
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 29, 2024

Optimizing Joint Sustainable Supply Chain Decision-making under Emission Tax: A
Stackelberg Game Model

Zhang, Linda L.; Ma, Shuang; Shafiee, Sara; Cai, Xiaotian

Published in:
Proceedings of the 2022 IEEE International Conference on Industrial Engineering and Engineering Management
(IEEM)

Link to article, DOI:
10.1109/IEEM55944.2022.9989876

Publication date:
2022

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Zhang, L. L., Ma, S., Shafiee, S., & Cai, X. (2022). Optimizing Joint Sustainable Supply Chain Decision-making
under Emission Tax: A Stackelberg Game Model. In Proceedings of the 2022 IEEE International Conference on
Industrial Engineering and Engineering Management (IEEM) (pp. 0853-0858). IEEE.
https://doi.org/10.1109/IEEM55944.2022.9989876

https://doi.org/10.1109/IEEM55944.2022.9989876
https://orbit.dtu.dk/en/publications/4ddd92a8-5af3-41ed-880d-4de98a60814c
https://doi.org/10.1109/IEEM55944.2022.9989876


 Abstract - In practice, manufacturers and retailers jointly 

make decisions by capitalizing on decision interactions while 

respecting the carbon emission tax and subsidy determined 

by local governments. Though studies have been published 

to address the joint decision-making, they involve only a 

very few of the important supply chain decisions due to the 

problem complexities. In this study, we investigate a 

comprehensive joint decision-making of a manufacturer and 

his independent retailer with considering both carbon 

emission tax and subsidy. Per the decision interactions, we 

analyze the decision-making of the manufacturer and the 

retailer as a Stackelberg game. The game model developed, 

by nature, is a mixed 0-1, non-linear, and bilevel 

programming. In view of its complexity, we further develop 

a nested genetic algorithm (NGA) to solve the model. 

Numerical examples demonstrate the applicability of the 

game model in facilitating supply chain members to jointly 

make decisions and the robustness of the NGA. With 

Sensitivity analysis, we shed light on several important 

managerial implications.  

 

Keywords – Joint decision-making, Stackelberg game, 

Bilevel programming, Sustainable supply chain decisions 

 

I.  INTRODUCTION 
 

 In recent decades, more and more greenhouse gas 

emissions (e.g., carbon dioxide) have been emitted, and 

the increasing emissions have caused severe 

environmental changes. Because of the negative 

influences, the environmental issues have been receiving 

lasting attention from both academia and practice. In this 

situation, it is deemed important for manufacturers to 

decide if they should adopt environment-friendly 

production technologies (e.g., solar technology) that can 

lower the emissions but require increased production costs 

[1]. In the meanwhile, governments look for suitable 

regulation policies to reduce environmental damages by 

curbing emissions while improving social welfare. 

Among others, carbon emission tax has gained significant 

traction and is applied in many countries and local 

regions. In fact, economists regard a carbon tax as the 

most efficient way to reduce carbon emissions [2], and in 

some conditions, carbon emission tax is more effective 

than other regulations for economic growth and carbon 

reduction [3].  

  Under carbon emission tax, manufacturers are 

charged for each unit (i.e., metric ton) of their emissions 

at a fixed tax rate level. Because of the tax rate, 

manufacturers have to pay for an additional carbon 

emission cost, which, in turn, drives their total costs to 

increase. Regarding this, carbon emission tax, in fact, 

intervenes manufacturers’ micro-behaviors (e,g., pricing 

decisions) and ultimately affects manufacturers’ profits 

[4]. As noted in literature, carbon emissions are generated 

mainly from production processes where products are 

materialized. Consequently, manufacturers’ decisions 

(e.g., technology selection, production quantity) affect 

significantly carbon emissions to be generated in the 

future production activities. In this regard, carbon 

emission tax plays an influential role in manufacturers’ 

decision-making, the result of which determines emission 

abatement. Caused by the inherent interactions, it is of 

paramount importance that manufacturers need to make 

decisions by taking into account carbon emission tax [5].  

 In a supply chain (SC), the decisions and activities, be 

they within or beyond the boundaries of an individual 

member, are interrelated and affect one another. For 

examples, a retailer’s order quantity influences the 

manufacturer’s production quantity, which may alter his 

wholesale price; the manufacturer’s wholesale price 

decision is an indispensable input for the retailer to 

determine his retail price, which affects the demand. In an 

effort to obtain maximum profits, chain members should 

make joint decisions while considering the above 

unavoidable interactions [6]. However, due to the 

complexities involved, joint SC decision-making 

involving many interactions is likely to be very difficult. 

This is especially true in the environments where carbon 

emission tax is implemented (because manufacturers’ 

decisions are affected by carbon emission tax).  

 Towards the end, in this study, we address the joint 

decision-making of a manufacturer and his independent 

retailer under carbon emission tax. More specifically, we 

focus on technology selection, production quantities, and 

wholesale price of the manufacturer and the retail price of 

the retailer while considering a fixed tax rate per unit 

carbon emission specified by the local government. Our 

literature review has shown that though the published 

articles deal with joint decision making of a manufacturer 

and its retailer, they did not comprehensively consider all 

the above decisions together. (Note: Considering the 

limited number of pages, we will be happy to provide the 

detailed literature review upon request.) As shown in 

literature, the Stackelberg game theory excels in modeling 

decision interactions of two players. We, thus, analyze the 
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joint decision-making of the manufacturer and the retailer 

as a Stackelberg game. The game model developed 

consists of two submodels: an upper-level submodel and a 

lower-level one. The upper-level submodel sheds light on 

the decision-making process of the manufacturer, whilst 

the lower-level one details the retailer’s decision-making. 

By nature, the game model is a mixed 0-1, nonlinear, 

bilevel programming, for which it is impossible to obtain 

analytical solutions. Nested genetic algorithm (NGA) 

excels in dealing with bilevel programming models by 

providing near-optimal solutions [7]. Thus, we further 

develop a specific NGA to solve the Stackelberg game 

model. Numerical examples demonstrate (i) the 

applicability of the Stackelberg game model and (ii) the 

robustness of the NGA. With sensitivity analysis, we 

arrive at several important managerial implications.  

 In the following section, the problem context is 

introduced. The Stackelberg game model and the NGA 

are presented in Sections 3 and 4, respectively. We 

describe numerical examples and sensitivity analysis in 

Section 5. The paper is ended in Section 6.                             

 

II.  PROBLEM CONTEXT 
 

 In the SC in consideration, there are a manufacturer 

and an independent retailer. (Such SCs widely exist in 

practice, e.g., an automobile firm and his independent 

retailers in different regions.) In his planning horizon 

containing T  periods, the manufacturer produces one 

type of products and sells them to the retailer at a 

wholesale price w . We assume that the wholesale price 

of the manufacturer is stable in the planning horizon. In 

practice, stable prices are preferred in business with sales 

volumes over a relatively long planning horizon, while 

dynamic pricing is important in finite selling seasons for 

cases, such as airlines and hotels [8]. There are two 

technologies: a green one and a dirty one with capacities 

of 
g d

B and B , respectively. The manufacturer can select 

either the dirty or the green one to produce products in 

each planning period. The green technology generates less 

emissions than the dirty one from producing one unit of 

products. However, it incurs higher production costs. To 

abate emissions, the local government motivates the 

manufacturer to adopt the green technology by offering a 

subsidy of b per unit product produced by the green 

technology. Authors have demonstrated that with the 

subsidy, the local governments can better motivate 

manufacturers to adopt green technologies in production 

[9]. In each production run, the manufacturer pays a fixed 

setup cost 
ds  or 

gs  (
d gs s ) for adopting the dirty or 

green technology. In general, green technologies are more 

complex and consist of more components than traditional 

dirty ones. Setting up green technologies, thus, requires 

longer time and/or more engineers/technicians, resulting 

in higher setup costs. Besides the fixed costs, the 

manufacturer pays a variable production cost per unit cost 

dv  or 
gv  (

d gv v ) related to the use of the dirty/green 

technology. Assuming 
d gv v  is rather intuitive. For 

instance, the (non-fuel related) variable cost of operating a 

hybrid car is certainly higher than that of a regular car as 

the hybrid car has many parts and devices that the regular 

car does not have. When producing one unit of products, 

the dirty and green technologies emit  
de  or 

ge  (
d ge e ) 

emissions, respectively. For each of the inventory 
ik  at 

the end of planning period i , the manufacturer needs to 

pay a cost of h ; he also pays a cost of l  for transporting 

one unit to the retailer. According to carbon emission tax 

mechanism, the local government charges a tax rate of 

 for one-unit emission that the manufacturer emits from 

production. The manufacturer needs to select the dirty or 

green technology in planning period i , i.e.,  , 0, 1
i i

x y  . 

In addition, he needs to determine production quantities 

/di giq q  related to the dirty/green technology to meet the 

retailer’s demand in period i . The manufacturer also 

needs to determine w . The objective is to maximize his 

total profit Pr Mof  in the planning horizon.  

 The retailer buys the products at w  and sells them at 

a retail price of r . Similarly, in this study, we assume that 

the retail price is stable in the horizon. At the beginning of 

a planning period where the manufacturer adopts the 

green technology, the retailer carries out low-carbon 

advertising program to stimulate demand 
io . The amount 

of advertising investment is a. The retailer needs to 

determine the retail price r  in order to maximize his total 

profit Pr Rof  in the planning horizon. 

 

III.  STACKELBERG GAME MODEL 

 

A.  Upper-Level Optimization for the Manufacturer 

 

 The upper level is to optimize the manufacturer’s 

total profit, which is determined by his revenue and total 

cost in the planning horizon. The manufacturer obtains the 

revenue 
M by (i) selling the products and (ii) receiving 

the subsidy for unit product from the local government if 

he adopts the green technology. The revenue 
M  can be 

expressed as Eq. (1). The second term indicates the total 

subsidy from the local government, which becomes a part 

of the manufacturer’s total revenue. 

1 1
M i gi i

T T
w o b q y

i i
  

 
    (1) 

 For the total costs, there are several cost factors, 

including a total production cost  ,di giP q q , a total 

inventory holding cost  iTI k , a total transportation cost 

 iTr o , and a total carbon emission cost   ,di giJ q q . 

The total production cost  ,di giP q q can be computed 

using Eq. (2) below, while  iTI k ,  iTr o , and  

 ,di giJ q q  are obtained based on Eqs. (3-5), respectively.     



 

     ,
1 1

di gi di d i gi g i d i g i
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   

 
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 
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
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   ,
1

di gi di d i gi g i

T
J q q q e x q e y

i
 


  (5) 

 In Eq. (2), the first term is the total variable 

production cost, and the second term is the total setup 

cost. Eq. (5) consists of two parts, the carbon emission 

related to green technology and the one to dirty 

technology. The total cost 
M

TC  can be formulated as Eq. 

(6). Submodel M is developed based on Eqs. (1- 6). 

       , ,M di gi di gi i iTC P q q J q q Tr o TI k     (6) 

Submodel M:   

, , ,
max Pr

i i di gi

M M M
x y q q w

of TC    (7) 

          s.t.        
i i di i gi ik o q x q y    (8) 

   1 11 1di d i gi g i d i g id i g i
q e x q e y q e x q e y

  
    (9) 

,
di i gi i

q x q y    (10) 

di d
q B ,

gi g
q B  (11) 

0
i

k   (12) 

0w , 0, 0
di gi

q q   (13) 

 , 0, 1
i i

x y   (14) 

1,2,3,..., ,i T T N    (15) 

 The objective function: Eq. (7) is to maximize the 

manufacturer’s total profit. Constraint (8) ensures 

inventory and demand balance in each planning period. 

Constraint (9) reflects the essence of carbon emission 

regulation: carbon emissions generated in a later period 

must be no higher than those from the previous period. 

With  being an arbitrary very large positive number, 

Constraint (10) ensures that production takes place only 

when technologies are adopted. Production capacities are 

respected in Constraint (11). Constraint (12) indicates that 

the inventory level is non-negative. The decision variables 

are non-negative in Constraint (13), and Constraint (14) 

imposes a binary restriction concerning the decision 

variables for selections of production technologies.  

 

B.  Lower-Level Optimization for the Retailer 

 

 The lower-level optimization is to maximize the 

retailer’s profit. The retailer obtains his revenue from 

selling products. The costs incurred include the total cost 

for purchasing the products and the low-carbon 

advertising costs for spurring demand.  

 In literature, several important factors have been 

identified to formulate the product demand of a retailer, 

including the retail price, the advertising investment, and 

the carbon emissions of unit product. We follow the 

literature and assume the linearity between demand and 

retail price, advertising investment, and carbon emissions. 

With the linear assumption, the demand 
io  of the retailer 

in planning period i is formulated in Eq. (16). The last 

term includes a square root to the retailer’s total 

advertising cost. This reflects the diminishing returns to 

the advertising investment. The revenue 
R

 and total cost 

R
TC in the planning horizon of the retailer are determined 

based on Eq. (17) and (18), respectively. The first term in 

Eq. (18) is the cost for promoting low-carbon products 

produced by green technology, and the second one is the 

purchasing cost.  

 r e a

i i d g io M e r e y e e y e a      (16) 

1
R i

T
r o

i
 


  (17) 

1 1
R i i

T T
TC ay w o

i i
 

 
   (18) 

Submodel R is developed below.  

maxPr R R R
r

of TC   (19) 

                      s.t.       r w  (20) 

0r   (21) 

1,2,3,..., ,i T T N    (22) 

 The objective function in Eq. (19) is to maximize the 

retailer’s total profit. Constraint (20) ensures that the 

wholesale price cannot be larger than the retail price.  

 

C.  Leader-follower joint optimization model 

 

 We model the decision-making processes of the 

manufacturer and his retailer as a Stackelberg game. The 

upper-level Submodel M is related to the manufacturer 

acting as a leader, while the lower-level Submodel R is 

for the retailer performing as a follower. Thus, the leader-

follower optimization for this decision-making problem is 

formulated as the following bilevel program: 

, , ,
max Pr

i i di gi

M M M
x y q q w

of TC    (23) 

                 s.t.     Constraint Eqs (8-15)              (24) 

where, for given , , , ,i i di gix y q q w  , the variable r solves:    

maxPr R R R
r

of TC   (25) 

              s.t.   Constraint Eqs (20-22)   (26) 

 In this leader-follower bilevel program, the decision-

making sequence is as follows. With the carbon emission 

tax, the manufacturer first selects either the green or dirty 

technology or both for each planning period by decision 

variables 
i

x  and 
i

y , and the quantity related to each 

technology by
di

q   and 
gi

q . Besides, the manufacturer 

needs to determine a wholesale price using decision 

variable w. In reaction, the retailer makes his decision of 

the retail price by decision variable r in response to the 

manufacturer’s decision-making. The retail price would 

influence the market demand during each planning period; 

thus, the demand is the feedback to the manufacturer from 

the lower level.  

 



 

IV.  NGA-BASED SOLUTION METHOD 

 

 The bilevel game model developed is a non-linear 

program involving 0-1 variables and continuous variables 

and is NP-hard. Besides, the decision variable of 

Submodel R is involved in the objective function and 

Constraint (8) of Submodel M. Considering the 

characteristics and complexities of the game model, we 

further develop a Nested GA (NGA) to obtain near-

optimal solutions. The NGA has three phases, including i) 

constraint removing, ii) modified model solving, and iii) 

constraint evaluation. In Phase i), Submodel M’s 

constraints involving r are removed; a modified game 

model is developed. In Phase ii), the modified model is 

solved. The values of all decision variables are obtained. 

In this phase, the solving of Submodel R is nested in that 

of the modified Submodel M. In Phase iii), the constraints 

removed from Submodel M are evaluated using the 

decision variable values obtained in Phase ii). Based on 

the evaluation results, Phases ii) and iii) repeat till the 

final solution is obtained. See the algorithm details below. 
 

Step 1 Removes Constraint (8) containing r from 

Submodel M.  

Step 2 Generates randomly an initial population of a pre-

determined number of chromosomes corresponding to the 

solutions of Submodel M. 

Step 3 Evaluates the feasibility of chromosomes. If a 

chromosome is feasible, indicating the Submodel M’s 

constraints are satisfied, goes to Step 4 to solve Submodel 

R, else, goes to Step 6.  

Step 4 Optimizes Submodel R based on the below sub-

steps 4-1 to 4-8. 
Sub-step 4-1 Substitutes Submodel M’s decision variable 

values into Submodel R.  

Sub-step 4-2 Generates randomly an initial population of a 

predetermined number of chromosomes corresponding to the 

solutions of Submodel R. 

Sub-step 4-3 Evaluates the feasibility of chromosomes 

based on Submodel R’s constraints. If the result is positive, goes 

to Sub-step 4-4, else, goes to Sub-step 4-6. 

Sub-step 4-4 Obtains the value of r and further calculates 

the value of Pr
R

of  using Eq. (19).  

Sub-step 4-5 Sets the fitness value of the infeasible 

chromosomes as 0 and removes them from the population.  

Sub-step 4-6 Compares the current number of iterations 

with a predetermined one. If the current number is less, goes to 

Sub-step 4-7, else, goes to Sub-step 4-8.  

Sub-step 4-7 Generates new chromosomes using three 

operators: selection, crossover, and mutation, then moves back 

to Sub-step 4-3.  

Sub-step 4-8 Jumps out of the nesting, records the values of 

r and Pr
R

of , and moves to Step 5.  

Step 5 Computes the value of , , , ,i i di gix y q q and w  with 

the input from Sub-step 4-8, further calculates the fitness 

value using Eq. (7), and obtains the value of Pr
M

of . 

Step 6 Sets the fitness value for the infeasible 

chromosomes as 0 and removes them from the population 

if the chromosome is not feasible in Step 3.  

Step 7 Checks the current number of iterations. If it is 

larger than the predetermined one, moves to Step 8, else, 

goes to Step 10. 

Step 8 Evaluates Constraint (8) using current decision 

variable values.  

Step 9 Checks if the constraints are satisfied. This is the 

termination condition of the algorithm. If they are 

satisfied, goes to Step 11, else, moves to Step 10.  

Step 10 Generates new chromosomes corresponding to the 

solutions of Submodel M using the same three operators 

as above, and goes back to Step 3 to check the feasibility 

of chromosomes.  

Step 11 Outputs the final values for all decision variables 

and the values of  Pr
M

of  and Pr
R

of  as the final solution. 

 

V. NUMERICAL EXAMPLES 

 

 In the base example, the manufacturer produces a 

type of air conditioners and sells them to an independent 

retailer. The planning horizon of the manufacturer is one 

year with two periods. The data was collected based on 

the industrial practice in China. More specifically, 

parameters describing the manufacturer and the retailer 

are as follows: 
, ,

7300, 8500, 240, 360, 51000, 11500, 0.79,

0.55, 0.63

2, 20, 4.5, 14, 10000, 8000, 600 500
d g d g

r

d g d g

a e

s s v v a M e

e and e

T b h l B B e e

      

 

       

In the numerical examples, we set the population size as 

20 in solving the two submodels and set the number of 

iterations both within and out-side the nesting as 100. We 

use a selection probability of 0.02, crossover rate of 0.9, 

and mutation rate of 0.01. Such GA settings are 

commonly used in the literature [10]. The NGA is coded 

in MATLAB 2016b on a Core i5 CPU 2.7 GHz and an 

8GB RAM.  

 

D.  Results and Analysis 

 

 In calculations, the NGA is converged at 30 iterations 

where the fitness values of the two submodels are optimal 

and remain unchanged in the following iterations, as 

shown in Fig. 1. 

 
Fig. 1.  NGA convergence. 

 

  The final solution in terms of the values of decision 

variables and profits is provided in Table 1. As shown, the 



 

manufacturer selects both the green and dirty technologies 

in each of the two planning periods. Though the set-up 

cost of the green technology is higher than that of the 

dirty technology, the subsidy from the local government 

motivates the manufacturer to adopt the green technology 

in production. In addition, the lower emission released 

from producing a unit of air conditioner contributes to 

lower total emission costs, which, in turn, justifies the 

selection of the green technology. Interestingly, the 

production quantity from the dirty technology in each 

period is higher than that from the green technology in 

spite of i) the subsidy, ii) the lower emission released 

from producing one unit, and iii) the fixed set-up cost of 

the green technology that is irrelevant to production 

quantities. There are two potential reasons. First, the 

production capacity of the green technology is limited. 

Second, the unit variable production cost of the green 

technology is higher than that of the dirty technology. 

Thus, producing more air conditioners using the green 

technology results in higher total variable production 

costs. To conclude, making suitable decisions on 

technology selection and corresponding production 

quantities is very important. Our model is expected to 

help manufacturers make such decisions.   
 

Table 1: FINAL SOLUTION 

Decision variable Value 

The dirty technology is or not selected 
𝑥1  1 

𝑥2  1 

The dirty technology is or not selected 
𝑦1  1 

𝑦2  1 

Production quantities of the dirty technology 
𝑞𝑑1  6126 

𝑞𝑑2  5920 

Production quantities of the green technology 
𝑞𝑔1  4870 

𝑞𝑔2  1053 

Wholesale price 𝑤  2471 

Retail price 𝑟  3436 

Objective Value 

The manufacturer’s profit 𝑃𝑟𝑜𝑓𝑀   3.7524*107 

The retailer’s profit 𝑃𝑟𝑜𝑓𝑅  1.7215*107 

 
 

 

D.  Performance Evaluation of NGA 

 

To evaluate the robustness of the NGA, we test 10 

times the base example. In each test, we generate 

randomly 20 chromosomes in the initial population and 

use the same input data. The results in terms of the 

manufacturer’s and the retailer’s profits are obtained. 

Among these 10 tests, in six tests including Test 1, 4, 5, 7, 

8, and 10, the manufacturer’s profits are identical. This is 

the same for the retailer. For the manufacturer, the 

average, largest, and smallest profits are 3.7519*107, 

3.772*107, and 3.7321*107, respectively. The increase 

(decrease) percentage between the average and the largest 

(smallest) profits is 0.5% (0.5%). The retailer’s average, 

largest and smallest profits are 1.7205*107, 1.7484*107, 

and 1.7013*107, respectively. Similarly, the increase 

(decrease) percentage between the average and the largest 

(smallest) profits is 1.6% (1.1%). These insignificant 

change percentages indicate that the NGA is robust.     

 

E.  Sensitivity Analysis  

 

 We equally carry out sensitivity analysis to examine 

the impact of some parameters on the profits of the 

manufacturer and the retailer as well as on the decision 

variable value changes. These parameters include the 

emission released from producing one unit of product 

using the dirty technology (
d

e ), and the emission released 

from producing one unit of product using the green 

technology (
g

e ), the government tax per unit emission 

( ), the subsidy offered by the local government (b), the 

advertising investment (a). For each parameter, we obtain 

some interesting results. However, due to the page 

limitation, we present below the results and analysis 

pertaining to 
d

e . The results and analysis for other 

parameters are available upon request.  

 Emission released from producing a unit of product 

using the dirty technology (
d

e ): In studying the impact of 

d
e , we change its values from 600 to 700 in steps of 10 

and obtain the results. (The results before 600 and after 

700 remain stable. Thus, we present the results pertaining 

to the range of (600, 700).) As shown in Fig. 3(a), in 

general, there is a decreasing trend in the manufacturer’s 

profit changes. This is explainable. Increased 
d

e  

potentially increases the total emission costs, which 

reduce the manufacturer’s profit. By examining closely, 

we can see that the manufacturer’s profit changes can be 

classified into several stages, including i) the increasing 

stage till 
d

e  is 630, ii) the decreasing stage till 
d

e  reaches 

660, iii) the increase stage till 
d

e  is 680, and iv) the 

decreasing stage. Such specific profit changes might be 

caused by production quantity changes, as shown in Fig. 

3(b). Responding to the increase of 
d

e , the manufacturer 

has to reduce the production quantity from the dirty 

technology and, in the meanwhile, increase the production 

quantity from the green technology. Regarding the 

retailer’s profit, it steadily increases along with the 

increase of 
d

e , as shown in Fig. 3(a). This is reasonable. 

As mentioned above, the increase of 
d

e  increases the 

production quantity from the green technology and 

reduces the production quantity from the dirty technology. 

With the help of advertising, this, in turn, stimulates more 

demand, confirming Eq. (16). The demand increase 

contributes to the steady increase in the retailer’s profit.  

The above results and analysis reveal that i) certain 

ranges of 
d

e  values, in fact, contribute to manufacturer’s 

profit increase and ii) some ranges lead to manufacturer’s 

profit decrease. Manufacturers, therefore, need to identify 

an “optimal” range, which can help them obtain higher 

profits. Our model is expected to facilitate the 

identification of such an “optimal” range of 
d

e . On shop 

floors, manufacturers should control well the production 

processes where dirty technologies are used so that the 

emissions released from producing a unit of product will 

fall in the “optimal” ranges. Because retailers’ profits 

always increase when 
d

e  increases, they might establish 



 

certain contracts to encourage manufacturers to engage 

more/less the green/dirty technology in production. 

 

 
Fig. 3.  Profit and quantity changes caused by the change of 

d
e . 

  

VI.  CONCLUSIONS 

 

 Given the inherent interactions between carbon 

emission tax and supply chain decisions and these among 

supply chain decisions and the resulting decision-making 

complexities, in this study, we investigated the joint 

decision-making of a manufacturer and his independent 

retailer under carbon emission tax. A Stackelberg game 

model including two submodels was developed to help i) 

the manufacturer optimally select technologies, determine 

production quantities and wholesale price and ii) the 

retailer optimally determine the retail price. We further 

developed an NGA to solve the game model for obtaining 

near-optimal solutions. Numerical examples demonstrated 

the applicability of the game model and the robustness of 

the algorithm. 

 Based on the sensitivity analysis, we highlighted 

several important managerial implications. For example, 

manufacturers’ profits do not decrease when the emission 

tax rate increases (Note: this is from the result analysis of 

 ). Therefore, local governments need to be very careful 

when determining the tax rate such that manufacturers can 

obtain higher profits without releasing increased 

emissions to the environments. Along this line, there are 

several avenues for potential future research. As initial 

efforts, we studied the joint decision-making of a 

manufacturer who produces one product and his 

independent retailer. Future research efforts might be 

made to develop models and solution algorithms for the 

situations where there are multiple substitute products 

and/or multiple competing retailers under carbon emission 

tax. It is interesting to see how the manufacturer and 

retailer make their optimal decisions in these situations. 

As carbon tax rates significantly affect emission 

abatement and social welfare, how a local government can 

determine an optimal tax rate together with 

manufacturers’ and retailers’ joint decision-making might 

deserve future investigation. 
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