple y’s, corresponding to different distribution shifts and to ID/OOD objects. In
the top row, we separately report (color-coded) the performance over ID and OOD objects.
In the following rows, we only show OOD objects and split according to dataset, model, or
type of distribution shift. Each column shows analogous results for each of the 4 considered
downstream models for property prediction (linear, and MLPs with up to 3 hidden layers).
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Figure C.12. Generalization of object-centric representations in downstream predic-
tion, using mask matching and without retraining the downstream model after the
distribution shift. Here the distribution shift affects one object. On the x-axis: prediction
performance (accuracy or R2) for one object property on one dataset, averaged over all ob-
jects, on the original training set of the unsupervised object discovery model. On the y-axis:
the same metric in OOD scenarios. Each data point corresponds to one representation model
(e.g., MONet), one dataset, one object property, one type of distribution shift, and either ID
or OOD objects. For each x (performance on one object feature in the training distribution,
averaged over objects in a scene and over random seeds of the object-centric models) there
are multiple y’s, corresponding to different distribution shifts and to ID/OOD objects. In
the top row, we separately report (color-coded) the performance over ID and OOD objects.
In the following rows, we only show OOD objects and split according to dataset, model, or
type of distribution shift. Each column shows analogous results for each of the 4 considered
downstream models for property prediction (linear, and MLPs with up to 3 hidden layers).
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Figure C.13. Generalization of object-centric representations in downstream predic-
tion, using mask matching and retraining the downstream model after the distribution
shift. Here the distribution shift affects one object. On the x-axis: prediction performance
(accuracy or R2) for one object property on one dataset, averaged over all objects, on the
original training set of the unsupervised object discovery model. On the y-axis: the same
metric in OOD scenarios. Each data point corresponds to one representation model (e.g.,
MONet), one dataset, one object property, one type of distribution shift, and either ID or
OOD objects. For each x (performance on one object feature in the training distribution,
averaged over objects in a scene and over random seeds of the object-centric models) there
are multiple y’s, corresponding to different distribution shifts and to ID/OOD objects. In
the top row, we separately report (color-coded) the performance over ID and OOD objects.
In the following rows, we only show OOD objects and split according to dataset, model, or
type of distribution shift. Each column shows analogous results for each of the 4 considered
downstream models for property prediction (linear, and MLPs with up to 3 hidden layers).
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Figure C.14. Generalization of object-centric representations in downstream pre-
diction, using loss matching and without retraining the downstream model after the
distribution shift. Here the distribution shift affects global properties of the scene. On
the x-axis: prediction performance (accuracy or R2) for one object property on one dataset,
averaged over all objects, on the original training set of the unsupervised object discovery
model. On the y-axis: the same metric in OOD scenarios. Each data point corresponds to
one representation model (e.g., MONet), one dataset, one object property, and one type of
distribution shift. For each x (performance on one object feature in the training distribution,
averaged over objects in a scene and over random seeds of the object-centric models) there
are multiple y’s, corresponding to different distribution shifts. In each row, we color-code
the data according to dataset, model, or type of distribution shift. Each column shows
analogous results for each of the 4 considered downstream models for property prediction
(linear, and MLPs with up to 3 hidden layers).



Appendix C.4 Additional results 181

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

O
O

D
 s

co
re

linear

CLEVR
Multi-dSprites
Shapestacks
Tetrominoes

MLP1 MLP2 MLP3

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

O
O

D
 s

co
re

MONet
Slot Attention
GENESIS
SPACE

0.0 0.2 0.4 0.6 0.8 1.0
ID score

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

O
O

D
 s

co
re

crop
occlusion
n. objects

0.0 0.2 0.4 0.6 0.8 1.0
ID score

0.0 0.2 0.4 0.6 0.8 1.0
ID score

0.0 0.2 0.4 0.6 0.8 1.0
ID score

Figure C.15. Generalization of object-centric representations in downstream predic-
tion, using loss matching and retraining the downstream model after the distribution
shift. Here the distribution shift affects global properties of the scene. On the x-axis:
prediction performance (accuracy or R2) for one object property on one dataset, averaged
over all objects, on the original training set of the unsupervised object discovery model. On
the y-axis: the same metric in OOD scenarios. Each data point corresponds to one represen-
tation model (e.g., MONet), one dataset, one object property, and one type of distribution
shift. For each x (performance on one object feature in the training distribution, averaged
over objects in a scene and over random seeds of the object-centric models) there are mul-
tiple y’s, corresponding to different distribution shifts. In each row, we color-code the data
according to dataset, model, or type of distribution shift. Each column shows analogous
results for each of the 4 considered downstream models for property prediction (linear, and
MLPs with up to 3 hidden layers).
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Figure C.16. Generalization of object-centric representations in downstream predic-
tion, using mask matching and without retraining the downstream model after the
distribution shift. Here the distribution shift affects global properties of the scene. On
the x-axis: prediction performance (accuracy or R2) for one object property on one dataset,
averaged over all objects, on the original training set of the unsupervised object discovery
model. On the y-axis: the same metric in OOD scenarios. Each data point corresponds to
one representation model (e.g., MONet), one dataset, one object property, and one type of
distribution shift. For each x (performance on one object feature in the training distribution,
averaged over objects in a scene and over random seeds of the object-centric models) there
are multiple y’s, corresponding to different distribution shifts. In each row, we color-code
the data according to dataset, model, or type of distribution shift. Each column shows
analogous results for each of the 4 considered downstream models for property prediction
(linear, and MLPs with up to 3 hidden layers).
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Figure C.17. Generalization of object-centric representations in downstream predic-
tion, using mask matching and retraining the downstream model after the distribution
shift. Here the distribution shift affects global properties of the scene. On the x-axis:
prediction performance (accuracy or R2) for one object property on one dataset, averaged
over all objects, on the original training set of the unsupervised object discovery model. On
the y-axis: the same metric in OOD scenarios. Each data point corresponds to one represen-
tation model (e.g., MONet), one dataset, one object property, and one type of distribution
shift. For each x (performance on one object feature in the training distribution, averaged
over objects in a scene and over random seeds of the object-centric models) there are mul-
tiple y’s, corresponding to different distribution shifts. In each row, we color-code the data
according to dataset, model, or type of distribution shift. Each column shows analogous
results for each of the 4 considered downstream models for property prediction (linear, and
MLPs with up to 3 hidden layers).
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Figure C.18. Generalization of distributed representations in downstream prediction,
using loss matching and without retraining the downstream model after the distribution
shift. Here the distribution shift affects one object. On the x-axis: prediction performance
(accuracy or R2) for one object property on one dataset, averaged over all objects, on the
original training set of the unsupervised object discovery model. On the y-axis: the same
metric in OOD scenarios. Each data point corresponds to one representation model (e.g.,
MONet), one dataset, one object property, one type of distribution shift, and either ID or
OOD objects. For each x (performance on one object feature in the training distribution,
averaged over objects in a scene and over random seeds of the object-centric models) there
are multiple y’s, corresponding to different distribution shifts and to ID/OOD objects. In
the top row, we separately report (color-coded) the performance over ID and OOD objects.
In the following rows, we only show OOD objects and split according to dataset, model, or
type of distribution shift. Each column shows analogous results for each of the 4 considered
downstream models for property prediction (linear, and MLPs with up to 3 hidden layers).
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Figure C.19. Generalization of distributed representations in downstream prediction,
using loss matching and retraining the downstream model after the distribution shift.
Here the distribution shift affects one object. On the x-axis: prediction performance
(accuracy or R2) for one object property on one dataset, averaged over all objects, on the
original training set of the unsupervised object discovery model. On the y-axis: the same
metric in OOD scenarios. Each data point corresponds to one representation model (e.g.,
MONet), one dataset, one object property, one type of distribution shift, and either ID or
OOD objects. For each x (performance on one object feature in the training distribution,
averaged over objects in a scene and over random seeds of the object-centric models) there
are multiple y’s, corresponding to different distribution shifts and to ID/OOD objects. In
the top row, we separately report (color-coded) the performance over ID and OOD objects.
In the following rows, we only show OOD objects and split according to dataset, model, or
type of distribution shift. Each column shows analogous results for each of the 4 considered
downstream models for property prediction (linear, and MLPs with up to 3 hidden layers).
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Figure C.20. Generalization of distributed representations in downstream prediction,
using deterministic matching and without retraining the downstream model after the
distribution shift. Here the distribution shift affects one object. On the x-axis: prediction
performance (accuracy or R2) for one object property on one dataset, averaged over all
objects, on the original training set of the unsupervised object discovery model. On the y-
axis: the same metric in OOD scenarios. Each data point corresponds to one representation
model (e.g., MONet), one dataset, one object property, one type of distribution shift, and
either ID or OOD objects. For each x (performance on one object feature in the training
distribution, averaged over objects in a scene and over random seeds of the object-centric
models) there are multiple y’s, corresponding to different distribution shifts and to ID/OOD
objects. In the top row, we separately report (color-coded) the performance over ID and
OOD objects. In the following rows, we only show OOD objects and split according to
dataset, model, or type of distribution shift. Each column shows analogous results for each
of the 4 considered downstream models for property prediction (linear, and MLPs with up
to 3 hidden layers).
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Figure C.21. Generalization of distributed representations in downstream prediction,
using deterministic matching and retraining the downstream model after the distri-
bution shift. Here the distribution shift affects one object. On the x-axis: prediction
performance (accuracy or R2) for one object property on one dataset, averaged over all ob-
jects, on the original training set of the unsupervised object discovery model. On the y-axis:
the same metric in OOD scenarios. Each data point corresponds to one representation model
(e.g., MONet), one dataset, one object property, one type of distribution shift, and either ID
or OOD objects. For each x (performance on one object feature in the training distribution,
averaged over objects in a scene and over random seeds of the object-centric models) there
are multiple y’s, corresponding to different distribution shifts and to ID/OOD objects. In
the top row, we separately report (color-coded) the performance over ID and OOD objects.
In the following rows, we only show OOD objects and split according to dataset, model, or
type of distribution shift. Each column shows analogous results for each of the 4 considered
downstream models for property prediction (linear, and MLPs with up to 3 hidden layers).
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Figure C.22. Generalization of distributed representations in downstream prediction,
using loss matching and without retraining the downstream model after the distribution
shift. Here the distribution shift affects global properties of the scene. On the x-axis:
prediction performance (accuracy or R2) for one object property on one dataset, averaged
over all objects, on the original training set of the unsupervised object discovery model.
On the y-axis: the same metric in OOD scenarios. Each data point corresponds to one
representation model (e.g., MONet), one dataset, one object property, and one type of
distribution shift. For each x (performance on one object feature in the training distribution,
averaged over objects in a scene and over random seeds of the object-centric models) there
are multiple y’s, corresponding to different distribution shifts. In each row, we color-code
the data according to dataset, model, or type of distribution shift. Each column shows
analogous results for each of the 4 considered downstream models for property prediction
(linear, and MLPs with up to 3 hidden layers).
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Figure C.23. Generalization of distributed representations in downstream prediction,
using loss matching and retraining the downstream model after the distribution shift.
Here the distribution shift affects global properties of the scene. On the x-axis: prediction
performance (accuracy or R2) for one object property on one dataset, averaged over all
objects, on the original training set of the unsupervised object discovery model. On the y-
axis: the same metric in OOD scenarios. Each data point corresponds to one representation
model (e.g., MONet), one dataset, one object property, and one type of distribution shift.
For each x (performance on one object feature in the training distribution, averaged over
objects in a scene and over random seeds of the object-centric models) there are multiple y’s,
corresponding to different distribution shifts. In each row, we color-code the data according
to dataset, model, or type of distribution shift. Each column shows analogous results for
each of the 4 considered downstream models for property prediction (linear, and MLPs with
up to 3 hidden layers).
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Figure C.24. Generalization of distributed representations in downstream prediction,
using deterministic matching and without retraining the downstream model after the
distribution shift. Here the distribution shift affects global properties of the scene. On
the x-axis: prediction performance (accuracy or R2) for one object property on one dataset,
averaged over all objects, on the original training set of the unsupervised object discovery
model. On the y-axis: the same metric in OOD scenarios. Each data point corresponds to
one representation model (e.g., MONet), one dataset, one object property, and one type of
distribution shift. For each x (performance on one object feature in the training distribution,
averaged over objects in a scene and over random seeds of the object-centric models) there
are multiple y’s, corresponding to different distribution shifts. In each row, we color-code
the data according to dataset, model, or type of distribution shift. Each column shows
analogous results for each of the 4 considered downstream models for property prediction
(linear, and MLPs with up to 3 hidden layers).
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Figure C.25. Generalization of distributed representations in downstream prediction,
using deterministic matching and retraining the downstream model after the distribu-
tion shift. Here the distribution shift affects global properties of the scene. On the x-axis:
prediction performance (accuracy or R2) for one object property on one dataset, averaged
over all objects, on the original training set of the unsupervised object discovery model. On
the y-axis: the same metric in OOD scenarios. Each data point corresponds to one represen-
tation model (e.g., MONet), one dataset, one object property, and one type of distribution
shift. For each x (performance on one object feature in the training distribution, averaged
over objects in a scene and over random seeds of the object-centric models) there are mul-
tiple y’s, corresponding to different distribution shifts. In each row, we color-code the data
according to dataset, model, or type of distribution shift. Each column shows analogous
results for each of the 4 considered downstream models for property prediction (linear, and
MLPs with up to 3 hidden layers).
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C.4.3 Qualitative results

In Figs. C.26 to C.30 we show the reconstruction and segmentation performance of
a selection of object-centric models on a random subset of held-out test images, for
all 5 datasets. We select one object-centric model per type (MONet, Slot Attention,
GENESIS, and SPACE) based on the ARI score on the validation set. The images
we show were not used for model selection. For each model we show the following:

• Input and reconstructed images.

• Ground-truth and inferred segmentation maps. Here we use a set of 8 colors and
assign each object (or slot) to a color. If there are more than 8 slots, we loop
over the 8 colors again (this does not happen here, except in SPACE, where
it is not an issue in practice). Rather than taking hard masks, we treat the
masks as “soft”, such that a pixel’s color is a weighted mean of the 8 colors
according to the masks. This is evident in Slot Attention, which typically splits
the background smoothly across slots (consistently with the qualitative results
shown in Locatello et al. (2020d)). For clarity, we match (with the Hungarian
algorithm) the colors of the ground-truth and predicted masks using the cosine
distance (1 minus the cosine similarity) between masks.

• Slot-wise reconstructions. Each column corresponds to a slot in the object-
centric representation of the model. Here we show the entire slot reconstruc-
tion with the inferred slot mask as alpha (transparency) channel. The overall
reconstruction is the sum of these images. Since SPACE has in total up to 69
slots in our experiments (K = 5 background slots, and a grid of foreground slots
of size G × G with G = 8), it is impractical to show all slots here. We choose
instead to show the 10 most salient slots, selected according to the average mask
value over the image. This number is sufficient as most slots are unused. When
selecting slots this way, the selected slots are shown in their original order (in
SPACE, the background slots are appended to the foreground slots).

For completeness, in Fig. C.31 we show inputs and reconstructions for one VAE base-
line per type (convolutional and broadcast decoder), selected using the reconstruction
MSE on the validation set.

Finally, Figs. C.32 to C.36 show input–reconstruction pairs for each dataset, model
type, and distribution shift. Note that the comparison is not necessarily fair, since
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object-centric models were chosen using the validation ARI on the training distribu-
tion, while VAEs were chosen in a similar way but using the MSE. However, these
qualitative results can still be highly informative. We report some examples:

• Most object-centric models are relatively robust to shifts affecting a single ob-
ject, as discussed in the main text based on quantitative results.

• On the other hand, they are often not robust to global shifts, especially when
cropping and enlarging the scene.

• MONet achieves relatively good reconstructions even out of distribution, prob-
ably because images are segmented mostly based on color. This was suggested
by Papa, Winther, and Dittadi (2022), where the models are trained on objects
with style transfer. However, we conjecture the behavior may be the same in
our case, and that the argument should also apply to other distribution shifts,
as seen by the relatively accurate reconstructions under both single-object and
global distribution shifts. Note that, while reconstructions are potentially more
accurate than for other models, this does not mean that MONet has segmented
the object correctly.

• Although its ARI score does not decrease significantly, Slot Attention may not
always handle more objects than in the training distribution, even when the
number of slots in the model is increased. This is consistent with the results
reported by Locatello et al. (2020d), and increasing the number of Slot Attention
iterations at test time seems to be a promising approach (Locatello et al., 2020d,
Fig. 2).

• VAEs seem to be relatively good at generalizing to a greater number of objects
in CLEVR. In particular, they reconstruct images with the correct number of
objects, although a few details of the objects may not be inferred correctly (e.g.
an object may be reconstructed with the wrong size, color, or shape). This is
surprising, since VAEs do not have any inductive bias for this, and the fact that
the encoder is OOD (i.e., the encoder input is OOD w.r.t. the distribution used
to train the encoder itself) might lead us to expect poor generalization capabil-
ities, as discussed by Dittadi et al. (2021b) and Dittadi et al. (2022b) in the
“OOD2” case. On the other hand, some object-centric models are remarkably
robust to this shift (in particular SPACE, as confirmed by the ARI in Fig. 7.8).
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Figure C.26. Reconstruction and segmentation of 4 random images from the held-
out test set of CLEVR6. Top to bottom: MONet, Slot Attention, GENESIS, SPACE.
Left to right: input, reconstruction, ground-truth masks, predicted (soft) masks, slot-wise
reconstructions (masked with the predicted masks). As explained in the text, for SPACE
we select the 10 most salient slots using the predicted masks. As explained in the text, for
SPACE we select the 10 most salient slots using the predicted masks. For each model type,
we visualize the specific model with the highest ARI score in the validation set. The images
shown here are from the test set and were not used for model selection.
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Figure C.27. Reconstruction and segmentation of 4 random images from the held-out
test set of Multi-dSprites. Top to bottom: MONet, Slot Attention, GENESIS, SPACE.
Left to right: input, reconstruction, ground-truth masks, predicted (soft) masks, slot-wise
reconstructions (masked with the predicted masks). As explained in the text, for SPACE we
select the 10 most salient slots using the predicted masks. For each model type, we visualize
the specific model with the highest ARI score in the validation set. The images shown here
are from the test set and were not used for model selection.
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Figure C.28. Reconstruction and segmentation of 4 random images from the held-out
test set of Objects Room. Top to bottom: MONet, Slot Attention, GENESIS, SPACE.
Left to right: input, reconstruction, ground-truth masks, predicted (soft) masks, slot-wise
reconstructions (masked with the predicted masks). As explained in the text, for SPACE we
select the 10 most salient slots using the predicted masks. For each model type, we visualize
the specific model with the highest ARI score in the validation set. The images shown here
are from the test set and were not used for model selection.
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Figure C.29. Reconstruction and segmentation of 4 random images from the held-
out test set of Shapestacks. Top to bottom: MONet, Slot Attention, GENESIS, SPACE.
Left to right: input, reconstruction, ground-truth masks, predicted (soft) masks, slot-wise
reconstructions (masked with the predicted masks). As explained in the text, for SPACE we
select the 10 most salient slots using the predicted masks. For each model type, we visualize
the specific model with the highest ARI score in the validation set. The images shown here
are from the test set and were not used for model selection.
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Figure C.30. Reconstruction and segmentation of 4 random images from the held-
out test set of Tetrominoes. Top to bottom: MONet, Slot Attention, GENESIS, SPACE.
Left to right: input, reconstruction, ground-truth masks, predicted (soft) masks, slot-wise
reconstructions (masked with the predicted masks). As explained in the text, for SPACE we
select the 10 most salient slots using the predicted masks. For each model type, we visualize
the specific model with the highest ARI score in the validation set. The images shown here
are from the test set and were not used for model selection.
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Figure C.31. Input–reconstruction pairs of 4 random images from the held-out test
set of all 5 datasets, for the VAE model with convolutional (top) and broadcast (bottom)
decoder. Each VAE type was trained with 5 random seeds, and for each type we show here
the model with the lowest MSE on the validation set. The images shown here are from the
test set and were not used for model selection. For each image, we show the input on the
left and the reconstruction on the right. As these are not slot-based models, segmentation
masks and slot-wise reconstructions are not available.
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Figure C.32. Inputs and reconstructions for OOD images in CLEVR. Columns
from left to right: MONet, Slot Attention, GENESIS, SPACE, convolutional decoder VAE,
broadcast decoder VAE. Rows from top to bottom: object style, object color, occlusion,
crop, number of objects.
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Figure C.33. Inputs and reconstructions for OOD images in Multi-dSprites.
Columns from left to right: MONet, Slot Attention, GENESIS, SPACE, convolutional de-
coder VAE, broadcast decoder VAE. Rows from top to bottom: object style, object shape,
occlusion, crop.
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Figure C.34. Inputs and reconstructions for OOD images in Objects Room.
Columns from left to right: MONet, Slot Attention, GENESIS, SPACE, convolutional de-
coder VAE, broadcast decoder VAE. Rows from top to bottom: object style, object color,
occlusion, crop.
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Figure C.35. Inputs and reconstructions for OOD images in Shapestacks.
Columns from left to right: MONet, Slot Attention, GENESIS, SPACE, convolutional de-
coder VAE, broadcast decoder VAE. Rows from top to bottom: object style, object color,
occlusion, crop.
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Figure C.36. Inputs and reconstructions for OOD images in Tetrominoes.
Columns from left to right: MONet, Slot Attention, GENESIS, SPACE, convolutional de-
coder VAE, broadcast decoder VAE. Rows from top to bottom: object style, object color,
occlusion, crop.
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