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The total angular resolution of a straight-line drawing is the minimum angle between 
two edges of the drawing. It combines two properties contributing to the readability of a 
drawing: the angular resolution, which is the minimum angle between incident edges, and 
the crossing resolution, which is the minimum angle between crossing edges. We consider 
the total angular resolution of a graph, which is the maximum total angular resolution of 
a straight-line drawing of this graph.
We prove tight bounds for the number of edges for graphs for some values of the total 
angular resolution up to a finite number of well specified exceptions of constant size. In 
addition, we show that deciding whether a graph has total angular resolution at least 60◦
is NP-hard. Further we present some special graphs and their total angular resolution.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

We study angles between incident edges of straight-line drawings of graphs. In the following we mostly omit the word 
straight-line. The total angular resolution of a drawing D , or short TAR(D), is the smallest angle occurring in D , either 
between two edges incident to the same vertex or between two crossing edges. In other words, TAR(D) is the minimum of 
the angular resolution AR(D) and the crossing resolution CR(D) of the same drawing (where CR(D) = 360◦ if D is plane). 
Furthermore, the total angular resolution of a graph G (or short TAR(G)) is defined as the maximum of TAR(D) over all 
drawings D of G . Similarly, the angular resolution and the crossing resolution of G are the maximum of AR(D) and CR(D), 
respectively, over all drawings D of G . Note that the total angular resolution of a graph can be smaller than the minimum 
of its crossing resolution and its angular resolution, see Fig. 1.

In 1993 Formann et al. [13] were the first to introduce the angular resolution of graphs. They showed that finding a 
drawing of a graph with angular resolution at least 90◦ is NP-hard for graphs with maximum degree 4. Four years later, 
Malitz and Papakostas [18] studied the angular resolution of planar graphs. For more results about the angular resolution see 
for example [12,11,17]. Another eleven years later, experiments by Huang et al. [14,16] showed that the crossing resolution 
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Fig. 1. Three slightly different drawings D of a graph G with TAR(G) = 60◦ .

plays a major role in the readability of drawings. Consequently, research in that direction was intensified. In particular, right 
angle crossing drawings (or short RAC drawings) were introduced by Didimo, Eades and Liotta [9]. Van Kreveld [20] showed 
among other results for RAC drawings, that the angular resolution in RAC drawings can be by an arbitrary factor larger than 
the angular resolution in plane drawings. The NP-hardness of deciding whether a given drawing admits an RAC drawing 
was proven by Argyriou, Bekos and Symvonis [3]. For a recent survey by Didimo on RAC drawings, see [8].

For αAC drawings (drawings with crossing resolution α), Dujmović et al. [10] showed an upper bound on the number 
of edges of 180◦

α (3n − 6). For the two special classes of RAC drawings and αAC drawings with 60◦ < α < 83◦ better upper 
bounds are known [1]. More precisely, Didimo et al. showed that RAC drawings have at most 4n − 10 edges [9] and that 
this bound is tight. For αAC drawings with 60◦ < α < 83◦ , Ackerman and Tardos [1] proved an upper bound of at most 
6.5n − 20 edges. This bound is due to the fact that quasi-planar drawings (drawings without three pairwise crossing edges) 
have at most 6.5n − 20 edges and drawings that are not quasi-planar have a crossing angle of at most 60◦ .

Argyriou, Bekos and Symvonis [4] were the first to study the total angular resolution, calling it just total resolution. They 
presented drawings of complete graphs and complete bipartite graphs with asymptotically optimal total angular resolution. 
Recently, Bekos et al. [5] presented a new heuristic for finding a drawing of a given graph with high total angular resolution 
which performed superior to earlier heuristics like [4,15] on the considered test cases. For a recent survey on angular 
resolution, crossing resolution and total angular resolution see Okamoto [19].

Outline

In this work we show that almost all graphs with TAR(G) > 60◦ have at most 2n − 6 edges, list the finitely many such 
graphs that have more than 2n − 6 edges and show that this bound is tight. Moreover, we show the following tight upper 
bounds on the number of edges for graphs with larger total angular resolution: 2n − 2

√
n for TAR(G) ≥ 90◦ , 3

2 n − 5
2 for 

TAR(G) > 90◦ (and n ≥ 3), and n for TAR(G) > 120◦ (and n ≥ 7). We also prove that it is NP-hard to determine whether 
TAR(G) ≥ 60◦ .

Further, we present an infinite family of graphs with TAR(G) = 60◦ , for which every proper subgraph G ′ of G has 
TAR(G ′) > 60◦ . We conclude this work with a bound on the number of edges that can be removed from the complete graph 
Kn without changing its total angular resolution.

2. Upper bounds on the number of edges

In this section we study the relation between the total angular resolution and the maximal number of edges. First we 
need some definitions. Every straight-line drawing D (of a graph G) partitions the plane into connected regions which are 
called cells of D . The planarization P (D) of a drawing D is the drawing in which we replace every crossing by a vertex so 
that this new vertex splits both crossing edges into two edges. Furthermore, every edge in P (D) has two sides and every 
side is incident to exactly one cell of P (D). Note that both sides of an edge can be incident to the same cell. A connected 
drawing D is a drawing such that P (D) corresponds to a drawing of a plane connected graph. We define the size of a cell 
of a connected drawing D as the number of sides in P (D) incident to this cell.

2.1. Graphs with TAR(G) > 60◦

In this section we show that for almost all graphs with TAR(G) > 60◦ the number of edges is bounded by 2n − 6. We 
start by showing a bound for the number of edges in a connected drawing D depending on the size of the unbounded cell 
of D .

Lemma 1. Let D be a connected drawing with n ≥ 1 vertices, m edges and TAR(D) > 60◦ . If the unbounded cell of D has size k, then 
m ≤ 2n − 2 − �k/2	.

Proof. If at least three edges cross each other in a single point, then there exists an angle with at most 60◦ at this crossing 
point. Therefore, every crossing of the drawing D is incident to exactly two edges. We planarize D and get nP = n + cr(D)
74
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and mP = m + 2 cr(D) where cr(D) is the number of crossings in D , nP is the number of vertices of P (D), and mp is the 
number of edges of P (D). Since P (D) is a plane drawing, we can use Euler’s formula to compute the number f p of faces in 
P (D) as

f P = −n + m + cr(D) + 2. (1)

Moreover, every bounded cell of D has size at least 4, as otherwise P (D) would contain a triangle, implying an angle of at 
most 60◦ . By definition, the unbounded cell of D has size k and we obtain the inequality

2mP ≥ 4( f P − 1) + k. (2)

Combining Equation (1) and Inequality (2) with mP = m + 2 cr(D) gives m ≤ 2n − 2 − �k/2	. �
From Lemma 1 it follows directly that a connected drawing D on n ≥ 3 vertices and with TAR(D) > 60◦ fulfills m ≤ 2n −4. 

Note that this bound is only two edges away from the optimal upper bound.
We proceed to prove the bound of 2n − 6 for disconnected drawings.

Lemma 2. Let D be a disconnected drawing on n ≥ 3 vertices with TAR(D) > 60◦ . Then, m ≤ 2n − 6 or D consists of three vertices 
and one edge (Exception E0 in Fig. 2).

Proof. Assume that D consists of � ≥ 2 components Ci , 1 ≤ i ≤ �, where Ci has ni ≥ 1 vertices and mi ≥ 0 edges. Fur-
thermore, TAR(Ci) ≥ TAR(D) > 60◦ holds. By Lemma 1 we get mi ≤ 2ni − 2 for every component. If � ≥ 3, this directly 
implies

m =
�∑

i=1

mi ≤
�∑

i=1

(2ni − 2) = 2n − 2� ≤ 2n − 6.

Now consider � = 2. If C1 contains at least 2 edges, then the size of the unbounded cell of C1 is at least 3. So we get 
m1 ≤ 2n1 − 4 by Lemma 1. This gives

m = m1 + m2 ≤ 2n1 − 4 + 2n2 − 2 = 2n − 6.

This implies that we only have to check drawings with exactly two connected components and each has at most one edge. 
If both C1 and C2 consist of two vertices and one edge, then we have m = 2 = 2 · 4 − 6 edges. If D is a drawing on n = 3
vertices with m = 1 edges, then we have Exception E0. �

Now we prove the bound for connected drawings. To further improve the bound from Lemma 1, the following lemma is 
useful.

Lemma 3. Let D be a plane connected drawing where the boundary of the unbounded cell is a simple polygon P with p > 3 vertices. 
Let the inner degree of a vertex vi of P be the number d′(vi) of edges incident to vi that lie in the interior of P . If TAR(D) > 60◦ , then ∑

vi∈V (P ) d′(vi) ≤ 2p − 7 holds.

Proof. Assume to the contrary that TAR(D) > 60◦ and 
∑

vi∈V (P ) d′(vi) ≥ 2p − 6. The sum of all inner angles in any 
simple polygon P with p vertices is 180◦(p − 2). The number of all inner angles in D incident to vertices in P is 
p + ∑

vi∈V (P ) d′(vi) ≥ 3p − 6. Since every angle in D is larger than 60◦ , all inner angles incident to vertices of P sum 
up to strictly more than 180◦(p − 2). This contradicts that the sum of the inner angles is 180◦(p − 2). Therefore, we have ∑

vi∈V (P ) d′(vi) ≤ 2p − 7. �
Lemma 4. Let D be a connected plane drawing on n ≥ 3 vertices, where D is not a path on 3 vertices and not a 4-cycle. If TAR(D) > 60◦ , 
then m ≤ 2n − 5.

Proof. The unbounded cell of D cannot have size 3, as in this case the convex hull of the drawing is a triangle and we 
have TAR(D) ≤ 60◦ . If the drawing D has an unbounded cell of size at least 5 and TAR(D) > 60◦ , then m ≤ 2n − 5 follows 
directly from Lemma 1. Otherwise, the unbounded cell of D has size 4, which, as D is not a path on 3 vertices, implies that 
the boundary of D is a 4-cycle F . By Lemma 3 and the fact that D is not a 4-cycle, D contains exactly one edge e with 
one vertex in the interior of F and the other vertex on the boundary of F . Let D ′ be the drawing we obtain by deleting 
all vertices and edges of F and also the edge e. The drawing D ′ is connected and has n′ ≥ 1 vertices and m′ edges, where 
n′ = n − 4 and m′ = m − 5. By Lemma 1 we know that m′ ≤ 2n′ − 2 and we derive m = m′ + 5 ≤ 2n′ − 2 + 5 = 2n − 5. �
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Fig. 2. All exceptions for Lemma 5 and Theorem 7.

Two drawings are combinatorially equivalent if all cells are bounded by the same edges, all crossing edge pairs are the 
same, and for each edge e the order of crossings along e is the same. We extend Lemma 4 in the following way.

Lemma 5. Let D be a connected plane drawing on n ≥ 3 vertices with m edges and TAR(D) > 60◦ . Then, m ≤ 2n − 6 unless D is 
combinatorially equivalent to one of the exceptions E1–E9 listed below and depicted in Fig. 2.

E1 A tree on at most 4 vertices.
E2 A plane 4-cycle.
E3 A plane 4-cycle with one additional vertex connected to one vertex of the 4-cycle. The vertex can be inside or outside the cycle.
E4 A plane 5-cycle.
E5 A plane 5-cycle with one vertex inside connected to two non-neighboring vertices of the 5-cycle.
E6 A plane 5-cycle with an edge inside, connected with 3 edges to the 5-cycle such that the interior of the 5-cycle is partitioned into 

two 4-faces and one 5-faces.
E7 A plane 6-cycle with an additional diagonal between opposite vertices.
E8 A plane 6-cycle with an additional vertex or edge inside, connected with 3 or 4, respectively, edges to the 6-cycle such that the 

interior of the 6-cycle is partitioned into 3 or 4, respectively, 4-faces.
E9 A plane 6-cycle with either a path on 3 vertices or a 4-cycle inside, connected with 5 edges to the 6-cycle such that the interior of 

the 6-cycle is partitioned into 4 or 5, respectively, 4-faces.

Proof. Let D ′ be a subdrawing of D consisting of all vertices that are not on the unbounded cell and of all edges that 
are not incident to a vertex on the unbounded cell. Assume D ′ has n′ vertices and m′ edges. We distinguish four cases, 
depending on the size of the unbounded cell.

Case 1 The unbounded cell has size 4. If the drawing has only one cell, then it is Exception E1a. Otherwise, the boundary 
of the unbounded cell is a 4-cycle C and we have n = n′ + 4. As by Lemma 3, there is at most one edge in D from 
a vertex of C to D ′ , we have m ≤ m′ + 5.

If there is at most one vertex inside C , then we have Exception E2 or E3b. So assume that there are at least 
two vertices inside C . Since there is at most one edge from a vertex of C to the interior and D ′ is connected, D ′
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Fig. 3. Two separated vertices inside a 6-cycle.

thus has at least one edge. So the unbounded cell of D ′ has size at least 2. Hence, by Lemma 1 for D ′ , it holds 
that m′ ≤ 2n′ − 3 and we obtain

m ≤ m′ + 5 ≤ 2n′ − 3 + 5 = 2(n − 4) + 2 = 2n − 6.

Case 2 The unbounded cell has size 5. In this case, the outer boundary must be a 5-cycle: The only other possibility would 
be a triangle with an attached edge, but in that case we would have TAR(D) ≤ 60◦ . Hence, we have n′ = n − 5. 
If there are at most two adjacent vertices inside the 5-cycle that are connected with edges to the 5-cycle, then 
we have one of the Exceptions E4, E5, or E6. So assume that there are at least 3 vertices in the interior. Due to 
Lemma 3, there are at most three edges connecting the interior to the 5-cycle and the 5-cycle itself has 5 edges, 
that is, m ≤ m′ + 5 + 3 = m′ + 8. If D ′ is connected, then the size of the unbounded cell of D ′ is at least 3 and 
we have m′ ≤ 2n′ − 4 by Lemma 1. Otherwise D ′ consists of two or three connected components. By Lemma 2 we 
have m′ ≤ 2n′ − 6 unless D ′ consists of three vertices and an edge, which gives m′ ≤ 2n′ − 5, or it contains fewer 
than three vertices. The only disconnected drawing with fewer than three vertices is a drawing consisting of two 
vertices, which gives m′ ≤ 2n′ − 4. So, in all cases we get m′ ≤ 2n′ − 4 and hence have

m ≤ m′ + 8 ≤ 2n′ − 4 + 8 = 2n − 6.

Case 3 The unbounded cell of the drawing D has size 6. If D has only one cell (i.e. only the unbounded cell), we have 
Exception E1b or E1c. Otherwise the boundary B of the unbounded cell of D either consists of two triangles 
sharing a vertex (TAR(D) ≤ 60◦) or is a 4-cycle with an attached edge or a 6-cycle. So there are two cases we have 
to consider.
• If B is a 4-cycle with an attached edge, we use similar arguments as in Case 1. If there is no vertex inside the 

4-cycle, then we have Exception E3a. If we have at least one point inside the 4-cycle, then by Lemma 1 we have 
m′ ≤ 2n′ − 2. So we get

m = m′ + 6 ≤ 2n′ − 2 + 6 = 2(n′ + 5) − 6 = 2n − 6.

• If B is a 6-cycle, then by Lemma 3 we can have at most 5 edges connecting the interior to the 6-cycle. First 
we consider the case where D ′ is connected. If TAR(D) > 60◦ and n′ ≥ 3, then TAR(D ′) > 60◦ and D ′ fulfills 
m′ ≤ 2n′ − 5 by Lemma 4 unless D ′ is a path on 3 vertices or a 4-cycle. Furthermore, we know that n = n′ + 6
and m ≤ m′ + 11. If m′ ≤ 2n′ − 5, then

m ≤ m′ + 11 ≤ 2n′ − 5 + 11 = 2n − 6.

Consider now the case that n′ ≤ 2 or D ′ is a path on 3 vertices or a 4-cycle. These cases can be checked by 
hand. Therefore, we have Exceptions E7 and E8 if n′ ≤ 2, and Exceptions E9 if D ′ is a path on 3 vertices or a 
4-cycle.
If D ′ is not connected and TAR(D) > 60◦ , then either D ′ fulfills m′ ≤ 2n′ − 6, or D ′ consists of three vertices 
and an edge (by Lemma 2), or D ′ consists of two vertices. If D ′ fulfills m′ ≤ 2n′ − 6 or consists of three vertices 
and an edge, then we have m ≤ 2n − 6. So consider the case that D ′ consists of two non-adjacent vertices. Note 
that for m > 2n − 6, at least five edges must connect to D ′ in D . This means that one of the two inner vertices 
has degree at least 3 in the drawing D . If one vertex has degree 4, then there is a triangle in our drawing D
which means that TAR(D) ≤ 60◦ . Otherwise, if one vertex has degree 3 and the other one has degree 2, then we 
have a drawing like in Fig. 3. The gray shaded 4-cycle has 2 edges in the interior. So due to Lemma 3 we have 
TAR(D) ≤ 60◦ .

Case 4 The unbounded cell has size at least 7. Then we have, by Lemma 1,

m ≤ 2n − 2 −
⌈

k

2

⌉
= 2n − 2 −

⌈
7

2

⌉
≤ 2n − 6. �

Note that Lemma 5 considers plane drawings. Next we consider drawings with at least one crossing, whose planarizations 
are in the exceptions of Lemma 5. If D has a crossing, then P (D) has a vertex of degree at least 4. The only exceptions with 
such a vertex are the ones of E9; see again Fig. 2.
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Fig. 4. Replacing the vertex of degree 4 of the drawing of E9a in Fig. 2 with a crossing.

Lemma 6. If we replace the vertex of degree 4 in a drawing of E9 in Fig. 2 with a crossing, then the resulting drawings D have 
TAR(D) ≤ 60◦ .

Proof. If we replace the vertex of degree 4 of Exception E9a in Fig. 2 with a crossing, then we get the drawing Dcr in Fig. 4, 
where the dashed edge is not part of the actual drawing. We want to show that TAR(Dcr) ≤ 60◦ . The crossing edge pair 
forms two angles. As indicated in Fig. 4, we denote � acb as α and � bcd as β , where c denotes the crossing and a, b and 
d are three of the endpoints of the crossing edges. Let p1, p2 and p3 be the other three vertices on the unbounded cell. 
Since c is a crossing, c is inside the pentagon abp1 p2 p3. The inner angles of a pentagon sum up to 540◦ . All eight inner 
angles of the drawing, that are incident to the pentagon abp1 p2 p3, are larger than 60◦ . This implies that � bac + � abc < 60◦ . 
Furthermore we have α + β = 180◦ = α + � bac + � abc. This means we have β = � bac + � abc < 60◦ . However, β appears in 
Dcr , and so we have TAR(Dcr) ≤ 60◦ .

Now let D ′
cr be the drawing we get if we replace the vertex of degree 4 in the drawing for E9b in Fig. 2 with a crossing. 

Then Dcr is a subdrawing of D ′
cr and hence we get TAR(D ′

cr) ≤ TAR(Dcr) ≤ 60◦ . �
So we have characterized all drawings D which have TAR(D) > 60◦ and m > 2n − 6 edges, such that P (D) is in the 

exceptions of Lemma 5. This leads us to the following theorem.

Theorem 7. Let G be a graph with n ≥ 3 vertices, m edges and TAR(G) > 60◦ . Then m ≤ 2n − 6 unless either there exists a drawing of 
G that is an exception for Lemma 5 or G consists of exactly three vertices and one edge (Exception E0 in Fig. 2). Further, if G is a graph 
that forms an exception for Lemma 5, then every drawing D of G with TAR(D) > 60◦ is drawn plane and combinatorially equivalent 
to an exception of Lemma 5.

Proof. Consider a graph G with n ≥ 3 vertices, m > 2n − 6 edges and TAR(G) > 60◦ . Then there exists a drawing D of G
with TAR(D) > 60◦ and its planarization P (D).

If G is disconnected, then by Lemma 2 it has either m ≤ 2n − 6 edges or consists of three vertices and one edge. So for 
the rest of the proof we only consider connected graphs.

If three edges cross in a single point, then in P (D) this point has degree 6, and therefore an angle with at most 60◦ . 
Hence every crossing involves exactly two edges and P (D) has mP = m + 2 cr(D) edges and nP = n + cr(D) vertices. By 
Lemma 5 we get that mP ≤ 2nP −6 or P (D) is in the exceptions. If mP ≤ 2nP −6, then m = mP −2 cr(D) ≤ 2(nP −cr(D)) −6
= 2n − 6. If P (D) is in the exceptions, then, as observed before, D is in the exceptions. �

The bound of Theorem 7 is the best possible in the sense that there are infinitely many graphs with m = 2n − 6 edges 
and TAR(G) > 60◦ .

Proposition 8. For every integer n ≥ 17 there exists a graph G with n vertices and m = 2n − 6 edges such that TAR(G) > 60◦ .

Proof. Fig. 5 illustrates drawings D with 17 ≤ n ≤ 24 vertices, m = 2n − 6 edges and TAR(D) > 60◦ . We extend this family 
of drawings, such that for any number of vertices n ≥ 17 we have a drawing with m = 2n − 6 edges and TAR(D) > 60◦ , by 
adding layers of 8-cycles as illustrated in Fig. 6.

Let D be a drawing with n vertices, m = 2n − 6 edges, TAR(D) > 60◦ and whose boundary is a regular 8-cycle 
C = p1 p2 p3 p4 p5 p6 p7 p8. We construct a bigger drawing D ′ in the following way. Let C ′ = q1q2q3q4q5q6q7q8 be a regu-
lar 8-cycle, which is concentric to C . Further, for any 1 ≤ i ≤ 8 let pi and qi be on a ray from the common circumcenter of 
C and C ′ . We merge D with the 8-cycle C ′ and all edges piqi with 1 ≤ i ≤ 8 and call the resulting drawing D ′ .

First observe that since TAR(D) > 60◦ also TAR(D ′) > 60◦ holds, because the angles � pi−1qi−1qi = � qi−1qi pi = 67.5◦ and 
� qi pi pi−1 = � pi+1 piqi = 112.5◦ with q0 = q8 and p0 = p8 for every 1 ≤ i ≤ 8. The drawing D ′ contains n′ = n + 8 vertices 
and m′ = m + 16 edges (m edges of D , 8 edges on C ′ and 8 edges connecting C and C ′). Since D has n vertices and 
m = 2n − 6 edges, also m′ = m + 16 = 2n − 6 + 16 = 2(n + 8) − 6 = 2n′ − 6. So by extending a drawing D to D ′ in this way 
we get eight more vertices. Since every drawing depicted in Fig. 5 has a regular 8-cycle as boundary, we are able to extend 
each of these drawings as described before. Doing this repeatedly, we are able to add 8k vertices to each of the drawings 
for every integer k > 0. The numbers of vertices of the drawings depicted in Fig. 5 cover all parities modulo eight. So there 
exists for any number n ≥ 17 a graph G with TAR(G) > 60◦ and m = 2n − 6 edges. �
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Fig. 5. Drawings of graphs G with TAR(G) > 60◦ , n vertices and m = 2n − 6 edges for 17 ≤ n ≤ 24.

Fig. 6. Extending the drawings in Fig. 5.

2.2. Graphs with TAR(G) ≥ 90◦

Bodlaender and Tel [6] showed that if a graph can be embedded with angular resolution of at least 90◦ , then the graph 
can also be embedded such that all angles at vertices have one of the values 90◦, 180◦, 270◦ , and 360◦ . Note that in any 
such drawing, the angle between two crossing edges is exactly 90◦ . Hence, by [6], an angular resolution of at least 90◦ for 
a graph G implies TAR(G) ≥ 90◦ . In this section, we show that graphs with TAR(G) ≥ 90◦ have at most �2n − 2

√
n edges, 

which is tight.

Lemma 9. For every n ≥ 1, there exists a graph G with n vertices, �2n − 2
√

n edges, and TAR(G) = 90◦ .

Proof. We will construct the graph G along with a drawing D for G that shows TAR(G) = 90◦ . If we take a square grid 
with k vertices on each side, then we have in total n = k2 vertices and m = 2k2 − 2k edges. So for a k × k grid we have 
m = �2n − 2

√
n, which proves the statement for n = k2.

For k2 < n < (k + 1)2 we extend the graph in the following way; see Fig. 7. We call the rightmost points of the grid 
r0, r1, . . . , rk−1 from top to bottom and the topmost points u0, . . . , uk−1 from left to right. (Note that r0 = uk−1.)

Fig. 7. Different extensions of a grid drawing.
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If n = k2 + r with 0 < r < k, we place additional points p0, . . . , pr−1, all on a common vertical line and each pi is to 
the right of ri for 0 ≤ i ≤ r − 1, as depicted in Fig. 7(a) where the added edges are drawn heavier than the old ones. 
Further, we add the edges ri pi , 0 ≤ i < r, and p j−1 p j , 1 ≤ j < r. This gives us r + (r − 1) = 2r − 1 new edges. So we have 
m = 2k2 − 2k + 2r − 1 edges in total. On the other hand we get

�2n − 2
√

n = �2(k2 + r) − 2
√

k2 + r
= 2k2 + 2r + �−2

√
k2 + r

= 2k2 − 2k + 2r − 1 = m

because k <
√

k2 + r < k + 1
2 if 1 ≤ r ≤ k. So m = �2n − 2

√
n if n = k2 + r and 1 ≤ r ≤ k.

For n = k2 + k + r, with 1 ≤ r < k + 1, we add k points as before and also add the same edges. The remaining r points 
p′

0, . . . , p
′
r−1 are placed on a horizontal line, such that p′

i is above ui for 0 ≤ i ≤ r − 1. We further add the edges p′
iui , 

0 ≤ i ≤ r − 1, and p′
j−1 p′

j , 1 ≤ j ≤ r − 1, as depicted in Fig. 7(b) where the added edges are drawn heavier than the old 
ones. So we have m = 2k2 + 2r − 2 edges, which is again m = �2n − 2

√
n for n = k2 + k + r and 1 ≤ r ≤ k. This means that 

for every n there exists a graph G with TAR(G) = 90◦ , n vertices and �2n − 2
√

n edges. �
Lemma 10. Every graph with TAR(G) = 90◦ has at most �2n − 2

√
n edges.

Proof. We prove the statement by contradiction. Let G be a graph with n vertices and m edges. By Bodlaender and Tel [6]
we can embed our graph, such that every angle is 90◦, 180◦, 270◦ or 360◦ . So we can embed our graph on some rectangular 
grid R with a × b points, such that in every column and every row there is at least one point and such that the edges are 
along the grid. We call this drawing D .

Now we add edges and vertices to D , so that this new drawing D ′ is the complete a × b grid.
At the beginning we set D ′ = D , see Fig. 8(a). First we add a vertex at every crossing of D ′ as depicted in Fig. 8(b) and 

Fig. 8(c). By doing this we get four edges instead of two and one new vertex. So we get two new edges and one new vertex 
for each crossing.

In the second step, we add corner vertices of R to D ′ . If all four corner vertices are already in the drawing, then we skip 
this step. Without loss of generality assume that the top left corner vertex of the grid is not a vertex in the drawing. We call 

Fig. 8. Adding vertices and edges to get from an initial drawing D to a drawing of a grid. The underlying grid R is drawn in gray. The added vertices and 
edges are marked with red and all split edges are drawn in blue for each step. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)
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the topmost vertex in the leftmost column lt and the leftmost vertex in the topmost row tl as depicted in Fig. 8(d). Then 
we add the top left corner vertex vtl of the grid together with the edges vtllt and vtltl . Analogously, we add the remaining 
missing corner vertices. So for every added corner vertex we also added two edges to D ′ .

Next, we add edges between two points on the boundary of R as illustrated in Fig. 8(e), so that the outer face of D ′ is a 
rectangle with possibly some vertices on its sides. Since we already added the corner vertices in the second step, we only 
add edges in this step.

In the last step, we check if every vertex has full degree (degree 4 for inner vertices, degree 3 for vertices on the 
boundary, which are not corners, and degree 2 for corner vertices). Assume we have a vertex v without full degree. Then 
there is a line segment � of R such that no edge of v is along �. We draw a line segment e from v along � until we hit a 
vertex or an edge of D ′ . If we hit a vertex u as depicted in Fig. 8(f), then we add the edge uv to D ′ . In this case, we do not 
add any vertex. If we hit an edge xy as depicted in Fig. 8(g), then we add a vertex z, where we hit the edge, to D ′ . Further 
we add the edge vz to D ′ and split xy into xz and yz in D ′ . In this case we have one additional vertex and increased the 
number of edges by two in D ′ .

If every vertex has full degree, then D ′ is equal to an a ×b grid. Further, every time we added a vertex, we also increased 
the number of edges by two. So this new drawing D ′ has n′ = n + k vertices and m′ edges where m′ ≥ m + 2k. On the other 
hand, an a × b rectangle grid has exactly n′ = ab vertices and m′ = 2ab − (a + b) edges. So we have

m′ = 2ab − (a + b) ≤ 2ab − 2
√

ab = 2(n + k) − 2
√

n + k, and hence

m ≤ m′ − 2k ≤ 2n − 2
√

n + k ≤ 2n − 2
√

n.

This means that every graph G with TAR(G) = 90◦ and n vertices has at most �2n − 2
√

n edges. �
2.3. Graphs with TAR(G) > 90◦

If a graph has TAR(G) > 90◦ , then this graph is planar, since a crossing would imply that at least one angle is at most 90◦ . 
Also note that the construction for a graph with TAR(G) = 90◦ and �2n − 2

√
n edges heavily relied on 4-cycles. So we can 

improve the bound for graphs with TAR(G) > 90◦ .

Theorem 11. Every graph G with n ≥ 3 vertices and TAR(G) > 90◦ has at most 3
2 n − 5

2 edges. This bound is tight for infinitely many 
values of n.

Proof. We observe that every vertex of a graph G with TAR(G) > 90◦ has degree at most 3. This already gives an upper 
bound of 3

2 n edges for graphs with TAR(G) > 90◦ . Let D be a drawing of G with TAR(D) > 90◦ . Then every vertex on the 
boundary of the convex hull of D has degree at most 2. Further, consider the angles spanned by the convex hull edges of 
D . Assume that this angle is at most 90◦ for some convex hull vertex v . If v was incident to two edges of D , then these 
edges would span an angle of at most 90◦ . So v has degree at most 1 in this case.

If there are at least 5 vertices on the convex hull of D , then D has at most (n − 5) vertices of degree 3 and at least 5
vertices of degree at most 2. Therefore, D has at most 3

2 (n − 5) + 2
2 · 5 = 3

2 n − 5
2 edges.

If there are exactly 4 vertices on the convex hull of D , then at least one of the inside angles of the boundary of the 
convex hull is at most 90◦ . Therefore, at least one vertex on the convex hull has degree 1. So D has at most 3

2 n − 5
2 edges. 

Similarly, if there are exactly 3 vertices on the convex hull of D , then at least two vertices of those have degree 1. Again D
has at most 3

2 n − 5
2 edges. This means that every graph G with at least 3 vertices and TAR(G) > 90◦ has at most 3

2 n − 5
2

edges.
Let D be a drawing with TAR(D) ≥ 96◦ , n vertices and 3

2 n − 5
2 edges such that the boundary B of the convex hull of D

is a regular 5-gon p1 p2 p3 p4 p5, also illustrated in Fig. 9(b). Note, that a regular 5-gon has these properties. Let c be the 
circumcenter of B and let K be a circle with center c such that D is inside K . We call the crossing of the ray cpi with K q′

i , 
for every 1 ≤ i ≤ 5. The rays cpi , 1 ≤ i ≤ 5, and the circle K are gray in Fig. 9(b). The vertex p′

i is the unique vertex with 
� piq′

i p′
i = 96◦ and � p′

iq
′
i+1 pi+1 = 96◦ for every 1 ≤ i ≤ 5 where q′

6 = q′
1 and p6 = p1. Let D ′ be D together with the vertices 

q′
i and p′

i and the edges piq′
i, q

′
i p′

i and p′
iq

′
i+1 for every 1 ≤ i ≤ 5. By definition we have � piq′

i p′
i = � p′

iq
′
i+1 pi+1 = 96◦ . 

Looking at the quadrilateral cq′
i p′

iq
′
i+1 we have � q′

i p′
iq

′
i+1 = 96◦ . Further the angles � q′

i+1 pi+1 pi and � pi+1 piq′
i are both 

inside an angle in D ′ and both have 126◦ . So we have TAR(D ′) = 96◦ with n′ = n + 10 vertices and 3
2 n′ − 5

2 edges.
Starting with a regular 5-gon and doing this extension iteratively, there exists a drawing with TAR(D) = 96◦ with n =

10k + 5 vertices and 3
2 n − 5

2 edges for every k ≥ 0. For example, by doing this extension three times we get the drawing 
depicted in Fig. 9(a). �
2.4. Graphs with TAR(G) > 120◦

For angles α > 120◦ we prove tight bounds on the number of edges of graphs G with TAR(G) > α.

Theorem 12. Let k > 6. Every graph G with n vertices and TAR(G) ≥ k−2
k 180◦ has at most n edges for n ≥ k, and at most n − 1 edges 

otherwise. These bounds are tight.
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Fig. 9. Drawings with TAR(D) > 90◦ .

Proof. If a graph G has TAR(G) > 120◦ then every vertex has degree at most two. Any such graph is a collection of cycles, 
paths and isolated vertices. So this graph has at most n edges. If n ≥ k, then a regular n-gon D has TAR(D) = n−2

n 180◦ > 120◦

and exactly n edges. This means that a graph G with TAR(G) ≥ k−2
k 180◦ has at most n edges for n ≥ k and this bound is 

tight.
If n < k, then any cycle would prevent TAR(G) ≥ k−2

k 180◦ . This means that a graph with TAR(G) ≥ k−2
k 180◦ is cycle-free 

and has at most n − 1 edges. On the other hand, if G is a single path, then TAR(G) = 180◦ . So a graph with TAR(G) ≥
k−2

k 180◦ and n < k vertices is a path or a collection of disjoint paths. Hence it can have at most n − 1 edges and this bound 
is tight. �
3. NP-hardness

Formann et al. [13] showed that the problem of determining whether a given graph G admits a drawing with angular 
resolution of 90◦ is NP-hard. Their proof, which is by reduction from 3SAT with exactly three different literals per clause, 
also implies the NP-hardness of deciding whether TAR(G) = 90◦ . We adapt in the following their reduction to show the
NP-hardness of the decision problem for TAR(G) ≥ 60◦ .

Note that every triangle of a drawing D must be equilateral if TAR(D) ≥ 60◦ The idea of the construction is to build a 
rigid frame with triangles and add the clause gadgets such that they are also rigid; see Fig. 10 for depictions of the frame 
and the gadgets. Then, we add variable gadgets to the frame, such that they can only be oriented in two ways, which will 
correspond to the variable assignment.

Theorem 13. It is NP-hard to decide whether a graph G has TAR(G) ≥ 60◦ .

Proof. As input we are given a 3SAT formula with variables x1, x2, . . . , xn and clauses c1, c2, . . . , cm , where every clause 
contains exactly three different literals. Cook [7] showed that the decision question for satisfiability of such a 3SAT formula 
is NP-complete.

We first construct a graph G for the formula. The basic building blocks of our construction consist of triangles, which, in 
order to obtain a total angular resolution of 60◦ , must all be equilateral. We use the following gadgets; see Fig. 10(a).

As clause gadget we use a sequence of four triangles that share a common vertex and in which consecutive triangles 
share an edge. The middle vertex with three incident edges, marked with C j in the figure, will be used to connect the 
clause gadget to its literals. We refer to C j as the clause vertex.

As variable gadget we use a triangle followed by a sequence of m hexagons and followed by another triangle. Each 
hexagon consists of six triangles sharing the center point. Each non-extreme hexagon of the sequence is incident to its 
neighboring hexagons via two “opposite” edges. The initial triangle is incident to the first hexagon via the edge opposite 
to the incidence with the second hexagon. The final triangle is incident to the last hexagon via the edge opposite to the 
incidence with the second to last hexagon. The vertices of the initial and the final triangle that are incident to none of the 
hexagons are denoted as Ai,1 and Ai,2, respectively.

For each variable xi , we assign one side of the hexagonal path to the positive literal xi and the other to the negative 
literal xi . The intermediate vertices of the jth hexagon of the path are denoted with Xi, j and Xi, j , respectively, and are 
called literal vertices. They will be used for connecting a literal to its clauses.

Additionally, we use a connector gadget. It consists of two triangles with a common edge. The two vertices that are 
incident to only one of the triangles are denoted by Ai,3 and Ai,4, respectively.
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Fig. 10. Gadgets and frame of the NP-hardness proof.

Fig. 11. Connections between clause and literal vertices in the NP-hardness proof.

Note that for all three gadgets, an embedding with total angular resolution 60◦ is unique up to rotation, scaling and 
reflection of the whole gadget. Especially, for each gadget, all triangles are congruent.

For connecting the gadgets, we first build a rigid 3-sided frame as depicted in Fig. 10(b). On the bottom, it consists of 
a straight path of 2n + 2m − 1 triangles that alternatingly face up and down (the bottom path). On top of the rightmost 
triangle of this path, we add a sequence of m clause gadgets stacked on top of each other (one for each clause, with the 
clause vertices C1, . . . , Cm facing to the right). The top of the figure consists of a straight path of 2n + 2m − 1 triangles that 
alternatingly face down and up (the top path). We denote the leftmost n + 1 vertices of degree four on the upper side of 
the bottom path with X1, . . . , Xn , and B1. The leftmost n + 1 vertices of degree four on the lower side of the top path are 
denoted X ′

1, . . . , X
′
n , and B2. An embedding with total angular resolution 60◦ of this frame is again unique up to rotation, 

scaling, and reflection. We assume without loss of generality that it is embedded with X1, . . . , Xn being on a horizontal 
line, as depicted in Fig. 10(b). Then, for every 1 ≤ i ≤ n, X ′

i and Xi lie on a vertical line. Further, the line �1 spanned by B1
and Cm has slope 60◦ and the line �2 through B2 and C1 has slope −60◦ .

We next add the variable gadgets in the following way. For each variable xi , we identify the vertex Ai,1 of its gadget 
with Xi . Further, we connect the gadget to X ′

i via a connector gadget by identifying Ai,2 with Ai,3 and Ai,4 with X ′
i , 

respectively. Note that in any drawing with total angular resolution 60◦ of the construction so far, each variable gadget 
together with its connector gadget must be drawn vertically and between Xi and X ′

i . Further, the variable gadgets can be 
scaled by adapting the height of the connector gadget. Independent of the scaling factor, the right side of each variable 
gadget is always to the left of the lines �1 and �2. Directionwise, variable gadgets can be drawn in two ways: either all Xi, j

are to the right of the Xi, j or the other way around.
To complete the construction, we add a path consisting of three consecutive edges between Xi, j (Xi, j ) and C j whenever 

xi (xi ) is a literal of clause c j . An example of G with the 3SAT formula (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧
(x1 ∨ x2 ∨ x3) is depicted in Fig. 12. To obtain a total angular resolution of 60◦ at every clause vertex Ci , all of these paths 
must start from Ci towards the right and one of them must start horizontally. We claim that the constructed graph G has a 
drawing D with TAR(D) ≥ 60◦ if and only if the initial 3SAT formula is satisfiable.

Assume first that the 3SAT formula is satisfiable. Consider a truth assignment of the variables that satisfies the formula. 
We draw each variable gadget such that the side corresponding to its true literal is on the right. Further, we scale all the 
variable gadgets such that no two vertices of different variable gadgets or of a variable gadget and a clause gadget lie on a 
common horizontal line (except for the vertices Xi and X ′

i ). For every clause c j , we choose a literal vi ∈ {xi, xi} of ci which 
is true. We draw the path between the corresponding clause vertex C j and the matching literal vertex V i, j ∈ {Xi, j, Xi, j} in 
the following way; see Fig. 11(a). We start with a horizontal edge from C j to the right. Then, we continue with a ±60◦ edge 
towards the left until we reach the height of V i, j . We complete the path with a horizontal edge towards the left to V i, j . 
For the other literals of c j we draw a ±60◦ edge from C j to the right, followed by a horizontal edge to the left and a ±60◦
edge to the left or right, depending on whether vi is true or false; see Fig. 11. This way, all edges of the resulting drawing D
are either horizontal or under an angle of ±60◦ and no two edges overlap. Hence we have TAR(D) = 60◦ as desired.

For the other direction, assume that this graph G admits a drawing D with TAR(D) = 60◦ . In D , consider a clause 
vertex C j and the path P = C j M1M2 V i, j which starts horizontally towards the right at C j . Then, the literal vertex V i, j must 
be on the right side of its variable gadget: If V i, j is a left vertex of a variable gadget, then P must enter V i, j from the left 
83



O. Aichholzer, M. Korman, Y. Okamoto et al. Theoretical Computer Science 943 (2023) 73–88
Fig. 12. Construction of the graph G for the 3SAT formula (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3). For better readability, the variable 
gadgets are placed with a larger distance between them than in the description of the construction. The corresponding truth assignment is: x1 is false, x2

is true, x3 is true.

under an angle of at most ±60◦ with respect to the horizontal line. Hence, M2 lies to the left of the lines �1 and �2. On the 
other hand, the second vertex M1 of P lies horizontally to the right of C j . However, to respect the 60◦ restriction at M1, 
M2 must lie to the right of the lines �1 and �2, a contradiction. Now consider the set of literal vertices that are an endpoint 
of a path starting horizontally at some clause vertex. As these literal vertices are on the right side of their corresponding 
variable gadgets, the set does not contain any pair Xi, j, Xi,k . By setting all the corresponding literals to true, we obtain a 
non-contradicting (possibly partial) truth assignment of the variables which has at least one literal set true for every clause. 
Hence, any completion to a truth assignment of all variables satisfies the formula. �
4. TAR critical graph

In Section 2 we provided upper bounds on the number of edges a graph with a given total angular resolution can 
have, where the focus was on 60◦ and 90◦ . In the previous section, we saw that deciding if a graph can be drawn with 
a total angular resolution of a least 60◦ is NP-hard. So naturally it is of central interest to better understand the structure 
of graphs that do not allow for a certain total angular resolution. In the following we shed some light on graphs G with 
TAR(G) = 60◦ , such that removing any single edge from G increases its total angular resolution. In a certain sense these 
graphs have the minimal structure that forces TAR(G) to be 60◦ . Thus, we call such graphs TAR(G) − 60◦ critical graphs (see 
below for a proper definition). A better understanding of these graphs will help to see their structure and why some graphs 
need TAR(G) = 60◦ while other, very similar, graphs can be drawn with a larger total angular resolution. We round up this 
picture in Subsection 4.2 by considering almost complete TAR critical graphs.

4.1. TAR-60◦ critical graphs

In this section we give a construction of a family of graphs that have a small number of edges and TAR(G) ≤ 60◦ . Since 
we can construct connected graphs with a small number of edges and TAR(G) ≤ 60◦ by taking a triangle and adding a 
path to it, we only look at so called TAR-α critical graphs. These are connected graphs with TAR(G) ≤ α, but for all edges 
e ∈ E , TAR(G\{e}) > α holds. In other words, TAR(G) ≤ α and every proper subgraph H of G has TAR(H) > α. We focus on 
TAR-60◦ critical graphs.

Theorem 14. There exist TAR-60◦ critical graphs on n vertices with 3
2 n edges for infinitely many values of n.

This means there exist graphs with much fewer than 2n − 6 edges, which have TAR(G) ≤ 60◦ . We prove Theorem 14 by 
giving a construction of such graphs. Before we state our construction, we consider two 4-cycles that share an edge.

Lemma 15. Two 4-cycles that share an edge (denoted by L) can be embedded with TAR(D) > 60◦ only if L is drawn combinatorially 
equivalent to E7 in Fig. 2.

Proof. First note that L has 6 vertices and 7 edges. Hence, L is an exception for Theorem 7. Therefore, L is drawn like E7
in Fig. 2. �

With the help of Lemma 15 we show the existence of a graph with 3
2 n edges and TAR(G) ≤ 60◦ . To this end, we first 

define a graph MSk consisting of a sequence of 4-cycles glued together along opposite edges, which is essentially a circularly 
closed ladder graph on a Möbius strip.
84



O. Aichholzer, M. Korman, Y. Okamoto et al. Theoretical Computer Science 943 (2023) 73–88
Fig. 13. Graph MS6 with TAR(MS6) = 60◦ and 3
2 n edges.

Fig. 14. Drawings of MS6 without one edge.

Definition 16. We define the graph MSk as follows. Let ui, vi , 0 ≤ i ≤ k − 1, be the vertices of MSk . Further, we define 
uk = v0 and vk = u0. The edges of MSk are

• (ui, vi) for 0 ≤ i ≤ k,
• (ui, ui+1) and (vi, vi+1) for 0 ≤ i ≤ k − 1.

Fig. 13 depicts the graph MS6, where the dashed and the dashed-dotted edge each highlight one instance of the two 
different edge types. Observe that MSk has n = 2k vertices and 3

2 n = 3k edges.

Lemma 17. Let k ≥ 6 be an integer. Then MSk is a TAR-60◦ critical graph.

Proof. First we show that TAR(MSk) ≤ 60◦ . We assume to the contrary that we can embed MSk with TAR(MSk) > 60◦ . 
Define Ci as the 4-cycle uiui+1 vi+1 vi for 0 ≤ i ≤ k − 1. If we can embed MSk with TAR(MSk) > 60◦ , then every Ci is a plane 
4-cycle for every 0 ≤ i ≤ k − 1 and Ci and Ci+1 are interior disjoint (with Ck = C0) due to Lemma 15. First place a point ci

into every Ci . We draw a closed curve B through all ci such that between ci and ci+1 in Ci and Ci+1, B crosses only the 
edge ui+1 vi+1 and this edge is crossed only once between ci and ci+1.

This is possible, because Ci and Ci+1 are interior disjoint for any i. Since Ci and Ci+1 are interior disjoint and every Ci

is plane, all vertices ui are on the same side and all the vertices vi are on the other side of B if we walk along B . But then 
u0 and vk are on different sides which gives us the contradiction since u0 = vk . Therefore TAR(MSk) ≤ 60◦ .

To show that MSk is TAR-60◦ critical, we have to prove that for all edges e TAR(MSk \{e}) > 60◦ holds. In Fig. 13 we see 
that the graph consists of edges like e1, which are incident to one cycle of length 4 and edges like e2, which are incident 
to two cycles of length 4. So we have two cases: Does TAR(MS6 \{e1}) > 60◦ hold and does TAR(MS6 \{e2}) > 60◦ hold?

Fig. 14(a) and Fig. 14(b) depict how MS6 \{e1} and MS6 \{e2}, respectively, can be embedded with TAR(MS6 \{e1}) > 60◦ . 
The dotted edge in both figures is the removed edge. For k ≥ 6, the graph MSk minus one edge can be embedded in a 
similar way (for example, by appropriately subdividing the two opposite edges of a crossing-free 4-cycle that are incident 
to only that 4-cycle and connecting the subdivision points). This completes the proof that MSk is TAR-60◦ critical. �

Now we have all the results to prove Theorem 14.

Proof of Theorem 14. The graph MSk with k ≥ 6 is TAR-60◦ critical by Lemma 17. Furthermore MSk has 3
2 n edges since it 

is cubic. Therefore there exist TAR-60◦ critical graphs on n vertices with 3 n edges for infinitely many values n. �
2
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4.2. Almost complete graphs

Let Kn be the complete graph on n vertices. Argyriou, Bekos and Symvonis [4] showed that TAR(Kn) = 180◦
n . In this 

section we show how the deletion of a few edges affects the total angular resolution. We start by showing that the removal 
of a small number of edges does not change the total angular resolution.

Theorem 18. Every graph G with n vertices and at least 
(n

2

) − n−3
3 edges has TAR(G) = 180◦

n .

Proof. Consider a drawing D of the complete graph Kn with (n − k) vertices on the boundary B of the convex hull and k
inner vertices.

A triangle T of D is called special if its vertices are on B and the three inner angles of T are split in total into at least 
n angles in D . Note, that the existence of a special triangle implies TAR(D) ≤ 180◦

n . If we delete a set E of at most n−k−3
2

edges of D , then there are three vertices on B which are not incident to any deleted edge. So these three vertices span a 
special triangle of D\E where D\E is the drawing D without the edges in E .

On the other hand, B is an (n − k)-cycle and its inner angles sum up to (n − k − 2)180◦ . Since we have Kn , the inner 
angles of B are split into (n − k)(n − 2) angles. If the inner angles of B are split into at least (n − k − 2)n angles then the 
total angular resolution is at most 180◦

n . So we can delete up to 1
2 ((n − k)(n − 2) − (n − k − 2)n) = k edges and still have a 

drawing with TAR(D) ≤ 180◦
n .

Therefore, we want to minimize the maximum of k and n−k−3
2 over all possible values of k. This minimum is obtained 

for k = n−3
3 . So any graph G with at least 

(n
2

) − n−3
3 edges still has TAR(G) = 180◦

n . �
Starting from the complete graph Kn , Theorem 18 implies that we have to delete more than n−3

3 edges to increase the 
total angular resolution. On the other hand, we can improve the total angular resolution by deleting n − 2 edges, which 
are incident to the same vertex. This creates a graph G ′ that is essentially Kn−1 with an additional vertex connected to the 
Kn−1 by a single edge and thus TAR(G ′) = 180◦

n−1 > 180◦
n . We now show that the total angular resolution can be increased by 

removing even fewer edges.

Proposition 19. For any n ≥ 12 there exists a graph G with n vertices, at least 
(n

2

) − 11n
12 + 1 edges and TAR(G) ≥ 180◦

n−1 .

Proof. We take a drawing D of Kn−1 where the vertices v1, v2, . . . , vn−1 span a regular (n − 1)-gon P . Note that 
TAR(D) = 180◦

n−1 . Let c be the circumcenter of P and C be the corresponding circumcircle. Let p be a point on the line 
spanned by c and v1 such that |cv1| = |v1 p| as in Fig. 15. Observe that the angle � vi pvi+1 < � pvi+1 vi since vi vi+1 is the 
shortest edge of the triangle pvi vi+1.

Let the tangents of C through p touch C at the points t1 and t2. Let t1 be the tangent point which lies on the arc 
between va and va+1 such that va is closer to v1 than va+1. Observe that � vi−1 pvi > � vi pvi+1 holds for 1 < i < a. Since 
|cp| = 2 · |ct1| and � ct1 p = 90◦ , the triangle ct1 p is half of an equilateral triangle. So � pct1 = 60◦ and � cpt1 = 30◦ . Further 
� cv1 v2 < 90◦ holds and therefore � v1 pv2 < � v2cv1 = 360◦

n−1 . So � vi pvi+1 < 360◦
n−1 holds for 1 ≤ i < a.

We place points b j on C on the shorter arc between v1 and va as depicted in Fig. 15 such that b1 is v1 and � b j pb j+1 =
360◦
n−1 for 1 ≤ j ≤ �n−1

12 . Note that the bound �n−1
12  is implied by � cpt1 = 30◦ . In Fig. 15 the points b2 and b3 are marked 

with a red cross. Since � vi pvi+1 < 360◦
n−1 for 1 ≤ i < a, there is an index k with 1 < k < a such that vk is on the arc between 

b j and b j+1 including b j+1 for all 1 ≤ j ≤ �n−1
12 .

Let S1 be a set of vertices of P such that for any 1 ≤ j ≤ �� n−1
12 
2  there exists exactly one point vk of S1 such that vk is 

on the arc from b2 j to b2 j+1. So S1 contains � � n−1
12 
2  points. Note that v1 is not in S1.

Fig. 15. Illustration of the proof of Proposition 19. Vertices of the graphs are marked with black disks.
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Fig. 16. A drawing with 32 edges and TAR(D) = 22.5◦ .

Let S2 be the set of vertices of P such that vn+1−i ∈ S2 if and only if vi ∈ S1. Let S = S1 ∪ S2 ∪ {v1}. If vi, vk ∈ S1
or vi, vk ∈ S2, then � vi pvk ≥ 360◦

n−1 holds by construction. If vi ∈ S1, then � v1 pvi ≥ 360◦
n−1 holds since � v1 pvi > � v1 pb2. If 

vi ∈ S2, then � v1 pvi ≥ 360◦
n−1 follows in a similar way. Therefore, for any two points vi, vk ∈ S , � vi pvk ≥ 360◦

n−1 holds.
So the graph G with vertices v1, . . . , vn−1 and p, and edges vi v j for any 1 ≤ i, j ≤ n − 1 and pvi for vi ∈ S has 

TAR(G) ≥ 180◦
n−1 and 

(n−1
2

) + 2� � n−1
12 
2  + 1 edges. Hence, G has at least 

(n
2

) − 11n
12 edges. �

Proposition 19 holds for all n ≥ 12 but is most likely not tight. If the number of vertices is odd, then the following 
proposition gives us a better bound.

Proposition 20. For any odd n ≥ 5 there exists a graph G with n vertices, 
(n

2

) − n−1
2 edges and TAR(G) > 180◦

n .

Proof. This is achieved by the following construction. We take a drawing D of Kn−1 where the vertices v1, v2, . . . , vn−1
form a regular (n − 1)-gon. Next, we replace the common crossing of all main diagonals (vi , vi+(n−1)/2), 1 ≤ i ≤ (n − 1)/2, 
by a vertex vn . We also replace every main diagonal (vi, vi+(n−1)/2) by the edges (vi, vn) and (vn, vi+(n−1)/2) for every 
1 ≤ i ≤ n−1

2 . We denote the resulting drawing with D ′ . Fig. 16 depicts D ′ for n = 9 vertices.

Since we only replaced edges and do not have edges which are on top of each other, we have TAR(D ′) = TAR(D) = 180◦
n−1 . 

Further, D ′ has (n−1)2

2 edges. So D ′ has n−1
2 edges fewer than Kn . �

We have shown that in a complete graph Kn we can delete 11n
12 − 1 edges for arbitrary n and n−1

2 edges for odd n to 
increase the total angular resolution. For odd n, deleting any n−3

3 edges does not affect the total angular resolution but 
deleting n−1

2 edges can improve it. We conjecture that Proposition 20 is tight.

5. Conclusion and open problems

In this work we have shown that, up to a finite number of well specified exceptions of constant size, any graph G
with TAR(G) > 60◦ has at most 2n − 6 edges. For larger angles we were able to obtain similar bounds: For graphs with 
TAR(G) ≥ 90◦ we have m ≤ 2n − 2

√
n, for TAR(G) > 90◦ we have m ≤ 3

2 n − 5
2 , and for TAR(G) > 120◦ we have m ≤ n for 

n ≥ 7. These bounds are tight. We conjecture that almost all graphs with TAR(G) > k−2
k 90◦ have at most 2n − 2 −� k

2  edges.
From a computational point of view, we have proven that deciding whether a given graph admits a drawing with total 

angular resolution at least 60◦ is in general NP-hard. The same was known before for at least 90◦ [13]. On the other hand, 
for large angles, the recognition problem eventually becomes easy (for example, G can be drawn with TAR(G) > 120◦ if and 
only if it is the union of cycles of at least 7 vertices and arbitrary paths). This yields the following open problem: At which 
angle(s) does the decision problem change from NP-hard to polynomial-time solvable?

We introduced TAR-α critical graphs and showed the existence of TAR-60◦ critical graphs with 3
2 n edges. It remains open 

whether there are TAR-60◦ critical graphs with fewer than 3
2 n edges. More generally, how many edges does the smallest 

TAR-α critical graph have for a fixed α? It is also open, for which values of α there exist TAR-α critical graphs with more 
than n vertices, where n is arbitrarily large. For the complete graph Kn we proved that we can delete any n−1

3 edges of Kn

and still get TAR(G) = 180◦
n . It is open whether this bound is tight. On the other hand we presented two families of drawings, 

which have TAR(G) > 180◦
n and many edges. As a related question, what is the smallest number of edges a graph with n

vertices and TAR(G) = 180◦
can have?
n
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