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Summary

A series of models, focusing on various aspects and spatial scales, have

been developed for simulation studies of methane pyrolysis, also called

cracking, for carbon production in a laboratory scale test crucible. The

background for the use of methane cracking is to capture carbon diox-

ide emmissions in the production of silicon by carbon looping and in

this way reduce the impact on the climate. Partial differential equations

have been used to model fluid flow, heat transfer and heat consump-

tion in the pyrolysis. In the process carbon powder is produced and the

interaction between powder particles and fluid flow is studied by simu-

lations including heat transport. Both microscale as well as macroscale

approaches have been used. A macroscale model for heat transport in

a packed fluid bed of carbon powder, including chemical reactions, has

been derived, and numerical results presented for a crucible with cylin-

drical symmetry. Homogenization has been applied in the study of the

porous fluid bed of carbon, including methane reactions and heat trans-

port to upscale a microscale model to determine the effective macroscale

behaviour. A two fluid model consisting of the methane gas phase and

a fluidised carbon phase has been derived also. Computational fluid

dynamics simulations have been used to investigate various geometries

for the design of the methane gas inlets and provided more desirable

inflow geometries of the inlet. Simulation results has been presented for

a simple lumped model of the methane cracking reaction, including the

effect of heating, inlet and outlet flow from the crucible. The lumped

model provides an overall picture in a simple and easy fashion.

1 Challenge

Elkem ASA are a major producer of silicon (Si). They are developing a new concept to

eliminate all direct carbon dioxide (CO2) emissions from their Si production process.

The new concept has been developed based on carbon looping, where carbon oxides in

the process off-gases are captured, converted to solid carbon, and reused in the process.

When successful, this will become a game changer for the global silicon industry.

As part of this new concept, they are investigating an alternative carbon source for

the Si production, specifically the carbon by-products from turquoise hydrogen produc-

tion. Turquoise hydrogen production refers to hydrogen production via the pyrolysis of

methane (CH4), also called methane cracking. Utilising carbon produced in this manner

benefits Si production by reducing the direct carbon emissions, providing greater security

of raw materials, and provide a carbon source of greater purity than wood chips and coal

currently used. Additionally it provides process synergy with the growing in hydrogen

production industry by utilising a by-product that would otherwise go to waste.

Currently Elkem are still at an experimental stage, with laboratory scale experiments

being performed in order to maximise the conversion of methane to hydrogen gas and

carbon solid, and explore the ability to control the formation and growth of carbon

particles.
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The challenge presented by Elkem is to develop a mathematical model for their ex-

perimental setup which will provide insight into the process and help them guide and

interpret their experiments, with the longer term goal of exploring the impact of scaling

up to the larger production scale.

2 Introduction

2.1 Methane cracking

The overall process of methane cracking occurs in several stages, [2, 12], but can be

described by a single overall reaction

CH4(g) −−→ 2H2(g) + C(s), (2.1)

where CH4(g) is methane gas, H2(g) is hydrogen gas, and C(s) is solid carbon. This

overall process is an endothermic reaction with a reaction enthalpy of 75.6 kJmol−1 of

methane [2]. Although methane cracking can occur in free space, it requires temperatures

above 1200 °C which typically make the process unviable economically [2]. Elkem are

therefore primarily interested in catalysed reactions where the cracking occurs at active

sites on the surface of a solid catalyst. In their experiments Elkem are using small carbon

seed particles to provide these active sites. As the reaction rate is strongly temperature

dependent, it is often modelled as proportional to an Arrhenius term, exp (−E/(RT )),

where E the activation energy, R the universal gas constant and T the temperature,

and we will use a rate of this form for the remainder of this report. Estimates for the

activation energy of methane cracking onto carbon particles are given in [12].

2.2 Experimental setup

The experimental laboratory setup used by Elkem is depicted in Figure 1. It consists of a

cylindrical crucible with a gas inlet at the bottom and a gas outlet at the top, all within

a furnace with heating elements on its side walls. The gas inlet extends into the crucible

and gas flows out of small circular openings on its sides. Dimensions of the setup are

given in Table 1. In each experimental run the crucible is filled partway up with a bed of

carbon seed particles of a specified initial size. Inert argon gas is then injected to ensure

the gas inlet remains clear, and the furnace is heated up to 1200 °C. Once the furnace

is fully heated the flow of argon is ceased and replaced with methane. The experiment

is then allowed to run for several hours, after which the furnace is switched off and

the gas flow stopped and the newly formed carbon extracted. During this period, where

the methane cracking occurs, the power drawn by the furnace is adjusted to maintain a

constant temperature based on the value measured by thermo-couple outside the crucible,

depicted in Figure 1. Based on earlier experiments, where the gas inlet clogged due to

carbon forming before it reached the crucible, the incoming gas is cooled such that it

enters the crucible at room temperature.

If velocity of the gas injected is low enough then the initial carbon seeds will remain

as a packed bed for the entire duration of the experiment. However, for higher velocity

flows the bed can be fluidised, with the particles being carried throughout the furnace

by the fluid.
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Figure 1. Sketch of the laboratory scale reactor for methane cracking.

Table 1. Dimensions of the experimental setup depicted in Figure 1.

Dimension Value

Furnace width 6.8× 10−1 m
Furnace height 1.06× 10−1 m
Crucible width 5.0× 10−1 m
Crucible height 5.0× 10−1 m
Gas inlet width 2.8× 10−2 m
Gas inlet height 3.3× 10−2 W/m2K

Gas inlet hole diameter 2× 10−3 kg/m3

Gas outlet width 8× 10−3 m

In the limited experimental runs Elkem has carried out so far, it has been observed

that a hard-packed layer can form in the bottom corners of the crucible, separated from

more loose material by a thin layer of crust, as depicted in Figure 2. This hard pack

material is undesirable for use in the silicon production process, and so Elkem are also

interested in exploring modifications to the geometry of the crucible that prevent this

material from forming.
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Figure 2. Carbon crust and loose packed carbon material in the bottom of the crucible

In this report we will present a hierarchy of models for investigating different elements

of the coupled fluid flow, heat transfer and mass transfer occurring within the crucible

under a range of possible assumptions. In §3 we develop a micro-scale model to describe

how a carbon seed particle grows over time. In §4 a simple macroscale model for the

temperature distribution across the whole crucible is developed to understand the inter-

action of the injected cold gas, hot crucible walls and endothermic reactions. The effect

of different reaction rate parameters is explored. In §5 the method of multiple scales is

used to derive a macroscale model for the coupled flow and heat transfer, whose pa-

rameters depend upon a microscale model of particle growth. In §6, a multiphase fluid

model is developed to investigate the fluidisation of the bed of carbon pellets. In §7 we

simulate the incompressible Navier-Stokes equations in a realistic crucible geometry. In

§8 we outline how to simulate the movement of carbon particles in a background flow

using Lagrangian particle dynamics. In §9 we present an alternative lumped parameter

model, based on a fully mixed assumption, to investigate the temporal dynamics of the

reactions in the furnace. We conclude in §10.

3 Microscale model

3.1 Model outline

We consider a one-dimensional gas phase of infinite radius, surrounding a spherical pellet

centered at the origin. Before reaction begins, the gas occupies entirely the region s0 <

r̄ < ∞, where s0 is the initial radius of the carbon pellet. At time t̄ = 0, the methane at

the boundary of the pellet begins to crack and deposit carbon on the interface,causing the

pellet to grow. The position of the interface s̄(t̄) [m] is changing in time as the pellet radius

increases. This system can be described by a one-dimensional one-phase spherical Stefan
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problem, similar to that modelled for the problem of drug diffusion in polymer spheres

[14]. We will assume the concentration of methane in the system is always sufficient to

ensure methane cracking occurs at the interface, and that the gas flow is slow enough for

heat transport to be purely diffusive. Then, the governing equation for the temperature

of the gas phase, T̄ (r̄, t̄), is given by

∂T̄

∂t̄
=

ρc

k

1

r̄2
∂

∂r̄

[
r̄2

∂T̄

∂r̄

]
, (3.1)

where ρ is the density of the gas, c is the specific heat capacity and k is the thermal

conductivity.

The boundary grows at a rate proportional to rate of reaction which we assume to be

of the form of the Arrhenius equation. This yields

ds̄

dt̄
= VmA exp

(
− Ea

RT̄

)∣∣∣∣
r̄=s̄(t̄)

, (3.2)

where Vm is the molar volume of gas, A is the pre-exponential factor, Ea is the activation

energy for the reaction and R is the universal gas constant.

We assume that the temperature of the gas tend towards a constant as r̄ → ∞ and so

∂T̄

∂r̄
→ 0 as r̄ → ∞. (3.3)

We assume the temperature on the boundary of the carbon particle is decreasing

exponentially. On r̄ = s̄(t̄),

T̄ = T0exp(− b̄t̄), (3.4)

With this choice of boundary condition on r̄ = s̄(t̄), we can study the evolving moving

boundary without solving for the temperature profile of the entire region.

Our initial conditions are

T̄ (r̄, 0) = T0, s̄(0) = s0. (3.5)

3.2 Non-dimensionalisation

We non-dimensionalise as follows:

T =
T̄

T0
, t =

t̄AVm

s0
, r =

r̄

s0
, s =

s̄

s0
. (3.6)

Equations (3.1)-(3.5) are now

β
∂T

∂t
=

1

r2
∂

∂r

[
r
∂T

∂r

]
, (3.7)

ds

dt
= exp

(
−α

T

)∣∣∣
r=s(t)

, (3.8)

∂T

∂r
→ 0 as r → ∞. (3.9)

T |r=s(t) = exp(− bt), (3.10)
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Figure 3. Growth of carbon pellet radius s(t) with time where Ea = 147.37, R = 0.5182,

s0 = 50e− 6, k = 0.137, ρ = 0.657, c = 4.7, Vm = 15 and A = 1.

T (r, 0) = 1, s(0) = 1. (3.11)

where

β =
k

ρcs0VmA
, α =

Ea

RT0
and b =

b̄ρcs20
k

. (3.12)

3.3 Asymptotic and numerical solutions

Realistic values of our parameter β are of order 1e−4. Equation (3.14) therefore suggests

that the temperature profile of the gas is approximately steady state. Looking for a

leading order asymptotic solution, we find that

ds

dt
∼ exp

(
− α

exp(−t)

)
(3.13)

at leading order.

To obtain a numerical solution, we transform equations (3.14)-(3.18) to cartesian coor-

dinates via the following transformation u = rT and immobilise the boundary by setting

ξ = r
s , which yields

βs2
∂u

∂t
− βsξ

ds

dt

∂u

∂ξ
=

∂2u

∂ξ2
, (3.14)

ds

dt
= exp

(
−αs

u

)∣∣∣
ξ=1

, (3.15)

∂u

∂ξ
→ u

ξ
as ξ → ∞. (3.16)

u|ξ=1 = sexp(− bt). (3.17)

Our initial conditions are

u(ξ, 0) = ξ, s(0) = 1. (3.18)
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We obtain the following results for the growth of the moving boundary or the width

of the carbon pellet.

In Figure (3), we can see that the growth rate of the carbon pellet is decreasing with

time. Given the temperature on the surface of the pellet is decreasing with time and

therefore the reaction rate is slowing, this seems sensible.

Given these results, we can predict the time it takes for the volume of the individual

carbon particle to double in size. If s0 is our initial radius of the carbon pellet, then our

initial volume is 4πs30/3. This volume is doubled when the radius is 3
√
2s0 µm, which

occurs after approximately 2.2 hours.

4 Macroscale model of the heat transfer in a packed bed

4.1 Problem formulation

In this section, rather than modelling the growth of a single particle, we consider a

simple model for the temperature distribution with the crucible. We model the crucible

as a cylindrical domain with radius a and height h, and so adopt a cylindrical coordinate

system (r, θ, z), and will seek axi-symmetric solutions. We assume the gas and pellets are

in local thermal equilibrium, and so only consider a single temperature T . We neglect the

effect of advective transport by the gas phase, and any change in the material properties

due to deposition from the reactions, meaning that the conservation of energy in the

crucible can be expressed by the reaction-diffusion equation

∂

∂t
(ρcpT ) = ∇ · (k∇T )− S, (4.1)

where ρ is the bulk density of the solid material, cp is the specific heat capacity of the

solid material, T is the temperature [in Kelvin], t is time, k is bulk conduction coefficient

of heat, and S is the heat sink due to the reaction. Here, the heat sink S is taken to be

a function of temperature only.

Although we have only included the effect of conduction, at high temperatures radiative

transport may also be important. To consider how this can be modelled we consider the

optical thickness of the material. In the optically thin limit the effect of radiation can

be approximated in (4.1) by including a term proportional to T 4 [13]. In the optically

thick limit, also called the Rosseland approximation, radiation can be approximated by

an additional nonlinear diffusion term of the form ∇ ·
(
kradT

3∇T
)
[5]. Data for CH4 is

available in [21]. However, we neglect such effects in the results presented below.

The energy consumed by the reactions will be proportional to the rate of reaction,

which we model using an Arrhenius law,

S = S exp

(
− E

RT

)
, (4.2)

where S is the prefactor, E the activation energy, and R the universal gas constant.

Along the bottom of the furnace we prescribe a temperature profile that can vary with

r, in order to model the effect of the small gas inlet

T = Tin(r) at z = 0, (4.3)
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taking as its minimum Tgas, the temperature of the incoming gas in the experiments.

Along the walls we prescribe a constant temperature,

T = Twall at r = a (4.4)

as the furnace will adjust the power drawn to maintain this situation. At the top of the

crucible we impose no diffusive flux of temperature,

∇T · n = 0. (4.5)

As we are in a cylindrical domain we also require the solution to be bounded as r → 0.

4.2 Non-dimensionalisation

We non-dimensionalise the equations scaling

t =
ρcp (Twall − Tin)

k
t̂, (r, z) = h (r̂, ẑ) , T = Tgas + (Tin − Tgas) T̂ , S = SŜ, (4.6)

where the timescale was chosen to balance advection. Then, using (4.6) and the axi-

symmetric assumption, the governing equations (4.1) become

∂T̂

∂t̂
=

1

r̂

∂

∂r̂

(
r̂
∂T̂

∂r̂

)
+

∂2T̂

∂ẑ2
− η exp

(
− σ

T̂

)
(4.7)

for 0 < r̂ < â = a/h, and 0 < ẑ < 1, where

η =
S

k
, σ =

E

R (Twall − Tin)
(4.8)

are the dimensionless heat of reaction and activation energy respectively. The boundary

conditions become

T̂ = 0 at ẑ = 0, (4.9a)

T̂ = 1 at r̂ = â, (4.9b)

∂T̂

∂ẑ
= 0 at z = 1, (4.9c)

T̂ bounded as r̂ → 0, (4.9d)

4.3 Analytical steady solution

It is possible to solve (4.7)–(4.9d) analytically using an eigenfunction expansion when

η = 0, implying there are no reactions. Dropping the hat notation, the steady solution

is given by

T (r, z) =

∞∑
n=1

1

I0
(
2n+1

2 πa
) 4

(2n+ 1)π
I

(
2n+ 1

2
πr

)
sin

(
2n+ 1

2
πz

)
, (4.10)

where Iν(x) is the modified Bessel function of the first kind. This solution is plotted in

Figure 4, with a = 1. While this approach cannot be extended to non-zero η due to the

nonlinear dependence of S on T , it does provide a useful test case for our implementation

of the numerical solution when η ̸= 0 in §4.4.
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Figure 4. Analytical solution(4.10) for the steady temperature distribution in the crucible

when η = 0.

4.4 Numerical Solution

To solve the problem (4.7)–(4.9) numerically, we use a finite difference scheme. We use a

second-order accurate central difference scheme for the spatial derivatives, and an explicit

Euler method for the temporal derivatives. The solution is found on an equispaced mesh

on the domain [ε, ε+a]× [0, 1]× [0, tmax], whose points are given by (r, z, t)r̃,z̃,t̃ = (r̃∆r+

ε, z̃∆z, t̃∆t), where ∆r, ∆z, and ∆t are the grid sizes in the radial, axial, and temporal

dimensions respectively. Note that ∆tmust be kept sufficiently small in comparison to ∆r

and ∆z, to ensure numerical stability. The radial domain has been shifted by some small

amount ε ≪ ∆r to avoid division by zero at the centreline. Letting T (r̃∆r+ε, z̃∆z, t̃∆t) =

z

t̃

T r, denote the temperature at the mesh points, the discretised version of (4.7) is given
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by

t̃+1

T = z

t̃

T r +∆t

 1

r̃∆r + ε

 z̃

t̃

T r̃+1 − z̃

t̃

T tr

∆r



+
z̃

t̃

T r̃+1 −2 z̃

t̃

T r̃ + z̃

t̃

T r̃−1

(∆r)
2 +

z̃+1

t̃

T r̃ −2 z̃

t̃

T r̃ + z̃−1

t̃

T r̃

(∆z)
2


− η exp

− σ

z

t̃

T r

 (4.11)

Boundary conditions are applied by adding fictitious meshpoints (1 + ε + ∆r, z) = 1

to give T = 1 on the outer wall; (r, 1 + ∆z) = (r, 1 −∆z) to give zero heat-flux at the

top of the medium; axisymmetry is approximated using zero flux through the centerline.

A boundary condition must also be chosen along the bottom of the domain. Including

fictitious points of (−∆r, z) = 0 enforces T = 0 as the condition along the bottom

boundary. This models a cold bottom along the crucible.

While these results are useful for validation, the entire base of the crucible is unlikely

to be at the temperature of the inlet gas, due to heating effects from the furnace. An

alternative would be to take (−∆r, z) = 1 except at the meshpoint closest to the center

axis, for which (−∆r, ε) = 0 is chosen. This models a cold point source at the center

line where cold gas is assumed to be injected, and a heat source everywhere else, due to

furnace heating. Nevertheless, this model is limited in realism, as it neglects diffusion of

the cold methane throughout the medium. As a heuristic description of cooling effects

from diffusing inlet gas, we investigate a variable-temperature boundary condition along

the bottom. We choose T (r, 0) = 1 − e−αr2 , with α = 10. As shown in Figure 5, this

function varies smoothly, starting at T = 0 around the gas inlet at r = 0, and approaches

T = 1 for large r. We refer to this as the variable-temperature boundary condition.

4.5 Results

We now use the finite difference scheme to solve the problem on a domain with a = 1,

and choose ε = 1× 10−4, ∆t = 1× 10−5, and ∆r = ∆z = 5× 10−2. In Figure 6 we plot

the steady solution to the problem when η = 0, so that there is no heat sink. There is

very good agreement between this numerical solution and the analytical solution shown

in Figure 4, suggesting the finite difference scheme described in §4.4 has been correctly

implemented.

We now consider the behaviour of the model with the variable temperature boundary

condition. Figure 7 shows the steady-state temperature distribution without any reaction

terms (η = 0). Away from a region near the inlet the gas tends to the imposed wall

temperature. The effect of the heat sink is shown in Figure 8, which shows a sweep over

a range of possible values for the dimensionless heat of reaction η and activation energy σ.

Compared to Figure 7, we see that the cold region grows towards the walls as η increases
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Figure 5. Temperature imposed at the bottom of the crucible in the variable temperature

boundary condition.
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Figure 6. Numerical solution for the temperature distribution in the furnace when η = 0.

in size. This suggests that the reaction rate, which increases with temperature, will be

largest nearest the sides and bottom of the crucible, and so the pellets will grow the most

in these regions. These regions correspond closely to the regions of hard packed material

observed in Elkem’s experiments, providing evidence for a chemical process causing the

formation of the hard packed material, rather than a mechanical process.
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Figure 7. Numerically derived steady-state temperature distribution for a crucible with

a variable-temperature bottom boundary condition.
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Figure 8. Two-parameter sweep showing numerically derived (steady-state) temperature

distributions for various values of Arrhenius coefficients η and σ. Axis scales and colour

bars are removed for clarity. Colour scheme and axis scaling is the same as Figure 4.
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5 Homogenised model for heat transport and flow

In Section 4, we considered a heat transport model with a volumetric heat sink (due to

the methane cracking reaction) across the crucible. In this section, we focus on incorpo-

rating the microscale behaviour, specifically the reaction occuring on the surface of the

carbon pellets, and use the method of multiple scales to derive an effective macroscale

model to describe the heat transport within the crucible and predict the pellet size.

For an introduction to mathematical homogenisation via the method of multiple scales

see [9]. Classic homogenisation requires a strictly periodic microscale. However, this as-

sumption has been relaxed in more recent work [4, 6]. This work follows the framework

by Dalwadi et al. [7], who consider solute transport through a filter with an evolving

microstructure. They derive an effective advection-diffusion-reaction system for solute

concentration which is coupled to the time-dependent microstructure.

5.1 Model set-up

We consider the transport of heat, via advection and diffusion, through an array of

carbon pellets. We denote the temperature in the gas as T̂ (x̂, t̂), where x̂ denotes the

macroscale spatial coordinate and t̂ is time. We adopt a Cartesian coordinate system to

derive the effective heat transport model and change to (axisymmetric) cylindrical polar

coordinates when solving numerically in Section 5.4. We denote the gas region as ωG and

the pellet region as ωP with boundary as ∂ωP (x̂, t̂). The carbon pellets are assumed to

be solid obstacles, on the surface of which the endothermic reaction of methane cracking

occurs. The carbon pellets are modelled as a collection of non–overlapping spheres, which

grow in time, and whose centres are arranged on a cubic lattice at a distance δl apart,

where δ is a small dimensionless parameter and l is the characteristic lengthscale of the

crucible. Thus, δ ≪ 1 is the ratio of pellet separation to crucible length. We denote the

pellet radius as ŝ = ŝ(x̂, t̂), where 2ŝ ≤ δl. A schematic of this set–up is given in Figure 9.

The pellet radius at a rate proportional to the methane cracking reaction rate, R̂(T̂ ).

Further, we assume that we have an incompressible Newtonian fluid within the gas

region, ωG, which we obeys Stokes flow. We impose no slip at the pellet surface. We

assume that the gas has a constant density, ρ. For simplicity, we neglect the effects of

convection, however we note that more complicated fluid flow models could be utilised

and be homogenised in a similar manner (so long as local periodicity is retained).

We assume that there is sufficient methane throughout the domain to so that we

are in a temperature-limited regime for methane cracking, and therefore do not track

methane concentrations throughout the crucible. However, we note that we can model

the methane transport analogously, by treating methane as a dilute species where we

neglect particle-particle interactions.

The equations governing the flow of fluid throughout the gas region ωG are

−∇̂p̂+ µ∇̂2û = 0 for x̂ ∈ ωG, (5.1a)

∇̂ · û = 0 for x̂ ∈ ωG, (5.1b)

n · û = n · û∂ωP
for x̂ ∈ ∂ωP , (5.1c)

where û is the fluid velocity, p̂ is the fluid pressure, and n is the outward pointing unit
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O(10-4m)

O(10-5m)

Figure 9. (Left) Schematic of the crucible domain considered. The shaded region repre-

sents the bed of carbon pellets. (Right) Schematic of the microscale pellet bed structure.

The orange region represents the gas region, and the grey regions represent the carbon

pellet regions.

normal to the fluid (that is, point from the fluid into the pellet), and the pellet boundary

velocity û∂ωP
is related to the rate of reaction via:

n · û∂ωP
= −∂ŝ

∂t̂
. (5.2)

The governing equation for conservation of heat within the gas region is

D

Dt̂

(
ρcpT̂

)
= ∇̂ ·

(
k∇T̂

)
, (5.3)

where ρ is the density of the gas, cp is the specific heat capacity of the gas, and k is the

thermal conductivity of the gas, and here ∇̂ refers to the nabla operator with respect to

x̂. We note that the dilution term in ∇̂ · (T̂ û) = û∇̂ · (T̂ ) + T̂ ∇̂ · (û) is zero due to the

incompressiblity assumption, and we write Equation (5.3) in terms of thermal diffusivity,
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D = k/(ρcp) to obtain

∂T̂

∂t̂
+ û · ∇̂T̂ = ∇̂ ·

(
D∇T̂

)
for x̂ ∈ ωG(x̂, t̂). (5.4)

At the pellet-gas boundary, ∂ωP (x̂, t̂), we have a partially absorbing Robin boundary

condition due to the endothermic reaction at the pellet surface removing heat from the

system,

n · ((û− û∂ωP
)T̂ −D∇̂T̂ ) = R̂(T̂ ) at x̂ ∈ ∂ωP (x̂, t̂), (5.5)

where R̂ is the heat sink due to the reaction, which we assume depends on temperature

(R̂ ≥ 0 represents an endothermic reaction). For the following analysis, we retain this

general form, however one could impose, e.g. the Arrhenius law, Equation (4.2). The

no slip condition at the pellet boundary implies û = û∂ωP
at ∂ωP (x̂, t̂). This condition

reduces to

n · (D∇̂T̂ ) = −R̂(T̂ ) at x̂ ∈ ∂ωP (x̂, t̂). (5.6)

To close the system, we impose a model to relate the pellet growth to the rate of

reaction (as in Section 3),

∂ŝ

∂t̂
= γ̂R̂(t̂) = −γ̂n · (D∇̂T̂ ), (5.7)

where the constant γ̂ is the volume of carbon deposited on the pellet per reaction.

5.2 Non-dimensionalisation

We non-dimensionalise using the scalings:

T̂ = TwallT, x̂ = lx, t̂ =
δl

γ̂[R̂]
, û = Uu, p̂ =

µU
δ2l

p, (5.8)

where [R̂] and U are the characteristic reaction rate and fluid velocity, respectively. The

time scaling is chosen to balance pellet growth and the pressure scaling is chosen to

balance the macroscale pressure gradient with the microscale viscous forces. The flow

problem Equation (5.1) becomes

−∇p+ δ2∇2u = 0 for x ∈ ΩG, (5.9a)

∇ · u = 0 for x ∈ ΩG, (5.9b)

u = −δβ
∂s

∂t
n for x ∈ ∂ΩP , (5.9c)

where β = γ̂[R̂]/δl. For the heat transport equation, Equations (5.4), (5.6) and (5.7)

become

β
∂T

∂t
+ u · ∇T = ∇ ·

(
1

PeT
∇T

)
for x ∈ ΩG(x, t), (5.10a)

n ·
(

1

PeT
∇T

)
= −δkR(T ) at x ∈ ∂ΩP (x, t), (5.10b)

∂s

∂t
= R(T ) at x ∈ ∂ΩP (x, t), (5.10c)
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where PeT = U l/D is the Péclet number and k = 1/δU .
We assume that β, PeT , and k are all O(1). (We note that one could explore other

asymptotic limits, and refer the reader to [6, 7] for further explanation of this.) The

carbon pellets now form a cubic lattice of spheres, a distance δ apart. A carbon pellet

with centre x has radius δs(x, t), see Figure 10.

5.3 Method of multiple scales analysis

We now begin the homogenisation of the governing equations for fluid flow and heat

transport Equations (5.9) and (5.10) via the method of multiple scales.

Following standard homogenisation framework, we introduce a microscale spatial vari-

able, X, defined by

X =
x− ⌊x⌋

δ
− b, (5.11)

where b is a translation vector, b = (1/2, 1/2, 1/2)T , so X ∈ [−1/2, 1/2]3, defined in

unit cell Ω(x, t), centred around one carbon pellet. We impose periodicity in X, to

remove the extra degree of freedom introducing this microscale variable brings. This unit

cell is dependent on the macroscale spatial variable, as we allow there to be variation

in temperature and pellet size over a long macroscale lengthscale, but with negligible

variation between neighbouring cells. The spatial derivatives transform as:

∇ → ∇x +
1

δ
∇X , (5.12)

where ∇x and ∇X denote the nabla operators in the x- and X-coordinate systems,

respectively. The unit normal to the boundary ∂ΩP (x, t) also transforms. To understand

how it depends on both spatial variables, we define χ(x,X) = ∥X∥ − s(x, t), so χ = 0

gives ∂ΩP (x, t). Since the normal to the boundary is proportional to the gradient of the

surface ∇χ, we use Equation (5.12) and find

n =
∇χ

|∇χ|
⇒ n =

nX + δ∇xs

∥nX + δ∇xs∥
, (5.13)

where we define

nX = − |X|
∥X∥

, (5.14)

as the outward unit normal to the pellet boundary, ∂ΩP (x, t), and the term “δ∇xs”

accounts for the macroscale variation in s. Since our aim is to determine the effective

macroscale behaviour over the entire macroscale domain, we introduce the macroscale

porosity, ϕ(x, t), defined as

ϕ(x, t) =
∥ΩG(x, t)∥
∥Ω(x, t)∥

. (5.15)

We note that the porosity is dependent on the pellet radius s and this relationship is

ϕ(x, t) = ∥ΩG(x, t∥ =
4

3
π(s(x, t)3. (5.16)
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Figure 10. Two-dimensional projection of the three-dimensional domain we consider in

Section 5.3.

5.3.1 Flow problem

Under the transformation Equation (5.12), the flow problem becomes

−
(
1

δ
∇X +∇x

)
p+ (∇X + δ∇x)

2
u = 0 for X ∈ ΩG(x, t), (5.17a)

(∇X + δ∇x) · u = 0 for X ∈ ΩG(x, t), (5.17b)

u = −δβ
∂s

∂t
nX +O(δ2) for X ∈ ∂ΩP (x, t), (5.17c)

u, p periodic, for X ∈ ∂Ω. (5.17d)

We pose an asymptotic expansion in the limit δ → 0:

f ∼ f0 + δf1 + δ2f2 + . . . , where f ∈ {u, p}. (5.18)

At leading order, we find that the leading-order pressure p0 is independent of the

microscale,

p0 = p0(x, t). (5.19)

Proceeding to the next order, we find

−∇Xp1 +∇2
Xu0 = ∇xp0 for X ∈ ΩG(x, t), (5.20a)

∇X · u0 = 0 for X ∈ ΩG(x, t). (5.20b)

(5.20c)

Since these equations are linear, to reduce the parameter dependence of the problem, we
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seek solutions of the form:

u0 = −K(x,X, t)∇xp0, (5.21a)

p1 = −Π(x,X, t)∇xp0 + p̄(x, t), (5.21b)

where p̄ is an arbitrary function (which we do not need to solve for to determine the

leading order flow solution), and the matrix function K and the vector function Π

satisfy the cell problem:

I−∇XΠ +∇2K = 0 for X ∈ ΩG(x, t), (5.22a)

∇X ·K = 0 for X ∈ ΩG(x, t), (5.22b)

K = 0 for X ∈ ∂ΩP (x, t), (5.22c)

K, Π periodic on ∂Ω. (5.22d)

Next, we integrate Equation (5.20a) over ΩG and define the volumetric average fluid

velocity,

ū(x, t) =
1

∥Ω(x, t)∥

∫
Ω

u(x,X, t) dX =

∫
ΩG

u(x,X, t) dX, (5.23)

where we impose u = 0 in ΩG, and use the boundary condition Equation (5.20b) to

obtain a homogenised version of Darcy flow,

ū(x, t) = −K(ϕ)∇xp (5.24)

at leading order, where K(ϕ) is a scalar function containing the relevant information

about the microscale pellet structure and is defined by

K(ϕ)I =

∫
ΩG

K dX. (5.25)

We note that
∫
ΩG

K dX is a multiple of the identity matrix due to the symmetry of the

cell problem. One would obtain a non-isotropic effective permeability if the cell problem

did not have symmetry in 3 orthogonal planes, (e.g. spheroids or ellipsoids).

To close the homogenised flow model, we consider the O(δ) terms in Equation (5.17),

∇X · u1 +∇x · u0 = 0 for X ∈ ΩG(x, t), (5.26a)

u1 = −β
∂s

∂t
nX for X ∈ ∂ΩP (x, t), (5.26b)

u1 periodic for X ∈ ∂Ω. (5.26c)

We integrate Equation (5.26a) over ΩG(x, t),∫
ΩG

∇X · u1 dX +

∫
ΩG

∇x · u0 dX = 0, (5.27a)∫
∂ΩP

u1 · nX dA︸ ︷︷ ︸
using divergence theorem

+∇x ·
(∫

ΩG

u0 dX

)
−
∫
∂ωP

−nX · (∇xs)u0 dA︸ ︷︷ ︸
using RTT component-wise

= 0, (5.27b)
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using Equation (5.26b) on the first term and the no slip condition u0 = 0 on ∂ΩP , we

find ∫
∂ωP

−β
∂s

∂t
dA+∇x · ū = 0. (5.27c)

Thus, we obtain a continuity equation for the fluid velocity

∇x · ū = β ∥∂ΩP (x, t)∥
∂s

∂t
. (5.28)

The system given by Equations (5.24) and (5.28) determines the flow problem, with its

dependence on the microscale structure. Hence, homogenisation of the Stokes flow gives

Darcy flow for the macroscopic velocity ū, as expected.

5.3.2 Heat transport problem

Next, we consider the homogenisation of the heat transport problem and we proceed in

a similar manner to Section 5.3.1.

Under the transformation Equations (5.12) and (5.13), the governing equations for

heat transport Equation (5.10) become:

δ2β
∂T

∂t
+ δu · (∇X + δ∇x)T

= (∇X + δ∇x) ·
(
Pe−1

T (∇X + δ∇x)T
)

for x ∈ ΩG(x, t), (5.29a)

nX + δ∇xs

∥nX + δ∇xs∥
·
(
Pe−1

T (∇X + δ∇x)T
)
= −δ2kR(T ) at x ∈ ∂ΩP (x, t), (5.29b)

∂s

∂t
= R(T ) at x ∈ ∂ΩP (x, t), (5.29c)

T, u periodic at x ∈ ∂Ω. (5.29d)

Again, we pose an asymptotic expansion in the limit δ → 0:

u ∼ u0 + δu1 + δ2u2 + . . . , (5.30)

T ∼ T0 + δT1 + δ2T2 + . . . . (5.31)

At leading order (O(1)), we find that the leading order temperature T0 is independent

of the microscale,

T0 = T0(x, t). (5.32)

At the next order (the O(δ) terms in Equation (5.29)), the heat transport model is

0 = Pe−1
T ∇2

XT1 for x ∈ ΩG(x, t), (5.33a)

nX ·
(
Pe−1

T (∇XT1 +∇xT0)
)
= 0 at x ∈ ∂ΩP (x, t), (5.33b)

T1 periodic at x ∈ ∂Ω. (5.33c)

We seek a solution for T1 of the form

T1(x,X, t) = −Γ (x,X, t) · ∇XT0 + T̃ (x, t), (5.34)

where T̃ is an arbitrary function. The components of vector function Γ satisfy the cell
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problem, for i = 1, 2, 3:

0 = ∇2
XΓi for x ∈ ΩG(x, t), (5.35a)

nX,i = nX · ∇XΓi for x ∈ ∂ΩP (x, t), (5.35b)

Γi periodic for x ∈ ∂Ω, (5.35c)

Proceeding to O(δ2) of Equation (5.29),

β
∂T0

∂t
+ u0 · ∇XT1 + u1 · ∇XT0 + u0∇x · T0

= Pe−1
T [∇X · (∇XT2 +∇xT1) +∇x · (∇XT1 +∇xT0)] for x ∈ ΩG(x, t),

(5.36a)

Pe−1
T [nX · (∇XT2 +∇xT1) + (∇xs) · (∇XT1 +∇xT0)] = kR(T0) at x ∈ ∂ΩP (x, t),

(5.36b)

T2, u1 periodic at x ∈ ∂Ω, (5.36c)

where we have taken the leading order term in the expansion ofR(T ) ∼ R(T0+δT1+. . . ).

We integrate Equation (5.36a) over ΩG(x, t), and note ∇XT0 = 0 in ΩG, to find∫
ΩG(x,t)

β
∂T0

∂t
dX︸ ︷︷ ︸

†1

+

∫
ΩG(x,t)

u0 · ∇xT0 dX︸ ︷︷ ︸
†2

+

∫
ΩG(x,t)

u0 · ∇XT1 dX︸ ︷︷ ︸
†3

= Pe−1
T

∫
ΩG(x,t)

∇X · (∇XT2 +∇xT1)︸ ︷︷ ︸
†4

+∇x · (∇XT1 +∇xT0)︸ ︷︷ ︸
†5

dX. (5.37)

We simplify the †i terms as follows:

†1 :

∫
ΩG(x,t)

β
∂T0

∂t
dX = β

∂

∂t

(∫
ΩG

T0 dX

)
− β

∫
∂ΩP

∂s

∂t
T0 dA︸ ︷︷ ︸

by RTT

; (5.38)

†2 :

∫
ΩG(x,t)

u0 · ∇xT0 dX =

∫
ΩG

∇x · (u0T0)− T0 (∇x · u0) dX

=

∫
ΩG

∇x · (u0T0) dX −
∫
ΩG

−T0 (∇X · u1) dX︸ ︷︷ ︸
using Equation (5.26a)

,

=

∫
ΩG

∇x · (u0T0) dX −
∫
∂ΩP

−(u1 · nX)T0 dA︸ ︷︷ ︸
using divergence theorem

,

=

∫
ΩG

∇x · (u0T0) dX + β

∫
∂ΩP

∂s

∂t
T0 dA︸ ︷︷ ︸

using Equation (5.26b)

,

= ∇x ·
(∫

ΩG

u0T0 dX

)
+

∫
∂ΩP

(∇xs) · (u0T0)︸ ︷︷ ︸
u0=0 on ∂ΩP

dA+ β

∫
∂ΩP

∂s

∂t
T0 dA, (5.39)
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†3 :

∫
ΩG(x,t)

u0 · ∇XT1 dX =

∫
ΩG

∇X · (u0T1)− T1 (∇X · u0)︸ ︷︷ ︸
=0

Equation (5.20b)

dX

=

∫
∂ΩP

−nX · (u0T1) dA︸ ︷︷ ︸
by divergence theorem

= 0︸︷︷︸
u0=0 on ∂ΩP

(5.40)

†4 :

∫
ΩG(x,t)

∇X · (∇XT2 +∇xT1) dX =

∫
∂ΩP

−nX · (∇XT2 +∇xT1) dA︸ ︷︷ ︸
using divergence theorem

(5.41)

†5 :

∫
ΩG(x,t)

∇x · (∇XT1 +∇xT0) dX

= ∇x ·
(∫

ΩG

∇XT1 +∇XT0 dX

)
−
∫
∂ΩP

(∇xs) · (∇XT1 +∇xT0) dA︸ ︷︷ ︸
using RTT component-wise

. (5.42)

Note, we have used Reynolds transport theorem (component-wise) on
∫
ΩG

∇X · (. . . )
terms (see Appendix A of [3]).

Thus, the governing equation Equation (5.36a) becomes

β
∂

∂t

(∫
ΩG

T0 dX

)
− β

∫
∂ΩP

∂s

∂t
T0 dA+∇x ·

(∫
ΩG

u0T0 dX

)
+ β

∫
∂ΩP

∂s

∂t
T0 dA

= Pe−1
T

[∫
∂ΩP

−nX · (∇XT2 +∇xT1) dA−
∫
∂ΩP

(∇xs) · (∇XT1 +∇xT0) dA

+∇x ·
(∫

ΩG

∇XT1 +∇XT0 dX

)]
(5.43)

We use the boundary condition on the pellet surface Equation (5.36b) to replace the

surface integrals on the RHS of Equation (5.43),

β
∂

∂t

(∫
ΩG

T0 dX

)
= ∇x ·

(∫
ΩG

Pe−1
T [∇XT1 +∇XT0]− u0T0 dX

)
−
∫
∂ΩP

kR(T0) dA. (5.44)

Recalling that T0 = T0(x, t), i.e. independent of the microscaleX, and writing∇XT1 = −∇XΓ · ∇xT0,

we write Equation (5.44) as

β
∂

∂t
(∥ΩG∥T0) = ∇x ·

(
Pe−1

T

[∫
ΩG

(I− JT
Γ ) dX

]
∇xT0 −

[∫
ΩG

u0 dX

]
T0

)
− ∥∂ΩP ∥ kR(T0),

(5.45)

where (JT
Γ )ij = ∂Γj/∂Xi is the transpose of the Jacobian matrix of Γ , which we recall

is the solution to the cell problem Equation (5.35).

We recall the volumetric average fluid velocity ū given in Equation (5.23), and define

the volumetric average temperature within the crucible, where we impose the pellet to

have uniform temperature (which is the same as the temperature at the pellet boundary
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∂ΩP ),

T̄ =
1

∥Ω∥

∫
Ω

T dX =
1

∥Ω∥

(∫
ΩG

T dX +

∫
ΩP

T dX

)
, (5.46)

∼ 1

∥Ω∥
(T0 ∥ΩG∥+ Tpellet ∥ΩP ∥) ∼ T0, (5.47)

since T0 = T0(x, t) and therefore Tpellet = T0. Therefore, we can write Equation (5.45)

in terms of the volumetric average temperature T̄ and velocity ū,

β
∂

∂t

(
∥ΩG∥ T̄

)
= ∇x ·

(
Deff(s)∇xT̄ − ūT̄

)
− ∥∂ΩP ∥ kR(T0), (5.48)

where we define the effective diffusivity Deff as

DeffI = Pe−1
T

(
I−

∫
ΩG

JT
Γ dX

)
. (5.49)

5.4 Results

The homogenised system of equations for coupled fluid flow (volumetric average flow ū)

and heat transport (volumetric average temperature T̄ ) within the crucible are:

β
∂

∂t

(
∥ΩG∥ T̄

)
= ∇x ·

(
Deff(s)∇xT̄ − ūT̄

)
− ∥∂ΩP ∥ kR(T0), (5.50a)

∂s

∂t
= R(T̄ ), (5.50b)

with flow governed by

ū = −K(ϕ)∇xp, (5.50c)

∇x · ū = β ∥∂ΩP ∥
∂s

∂t
, (5.50d)

and porosity related to pellet radius via

ϕ(x, t) =
4

3
πs3, (5.50e)

and the volume of the gas region and surface area of carbon pellet given by

∥ΩG∥ =
4

3
πs3, ∥∂ΩP ∥ = 4πs2, (5.50f)

where the effective heat diffusivity Deff(s(x, t)) is given by Equation (5.49) and the

effective permeability K(ϕ(s)) is given by Equation (5.25). This system is an effective

reaction-advection-diffusion model coupled to an effective Darcy’s law governing the gas

flow within the crucible. The RHS of the compressibility condition Equation (5.50d)

accounts for the incompressible fluid being pushed out of the cell as the pellet increases

in size.

We find that the volumetric heat sink term is dependent on the surface area of the

carbon pellet. This method of multiple scale analysis shows that the general heat sink

coefficient in Equation (4.1) should be time-dependent and increasing proportional to

the pellet radius squared, S ∝ s2, which can vary spatially within the crucible.
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We can solve this system within the crucible geometry subject to appropriate boundary

and initial conditions to determine the flow profile, the temperature, and the pellet radius

across the entire crucible.

We compare the homogenised model to the macroscale model considered in Section 4,

by considering the no-flow case. We model the crucible as a cylinder with dimesionless

radius 1 and height 2. We assume axisymmetry and convert into a cylindrical polars

coordinate system. Our domain is given by [r, z] ∈ [0, 1]× [0, 2]. Thus far, we have worked

with an arbitrary reaction term R(T̄ ). To compare the homogenised model results to

those obtained in Section 4.5, we choose an Arrhenius heat sink law:

R(T̄ ) = exp

(
− b

cT̄

)
. (5.51)

We consider both the uniform and Gaussian inlet boundary conditions introduced in

Section 4.

We impose the following the boundary and initial conditions on temperature T̄ for the

system given by Equation (5.50) (with ū = 0):

Deff(s)
∂T̄

∂z
= 0 at z = 1, (5.52a)

Deff(s)
∂T̄

∂r
= 0 at r = 0, (5.52b)

T̄ = 1 at r = 1, (5.52c)

T̄ = 1 at t = 0, (5.52d)

where we impose one of the following boundary conditions at the inlet z = 0,

Uniform: T̄ = 0 at z = 0, (5.52e)

Gaussian: T̄ = 1− exp
(
−10r2

)
at z = 0, (5.52f)

We solve the model (Equations (5.50) and (5.52)) numerically using the finite element

package COMSOL Multiphysics R . We note that the cell problems Equations (5.21)

and (5.35) can be solved a priori to determine how K(s) and Deff(s) behave as functions

of pellet radius, s. We refer the reader to [8] for further details of our approach to

numerical solution of the homogenised model. 5 An example of a solution for temperature

T̄ (r, z, t) and pellet radius s(r, z, t) is shown in Figure 11.
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UNIFORM GAUSSIAN

(a) Temperature

UNIFORM GAUSSIAN

(b) Pellet radius

Figure 11. Results for the model given by Equations (5.50) and (5.52) for (left) uniform

(Equation (5.52e)) and (right) Gaussian boundary conditions (Equation (5.52f)).
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6 Two-Fluid Model: methane gas and non-Newtonian variably fluidised

carbon pellets

In this section we explore a multi-phase fluid model. The carbon particles are treated

as one fluid phase; this can accommodate both the packed bed and fluidised carbon.

The gases can be treated as separate phases (methane and hydrogen) or one overall gas

phase (methane + hydrogen). This method of modelling solid particles within a fluid is

used in similar physical situations as the one considered here, for example, for modelling

particles in a landslide [20]. Figure 12 illustrates the modelling context.

Here we consider the case of two phases (one particle phase and one total gas phase).

We denote the carbon particle phase with i = c and the total gas phase as i = g. Each

phase i satisfies the same set of equations.

A phase fraction ϕi gives the fractional volume of phase i at each location, with the

constraint

Σiϕi = 1. (6.1)

The concentration of each phase is therefore ϕiρi, where ρi is the density of phase i.

Each phase satisfies a mass conservation equation,

∂

∂t
(ϕi) +∇ · (ϕiui) =

fi
ρi
, (6.2)

where fi is the production or loss rate of phase i, and ui is the velocity. The production

rate fc will be related to the reaction rate of the methane, as will the production (or

loss) rate fg.

Both phases satisfy the conservation of momentum equation,

∂

∂t
(ρiϕiui) +∇ · (ρiϕiui ⊗ ui) = ∇ · (2ϕiνiρiEi)− ϕi∇pi + ϕiρig +Σj [Ki,j (ui − uj)] .

(6.3)

The first term on the right hand side of this equation represents viscous forces. In the

gas phase, the coefficient of viscosity, νg, is a known constant but for the particle phase,

νc is an effective viscosity that is modelled in Section 6.1 below. Operator Ei is simply

the rate-of-deformation tensor, that is, the symmetric gradient of ui. The second term

on the right hand side is the pressure gradient: for the gas phase, pc = p the total

pressure, while for the particle phase pc = p+ ps where ps is an additional pressure due

to inter-particle interaction. The third term on the right hand side corresponds to the

gravitational force. The final term represents an effective drag force due to the interaction

of phases, where Ki,j is the coefficient of drag on phase i due to phase j . These details

are simply summarised in the word equation (Figure 13) for a reader less familiar with

Navier-Stokes.

An additional energy conservation equation is included to find the temperature of each

phase. This is necessary if the phases are allowed to be compressible and will be necessary

to calculate the temperature-dependent reaction rates.

∂

∂t
(ϕiρicp,iTi) +∇ · (ϕiρicp,iTiui) = ∇ · (Ki∇Ti) + ΣjDi,j +ΣjQi,j . (6.4)

where Ti is the temperature of phase i, Ki is the coefficient of thermal conductivity in
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Figure 12. Diagrams of regimes described by granular flow model and summary of the

key parameters.

Figure 13. Word equation to summarise competing accelerations in the crucible.

phase i, Di,j is the coefficient of thermal diffusion from phase i to phase j, the form of

which is discussed in section 6.2, and Qi,j is the energy source due to reactions from

phase i to phase j. The form of Qi,j is not discussed here but is proportional to the

reaction rate at a given location. Physically, the last two terms on the right hand side of

this equation are, respectively, the transfer of heat to phase i from all other phases via

diffusion and reactions respectively.

6.1 Viscosity of particle phase

To model granular flow as a fluid-like motion, we need a non-Newtonian law. The idea

is to have an effective or apparent viscosity νc depending locally on the flow itself. For

example, a higher pressure between particles leads to more friction, which can be modelled

as an increase in effective viscosity. A state-of-the-art model for that is [17, 20]

νc = ν∞ +
c+ µps
2ϕ̄ρc|Ec|

(1− e−m|Ec|) , (6.5)
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in which ps is the particle pressure, ϕ̄ is the reference packing density, ν∞ is a limit plastic

viscosity, m is a large regularisation parameter (it should ideally be infinity, or as large

as the numerical solver can handle), c indicates the strength of cohesive forces, and µ is

the so-called friction factor, usually given as a function of the inertia number I:

µ(I) = µs +
µd − µs

1 + I0/I
, I :=

2d|Ec|√
ps/ρc

, (6.6)

with d being the particle diameter and the remaining coefficients being empirical con-

stants. The theory behind such models is not simple, and we recommend Refs. [18, 17, 20]

for details. The particle pressure ps also requires some modelling, see for instance Ref. [20].

Since some of these material parameters are not simple to obtain experimentally, we

recommend here a parameter sweep (after appropriate non-dimensionalisation of all flow

equations) to determine what parameter ranges yield solutions that best reproduce ex-

periments.

6.2 Drag forces between phases

The interaction parameter, int, as shown in Fig. 12, describes the relative importance of

gas-on-carbon drag to momentum evolution. The relevant timescale, ∆t, would at first

be determined by how quickly the experiment is ramped up. Later, it would be an eddy

timescale relating to how turbulent the flow is. The full equation for the drag is [20]

Kc,g =
150ϕ2

cρgνg
ϕ2
gd

2
+

1.75ρgϕc

ϕgd
|ug − uc| (6.7)

where the quadratic term is included for stability purposes; note that the subscript

labelling is reversed the reference.

6.3 Boundary conditions

An approach to the numerical solution of the equations would be to use the open-source

toolkit OpenFOAM® as in [20]. Partial-slip conditions should be implemented at the

crucible walls [22]. However, dynamics with no-slip and full-slip conditions can first be

explored. The inflow/ outflow conditions will be based off the experimental/industrial

set up.

7 Computational fluid dynamics simulation of exact geometry

Since, the model in §6 is computationally expensive to implement, we have also simu-

lated the flow of an incompressible viscous fluid, through a two-dimensional projection

of the geometry depicted in Figure 1. These simulations were done using Matlab’s CFD-

Tool package [19], allowing the input of a geometry and selection of boundary conditions

and parameter values, including fluid input velocity, pressure differentials and boundary

temperatures which it then converts to a finite volume problem solved through the ‘open-

FOAM’ solver. This means more complex aspects of the crucible such as the multiple

horizontal methane inputs and the constricted top could be included in the simulation.
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Figure 14. Simulation of the incompressible Navier-Stokes equations in (a) A two-

dimensional peoject of the current experimental setup, depicted in Figure 1, and (b)

a conical geometry proposed to prevent the development of the hard packed layer, de-

picted in Figure 2.

The results of two simulations are shown in Figure 14. The first was run with a two

dimensional representation of the crucible geometry as it currently exists (Figure 14 a).

The second was run with a conical insert represented at the base of the crucible (Figure

14 b), which has been suggested as a modification to avoid the buildup of packed ma-

terial, depicted in Figure 2. These results show that the proposed geometry does avoid

regions of almost zero gas flow in the bottom corners of the crucible, but further work

would be required to see if this prevents the buildup.

8 Lagrangian Particle Dynamics

An alternative approach to the above is to consider the carbon as particles moving in a

flow, due to forces acting on them. The equation of motion for one particle with mass m

and velocity vpis derived from Newton’s law

mv̇p = Fd + Fg.

Assuming a spherical particle with diameter d, subject to a flow from a gas with density

ρg and velocity v, (found by simulations such as in §7), the drag force is given by

|Fd|=
1

2
ρgA∥v − vp∥2cd =

π

16
ρgd

2∥v − vp∥2.

Additionally, the gravitational force on the particle is given by

|Fg|= ρCV g =
π

6
ρCd

3g,
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where ρC is the density of carbon and g the gravitational constant.

A 50 µ particle will float if methane blows it upwards at
√
3 m/s.

The input to this model is the vector field of the gas velocity, and the density of the

gas mixture. It can be obtained by any of the macroscale models discussed in section 9.

Additionally, interactions of the particle with it’s environment have to be modelled.

A standard assumption would be that the interaction between the particle and the flow

is one-way, so that the flow is not affected by the particle. Also, particles can interact

with each other. The simplest case is to assume no interaction at all, followed by having

perfectly elastic collisions between particles. A more complex model could take cohesion

between particles (and the wall) into account. Finally, the interaction with the wall needs

to be modelled. Again, the simplest assumption is that the particle bounces off the wall

without loss of momentum. In a numerical implementation, one thus needs to track the

position of particles compared to the wall and check if they have crossed the wall during

a time step, to then correct their position.

With the simple assumptions, simulating 1000 particles requires only a small amount

of computing ressources, whereas the model can become quite cumbersome with the more

realistic assumptions.

9 Simple lumped parameter model

9.1 Model formulation

In this section we shall consider a fully stirred model of the methane cracking in a crucible

following Paxman et al. [15, 16]. Dependent variables as concentration and temperature

are considered spatially homogeneous leading to a simple system of ordinary differential

equations, i.e. a lumped model. The model has been derived from a full system of par-

tial differential equations, that is the heat equation including the fluid flow, reactions,

diffusion and heat conductivity. Using the divergence theorem on this model provides

boundary conditions, from which we easily extract the correct terms for inflow and out-

flow of reactants in the simple lumped model. Similarly for heating through the crucible

walls and advective contributions from the inflow and outflow.

The model by Paxman et al. in [15] considers bobles of methane in a molten media

of Sn. The bobles contain methane and the reactants from a cracking process. Heat is

transferred from the molten media to the gas in the bobles, which in turn are material

insulated so no reactants are flowing in or out of the bubles. However, in our crucible

methan is flowing into the reaction chamber and reactants are flowing out. We need to

add transport terms into and out of the crucible in our case.

The concentration of methane we denote [CH4] measured in units of kg/m3. [CH4] is

a function of time t measured in s (seconds). The temperature of the gas in the crucible

we denote Tg measured in units of Kelvin K. The volume of the crucible is Ω and q is the

volume flow given by q = uinSin at the inlet. Here uin is the inlet flow velocity of methane

and Sin is the inlet area. Assuming constant density ρg and using mass conservation the

inlet flow equals the outlet flow. With uout being the outflow velocity and Sout being the

outflow area we have from mass conservation that q = uoutSout. The Arrhenius reaction

rate Rr (4.2) in the form given in [15] reads
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Table 2. Parameter values used in the lumped model [11, 10, 1]

Parameter Value / Values Parameter description

k0 6 · 1011 1/s Factor in the Arrhenius law Eq. (??)
Ea 250 kJ/mol Activation energy for methane cracking

M̂ 16.042 kg/kmol Molar mass of methane

Ĉp 86 kJ/(kmol K) Molar Specific heat capacity of methane at
T=1200K (rough estimate)

Cp 5.36 · 103 J/(kg K) Specific heat capacity of methane Cp = Ĉp/M̂
hf 75 · 103 kJ/kmol Energy (enthalpy) of formation of methane

R̂ 8.314 J/(mol K) Universal gas constant

R 518.26 J/(kg K) Gas constant for methane R = R̂/M̂
h = κhcon 100 W/(m2 K) Thermal convection coefficient for forced convec-

tion. Rough order of magnitude guess
ρg 0.163 kg/m3 Density of methane at T=1200 K. Rough estimate
Tb 1200 K Temperature of the crucible boundaries
[CH4]in 0.6671 kg/m³ Density of methane at the inlet and at T=293 K.
Sw 0.171 m2 Total surface area of the crucible. Estimate based

on sketches
Sin 2.5 · 10−5 m2 Total area of influx holes. Estimate based on

sketches
Sout 4.5 · 10−4 m2 Area of outflux hole. Estimate based on sketches
Ω 4.25 · 10−3 m3 Volume of the crucible. Estimate based on

sketches

Rr = k0 exp(
−Ea

R̂Tg

) . (9.1)

Here Ea is the activation energy for methane cracking, k0 is the prefactor in the Arrhenius

law and R̂ is the molar gas constant. Note that introducing the pressure P , volume v,

mass M and temperature T , the gas constant R in the ideal gas law Pv = MRT is given

on mass basis. The units of R is here J/(kg K). On molar basis we have Pv = NR̂T , where

N is the number of molecules in units of mol. Introducing the molar mass M̂ = M/N

the relation between the gas constant on molar basis and mass basis is R̂ = M̂R in units

of J/(mol K) [11]. We can now write the dynamical equation for the reaction, with flow

in and out of the crucible as follows [15]

d[CH4]

dt
= −k0 exp(

−Ea

R̂Tg

)[CH4] +
q

Ω
([CH4]in)− [CH4]) (9.2)

The term [CH4]in denotes the input concentration of methane, which is kept fixed. We

introduce the parameter hf as the heat of formation of methane, and the heat convection

parameter hcon from the crucible walls to the gas. The specific heat of the gas at constant

pressure we denote Cp and the heat conductivity we shall denote κ. With Sw being the

surface area of the heated crucible walls and Tin being a fixed inlet temperature of

methane, we obtain the heat equation [15]
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dTg

dt
= −hfk0

ρgĈp

exp(
−Ea

R̂Tg

)[CH4] +

κhconSw

ρgCpΩ
(Tb − Tg) +

q

Ω
(Tin − Tg) (9.3)

Here Ω is the volume of the crucible and Sw is the surface area of the heated walls of the

crucible. In the simulations we have used a value of the thermal convection coefficient

h = κhcon in the range 10 W/(m2 K) - 500 W/(m2 K) corresponding to forced convection

by fluid flow [10]. The heat capacity dependents on temperature, but we have used a fixed

value of Cp estimated roughly at Tg = 1200K. See Table 2 for the actual value chosen.

On molar basis and in the range 300K - 850K the temperature dependence of the heat

capacitance Ĉp of methane is [11]

Ĉp = (18.93 + 0.0555 K−1 Tg) kJ/(kmolK) . (9.4)

Tables of the heat capacity for methane and other physical and chemical properties can

also be found in [1]. As mentioned previously the density of the methane gas depends on

temperature and can be calculated from the ideal gas law [11].

9.2 Numerical results

In the following section we present numerical results for the lumped model in Eqs. (9.2)

and (9.3). The parameter values are taken from Table 2. Even though the heat capacity

of methane and the density of methane is temperature dependent, we have fixed the

values of Cp and ρg at values corresponding to the temperature Tg = 1200K. This means

that the transients observed in the numerical results are only indicative and not precise.

In figure 15 we show two simulations of the methane concentration [CH4] in kg/m3

as function of time t in seconds s for two different volume flows q = 0.5 litre/s (blue

curve) and q = 0.1 litre/s (red curve). The initial conditions are [CH4] = 0.6671 kg/m³
and Tg = 293K. For the high volume flow all methane is not converted to carbon and

hydrogen. For the lower volume flow the methane stays longer in the crucible, and now

the figure shows that all methane is converted. For the given parameter values and with

q = 0.1 litre/s we obtain stationary state after t ≈ 8s.

Figure 16 shows the temperature Tg of the methane gas as function of time for the

same volume flows as above, that is q = 0.5 litre/s (blue curve) and q = 0.1 litre/s (red

curve). For the high volume flow the methane gas is cooled due to the cold methane

influx at Tg = 293K to a temperature around Tg = 1100 K in the stationary state. For

the low volume flow this cooling effect becomes smaller and the methane gas stays longer

in the crucible and thereby can heat to nearly Tg = 1200K, which is the temperature of

the crucible walls.

In the presentation of the numerical results we have shown the concentration of methane

and the the temperature of methane as function of time and simulated to stationary state.

Other physical variables of interest can be calculated from the lumped model. Those are

energy supplied to the gas from the crucible walls and energy losses from advection of

the cold methane gas into the crucible and exit of hot gas from the outlet. We can
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Figure 15. Simulations of the lumped model in Eqs. (9.2) and (9.3) for the volume flows

q = 0.5 litre/s (blue curve) and q = 0.1 litre/s (red curve). Other parameter values

are given in Table 2. The density of methane [CH4] in kg/m3 is shown as function of

time t measured in seconds s. The initial conditions are [CH4](0) = 0.6671 kg/m³ and

Tg(0) = 293K.
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Figure 16. Simulations of the lumped model in Eqs. (9.2) and (9.3) for the volume flows

q = 0.5 litre/s (blue curve) and q = 0.1 litre/s (red curve). Other parameter values

are given in Table 2. The temperature of methane Tg in K is shown as function of

time t measured in seconds s. The initial conditions are [CH4](0) = 0.6671 kg/m³ and

Tg(0) = 293K.

also extract the yield of carbon and hydrogen from the reaction. Further development

of the model is relevant. We have assumed pure methane flowing into the crucible. In

the crucible we have a mixture of methane, hydrogen, carbon, and other intermediate

products. Hence we have a mixture of gasses, and from a thermo dynamical perspective

we need to take this into consideration. Finally, The model can be extended to the

case of spatial dependence of methane concentration and temperature. This calls for a

model based on partial differential equations, that is fluid dynamics in conjunction with

reactions and heat transfer in an advected flow.
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10 Discussion

We have investigated methane cracking for producing carbon, which subsequently be

used in the Si production. This process reduces the CO2 emissions in the production of

Si and provides a purer carbon source. The problem of optimising methane cracking using

carbon seeds is currently under investigated by Elkem using laboratory scale experiments,

and our work here has focused on modelling the coupled fluid dynamics, thermodynamics

and chemical reactions, occurring in these experiments, to aid in this optimisation.

We developed and solved a microscale model for the growth of a carbon particle,

under the assumption of an imposed particle temperature distribution. For future work

we would like to consider the case where the particles temperature must be found as part

of the solution, in order to understand how much the particle will grow before there is

insufficient energy in the particle to maintain the reaction.

We also derived a model for the temperature distribution in a cylindrical crucible,

assuming only reactions and diffusive heat transfer. This model was solved numerically

using a finite difference scheme. We investigated how the size the dimensionless reaction

rate and activation energy of the reaction altered the temperature distribution inside the

crucible.

We then considered a homogenisation approach (via the method of multiple scales)

to systematically upscale the microscale behaviour of the heat transport and gas flow

through a bed of carbon pellets. We consider heat to be transported via advection and

diffusion, with an endothermic reaction occurring at the surface of the carbon pellets. The

pellet grows in size due to carbon deposition at a rate proportional to the reaction. This

approach enabled us to derive the appropriate effective macroscale model for coupled

heat transport and gas flow. We found that we can model the heat sink due to reaction

as a general volumetric sink term - as used in the macroscale model - which should

be temporally and spatially dependent and scale with pellet radius squared. We solve

this model numerically using COMSOL Multiphysics R , and found the particle size was

largest in the regions that were hottest in the steady solution.

A simple two-fluid model is derived for the methane gas and a fluidised bed of carbon

pellets in order to investigate the possiblity of fluidisation of the bed.

Using openFOAM we simulated the flow of an incompressible viscous fluid through the

current experimental setup, and the new setup Elkem proposed to prevent the buildup

of a hard packed layer in the crucible. We found that the proposed geometry lead to a

more uniform flow at the bottom of the furnace. This flow could also be used to simulate

the movement of the carbon particles using Lagrangian particle dynamics. This would

be useful predict the onset of fluidisation.

Finally, we have derived a lumped model for the methane cracking, including inlet

and outlet of reactants and considering inlet temperature of methane equal to ordinary

room temperature. The lumped model provides information about desirable inflow rates,

residence time of methane in the crucible, energy consumption and quantities of produced

chemical species.
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