

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Jun 04, 2024

Teaching Logic for Computer Science Students: Proof Assistants and Related Tools

Jacobsen, Frederik Krogsdal; Villadsen, Jørgen

Published in:
Proceedings of LogTeach-22

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Jacobsen, F. K., & Villadsen, J. (2022). Teaching Logic for Computer Science Students: Proof Assistants and
Related Tools. In Proceedings of LogTeach-22

https://orbit.dtu.dk/en/publications/8d6be745-82d7-49d4-b442-25bfccb784e8

Teaching Logic for Computer Science Students:
Proof Assistants and Related Tools

Frederik Krogsdal Jacobsen and Jørgen Villadsen

Technical University of Denmark, Kongens Lyngby, Denmark

Abstract. In the last decade we have focused our main logic courses
on proof assistants and related tools. We find that the modern computer
science curriculum requires a focus on applications instead of just pen-
and-paper proofs. Notably, we teach the metatheory of logic using tools
with formalizations in proof assistants like Isabelle such that we have
both implementations and theorems about them.

Keywords: Logic · Automated Reasoning · Isabelle Proof Assistant

1 Introduction

While the “traditional” logic course might no longer have a place in an under-
graduate computer science program, we believe that logic is still very useful as
a tool in many computer science applications. In fact, we believe that logic has
never been more relevant in the current computer science landscape, where tools
such as type systems, formal verification tools, and proof assistants are becom-
ing more and more popular. Consequently, we no longer focus on pen-and-paper
proofs, but on implementations and applications of logical systems, while still
retaining foundational material on metatheory.

In the last decade, we have thus focused the main logic courses at the Tech-
nical University of Denmark on proof assistants and related tools. This focus
was initially also part of a larger strategic project within our department [2]. In
particular, we use the Isabelle proof assistant [4] to formalize a number of logi-
cal systems and their metatheory [3, 5]. This allows us to focus on applications
while still ensuring that students are exposed to concepts such as soundness and
completeness, and the formalizations additionally serve as examples of how to
prove these properties for concrete systems. In our undergraduate course, we
also teach logic programming in Prolog, which has recently enjoyed a resurgence
of interest in both academia and industry, especially with regards to the Datalog
subset (see e.g. the Datalog 2.0 workshop series [1]).

The very basics of logic is taught in a discrete mathematics course at the
beginning of our undergraduate program, but the main logic course comes only
towards the end of the program. This means that students already have a well-
developed mathematical maturity when starting the course, and that we can
thus quickly go into relatively advanced topics. It also means that students have
already seen many of the potential applications of logic in their other courses.

2 F. K. Jacobsen and J. Villadsen

This allows us to draw from a wide range of example applications. Finally, placing
the logic course towards the end of the undergraduate program means that logic
is fresh in students’ memory when they encounter more advanced applications
in their graduate studies (which, following Danish custom, a large majority of
our students pursue immediately after their undergraduate studies).

2 Our undergraduate course on logic

Our main reason for teaching logic is to give students the tools to become soft-
ware engineers instead of “mere” programmers. As mentioned above, our main
undergraduate course on logic is split in two conceptual parts: one about log-
ical systems and proofs, and one about logic programming in Prolog. Both of
these parts are meant to give students the knowledge to understand the logical
underpinnings of a number of topics in computer science. A working knowledge
of logical systems is, in our opinion, essential for understanding type systems,
model checking, traditional artificial intelligence, and tools such as proof as-
sistants. Logic programming can give a logical understanding of concepts in
databases, program analysis, and traditional artificial intelligence.

The two parts are of course closely related, and we teach them in parallel
and show several implementations of logical systems in Prolog during the course.
Even in the part about logical systems and proofs, we use a very programming-
oriented approach, implementing most of the concepts we teach in the Isabelle
proof assistant instead of using just pen-and-paper proofs. This includes simple
implementations of sequent calculus, natural deduction, axiomatic systems and
resolution, and various proofs of the correctness of the systems. This allows
students to get a feel for how logical tools are actually implemented, while also
exposing them to a bit of formal proof in a proof assistant. Proof assistants are
becoming more and more popular, and so we want students to at least get a
glimpse of what they can do.

Our undergraduate course thus prepares students to understand the logical
background necessary in advanced computer science courses, while also giving
them concrete tools and implementations that can be used to implement and
prove theorems about these topics.

3 Topics for which logic is useful

As mentioned above, there are many topics in computer science which have
logic as a prerequisite, either directly or indirectly. Applications within these
topics typically use logic as a tool, so students need to be familiar with how to
implement logical systems in practice.

At our university, a number of graduate courses assume some familiarity with
logical systems and formal proofs. The most obvious is our graduate course on au-
tomated reasoning, which is intended as a direct continuation of our undergradu-
ate course, going even deeper into the mechanics of formal proofs. Most courses
relating to formal methods rely on logic for specification and logical systems

Teaching Logic for Computer Science Students 3

for verification, making logic a prerequisite for topics such as model checking,
security protocols, program verification, and real-time systems. Many courses
on artificial intelligence also rely on logic, including such topics as multi-agent
systems and logical theories for uncertainty and learning. Courses on software
engineering often use logical systems to specify requirements and the interac-
tion and integration of systems. Courses on programming languages use logical
systems in the form of type systems, which are indispensable for courses on com-
pilers and advanced functional programming. A working familiarity with formal
proofs is also very useful for algorithms courses, where complicated proofs by
induction are often needed and can be easier to keep track of if formalized. Fi-
nally, many students are interested in undertaking thesis work on various topics
which could benefit from logic, and it is thus useful for them to already have
some knowledge of the possible applications.

4 Conclusion

We believe that logic should still be part of the undergraduate computer science
program, but that the focus should be on logic as a tool. We note that the de-
velopment in industry seems to trend towards more widespread use of formal
methods and features inspired by logic, with e.g. model checking becoming more
widely used for distributed systems, Datalog having a resurgence in popularity in
program analysis and databases, and the type system of the Rust programming
language being inspired by substructural logic. We have thus focused on imple-
mentations, applications, and machine-checked proofs, since we believe that this
is the best way to prepare students to understand and apply both the tools of
today and those of the future.

References

1. Alviano, M., Pieris, A.: Datalog 2.0 (2022), https://sites.google.com/unical.
it/datalog20-2022, workshop website

2. DTU Compute: Proof Assistants and Related Tools - The PART Projects (2015–
2017), https://part.compute.dtu.dk/, project website.

3. From, A.H., Villadsen, J., Blackburn, P.: Isabelle/HOL as a meta-language for
teaching logic. In: Quaresma, P., Neuper, W., Marcos, J. (eds.) Proceedings 9th
International Workshop on Theorem Proving Components for Educational Soft-
ware, ThEdu@IJCAR 2020, Paris, France, 29th June 2020. Electronic Proceedings
in Theoretical Computer Science, vol. 328, pp. 18–34. Open Publishing Association
(2020). https://doi.org/10.4204/EPTCS.328.2

4. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for Higher-
Order Logic, Lecture Notes in Computer Science, vol. 2283. Springer (2002)

5. Villadsen, J., Jacobsen, F.K.: Using Isabelle in two courses on logic and automated
reasoning. In: Ferreira, J.F., Mendes, A., Menghi, C. (eds.) Formal Methods Teach-
ing. Lecture Notes in Computer Science, vol. 13122, pp. 117–132. Springer (2021)

