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A B S T R A C T

Accurate degradation models are crucial to perform efficient battery design and management. The time and
resources required to improve the output accuracy of the models depends critically on the ability to assess the
sensitivity to the input factors governing the inherent dominant mechanism in the model. Here, we present a
sensitivity analysis of a pseudo-two-dimensional battery model coupled with a capacity fade model based on
solid-electrolyte interphase (SEI) formation and the corresponding irreversible charge loss for Li-ion batteries.
The proposed method is based on training an inexpensive differentiable surrogate Gaussian process regression
model on observed input–output pairs and analysing the surrogate model to learn about the global and local
sensitivities of the original system. With this method, the relevant global sensitive parameters can be identified,
and an in-depth analysis of electrochemical phenomena such as the correlation between the thickness of the
SEI and the irreversible charge loss can be explored. The proposed method will provide key insight into how
sensitivity analysis of the physics-based degradation model must be conducted for effective integration into
battery management systems.
1. Introduction

Li-ion batteries (LIBs) dominate the secondary electrochemical en-
ergy storage market for both mobile (electric vehicles) and stationary
(grid storage) applications. State of the art in battery research fo-
cuses on deducing parameters that are key to battery performance
and developing design principles accordingly [1–3]. The LIB perfor-
mance, durability and reliability depend on broad range of multi-scale
phenomena [4]. Design of better LIBs [5] thus require multi-scale
modelling methods [6,7] for optimal utilisation, degradation control
and safety. Multi-scale modelling relies on parameter passing between
scales [7]. Within the scale-bridging approach, for each scale-specific
physical model, identifying parameters to which the model is most
sensitive can make such an approach robust to input parameter noise
and make it uncertainty aware. On the other hand, at system level,
battery management systems (BMSs) are crucial for operational time
optimisation. To ensure accurate predictions and estimation of relevant
metrics, such as battery state of charge (SOC) and state of health (SOH),
coupled physics-based and degradation models need to be integrated
into BMSs. However, physics-based models contain several input pa-
rameters obtained from experiments and other simulations conducted
at a lower scale, with different degrees of sensitivity to the main output
parameters in the degradation model resulting in an uncertainty in the
overall predictions. These uncertainties can be reduced by performing
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sensitivity analysis (SA) to identify relevant input parameters and the
main sources of uncertainty.

SA in general studies how variation in the inputs of a given system
affects its outputs and can be done at different levels of complexity
and sampling cost ranging from inexpensive screening for irrelevant
inputs to detailed exploration of the effect of inputs along their entire
range of variation [8]. Local SA methods focus on how a single set of
input parameters affects the output, for example the partial derivative
of the model at a specific point can be estimated by slightly varying
the input and observing the output (aka. the one-at-a-time method),
while global SA methods aim to understand the behaviour of the overall
system, or at least within a some specified range of values for each input
parameter. A global SA can be achieved by fitting a surrogate model on
observed pairs of inputs and outputs and then analysing the surrogate
model in place of the original system, which is especially useful when
the surrogate model is cheaper to evaluate and easier to analyse than
the original system. An accurate surrogate model can subsequently be
used for detailed local SA in specific regions of input space and to
suggest new input parameters to evaluate.

In this work, we present a SA of a pseudo-two-dimensional (P2D)
battery model coupled with a capacity fade model based on the for-
mation of solid-electrolyte interphase (SEI) and the corresponding ir-
reversible charge loss (ICL) for LIBs. The aim is to apply SA using a
vailable online 2 November 2022
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Fig. 1. Overview of the data generation and sensitivity analysis procedure.

surrogate model to identify the globally most sensitive input parameters
causing SEI formation and related ICL and to explore local sensitivities
and interactions in critical parts of the input space (see Fig. 1). The re-
sults of the SA can guide further efforts to obtain high-fidelity estimates
of important input parameters to improve errors and ensure accurate
predictions.

Analysis of battery models is an area of interest in recent research.
Schmidt et al. [9] used a coupled Fisher-information matrix approach
and local SA method to identify the dependence of each selected
input parameter on the output parameter of a physics-based single
particle model (SPM). The local SA of the input parameters on the
terminal voltage of an equivalent circuit model (ECM) for LIBs was
conducted by Rahimi-Eichi et al. [10] to determine the importance of
updating each battery parameter in a state of charge (SOC) estima-
tion structure. However, because some of the parameters in SPM and
ECM are functions of the SOC, local SA is not suitable for evaluating
their robustness since this does not reflect how the system behaves
in other regions of input space where seemingly unimportant inputs
may have a large effect and vice versa. Global SA methods are suit-
able for ECM especially for the non-linear P2D models because global
SA repeatedly analyse local sensitivity multiple times with randomly
sampled linearisation points [11]. Zhang et al. [11] carried out a SA
on the terminal voltage and temperature of a cylindrical Li-ion battery
based on a thermally coupled multi-physics based model via step-wise
experiments where thirty input parameters were grouped according
to their maximum sensitivity. Similarly, Song et al. [12] conducted
a SA of parameters to the rate of heat generation in LIBs based on
a reduced-order electrochemical–thermal model where they observed
that parameters related to the positive electrode are more sensitive than
those related to the negative electrode based on the selected range of
input parameters. None of these works considered the sensitivity of the
various input parameters of the electrochemical model on the capacity
fading parameters such as the thickness of the SEI. Even though the
capacity loss due to the formation of the SEI is considered as the main
factor responsible for capacity fading in LIBs. Zhao and Howey [13]
investigated the global sensitivity of ECM model input parameters on
the output voltage of a battery using Morris screening methods [14]
where they found out that, the uncertainties of some of the parameters
do not generate significant uncertainty in the out voltage and therefore
could be taken as constants. However, they could not investigate the in-
teractions between the parameters due to the limitation of the approach
used. Lin et al. [15] performed a global SA of the cell discharge capacity
and temperature based on a 3D multi-physics model using the concept
of a polynomial chaos expansion (PCE) where they observed that, the
2

discharge capacity and the thermal behaviour of the cell are more
sensitive to the electrode parameters and their pore structure. However,
PCE suffers from the curse of dimensionality [16], that is the model
evaluations needed to develop the PCE model increases exponentially
with the number of model parameters.

Gaussian process (GP) regression [17] is a popular choice of sur-
rogate model in SA because it is highly flexible, provides uncertainty
estimates and can be applied even with small datasets while approxi-
mate, sparse implementations enable analysis of large datasets [18,19].
Automatic relevance determination (ARD) of GPs with isotropic kernels
has been a widely used method to evaluate feature importance, but
recent work has shown how ARD overestimates the importance of
features with nonlinear effects on the output, while SA based on deriva-
tives of the GP output with regards to the inputs has been shown to be
robust to a mix of linear, nonlinear and noise features [20]. Measuring
sensitivity by derivatives makes intuitive sense since if changing an
input parameter is expected to significantly change the output, it is
important to consider that input parameter carefully. SA methods based
on analysing derivatives of GP regression models have previously been
applied for analysing neuroimages [21] and global ocean chlorophyll
prediction [22] showing promising results.

In this paper we present a P2D-SEI model for the formation of the
SEI and prediction of the related ICL and apply global and local SA
using a surrogate GP regression model to identify interesting regions of
input space. The main contributions are:

• A P2D-SEI capacity fade model that simulates SEI formation and
related ICL together.

• Application of a scalable SA approach based on analysing the
derivatives of a surrogate GP regression model enabling global
and local analysis of sensitive input parameters.

• Software demonstrating an interactive, explorative SA of a sur-
rogate GP regression models for SEI thickness and ICL made
available online [23].

The rest of the paper is structured as follows. Section 2 presents the
computational methods used in the analysis including the P2D battery
degradation model and the SA method based on GP regression. The
experiment and results are presented and discussed in Section 3, and
we conclude with closing remarks in Section 4.

2. Methods

2.1. Modelling SEI formation

The model for the formation of the SEI used in this study is based on
the reduction of the solvent near the surface of the negative electrode
during charging. The electrolyte considered in the model is a mixture
of ethyl carbonate/ethyl methyl carbonate (EC/EMC) with LiPF6 salt.
Hence, we assumed that the primary product forming the SEI layer is
Li2CO3 [24] and it is formed according to the reaction:

S + 2Li+ + 2e−
𝑘
←←←←←←→ P , (1)

where S is the solvent species and P is the product of the reaction
between the solvent and the Li ions. The growth of the SEI layer is
assumed to be in one-dimension as illustrated in Fig. 2 and the film
growth is assumed to be controlled by the kinetics of the reaction
occurring at the interphase.

The rate of the electrochemical reaction at the negative electrode
is described as the sum of the rate of reaction for Li intercalation and
the rate of reaction for the formation of the SEI which is expressed in
terms of their current densities as:
𝐽 = 𝐽int + 𝐽𝑠 . (2)
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Fig. 2. Schematic diagram of SEI formation.

The current density due to the intercalation of Li ions across the
electrode/electrolyte interface, 𝐽int is described by the Butler Volmer
(BV) equation and is given by:

𝐽int = 𝑖0𝑎𝑝
(

exp
[

𝛼𝑎
𝐹
𝑅𝑇

(𝜂)
]

− exp
[

−𝛼𝑐
𝐹
𝑅𝑇

(𝜂)
])

, (3)

where 𝑖0 is the concentration dependent equilibrium exchange current
density at the interface and is given by:

𝑖0 = 𝑖0,ref

(

𝑐𝑠
𝑐𝑠,ref

)𝛼𝑐 ( 𝑐𝑠,max − 𝑐𝑠
𝑐𝑠,max − 𝑐𝑠,ref

)(

𝑐𝑒
𝑐𝑒,ref

)

, (4)

where 𝑐𝑠, 𝑐𝑠,max, and 𝑐𝑒 are the surface, maximum and electrolyte con-
centration respectively. The overpotential for the intercalation reaction
is given by:

𝜂 = 𝜙𝑠 − 𝜙𝑙 − 𝑈ref −
𝐽
𝑎𝑝

𝑅film , (5)

where 𝜙𝑠, 𝜙𝑙, and 𝑈ref are the potential in the solid and liquid phase,
respectively. 𝑅film is the resistance due to the formation of the SEI layer,
and 𝑈ref is the equilibrium potential of the negative electrode expressed
as a function of the state of charge (SOC), 𝜃.

The rate of the solvent reduction reaction in Eq. (1) was also
described by the BV equation and is given by:

𝐽𝑠 = 𝑖𝑜𝑠𝑎𝑝

(

( 𝑐𝑝
𝑐𝑝,ref

)

exp
[

𝛼𝑎
𝐹
𝑅𝑇

(𝜂𝑠)
]

−
(

𝑐𝑠
𝑐𝑠,ref

)(

𝑐Li+

𝑐Li+ ,ref

)2
exp

[

−𝛼𝑐
𝐹
𝑅𝑇

(𝜂𝑠)
]

)

. (6)

The side reduction reaction is assumed to be irreversible and hence
the BV equation is reduced to cathodic Tafel approximation, and the
rate of the reaction is given by:

𝐽𝑠 = −𝑖𝑜𝑠𝑎𝑝

(

𝑐𝑠
𝑐𝑠,ref

)(

𝑐Li+

𝑐Li+ ,ref

)2
exp

[

−𝛼𝑐
𝐹
𝑅𝑇

(𝜂𝑠)
]

. (7)

At low current rates, the variation in the concentration of Li ions
in the solution does not vary much. In addition, the concentration of
Li ions and solvent is in excess and hence not a limiting factor for the
side reaction. In view of the above assumptions, the cathodic Tafel rate
kinetics is modified to eliminate the concentration dependencies and
the final rate expression is expressed as:

𝐽𝑠 = −𝑖𝑜𝑠𝑎𝑝 exp
[

−𝛼𝑐
𝐹
𝑅𝑇

(𝜂𝑠)
]

. (8)

The overpotential for the side reaction, 𝜂𝑠 is expressed as:

𝜂𝑠 = 𝜙𝑠 − 𝜙𝑙 − 𝑈ref,𝑠 −
𝐽
𝑎𝑝

𝑅film . (9)

The film resistance, 𝑅film due to the formation of the SEI film is
expressed as:

𝑅film =
𝛿film
𝜎𝑝

, (10)

where 𝜎𝑝 is the conductivity of the SEI products and 𝛿film is the
thickness of the SEI film and is expressed as:
𝜕𝛿film = −

𝐽𝑠𝑀𝑝 , (11)
3

𝜕𝑡 𝑎𝑝𝜌𝑝𝐹
where 𝑀𝑝 and 𝜌𝑝 is the molecular weight and density of the product of
the side reaction, Li2CO3. The developed SEI model was incorporated
into the P2D model. An overview of the governing equations, boundary,
and initial conditions of the P2D model is presented in Table 1. The
model equations were solved in COMSOL Multiphysics 5.6.

2.2. Gaussian process regression

In the SA we consider a surrogate GP regression model trained on
observed inputs and outputs of the P2D-SEI model. Generally in a su-
pervised regression setting, we observe input–output pairs {(𝐱𝑛, 𝑦𝑛)}𝑁𝑛=1
with input vectors 𝐱𝑛 ∈ R𝐷 and real-valued output labels 𝑦𝑛 ∈ R. We
assume that 𝑦𝑛 = 𝑓 (𝐱𝑛) + 𝜖 for some unknown function 𝑓 with added
Gaussian noise 𝜖 ∼  (0, 𝜎2𝑦 ). A GP regression model defines a prior
distribution over such functions and is completely specified by its mean
function 𝑚 and covariance function (aka. kernel) 𝑘 [17]:

𝑓 (𝐱) ∼ 𝐺𝑃
(

𝑚(𝐱), 𝑘(𝐱, 𝐱′)
)

. (12)

The mean function represents an initial guess at the regression function
and the covariance function specifies the covariance between any two
points. Here we use a zero mean function 𝑚(𝐱) = 0 and the widely
used (scaled) squared exponential (SE) covariance function (aka. the
RBF kernel) for noisy observations:

𝑘SE(𝐱𝑝, 𝐱𝑞) = 𝜎2𝑓 exp
(

−1
2
(𝐱𝑝 − 𝐱𝑞)𝑇 diag(𝓁)−2(𝐱𝑝 − 𝐱𝑞)

)

+ 𝜎2𝑦𝛿𝑝𝑞 , (13)

where the hyper-parameters 𝜎2𝑓 controls the magnitude, 𝓁 ∈ R𝐷

represents the length-scales and controls the smoothness along each
input dimension, 𝜎2𝑦 is the noise variance and 𝛿𝑝𝑞 is defined as 1 if 𝑝 = 𝑞
and 0 otherwise.

The GP posterior mean 𝜇GP(𝐱𝑛) and variance 𝜎2GP(𝐱𝑛) can be inferred
by conditioning on observed data and the hyper-parameters can be
optimised with gradient-based methods [17]. For GP regression on
small to medium sized datasets, the posterior mean and variance can
be computed in closed form. However, for large datasets this is not
feasible due to the expensive matrix operations involved. Therefore, in
practice we use approximate sparse GP regression to be able to scale
the approach to larger datasets [18,19].

2.3. Sensitivity analysis with GP regression

In the SA of the surrogate model we want to measure the expected
change in the predicted output as a function of the input parameters. In
the context of the GP regression model, we are primarily interested in
measuring the sensitivity of the mean function 𝜇GP and secondly in the
variance function 𝜎GP. The (local) sensitivity of function 𝑔 with regards
to input parameter 𝑑 at a single query point �̃�𝑛 can be computed as the
squared derivative of 𝑔 with regards to input parameter 𝑑 [21,22]:

𝑠2𝑛,𝑑 (𝑔) =
(

𝜕𝑔(�̃�𝑛)
𝜕�̃�𝑛,𝑑

)2
. (14)

Notice that the query point does not have to be in the dataset but can
be anywhere in input space. The partial derivative in the expression
above can be computed analytically for GP regression with some covari-
ance functions, such as the SE covariance function, or with automatic
differentiation [27] allowing for more flexibility in defining the model.

To summarise the sensitivity across the input space, the global
sensitivity 𝑠2∗,𝑑 (𝑔) of function 𝑔 with regards to input parameter 𝑑 can be
computed empirically by averaging over a set of input samples [21,22]:

𝑠2∗,𝑑 (𝑔) =
1
𝑁

𝑁
∑

𝑛=1
𝑠2𝑛,𝑑 (𝑔) . (15)

To allow direct comparison of sensitivities of input parameters
with different scales, the input data should be normalised. For visual
presentation of sensitivities of different input parameters, for example
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Table 1
An overview of the P2D model equations, boundary and initial conditions [25,26].

Cell compartment Balance Governing equations Boundary or initial condition

Positive electrode Material, solid phase 𝜕𝑐𝑠,𝑝
𝜕𝑡

= 𝐷𝑠,𝑝
1
𝑟2

𝜕
𝜕𝑟

(

𝑟2 𝜕𝑐𝑠,𝑝
𝜕𝑟

)

𝑐𝑠,𝑝
|

|

|𝑡=0
= 𝑐𝑝,ini , −𝐷𝑠,𝑝

𝜕𝑐𝑠,𝑝
𝜕𝑟

|

|

|𝑟=0
= 0 , −𝐷𝑠,𝑝

𝜕𝑐𝑠,𝑝
𝜕𝑟

|

|

|𝑟=𝑅𝑝,
= 𝑗

Charge, solid phase 𝜎eff
𝑠,𝑝

𝜕𝜙1,𝑝

𝜕𝑥2
= 𝑎𝑠,𝑝𝐹𝑗 𝜎1,𝑝

|

|

|𝑥=𝐿𝑝
= 0 , −𝜎eff,𝑛

𝜕𝜙1,𝑝

𝜕𝑥
|

|

|𝑥=𝐿𝑠
= 0

Material, liquid phase 𝜀𝑒,𝑝
𝜕𝑐𝑒,𝑝
𝜕𝑡

= 𝜕
𝜕𝑥

(

𝐷eff,𝑝
𝜕𝑐𝑒,𝑝
𝜕𝑥

)

+
(

1 − 𝑡0+
)

𝑎𝑠,𝑝𝑗 𝑐𝑒
|

|

|𝑡=0
= 𝐜𝐞,𝟎 , −𝐷eff,𝑝

𝜕𝐜𝐞,𝐩
𝜕𝑥

|

|

|𝑥=𝐿𝑝
= 0 , −𝐷eff,𝑝

𝜕𝐜𝐞,𝐩
𝜕𝑥

|

|

|𝑥=𝐿𝑠
= −𝐷eff,𝑠

𝜕𝐜𝐞,𝐩
𝜕𝑥

|

|

|𝑥=(𝐿𝑝+𝐿𝑠 )

Charge, liquid phase − 𝜕
𝜕𝑥

(

𝜅eff,𝑝
𝜕𝜙2,𝑝

𝜕𝑥

)

+ 2𝑅𝑇 (1−𝑡0+ )
𝐹

𝜕
𝜕𝑥

(

𝜅eff,𝑝
𝜕 ln 𝑐
𝜕𝑥

)

= 𝑎𝑠,𝑝𝐹 −𝜅eff,𝑝
𝜕𝜙2,𝑝

𝜕𝑥
|

|

|𝑥=𝐿𝑝
= 0 , −𝜅eff,𝑝

𝜕𝜙2,𝑝

𝜕𝑥
|

|

|𝑥=𝐿𝑝
= −𝜅eff,𝑠

𝜕𝜙2,𝑠

𝜕𝑥
|

|

|𝑥=𝐿𝑝

Separator Material, liquid phase 𝜀 𝜕𝑐𝑒
𝜕𝑡

= 𝜕
𝜕𝑥

(

𝐷eff,𝑠
𝜕𝑐𝑒
𝜕𝑥

)

𝑐𝑒
|

|

|𝑡=0
= 𝑐𝑒,0 , −𝐷eff,𝑛

𝜕𝑐𝑒
𝜕𝑥

|

|

|𝑥=0
= −𝐷eff,𝑠

𝜕𝑐𝑒
𝜕𝑥

|

|

|𝑥=𝐿𝑝
, −𝐷eff,𝑠

𝜕𝑐𝑒
𝜕𝑥

|

|

|𝑥=(𝐿𝑠 )
= −𝐷eff,𝑝

𝜕𝑐𝑒
𝜕𝑥

|

|

|𝑥=(𝐿𝑝+𝐿𝑠 )

Charge, liquid phase −𝜅eff,𝑠
𝜕𝜙2,𝑠

𝜕𝑥
+ 2𝑅𝑡(1−𝑡0+ )

𝐹
𝜅eff,𝑠

𝜕 ln 𝑐𝑒
𝜕𝑥

= 0 −𝜅eff,𝑠
𝜕𝜙2,𝑠

𝜕𝑥
|

|

|𝑥=(𝐿𝑠+𝐿𝑝 )
= −𝜅eff,𝑝

𝜕𝜙2,𝑝

𝜕𝑥
|

|

|𝑥=(𝐿𝑠+𝐿𝑝 )
, −𝜅eff,𝑝

𝜕𝜙2,𝑝

𝜕𝑥
|

|

|𝑥=𝐿𝑠
= −𝜅eff,𝑠

𝜕𝜙2,𝑠

𝜕𝑥
|

|

|𝑥=(𝐿𝑠+𝐿𝑝 )
o
p
p
r
o
c
p
m

3
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as a bar chart, we have found it useful to consider the square root
of the sensitivities 𝑠∗,𝑑 (𝑔) (the root mean squared derivative) to not
underestimate the importance of input parameters with relatively low
sensitivity and to be able to distinguish between small sensitivities and
sensitivities that are practically zero.

3. Results and discussion

3.1. P2D-SEI model predictions

During the discharge of the Li ion half-cell, a negative constant
current is applied to oxidise Li ions at the Li metal and intercalate into
the graphite. This results in a gradual decrease in the potential of the
cell until when almost all the available intercalating sites have been
occupied (at a state of charge of 1). At this point the cell reaches the
minimum cut off potential of 0 V and then a positive constant current
is applied to de-intercalate the Li ions from the graphite and reduced at
the Li metal. The de-intercalation or reduction process proceeds until a
cut-off potential of 1.5 V. At this potential, all the Li ions are assumed to
be deintercalated and reduced resulting in an equal intercalation and
de-intercalation time. However, the intercalation time is longer than
that of the de-intercalation indicating that not all the intercalated Li
ions were extracted. The trapped Li ions are consumed to form the SEI
according to Eq. (1) and the rate of consumption is described by Eq. (8).
The voltage profile and the applied constant current describing the (de-
)intercalation mechanism corresponds to the following redox reaction:

C6 + 𝑥Li+ + 𝑥𝑒−
intercalation

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←
de-intercalation

Li𝑥C6 . (16)

Fig. 3a shows the simulated voltage profiles during the (de-)
ntercalation. The simulation was performed with the parameters pre-
ented in Table 2. The formation of the SEI product results in an
ncrease in the thickness of the SEI layer on the graphite as presented
n Fig. 3b. As recently discussed [6], the SEI is complex and modelling
t requires the consideration of the effect of the various compositions
n the electrochemical performance of LIBs. However to reduce the
omplexity and facilitate fast model predictions, the primary product
f the SEI layer was assumed to be Li2CO3 [24] and only grows
uring the intercalation process, thus its thickness was constant during
he de-intercalation process. Owing to the formation of the SEI, the
harge capacity (capacity obtained during the intercalation process)
as higher than that of the discharge capacity (capacity obtained
uring the de-intercalation process). The difference between the charge
nd discharge capacity is the ICL and is mainly attributed to the
ormation of the SEI layer. The SEI thickness and ICL obtained from the
imulation are comparable what has been obtained experimentally [28,
9].

There are several factors which affect the formation of the SEI at
he surface of the graphite electrode during charging owing to the
ompetition between the numerous reduction processes. The rates of
he electrochemical reaction for the (de-)lithiation process and the
EI formation is greatly influenced by both the intrinsic properties
4

f the reactants such as the exchange current densities, reductive
otential and reduction activation energy, and the operating condition
arameters such as the temperature, concentration of electrolyte and
eduction current rate [30]. To understand the degree of the impact
f these design parameters on the electrochemical performance of the
ell and the SEI formation, we conducted a detailed SA of all the input
arameters on the SEI thickness and ICL using a surrogate GP regression
odel.

.2. High throughput simulation

The SA method proposed in Section 2.3 was applied in a detailed
nalysis of the P2D-SEI model introduced in Section 2.1. An overview
f the method is presented in Fig. 1. We considered a total of 15
nput parameters (see Table 2) that were hypothesised to contribute
ignificantly to the output parameters of interest: (i) SEI thickness
(m) representing the thickness of the SEI layer, and (ii) Irreversible
charge loss (%) representing the ICL due to SEI formation. The input
parameters can be categorised into parameters based on the P2D model
for the positive electrode; applied current density, particle radius,
porosity, diffusion coefficient of Li ion in the electrolyte, exchange
current density, minimum cut-off potential, initial concentration of Li
ions in the electrolyte, transference number, maximum concentration
of Li and electronic conductivity, that of the negative electrode; the
exchange current density, and those of the SEI-based model; SEI film
conductivity, equilibrium potential for the SEI and the exchange cur-
rent density of the SEI. Based of the data obtained from literature,
reasonable boundaries of each input parameter were identified as well
as a nominal input value (see Table 2). The equilibrium potential for
the negative electrode was not considered because it is expressed as a
function of the state of charge (SOC).

A dataset of input–output pairs was generated by sampling 30,000
sets of input parameters uniformly at random within the input ranges
defined in Table 2. The corresponding output values were computed by
querying the P2D-SEI model resulting in a labelled dataset of 23,074
examples, since not all input configurations converged due to the non-
physicality of some of the generated input parameters. The labelled
dataset was then split into a training dataset of 𝑁train = 20,000 exam-
ples and a validation dataset of the remaining 𝑁valid = 3074 examples
reserved for model evaluation. Since both of the target outputs consist
of non-negative values by definition, we transform them by the base 10
logarithm (log) to put them on an unbounded scale and thus simplify
the modelling and avoid non-physical, negative predictions. To enable
direct comparison of the results for each input parameter and to further
simplify modelling, all inputs were normalised to values between zero
and one using the minimum and maximum values given in Table 2
and the outputs were normalised to zero mean and unit variance using
statistics derived from the training data before training the surrogate

model.
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Fig. 3. (a) Simulated voltage profile for interaction and de-intercalation process of Li ion half cell with graphite positive electrode and Li metal negative electrode, and (b) related
SEI layer thickness.
Table 2
List of P2D-SEI model input parameters and their minimum, maximum and nominal values considered in the sensitivity analysis. The values are determined from previous related
works.
𝑑 Parameter Description Minimum Maximum Nominal Unit References

1 i_app Applied current 0.13 6.5 1.3 A [31]
2 rp_pos Particle radius 1 × 10−6 1.1 × 10−5 5.5 × 10−6 μm [12]
3 Eeq_side Equilibrium potential (SEI) 0 0.4 0.4 V [32–35]
4 kappa_film SEI film conductivity 1 × 10−6 2.4 × 10−4 2.4 × 10−4 S/m [32–35]
5 epsl_pos Porosity of positive electrode 0.23 0.4 0.3 – [12]
6 Dl_elect Electrolyte diffusion coefficient 1.5 × 10−10 7.5 × 10−10 3.75 × 10−10 m2/s [12]
7 Ds_pos Diffusion coefficient of Li in positive electrode 1 × 10−14 1 × 10−13 3.6 × 10−14 m2/s [12]
8 i0ref_pos Exchange current density of positive electrode 0.36 3.6 0.96 A/m2 [12]
9 E_min Minimum cut-off voltage 0.0 0.1 0.05 V [36]
10 i0_SEI SEI exchange current density 8 × 10−8 1.5 × 10−6 4.5 × 10−7 A/m2 [33,35,37]
11 csmax_pos Maximum Li concentration 2.9 × 104 3.3 × 104 3.15 × 104 mol/m3 [12]
12 cl_0 Initial electrolyte concentration 1000 1200 1150 mol/m3 [38]
13 t_plus Transference number 0.25 0.43 0.363 – [39]
14 i0ref_metal Li metal exchange current density 50 100 100 A/m2

15 sigma_pos Electronic conductivity 50 100 100 S/m [12]
3.3. Data exploration

Fig. 4 shows a scatter plot of the two outputs of interest: the
SEI thickness and the ICL. It is apparent that an increase in the SEI
thickness entails an increase in the ICL, which fits our hypothesis that
the consumption of Li ions to form the SEI leads to ICL. Interestingly, it
can be observed from Fig. 4 that there are also some high values of ICL
at low values of SEI thickness, indicating that other input parameters
not related to SEI formation can also cause an increase in the ICL. This
is because a reduction in some of the input parameters, such as the
porosity of the electrode, the radius of the active material, diffusivity
of Li ions and maximum concentration of Li ions, also leads to capacity
fade due to other mechanisms such as loss of active materials in
the electrode and loss of active Li ions [40–42]. Such capacity fade
degradation mechanisms, even though not considered in the P2D-SEI
model, can still be observed during the data exploration because of
the variation in the input parameters of the P2D model which are
considered as descriptors for these mechanisms. However, the main
focus of this work is to analyse the impact of these parameters on the
SEI thickness and the corresponding ICL. A full scatter matrix of all the
input and output samples is included in the supplementary material.

3.4. Evaluation of surrogate model

As the surrogate model we applied a sparse GP regression model
from the Pyro probabilistic programming library [43] for Python
(Python 3.9.6, PyTorch 1.9.0, Pyro 1.8.0). As a simpler baseline model
we additionally applied a Bayesian linear regression model with Gaus-
5

sian priors, likewise implemented using Pyro. Both models were trained
with stochastic variational inference (SVI) using the ADAM optimiser
with a learning rate of 0.01.

To ensure the validity of the SA, we evaluated the predictive per-
formance of the surrogate GP regression model on the two targets
of interest and compared it to a Bayesian linear regression model
baseline. Both models were evaluated by fitting the models with the
training dataset and computing the coefficient of determination 𝑅2 on
the validation dataset, which measures the proportion of variation in
the output explained by the model as a score between 0 and 1 where
1 indicates a perfect fit.

The Bayesian linear regression baseline achieved a good fit on
the log SEI thickness with an 𝑅2 = 0.96 indicating a strong linear
relationship between the input parameters and this output. However,
the Bayesian linear regression model achieved a considerably lower
𝑅2 = 0.70 on the log ICL, indicating a poor fit of the data and
consequently the Bayesian linear regression model is not an appropriate
surrogate model for this task. The GP regression model achieved 𝑅2 =
0.99 on the log SEI thickness and an 𝑅2 = 0.98 on the log ICL,
indicating a good fit of the data in both cases. The distribution of the
GP regression model predictions on the validation dataset is presented
in Fig. 5 and a corresponding figure showing the Bayesian linear
regression predictions are included in the supplementary material. The
high predictive performance of the GP regression model indicates that
it is able to capture the dynamics of the original system, which enables
us to consider it as an accurate surrogate model in place of the original
P2D-SEI model in the SA presented in the next sections.

3.5. Global sensitivity analysis

To quantify and compare the sensitivity of each input parameter

overall, the global sensitivities with respect to log SEI thickness and
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Fig. 4. Relationship between the two P2D-SEI model outputs of interest, the SEI thickness and the ICL, computed with different randomly sampled sets of input parameters,
presented on (a) the original scale, and (b) log scale. An increase in the SEI thickness correlate with an increase in the ICL, however, there are also high values of ICL at low
values of SEI thickness.
Fig. 5. Scatter plots of (a) observed and predicted log SEI thickness, and (b) log ICL on the validation dataset using the GP regression surrogate model. In both cases the observed
and predicted values are highly correlated, with 𝑅2 = 0.99 and 𝑅2 = 0.98, respectively.
log ICL were computed using Eq. (15) and the surrogate GP regression
model on the validation dataset (Fig. 6). Based on these results, the
applied current density, the equilibrium potential, the minimum cut-
off potential and the exchange current density were identified as the
most sensitive input parameters to the SEI thickness. The remaining
11 parameters showed little or negligible sensitivity to the log SEI
thickness. Out of these four parameters, two are directly related to the
rate of the formation of the SEI (SEI model-based input parameters);
the equilibrium potential and the exchange current density of SEI.
Based on the Tafel equation, Eq. (8), used to describe the rate of
the SEI formation, a variation in the exchange current density and
the equilibrium potential of the SEI causes a linear and exponential
variation in the SEI thickness respectively and hence the different
degree of sensitivity. The increase in the SEI thickness due to changes in
6

the exchange current density can be related to overcharge of graphite
electrodes for cells with excess cyclable Li-ions owing to either higher
than desired initial mass ratio or lower than expected Li-ions loss during
the formation period [44]. While the other two are related to the
operating conditions of the cell: the applied current density and the
minimum cut-off potential. An increase in the applied current density
exponentially accelerate the increase in the thickness of the SEI owing
to an increase in the rate of SEI formation while the minimum cut-off
potential dictates the amount of Li-ions inserted into the graphite at
a given current density and thus the quantity of Li-ions consumed to
form the SEI.

The global SA conducted on the log ICL identified six input parame-
ters with high average sensitivity and three additional input parameters
showing significant effects. The six parameters were the applied current
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Fig. 6. Normalised global sensitivities computed on the validation dataset for (a) the log SEI thickness, and (b) the log ICL. The analysis identified sensitive and insensitive input
parameters in both instances.
density, the particle radius of the graphite particles, the equilibrium
potential for the SEI growth, the diffusion coefficient for Li-ions in the
solid phase, the exchange current density for the (de-)intercalation of
Li-ions in the graphite and the minimum cut-off potential. Interestingly,
four of the most sensitive input parameters for the SEI thickness was a
subset of those for the ICL. This corresponds well with the observation
from Fig. 4 that there is a strong correlation between the changes
in the SEI thickness and the ICL. Sensitive input parameters such as
the radius of the graphite particles, the porosity of the electrode and
exchange current density for Li-ions (de-)intercalation into the graphite
are related to the Brunauer–Emmett–Teller (BET) specific surface area
of the positive electrode, the solvated Li-ions intercalation, and the
nature of the surface sites for electrolyte decomposition. Based on
previous experimental reports, the BET specific surface area and the
solvated Li-ions intercalation contributes strongly to the ICL [45]. The
nature of the surface of the graphite also plays a significant role in the
extent of the ICL [46].

3.6. Exploration of local sensitivities

Fig. 7 shows local SA of the two most sensitive input parameters
identified in the global SA of log SEI thickness in the previous section.
The local sensitivity analyses were performed using Eq. (14) with
the surrogate GP regression model on the input parameters sampled
along their entire range of variation while keeping all other inputs
fixed at their nominal values (see Table 2). Additionally, the P2D-SEI
model was also evaluated along the range of variation of the input
parameters post-hoc and numerical differentiation (central method)
was used to estimate the local sensitivities. As can be observed in
Fig. 7, the predictions of the surrogate GP regression model and the
P2D-SEI model are well aligned and the majority of the P2D-SEI model
prediction are within the uncertainty of the surrogate GP regression
model predictions. The predictions of the P2D-SEI model appear a little
noisy, resulting in noisy estimates of the derivatives, while the GP
regression model provides a smooth differentiable function.

The applied current density exhibits a nonlinear relationship with
the growth of the SEI and this is highly sensitive at low current
densities. In principle, at low current densities, large amount of Li ions
are consumed to form the SEI due to the amount of time required to
reach a given cut-off potential and the slow kinetics at the surface of
the electrode. However, at high current densities, the kinetic reaction
is very fast and the time required to reach the cut-off potential is less,
thus the growth of the SEI, even-though it is at a fast rate does not
change significantly as observed in Fig. 7(a). As expected based on
Eq. (1), the equilibrium potential for the SEI formation showed a strong
7

linear relationship with the growth of the SEI with a constant sensitivity
along its range of input parameters. However, the sensitivity of the
equilibrium potential for SEI formation was constant at lower values of
the range of input parameters and increased at values between 0.25 and
0.45. This indicates that, even-though there is a linear increase in the
SEI at equilibrium potential for the SEI values below 0.25, the amount
of SEI formed is not sensitive to the ICL, hence the other degradation
mechanisms such as loss of active materials due to the variation in the
volume fraction of the active material is the most sensitive mechanism.
Local SA plots for all input parameters on both targets of interest are
included in the supplementary material.

Fig. 8 shows the interaction of the sensitive inputs along their entire
range of variation while keeping all other inputs fixed at their nominal
values. The sensitivity of the amount of Li ions inserted into the
graphite during charging at a wide range of applied current density on
the performance of the half-cell was studied by conducting simulation
at different end of charge voltage (Fig. 8(a)). In principle the charge
and discharge capacity of the cell is expected to decrease with an
increase in the end of charge voltage because the capacity of the cell
is directly proportional to the amount of available Li ions inserted into
the graphite. However, the proportionality also depends on the amount
of Li ions consumed to form the SEI layer. As presented in Fig. 8 and
Figure S24a, increasing the end of charge voltage resulted in a decrease
in both the SEI layer thickness and the ICL, respectively, at low current
densities. This indicates that, by decreasing the end off charge voltage,
the SOC of the cell increases. This leads to an increase in the amount
of Li ions used in the formation of the SEI resulting in an increase in
the ICL. However, the SOC of the cell is directly proportional to the
discharge capacity, hence in order to simultaneously reduce the internal
resistance of the cell due to the increase in the thickness of the SEI layer
and achieve a maximum discharge capacity, the end of charge voltage
needs to be optimised. Fig. 8(b) presents the ICL as a function of the
graphite particle size at various current densities and the corresponding
SA. The particle size is inversely proportional to the BET surface area
and from previous studies [45,46], an increase in the BET surface area
results in an increase in the ICL due to high electrolyte decomposition
and excessive Li-ions loss to the formation of the SEI at low current
densities. This is inline with the results presented in Fig. 8(b) and Figure
S19 where an increase in the particles size resulted in a decrease in the
ICL and a linear decrease in the SEI thickness respectively. However,
this trend changed as the current density increased, high ICL was
observed at high current densities for both the EOCV and the particle
size and similar for all the other variable input parameters even though
the SEI thickness decreased as expected. This can be attributed to the
fact that at high current densities, the main factor causing capacity loss
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Fig. 7. Local SA of (a) the applied current, and (b) the equilibrium potential of the SEI input parameters along their entire range of variation, while keeping all other inputs fixed
at their nominal values, for the log SEI thickness and log ICL outputs, respectively. The solid lines represent predictions made with the Gaussian process surrogate model with
the shaded area showing two standard deviations of uncertainty. The dashed lines with crosses represent predictions made with the P2D model. The left plots show the predicted
outputs while the right plots show the corresponding local sensitivities. Sensitivities of the GP surrogate model are computed with the derivative method (Eq. (14)) while the
sensitivities of the P2D model are estimated with numerical differentiation (central method).
is the overpotential due to the ohmic resistance. In addition to the effect
of the changes of EOCV on the ICL and SEI thickness, we also observed
an interesting phenomena when other input parameters such as the
exchange current density for the (de-)lithiation and SEI formation, and
the diffusion coefficient of Li-ions in the graphite. The figures of these
fascinating observations are presented in the supplementary material.

3.7. Discussion

In the analysis of local sensitivities in Section 3.6, we presented
sensitivity plots of the most sensitive input parameters along their
entire range of input values while keeping all other inputs at their
nominal values, including sensitivity plots of single input parameters
in one dimension (Fig. 7) and interactions of pairs of inputs in two
dimensions (Fig. 8). However, the predictions and sensitivities also
depend on the values of the remaining inputs because of interactions.
For high dimensional inputs it is not feasible to visualise every possible
combination of input values, so we have to select only a few interesting
input combinations based on domain knowledge or selection criteria
defining a specific objective. A major advantage of performing SA with
a fast surrogate model is that these plots can be generated fast enough
to enable interactive, exploratory SA, where the user can adjust input
parameters and immediately see the predicted results visualised. We
have created such an interactive application for the global and local
SA presented in this work, and made it available online [23]. Screen-
shots of the interactive application are included in the supplementary
material.
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Using a surrogate model with uncertainty estimates, such as the GP
regression model, provides an opportunity to apply an active learning
strategy to generate an informative and diverse training dataset in a
sample efficient manner [47]. This is relevant in applications where
labelling the samples is expensive or time consuming. We experimented
with active learning in our analysis by starting with a small initial
training dataset and extending the dataset in an iterative manner by
adding batches of diverse examples with high predicted uncertainty.
However, we did not observe a significant improvement over random
sampling and therefore we left this out of the analysis in the interest of
simplicity. We believe this was because in our setup we were able to
sample the input space uniformly at random which is already a good
strategy for ensuring sample independence and diversity. However,
applying active learning might be beneficial in applications where
random sampling of the input space is not possible or were generating
a large number of samples is not feasible.

In general, the results of a SA with a surrogate model can depend
strongly on the range of the input values used to sample the training
dataset. Some inputs might have very large effects on the output at
extreme values and thus will be assigned high sensitivity locally and
on average. If these extreme input values are not considered relevant to
the application, they should be removed from the analysis by adjusting
the input range accordingly to avoid drawing wrong or misleading
conclusions. This kind of large edge effects can be identified through
local SA. On the other hand, selecting too narrow input ranges might
fail to capture some important effects and lead to wrong or misleading
conclusions as well. Note that performing SA on a narrower range of
input values can be achieved simply by applying the surrogate model
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Fig. 8. Local SA for the ICL of relevant sensitive input parameters, (a) applied current and minimum cut-off voltage and (b) applied current and graphite particle radius, along
their entire range of variation while keeping all other inputs fixed at their nominal values. The left plots show the predicted log ICL and the right plots shows the corresponding
local sensitivity as a function of the inputs.
on a subset of the data, whereas extending the range of input values
requires sampling of new data to retrain the surrogate model.

Access to local and global sensitivities of the P2D-SEI model opens
up multiple new opportunities in battery research. Knowledge of pa-
rameter sensitives allow building of reduced order models based on
only the relevant inputs leading to possible light weight battery digital
twins. Local sensitives of P2D-SEI model help identify design and
operational parameters for long lasting batteries. Most importantly our
methodology provides the crucial first step towards building reliable
multi-scale battery simulation models with controlled errors propa-
gation from parameter passing between scales. As we obtain clear
understanding of correlation between noise in input parameter and
errors in output, highly accurate multi-scale simulation frameworks
can be built by obtaining important inputs from meticulously done
experiments or high quality lower level simulations.

4. Conclusion

In this work, we have presented a continuum scale model that
couples the P2D model and a degradation model based on the formation
9

of the SEI (the P2D-SEI model) and demonstrated a detailed global
and local SA based on a surrogate GP regression. The analysis centred
around two outputs of interest, namely the SEI thickness and the related
ICL. The SA identified the globally most sensitive input parameters
and provide additional insights about local sensitivities and interactions
among these input parameters. The results can be used to identify
input parameters that need high-fidelity estimates for the overall model
to be accurate. Further exploration of the local sensitivities of the
most sensitive input parameters across their entire range of variation
revealed linear and nonlinear relationships between the relevant inputs
and the outputs, respectively, as well as interactions between the input
parameters at different input values. This provided detailed insights
into the dynamics of the P2D-SEI model. Based on the SA analysis, it
was revealed that, the ICL increases monotonously with an increase
in the SEI thickness at low current rates but not at higher current
rate. In addition other degradation phenomenon such loss of active
materials was discovered during the SA analysis owing the variation
in the descriptor parameters in the P2D model. The SA method applied
in this paper provides a general and scalable approach to global and
local SA that we believe can be applied to a wide range of applications

within the battery research community.



Electrochimica Acta 439 (2023) 141430W.A. Appiah et al.
CRediT authorship contribution statement

Williams Agyei Appiah: Developed the P2D-SEI model and per-
formed physics-based simulations, Discussion and formal analysis of
results, Prepared the first draft. Jonas Busk: Developed and imple-
mented the machine learning and SA framework, Discussion and formal
analysis of results, Prepared the first draft. Tejs Vegge: Discussion
and formal analysis of results, Review & editing, Funding acquisi-
tion. Arghya Bhowmik: Conceptualisation, Supervision, Discussion
and formal analysis of results, Review & editing, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

We made the data and code openly accessible in public repository.

Acknowledgements

The authors acknowledge the European Union’s Horizon 2020 re-
search and innovation program under grant agreement No 957189
(BIG-MAP) and No 957213 (BATTERY2030PLUS).

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.electacta.2022.141430.

References

[1] Julia Amici, Pietro Asinari, Elixabete Ayerbe, Philippe Barboux, Pascale Bayle-
Guillemaud, R Jürgen Behm, Maitane Berecibar, Erik Berg, Arghya Bhowmik,
Silvia Bodoardo, et al., A Roadmap for Transforming Research to Invent the
Batteries of the Future Designed within the European Large Scale Research
Initiative BATTERY 2030+, Adv. Energy Mater. 2102785.

[2] Arghya Bhowmik, Maitane Berecibar, Montse Casas-Cabanas, Gabor Csanyi,
Robert Dominko, Kersti Hermansson, M Rosa Palacin, Helge S Stein, Tejs Vegge,
Implications of the BATTERY 2030+ AI-Assisted Toolkit on Future Low-TRL
Battery Discoveries and Chemistries, Adv. Energy Mater. 2102698.

[3] Teo Lombardo, Marc Duquesnoy, Hassna El-Bouysidy, Fabian Årén, Alfonso
Gallo-Bueno, Peter Bjørn Jørgensen, Arghya Bhowmik, Arnaud Demortière,
Elixabete Ayerbe, Francisco Alcaide, et al., Artificial intelligence applied to
battery research: hype or reality?, Chem. Rev..

[4] Arghya Bhowmik, Ivano E Castelli, Juan Maria Garcia-Lastra, Peter Bjørn
Jørgensen, Ole Winther, Tejs Vegge, A perspective on inverse design of bat-
tery interphases using multi-scale modelling, experiments and generative deep
learning, Energy Storage Mater. 21 (2019) 446–456.

[5] Maximilian Fichtner, Kristina Edström, Elixabete Ayerbe, Maitane Berecibar,
Arghya Bhowmik, Ivano E Castelli, Simon Clark, Robert Dominko, Merve Erakca,
Alejandro A Franco, et al., Rechargeable Batteries of the Future—The State of
the Art from a BATTERY 2030+ Perspective, Adv. Energy Mater. 2102904.

[6] Diddo Diddens, Williams Agyei Appiah, Youssef Mabrouk, Andreas Heuer, Tejs
Vegge, Arghya Bhowmik, Modeling the solid electrolyte interphase: Machine
learning as a game changer? Adv. Mater. Interfaces 9 (8) (2022) 2101734.

[7] Alejandro A Franco, Alexis Rucci, Daniel Brandell, Christine Frayret, Miran
Gaberscek, Piotr Jankowski, Patrik Johansson, Boosting rechargeable batteries
R&D by multiscale modeling: myth or reality? Chem. Rev. 119 (7) (2019)
4569–4627.

[8] Bertrand Iooss, Paul Lemaître, A Review on Global Sensitivity Analysis Methods,
Springer US, Boston, MA, 2015, pp. 101–122.

[9] Alexander P Schmidt, Matthias Bitzer, Árpád W Imre, Lino Guzzella,
Experiment-driven electrochemical modeling and systematic parameterization for
a lithium-ion battery cell, J. Power Sources 195 (15) (2010) 5071–5080.

[10] Habiballah Rahimi-Eichi, Bharat Balagopal, Mo-Yuen Chow, Tae-Jung Yeo,
Sensitivity analysis of lithium-ion battery model to battery parameters, in: IECON
2013-39th Annual Conference of the IEEE Industrial Electronics Society, IEEE,
2013, pp. 6794–6799.
10
[11] Liqiang Zhang, Chao Lyu, Gareth Hinds, Lixin Wang, Weilin Luo, Jun Zheng,
Kehua Ma, Parameter sensitivity analysis of cylindrical LiFePO4 battery per-
formance using multi-physics modeling, J. Electrochem. Soc. 161 (5) (2014)
A762.

[12] Minseok Song, Song-Yul Choe, Parameter sensitivity analysis of a reduced-order
electrochemical-thermal model for heat generation rate of lithium-ion batteries,
Appl. Energy 305 (2022) 117920.

[13] Shi Zhao, David A. Howey, Global sensitivity analysis of battery equivalent cir-
cuit model parameters, in: 2016 IEEE Vehicle Power and Propulsion Conference
(VPPC), IEEE, 2016, pp. 1–4.

[14] Max D. Morris, Factorial sampling plans for preliminary computational
experiments, Technometrics 33 (2) (1991) 161–174.

[15] Nan Lin, Xiangzhong Xie, René Schenkendorf, Ulrike Krewer, Efficient global
sensitivity analysis of 3D multiphysics model for Li-ion batteries, J. Electrochem.
Soc. 165 (7) (2018) A1169.

[16] Géraud Blatman, Bruno Sudret, An adaptive algorithm to build up sparse
polynomial chaos expansions for stochastic finite element analysis, Probab. Eng.
Mech. 25 (2) (2010) 183–197.

[17] Christopher K. Williams, Carl Edward Rasmussen, Gaussian Processes for Machine
Learning, Vol. 2, (3) MIT press Cambridge, MA, 2006.

[18] Joaquin Quiñonero-Candela, Carl Edward Rasmussen, A unifying view of sparse
approximate Gaussian process regression, J. Mach. Learn. Res. 6 (65) (2005)
1939–1959.

[19] Michalis Titsias, Variational learning of inducing variables in sparse Gaussian
processes, in: David van Dyk, Max Welling (Eds.), Proceedings of the Twelth
International Conference on Artificial Intelligence and Statistics, Vol. 5, in:
Proceedings of Machine Learning Research, PMLR, Hilton Clearwater Beach
Resort, Clearwater Beach, Florida USA, 2009, pp. 567–574.

[20] Topi Paananen, Juho Piironen, Michael Riis Andersen, Aki Vehtari, Variable
selection for Gaussian processes via sensitivity analysis of the posterior predictive
distribution, in: The 22nd International Conference on Artificial Intelligence and
Statistics, PMLR, 2019, pp. 1743–1752.

[21] Peter Mondrup Rasmussen, Kristoffer Hougaard Madsen, Torben Ellegaard Lund,
Lars Kai Hansen, Visualization of nonlinear kernel models in neuroimaging by
sensitivity maps, NeuroImage 55 (3) (2011) 1120–1131.

[22] Katalin Blix, Gustau Camps-Valls, Robert Jenssen, Gaussian process sensitivity
analysis for oceanic chlorophyll estimation, IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 10 (4) (2017) 1265–1277.

[23] Interactive sensitivity analysis software: https://github.com/big-map/sa_p2d_sei_
interactive.

[24] Satu Kristiina Heiskanen, Jongjung Kim, Brett L. Lucht, Generation and evolution
of the solid electrolyte interphase of lithium-ion batteries, Joule 3 (10) (2019)
2322–2333.

[25] Marc Doyle, Thomas F. Fuller, John Newman, Modeling of galvanostatic charge
and discharge of the lithium/polymer/insertion cell, J. Electrochem. Soc. 140
(6) (1993) 1526.

[26] Thomas F. Fuller, Marc Doyle, John Newman, Simulation and optimization of
the dual lithium ion insertion cell, J. Electrochem. Soc. 141 (1) (1994) 1.

[27] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, Jef-
frey Mark Siskind, Automatic differentiation in machine learning: a survey, J.
Marchine Learn. Res. 18 (2018) 1–43.

[28] Joongpyo Shim, Kathryn A. Striebel, Effect of electrode density on cycle perfor-
mance and irreversible capacity loss for natural graphite anode in lithium-ion
batteries, J. Power Sources 119 (2003) 934–937.

[29] Seon-Hong Lee, Ho-Gon You, Kyu-Suk Han, Jake Kim, In-Ho Jung, Joo-Han Song,
A new approach to surface properties of solid electrolyte interphase on a graphite
negative electrode, J. Power Sources 247 (2014) 307–313.

[30] Seong Jin An, Jianlin Li, Claus Daniel, Debasish Mohanty, Shrikant Nagpure,
David L Wood III, The state of understanding of the lithium-ion-battery graphite
solid electrolyte interphase (SEI) and its relationship to formation cycling, Carbon
105 (2016) 52–76.

[31] Yverick Rangom, Timothy T. Duignan, X.S. Zhao, Lithium-ion transport behavior
in thin-film graphite electrodes with SEI layers formed at different current
densities, ACS Appl. Mater. Interfaces 13 (36) (2021) 42662–42669.

[32] Williams Agyei Appiah, Joonam Park, Seoungwoo Byun, Myung-Hyun
Ryou, Yong Min Lee, A mathematical model for cyclic aging of spinel
LiMn2O4/graphite lithium-ion cells, J. Electrochem. Soc. 163 (13) (2016) A2757.

[33] Jonas Keil, Andreas Jossen, Electrochemical modeling of linear and nonlinear
aging of lithium-ion cells, J. Electrochem. Soc. 167 (11) (2020) 110535.

[34] Shi-chun Yang, Yang Hua, Dan Qiao, Yu-bo Lian, Yu-wei Pan, Yong-ling He,
A coupled electrochemical-thermal-mechanical degradation modelling approach
for lifetime assessment of lithium-ion batteries, Electrochim. Acta 326 (2019)
134928.

[35] Andrea Lamorgese, Roberto Mauri, Bernardo Tellini, Electrochemical-thermal
P2D aging model of a LiCoO2/graphite cell: Capacity fade simulations, J. Energy
Storage 20 (2018) 289–297.

[36] Mengyun Nie, Dinesh Chalasani, Daniel P Abraham, Yanjing Chen, Arijit Bose,
Brett L Lucht, Lithium ion battery graphite solid electrolyte interphase revealed
by microscopy and spectroscopy, J. Phys. Chem. C 117 (3) (2013) 1257–1267.

https://doi.org/10.1016/j.electacta.2022.141430
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb4
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb4
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb4
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb4
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb4
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb4
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb4
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb6
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb6
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb6
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb6
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb6
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb7
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb7
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb7
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb7
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb7
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb7
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb7
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb8
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb8
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb8
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb9
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb9
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb9
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb9
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb9
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb10
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb10
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb10
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb10
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb10
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb10
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb10
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb11
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb11
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb11
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb11
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb11
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb11
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb11
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb12
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb12
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb12
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb12
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb12
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb13
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb13
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb13
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb13
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb13
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb14
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb14
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb14
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb15
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb15
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb15
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb15
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb15
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb16
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb16
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb16
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb16
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb16
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb17
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb17
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb17
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb18
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb18
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb18
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb18
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb18
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb19
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb19
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb19
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb19
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb19
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb19
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb19
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb19
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb19
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb20
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb20
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb20
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb20
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb20
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb20
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb20
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb21
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb21
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb21
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb21
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb21
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb22
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb22
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb22
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb22
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb22
https://github.com/big-map/sa_p2d_sei_interactive
https://github.com/big-map/sa_p2d_sei_interactive
https://github.com/big-map/sa_p2d_sei_interactive
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb24
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb24
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb24
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb24
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb24
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb25
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb25
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb25
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb25
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb25
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb26
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb26
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb26
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb27
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb27
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb27
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb27
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb27
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb28
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb28
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb28
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb28
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb28
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb29
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb29
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb29
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb29
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb29
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb30
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb30
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb30
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb30
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb30
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb30
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb30
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb31
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb31
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb31
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb31
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb31
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb32
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb32
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb32
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb32
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb32
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb33
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb33
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb33
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb34
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb34
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb34
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb34
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb34
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb34
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb34
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb35
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb35
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb35
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb35
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb35
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb36
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb36
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb36
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb36
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb36


Electrochimica Acta 439 (2023) 141430W.A. Appiah et al.
[37] P Ramadass, Bala Haran, Parthasarathy M Gomadam, Ralph White, Branko N
Popov, Development of first principles capacity fade model for Li-ion cells, J.
Electrochem. Soc. 151 (2) (2004) A196.

[38] Yuki Yamada, Jianhui Wang, Seongjae Ko, Eriko Watanabe, Atsuo Yamada,
Advances and issues in developing salt-concentrated battery electrolytes, Nat.
Energy 4 (4) (2019) 269–280.

[39] Weihan Li, Decheng Cao, Dominik Jöst, Florian Ringbeck, Matthias Kuipers,
Fabian Frie, Dirk Uwe Sauer, Parameter sensitivity analysis of electrochemical
model-based battery management systems for lithium-ion batteries, Appl. Energy
269 (2020) 115104.

[40] Williams Agyei Appiah, Myung-Hyun Ryou, Yong Min Lee, A physics-based
model capacity fade analysis of LiMn2O4/graphite cell at different temperatures,
J. Electrochem. Soc. 166 (3) (2018) A5109.

[41] Kristen A Severson, Peter M Attia, Norman Jin, Nicholas Perkins, Benben
Jiang, Zi Yang, Michael H Chen, Muratahan Aykol, Patrick K Herring, Dimitrios
Fraggedakis, et al., Data-driven prediction of battery cycle life before capacity
degradation, Nat. Energy 4 (5) (2019) 383–391.
11
[42] Williams Agyei Appiah, Joonam Park, Seoungwoo Byun, Youngjoon Roh, Myung-
Hyun Ryou, Yong Min Lee, Time-effective accelerated cyclic aging analysis of
lithium-ion batteries, ChemElectroChem 6 (14) (2019) 3714–3725.

[43] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj
Pradhan, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, Noah D.
Goodman, Pyro: Deep Universal Probabilistic Programming, J. Mach. Learn. Res.
(2018).

[44] Pankaj Arora, Ralph E. White, Marc Doyle, Capacity fade mechanisms and side
reactions in lithium-ion batteries, J. Electrochem. Soc. 145 (10) (1998) 3647.

[45] Martin Winter, Petr Novák, Alain Monnier, Graphites for lithium-ion cells: the
correlation of the first-cycle charge loss with the brunauer-emmett-teller surface
area, J. Electrochem. Soc. 145 (2) (1998) 428.

[46] Karim Zaghib, Gabrielle Nadeau, Kimio Kinoshita, Effect of graphite particle size
on irreversible capacity loss, J. Electrochem. Soc. 147 (6) (2000) 2110.

[47] Burr Settles, Active learning literature survey, 2009.

http://refhub.elsevier.com/S0013-4686(22)01587-0/sb37
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb37
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb37
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb37
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb37
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb38
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb38
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb38
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb38
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb38
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb39
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb39
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb39
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb39
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb39
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb39
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb39
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb40
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb40
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb40
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb40
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb40
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb41
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb41
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb41
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb41
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb41
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb41
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb41
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb42
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb42
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb42
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb42
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb42
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb43
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb43
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb43
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb43
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb43
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb43
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb43
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb44
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb44
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb44
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb45
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb45
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb45
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb45
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb45
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb46
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb46
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb46
http://refhub.elsevier.com/S0013-4686(22)01587-0/sb47

	Sensitivity analysis methodology for battery degradation models
	Introduction
	Methods
	Modelling SEI formation
	Gaussian process regression
	Sensitivity analysis with GP regression

	Results and discussion
	P2D-SEI model predictions
	High throughput simulation
	Data exploration
	Evaluation of surrogate model
	Global sensitivity analysis
	Exploration of local sensitivities
	Discussion

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix A. Supplementary data
	References


