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Abstract

To protect the environment and reduce carbon emissions, renewable power generation
has been growing rapidly during the past decade. Renewable energy resources are some-
times far away from the main grid, leading to expensive grid-connection transmission lines.
Deploying on-site energy storage can smooth the output power and help to reduce the
renewable power spillage and the requirement of transmission line capacity. This paper
presents a method to coordinately size on-site energy storage and grid-connection trans-
mission line for a remote renewable power plant, minimising the total investment cost
subject to the constraint of renewable curtailment risk. Through an optimal operation
model, the renewable curtailment is proven to be a piecewise affine function of capac-
ity parameters and renewable power generation, and a linear programming-based algo-
rithm is proposed to generate an approximate expression. A distributionally robust opti-
misation model is proposed to determine the sizes. The renewable generation uncertainty
is modelled by a Wasserstein-metric-based ambiguity set containing probability distribu-
tions around the empirical distribution constructed from the historical data. The utilisa-
tion rate is ensured in the worst-case distribution. The sizing problem is transformed into
a tractable linear program. The case study demonstrates the effectiveness of the proposed
method.

1 INTRODUCTION

Using renewable energy resources for electricity generation
helps to save fossil energy, reduce carbon dioxide emissions,
and protect the environment [1]. The sharing of renew-
able generation has been increasing rapidly during the past
decades. International Energy Agency (IEA) reports that
from 1990 to 2019 the average annual growth rates of
world photovoltaic (PV) and wind are 36.0% and 22.6%,
respectively [2].

In some countries, renewable energy resources are far away
from the load centre. For an instance, northwestern China
is rich in solar and wind resources while the low population
density there results in low power demand. The electricity
is then transmitted to the eastern load centre [3]. Remote
renewable power plants may arise in this situation. In fact,
they are not rare, especially for large-scale renewable power
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plants. To list a few, Bhadla Solar Park has a total capacity
of 2,245 MW in India, which is located in a sandy, dry, and
almost unliveable area, and the transmission system contains
765 and 400 kV double-circuit line [4]. In China’s northwestern
province Qinghai, Huanghe Hydropower has constructed a 2.2
GW solar plant equipped with storage, which is connected to an
ultra-high voltage power line of 1,587 km [5]. Located in desert
areas in Gansu, China, Jiuquan Wind Power Base is planned
20 GW in total, and a 750 kV AC power line is constructed to
carry the electricity [6]. London Array is an offshore wind farm
in the UK, where 220 km export cabling transmits the power
to Cleve Hill [7]. Therefore, the considered remote renewable
power plants are practical and exist around the world. Since
they are far away from the existing power grid infrastructure,
grid-connection transmission lines should be constructed in
companion with the renewable power plant, causing additional
investments.

2508 wileyonlinelibrary.com/iet-rpg IET Renew. Power Gener. 2022;16:2508–2520.
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The output of PV and wind generation is volatile and uncer-
tain, depending on the real-time weather conditions [8]. The
average power generation is usually much lower than the nom-
inal power. Therefore, the utilisation rate of a transmission line
with the same capacity as the renewable plant is low. The energy
storage system (ESS) can be equipped in the renewable power
plant to smooth the output [9] and thus reduce the capacity of
the transmission line. The benefit is twofold. First, the plant
power becomes partially controllable and the main grid could
face fewer uncertainties [10]; second, considering the long dis-
tance of transmission corridor, the cost of building unit capac-
ity of ESS is typically much lower than that of building unit
capacity of transmission line, so deploying on-site ESS may
save a significant amount of investment. In this regard, the
capacities of the transmission line and ESS should be jointly
optimised.

There are some existing researches about the co-planning of
transmission and energy storage in bulk power systems. The
transmission expansion planning with batteries in a market-
driven power system is investigated in ref. [11], where the
batteries are shown to be beneficial for social welfare and
delaying the construction of transmission lines. The interde-
pendence of transmission and energy storage is studied in ref.
[12] through a theoretical model, which reveals that storage and
transmission can be complements or substitutes under different
conditions such as location and congestion factors. From
the perspective of transmission network incentive regulation,
the impacts of energy storage on transmission planning are
investigated in ref. [13]. A scenario-based method is proposed
in ref. [14] for the coordinated planning of transmission and
ESS against malicious attacks. Considering security constraints
and reliability level, ref. [15] presents a co-planning model,
which is linearised and decomposed to become solvable. A
method is proposed in ref. [16] for the large-scale co-planning
problem of compressed air energy storage and transmission
network.

Energy storage can help to accommodate renewable energy.
Some studies investigate the coordinated planning of transmis-
sion and ESS in power systems with high-penetration renewable
energy. A co-planing model is proposed in ref. [17] considering
the decisions of merchant storage owner, centralised transmis-
sion expansion, and market clearing. A mixed-integer linear
program is established in [18] to plan the size, location, and
time of transmission and ESS investments, where the renewable
generation is modelled by historical data. Batteries and pumped
energy storage are both considered in ref. [19], and the total
cost including investment, operation, and risk of excessive wind
curtailment is minimised. In refs. [20–22], power generation,
transmission network, and energy storage are jointly planned to
facilitate renewable energy accommodation. The method in ref.
[20] also improves the load acceptance level. The uncertainties
of renewable energy and load demand are modelled by repre-
sentatives from clustering in refs. [21, 22], and ref. [22] adopts
a Benders dual decomposition method for problem-solving.
In ref. [23], the co-planning aims at improving the resilience
against extreme weather events, where the forecast load is from

deep learning. The investments of battery energy storages and
thyristor-controlled series compensators are combined with
transmission expansion planning in ref. [24].

The coordinated planning problem has to deal with the
uncertainties of renewable energy. In the literature mentioned
above, stochastic programming (SP) is adopted to handle the
optimisation problems containing uncertainties, in which the
probability distribution of the random variables is assumed to
be known, based on certain types of distributions, scenarios, or
historical data. However, the exact probability distribution is dif-
ficult to procure; the empirical distribution obtained from lim-
ited historical data may be biased, leading to the underestimation
of renewable curtailment rates.

To avoid the impact of inaccurate distribution, robust optimi-
sation (RO) is developed, which considers the worst-case sce-
nario of the random variables. It improves the robustness of
the results against the inaccurate empirical distribution. In ref.
[25], the worst-case scenario of load demand and wind power
is considered in the transmission and energy storage expansion
planning of wind power-integrated power systems, in which the
investment cost, operation cost, and penalty for unserved load
are minimised. In the robust co-planning model of ref. [26],
binary variables are used to indicate the status of energy storage,
and the model is solved by a nested column and constraint algo-
rithm. Bernstein polynomial is adopted in ref. [27] to derive a
continuous-time robust model with a polyhedral uncertainty set
of wind power. However, the worst-case scenario of renewable
energy generation is unlikely to happen due to the low proba-
bility. The trade-off between improving reliability and reducing
conservativeness remains an open problem.

To make a good compromise between SP and RO, distribu-
tionally robust optimisation (DRO) has drawn attention these
years, which considers the worst-case distribution in an ambigu-
ity set of candidate distributions. The distance-based ambiguity
set includes distributions near the empirical distribution, and it
is promising to contain the real distribution if properly selected.
Ref. [28] uses the ambiguity set based on Kullback–Leibler
divergence for the coordinated planning of transmission line
and ESS of a remote PV power plant. However, this kind of
ambiguity set only consists of discrete distributions, which
makes it not suitable for modelling renewable energy gener-
ation. Wasserstein-metric-based ambiguity set also contains
other types of distributions such as continuous distributions,
and it is valid even for a small amount of data. Ref. [29] uses
Wasserstein metric to form the ambiguity set, and gives a
conservative approximation utilising an estimated property of
the renewable energy curtailment, but the impacts of renewable
generation and capacity parameters on the curtailment are not
accurately considered. Ref. [30] follows the same paradigm as
ref. [29] to size energy storage in bulk power systems. Ref.
[31] proposes a method to evaluate the impacts of capacities
on curtailment through multiparametric programming, under
given renewable generation.

There are also studies on the planning of various compo-
nents besides energy storage in power systems. For instances
of power grids, a mixed-integer linear programming approach is
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2510 XIE ET AL.

proposed in ref. [32] to optimally site and size energy storage to
minimise the costs. The power grid is analysed by complex net-
work theory in ref. [33] and based on which the siting and sizing
of energy storage are studied. A planning framework of energy
storage considering frequency constraints is established in ref.
[34]. The allocation of ESS in power grids is addressed in ref.
[35] with a contingency-sensitivity-based heuristic method. In
the case of microgrids, ref. [36] proposed a method to deter-
mine the site and size of diesel generators, solar panels, and
batteries by a two-stage particle swarm optimisation algorithm.
An optimal siting and sizing procedure for ESS in a military-
based microgrid is proposed in ref. [37] based on stochastic pro-
gramming. Ref. [38] focuses on the planning of battery ESS in
hybrid AC/DC microgrids considering post-contingency cor-
rective rescheduling, where stochastic programming and robust
optimisation are used to deal with the uncertainties. For the
planning problem in distribution systems, an algorithm is pro-
posed for planning ESS to control voltage in ref. [39], where
the worst cases are considered to determine the sizes. The plan-
ning problems of distributed generation units, electric vehicle
charging stations, and energy storage systems in a distribution
network are studied in ref. [40] based on second-order conic
programming. Renewable generation and battery storage are
coordinated planned in ref. [41] considering distribution trans-
former constraints.

This paper differs from the existing studies in terms of prob-
lem and methodology. This paper focuses on the capacity plan-
ning problem of energy storage and transmission line for a
remote renewable power plant, intending to optimise the econ-
omy, including maintaining energy curtailment requirements
and minimising total costs. To deal with the uncertainties of
renewable generation and the inaccurate empirical distribution,
distributionally robust optimisation based on the Wasserstein
metric is adopted to form the sizing problem, and it is equiv-
alently transformed into linear programming. The contribution
is twofold.

1) A distributionally robust optimisation model for jointly siz-
ing ESS and transmission line for a remote renewable power
plant, aiming at reducing the transmission capacity so as
to save investment; as a result, the uncertainty faced by
the power grid is also alleviated. Meanwhile, the renewable
curtailment requirement is described via a distributionally
robust risk constraint based on Conditional Value-at-Risk
(CVaR), taking the inexactness of empirical distribution into
account. The proposed model achieves a high utilisation rate
of renewable energy, investment cost saving, and uncertainty
reduction at the same time.

2) A systematic method to solve the distributionally robust
capacity sizing model. The key is to reformulate the dis-
tributionally robust curtailment constraint. To this end, the
operation problem that minimises renewable curtailment is
formulated as a multiparametric linear program with renew-
able generation and capacities being the parameters. A linear-
programming-based procedure is developed to express the
curtailment as an analytical piecewise affine function in the
parameters. Then, the distributionally robust curtailment

FIGURE 1 Energy flow

constraint is transformed into linear constraints through the
property of CVaR. Finally, the distributionally robust capac-
ity sizing problem comes down to a linear program and can
be efficiently solved.

The rest of this paper is organised as follows. The distribu-
tionally robust capacity sizing problem is established in Sec-
tion 2. The solution method is developed in Section 3. Case
studies are presented in Section 4. The conclusion is drawn in
Section 5.

2 MATHEMATICAL FORMULATION

In this section, the operation problem is introduced first; then
the ambiguity set of uncertain renewable power generation is
presented, based on which the curtailment constraint is estab-
lished; finally, the distributionally robust capacity sizing problem
is formulated.

2.1 Operation problem

The considered remote renewable power plant will be equipped
with on-site ESS and connected to the main grid through a
transmission line, where the energy flow is depicted in Figure 1.
In the operation problem, T periods with duration Δt are con-
sidered. The maximum output from the plant in period t is 𝜉t

which is uncertain, and pc
t denotes the curtailment. The power

from generation to storage, from generation to transmission,
and from storage to transmission in period t are denoted by prs

t ,
p

rg
t , and p

sg
t , respectively.

Let xp, xe, and xl denote the ESS power capacity, ESS energy
capacity, and transmission line capacity, respectively. The energy
storage level at the end of period t is et , and the initial storage
level is e0, then the operation problem is cast as

f (x, 𝜉 ) ∶= min
∑

t

pc
tΔt (1a)

s.t.prs
t , p

rg
t , p

sg
t , pc

t ≥ 0, ∀t (1b)

𝜉
g
t = prs

t + p
rg
t + pc

t , ∀t (1c)

p
rg
t + p

sg
t ≤ xl , ∀t (1d)

et = e0 +

t∑
s=1

(
𝜂c prs

s −
p

sg
s

𝜂d

)
Δt , ∀t (1e)
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XIE ET AL. 2511

𝜔lxe ≤ et ≤ 𝜔hxe, eT = e0, ∀t (1f)

prs
t ≤ xp, p

sg
t ≤ xp, ∀t (1g)

prs
t + p

sg
t ≤ xp, ∀t (1h)

where the objective function (1a) is to minimise the total renew-
able energy curtailment; constraint (1b) stipulates the power
flow direction and the non-negativity of variables; constraint
(1c) represents the power balance at the generation side; (1d)
is the capacity constraint of the transmission line; constraints
(1e)–(1h) compose the ESS operation model [42], where 𝜂c and
𝜂d are charging and discharging efficiencies of the ESS, respec-
tively, and Equation (1e) depicts the storage dynamics; 𝜔l and
𝜔h are the lower and upper bounds of the ESS state of charge
(SoC), respectively, and Equation (1f) contains the bounds for
stored energy and equal initial and terminal stored energy for
continuous operation; there are the upper bounds for charging
and discharging power in Equation (1g); Equation (1h) allows
a time period to be divided into a charging subinterval and a
discharging subinterval, and the charging power and discharg-
ing power, if not strictly complement, are still physically imple-
mentable [42]: for example, regard prs

t and p
sg
t as average power

in period t ; charge the ESS with power xp first for prs
t Δt∕xp

time, after that discharge ESS with power xp for p
sg
t Δt∕xp time,

and do not charge or discharge in the remaining time of period
t . So there is no need to charge and discharge the ESS simulta-
neously.

In the operation problem (1), the capacities x ∶= (xp, xe, xl )
and renewable power generation 𝜉 ∶= (𝜉t , ∀t ) are regarded as
parameters, and the decision variables are prs

t , p
rg
t , p

sg
t , pc

t , and
et , ∀t . Therefore, the optimal value of problem (1), the renew-
able energy curtailment, can be viewed as a function of x and 𝜉,
which is denoted by f (x, 𝜉 ).

2.2 Ambiguity set

The renewable energy generation 𝜉 is uncertain. It consists of
T random numbers in [0, Pr], where Pr is the capacity of the
renewable power plant. Let Ξ = {𝜉 ∈ ℝT |0 ≤ 𝜉 ≤ Pr} be the
support set of 𝜉 and (Ξ) the set of distributions ℙ supported
on Ξ such that 𝔼ℙ[‖𝜉‖1] < ∞, where ‖ ⋅ ‖1 is the 1-norm, and
𝔼ℙ[⋅] is the expectation under distribution ℙ.

Assume the real distribution of 𝜉 is ℙ0. ℙ0 is hard to
obtain but we can approximate with limited data available at
hand. Suppose there are N samples of 𝜉 based on the histor-
ical weather data, namely 𝜉n ∶= (𝜉n,t , ∀t ), n = 1, 2, … ,N . The
empirical probability distribution of 𝜉 is

ℙe ∶=
1
N

∑
n

1𝜉n
(2)

where 1𝜉n
denotes the distribution where 𝜉n has probability 1,

so for ℙe each sample is endowed with probability 1∕N .

In general, ℙe ≠ ℙ0, but ℙ0 is typically around ℙe. There-
fore, the ambiguity set considers all possible probability dis-
tributions near ℙe. The distance between two probability
distributions is measured by the 1-norm Wasserstein metric
[43]

dW (ℙ1, ℙ2) ∶= inf∫
Ξ×Ξ

‖𝜉1 − 𝜉2‖1Π(d𝜉1, d𝜉2)

Π is a joint distribution with marginals ℙ1 and ℙ2

(3)

The above definition accounts for both discrete and continuous
distributions. With this definition of distance, the ambiguity set
is

(𝜀) ∶= {ℙ ∈(�)|dW (ℙ,ℙe ) ≤ 𝜀} (4)

The ambiguity set (𝜀) is comprised of all probability distribu-
tionsℙ in (Ξ) whose distance toℙe is no larger than 𝜀, where
𝜀 is a parameter controlling the radius of the ambiguity set.

Remark. The choice of ambiguity sets by decision-makers can
be generally categorised into distance-based, moment-based,
and shape-preserving ambiguity sets [44]. The moment-based
ambiguity set contains the probability distributions whose
moments are in the specified range [45]. However, the moment
information has its limitation and may not be strong enough
to characterise the distribution. Two different distributions
may have the same first- and second-order moments. On the
contrary, the Wasserstein metric between any two different
probability distributions is larger than 0, so it can distinguish
probability distributions well [43]. In shape-preserving models,
the distributions in the ambiguity set have similar structural
properties such as symmetry, unimodality, and convexity, and
sometimes the model is incorporated into a moment-based
ambiguity set [46]. This method uses more information than the
typical moment-based approach but still cannot distinguish all
probability distributions. More importantly, there is no concrete
knowledge about the aforementioned structural properties of
the random multi-period renewable generation as far as we
know. Therefore, we choose distance-based ambiguity sets
because of their advantages over other types of ambiguity sets
for the considered problem.

2.3 Worst-case CVaR constraint of
curtailment

Denote by 𝜆 the acceptable renewable energy curtailment rate.
Then the event of renewable curtailment being acceptable is
represented by the formula f (x, 𝜉 ) ≤ 𝜆

∑
t
𝜉tΔt . It is a random

event due to the uncertain renewable generation 𝜉. A commonly
adopted criterion is the event probability, which leads to a robust
chance constraint

inf
ℙ∈(𝜀)

ℙ[ f (x, 𝜉 ) ≤ 𝜆
∑

t

𝜉tΔt ] ≥ 𝛽 (5)
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2512 XIE ET AL.

where 𝛽 is the minimal acceptable probability; ℙ[⋅] represents
the probability of the event in the bracket under distribution
ℙ. Then constraint (5) means that the probability of acceptable
curtailment is always no smaller than 𝛽 for all the distributions
in (𝜀), including the worst-case distribution.

Constraint (5) can be viewed as a worst-case risk constraint.
In fact, utilising a loss function and the notion of VaR, con-
straint (5) is equivalent to a worst-case VaR constraint. The loss
function is defined by

g(x, 𝜉 ) = f (x, 𝜉 ) − 𝜆
∑

t

𝜉tΔt (6)

which is the difference between the renewable curtailment of
optimal operation and the acceptable energy curtailment. Since
g(x, 𝜉 ) ≤ 0 exactly means f (x, 𝜉 ) ≤ 𝜆

∑
t
𝜉tΔt , constraint (5) is

equivalent to

inf
ℙ∈(𝜀)

ℙ[g(x, 𝜉 ) ≤ 0] ≥ 𝛽 (7)

The 𝛽-VaR of the loss function g(x, 𝜉 ) under distribution ℙ
is defined as

𝛽-VaR(x, ℙ, g) = min{y ∈ ℝ|ℙ[g(x, 𝜉 ) ≤ y] ≥ 𝛽} (8)

which is the smallest threshold y such that g(x, 𝜉 ) ≤ y holds for
probability at least 𝛽. Therefore, ℙ[g(x, 𝜉 ) ≤ 0] ≥ 𝛽 is equiva-
lent to 𝛽-VaR(x, ℙ, g) ≤ 0. Then constraint (7) interprets that
for any distribution ℙ ∈ (𝜀), 𝛽-VaR(x, ℙ, g) ≤ 0, so Equa-
tion (7) is equivalent to

sup
ℙ∈(𝜀)

𝛽-VaR(x, ℙ, g) ≤ 0 (9)

However, VaR leads to nonconvex constraints. CVaR is a
conservative approximation of VaR and is convex [47]. The 𝛽-
CVaR is defined as

𝛽-CVaR(x, ℙ, g) = 𝔼ℙ[g(x, 𝜉 )|g(x, 𝜉 ) ≥ 𝛽-VaR(x, ℙ, g)] (10)

which is the conditional expectation of g(x, 𝜉 ) under the condi-
tion g(x, 𝜉 ) ≥ 𝛽-VaR(x, ℙ, g). Thus

𝛽-CVaR(x, ℙ, g) ≥ 𝛽-VaR(x, ℙ, g)

always holds. The worst-case CVaR constraint of curtailment is

sup
ℙ∈(𝜀)

𝛽-CVaR(x, ℙ, g) ≤ 0 (11)

and according to the analysis above, constraint (11) is a suffi-
cient condition of Equation (5).

Remark. We choose CVaR as the risk measure in the proposed
method due to the following three reasons. First, CVaR is a risk
measure with good properties. It reflects the tail of the distribu-
tion and provides information about the expected loss of bad
cases. It is coherent, transition-equivariant, positively homoge-

neous, convex, and has some monotonic properties, which help
CVaR to become a popular risk measure in finance, engineering,
and many other fields [47]. It is also in line with our desire to
measure the curtailment risk. Second, CVaR can be equivalently
modelled by linear constraints in optimisation problems, which
makes it tractable [47]. Based on this advantage of CVaR, we
develop the linear programming solution strategy for the pro-
posed sizing model, as Section 3 shows. Third, CVaR is closely
related to VaR by the fact that CVaR is the best conservative
convex approximation of VaR [48]. The constraint of VaR is
equivalent to chance constraint, but VaR is not convex and
difficult to deal with. CVaR constraint provides a conservative
model of chance constraint, while it avoids the difficulties.

2.4 Sizing problem

The coordinate capacity sizing problem of ESS and transmis-
sion line for a remote renewable power plant is formulated as

min
x

Cpxp +Cexe +Clxl (12a)

s.t. x = (xp, xe, xl ) ≥ 0 (12b)

sup
ℙ∈(𝜀)

𝛽-CVaR(x, ℙ, g) ≤ 0 (12c)

where the objective (12a) is to minimise the total investment
cost of the ESS and transmission line; Equation (12b) is the
non-negativity constraint of capacities; Equation (12c) is the
curtailment constraint.

The sizing model (12) is a DRO problem with a worst-case
CVaR constraint based on the Wasserstein-metric ambiguity
set. Another dimension of difficulty arises from the definition
of loss function g(x, 𝜉 ); it involves the optimal value function
f (x, 𝜉 ) of linear program (1), whose analytical expression is
not available. The above difficulties prevent problem (12) from
being solved directly.

3 SOLUTION STRATEGY

In this section, the analytical expression of the curtailment func-
tion f (x, 𝜉 ) is analysed by parametric linear programming, an
algorithm is developed to produce an approximation, and then
the sizing problem (12) is transformed into a linear program that
can be efficiently processed by commercial solvers.

3.1 Analytical expression of the curtailment
function

For conciseness, write the linear program (1) in a compact form

f (𝜃) = min
y

cT y

s.t. A1y ≤ b1 + B1𝜃,A2y = b2 + B2𝜃

(13)
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XIE ET AL. 2513

where 𝜃 = (x, 𝜉 ) is the parameter vector; y is the vector of deci-
sion variables including prs

t , p
rg
t , p

sg
t , pc

t and et , ∀t ; A1, A2, b1,
b2, B1, B2, and c are coefficient matrices or vectors. Problem
(13) is a multiparametric linear program with parameter in the
constraint right-hand side [49].

Use Θ to represent the domain of 𝜃, and in the sizing
problem

Θ =
{

(x, 𝜉 )|xp ∈ [0, x̄p], xe ∈ [0, x̄e], xl ∈ [0, x̄l], 𝜉 ∈ Ξ
}
(14)

where x̄p, x̄e, and x̄l are upper bounds of xp, xe, and xl, respec-
tively. In the following, we derive the analytical expression of
function f (𝜃), 𝜃 ∈ Θ.

The dual problem of linear program (13) is

max
𝛾,𝜇

(b1 + B1𝜃)T 𝛾 + (b2 + B2𝜃)T 𝜇

s.t. AT
1 𝛾 + AT

2 𝜇 = c, 𝛾 ≤ 0
(15)

As Equation (13) must have a finite optimal value for 𝜃 ∈ Θ
according to the physical meaning of curtailment, by the dual
theory of linear programming [50], Equation (15) has the same
optimal value as Equation (13). Therefore

f (𝜃) = max (b1 + B1𝜃)T
𝛾 + (b2 + B2𝜃)T

𝜇

s.t. (𝛾, 𝜇) ∈ �

where the dual feasible set

� =
{

(𝛾, 𝜇)|AT
1 𝛾 + AT

2 𝜇 = c, 𝛾 ≤ 0
}

is a polyhedron. The maximum is achieved at some vertex of
Γ because f (𝜃) has finite value. Denote the vertex set of Γ by
V (Γ) = {(𝛾k, 𝜇k ), k = 1, … ,K }, then

f (𝜃) = max
(𝛾k,𝜇k )∈V (�)

(b1 + B1𝜃)T
𝛾k + (b2 + B2𝜃)T

𝜇k

= max
(𝛾k,𝜇k )∈V (�)

(
𝛾T

k
B1 + 𝜇

T
k

B2
)
𝜃 +

(
𝛾T

k
b1 + 𝜇

T
k

b2
)

= max
(𝛾k,𝜇k )∈V (�)

fk(𝜃) (16)

where

fk(𝜃) ∶= (𝛾T
k

B1 + 𝜇
T
k

B2)𝜃 + (𝛾T
k

b1 + 𝜇
T
k

b2)

is an affine function in 𝜃. (16) means that f (𝜃) is the pointwise
maximum of finitely many affine functions. Thus, f (𝜃) is con-
vex and piecewise affine.

The number of constraints in Equation (1) determines the
dimension of dual variable (𝛾, 𝜇). Because of the operation
in multiple periods, the dimension of (𝛾, 𝜇) is inevitably high,
which leads to enormous vertices of Γ. Therefore, it is not prac-

tical to enumerate all the elements in V (Γ). Nevertheless, only a
small fraction of vertices is necessary to generate the piecewise
affine formulation in Equation (16).

3.2 Approximation error

For any subset W ⊂ V (Γ),

f (𝜃) ≥ fW (𝜃) ∶= max
(𝛾k,𝜇k )∈W

fk(𝜃) (17)

where fW (𝜃) is an approximation of f (𝜃) and larger W

incurs more accurate approximation. Because fW (𝜃) is piece-
wise affine, it is more convenient to analyse it in the region
where it is affine. Clearly, such a region consists of points where
a particular piece reaches maximum among all the pieces, that is

ΘW ,k = {𝜃|𝜃 ∈ Θ, fk(𝜃) ≥ fl (𝜃), ∀(𝛾l , 𝜇l ) ∈ W , l ≠ k}

(18)

When 𝜃 ∈ ΘW ,k, the kth piece achieves maximum, and
fW (𝜃) = fk(𝜃). As fk(𝜃) and fl (𝜃) are affine functions, ΘW ,k

is a polyhedron. If we use fW (𝜃) to approximate f (𝜃), the max-
imum error in ΘW ,k can be calculated by

max
𝜃∈ΘW ,k

f (𝜃) − fk(𝜃)

=

⎧⎪⎨⎪⎩
max
𝜃,𝛾,𝜇

v(𝜃, 𝛾, 𝜇)

s.t. 𝜃 ∈ ΘW ,k, (𝛾, 𝜇) ∈ Γ

(19)

where

v(𝜃, 𝛾, 𝜇) ∶=(b1 + B1𝜃)T 𝛾 + (b2 + B2𝜃)T 𝜇

− (𝛾T
k

B1 + 𝜇
T
k

B2)𝜃 − (𝛾T
k

b1 + 𝜇
T
k

b2)
(20)

by the dual problem (15). Although the feasible region of
Equation (19) is polyhedral, the objective is a bilinear function
v(𝜃, 𝛾, 𝜇) containing product terms 𝜃T BT

1 𝛾 and 𝜃T BT
2 𝜇. We

adopt the mountain climbing procedure [51] to solve problem
(19). It alternatively optimises 𝜃 and (𝛾, 𝜇) with the other vari-
ables fixed, so the problems need to be solved are linear pro-
grams, as shown in Algorithm 1.

The initial feasible point 𝜃(0) ∈ ΘW ,k is found by computing
the Chebyshev centre ofΘW ,k, which is the centre of the largest
ball inside the polyhedron [50]. Transform (18) into the form
ΘW ,k = {𝜃|uT

i 𝜃 ≤ wi , ∀i}, where ui and wi are constant vectors.
Then the Chebyshev centre can be found by solving a linear
program [50]

max
r ,𝜃

r

s.t. uT
i 𝜃 + r‖ui‖2 ≤ wi , ∀i

(22)
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2514 XIE ET AL.

ALGORITHM 1 Mountain climbing

Input: Data of problem (19), initial feasible point 𝜃(0) ∈ ΘW ,k, and a
small positive number 𝛿 > 0 for convergence criterion.

Output: A solution (𝜃(i ), 𝛾(i ), 𝜇(i ) ) of problem (19).

1: Initiation: i ← 1.

2: Solve linear program max(𝛾,𝜇)∈Γ v(𝜃(i−1), 𝛾, 𝜇) and find the
optimal solution (𝛾(i ), 𝜇(i ) ).

3: Solve linear program max𝜃∈ΘW ,k
v(𝜃, 𝛾(i ), 𝜇(i ) ) and find the

optimal solution 𝜃(i ).

4: Terminate if

v(𝜃(i ), 𝛾(i ), 𝜇(i ) ) − v(𝜃(i−1), 𝛾(i ), 𝜇(i ) ) ≤ 𝛿 (21)

Otherwise, update i ← i + 1, and turn to Step 2.

ALGORITHM 2 Curtailment function approximation

Input: Data of problem (13), a set Θ0 containing typical values of 𝜃
for initiation, and a small positive number 𝛿 > 0 for
convergence criterion.

Output: An approximation fW (𝜃) for f (𝜃).

1: Initiation: W ← ∅. For every 𝜃k ∈ Θ0, solve problem (15)
with 𝜃 = 𝜃k and find the optimal solution (𝛾k, 𝜇k ). If
(𝛾k, 𝜇k ) ∉ W , update W ← W ∪ {(𝛾k, 𝜇k )}.

2: W ′ ← W . For every (𝛾k, 𝜇k ) ∈ W , find ΘW ,k by
Equation (18). Solve problem (22) and obtain 𝜃(0) ∈ ΘW ,k.
Use Algorithm 1 with the initial feasible point 𝜃(0) to find a
solution of problem (19) and obtain (𝜃∗, 𝛾∗, 𝜇∗ ). If
v(𝜃∗, 𝛾∗, 𝜇∗ ) > 𝛿, solve problem (15) with 𝜃 = 𝜃∗ and find
the optimal solution (𝛾′, 𝜇′ ). If (𝛾′, 𝜇′ ) ∉ W ′, update
W ′ ← W ′ ∪ {(𝛾′, 𝜇′ )}.

3: If W ′ = W , terminate and output fW (𝜃). Otherwise, update
W ← W ′ and turn to Step 2.

where ‖ ⋅ ‖2 represents the 2-norm, and the Chebyshev centre
is the value of 𝜃 in the optimal solution.

3.3 Approximate the curtailment function

Combining the above steps, the algorithm to compute the cur-
tailment function is given in Algorithm 2.

The idea of Algorithm 2 is identifying necessary dual vertices
by solving a series of linear program. Step 1 and 2 guarantee that
fk(𝜃k ) = f (𝜃k ), so ΘW ,k is nonempty for any (𝛾k, 𝜇k ) ∈ W .
In addition, Algorithm 2 always converges because V (Γ) has
finite elements.

3.4 Transforming the sizing problem into a
linear program

The sizing problem (12) cannot be directly solved because of
the worst-case CVaR constraint (12c) or (11). With the help
of CVaR properties, Equation (11) will be transformed into a
worst-case expectation constraint, and it leads to a linear pro-

gram thanks to the curtailment function expression (17) pro-
vided by Algorithm 2.

According to Theorem 1 in ref. [47], 𝛽-CVaR can be deter-
mined from

𝛽-CVaR(x, ℙ, g) = inf
𝛼∈ℝ

{
𝛼 +

1
1 − 𝛽

𝔼ℙ[max{g(x, 𝜉 ) − 𝛼, 0}]

}
(23)

Additionally by the stochastic saddle point theorem [52],
sup

ℙ∈(𝜀) and inf𝛼∈ℝ can be swapped, i.e.

sup
ℙ∈(𝜀)

𝛽-CVaR(x, ℙ, g)

= sup
ℙ∈(𝜀)

inf
𝛼∈ℝ

{
𝛼 +

1
1 − 𝛽

𝔼ℙ[max{g(x, 𝜉 ) − 𝛼, 0}]

}

= inf
𝛼∈ℝ

sup
ℙ∈(𝜀)

{
𝛼 +

1
1 − 𝛽

𝔼ℙ[max{g(x, 𝜉 ) − 𝛼, 0}]

}

= inf
𝛼∈ℝ

{
𝛼 +

1
1 − 𝛽

sup
ℙ∈(𝜀)

𝔼ℙ[max{g(x, 𝜉 ) − 𝛼, 0}]

}
(24)

Hence, the constraint (11) is equivalently transformed into
the following constraint about worst-case expectation.

𝛼 +
1

1 − 𝛽
sup

ℙ∈(𝜀)
𝔼ℙ[max{g(x, 𝜉 ) − 𝛼, 0}] ≤ 0 (25)

By Algorithm 2, f (x, 𝜉 ) is approximated by the maximum of
some affine functions, hence g(x, 𝜉 ) = f (x, 𝜉 ) − 𝜆

∑
t
𝜉tΔt has

the same form, i.e.

g(x, 𝜉 ) = max
k

d T
1,kx + d T

2,k𝜉 + d3,k (26)

for some constant coefficients d1,k, d2,k and d3,k. Then

max{g(x, 𝜉 ) − 𝛼, 0}

= max{max
k

d T
2,k𝜉 + (d T

1,kx + d3,k − 𝛼), 0}
(27)

is the maximum of some affine functions.
Write Ξ into the form Ξ = {𝜉 ∈ ℝT |H 𝜉 ≤ h} for constant

matrix H and vector h. Then according to Corollary 5.1 in ref.
[43], the worst-case expectation sup

ℙ∈(𝜀) 𝔼ℙ[max{g(x, 𝜉 ) −
𝛼, 0}] evaluates to

inf
𝜌,s,𝜎

𝜀𝜌 +
1
N

∑
n

sn (28a)

s.t. 𝜎nk ≥ 0, ∀n, k, 𝜎n0 ≥ 0, ∀n (28b)
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XIE ET AL. 2515

d T
1,kx + d3,k − 𝛼 + d T

2,k𝜉n

+ (h − H𝜉n )
T
𝜎nk ≤ sn, ∀n, k (28c)

(h − H𝜉n )T 𝜎n0 ≤ sn, ∀n (28d)

‖H T 𝜎nk − d2,k‖∞ ≤ 𝜌, ∀n, k (28e)

‖H T 𝜎n0‖∞ ≤ 𝜌, ∀n (28f)

where ‖ ⋅ ‖∞ is the ∞-norm.
By its definition, ‖H T 𝜎nk − d2,k‖∞ ≤ 𝜌 is equivalent to

the joint inequality consisting of H T 𝜎nk − d2,k ≤ 𝜌1T and
−H T 𝜎nk + d2,k ≤ 𝜌1T , where 1T is the T -dimensional vector
of ones. ‖H T 𝜎n0‖∞ can be handled similarly. Combine them
with Equation (25), then the linear program formulation of the
capacity sizing problem (12) is as follows

min
x,𝛼,𝜌,s,𝜎

Cpxp +Cexe +Clxl

s.t. xp, xe, xl ≥ 0

𝛼 +
1

1 − 𝛽

(
𝜀𝜌 +

1
N

∑
n

sn

)
≤ 0

H T 𝜎nk − d2,k ≤ 𝜌1T , ∀n, k

− H T 𝜎nk + d2,k ≤ 𝜌1T , ∀n, k

H T 𝜎n0 ≤ 𝜌1T , −H T 𝜎n0 ≤ 𝜌1T , ∀n

(28b), (28c), (28d)

(29)

Linear program (29) is an approximation of the sizing problem
(12). The optimal sizing strategy offered by Equation (29) guar-
antees the probability of curtailment rate being higher than the
threshold less than 1 − 𝛽 even in the worst-case distribution of
renewable generation.

4 CASE STUDY

4.1 System configurations

A remote PV power plant with an installed capacity of 1 GW
is used to validate the proposed method. The hourly solar
radiation data of one year are obtained from the National Solar
Radiation Database [53], based on which the hourly power
generation is simulated, and shown in Figure 2. Among them
120 days of data are selected for planning by choosing 10 days
in each month. The remaining 245 days make up the test data.
In the benchmark case, T = 24, N = 120, Δt = 1 h, Pr = 1
GW, and 𝜉n,t are from the 120 days of data for planning. The
parameters of ESS are 𝜂c = 𝜂d = 0.95, 𝜔l = 0.1, 𝜔h = 0.9,
Cp = 106 ¥∕MW, and Ce = 1.2 × 106 ¥∕MWh. The parameter
of transmission line is Cl = 2 × 107 ¥∕MW. Other parameters

FIGURE 2 Boxplot of the hourly power generation

are 𝜀 = 0.005, 𝜆 = 5%, and 𝛽 = 0.9. The proposed method is
coded in MATLAB using YALMIP toolbox [54]; optimisation
problems are solved by Gurobi 9.1 [55].

4.2 Curtailment function

The first step of the proposed method is to find the approx-
imate expression of the curtailment function, in which the
independent variables are renewable generation 𝜉 = (𝜉t , ∀t )
and capacity variable x = (xp, xe, xl ). Since the capacity of PV
power generation is 1GW, the range Θ of independent variables
is set by 0 ≤ 𝜉t ≤ 1 GW, ∀t , 0 ≤ xp ≤ 1 GW, 0 ≤ xe ≤ 12
GWh, and 0 ≤ xl ≤ 1 GW. As for the initiation in Algorithm 2,
the 120 days of renewable generation data are used for 𝜉,
and x is initiated by randomly generated values with mean
xp = 0.85GW, xe = 5.4 GWh, and xl = 0.39 GW. Specifically,
evenly generate a value between 0.85–1.15 and multiply it to
the mean value. xp, xe, and xl are generated separately and
independently. These mean values are chosen according to the
results of the traditional optimisation methods explained later.

The 120 initial values of 𝜃 result in 19 distinct vertices in
V (Γ). After six iterations in Algorithm 2 and totally 248s for
computation, we obtain a subset W of V (Γ) consisting of 46
vertices and the approximate expression fW (x, 𝜉 ) which is the
maximum of 46 affine functions.

In order to test the accuracy of fW (x, 𝜉 ), use the 245 days
of renewable generation testing data, and newly generated 245
typical capacity values. Compare the estimated curtailment val-
ues provided by fW (x, 𝜉 ) and the exact curtailment calculated
by solving the operation problem (1). The results are depicted
in Figure 3, which shows that the approximate values are near
the correct results in almost all cases.

The curtailment function has 27 independent variables. By
fixing the value of 𝜉 at a typical day, the curtailment function is
visualised in Figure 4. In Figure 4(a), xl is fixed at 0.39 GW; in
Figure 4(b), xe∕xp = 6 h. The curtailment decreases as xp, xe,
or xl increases.
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2516 XIE ET AL.

FIGURE 3 Accuracy of the curtailment function approximation

FIGURE 4 Visualisations of the curtailment function

4.3 Other sizing models for comparison

Four cases are considered for comparison

- Case 1 (benchmark case): The proposed method.
- Case 2: Stochastic optimisation based on CVaR.
- Case 3: Robust optimisation.
- Case 4: DRO with a Wasserstein-metric ambiguity set consid-

ering only discrete distributions supported on {𝜉n, ∀n}.

The stochastic optimisation model assumes ℙ0 = ℙe and
neglects the inexactness of empirical distribution. The curtail-
ment constraint (12c) in the sizing problem is substituted by
𝛽-CVaR(x, ℙe, g) ≤ 0, which means that the CVaR of curtail-
ment is evaluated with respect to ℙe. Utilising Equation (23),
the model is equivalent to the following linear program.

min Cpxp +Cexe +Clxl

s.t. xp, xe, xl ≥ 0, 𝛼 +
1

N (1 − 𝛽)

∑
n

sn ≤ 0

sn ≥ ∑
t

pc
n,t �t − 𝜆

∑
t

𝜉n,t �t − 𝛼, sn ≥ 0, ∀n

(1b) − (1h), ∀n (30)

In the robust optimisation model, the curtailment rate is
required to be no larger than 𝜆 for any data sample, i.e.
g(x, 𝜉n ) ≤ 0, ∀n, so the equivalent linear program is

min Cpxp +Cexe +Clxl

s.t. xp, xe, xl ≥ 0∑
t

pc
n,tΔt − 𝜆

∑
t

𝜉n,tΔt ≤ 0, ∀n

(1b) − (1h), ∀n

(31)

In the DRO model considering only discrete distributions
supported on {𝜉n, ∀n}, each distribution can be represented by
a vector q = (qn, ∀n) in which qn is the probability of 𝜉n. Then
the ambiguity set is

d (𝜀) =

⎧⎪⎪⎨⎪⎪⎩
ℙ =

∑
n

qn1𝜉n
|
qn ≥ 0, ∀n∑

n

qn = 1

dW (ℙ,ℙe) ≤ 𝜀

⎫⎪⎪⎬⎪⎪⎭
(32)

According to the definitions of d(𝜀) and Wasserstein metric
in Equations (32) and (3), respectively, the worst-case expecta-
tion in Equation (25) with ambiguity set d(𝜀) evaluates to

sup
ℙ∈d(𝜀)

𝔼ℙ[max{g(x, 𝜉 ) − 𝛼, 0}]

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

sup
q,K

∑
n

qn[max{g(x, 𝜉n ) − 𝛼, 0}]

s.t.
∑
m,n

Kmn‖𝜉m − 𝜉n‖1 ≤ 𝜀,
∑

m

qm = 1

Kmn ≥ 0, ∀m, n∑
m

Kmn = 1∕N , ∀n

∑
n

Kmn = qm, qm ≥ 0, ∀m

=

⎧⎪⎪⎨⎪⎪⎩

min
𝜌,𝜈,𝜎,𝜏

𝜀𝜌 +
∑

n

𝜎n

N
+ 𝜏

s.t. 𝜌‖𝜉m − 𝜉n‖1 + 𝜈m + 𝜎n ≥ 0, ∀m, ∀n

𝜌 ≥ 0, −𝜈n + 𝜏 ≥ max{g(x, 𝜉n ) − 𝛼, 0}, ∀n

(33)

where the second equality follows from the strong duality of
linear programming [50].

Therefore, the sizing model in Case 4 is equivalent to the fol-
lowing linear program.

min Cpxp +Cexe +Clxl

s.t. xp, xe, xl ≥ 0
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TABLE 1 Results comparison of different methods

xp xe xl Cost Time

Case [GW] [GWh] [GW] (109 ¥) Test CVaR [s]

1 0.8508 5.4617 0.3956 15.3175 -0.0074 25

2 0.8487 5.3783 0.3935 15.1722 0.0327 3

3 0.8878 5.5408 0.3982 15.5002 -0.0493 3

4 0.8834 5.4336 0.3937 15.2777 0.0050 5

𝛼 +
1

1 − 𝛽

(
𝜀𝜌 +

∑
n

𝜎n

N
+ 𝜏

)
≤ 0, 𝜌 ≥ 0

𝜌‖𝜉m − 𝜉n‖1 + 𝜈m + 𝜎n ≥ 0, ∀m, ∀n

−𝜈n + 𝜏 ≥ ∑
t

pc
n,t �t − 𝜆

∑
t

𝜉n,t �t − 𝛼, ∀n

−𝜈n + 𝜏 ≥ 0, (1b) − (1h), ∀n (34)

4.4 Sizing results and comparison

The sizing results of all the cases are compared in Table 1. To
test the conservative degree, the 𝛽-CVaR of loss function g is
calculated utilising the 245 days of data according to the formula
in Equation (23).

As the results show in Table 1, the test CVaR is smaller than
0 in the benchmark case, validating the effectiveness of the pro-
posed method. In Case 2, the inexactness of the empirical distri-
bution is not considered, so the result is optimistic, reflected by
the positive test CVaR. The result of Case 3 has the highest cost
and lowest CVaR, due to the conservativeness of robust optimi-
sation. However, this result still causes unacceptable curtailment
scenarios in the test data, since the empirical distribution does
not cover all the extreme situations. In fact, if the robust optimi-
sation method is applied to the total 365 days of data, then the
investment cost reaches 15.9769 × 109

¥, which is much higher.
The result of Case 4 is more conservative than Case 2 but more
optimistic than Case 3. This is because ℙe ∈ d(𝜀) ⊂ (𝜀) by
the definitions of ambiguity sets in Equations (4) and (32).
The results of Case 1 and Case 4 are different, which means
d(𝜀) ⊊ (𝜀) and the worst-case distribution of(𝜀) is not con-
tained in d(𝜀). Therefore, the DRO method used in Case 4 has
its limitation since the worst-case distribution is not captured by
Equation (32).

The computation times of solving the four capacity sizing
models are shown in the last column of Table 1. The efficiency
is sufficiently high for a planning problem.

4.5 Parameter sensitivity analysis

The impacts of some parameters are investigated, including the
ambiguity set radius 𝜀, the data amount N , the acceptable prob-
ability 𝛽, the acceptable curtailment rate 𝜆, and the unit capacity
cost Cl of transmission line.

TABLE 2 Results under different 𝜀

xp xe xl Cost Time

𝜺 [GW] [GWh] [GW] (109 ¥) Test CVaR [s]

0.000 0.8487 5.3783 0.3935 15.1722 0.0327 24

0.001 0.8493 5.3876 0.3941 15.1970 0.0241 24

0.002 0.8494 5.4092 0.3942 15.2249 0.0169 24

0.005 0.8508 5.4617 0.3956 15.3175 -0.0074 25

0.010 0.8901 5.5309 0.4004 15.5355 -0.0622 24

TABLE 3 Results under different N

xp xe xl Cost Time

N [GW] [GWh] [GW] (109 ¥) Test CVaR [s]

48 0.8351 5.4058 0.3946 15.2143 0.0192 5

72 0.8348 5.3906 0.3943 15.1901 0.0264 7

96 0.8506 5.4580 0.3954 15.3077 -0.0048 15

120 0.8508 5.4617 0.3956 15.3175 -0.0074 25

TABLE 4 Results under different 𝜆

xp xe xl Cost Time

𝝀 [GW] [GWh] [GW] (109 ¥) 𝜻 [s]

3% 0.8959 5.6158 0.4063 15.7606 0.0023 25

5% 0.8508 5.4617 0.3956 15.3175 0.0064 25

7% 0.8427 5.2923 0.3875 14.9444 0.0125 25

10% 0.8290 5.0934 0.3738 14.4169 0.0235 25

15% 0.7868 4.7760 0.3519 13.5554 0.0480 25

The sizing results under different ambiguity set radius 𝜀 are
presented in Table 2. As 𝜀 increases, the results become more
conservative. The reason is that the ambiguity set gets larger as
a Wasserstein-metric ball centred at ℙe, and worse distributions
are included. In the case of 𝜀 = 0, the ambiguity set degener-
ates to a single distribution {ℙe}, and the proposed sizing model
degenerates to the stochastic programming method in Case 2.
Their results coincide, which again verify that the curtailment
function is accurate.

Table 3 shows the sizing results under different N . The
computation time increases as N becomes larger. In general,
more data make the empirical distribution ℙe closer to the
real distribution ℙ0. When choosing the radius 𝜀, the con-
servative preference and the data amount N should be con-
sidered together. According to Proposition 3 in ref. [56], the
probability of dw(ℙe, ℙ0) ≤ 𝜀, i.e. the event that the ambigu-
ity set contains the real distribution, is no smaller than 1 −
exp(−N 𝜀2∕(2Φ2)), where Φ is the diameter of Ξ, i.e. Φ ∶=
sup{‖𝜉1 − 𝜉2‖1|𝜉1, 𝜉2 ∈ Ξ}. Therefore, to guarantee a confi-
dence level, 𝜀 should be proportional to

√
1∕N and Φ.

The impacts of the acceptable curtailment rate 𝜆 are shown
in Table 4. Since the definitions of loss function g and CVaR
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TABLE 5 Results under different 𝛽

xp xe xl Cost Time

𝜷 [GW] [GWh] [GW] (109 ¥) 𝜿 [s]

0.80 0.4696 5.4360 0.3975 14.9423 0.9224 25

0.84 0.8265 5.3502 0.3915 15.0774 0.9510 24

0.87 0.8346 5.3872 0.3941 15.1813 0.9592 25

0.90 0.8508 5.4617 0.3956 15.3175 0.9796 25

0.93 0.8902 5.5333 0.4006 15.5420 0.9878 26

TABLE 6 Results under different Cl

Cl xp xe xl Cost Time

(107/MW) [GW] [GWh] [GW] (109 ¥) [s]

1.2 0 0 0.8481 10.1771 26

1.4 0.0961 1.0273 0.7520 11.8564 26

1.6 0.1991 2.1274 0.6579 13.2787 25

1.8 0.3741 4.3855 0.4882 14.4236 25

2.0 0.8508 5.4617 0.3956 15.3175 25

depend on 𝜆, here the average curtailment rate 𝜁 in the test
data is used to measure the conservative degree. Larger 𝜆 rep-
resents a lower requirement for curtailment, so the total invest-
ment becomes lower and 𝜁 becomes larger. Because the plan-
ning maintains the acceptable curtailment rate 𝜆 with probabil-
ity at least 𝛽 = 0.90 even under the worst-case distribution, the
average curtailment rate 𝜁 is much lower than 𝜆.

Table 5 presents the results with varying acceptable proba-
bility 𝛽. The definition of CVaR also depends on 𝛽, so 𝜅, the
probability of curtailment rate being acceptable, is chosen to
verify the effectiveness. The total investment cost decreases as
𝛽 decreases, and so does 𝜅. In addition, 𝜅 is always larger than 𝛽,
since the proposed method guarantees 𝛽 for the worst-case dis-
tribution.

The unit capacity cost of the transmission line largely
depends on the length of the transmission corridor. The impacts
of Cl are investigated in Table 6. When the transmission line is
cheap, the optimal solution is to merely build the transmission
line, and in this situation, the required capacity of the transmis-
sion line is still lower than 1 GW. When Cl ≥ 1.4 × 107

¥/MW,
equipping ESS may help to reduce the total investment cost. In
this situation, Cl ∶ Cp ∶ Ce = 14 ∶ 1 ∶ 1.2. If the transmission
line is in the 500 kV voltage level with a unit cost 3 × 106

¥/km,
then its length is about 500 km. A larger Cl leads to a larger ESS
capacity, a smaller transmission line capacity, and a larger total
investment cost.

5 CONCLUSION

This paper focuses on coordinately sizing ESS and transmission
line for a remote renewable power plant. The optimal opera-
tion problem is formulated to minimise the renewable energy

curtailment, which is regarded as a function of the capacity
parameters and the uncertain renewable generation. The cur-
tailment function is proven to be piecewise affine and can be
calculated approximately via solving linear programs. The distri-
butionally robust capacity sizing problem with distributionally
robust curtailment constraint can be approximated by a linear
program, utilising VaR and CVaR as well as the worst-case
expectation under a Wasserstein-metric-based ambiguity set.
Some findings in the case study are summarised.

1) The worst-case distribution in the Wasserstein-metric ambi-
guity set is not a discrete distribution.

2) The radius of the ambiguity set should be chosen according
to data amount and risk preference. A recommended setting
is to choose 𝜀 proportional to

√
1∕N and the diameter of

the support set.
3) The unit capacity cost of the transmission line has an impor-

tant impact on the sizing results. When the transmission line
is longer than 500 km, ESS equipment may help to reduce
the total investment cost.

The model and method can be extended to consider the
power transmission network with linear models since the pro-
posed solution strategy is based on the linear form of the
operation problem. Our future research is aimed at the coor-
dinated renewable generation, transmission, and storage siz-
ing in bulk power systems considering distributionally robust
risk.

NOMENCLATURE

Abbreviations

PV Photovoltaic
ESS Energy storage system

SP Stochastic programming
RO Robust optimisation

DRO Distributionally robust optimisation
SoC State of charge
VaR Value-at-Risk

CVaR Conditional Value-at-Risk

Parameters

T The number of time periods
N The number of data samples
Δt Period length
𝜉n,t Renewable power generation

𝜂c, 𝜂d Charging and discharging efficiencies
𝜔l, 𝜔h The lower and upper bounds of SoC

Pr The capacity of renewable power generation
𝜀 The radius of ambiguity set

Cp The unit power capacity cost of ESS
Ce The unit energy capacity cost of ESS
Cl The unit capacity cost of the transmission line
𝜆 Acceptable curtailment rate
𝛽 Acceptable probability
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Variables

xp The power capacity of ESS
xe The energy capacity of ESS
xl Power capacity of the transmission line

prs
n,t Power from the generation to the storage

p
rg
n,t Power from the generation to the transmission line

p
sg
n,t Power from the storage to the transmission line

pc
n,t Renewable power generation curtailment

en,t Stored energy
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