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ABSTRACT

In radiotherapy the main goal is to kill tumor cells with ionizing radiation, typically high-energy

photons, while sparing the surrounding healthy tissue. The precision of the radiation dose delivery

is crucial for the efficacy of radiotherapy and imaging is utilized for tumor and normal tissue

delineation and for guidance at the moment of treatment, leading to the concept image-guided

radiotherapy (IGRT). The most recent advancement here is the hybrid MRI – linear accelerator

system (MR-linac), which enables high soft-tissue contrast images for adapting the dose plan to

the anatomy-of-the-day.

The MR-linac also makes it feasible to obtain daily advanced MRI which may potentially

be used for revealing functional features of the tumor informative of local radio-sensitivities

in the tumor and predictive of the overall treatment outcome. Utilizing MRI for such purposes

requires high image quality and advanced data processing that involves analysis of multi-contrast

measurements, such as multi-echo T2-weighted measurements, to extract characteristics of the

tumor tissue. A model-based method is most commonly used, but the resulting quantitative maps

are often prone to partial volume effects and may be biased or uninformative if the chosen model

does not properly fit the data. Here, monotonous slope non-negative matrix factorization (msNMF)

is proposed as a novel data-driven method. This extended version of the NMF decomposes

the data under monotony constraints that fit many types of MRI data. A demonstration of the

method showed its ability to extract interpretable components related to the underlying tissue

micro-structure, and applications was also exemplified by estimation of edema water fractions in

spinal cord white matter.

MR-linacs enable longitudinal imaging data series, which requires dedicated handling of the

covarying time-resolved measurements to investigate the tumor dynamics during the course of

fractionated radiotherapy. This work also proposes a prediction framework as a tool to search

for biomarkers using longitudinal MRI data. The framework relies on an initial data-driven

decomposition and includes fitting over time to capture therapy-induced tumor changes that

may be predictive of the outcome. Its feasibility was demonstrated using example datasets and

the msNMF for decomposition, and results indicated a value of early T2-relaxation changes for

predicting tumor response.

Diffusion-weighted imaging (DWI) is an interesting multi-contrast technique due to the

lower diffusivity of many tumor types that is altered when the ionizing radiation induces micro-

structural changes. Unfortunately, standard DWI suffers from geometric distortions, incompatible

with radiotherapy purposes which includes both target delineation and response prediction. To

address this, the current work includes optimization of the single-shot split acquisition for fast

spin-echo (SPLICE) sequence. Contrary to standard diffusion-weighted echo-planar imaging,

the SPLICE sequence is based on a fast spin-echo readout and results in geometrically robust

images, but with a relatively poor voxel shape due to signal modulation during readout. The
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ii Abstract

suggested optimization method maximizes the signal-to-noise ratio (SNR) for a controlled point-

spread-function by varying the refocusing flip angles. A clear SNR gain, which also improved the

accuracy of apparent diffusion coefficient (ADC) estimates, was seen for a healthy subject brain.

In summary, the acquisition and analysis strategies developed during this research project

may provide directions for future radiotherapy studies and can advance the usage of MRI for both

treatment planning and evaluation.



RESUMÉ

I strålebehandling er hovedmålet at dræbe tumorceller med ioniserende stråling (typisk højenergi

fotoner), og samtidigt sikre at det omgivende raske væv ikke påvirkes unødigt. Præcisionen af

dosisplanlægningen er afgørende for effektiviteten af strålebehandlingen, og billeddiagnostik

bruges til at optegne tumor og normalt væv, samt til vejledning under selve behandlingen, hvilket

fører til konceptet image-guided radiotherapy (IGRT). Det seneste fremskridt her er et hybridt

system bestående af en MR-skanner og en lineær accelerator (MR-linac), som kan optage billeder

med høj kontrast i blødt væv med henblik på at adaptere dosisplanen til patientens anatomi på

dagen.

MR-linac systemer gør det også muligt at opnå avancerede MR-skanninger på daglig basis,

som kan anvendes til at måle egenskaber ved tumorvævet, der kan være informative for den lokale

strålefølsomhed i tumoren og muligvis bruges til at forudsige det samlede behandlingsresultat.

Anvendelse af MRI til sådanne formål kræver høj billedkvalitet og avanceret databehandling,

der involverer analyse af multikontrast målinger såsom diffusionsvægtet MRI, til at udtrække

tumorvævets karakteristika. En modelbaseret metode er mest almindeligt anvendt, men de

resulterende kvantitative billeder er ofte begrænsede af det faktum at billedvoxels kan indeholde

information fra flere vævstyper (eng.: partial volume effects) og kan være misvisende, hvis den

valgte model ikke passer tilstrækkeligt til målingerne. Her foreslås monotonous slope non-negative

matrix factorization (msNMF) som en ny, datadrevet metode. Denne udvidelse af standard

NMF dekomponerer data under hensyn til at signalkomponenter og deres afledte skal være

monotone, hvilket er tilfældet for mange typer af MR-målinger. En demonstration af metoden

viste dens evne til at udtrække realistiske og tolkelige komponenter relateret til den underliggende

vævsmikrostruktur og kunne f.eks. bruges til at estimere den relativemængde ødem i hvid substans

i rygmarven.

Under et fraktioneret radioterapiforløb muliggør MR-linacen optagelse af longitudinelle

dataserier, hvilket kræver dedikeret databehandling til håndtering af de tidsopløste, men kovari-

erende målinger for at undersøge tumordynamikken i løbet af behandlingen. I dette projekt

er der udviklet en fremgangmåde til prædiktionsanalyse i den forbindelse, og den foreslås som

et værktøj til at søge efter biomarkører vha. longitudinelle MR-data. Analysen bygger på en

indledende datadrevet dekomposition, og inkluderer et fit henover tid for at identificere terapi-

inducerede tumorændringer, som kan være prædiktive for behandlingsresultatet. Analysemetoden

blev demonstreret i to datasæt, hvor den nyudviklede msNMF blev brugt til dekompositionen.

Resultater indikerede at tidlige T2-relaksationsændringer kan være prædiktive for tumorresponset.

Diffusionsvægtet MRI er en interessant multi-kontrast teknik fordi der er en lav diffu-

sivitet i mange tumortyper, og denne diffusivitet ændres, når den ioniserende stråling inducerer

mikrostrukturelle ændringer. Desværre kan billeder fra standard diffusionsvægtet MRI (udlæst

med echo planar imaging) være udsat for geometrisk forvrængning, hvilket gør dem uegnede til

iii
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formål indenfor strålebehandling, der omfatter præcis tumoroptegning og evaluering af respons.

For at adressere denne problematik, blev der i projektet optimeret en enkelt-excitation split-ekko

sekvens egnet til diffusionvægtet MRI (SPLICE). SPLICE sekvensen er baseret på en hurtig spin-

ekko udlæsning og resulterer i geometrisk robuste billeder. Dog kan signal-modulation under

udlæsningen af data medføre at SPLICE billederne fremstår slørede. Den foreslåede optimer-

ingsmetode maksimerer signal-støj-forholdet (SNR) for en kontrolleret punktspredningsfunktion

ved at variere refokuseringsvinklerne i ekkotoget, og forbedrer derved billedkvaliteten. En test-

skanning af en rask hjerne viste tydelige SNR forbedringer, hvilket medførte en mere nøjagtig

bestemmelse af diffusionskoefficienter.

Sammenfattende kan optage- og analysestrategierne udviklet i løbet af dette forskningsprojekt

forsyne fremtidige strålebehandlingsstudier med retningslinjer og værktøjer, der kan forbedre og

udvikle brugen af MRI til både terapiplanlægning og -evaluering.
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INTRODUCTION 1

Radiation therapy is a standard of care for treating malignancies, and the primary goal is to

irradiate and eliminate tumor cells while minimizing healthy tissue toxicity. In modern external

beam radiotherapy, this is achieved through advanced computer-based treatment planning which

allows highly conformal radiation dose distributions calculated directly on a 3D CT scan of the

patient. In the treatment phase, computed tomography (CT) based imaging systems integrated

into the linear accelerator (linac) are used to verify patient positioning and do adjustments if

required, prior to delivery of the beam. This is known as image-guided radiotherapy (IGRT) [1, 2].

A potentially important improvement in IGRT has been introduced with MR-linacs, hybrid

magnetic resonance imaging – linear accelerator systems [3, 4]. Magnetic resonance imaging

(MRI) not only delivers anatomical images with high soft-tissue contrast for localization of

tumor and adjacent organs, but also includes advanced multi-contrast imaging techniques for

assessment of functional and micro-structural characteristics of the tissue. Increased knowledge

of the heterogeneous tumor biology supports the concept of biological target volumes [5] which

accounts for variation in radiation sensitivity across the tumor. This information can potentially

be used in the treatment planning phase, for biologically-guided dose escalation to tumor sub-

regions, using standard MR scanners, and for daily biological adaptation in the treatment phase,

using MR-linacs [5]. Additionally, revealing tissue characteristics non-invasively increases the

possibility to find prognostic and predictive biomarkers. The gross tumor volume change, which is

the current standard of radiotherapy response evaluation [6], happens at a much longer timescale

(weeks or months) than the cellular reaction to ionizing radiation which occurs already within

minutes/hours [7]. An early prediction of a tumor’s response to therapy increases the chance to

timely adjust the therapy plan and also to avoid unnecessary irradiation. MRI-guided radiotherapy

is therefore considered important in the development of personalized oncology [8, 9].

Ionizing radiation from radiotherapy induces cell death lowering the cell density of the

irradiated region[10]. As this alters the local microscopic water mobility, diffusion-weighted

imaging (DWI) is considered a candidate for probing tumor micro-structure changes that correlate

with the radiation response. Many investigators have studied DWI-derived parameters for their

potential as biomarkers of outcome [9, 11]. Although several of them showed some capacity to

stratify tumor response, some findings are contradictory [12]. Challenges that potentially cause

the ambiguous results are related to both data analysis and data quality, which are compromised

for diffusion-weighted measurements compared to anatomical MRI. Low signal-to-noise ratio

(SNR) data in combination with geometrical distortion are typically encountered. Moreover,

model-based analysis which typically constitutes standard DWI processing, may result in biased

or misleading estimates to characterize the diffusion in a voxel, and robust quantification can be

difficult.

Apart from DWI, many other MRI techniques may provide useful information about the

tumor biology and structure, including measurements of perfusion, relaxation, metabolism, and

1



2 Chapter 1. Introduction

hypoxia [13]. As for DWI processing, the analysis strategies most often consist of fitting the

multi-contrast MRI measurements to a predefined model [14, 15]. Some models contain multiple

parameters in the attempt to reproduce the measured signal in a voxel more accurately, but the

demand for high data quality increases with the model complexity [16], and in any case, the

sensitivity to noise and model imperfections is inevitable. Thus, there is reason to challenge

model-based strategies for analyzing MRI measurements and explore data-driven methods as an

alternative for discovering relevant tissue features.

The clinical introduction of MR-linacs paves the way for a large increase in the number of

longitudinal MRI studies with frequent or even daily measurements during the course of therapy.

Therefore, another aspect of analyses strategies for multi-contrast MRI is the handling of multiple

time-resolved measurements. Among the few current longitudinal MRI tumor studies, most of

them treat each measurement independently in their analysis and ignore the potentially interest-

ing temporal variation and trend of the dynamic tumor biology. There is thus a need for new

strategies to analyze time-resolved MRI data that utilizes the covariance between measurements.

Preferably, an analysis framework should be applicable for a broad range of MRI parameters since

the search for strong imaging biomarkers for radiotherapy purposes is still ongoing.

The applicability of DWI, and of MRI in general, for delineation and mapping of tumor

heterogeneity depends on the image quality; a high resolution and the best possible SNR is desired

given the fast imaging technique required to avoid effects of movement. Additionally, artifacts

should be minimized, especially those compromising the geometrical precision of the images. A

flawed geometry can be detrimental, especially in conformal radiotherapy [17]. Inconveniently,

diffusion-weighted MRI scans are commonly obtained with echo planar imaging (EPI), a sequence

that is prone to susceptibility artifacts manifesting as geometrical distortions [18]. Among

alternatives, rapid acquisition with relaxation enhancement (RARE) sequences also exist for DWI.

This is a fast imaging technique which is less prone to the mentioned type of artifact. However,

RARE images are typically blurred due to signal modulation from T2-weighted relaxation during

readout. If the image quality, in terms of SNR and voxel-shape, of a RARE-based diffusion-weighted

sequence could be improved, it may become a relevant replacement for standard EPI-based DWI.

1.1 objectives

Overall, MRI-guided radiotherapy is under development. Especially, the utilization of biological

information from functional MRI techniques need to be explored as it holds potential for higher

degree of individualized radiotherapy for patients. This project is focused at both data acquisition

and analysis, and specifically the thesis describes:

1. how to decompose multi-contrast MRI data for tissue characterization

2. how to analyze longitudinal MRI data and utilize the dynamic tumor information for

prediction of outcome
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3. how to optimize diffusion-weighted data acquisition such that images are improved for

radiotherapy purposes

1.2 thesis overview

The dissertation first provides background knowledge of topics relevant to the research. This

includes a section on radiotherapy, a section on diffusion-weighted MRI and a section on data

analysis, given in Chapter 2. The description of radiotherapy is focused on the current standard

methodologies and on on-going developments. The description of diffusion-weightedMRI includes

details on sequence designs, simulation tools, and data processing. The description of data analysis

contains a brief review of model-based analysis, data-driven analysis and supervised learning, and

highlights methods utilized during the project. The following three chapters present the three sub-

projects allocated to each of the above-mentioned objectives, respectively. Each of the chapters is

based on a manuscript (placed in Appendix) that should be read in connection with the chapter,

and each is divided into two sections: an introduction to the specific study, which describes the

rationale, and a brief assessment of themethods and findings reported in themanuscript. Although

only one of the manuscripts has been published to date, the three manuscripts are throughout the

dissertation referred to as Paper I, Paper II, and Paper III, respectively. Subsequently, a discussion

of the clinical perspectives and possible implications for future radiotherapy studies, is given in

Chapter 6. There is a focus on how the three initiatives presented in Chapter 3-5 can influence

and guide the data acquisition and analysis of new studies for improved MRI-guided radiotherapy.

Lastly, Chapter 7 provides a summary conclusion and an outlook.





BACKGROUND 2

2.1 radiotherapy

The use of radiation therapy for treating cancer patients was initiated in 1951, and today it is

a cornerstone of modern cancer therapy, functioning both as curative and palliative treatment.

Standard external beam radiotherapy consists of irradiation with high energy X-rays (in the order

of MeV) which inflicts both ionization of the DNA molecules directly and through oxidative

stress, which can result in cell death [1]. External beam radiation therapy is delivered by a linear

particle accelerator (linac), constructed to allow irradiation of the target from many angles for

high degree of dose conformity.

A main challenge in radiotherapy is to deliver a sufficient radiation dose to obtain tumor con-

trol while sparing surrounding critical organs. The therapeutic window describes the separation

between the probability of tumor control and compromising normal tissue for a given dose [19].

Obviously, it is desired to increase this window as much as possible, and fractionated therapy

regimes are used for this. By doing so, radiobiological differences between the tumor and normal

tissue are exploited. In brief, the elevated proliferation (fast mitotic cycle) of tumor cells compared

to normal cells renders tumor cells more sensitive to ionising radiation. Delivering the full dose

in fractions gives time for normal tissue to repair in the interval between the fractionated doses,

while tumor tissue suffers more damage [1, 7]. The radiation dose and fractionation scheme

depend on tumor type, location etc, but typically radiation is delivered in daily fractions of 2-3 Gy,

as this is considered a reasonable compromise between sparing of normal tissue and tumor control,

within a feasible overall treatment period (2-5 weeks).

Overall, the radiotherapy workflow consists of two phases, the planning phase and the

treatment delivery phase. In the preparation phase, the patient is immobilized and CT scanned,

covering the relevant anatomy. Relevant anatomical structures are delineated on the CT scan and

the radiation dose distribution is calculated. In the delivery phase, the patient is prepared using

the immobilization devices and scanned to verify the position before irradiation.

Both intensity-modulated radiotherapy (IMRT) and image-guided radiotherapy (IGRT) are

important technical developments to enable precision radiotherapy [20]. IMRT is a conformal

radiotherapy technique, meaning that the dose fall-off is very steep between the target and the

surrounding tissue. This is possible with a multileaf collimator which is part of modern linacs. A

multileaf collimator consists of a dynamic grid typically made of tungsten leaves which regulate

and form the beam intensity at multiple discrete gantry angles or continuously while the gantry

moves around the patient. The beam delivery is computer controlled and programmed according

to an inverse planning algorithm. In inverse planning, an optimization algorithm calculates

the best possible dose plan according to a list of desired dose prescriptions for the target tissue

structures, and dose constraints for organs at risk. [21].

5
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While IMRT facilitates a conformal dose distribution, IGRT minimizes the uncertainties of

the radiation delivery and allows for reducion of planning margins and potentially an increase

of tumor dosage. In modern radiotherapy, IGRT is used for daily online patient alignment in

the treatment room to match the position of the target and organs at risk as closely as possible

to the reference treatment plan created before start of the treatment course. Modern linacs are

combined with an X-ray based imaging system, most commonly a cone beam CT (CBCT), which

helps in positioning the patient and in detection of anatomical changes from planning scans.

CBCT contrast relies on electron density differences and visualises lesions nicely in the lung,

for example, but lacks soft-tissue contrast in most other sites where electron density differences

are smaller [22]. CBCT also has the potential to be used for an online adaptive workflow where

the dose plan is reoptimized for the current anatomy and tumor position, a concept known

as adaptive radiotherapy [23]. A recent and arguable the most promising development in the

context of adaptive radiotherapy is the development of a linac combined with an MRI system

(MR-linac) [3, 4]. With MR-linacs, it is possible to obtain images with much greater soft-tissue

contrast compared to cone beam CT, to visualize the anatomy-of-the-day [24]. Additionally,

scanning during treatment delivery makes it possible to monitor the anatomy during delivery for

surveillance and gated irradiation. The implementation of MR-linacs has also made it logistically

feasible to obtain multiple MRI scans for advanced evaluation of the therapy (without prolonging

the treatment time and inconvenience for the patient) [19].

In the planning phase, advanced imaging, including CT, MRI, and positron emission tomogra-

phy (PET), can be used for accurate target delineation. With the possibility to deliver conformal

and non-uniform dose patterns (via IMRT), it becomes even more important to obtain the exact

location of the tumor and surrounding organs. Currently, target delineation implies defining

the gross tumor volume, which is the area of known tumor infiltration. From here, margins are

added to cover areas of microscopic disease (clinical target volume) and to account for delivery

uncertainties (planning target volume) [25]. However, on-going research attempts to utilize knowl-

edge of the tumor heterogeneity obtained from biological or functional imaging techniques to

define a biological target volume and guide a more advanced dose distribution [5]. The aim is

to identify sub-volumes of the tumor with different radio-sensitivities or resistances and then

prescribe a non-uniform dose distribution according to this (known as dose painting) to obtain

higher treatment efficacy [26]. Several imaging techniques may have a role in biological target

volume delineation, though no single imaging modality can reflect all underlying mechanisms

of radio-resistance. It is an area of on-going research, and examples of techniques which may

be relevant are: fluorodeoxyglucose (FDG-)PET that reveals metabolic activity and hypoxia re-

sponse, dynamic contrast enhanced (DCE-)MRI that reflects tumor permeability and perfusion,

and diffusion-weighted MRI that measures local water mobility [20, 27].

2.2 diffusion-weighted magnetic resonance imaging

Diffusion-weighted MRI (DWI) was introduced in 1985 [28], and is basically an imaging technique

with an increased sensitivity to the Brownian motion of water molecules, which is diffusion.
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Einstein described this stochastic, thermal motion of particles by the Einstein equation [29],

r =
p

2 ·D · t , where r is the 1D root mean squared displacement, t is the time for movement, and

D is the diffusion coefficient of a homogeneous medium.

Considering transversal magnetization, the random movement of water molecules in in-

homogeneous fields affects the phase dispersion and thus the attenuation of the proton MRI

signal. While the Einstein equation describes the free, unrestricted displacement of molecules,

the movement of water in the tissue is affected by the micro-structure and e.g. restricted by

cell-membranes. The degree of signal loss caused by water movement can therefore be revealing

of the underlying tissue structure, which makes diffusion-weighted MRI interesting.

2.2.1 Diffusion-weighted sequences

An MRI sequence becomes sensitive to diffusion by introduction of a diffusion-weighting gradient

pulse pair consisting of two strong gradient lobes with the same net magnitude area. In spin-echo

sequences the two gradient lobes are identical, but placed before and after a refocusing RF pulse,

respectively. In gradient echo sequences, the two lobes have opposite sign but are otherwise

identical [30]. The delay between the gradient pair leaves time for water movement, and only

static spins experiencing both gradients in the same position will be fully rephased to create the

strongest possible echo. This means that when water molecules diffuse to other areas, the total

signal, S, is decreased, as illustrated in Figure 2.1 and expressed by Equation 2.1 derived by Stejskal

and Tanner [31]. S0 is the signal when no diffusion-encoding is present. As the equation reveals,

the signal attenuation due to diffusion depends on D , the diffusion coefficient of the medium, and

properties of the diffusion-weighting gradients given by the so-called b-value (b) [18].

S = S0 ·e−b·D
(2.1)

The b-value depends on the diffusion-weighting gradient’s waveform. Typically, a rectangular

gradient pair (trapezoidal lobes with negligible ramp-up time) is used, and in such case, the

b-value is given by the following expression:

b = (γ ·G ·δ)2 · (∆−δ/3) (2.2)

As Figure 2.1 also indicates, G is the gradient strength, δ is the duration of the gradient, and ∆ is

the time between the two diffusion-weighting gradients, i.e. the time over which the sequence is

diffusion sensitive (diffusion time). The expression in the last parenthesis is the so-called effective

diffusion time, which also accounts for diffusion taking place from the moment the gradient pulse

is applied and phase-accumulation is initiated. The expression in the first parenthesis is also

known as q, and essentially being the area of the diffusion gradient (ignoring the gyromagnetic

constant, γ), this factor defines the spin displacement resolution [32]. By measuring the signal at

several gradient configurations, i.e. different b-values, information about the diffusion and thus

the tissue structure can be revealed.
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Figure 2.1: Excitation followed by diffusion-weighting gradients (gray blocks) and the effect

on “spins” (blue arrows) for a case with and without diffusion. The first gradient lobe creates a

dispersion of the spins (dephasing). The 180
◦
pulse between the gradients inverts the dispersion

created by the second gradient, and static spins will return to being in phase (refocus). However,

when diffusion is present, the movement of spins causes a phase dispersion, which cannot be

completely rephased by the second gradient. The result is a reduced echo compared to static

conditions. Variables controlling the degree of diffusion-weighting are specified: the gradient

strength (G), the gradient duration (δ), and the time delay between gradients (∆). The figure is

inspired by Patterson et al. [33]

As with all other gradients, diffusion-weighting gradients can be applied along all/each of

the three physical directions, x, y and z, in the laboratory frame of reference. The direction of

the resulting gradient vector field determines the direction of diffusion that the signal will be

sensitive to. This means that the diffusion-weighted signal varies with the spatial orientation

of the patient. In a DWI sequence, the diffusion-weighted signal is typically obtained for three

orthogonal directions, and the geometric mean of these is calculated, leaving one image which is

independent of orientation [18].

The diffusion-weighted echo-planar imaging sequence

A diffusion-weighted sequence can be divided into a diffusion-preparation module, containing the

diffusion-endocing gradients, and a readout module for the image acquisition. In standard DWI,

an echo-planar imaging (EPI) sequence is used as readout module [34]. In this sequence, the full

k-space is traversed after a single excitation (single-shot EPI) or a few excitations (multi-shot

EPI). Gradients in the phase-encoding (PE) and frequency-encoding (FE) directions are designed

to create a specific sampling pattern covering the k-space. Figure 2.2 shows such a typical DWI

sequence: a spin-echo diffusion-preparation module followed by a single-shot EPI with a Cartesian
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Figure 2.2: Schematic presentation of the DW-EPI sequence. The gray blocks are diffusion-

encoding gradients, the light blue blocks are slice-selective (SS) gradients, and the dark blue blocks

are the imaging gradients in the phase-encoding (PE) and frequency-encoding (FE) direction. The

sampling trajectory for these gradients is shown in k-space.

sampling pattern. The advantage of using a single-shot EPI sequence for diffusion-weighted

imaging is the rapid traversal through k-space (high acquisition speed), which is necessary to

minimize the sensitivity to (intra-shot) bulk motion. On the other hand, a range of artifacts

accompany the usage of single-shot EPI. One is Nyquist ghosting, which may originate from

several sources of system imperfections or physical phenomenons causing signal modulation

or displacement of k-space data, such as eddy currents. Another is image distortions and signal

loss from off-resonance effects, e.g. magnetic susceptibility variations. The high sensitivity to

this is associated with the relatively long readout period after each excitation, leaving room

for accumulation of phase errors for off-resonance spins [18]. The effects of signal loss and

geometrical distortions are prominent at areas with large susceptibility variations. For some

imaging purposes this is not a big problem, but for applications within radiotherapy for example

(including target delineation), it is highly problematic if the geometry is not trustworthy [35]. EPI

is not the only type of fast imaging technique which can be used for DWI, and DWI sequences

introduced to the clinic also include fast spin-echo (FSE) also known as a rapid-acquisition with

relaxation enhancement (RARE) sequences. However, combining diffusion-weighted gradients

with a RARE readout module poses difficulties. The following sections describe the RARE sequence

and how to use it for DWI.

The RARE sequence and CPMG conditions

In an FSE or RARE sequence a single excitation pulse is followed by a set of refocusing radio-

frequency (RF) pulses to produce a train of echoes [36]. Each RF pulse will create an echo which

is distinctively spatially encoded, such that multiple or all lines of k-space can be sampled for

one excitation. The number of refocusing RF pulses is known as the echo train length (ETL), and

this parameter controls the scan-time reduction compared to a conventional spin-echo sequence,

where only one k-space line is sampled per excitation.
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As in conventional spin-echo sequences, the flip angle of the RF pulses should be 180
◦
to

maximize the spin-echo signal. However, in reality B1-field inhomogeneity and slice-profile

imperfections will result in flip angle deviations from 180
◦
, at least for part of the image volume.

Furthermore, there may be advantages to intentionally reducing the flip angle from 180
◦
. One

aspect is the RF power deposition indicated by the specific absorption rate (SAR) which is

necessary to take into account when using a large ETL. Another aspect is SNR-optimal acquisition

weighting, a concept of controlling the flip angles for a desired signal weighting during k-space

readout. This means that the RARE sequence in general consists of a set of refocusing RF pulses

with a flip angle <180◦. In any case, full refocusing will never be obtained due to the mentioned

scanner imperfections, and instead an RF pulse can be considered as having three different effects

on the magnetization: a 180
◦
-effect that refocus transverse magnetization, a 90

◦
-effect that tip

magnetization into an orthogonal direction, and a 0
◦
-effect that leave magnetization unaffected.

The size of each effect or magnetization “component” depends on the actual flip angle. For a

repeated set of RF pulses, as in multi-echo pulse experiments such as RARE, many magnetization

components, also referred to as coherence pathways, are created. When the phase dispersion of a

coherence pathway crosses zero an echo appears (more details on this are given in subsection

2.2.3). However, the general phase inconsistency between the different coherence pathways can

result in signal cancellation. To obtain a high signal and avoid destructive interference of echoes, a

set of conditions is used to ensure that echoes with the same phase coincide at desired time-points

and that the rest of the echoes are eliminated [18, 37].

These conditions are called Carr-Purcell-Meiboom-Gill (CPMG) conditions, and consist of

specific timing and phase relations for the RF pulse train [38–40]. First of all, the refocusing pulses

must be 90
◦
out of phase with respect to the excitation pulse. Secondly, the spacing between

consecutive refocusing pulses must be the same throughout the train, and this must be twice

the interval between the excitation pulse and the first refocusing pulse. These relations can be

written as: [90
◦
x - τ - θy - 2τ - θy - 2τ - . . . ] where τ is the time interval, θ is the refocusing flip

angle between 0-180
◦
and subscripts specify along which axis the pulse is given in the rotating

frame of reference. Lastly, the phase accumulation of a spin must be the same between any

two consecutive RF pulses. This condition is satisfied using crusher gradient pairs of same area

and phase-rewinding gradients prior to the next RF pulse. When the mentioned conditions are

met, the primary spin-echoes and stimulated echoes will both occur exactly at the midpoint

between two RF pulses, while the free induction decays (FIDs) and secondary spin-echoes will be

eliminated [18]. Figure 2.3 shows a schematic presentation of a RARE pulse sequence with the

mentioned CPMG conditions satisfied, though crusher gradients are left out for simplicity.

Combining a RARE readout with a diffusion-preparation module, however, is not trivial. The

strong diffusion-encoding gradient pair creates a high sensitivity to any motion (including bulk

motion), which means that minimal unavoidable movement will create a random phase of the

different coherence pathways, and the CPMG conditions are no longer obeyed. This means that

the echoes may sometimes interfere destructively and other times constructively creating severe

artifacts. Strategies have been developed to handle this problem amongwhich a relevant technique
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Figure 2.3: Schematic presentation of a RARE sequence. The light blue blocks are the slice-

selective gradients, and the dark blue blocks are imaging gradients in the PE and FE direction.

The timing and phase relations required to satisfy the CPMG conditions are indicated. The

corresponding k-space is shown to the right. Crusher gradients are left out for a simplistic

representation, but phase-rewinder gradients can be seen in the PE direction prior to each RF

pulse.

is the split acquisition of fast spin-echo signals for diffusion imaging (SPLICE) sequence [41].

2.2.2 The SPLICE sequence

The SPLICE sequence [42] is adapted to handle the problem of random phase of the different

coherence pathways generated by a RARE module. It includes a “split-echo” design consisting of

a prolonged/imbalanced readout gradient which creates a separation of the signal components

with different phases. The phase will be random, but it will be the same within two “families”

of echoes created in the echo train, including both stimulated echoes and spin-echoes. If the

readout gradient is prolonged sufficiently (e.g., with an area four times the size of the pre-phaser

gradient), the two echo families (E1 and E2) will be well separated, allowing two individual

k-spaces to be sampled simultaneously. The final diffusion-weighted image is then generated by

reconstructing each set of k-space data and summing the two magnitude images for an improved

SNR. As the split-echo acquisition do not require any phase relations of the signal components,

the phase of the RF pulses can be arbitrarily chosen [18, 42]. Figure 2.4 illustrates the SPLICE

sequence with a stimulated echo diffusion preparation, as originally presented in [42]. The more

common spin-echo preparation consisting of a 180
◦
-pulse between the two strong gradients

has been replaced by two 90
◦
-pulses leading to a stimulated first echo. The phase of the mag-

netization is stored along the longitudinal axis between the second and third pulse, which can

be an advantage as this allows a long separation of the two diffusion-encoding gradients to

create a high b-value without incurring T2 or T2* signal decay. On the other hand, the maximal

amplitude of a stimulated echo is only half the magnitude of a spin-echo (the remaining magne-

tization is dephased), so it may also be convenient to use a spin-echo diffusion-preparation [18, 42].
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Figure 2.4: Schematic presentation of the SPLICE sequence. The gray blocks are the diffusion-

encoding gradient pairs, the light blue blocks are the slice-selective gradients, and the dark

blue blocks are the imaging gradients. The gradients in the FE direction are imbalanced, as the

pre-phaser (gradient prior to the readout module) is much less than half the area of the following

readout gradients. The two echo families appearing (E1 and E2) are illustrated on the RF line

(top), and the corresponding k-spaces are illustrated to the right. Three 90
◦
pulses along the same

axis (specified in the subscript) are used for a stimulated echo diffusion preparation. α represents

the flip angle (0-180
◦
) of the refocusing pulses in the readout pulse train. No phase relation is

required between the signal phase the the refocusing pulse phase, why no axis is specified in the

subscript. Crusher gradients are left out for a simplistic representation.

The advantage of the SPLICE sequence is its robustness towards image distortions and thus

its geometric accuracy compared to the more conventional DW-EPI sequence, but drawbacks of

the SPLICE sequence also exist. For both types of rapid image acquisition, traversing through the

entire k-space after a single excitation leaves time for T2-relaxation during readout which creates

a modulation of the signal in the Fourier domain. The SPLICE sequence is particularly prone to

this effect as the necessary prolongation of the readout gradients increases the minimum possible

echo spacing. The result is an increased image blurring compared to both conventional RARE

and EPI images. Introducing acceleration methods such as parallel imaging to lower the ETL can

reduce the problem of blurriness, but it may still be relevant to optimize the sequence to achieve

a higher resolution without lowering the already limited SNR of DWI. The mentioned concept of

acquisition weighting may be useful in such optimization.

Multi-shot DWI sequences, whether EPI or RARE based, results in images of better SNR and

fewer artifacts, but they require acquisition of navigator echoes for phase correction [43]. This

prolongs the scan time, and the phase correction is only partly effective if movement-induced

phases vary at voxel-level. Therefore, single-shot sequences are most often used.
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2.2.3 Simulating multi-echo sequences

Extended phase graphs

As mentioned above, for CPMG or other multi-pulse experiments, many coherence signal path-

ways are created and multiple echoes are produced. Every new RF pulse generates three new

coherence pathways or “magnetization components” for each existing component, and the size of

these depends on the flip angle. To keep track of the signal coherence pathways and their echo

generation, Hennig [44] introduced an algorithm in 1988 depicting the magnetization response

for a given set of RF pulses, gradients, relaxation parameters and timing conditions, namely the

extended phase graph (EPG).

In EPG calculations the known orthogonal basis vectors M(ω) = [Mx (ω),My (ω),Mz (ω)]⊤

describing the complex magnetization for an ensemble of spins, are replaced by a new basis set,

F(k), describing the phase state configurations of the spins. The variable k indicates levels of

dephasing. The phase states, F(k)=[F+k F
−
k Zk]

⊤
, are derived from the Fourier Transform of M(ω),

where θ ∈ [0,2π] quantifies the angle of dephasing due to off-resonance induced by a gradient:

Mx (θ)± i My (θ) =
∞∑

k=−∞
F±

k e i kθ
and Mz (θ) =

∞∑
k=−∞

Zk e i kθ
(2.3)

For a periodic pulse experiment (fixed TR and TE) the magnetization can simply be evaluated as a

function of discrete states given by integer values of k , why a summation is used in Eq. 2.3. The Fk

states are the transverse basis depicting a “phase twist” and when a component (ensemble of spins)

refocuses from F
−
1 to F0 an echo is generated. The Zk state is the longitudinal basis describing

sinusoids, and here the spins are unaffected by new phase dispersion, i.e. magnetization is stored.

Now to simulate a multi-echo experiment, three operators can be applied iteratively to the phase

states. The effect of an RF pulse is applied through a rotation operator describing the rotation of

spins for an RF pulse of a given flip angle, α, and phase, φ, (Eq. 2.4). A hard pulse approximation

is used, i.e. the pulse is treated as an instantaneous pulse without any off-resonance effects, e.g.

from variations across the pulse profile.

Tk(α) =


cos2(α/2) e2iφ sin2(α/2) −i e iφ sin(α)

e−2iφ sin2(α/2) cos2(α/2) i e−iφ sin(α)

−1

2
e−iφ sin(α)

1

2
e iφ sin(α) cos(α)

 (2.4)

A shift operator is used to apply the dephasing effect occurring between an RF pulse and an

echo, i.e. during a half ESP, and it basically shifts the spins of an Fk state to the successive state,

Sk(ESP/2) : Fk −→ Fk+1. Finally, the relaxation operator given in Eq. 2.5 is used to describe the T1

and T2 relaxation [44–47].

Rk(ESP/2) =


e−ESP/(2T2) 0 0

0 e−ESP/(2T2) 0

0 0 e−ESP/(2T1)

 (2.5)
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The graphical representation of the EPG algorithm, an extended phase diagram, is helpful

in understanding the evolution of a spin system and generation of different types of echoes

during a multi-pulse experiment, though the effect of relaxation is left out. Figure 2.5 presents

an extended phase diagram for the first four RF pulses of a CPMG experiment. To fulfill the

CPMG conditions there is a phase difference of π/2 from the excitation pulse and the following

refocusing pulses. The diagram presents the relevant signal pathways by color-coding and marks

every zero-crossing, i.e. every echo not coinciding with an RF pulse. An example of a spin-echo

(SE) and a stimulated echo (STE) is indicated as the first and second echo, respectively. Continuing

the RF-pulse train, the echoes will be a result of several coinciding pathways and thus a mix

of several types of echoes. The figure also presents an extended phase diagram for a SPLICE

experiment. The characteristic prolonged gradient in a SPLICE readout causes a more rapid spin

dephasing, indicated by the more steep slope of the signal pathways compared to the CPMG

experiment, i.e. spins switch to higher phase states between two refocusing pulses. This results in

the generation of two echoes between each RF pulse except after the first refocusing pulse. Again,

the first echo will be a spin-echo. The second and third echo appearing after three RF pulses is a

stimulated echo and secondary spin-echo (SE2), respectively. Considering a long echo train, it

becomes complex to draw all signal pathways and visualize them in a diagram. Conveniently,

the EPG algorithm, relying on the three mentioned operators, keeps track of all pathways and

calculates the magnitude of each echo. It is thus a relatively simple tool for simulating the signal

evolution throughout a multi-pulse experiment.

JEMRIS tool

The Jülich Extensible MRI Simulator (JEMRIS) is another tool for simulating MRI sequences, and

opposite to the EPG algorithm it can include and deal with arbitrary RF waveforms, gradient

waveforms, coil geometries and more, which allows for modeling of spin systems under the

influence of important off-resonance effects. It is based on the Bloch equations, which formulated

in cylindrical coordinates is well-suited for numerical implementations [48]. Together with the

utilization of parallel programming, JEMRIS provides an optimized platform for the general solu-

tion of the Bloch equations of non-interacting spins. The C++ based software is open-source and

includes a MATLAB based graphical user interface (GUI) consisting of a sequence development

and sequence simulation environment. In the development environment small basic modules can

be utilized to build a sequence of interest, and in the simulation environment a coil geometry,

object and other effects such as chemical shift are chosen for a simulation of the built sequence.

More details on JEMRIS can be found in Stöcker et al [48], and user-guide and software download

are available at https://www.jemris.org/.

In this project both the EPG algorithm and JEMRIS tool are used for simulation of a SPLICE

experiment. The JEMRIS simulation is utilized to validate that EPG simulations are adequate for

the purpose of optimizing the flip angle scheme in a SPLICE sequence.
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Figure 2.5: Extended phase diagram for a CPMG experiment (green background) and a SPLICE

experiment (blue background), respectively. The different signal pathways and echoes are color-

coded, though several coincide. The green pathway is an example of a spin-echo (SE): The first

pulse acts as a 90
◦
pulse, the second as a 180

◦
pulse. The yellow pathway is an example of a

stimulated echo (STE): the first pulse act as a 90
◦
pulse, the second as a 90

◦
pulse, turning the

magnetization into the corresponding z-state (longitudinal), and the third as a 90
◦
pulse, turning

the magnetization transversal again. For the SPLICE experiment, a larger gradient area causes

a faster dephasing and the spins switch to higher phase states between two pulses than for the

regular CPMG experiment. This results in the appearance of two echoes after each refocusing

pulse (except after the first). Again, the first and second echo is a spin-echo and stimulated echo,

respectively. The third echo is an example of a secondary spin-echo (SE2): the third pulse acts as

a 180
◦
pulse on the green signal pathway and another spin-echo is generated.

2.2.4 Analysis of diffusion-weighted MRI data

A common way to handle and analyse diffusion-weighted MRI data is by calculation of the quan-

titative apparent diffusion coefficient (ADC) map. In the tissue, the diffusion will be restricted

by micro-structural components such as cell membranes and will deviate from pure Gaussian

diffusion described by the Einstein equation. A Gaussian-based diffusion model is still used, but

the decay constant is expressed as an “apparent” diffusion coefficient to emphasize this deviation

from a “true” diffusion coefficient [49, 16]. To estimate the ADC, multiple measurements with

different b-value (at least two) are fitted to the mono-exponential Stejskal and Tanner model

stated in Eq. 2.1, with D replaced with ADC. Rewritten and at logarithmic scale, the ADC simply

becomes the slope of a linear relationship (Equation 2.6). Estimating the ADC in each voxel

generates the ADC map.
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ln(Si /S0) =−bi ·ADC (2.6)

Calculation of the ADC map is thus a relatively simple way to retrieve the local average diffusivity

and it is utilized clinically and in research e.g. for brain examination.

However, there are also issues to be aware of. Though the ADC is quantitative it is a relative

measure and depends on image quality and scan parameters such as the diffusion time and b-values

[49, 50]. For example, for low b-values, the signal attenuation will mainly be due to perfusion of

the water molecules, whereas for higher b-values the attenuation is more diffusion dependent,

and the transition between these effects depends on the tissues vascularity [16, 11]. So for a large

range of b-values, a bi-exponential model may explain the signal attenuation more accurately [14].

Such a model has been suggested, the intra-voxel incoherent motion (IVIM) model, but it requires

acquisition of many b-values and a high quality of data to fit the four model parameters without

large uncertainties [16]. For high b-values, the signal is much attenuated and may reach the noise

floor. A positive bias due to noise for these measurements will lead to underestimated ADC values.

Using diffusion times of tens of milliseconds makes the DWI signal sensitive to tissue struc-

tures at micrometer scale. The main part of the signal attenuation is caused by water move-

ment in the extracellular space and the intracellular diffusion is without significant impact, but

micro-structural features such as cell density and the extracellular composition influence the

diffusion [51]. However, these signal features are not resolved if voxel-based processing is com-

bined with a relatively large voxel size (1-3 mm), which is the condition in DWI [52]. The voxel

size is limited by the SNR which again is limited in single-shot sequences where a short TE is

desired. In DWI, the bandwidth is particularly high because a fast k-space coverage is required

to leave minimal time for relaxation. Thus, describing the diffusion-weighted signal by a mono-

exponential model and estimating a single coefficient for a voxel is a simplistic representation

of the underlying water movement, and though it can be informative, knowledge of the tissue

structure at smaller scales is averaged away. The large voxel size also causes the signal to reflect

diffusion in several macroscopic tissue types, both white and gray matter for example, and there

is a partial volume effect to be aware of when interpreting ADC maps.

Besides from the IVIM model, other methods exist which may describe the diffusion-weighted

signal attenuation more accurately. As mentioned, the ADC calculation is based on the assumption

of a Gaussian, isotropic diffusion, though the diffusion in tissue typically is non-Gaussian and

spherically asymmetric (anisotropic) due to restrictive structures. Kurtosis is the lowest-order

symmetric deviation from Gaussian behavior, and a polynomial model can be used to derive

a kurtosis-corrrected diffusion coefficient [49, 14, 53]. In regard to the anisotropic behaviour,

diffusion tensor imaging (DTI) is used to calculate directional diffusion parameters expressed in a

diffusion tensor. The tensor elements describe diffusion along each of the three spatial coordinates,

x, y and z, defined in the laboratory reference frame, and the pairwise correlation between them.

To calculate all these parameters, acquisition of at least six different diffusion gradient orientations
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are needed, all non-colinear and non-coplanar [18].

2.3 data analysis

In the previous section, the most common ways of analyzing diffusion-weighted data were

reviewed. This section reviews data analysis strategies more generally, though still with a

perspective on multi-contrast MRI, where the main objective is to estimate and map functional

and structural tissue properties. I here divide data analysis approaches into two broad branches,

model-based and data-driven.

2.3.1 Model-based analysis

In model-based analysis, a mathematical, physical or biophysical model is defined a priori. It thus

requires knowledge of the system based on a theoretical foundation or learned from previous

experiences. The data is then fitted to this model by estimating the model parameters using a

maximum likelihood approach, typically assuming a Gaussian noise distribution leading to the

well-known least-squared-error fitting [54, 55].

Within MRI, modelling is used to quantify tissue parameters both at and below the nominal

resolution leading to micro-structural mapping. The latter requires a decomposition of the signal

into a weighted sum of latent factors, which often leads to the ill-posed nature of inverting a

sum of functions. A specific example is the decomposition of multi-echo T2-weighted data for

relaxometry analysis. Typically, the signal is modelled as a weighted sum of multiple exponentially

decaying signal components spanning the T2 domain. This ill-conditioned linear system is then

usually solved by implying a non-negativity constraint and solving for the model weights using

the non-negative least squares (NNLS) algorithm [56] or variations hereof [57, 58].

If the presumed model accurately describes the underlying contributions to the observed

signal, it is a straight-forwardmethod for mapping tissue parameters independent from acquisition

and system details, i.e for quantifying the MRI data. However, there are several pitfalls in regard

to modelling of imaging data. First of all, the presumed model or the associated assumptions can

be wrong or inadequate for describing the dominant physical effects. In such case, the estimated

model parameters will be misleading. It is also a challenge to separate the desired biological signal

variability from undesired variability stemming from e.g. acquisition artifacts or noise [59]. As

mentioned for the ADC calculation, the impact of noise may result in biased estimates.

To reduce the impact of noise and the risk of overestimation in model-based analysis, prior

information in the form of a prior distribution on the model parameters can be introduced.

This is often based on a zero mean Gaussian distribution which leads to the widely applied

L2-regularization, penalizing the sum of squared model weights. Using the NNLS approach

for relaxometry implies voxel-wise fitting. The method is thus heavily affected by noise and

regularization can advantageously be introduced. The L2-regularized NNLS algorithm is defined

in Eq. 2.7 with x being the model weights, A the system matrix, y the measured signal, and λ the
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regularization constant [55].

min
x

∥Ax−y∥2
2 +λ∥x∥2

2 subject to x ≥ 0 (2.7)

There are several examples of voxel-wise fitting, i.e. univariate modelling within MRI, but

multivariate models also exist such as the component-resolved NMR (CORE) processing family

for signal decomposition. An advantage of a multivariate method is the utilization of all available

information simultaneously while estimating the model parameters.

2.3.2 Data-driven analysis

In data-driven analysis, the data structure and patterns are derived from the data itself. All data

points are observed simultaneously to find the set of components representing the data the best.

Although linearity of the system often is assumed, the strategy is considered unsupervised. The

only necessary a priori knowledge (besides from such linearity assumption) is the rank of the

underlying system, i.e. number of components. As for modelling, a Gaussian noise distribution

and thus a least squares objective function is a typical choice for finding the representative

components.

A very well-known data-driven analysis technique is the principal component analysis

(PCA) [60]. In PCA, the data reconstruction consists of orthogonal rank-one components se-

quentially explaining the maximal amount of variance in the data. The method is guaranteed

to find the lowest-error reconstruction for the chosen rank [61]. However, the assumptions of

orthogonality and sequential sorting of components, are often not desirable in practice.

Non-negative matrix factorization

A technique which has been popular within image processing (and several other areas) is the

non-negative matrix factorization (NMF) presented in Eq. 2.8 [62]. The data matrix consisting of

n observations each of m elements, X ∈Rm×n
, is decomposed into two factors; k non-negative

basis functions, W ∈Rm×k
+ , and the associated non-negative weights for the linear combination

of basic functions to reconstruct the data, H ∈ Rk×n
+ . An error matrix, E ∈ Rm×n

, is included

to account for noise and non-factorizable signals. So, instead of an orthogonality requirement

as in PCA, there is a component-wise non-negativity requirement, which fits well to imaging

intensities which by nature are non-negative [63].

X=WH+E (2.8)

Several objective functions can be used such as the Euclidean distance and the Kullback-Leibler

divergence, and the appropriate choice depends on the noise model. The most common choice is

the Frobenius norm which implicitly assumes Gaussian i.d.d. residuals [64]. The optimization

then becomes:

min
W,H

∥X−WH∥2
F such that W≥ 0 and H≥ 0 (2.9)
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The problem stated is non-convex and to solve it, most NMF algorithms utilize that the sub-

problem of optimizing just one factor while keeping the other fixed is convex. Each sub-problem

is then equivalent to an NNLS problem, described above. This design is known as a two-block

coordinate descent scheme, and thus consists of updating the solution by alternately optimizing

the two factors, W and H, respectively, in which the objective function decreases. There are

several ways to define the update rules for estimating the two factors, and many variations of

the NMF algorithms exist [63, 64]. One approach is the multiplicative update rules (MU), also

seen as a rescaled gradient method [65], which was originally used for solving standard NNLS

problems [66]. This method is simple to implement and works well on sparse matrices, but

converges relatively slowly.

Another approach is the alternating non-negative least squares (ANLS) algorithms, which

update the factors by alternately solving each of the constrained convex sub-problems utilizing

information from the Hessian of the optimization problem:

Wl+1 = min
W ≥0

∥X−WHl∥2
F

Hl+1 = min
H≥0

∥XT −HT [Wl+1]∥2
F

(2.10)

Without constraints, the exact solution to the problem can be obtained by deriving the stationary

points from equating the gradient to zero. With constraints, which within variations of the

NMF can be more than just the non-negativity constraint, it can be beneficial to reformulate the

problem in quadratic programming form (only possible using the Gaussian noise model) [67, 68].

Equation 2.11 shows the general case of such reformulation:

min
x

1

2
∥Rx−d∥2 −→ min

x

1

2
xTQx+ fTx subject to: Gx≤ a

where Q=RTR and f=−RTd
(2.11)

Besides from the inequality constraints described by Gx ≤ a, the problem can instead or ad-

ditionally be constrained by equality constraints, Geqx = aeq, and lower and upper bounds:

LB ≤ x ≤ U B . Constraints can therefore easily be implemented, and several algorithms exist

to solve the final dual optimization problem, e.g. the interior-point or the active set algorithm [69].

Lastly, the hierarchical alternating least squares (HALS) method should also be mentioned

as one of the common strategies to solve the problem. The method utilizes that columns of W
do not interact, and updates one column of W at a time, i.e the sub-problem is solved by an

exact coordinate descent method. So similar to PCA, though without orthogonality, the method

iteratively estimates rank-one components [70].

In general, the standard NMF problem has non-unique solutions. First of all, there is a

permutation and scaling ambiguity which means that components can be permuted or scaled

without changing the cost. However, more generally it applies that if X ≈ W0H0 is a solution, and

W̃ = W0D, H̃ = D−1H0 where D is a rotational matrix, then X ≈ W̃H̃ is also a solution. D can be a

product of a permutation (P) and scaling matrix (S), D=PS, but its definition is broader than that,
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and transformations beyond generalized permutations exist where the above algebra still applies.

Overall, the uniqueness of the standard NMF is not guaranteed [69].

Similar to model-based analysis, a prior can be introduced, which here advantageously can

reduce the number of non-unique solutions. A prior can be introduced either as a regularisation or

as constraints where some solutions are simply not allowed. This has resulted in many variations

of NMF, each with different priors. For further details on the NMF algorithms, the reader is

referred to the book by Cichocki et al: Nonnegative Matrix and Tensor factorizations, 2009 [64].

2.3.3 Supervised learning

In supervised learning, data examples (“training data”) are used to train a model that maps an

input to an output. The strategy is called supervised because the output object (e.g. a “label”) of

the training data is known, such that a relationship to the input object (a set of variables) can be

learned. The learned model is typically evaluated using “test data”, where the model’s predicted

output is compared to the actual output, i.e. the generalization of the learned pattern is tested.

Several supervised learning techniques exist, but overall they can be divided into classification

and regression algorithms. A classification algorithm is used when the output object is a discrete

variable, and a regression algorithm is used when the output object is a continuous variable.

An example of a regression algorithm is multiple linear regression (MLR) which can be used

when a linear relationship between the independent variables (“regressor”) and the dependent

output variable is expected. In a high-dimensional space (many regressors), the relationship will

often be linear. The MLR can for N observations be formulated in matrix form as:

y = Xβ+ϵ (2.12)

where y is the N output variables, X is an [N ×M+1] matrix consisting of M regressors for each

observation, and a one-column to include a bias (intercept) in the model. β consists of the M+1

model parameters (“weights”), which are learned via the model training, and ϵ is an error vector

(residual). Most often, the sum of squared errors ∥ϵ∥2
2 is minimized in the process of estimating

β. The method can then also be seen as the ordinary least squares (OLS) regression extended to

multiple explanatory variables [71, 55].

A model equivalent to linear regression but for binary classification problems is logistic

regression which belongs to the larger class of models known as generalized linear models (GLMs).

The logistic sigmoid function (Eq. 2.13) is used to turn the otherwise linear function of model

features (Eq. 2.12) into a probability of a class, which then is mapped to a binary outcome. If the

probability for “class A” is below 0.5, the outcome is “class B”, otherwise the outcome is “class A”.

σ(y) = 1

1+e−y (2.13)

Whereas the sum of squared errors is used as objective function to estimate the parameters in

linear regression, the negative logarithm of the likelihood (also known as the log loss) is typically
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used as objective function to estimate the logistic regression parameters. The expression for the

log loss error function is given in Eq. 2.14 with yn being the predicted outcome probability for

observation n, and tn ∈ {0,1} being the actual class label. β is the model parameters as defined in

Eq. 2.12 [55, 72].

E(β) =−
N∑

n=1
tn ln

(
yn

)+ (1− tn) ln
(
1− yn

)
(2.14)

In supervised learning, the models are typically prone to overfitting, meaning that the es-

timated parameters fit to the training data but generalizes poorly. Especially using maximum

likelihood, as in logistic regression, there is a high risk of overfitting if the data is linearly sepa-

rable [55]. General solutions to avoid overfitting consist of adding a regularization term to the

objective function and using cross-validation (CV). Regularization has also been mentioned in

context with model-based and data-driven analysis and consists of adding a penalty term to the

objective function. In L1-regularization, the penalty term is: λ
∑
m

|βm | leading to a sparse solution,
which in case of a large feature space often is desired. The appropriate penalty strength, i.e. the

regularisation constant λ, depends on the data and needs to be estimated which CV is useful for.

Instead of L1-regularisation, a sparsity in the feature domain can also be introduced directly by

reducing the number of input features with a preceding feature selection process [55].

CV is a useful technique for estimating model prediction performance and generalization,

especially when the amount of available data is limited. It is a resampling technique where the

data is divided into subsets used for model training and testing, respectively. The subset used

for testing is changed during the iterative resampling until all data have been used as “test data”.

This way, the method informs on both training and test performance and can reveal problems

as overfitting and selection bias. The process is typically repeated several times with different

data partitioning to reduce the effect of variability [73]. Typical metrics to evaluate the model

performance is the accuracy or area under the ROC curve in classification cases, and the root mean

squared error or Pearson’s correlation coefficient in regression cases [55].

As stated above, CV is also used for model selection, i.e. for estimating a hyperparameter as

the penalty term or number of input features, for example. If CV is introduced for model training

already, an extra internal CV loop is needed for estimation of the hyperparameters. In this loop, a

“grid” of discrete values are tested as hyperparameters, and the combination leading to the overall

best performance is carried on to the outer CV loop concerning estimation of the model weights.

This full process is referred to as nested cross-validation. A “grid search” (as it as called) is simple

but relatively time consuming, especially if several hyperparameters are to be estimated. There

are more advanced model selection strategies available, such as Bayesian optimization [74].





DATA-DRIVEN ANALYSIS FOR TISSUE

CHARACTERIZATION 3

In the Background chapter, strategies for analysing diffusion-weighted MRI data and multi-

contrast MRI data in general, have been reviewed. In this project, the specific aim of such analysis

was to reveal information on the tissue microstructure of tumors as this can be prognostic for

or predictive of the treatment response. To reveal tissue information at sub-voxel level, the

ill-posed problem of decomposing the MRI signal into smaller compartment-specific components

is met. While a model-based approach is restrictive in terms of dictating the signal behaviour

in advance and may result in misleading or biased estimates if inaccurate, a model-free or data-

driven approach such as the PCA is relatively unrestrictive and may result in components with

an unrealistic signal behaviour being difficult to interpret and relate to tissue compartments. As a

solution, we have developed a method which is somewhere between model-based and completely

model-free approaches with a potential for tissue characterization.

In data-driven approaches, the data is decomposed into a lower-dimensional structure under

some assumptions, which can leave a high flexibility for the decomposition or oppositely include

several constraints that components must comply with. Our developed method therefore consists

of a data-driven approachwhich have been formed by a set of constraints that fits to the assumption

of the natural behavior of MRI signals, such that extracted signal components become more

realistic and informative. By using a data-driven approach, we avoid having to forecast and

model a complex tissue system and its associated biophysical processes (e.g., perfusion and water

exchange). Additionally, the method identifies latent mixtures within each measurement, making

it robust to partial volume effects.

The suggested solution is an extension of the NMF which in standard form only implies

non-negativity of the latent factors. We imposed two additional constraints that force the signal

components to be monotonous, and their first derivative (slope) to be monotonous as well. While

the first part was originally introduced by Bhatt and Ayyer [68] in the form of the monotonous

NMF, the constraint imposed on the first derivative has not been investigated earlier. It was

added to limit the flexibility of the extracted components further, while allowing a signal behavior

expected for many types of MRI measurements, which is a mono- or multi-exponential behavior

or at least near exponential in many cases.

b0 +
N∑

n=1
bn ·ean x

(3.1)

The group of mono- and multi-exponential functions described by Eq. 3.1 are monotonous as

long as the exponents an have a common sign and the arbitrary number of non-zero coefficients

bn also share sign. In other words, the first derivative has no zeros in the case of an < 0 oran > 0

for all n, and bn ≤ 0 or bn ≥ 0 for all n. The derivatives of Eq. 3.1 fall within the same class of

23



24 Chapter 3. Data-driven analysis for tissue characterization

functions, and are therefore also monotonous under these conditions. The question of interest

is whether there are cases where signal components no longer can be described by a sum of

exponentials of shared sign and thus deviate from the monotonicity constraints.

Consider a case of just two idealized tissue compartments (for simplification) which could

represent inter-cellular and extra-cellular tissue, for example. The signal or magnetization

“populations” of the compartments can then be described by the system:

dy

dt
= A ·y(t ), A =

(
−R1−K K

K −R2−K

)
(3.2)

where y(t ) is the compartment populations at time t , and A is a system matrix holding the

population decay rates, R1 and R2, and an exchange rate, K , between the two compartments

(accounting for water exchange). This formalism applies to more than two compartments and

is relevant for many cases of MRI measurements, e.g. the T2-weighted signal with respect

to TE or the diffusion-weighted signal with respect to the b-value, i.e. where the population

decays towards zero. For T1-relaxation, the relevant system may instead describe a change from

equilibrium: dy/dt = A · (y(t )−y0), but this can easily be rewritten to the simpler form in Eq. 3.2

by a parameter substitution. Factors affecting the populations in y(t) is the decay and exchange

rates, K , R1, and R2, and further the initial conditions, i.e. y(t = 0). To check the monotonicity

of the components in y(t ), it is easiest to look at specific cases. In the simple case of no water

exchange, K = 0, A becomes a diagonal matrix and the two differential equations is decoupled.

Hence, both populations simply decay towards zero and monotonicity is obeyed.

In the complex case, where exchange is present, it becomes more difficult to state something

general for the populations in the physical compartments. For very slow water exchange com-

pared to the signal relaxation times (K ≪ R1,R2), the compartments can be approximated as

non-interacting (i.e. no exchange). For very fast water exchange (K ≫ R1,R2) between two

compartments, the compartments can be approximated as one big water pool represented by just

one monotonous signal component. For the more complex case of intermediate exchange (K

in the order of R1 and R2), examples exist where monotonicity is violated for the populations

in the physical compartments (shown below). However, since A is negative definite (symmetric

with negative eigenvalues), a solution can conveniently be found from matrix diagonalization.

This is equivalent to a rotation into another basis, and the resulting mono-exponential signal

evolutions are then associated with “pseudo-compartments” instead of the physical ones. The

coefficients describing these pseudo populations may be positive or negative, depending on

the freely chosen sign of the eigenvectors. So, in any case it is possible to find a solution that

only includes monotonous signals, though it may be for pseudo-compartments. An example is

given below (Fig. 3.1), where one of the populations of the physical compartments violates the

monotonicity conditions, while those of the pseudo-compartments comply with them. In the

example, the two populations start with very different initial conditions: y(t = 0) = [1,0]. This

could simulate a situation were the signal is pre-nulled for a tissue, e.g. of edema in inversion

recovery experiments. As the figure shows, the signal of the nulled compartment (blue, physical)
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Figure 3.1: A two compartment system where y0 = [0,1], K = 0.5, R1 = 0.9, and R2 = 0.7. The

left plot show the signal/population size for the physical compartments, and the right plot show

the corresponding populations for the pseudo-compartments obtained from diagonalization of

the system matrix. The sum of the pseudo-compartment populations is not proportional to signal.

is not monotonous. (In relation to Eq. 3.1 the blue curve can be described as a linear combination

of exponentials with both negative and positive coefficients, and violates the condition of shared

sign coefficients). The corresponding populations in the pseudo-compartments (from matrix

diagonalization) are both mono-exponential. However, as the figure shows, their total sum differs

from the original total signal, and one must be aware that scaling of the individual populations is

required to obtain the same sum.

Combining intermediate exchange with a pre-nulled compartment will always cause non-

monotonic signal behaviour in a physical compartment. If the initial conditions instead are similar

for the two compartments, e.g. y0 = [1,1], there are many situations with intermediate exchange

where monotony persists for the physical system. Figure 3.2 shows for which combinations of

exchange and decay rates, monotony is applicable.

Overall, it is desired that the proposed data-driven solution reveals components of physical

compartments as they are interpretable and representative of the tissue micro-structure. However,

components of pseudo-compartments may also be informative and may well have predictive

value. Putting aside situations of intermediate exchange there are truly many cases of MRI

experiments where the assumptions are valid and signal components behave monotonously. It

should be recalled that using a data-driven method with monotonicity constraints added is still

less restrictive than using a mono/multi-exponential model.

Returning to the aim of this sub-project, it consisted of developing a decomposition method

tailored to find realistic signal components fromMRI measurements that are related to the underly-

ing tissue structure. The developed extended NMF, named monotonous slope non-negative matrix

factorization (msNMF), is suggested, and while it has now been reviewed in which situations the

monotony constraints are suitable for signals of physical compartments, proving a relationship

between the components and the underlying tissue structure is yet another task. When using an

unsupervised technique, it is necessary to have e.g. histology data available for verification. The
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Figure 3.2: Combinations of K, R1 and R2, where monotony of the physical compartment

populations is violated (red areas) or complied with (green areas). Three levels of exchange is

presented for this overview: K = [0.05,0.5,0.95]. The situation is for equal initial conditions for

the two compartments: y0 = [1,1].

paper Data-driven separation of MRI signal components for tissue characterization demonstrates

the msNMF using simulated data and two pre-clinical datasets of which one of them also included

histological measurements. The paper is described in brief in the following section, and the full

research article published in Journal of Magnetic Resonance (JMR) can be found in Appendix A.

3.1 paper i: data-driven separation of mri signal components

for tissue characterization

In this study, the developed msNMF was tested and demonstrated using data of ex vivo diffusion-

weighted MRI measurements of a primate brain [75] and of in vivo multi-echo T2-weighted

“relaxometry” measurements of a rat spinal cord [76], respectively. In both cases, the total MRI

signals were in compliance with the monotonicity constraints, and this was also expected for the

partial signal components. The resulting multi-component data representation was evaluated

using knowledge of local tissue microstructure and histology data. Before testing with pre-clinical

data, the method was demonstrated using simulated data where the true data structure was

known in advance. Simulated data was also appropriate for testing the method against standard

and monotonous NMF and a typical model-based strategy using regularized NNLS.

3.1.1 Methods

The msNMF was implemented by adding constraints to the standard NMF, which decomposes

the data matrix into a factor of signal components (W) and a factor holding the spatial distribution

of these, i.e. mixture maps (H). In reference to the NMF algorithms described in subsection 2.3.2,
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we used an ANLS method with the Frobenius norm as objective function (Gaussian noise model),

reformulated as a quadratic programming problem for each mode. This made it straight-forward

to implement the conditions implying monotony of the signals and their slopes as an inequality

constraint for the optimization of W. Mathematical details of relevance are included in the paper.

It is worth to mention that the objective function was extended to include a weight vector, such

that it became possible to weight the individual observations with the initial signal amplitude.

This was done to assign less value to measurements of low SNR (e.g. from voxels representing

bone) in the optimization process.

3.1.2 Results

For the simulated data, the msNMF was able to reconstruct the underlying components with high

accuracy, i.e. with high correlation to the true components, and it outperformed the standard and

monotonous NMF (and the NNLS for high levels of Rician noise).

For the ex vivo diffusion-weighted data of a primate brain, the msNMF mixture maps (H)

were compared for two datasets which differed by the diffusion time used during acquisition. The

comparison was made by a simple subtraction between the two set of mixture maps, and the

resulting map highlighted tissue areas of high cell-density (white matter, the cerebellum, and the

visual cortex) with very convincing contrast. This indicates that extracted signal components are

relevant for describing the underlying tissue micro-structure.

For the in vivo relaxometry data of rat spinal cords, the msNMF components were used to

generate “quantitative” measures. One of the found signal components was a slowly decaying

signal, consistent with edema water. The fraction of this, given by H, was used as an estimate of

the edema water fraction (EWF) in the tissue. The estimated EWFs for all rats (which were divided

into groups of different diets of an intra-myelinic edema-inducing toxin) were very similar to

those estimated by the original publication of this data [76], and correlated well with histology

(R
2
= 0.88). The high correlation with histological measures, strongly indicates that the msNMF

signal components are related to the tissue structure.
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FRAMEWORK FOR ANALYSIS OF LONGITUDINAL

MRI STUDIES 4

This part of the project is motivated by the introduction of the MR-linac systems, which truly

creates the best conditions for tumor surveillance during the course of fractionated radiotherapy,

and in that regard will increase the number of longitudinal MRI studies in the near future. An

ultimate goal of analyzing data from such studies is to predict the effect of the treatment for a

given tumor. Early prediction leaves time for treatment interventions. The problem is, that the

current availability of longitudinal MRI studies for tumor surveillance is low, and among those

available, most of them observes the time-resolved measurements independently in their analysis.

A typical approach is to calculate the mean ADC value, or another quantitative metric, within the

tumor ROI (region of interest) for each scan day and compare them to the baseline scan obtained

before first treatment. Then a statistical analysis is used to test for group differences of the change

from baseline between e.g. responders and non-responders [77–84]. Figure 4.1(a) is a graphical

representation of such an approach. We have developed and explored an approach which differs

in three main areas from the mentioned example.

The MR-linacs enables the acquisition of image data at each fraction, i.e. daily measurements,

and it thus becomes less sensible to handle each measurement as independent. Our approach

attempts to capture the early tumor tissue dynamics induced by the radiation by observing the

variation or trend over multiple time-points instead of making pairwise comparisons with the

baseline, which also quickly leads to a multiple comparisons problem.

Secondly, our developed framework is a prediction framework, which concludes with super-

vised learning to produce a model that predicts e.g. the tumor type or treatment outcome for an

“unseen” observation. This deviates from the typical former approach (Fig. 4.1(a)) where group

differences are presented based on known stratification. Proving statistical group differences

is of course positive and informative, but unless a separation is shown as general, it does not

guarantee that individual observations can be predicted. We directly test the predictability of

extracted tumor features and include comparisons to empirical null distributions derived via

random permutations tests to enable an unbiased performance evaluation of the prediction model.

Finally, the calculation of an ADC map or another quantitative metric is replaced with a data-

driven decomposition. The benefits of data-driven analysis over model-based have been reviewed

in the previous chapter, and in this context it is specifically advantageous that information is not

lost to partial volume effects and that e.g. biased estimates are not passed on to the subsequent

processing. Additionally, the interpretability and quantifiability of a metric such as the ADC

becomes less relevant in combination with a subsequent prediction analysis, where the predictive

value of the data is of most importance. A decomposition may consist of signal components

corresponding to pseudo-compartments which might leave interpretation difficult, but it may

29
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Figure 4.1: Analysis of longitudinal data. (a): A typical framework used in previous studies: a

quantitative map is generated from the multi-constrast MRI data using a model. Then pair-wise

comparisons between a measurement and the baseline is calculated, and finally statistical testing

investigates differences between groups, e.g. responders and non-responders. (b): The suggested

framework: the multi-constrast MRI data is decomposed into component maps. All measurements

are used to capture a trend, a development over time, and this information is carried on to a

prediction test where the group label is predicted for each observation.

still be predictive of the treatment outcome.

Figure 4.1(b) visualizes the principles of our developed framework juxtaposed to the graphical

representation of earlier frameworks (Figure 4.1(a)). The discussed differences are emphasized. We

aimed for developing a rather general framework, which is reflected in the graphical representation.

No specific data type, decomposition technique, prediction analysis etc. are specified. Several types

of MRI data are currently investigated for biomarkers predictive of tumor treatment response [8],

and our framework is thus deliberately developed with a flexibility to choose different sub-

techniques, e.g. different decomposition methods, resulting in a wide applicability.

In the manuscript Decomposition-based framework for tumour classification and prediction of

treatment response from longitudinal MRI, presented in Appendix B, we demonstrate the developed

framework using two previously published and very different datasets, and propose techniques for

each of the analysis steps. Paper I demonstrated a value of the msNMF in terms of decomposing

MR signals into informative tissue components, the msNMF is thus proposed as decomposition

technique. Therefore, the following manuscript not only presents a prediction framework, but

it also includes the first testing of the predictive capabilities of discriminative models based on

msNMF-discovered tumor tissue components.
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4.1 paper ii: decomposition-based framework for tumour

classification and prediction of treatment response

from longitudinal mri

In this paper, our proposed prediction framework designed for longitudinal MRI data is presented

and demonstrated using two previously published datasets where subjects were scanned before,

during and after the course of therapy. The first dataset consisted of multi-echo T2-weighted scans

of mice grafted with two different pancreatic tumor types [85]. It was used to test the framework

for classification of the two tumor types, and further for prediction of the late tumor volume

change after radiotherapy. The second dataset consisted of DW-MRI of human brain metastasis

and the framework was used to classify the tumors into responders and non-responders [86].

4.1.1 Methods

After an initial data decomposition leading to msNMF component maps, histogram values (first

order radiomics) for the target ROI were used to capture the tumor heterogeneity. The trend of

these tumor features over time was obtained by fitting the time-resolved measurements to a linear

regression curve. A Hubert loss function was used to increase robustness to outliers [87]. The

fitted parameters (intercept and rate of change) were carried on to the prediction model, consisting

of either a logistic regression (for binary outputs) or a multiple linear regression (for continuous

outputs). The number of input features was reduced in a feature-selection process integrated

in a nested cross-validation (CV) approach for model estimation. This means, overfitting was

prevented by directly constraining the number of input features instead of implementing a sparse

regularization term in the cost function. The model performance was accessed by comparing the

prediction outcome to a null distribution generated from 5000 runs with permuted class labels.

4.1.2 Results

For the multi-echo T2-weighted data, the two tumor types were more or less perfectly separated

(AUC=0.99, P=0.0004), and the late tumor volume change (therapy response) was predicted with

a significant correlation to the true values (correlation score=0.513, P=0.034). In both cases, the

long-lived T2-component in the tissue was an important feature to the prediction. For the DW-

MRI data, the classification of metastases into responders and non-responders was encouraging

although the accuracy did not reach statistical significance (AUC=0.74, P=0.065). The T2-weighted

part of the data (b=0 s/mm
2
), which was entered explicitly as a feature in the model, appeared to

carry the most valuable information, i.e. adding the diffusion-weighted data did not improve the

outcome prediction in this case.





OPTIMIZATION OF THE DIFFUSION-WEIGHTED

SPLICE SEQUENCE 5

Diffusion-weighted MRI is an important multi-contrast imaging technique within MRI-guided

radiotherapy because mapping of the local water movement can reflect the micro-structure,

specifically the local cell density. A high cell density is characteristic for tumors and a decrease

in the tumor cell density is an expected response to radiation. DWI can thus provide useful

information for both therapy planning andmonitoring of the response during the course of therapy.

In the Background Chapter two sequences for DWI were reviewed: The DW-EPI sequence, which

is the current standard for DWI, and the SPLICE sequence, which combines a diffusion-weighted

preparation with a RARE readout and overcomes the CPMG violation by utilizing the split echo

acquisition principle. The problem of the EPI sequence is its relatively high sensitivity to field

inhomogeinities, e.g. stemming from tissue susceptibility variations, which causes geometrical

distortions in the images. This is highly inconvenient in the context of radiotherapy planning,

which involves tumor delineation, where geometrical precision is crucial. The RARE readout of

the SPLICE sequence makes it a geometrically accurate competitor to the DW-EPI sequence, but

the SPLICE image quality is limited by its relatively low SNR and poor resolution.

Generally, SNR is limited for diffusion-weighted imaging because a fast imaging technique

(low scan time) is needed to measure the diffusion-weighted signals, and because diffusion of spins

costs signal. SNR of SPLICE is further limited by the prolonged readout gradient (i.e. prolonged

interval between two refocusing pulses) increasing TE. Also in cases of preserved TE and scan

duration, the split echo method reduces SNR compared to standard RARE: the division into two

echos implies that only half the time is used on each of them. This increases the noise with

a square root of two for each echo. However, averaging over two echoes will lower the noise

with the same factor, i.e. the noise remains the same. The signal, on the other hand, is reduced

because the average of two half-amplitude echoes results in a factor of two lower signal than

one full-amplitude echo. As mentioned in subsection 2.2.2, the prolonged readout period in

SPLICE also leaves more time for the relaxation-induced signal modulation taking place during

readout, which leads to a poor voxel shape and thus blurred images. This part of the project is

hence concerned with optimization of the single-shot SPLICE sequence to obtain better SNR and

reduced blurring, as such improvements will make it a relevant candidate for DWI in MRI-guided

radiotherapy. We have chosen not to focus on multi-shot sequence variations, such as the SPLICE

PROPELLER [43], because they typically have a longer scan time and are more motion sensitive.

Even though navigator echoes are used for phase corrections, there are local motion differences,

and motion artifacts can still be a problem.

In general in MRI, there is a trade-off between the SNR and the resolution (voxel size), i.e. a

higher resolution leads to a lower SNR for the same scan time. The SNR also generally depends on

the voxel shape, or more intuitively on how the magnetization is spent in k-space during readout.
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This is described via a signal modulation or k-space weighting function in the phase-encoding

direction and corresponds to the point-spread-function (PSF) through the Fourier transform. The

highest SNR is obtained when all magnetization is read out during its entire maximal lifetime T2,

i.e. when the total sum of the weighting function (area under curve) is maximized. However, such

case may result in a poor PSF. An optimal PSF has a main peak with low full-width half-maximum

and minimal side bands (as close to a delta function as possible). To accommodate both SNR and

PSF requirements, we have employed an optimization approach where the SNR is maximized for

a chosen PSF. It is utilized that varying the flip angles in the refocusing pulse train modulates the

weighting function and thus the PSF. If the desired PSF can be obtained solely by appropriate

flip angle variations, there is minimal SNR cost. The following paper presents the method and

demonstrates the value of such an acquisition weighting approach for improving the image quality

of the SPLICE sequence. Before we implemented the optimization strategy, we verified that EPG

calculations were sufficient for simulating the k-space signal weighting. To this end, we made a

thorough comparison to JEMRIS simulations and actual scans. The full manuscript is available in

Appendix C and Supplementary Materials include the mentioned comparison.

5.1 paper iii: optimized flip angle schemes for the diffusion-

weighted splice seqence

This study presents a method to optimize the variable flip angle scheme in a diffusion-weighted

RARE-based sequence to improve image quality. Schemes of variable flip angles have been utilized

before in optimization of RARE sequences, but to our knowledge not in combination with SPLICE

or diffusion-weighting. When diffusion-weighting is aimed at, other weighting aspects such as

the T2-weighted contrast become less relevant, and the optimization can focus on maximizing

the SNR for a given PSF without explicitly considering effects on the effective TE.

5.1.1 Methods

EPG calculations are used to estimate the acquisition weighting generated by a set of variable flip

angles. A filter is calculated to compensate for the differences between this acquisition weighting

and the desired k-space weighting (desired PSF) [88]. For normal linear image reconstruction

and fixed PSF, the SNR only depends on the flip angle scheme via the filter’s effect on noise, and

the SNR is thus inversely proportional to the filter coefficients. The flip angles are optimized by

maximizing SNR (minimizing filter coefficients) using an interior-point method.

5.1.2 Results

Scanning the brain of a healthy test subject with an optimized flip angle scheme and a reference

scheme consisting of a constant flip angle (90
◦
) showed a clear SNR improvement for the optimized

scheme. The SNR gain was particularly evident for sequences with relatively long echo trains.

ADC maps revealed that the SNR gain lowered the noise bias for high b-values resulting in more

accurate ADC estimates.
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A main goal of utilizing MRI in radiotherapy is to exploit its superior soft-tissue contrast for

better visualisation of the target and relevant critical structures. This implies higher geometrical

accuracy which can increase target control and/or reduce toxicity. Due to the versatility of MRI

systems, biological information can also be measured and quantified with advanced imaging

techniques. This holds the promise of biological guided radiotherapy, and fundamentally better

individualization. One perspective is to have MRI biomarkers that potentially can identify which

patients respond well and which patients respond poorly to the treatment [89]. The patient

treatment may be adjusted based on this information, both during early or late phases of the

radiotherapy course. The information can also be used as a decision-making tool to terminate the

treatment midway, for example. The implementation of the MR-linacs paves the way for a large

volume of new radiotherapy studies which can investigate how to optimally utilize MRI for that.

Three initiatives have been presented for improving the usage of advanced MRI in radiotherapy

studies, each assessing different aspects or limitations of biology-guided radiotherapy.

Specifically, the first sub-project presented a tool for analysing multi-contrast MRI data

to obtain a tissue characterization, which is relevant in the search for MRI-based biomarkers

and possibly also for biological target volume definition. The second sub-project presented

a strategy to analyse longitudinal MRI measurements with the aim of finding prognostic or

predictive biomarkers. The last sub-project presented a sequence design which improves the

SPLICE sequence, and makes it a candidate as a geometrically accurate DWI technique.

With these novel tools at hand, how could a researcher plan a future MR-guided radiotherapy

study? Considering this question will also answer how the developed tools can be effectuated

and gain impact, which is the main motivation for me as a researcher. In the included papers, the

technical feasibility of the methods is demonstrated and discussed, but I am aware that further

steps and developments are needed for clinical translation, where practical limitations such as

patient comfort, scan time, and computation time needs to be considered. The developed tools

are currently ideal for use in designing studies that investigate the best imaging procedures and

analyses for adaptive radiotherapy and response evaluation.

The metastasis study presented in Paper II and previously published byMahmood et al [86, 90],

is an example of a study which explores longitudinal DWI data for response evaluation by scan-

ning the patients at each therapy fraction. It also represents a type of study which at the time of

data collection (2013) was quite unique, but which in the near future will be very accessible. In

the following I look into how my research can be used in the process of designing such a study

today, i.e. can guide how to record and analyse data.

An appropriate starting point is to consider which sequences to use for data acquisition, which

may depend on the tumor site and the specific application. In the metastasis study, DWI data was

35



36 Chapter 6. Discussion

used for tumor response evaluation and ROI delineation. More generally, DWI may enter in the

course of radiotherapy as part of the planning phase, during the treatment phase for “biological”

adaption of the dose plan “on the fly”, and as part of the longitudinal tumor surveillance for

response evaluation and prediction [35, 26]. In all cases geometrical distortions are undesired,

but particularly for planning and adapting the treatment plan, geometrical accuracy is a high

priority and the optimized SPLICE may be a better solution than the standard EPI-based sequence.

Particularly, the optimized SPLICE is a useful sequence if the tumor site is near an air cavity,

such as in head and neck cancer, where geometrical distortions in EPI can be prominent [17, 91].

Further testing against the “gold standard”, the EPI-DWI, is a relevant step for implementing the

SPLICE in the clinic more permanently. Currently, clinicians are used to inspect EPI images that

have a particular contrast and image quality. This should not be overlooked when attempting to

implement a new technique which may slightly alter the visual contrast. Potentially, a preliminary

scan session including both an EPI-DWI and SPLICE sequence could be used to determine which

images are preferred for visualizing the tissue diffusivities for a given site. A comparison to

EPI-DWI could also be relevant for testing whether SPLICE data with optimized SNR is more

useful in a prediction analysis.

When planning the DWI sequence (whether SPLICE- or EPI-based), choosing the b-values

is an important consideration that should be made in light of the subsequent data processing.

Effectuating the msNMF needs a range of contrast measurements for a given sequence type

(the more the merrier), and in the case of DWI, this means obtaining multiple b-values ranging

from low to relatively high values (e.g. 10 values ranging from 0-1000 s/mm
2
). On the contrary,

limitations on the scan time and gradient system needs to be considered and only the most

necessary values should be acquired, thus avoiding too high b-values. The best choice of b-values

can be difficult to know in advance as it depends on the tissue under investigation. This is also a

challenge considering other post-processing methods, and the standard ADC calculation, which

depends on the chosen b-values, may also benefit from optimising the b-value scheme [11].

A possible strategy to find an optimal b-value scheme is to use a preliminary scan session

including many b-values together with the msNMF for extraction of informative components that

can guide the study design. In more detail, a decomposition based on well-resolved signals can be

considered the “ground truth” and be used in a “supervised” search of which b-values that are

necessary for maintaining the right decomposition. Techniques within active machine learning

such as uncertainty sampling and expected error reduction that can find the most valuable data-

points [92], or simple methods such as backward selection are possible strategies for this [93]. Even

though substantial new research dedicated to this is necessary to fully uncover the potential, the

following figure exemplifies such an investigation using the diffusion-weighted data of a primate

brain originally presented by Lundell et al [75]) and reused in Paper I. It consists of 12 b-values

ranging from 242-4832 s/mm
2
and is therefore considered more suited for a demonstration of this

aspect than the DWI data from the metastasis study, which consisted of eight non-equidistant

b-values ranging from 0-800 s/mm
2
.

To shortly recall the investigation from Paper I, a decomposition of the primate brain data
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Figure 6.1: (a): The original difference map using the full b-value set. (b): The difference map

when using the backwards eliminated b-value set consisting of three b-values: 242, 944, and

3681 s/mm
2
. A maximum of RMSE=0.03 was used as threshold to stop the backward elimination.

The resulting optimized b-value set gave a RMSE=0.027

revealed high cell-density areas by comparing component maps for two diffusion values via

subtraction. These “difference” maps, one for each component, were considered the desired result

in the b-value selection process, and the deviation from this (calculated as the root-mean squared

error (RMSE)) was used as “cost” measure. Then a backward elimination strategy was used to

repeatedly eliminate the b-value which resulted in the lowest cost. This continued until some

RMSE threshold was reached. The result is presented in Figure 6.1 by showing the “difference”

maps using the final set of b-values side by side with the original maps using all b-values. As

can be seen, they are very similar, implying that the reduced set of three b-values appears ade-

quate for the investigation of interest. The second highest b-value at 3681 s/mm
2
is included in

this set, but is not clinically feasible to obtain in human DWI. However, the test demonstrates

how to utilize themsNMF decomposition to guide sequence design details for similar scans/studies.

Returning to the hypothetical study planning, one must consider which multi-contrast MRI

measurements to include in the protocol, which is especially important for exploiting the de-

veloped prediction framework to search for response biomarkers. While DWI is an obvious

technique to include due to the biological link to cell density, the results of Paper II indicated

that multi-echo T2-weighted (relaxometry) data contains valuable information for a response

prediction, possibly due to a link to tissue heterogeneity and necrosis. It could thus be interesting

to include a multi-echo T2-weighted sequence in the protocol. Several other multi-contrast

techniques might also deserve to be explored (e.g. DCE-MRI), and though there is a limitation in

terms of total scan time, the prediction framework is suited for many types of data and even for a

combination of multiple data types.
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In terms of the longitudinal measurement time schedule, the optimal case for the prediction

framework is to obtain a baseline scan, a scan per day or per treatment fraction, and a follow-up

scan, all of which are relatively easily accomplished with an MR-linac. There is a desire to achieve

early response prediction (as soon as possible) in order to allow more time for therapy interven-

tions. The importance of time-resolved measurements for capturing significant tumor dynamics

can be studied in the same way as the demonstrated b-value selection. For example, one technique

could be to run the prediction framework with fewer than the entire set of measurements and

observe the prediction’s uncertainty. The datasets included in Paper II was not ideal for such an

investigation. The DWI metastases data was compromised by several missing measurements, and

the mice dataset only included three to four measurements post radiation. In addition, the mice

study imitated a stereotatic radiotherapy study, which was useful and relevant for framework

testing, but which is not the main application here. The prediction framework is most of all

intended for fractionated radiotherapy studies where the longitudinal study structure makes most

sense. Overall, future studies and a prediction tool such as the developed framework are ideal for

thoroughly investigating at which time-point a significant outcome prediction is possible, as well

as which data features or combinations of data features are most predictive.

It has been shown through Paper I and Paper II that the msNMF can be used both as a

stand-alone analysis for tissue characterization and in combination with further processing

steps in a prediction framework. Using it for tissue characterization, it may be a beneficial

tool in treatment planning, another aspect to consider when designing a radiotherapy study.

As described in section 2.1, biological target volume and dose painting are hot topics within

radiotherapy planning, and msNMF could be a relevant technique for segmentation of the tumor

into compartments of different radio-sensitivities based on DWI data, for example. A research

project has recently been initiated for improving tumor segmentation and delineation using

biological information, and investigating the msNMF is part of the scope [94]. Using biological

information for the initial treatment planning is one thing, another is to use it during treatment

delivery to adapt the treatment plan. Currently, the treatment plan is adapted to the “anatomy-of-

the-day” obtained with either cone-beam CT scans in standard linacs or with anatomical MRI

scans in MR-linacs. In the future, it is desired to use biological information to effectuate “biological

adaptive treatments” [9]. In such a setup, there is a high demand on the workflow and only a short

time for analysis and decision making since a patient is waiting in the scanner. Thus, even though

the msNMF may be relevant for tissue characterization and segmentation, practical conditions

such as establishment of components in advance needs to be considered before implementing it

into a workflow.

Furthermore, changing researchers’ and clinicians’ usage of standard model-based processing,

which produces quantitatively interpretable measurements, to a less interpretable decomposition,

may be challenging. If so, the msNMF could be utilized to generate priors for a subsequent

model-based analysis or to separate noise from the data before further processing, reducing the

risk of getting misleading or biased estimates. Paper I showed how the msNMF is relatively

robust to noise and even includes the possibility of “modeling” unwanted signal behavior, e.g.
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a noise-introduced bias, as a component. With the simulated data, it was shown that when

sum-of-squares reconstruction is applied on coil-array data and the Rician noise distribution

becomes distinct, adding a monotonous growing component to model the positive signal bias

improved the decomposition.

Overall, the developed methods presented throughout this project has the potential for im-

proving the usage of MRI within radiotherapy for better cancer management. Both the optimized

DWI acquisition and the alternative data-driven processing suggested, aim at a better utilization of

biological information from advanced MRI data to increase the opportunity to establish biological

treatment planning/adaption and generate predictive biomarkers. The three research papers have

demonstrated the technical feasibility of the proposed strategies, and perspectives on how to use

them to form new and improved radiotherapy studies have now been discussed. All in all, steps

have been taken towards a higher degree of personalized therapy and an improved treatment

efficacy.
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This dissertation presents three specific initiatives for advancement of MRI-guided radiotherapy.

A data-driven technique, the msNMF, has been developed for decomposition of multi-contrast

MRI data to characterize the tissue. The method is insensitive to partial volume effects and relies

on realistic assumptions on the MR signal behavior which facilitates an interpretable decomposi-

tion. A thorough demonstration using first simulated data and then two clinical datasets showed

the potential of the method for identifying MR signal features specific to the underlying tissue

structure. Hence, the method is a promising candidate for tumor tissue characterization which is

relevant in treatment planning or adaption and for identifying both prognostic and predictive

biomarkers.

A prediction framework has been established for analysis of repeated MRI measurements as a

potential tool for finding biomarkers within the field of cancer treatment. The framework is suited

for the increasing volume of longitudinal MRI studies prompted by the recent introduction of

MR-linacs, and aims at using all time-resolved measurements simultaneously in order to capture

dynamic tumor behaviour that may be predictive of the treatment outcome. The framework is

based on data-driven decomposition of multi-contrast MRI data and was demonstrated using

the newly developed msNMF for that. By showing prediction of the tumor treatment outcome

using T2-weighted multi-echo data as an example application, the merits of the msNMF for tumor

tissue signal decomposition was also demonstrated.

Finally, the single-shot SPLICE sequence has been optimized to improve the quality of diffusion-

weighted images for RT purposes. By optimizing the refocusing flip angle scheme in the RARE-

based readout, it was possible to increase SNR for a controlled level of blurring. In combination

with an increased geometric accuracy relative to EPI, this improved image quality makes the

SPLICE more attractive for radiotherapy planning.

7.1 outlook

Future investigations of the msNMF may concern both its usage and technical advancements. It

would be interesting to investigate it for tumor segmentation in radiotherapy planning, which

has already been initiated in a different project, as mentioned in the discussion. The aim is to use

the component maps in a segmentation analysis to find areas of the tumor with higher or lower

radio-sensitivity. A big challenge here is to define the “truth” in the validation process.

The msNMF could also be tested more thoroughly for the application of denoising MRI

data [95], e.g. for reducing the signal-dependent noise bias present for MRI magnitude data.

Adding a growing component to “absorb” the noise bias was shown effective for simulated data.

It could be interesting to test the strategy using real data and further investigate its effectiveness,

41



42 Chapter 7. Conclusion

if the spatial distribution of such bias is non-uniform, i.e. if the method is upgraded to constrain

mixture maps according to different tissue classes, for example.

Other future technical advancements include optimizing the msNMF in regard to computation

time, which is relevant for clinical translation. Settings which affects the computation time

and could be further considered are the choice of optimization algorithm, initialization strategy,

stopping criteria and the size of the input data. Parameters such as the input data batch size and

number of iterations could be tuned, for example.

For the prediction framework, an obvious next step is simply to obtain more experience

with the method and apply it to larger datasets, preferably in a setting were the data volume is

sufficient to reserve part of the data as a completely independent test set, perhaps even from

another site. With improved data availability it will also be easier to test e.g. the importance

of each of the time-resolved measurements as touched upon in the Discussion. In the search

for predictive or prognostic biomarkers, it would be worthwhile to further investigate the link

between T2-weighted relaxation components and tumor necrosis suggested by the framework

demonstration.

For the SPLICE optimization, next steps are first of all to demonstrate the image improvement

for more datasets. Specifically, it is relevant to show an improvement for scans where the

advantage of acceleration techniques is utilized to increase the nominal resolution. The current

data example showed only a slight SNR improvement when acceleration techniques were used to

reduce the ETL to 35. In the same context, scan time could also be considered as this is relevant to

minimize for clinical translation. The recording of multiple b-values takes time, but redundancy

in the data may be possible to utilize with more involved acceleration-reconstruction strategies.

Future initiatives could also investigate if the sequence design can be further improved.

Currently, a prolonged gradient separates the two echo families and the two echos are simply

summed without considering their individual contributions. However, the individual echoes

have different intensities and maybe there are ways to utilize this during the readout. Norris et

al, for example, have suggested a method for utilizing the echo of most signal, i.e. a selective

parity approach [96], and showed a strategy to combine it with acceleration methods in diffusion

weighted imaging [97]. The strategy seems compatible with implementation of the optimized

variable flip angle schemes presented here.

Taken together, the advances presented in this thesis are promising for advancing future

radiotherapy and can hopefully improve treatment for patients with cancer.
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a b s t r a c t

Purpose: MRI can be utilized for quantitative characterization of tissue. To assess e.g. water fractions or
diffusion coefficients for compartments in the brain, a decomposition of the signal is necessary. Imposing
standard models carries the risk of estimating biased parameters if model assumptions are violated. This
work introduces a data-driven multicomponent analysis, the monotonous slope non-negative matrix
factorization (msNMF), tailored to extract data features expected in MR signals.
Methods: The msNMF was implemented by extending the standard NMF with monotonicity constraints
on the signal profiles and their first derivatives. The method was validated using simulated data, and sub-
sequently applied to both ex vivo DWI data and in vivo relaxometry data. Reproducibility of the method
was tested using the latter.
Results: The msNMF recovered the multi-exponential signals in the simulated data and showed superi-
ority to standard NMF (based on the explained variance, area under the ROC curve, and coefficient of vari-
ation). Diffusion components extracted from the DWI data reflected the cell density of the underlying
tissue. The relaxometry analysis resulted in estimates of edema water fractions (EWF) highly correlated
with published results, and demonstrated acceptable reproducibility.
Conclusion: The msNMF can robustly separate MR signals into components with relation to the underly-
ing tissue composition, and may potentially be useful for e.g. tumor tissue characterization.

� 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Quantitative assessment of tissue properties has become
possible with specific MRI sequences that enable extraction of
parameters such as T1 and edema water fraction. With a
quantitative characterization of the tissue, it is possible not only
to compare data across scans and subjects, but also to capture
changes at sub-voxel scale [1,2]. This can potentially improve our
understanding of pathophysiology and generate biomarkers for
e.g. abnormality detection, disease staging or treatment response
assessment. However, probing tissue parameters requires
acquisition of high-dimensional datasets and appropriate

parameterization. A well-known example is the calculation of the
apparent diffusion coefficient (ADC) from a set of pulsed gradient
spin-echo scans with varying diffusion weighting (b-value). The
ADC describes the mean diffusivity of water in a voxel and is
obtained by fitting the diffusion-weighted signal to a mono-
exponential model, as expressed in the Stejskal-Tanner equation
[3]. Important factors modulating the diffusivity are the volume
of extracellular water with a less restricted mobility [4], the size
of restricting domains such as cells, and further, the orientation
of elongated restrictions which makes the diffusivity directionally
dependent. However, a voxel can contain multiple tissue compart-
ments (partial volume effect) or orientational dispersion of aniso-
tropic domains, and the diffusion can be affected by water
exchange between compartments [5,6]. Furthermore, biophysical
processes such as flow and perfusion can cause extra signal decay
[7,8]. Hence, tissues exhibit non-exponential signal decay if a
broad range of b-values is used. Several more complex models
have been suggested and used to improve fitting, e.g. the

https://doi.org/10.1016/j.jmr.2021.107103
1090-7807/� 2021 The Author(s). Published by Elsevier Inc.
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intravoxel incoherent motion model or water exchange models [6].
Imposing models, however, always carries the risk of estimating
biased or uninformative parameters, because the model may be
misleading, or too restricted or flexible considering the underlying
signal variation [8,9]. Nevertheless, decomposition of the signal
into multiple compartment-related components is desired for tis-
sue characterization, which is an essential challenge that is repeat-
edly encountered in quantitative analysis of MRI data. Mapping
parameters for relaxometry or magnetic resonance fingerprinting,
for example, faces the ill-posed problem of decomposing a signal
into a weighted sum of exponentials or other latent factors [1,7].
A class of methods designed to solve this ill-posed inversion, is reg-
ularized voxel-wise spectral fitting [10–12], which in the case of
multi-exponential decay is also referred to as regularized inverse
Laplace transforms [13]. A frequently used version is the non-
negative least squares (NNLS) technique [14,15] which has proven
useful, e.g. for estimation of myelin water fractions (MWF)
[14,10,16]. The regularization is necessary to handle the inevitable
large impact of noise in a voxel-wise fitting regime [17], but
requires the choice of a penalty parameter. Though a cross-
validated or data-driven estimation of this is possible [16], it
may introduce a bias in quantitative estimates due to the well
known bias/variance trade-off. Additionally, the method relies on
an identification of spectral clusters or averaging across regions
of interest (ROIs) requiring prior knowledge of the tissue homo-
geneity [17,18].

Another group of strategies avoiding these limitations and pre-
sumptive physiological models is blind source separation (BSS)
techniques, including widely used unsupervised linear dimension-
ality reduction (LDR). Here, all measurements are analyzed simul-
taneously and represented as a product of two factors; a matrix of
fundamental basis functions and a matrix of the associated spatial
distributions [9,19,20]. An attractive feature of LDR techniques is
their insensitivity to partial volume effects often hampering tradi-
tional signal modeling. What sets the different LDR techniques
apart is the assumptions on the structure of the factors. The
well-known principal components analysis yields orthogonality
between the principal components [21–23], while the independent
component analysis, often used for separation of functional MRI
signals, ensures independence between them [19,24]. While these
methods may result in low-error reconstructions of the data since
the underlying singular value decomposition is guaranteed to pro-
duce the minimum error for a given dimensionality reduction [25],
the components may be physically unrealistic and difficult to inter-
pret. For medical image intensities, a natural assumption is
component-wise non-negativity leading to the LDR technique,
non-negative matrix factorization (NMF). This method is popular
within a broad range of applications ranging from text mining to
image processing because the non-negativity assumption pro-
motes an attractive part-based representation with more realistic
factors, although the general non-uniqueness of NMF solutions
can render the interpretation of the estimated components difficult
[19,26–28]. In general, NMF is non-convex and the estimated solu-
tion is often sensitive to initialization and small perturbations of
the input data. In practice, a common strategy to tackle these
issues is to use priors on the factors or regularization during opti-
mization [19,27,29].

This work proposes a novel extension of the NMF by introduc-
ing additional constraints on the structure of the factors, which tai-
lors the method for extraction of multi-exponential or similar
signals, expected for many phenomena both within and beyond
the field of MRI. This loosely defined class of functions is called ap-
proximately multi-exponential in the following. The extension is
inspired by Bhatt and Ayyar who introduced the monotonous
NMF [30], mNMF. They enforced monotony of NMF components,
which in practise give results similar to NMF for a range of MR sig-

nals and is insufficient to enforce realistic signal behaviour (see
Supplementary Material). Hence, we introduce a method, which
constrains the problem further. It imposes two conditions on the
non-negative basis functions: they should be monotonous and
have a monotonous first derivative (slope). Thus, the proposed
method is referred to as monotonous slope non-negative matrix fac-
torization (msNMF). It is expected that the new constraint on the
first derivative makes msNMF superior to the mNMF in regards
to separation of mixed MRI signal components. Yet, the method
leaves more freedom to the signal components compared to the
spectral fitting techniques where the decomposition is within a
pre-determined multi-exponential basis constraining also higher
order derivatives. In more general terms, the additional constraints
enforce prior expectations of MR signal decay and represents a bal-
ance between model-based analysis that may rely on inadequate
model assumptions, and model-free analysis that may be too flex-
ible to give interpretable results.

We introduce and demonstrate the msNMF for multi-
component analysis of MRI data, and show examples where the
estimated components are related to the underlying tissue struc-
ture, thus demonstrating the use of the method as a robust alterna-
tive to advanced modeling.

2. Methods

2.1. Non-negative matrix factorization

The NMF approximates a given data matrix, X 2 Rm�n, with the
low rank matrix, WH:

X ¼ WHþ E ð1Þ
W 2 Rm�k

þ is a set of non-negative basis functions, H 2 Rk�n
þ is the

associated non-negative weights for the linear combination of
basic functions to reconstruct the data, and E 2 Rm�nis an error
matrix accounting for noise and non-factorizable signals. With
the assumption of Gaussian i.i.d. residuals in E, the Frobenius norm

is used as objective function, kX�WHk2F . This is a non-convex opti-
mization problem. However, using the two-block coordinate des-
cent framework known as the alternating non-negative least
squares (ANLS) algorithm, it can be formulated as two convex
sub-problems:

min
WP0

kX�WHk2F and min
HP0

kX�WHk2F ð2Þ

The problem is solved by alternately re-estimating one of the two
factors, W or H, under a non-negativity constraint, while keeping
the other fixed.

In this study demonstrating analysis of volumetric 4D MRI data-
sets withmmeasurements and n signal-carrying voxels, the k basis
functions in W are referred to as signal components. The weights in
H, specifying how these are mixed in each voxel, are referred to as
mixture maps.

2.2. Monotonous slope non-negative matrix factorization

The idea of introducing constraints that enforce monotonicity in
the NMF emerges from expectations for noise-free MR signal beha-
viour. It can be shown, that the group of mono- and multi-

exponential functions (described by: b0 þ
PN

n¼1bn � eanx) are mono-
tonous, so the continuous derivative has no zeros, provided the
exponents an have a common sign, and the arbitrary number of
non-zero coefficients bn also share sign. The offset b0 has no
impact. The derivatives fall within the same class of functions,
and are therefore also monotonous. In unusual specific cases
involving pronounced intermediate water exchange, mostly in
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combination with inversion recovery, the signal no longer
complies with the assumption of shared sign coefficients bn, but
normal multi-exponential signal decay and longitudinal magneti-
zation recovery fulfills this requirement adopted in the following
[31–33].

The two constrained least squares problems in (2) can easily be
restated in dual form to allow optimization via standard quadratic
programming. Eq. 3 shows the general case of such reformulation:

min
x

1
2 kRx� dk2 �! min

x
1
2x

TPxþ fTx subject to : Gx 6 a

where P ¼ RTR and f ¼ �RTd
ð3Þ

In the optimization problem at hand, x is a vectorization of eitherW
or H. The inequality constraint can be revised to include both the
non-negativity and monotonicity constraints. This approach was
inspired by the work of Bhatt and Ayyar [30] and results in the fol-
lowing reformulated optimization with the appropriate constraints
added:

GivenW : min
H

vecðHÞTðIn �WTWÞvecðHÞ �2vecðXTWÞTvecðHÞ

subject to : �InkvecðHÞ 6 0nk

Given H : min
W

vecðWÞTðHHT � ImÞvecðWÞ � 2vecðXHTÞTvecðWÞ

subject to :

�Imk

A
B

2
64

3
75vecðWÞ 6 0mk

vec() is a column vectorization of the matrix coefficients and � is
the Kronecker tensor product. For optimization of H (Eq. 4), only
the non-negativity constraint is included in the inequality. For opti-
mization of W (Eq. 5), the new constraints are added in A
2 Rðm�1Þk�mk ensuring a monotonous behavior of the basis functions,
and in B 2 Rðm�2Þk�mk ensuring monotonous behavior of their first
derivatives. A and B can be designed such that the basis functions
are either increasing or decreasing (Supplementary Material). The
implementation enables mixing of basis functions to involve both
decaying and growing signal components if desired. This may
become relevant, e.g. for saturation recovery or if a Rician noise bias
arises for small signal values.

The programming language MATLAB 2018b (MathWorks, Inc.,
Natick, Massachusetts, United States) was chosen for implementa-
tion, and the trust-region-reflective algorithm was used for the
quadratic programming.

To facilitate straightforward adoption into existing processing
pipelines the software is made publicly available, https://github.c
om/sofierahbek/msNMF.

2.3. Practical implementation

Initialization and stopping criterion A basic random initializa-
tion of H with coefficients drawn independently from a uniform
distribution between 0 and 1 was used. For small datasets, all vox-
els were given as input to the iterative ANLS which continued until
a stopping criterion was met, being either a maximum of 500 iter-
ations or a relative change in factors below 10�8. To reduce the
unavoidable risk of ending in a local minimum due to the non-
convex nature of the optimization problem, the process was car-
ried out 10 times (each time with a different initialization), and
the lowest cost solution was chosen. This is also known as a
”multi-start” strategy [27,19]. For large datasets (> 105 observa-
tions), a stochastic gradient descent framework was utilized due
to memory limitations which also served to reduce computation

time. Data was divided into randomly selected batches, and the
input batch was replaced during optimization for every T’th itera-
tion. This continued until all data had been included (one full
epoch) or until fulfilling a convergence criterion based on relative
reduction in cost function (for the full data) averaged across the
latest five results. Here, the threshold for the relative reduction
of the cost function was set to 0.1%, the input batch size was cho-
sen to � 1% of all observations and T was set to 30. We found that
the optimization is robust to these choices and that they will pri-
marily affect computation time rather than the obtained result
[34].

Rank determination The resulting factorization of data is
dependent on the number of components, i.e. the rank, k, which
was chosen using prior knowledge or a trial-and-error approach,
where the factorization and its residual are used as feedback for
rank adjustments [19,27]. If anatomical structures were visible in
the residual image, the rank was increased. Conversely, if two com-
ponents were very similar, the rank was decreased.

Preprocessing steps A few preprocessing steps were imple-
mented to reduce the impact of noise on the factorization. First,
the data used as input to the msNMF was required to carry the
highest signal in the first measurement (m = 1) to exclude irrele-
vant signal behaviour from vascular components, for example. Sec-
ondly, data was normalized to have initial value 1 before
factorization. This removes the influence of the initial signal ampli-
tudes during estimation of the signal components in W. A subse-
quent projection of the original (unscaled) data onto these

(H ¼ ðWTWÞ�1
WTX) leaves H with the amount of total signal dis-

tributed over the identified components. The introduced data nor-
malization simultaneously amplifies the noise, which was
compensated by weighting the ANLS with the initial signal ampli-
tudes. An updated objective function is given in Supplementary
Material.

2.4. Validation

Simulated data was used to validate the implementation (visu-
alized in Supplementary Material, Figure S1). To imitate a set of
realistic MR measurements, eight non-equidistant samples of three
decaying signals, two mono-exponential and one bi-exponential
function (y1 ¼ e�0:01x; y2 ¼ 0:6e�0:08x þ 0:4e�0:03x; y3 ¼ e�0:15x), were
generated and mixed across 64x64 voxels. The bi-exponential
component was included to demonstrate the method’s ability to
detect realistic signals beyond the mono-exponential domain. Nor-
mally distributed complex noise (r ¼ 0:06) was added to the data.
This left the final magnitude data with a relatively low SNR and a
Rician noise distribution, which is more realistic than the assump-
tion of Gaussian independent and identically distributed (i.i.d)
residuals implied by the formulation of the cost function. Knowing
the underlying data structure it was possible to quantitatively
evaluate the result of the method. The explained variance (EV), with
1 indicating a perfect reconstruction, was used to compare the
reconstructed curves in W with the true signals (½y1; y2; y3�). The
area under the ROC curve (AUC) was used to compare the spatial
distributions in H with the true mixture maps. This measure
explains to what extent the spatial pattern of the components is
recognized, and is not affected by the absolute values of the load-
ings in H. The performance of the msNMF was compared to that of
the standard NMF. For a fair comparison, the exact same conditions
for both factorizations were used except for the monotonicity con-
straints, i.e. data normalization and weights were also applied for
the NMF which makes it more constrained than standard NMF.
Additionally, a stability test was carried out to investigate how
much the added constraints stabilize the solution across 50 ran-
dom initializations. The coefficient of variation (CV) was used as
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metric with a low percentage indicating high stability. The
specified value is the average CV across all elements in H (leaving
out background voxels).

2.5. Data

The application of the msNMF was demonstrated using two
previously published MRI datasets: ex vivo DWI of a monkey brain
acquired with 12 b-values at two different temporal scales [35],
and in vivo multiple spin-echo imaging with 40 echo times for
multi-exponential T2 (MET2) analysis of rat spinal cord [11]. The
relatively large number of measurements in both datasets yielded
well-characterized signal curves, which in both cases were
expected to exhibit an approximately multi-exponential signal
decay.

Ex vivo DWI data Data recorded and published by Lundell et al.
[35] with multidimensional diffusion encoding revealed
microstructural details in a post mortem brain of a Vervet monkey.
The sample was perfusion fixed and placed in a buffer solution
using procedures optimised for post mortem DWI [36], and data
was recorded with a 4.7 T pre-clinical MRI system. We refer to
the original publication for more details regarding the experimen-
tal setup and the data, which is available on reasonable request
[35]. In short, the experiment probed the effect of anisotropy as
well as time-dependent diffusion, depending on the size of restric-
tions. The latter was explored by comparing two diffusion acquisi-
tions recorded with the same echo time TE = 68 ms and so-called
”tuned” and ”detuned” directional encoding gradient waveforms
with an average diffusion time of � 10 ms (”short diffusion time”)
and of � 20 ms (”long diffusion time”) respectively. Both acquisi-
tions included the same 12 b-values in the range 242–4832 s/
mm2 in five slices of central brain. The difference in diffusion time
is expected to influence the signal response to restricted diffusion
on length scales � 3–10 lm, whereas free diffusion will provide
similar signal signatures [5]. All brain voxels from the two data sets
were used as input for the msNMF and the stochastic gradient des-
cent framework as described in Section 2.3 was used. This resulted
in a computation time of 266 s using a workstation equipped with
a 28-core system having 16 GB RAM. Signals were decomposed
using an initial rank k ¼ 3 due to expectations of at least a bi-
component signal decay in the brain tissue and an additional com-
ponent from the surrounding buffer solution. The resulting mix-
ture maps (H) for the two data sets were normalized, leaving the
coefficients as signal fractions, and compared through voxel-wise
subtraction. The decomposition was evaluated using knowledge
of cell densities in primate brain and findings by Lundell et al. [35].

In vivo MET2 data Relaxometry data originally presented in
[11] by Harkins et al. demonstrated a model for intra-myelinic
edema (IME) quantification in rat spinal white matter evaluated
by comparisons with histology. In this study, 24 rats were divided
into three groups of eight, each receiving a different amount of the
IME-inducing toxin hexachlorophene (HCP) in their diet: 0 ppm,
300 ppm and 600 ppm respectively. Forty T2-weighted spin-echo
images were recorded at 9.4 T using a fluid-attenuated inversion-
recovery-prepared multiple spin-echo imaging sequence [37]
(TI = 2 s, TR = 6 s). The first 32 echoes were collected with an echo
spacing of 9 ms starting from TE = 7.4 ms. The last 8 were collected
with an echo spacing of 50 ms. Recordings were obtained for a
1.5 mm thick axial slice (0.2x0.2 mm2 in-plane resolution) of the
cervical spinal cord, and histology data were obtained using light
microscopy of 1 lm thick slices dissected from the same location
for three rats from each group. Both MR images and histology data
were analyzed for the water content of edema, myelin and intra/
extra axonal space in four different white matter tracts: dorsal
cortical spinal tract, funicilus gracilis, rubrospinal tract, and

vestibulospinal tract. These regions-of-interest (ROIs) defined the
voxels to include in the msNMF, and the input signals were decom-
posed into three decaying components, one for each of the men-
tioned compartments, i.e. the rank best suited for comparison
was known in advance. H was normalized to provide the fraction
of each compartment and to facilitate comparison to both histol-
ogy values and imaging metrics (water fractions) estimated by
Harkins et al. The water fractions were defined as in Mackay
et al. [14], assuming proportionality between total signal ampli-
tude and total water content. Signal frommyelin lipids was consid-
ered to be negligible given its rapid T2 decay (<1 ms) [38–40].

Reproducibility test As a novel method based on a non-convex
problem and random initializations, it is sensible to test the repro-
ducibility of the full framework, which was done using the in vivo
data [11] and a split-half (NPAIRS) approach [41]: The full data was
divided in two sets, each consisting of every second echo, i.e. half of
the variables but all observations. The resulting H for each dataset
was compared using Pearson correlation coefficient to calculate a
reproducibility measure. The two factorizations were evaluated by
projection of H onto the other unseen dataset and calculating the
EV for each data reconstruction. The average defined a prediction
measure. A prediction/reproducibility curve (pr-curve) showing the
trade-off between prediction accuracy and pattern reproducibility
for a range of ranks k was produced.

3. Results

3.1. Validation data

Fig. 1 shows the final factorization of the simulated data. The
true exponential signals and true mixture maps are included for
visual comparison, and the quantitative comparison revealed
EVW ¼ 0:984 and AUCH ¼ 0:999. The three components are well
separated but the spatial distributions seen in H are not flawlessly
presenting homogeneous circles, especially the purple and yellow
component contain traces of other signal components and a higher
level of noise (confirmed by the indicated summary statistics). The
lower mean value for the purple component illustrates that part of
the signal has been incorrectly distributed to the other compo-
nents, consistent with the ”shadow” seen in the yellow mixture
map. Please note that even for a hypothetical method perfectly
identifying the true signals (dotted lines in Fig. 1a), the residual
noise amplitude will be spatially inhomogeneous due to the struc-
ture and noise level of the data.

In comparison, the standard NMF extracted erroneous signal
components and slightly worse spatial distributions (Supplemen-
tary Material, Figure S3). The evaluation metrics were correspond-
ingly lower than those obtained with the msNMF (EVW ¼ 0:922
and AUCH ¼ 0:989). The mean CV for 50 initializations was 5.07
% for the NMF and 1.13 % for the msNMF, i.e. a higher stability
of the solution was observed for the msNMF. A table in Supplemen-
tary Material shows the msNMF result for simulated data with coil
arrays (8, 16 and 32 elements) and other SNR (r) levels, included to
demonstrate the dependence on noise characteristics.

3.2. Ex vivo DWI data

Example raw data are shown in Fig. 2a in the shape of a some-
what T2-weighted image (TE = 68 ms, b = 242 s/mm2). Trial-and-
error testing of the rank led to a final choice of k = 3. A decrease
to k = 2 resulted in a residual map with clear cerebral structures.
Conversely, an increment to k = 4 resulted in two of the four com-
ponents to be very similar for both factors, and H was distinctly
contaminated with noise compared to the decomposition
presented here using k = 3. The resulting three diffusion-related
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Fig. 1. True data compared to the msNMF result. (a) Estimated signal components, W, and true signals (y1 ¼ e�0:01x; y2 ¼ 0:6e�0:08x þ 0:4e�0:03x; y3 ¼ e�0:15x). (b): Associated
mixture maps, H, indicated by frame colors. The cyan numbers are mean	SD across the encircled voxel values. Similar illustrations obtained with standard NMF and the
mNMF are provided in Supplementary Material.

Fig. 2. (a): Measured image of the monkey brain for the lowest acquired b-value (242 s/mm2) (b): The signal components,W, from the msNMF. (c): The associated normalized
mixture maps, H, labelled by the frame colors. A logarithmic colorscale is used for the yellow component. Maps are given for both data sets and the right column shows the
difference between the two (”Short diffusion time” subtracted from ”Long diffusion time”). The thin and thick black arrows mark the conspicuous visual cortex and
cerebellum, respectively.
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components seen in Fig. 2b reveal long, short and intermediate sig-
nal lifetime (green, yellow and purple curve, respectively).

The associated normalized mixture maps in Fig. 2c reveal a rel-
atively high fraction of the purple signal component in the cortex,
creating a clear separation of grey matter from white matter,
which mostly contains the green signal component. The signal
from aqueous compartments (buffer solution surrounding the
brain sample) is almost exclusively described by the yellow com-
ponent. The difference between the two sets of maps, provided
to capture the effect of time-dependent diffusion, is presented in
the third column of images. Positive values (red colors) indicate
that an increase in diffusion time results in a higher fraction of
the respective component. This effect is observed for the long-
lived signal component (green), especially in white matter includ-
ing corpus callosum, visual cortex (thin arrow), and the cerebellar
cortex (thick arrow), which exhibit high contrast. Simultaneously,
the opposite effect (negative values) is seen for the intermediate
decaying signal component (purple) in these areas. The cerebellum
is particularly prominent (thick arrow), and superior to this, the
visual cortex (thin arrow) clearly differs from the rest of the cere-
bral cortex, which otherwise exhibits positive changes for this sig-
nal component. The small uniform change across the brain seen for
the short-lived signal (yellow) is in agreement with the expecta-
tion that a fast decaying liquid component is time independent.

3.3. In vivo MET2 data

Fig. 3a and 3b show the result of the msNMF: the signal compo-
nents and mixture maps, respectively. The mixture maps illustrate
the distribution of the signals across the spinal cord for a rat from
each group. Since only voxels from the white matter tracts have
been included in the factorization, the gray matter signals may
not be well represented. For all three components, the contrast
between the butterfly-shaped gray matter and the surrounding
white matter increases with increasing amount of HCP in the diet.
Especially the abundance of the long-lived component (green) is
increased in specific areas of the white matter for rats on HCP diet.
The three signal components are thought to reflect relaxation of
water within different compartments in the white matter. Fitting
a mono-exponential decay to the curves resulted in relaxation
times of 12 ms, 42 ms and 181 ms for the yellow, purple and green
curves respectively. With expectations of IME to cause T2 hyperin-
tensity [11,42], the long-living signal component is consistent with
IME. Thus, the fraction of the green component (given by the nor-
malized H) is considered an estimate of the EWF.

Fig. 4b presents the mean EWF for the four ROIs visualized in
Fig. 4a averaged across the eight rats in each group. The error bars
indicate the inter-animal standard deviation. For comparison,
Fig. 4c shows the equivalent result presented in [11]. The two
bar plots are very similar considering the relative increase of
EWF in the different ROIs for the HCP groups. Quantitatively, the
paper reports slightly higher values than the method proposed
here.

Fig. 5 compares the EWF estimates with the histology-based
edema water content fraction (Wed) for three rats from each group.
The correlation metric for the linear regression together with the
associated p-value reveal a high agreement with histology data
(r2 = 0.88, P<0.001). The trendline is closer to unity, the intra-
ROI standard errors are lower, and the correlation metric is slightly
higher in comparison to the corresponding analysis in the original
paper [11]. For both approaches, non-zero intercepts remain in the
comparisons with histology estimates.

Fig. 6 shows the result of the split-half test, the pr-curve. The
plot reveals a high Pearson correlation (>0.8) for a rank below 5,
and a high predictability for a rank above 1. This indicates an
acceptable reproducibility of the framework for the chosen rank
k = 3 with predictability and correlation both being high.

4. Discussion

4.1. Simulated data

The simulated data was included to validate the method before
applying the msNMF to measured data where the true underlying
structure is unknown. Three fundamental signals, only eight tem-
poral samples, and a Rician noise distribution were selected to gen-
erate a clinically realistic MR dataset, and a non-trivial
decomposition problem.

It was confirmed both by the visual comparisons (Fig. 1) and
evaluation metrics that the msNMF provided a decomposition in
high accordance with the true data, thus validating the implemen-
tation. The example, however, demonstrates both the ability and
limitation of the method. The imperfect mixture maps observed
for the purple and yellow component, in particular, are consistent
with a lower integrated signal intensity for these components and
a larger similarity between them. Both properties can make them
more difficult to distinguish in the factorization. Comparisons with
results from the standard NMF and mNMF [30] confirmed that
adding constraints tailored to this type of data improves the result
and increases the stability of the solution.

Fig. 3. Result of the msNMF for MET2 analysis of rat spinal cord. (a): The signal components, W. (b): The associated mixture maps, H, indicated by the frame and label colors.
Each column of images shows the maps for a specific rat (one from each group).
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The superiority to mNMF is particularly important, as this
method, among several BSS techniques extended with priors or
regularization in order to solve related problems [13,15,43–46],

is most similar to our proposed method. We emphasize that the
msNMF does not rely on specification of regularization parameters,
nor requires information from several contrast dimensions, and we
therefore consider it out of scope to compare msNMF to most alter-
native BSS methods imposing particular signal behaviour. The sim-
ple prior assumption of monotonicity of the individual signals and
their first-order derivatives have to our knowledge not been uti-
lized in a decomposition method before. These constraints intu-
itively fit many types of MR data.

A common problem of the Rician or noncentral chi distributed
noise present in MRI magnitude data, is a positive bias (noise floor)
for low SNR, and the effect is exacerbated using large coil arrays
and conventional sum-of-squares coil combination [47,48]. In the
validation example, this effect became evident for the yellow sig-
nal component (Fig. 1) for the added noise amplitude (r ¼ 0:06).
A pragmatic strategy to reduce such signal-dependent noise bias
is to estimate a single increasing component with monotonous
decreasing slope in addition to the decreasing components. This
may absorb a considerable fraction of the noise floor. To demon-
strate such flexibility of the msNMF, the strategy was tested for coil
array data in addition to the single element coil. The addition of a
spatially uniform growing component was found to improve the
estimates (Supplementary Material, Figure S4 and Table S1). The
uniformity condition on the mixture map was used to avoid exces-
sive ”cancellation” of the decaying signal components, which may

Fig. 4. EWF estimates for each of the spinal cord tracts (ROIs). (a): The ROI locations for an example rat; dorsal cortical spinal tract (blue), funicilus gracilis (cyan), rubrospinal
tract (yellow), vestibulospinal tract (orange). (b): Estimates provided by the msNMF: the mean fraction of component 1 (green in Fig. 3) within a ROI averaged across rats. (c):
Estimates reported in [11]. Error-bars indicate inter-animal sta.ndard deviation.

Fig. 5. (a): Scatter plot comparing EWF estimates from the msNMF with Wed from histology data. Colors indicate the ROI, symbols indicate the rat group, and error bars
indicate intra-ROI standard error. The black solid line shows a linear regression for all data merged together (r2 = 0.88). (b): The equivalent scatter plot presented in the source
paper [11].

Fig. 6. Prediction/reproducibility curve for the msNMF of the MET2 data set. The
curve is constructed by varying the rank of the decomposition and calculating the
Pearson correlation and explained variance using the split-half test.
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occur if the noise floor is not reached for all signals and thus is
difficult to identify. However, the presence of a positive bias
depends on the level of signal in the given voxel, so the assumption
of a constant bias across all voxels is not accurate in general. Even
so, the proposed strategy can be advantageous to directly account
for noise or other sources of bias as demonstrated with the simu-
lated data. Also, it is possible to enforce more involved constraints
for the mixture map such as a low frequency basis for each tissue
class. For the animal data, the noise bias was not an issue so the
described correction strategy was not applied.

The msNMF has proven effective for decomposition of the sim-
ulated data generated as a weighted mixture of three main signal
components. However, signals of biological origin is often expected
to have a continuous distribution of decay rates, e.g. a range of dif-
fusivities from variation in cell sizes, centered around a mean
decay rate. In the Supplementary Material (Figure S2), an extended
example of the simulated data is presented to show how the
method handles such data. For two of the main signal components,
the decay rate was drawn from a normal distribution. As the result
reveals, the mean signals were recognized, i.e. the decomposition
outcome did not change significantly. This shows that msNMF pro-
vides an informative and compact representation of the data with-
out necessarily describing all aspects of the underlying data.

As already mentioned, another typical quantitative analysis
strategy is the NNLS approach. In spite of the necessity for regular-
ization and averaging across ROIs, the NNLS approach is a relevant
reference for the proposed strategy, and results of the method for
two sets of simulated data are provided in the Supplementary
Material (Figure S5). The presented results rely on post-
processing involving k-means partitioning of the raw spectra into
three clusters. Final results are comparable to those for the msNMF
considering single-coil data, but are more affected by the Rician
noise for the coil array data reconstructed using conventional
sum-of-squares. Notably, our method decomposes mixed signals
in the domain of the acquisition, e.g. the echo time domain, and
is not relying on critical or equidistant sampling of the distribution
of T2 values, for example.

An alternative group of strategies worth mentioning is the CORE
(component-resolved NMR) processing family, typically used for
analysis of diffusion-ordered NMR spectroscopy (DOSY) data sets.
Examples are CORE [49], GRECORD [50], OUTSCORE [51], SILT-
DOSY [52], and one of the newest presented in the literature, the
InSpect algorithm [18]. As for the BSS methods, these techniques
have replaced the univariate processing (voxel-wise fitting) with
a multivariate decomposition. However, they still require choosing
an explicit MR signal model for the reconstruction [18]. As
described in the Introduction, complex biological conditions make
it difficult to formulate an accurate signal model a priori. Our intro-
duction of msNMF is motivated by this and a direct comparison to
methods from the CORE family is therefore not possible.

4.2. Ex vivo DWI data

The DWI dataset was used to investigate whether the extracted
components were in fact related to the local diffusion and thus a
”fingerprint” of the underlying tissue micro-structure. Being an
ex vivo dataset with a broad range of b-values, measurements for
two different temporal scales, and an accompanying thorough
analysis published in [35], it was well-suited for testing the pro-
posed method.

The comparison of the mixture maps differing by diffusion time
(Fig. 2c, right column), uncovered areas of high cell density, espe-
cially visual cortex and cerebellum [53,54]. In more detail, the
enhancement of the long-lived diffusion-weighted signal (green
component) for increased diffusion time is associated with the

degree of restrictions in the local tissue environment [35,55].
Therefore, the identified areas can be further categorized into very
restricted environments (cerebellum) and intermediate restricted
cell environments (visual cortex). This strong contrast across dif-
ferent areas of the cerebral and cerebellar cortex, revealed by the
maps, have to our knowledge not been presented based on other
MR contrast mechanisms before.

Thus, using two diffusion times and the msNMF for decomposi-
tion, the effect of time-dependent diffusion was convincingly
demonstrated, exactly as Lundell et al. aimed at when setting up
their experiment. Their analysis consisted of a voxel-wise calcula-
tion of the powder averaged signal difference at b = 4800 s/mm2

normalized to the b = 0 signal. The analysis revealed similar
time-dependent diffusion contrast, but was dependent on estimat-
ing the b = 0 signal from a 3rd order expansion of the signal in b
and thus delivered a more noisy map than the one presented in
Fig. 2c.

Through the use of non-conventional diffusion encodings with
general gradient waveforms, different effects related to the signal
attenuation in DWI (e.g. anisotropy, restrictions, exchange) can
independently be probed and detected as direct features of the
data or contrasts between measurements exploring single encod-
ing dimensions [35,56]. Time-dependent diffusion is a promising
marker of cell morphology and density in tumors [57]. This makes
the combination of msNMF applied to novel DWI data a potentially
powerful tool for characterization of tumor tissue that is generally
difficult to model, and thus relevant for e.g. therapy response eval-
uation. However, to adapt the acquisition for in vivo measure-
ments, fewer b-values (i.e. shorter scan time) and a more simple
gradient waveform are desired. For this data, it may thus be inter-
esting to investigate whether the separation into the three
diffusion-related components can be obtained with fewer mea-
surements, for example. Such analysis is beyond the scope of this
paper but possible now that the components are characterized.

Consideration should also be given to what tissue information
can be derived if only one data set was available, e.g if only the left
column of mixture maps is used (long diffusion time). The three
macrostructural brain tissues are easily distinguished. Gray matter
is separated from white matter, and firm tissue from aqueous solu-
tions. If the three decaying signal components each are fitted to a
mono-exponential function, the resulting decay constants would
be 0.1�10�3, 0.6�10�3 and 2.3�10�3 mm2/s respectively for the
green, purple and yellow signals. These values are within a range
of ADC values observed in the literature for white matter, gray
matter and CSF respectively, though the ADC is dependent on
acquisition method, handling of ex vivo material, temperature
etc. [58–60]. The fitted values are thus only included here to relate
the found components to a familiar characterization of diffusion. It
is evident that especially the purple signal component deviates
from an exponential decay as it reaches 0 for b = 4842 s/mm2. This
is an unrealistic behaviour indicating that all noise/left-over signal
is assigned to the green component for the last measurement, pos-
sibly an effect of the implicit sparsity of the NMF [19]. The effect
can potentially be reduced with signal sampling at even higher
b-values to allow all individual signals to reach the noise floor, so
they are easier to resolve.

A noticeable feature of the factorization is the alternative repre-
sentation of the signal variation between the two tissue types, gray
and white matter. A difference in the mixture of (mainly) two sig-
nal components discriminates the tissue types rather than a differ-
ence in a mono-exponential decay constant. This exemplifies that
the analysis provides a compact representation of the data that
may reveal relevant signal features without necessarily reflecting
the underlying time-dependent diffusion phenomena [61],
especially when data points are limited. The
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decomposition-based representation may robustly reveal useful
information about the local diffusion compared to a simplified
signal model vulnerable to noise and partial volume effects. Here,
it proved possible to capture cell density variation by means of
the factorization, thereby demonstrating a connection between
components and microstructure.

4.3. In vivo MET2 data

To further demonstrate the versatility of the method, in vivo
data was analyzed quantitatively to extract estimates of edema
water content similar to those obtained by Harkins et al. in [11].
Simultaneously, the method was tested as an alternative solution
for MET2 analysis, which in general is challenged due to the ill-
posed problem of inverting a sum of exponentials [31], but also
highly desired in order to obtain stronger quantitative relation-
ships between MR contrast and tissue microstructure [37,11,10].

The three extracted signal components (Fig. 3) are consistent
with T2-relaxation in the different compartments of white matter,
i.e. IME (green component), intra/extra cellular space (purple com-
ponent), and myelin water (yellow component). The visual con-
trast change observed in the mixture maps for HCP-affected rats
affirmatively indicates that the green component can be inter-
preted as the ”IME signal”, and literature confirms a decay constant
within the range 5–50 ms for water trapped in myelin sheaths [39].

The strategy used in Harkins et al. is similar to the NNLS
approach tested for the simulated data, but assumes a Gaussian
prior for the distribution of decay rates, and was found superior
to the standard NNLS [62]. The T2-distribution was fitted with up
to three Log-Gaussian shaped peaks (components), and this was
followed by a k-means algorithm to cluster the T2-values into
groups of short, intermediate and long decay. The resulting mean
decay constants of the distributions were roughly 9 ms, 40 ms,
and 150 ms, respectively, thus not far from the values obtained
by a mono-exponential fit to the three signal components of the
msNMF (12 ms, 44 ms, and 182 ms). The fitted decay rates are pre-
sented only to include a well-known characterization of the signal
profiles and show that results are consistent with the decomposi-
tion reported by the source paper [11] (also confirmed by the bar-
plots presented in Fig. 4).

Comparison to histology (Fig. 5a) is important for evaluation of
the proposed factorization. The high agreement between EWF esti-
mates and histology, revealed by an r2 of 0.88 (P< 0:001), confirms
that the decomposition is related to the underlying compartmen-
talization of the tissue, and demonstrates the method’s ability to
detect IME severity from T2-weighted relaxometry measurements.
However, similar to the results reported by Harkins et al., a small
overestimation of EWF compared to Wed was observed. In general,
one must be critical to the absolute values, from both factorization
(or any model) and histology. Explanations for the discrepancies
were discussed in [11].

Although the split-half experiment revealed a high repro-
ducibility for a decomposition of rank k ¼ 3, and the CV metric
for the simulation data revealed a relatively high stability of the
method, a stable quantitative measure is in general not guaran-
teed. A variability of the absolute EWF estimates across multiple
runs of the algorithm (as part of the initialization strategy) was
indeed observed, however at a lower level than the subject-
variability. This means that the relative difference of EWF between
rat groups and ROIs was stable, and the correlation of r2=0.88 with
histology was robustly observed (SD = 0.0019 for 50 runs).

The rank of the factorization was predetermined to k ¼ 3 to
match the decomposition presented by Harkins et al. However,
the pr-curve (Fig. 6) supports that two components may be suffi-
cient for a representative reconstruction of the data. Reasons could

be that the water exchange effectively merges several physical
compartments and diminish the MWF [11], or simply that com-
partments co-vary so a linear combination of two components is
sufficient to describe the relaxation within three different com-
partments. This also explains why estimation of the MWF may
not be trustworthy and thus is not considered here, although it is
sometimes a target for relaxometry measurements. Dependence
on the choice of dimensionality of the sub-system is a common
challenge for decomposition methods as there is no established
procedure for rank determination, and metrics from heuristic
approaches suggested in the literature are highly dependent on
the data properties, making it difficult to know when a metric is
suitable [27,63]. The pr-curve in Fig. 6 illustrates the problem, as
for a range of rank values (k ¼ ½2;4�) an acceptable compromise
is seen between reproducibility and degree of data explanation.
The suggested ”trial-and-error” rank-adjustment guided by left-
over anatomy in the residual image relies on a subjective inspec-
tion, which is a limitation of the method present when the under-
lying sub-system dimensionality is unknown. That being said, the
rank is the only free parameter of the analysis (with or without
the inclusion of a bias-compensating component). In the spectrum
of techniques ranging from restrictive modeling to completely
data-driven signal processing, the msNMF is in the unrestrictive
end while relying on the existence of compartments and using this
to enforce realistic signal behaviour, though possibly approximate,
e.g. due to pronounced intermediate exchange or parameter vari-
ability within physical compartments. The technique used by Har-
kins et al. is also flexible, but still assumes a distribution of one to
three Log-Gaussian shaped peaks of exponential time-constants.

Although assumptions of the signal behaviour are less specific
than in model-based analysis, the monotonocity requirement must
essentially be fulfilled. For clinical multi-echo spin-echo sequences
at fields higher than 1.5 T, for example, transients will typically be
present causing initial signal oscillations, which makes the msNMF
inappropriate as analysis strategy. Also, RF inhomogeneity correc-
tion may be necessary to make signal decay rates independent of
position in the coil. No such transients or inhomogeneity were
observed in the MET2 data, recorded with a preclinical scanner
delivering a train of near-accurate 180� refocusing flip angles,
why it was suited for demonstration of the msNMF.

Overall, the pursuit of micro-structural specificity, pioneered
with the myelin water determination for multiple sclerosis
patients, have throughout the last decade been in rapid develop-
ment, and several strategies exist for analysis of relaxometry data
[14,10,39]. The msNMF is not promoted as a replacement or advo-
cated as a general new tool for MET2 analysis. The two clinical data
examples included in this paper are used to exemplify the charac-
teristics and potential of the proposed analysis method, but not to
promote the method for these applications in particular or in gen-
eral. Many MR signals fall within the class of approximately multi-
exponential signals and when prerequisites are met, the method
offers a data-driven decomposition which may be useful either
for direct analysis or to inspire modeling, e.g. let the detected data
structure inform priors for a more specific parameterization. When
a monotonous slope signal decay or increase is expected, this rela-
tively simple and rapid analysis can give a compact, informative
representation of data.

5. Conclusion

The msNMF robustly separated MR signals into identifiable
components specific to the underlying structure, and produced
quantitative results consistent with those published in the source
papers using tailored analysis. The method is insensitive to
partial-volume effects and requires only a choice of rank, and
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optionally correction of noise biases. The msNMF is potentially
applicable to a broad range of multi-dimensional MR data. The
demonstrated sensitivity to cell density, for example, makes it a
candidate for tumor tissue characterization needed for prognosis
and treatment planning.
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Supplementary text 
 
A. Matrix definition 
 
The definition of the matrices, 𝐀 and 𝐁: 
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Where 𝐃12),*,…,, ∈ ℝ(89))×8 and 𝐄12),*,…,, ∈ ℝ(89*)×8 are defined as the following Toeplitz matrices: 
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𝐃1 and −𝐃1 are used for monotonically increasing and monotonically decreasing components, respectively.  
In the same way, 𝐄1 and −𝐄1 are used for components with a monotonically increasing first derivative and a 
monotonically decreasing first derivative, respectively. The first derivative of the signal is approximated by 
the slope of the linear segment between two consecutive measurements (mean value theorem). Δ𝑡K2),*..,89) is 
the interval between two consecutive measurements (𝑗 and 𝑗 + 1) of the independent variable (time, b-value, 
etc.). 
 
  



B. Objective function 
 
Since the Frobenius norm of the residual is used as objective function, the overall problem can be stated as  
 

				𝐽	 =
1
2
QR𝑋1K − [𝑊𝐻]1KX

*

1K

	= 	 ||	𝐗 −𝐖𝐇||]*  

 
 
Including a vector, 𝐮 ∈ ℝ)×_ , to allow individual weights of the 𝑛 observations, the objective function 
becomes:  

𝐽a 	=
1
2
Q𝑢1(𝐱1 −𝐖𝐡1)*
_

12)

 

 
 
 
 
Supplementary tables 
 
For coil array data, coil combination using the complex sensitivity profiles as weights is preferred as it does 
not introduce a noise bias in the resulting phased image. However, sum-of-squares coil combination is common 
and the effect of a Rician bias on the decomposition is therefore explored using realistic coil sensitivity profiles 
generated with the JEMRIS simulator (open source software, http://www.jemris.org/). The bias becomes 
particularly severe for low SNR and many coil elements, as reflected by the results presented in the following 
table.   
 
 

𝐍𝐜𝐨𝐢𝐥𝐬 𝐒𝐍𝐑	(𝛔) 𝐑𝐌𝐒𝐄𝐰	 𝐄𝐕𝐰 𝛒𝐇 𝐀𝐔𝐂𝐇 
 
1 

65.5 (0.02) 0.045  0.028 0.986  0.991 0.979  0.990 1.000  1.000 
21.8 (0.06) 0.059  0.063 0.961  0.954 0.938  0.943 0.999  1.000 
13.1 (0.10) 0.071  0.065 0.934  0.942 0.892  0.901 0.993  0.995 

 
8 

65.5 (0.02) 0.071  0.050 0.919  0.962 0.938  0.952 1.000  1.000 
21.8 (0.06) 0.186  0.092 0.327  0.915 0.758  0.767 0.934  0.867 
13.1 (0.10) 0.231  0.163 0.699  0.899 0.361  0.318 0.686  0.706 

 
16 

65.5 (0.02) 0.070  0.048 0.909  0.964 0.939  0.955 1.000  1.000 
21.8 (0.06) 0.206  0.070 0.118  0.940 0.773  0.799 0.938  0.951 
13.1 (0.10) 0.365  0.137 0.119  0.929 0.313  0.600 0.707  0.818 

 
32 

65.5 (0.02) 0.074  0.059 0.900  0.942 0.945  0.954 1.000  1.000 
21.8 (0.06) 0.207  0.133 0.071  0.595 0.796  0.824 0.944  0.958 
13.1 (0.10) 0.221  0.115 0.798  0.908 0.557  0.653 0.728  0.774 

Table S1. The performance of the msNMF for a set of simulations with varying SNR and number of receive coils (Nuvwxy), 
indicated in the two left-most columns. The SNR is calculated as the mean signal across the "object" for the first 
measurement (m=1) divided by σ, specifying the level of noise added. The following columns show evaluation metrics 
for the factorization: 𝐖 is compared to true signals using the root mean squared error (RMSE) and the explained variance 
(EV), and 𝐇 is compared to the binary true maps using the Pearson correlation coefficient (𝜌) and the area under the 
receiver operating characteristics curve (AUC). The orange values indicate the results when one growing component has 
been added (𝑘 = 4, 𝑐 = 1) to partially compensate Rician noise bias. The improvement is prominent for the combination 
of coil arrays and low SNR, especially considering reconstruction of the signal profiles (𝐖) as also illustrated in Figure 
S4. 
  



Supplementary figures 
 
  

 
Figure S1. Simulated data (𝜎 = 0.06, one uniform receive coil). (a): The three basic signals are seen to the left. In the middle 
their mixing pattern is illustrated. To the right, the final mixed signals scaled to start in 1 are seen. (b): The spatial presentation 
of the final simulated data for all eight measurements. 
 
 



 
  

 
Figure S2. (a): Simulated data (𝜎 = 0.06, one uniform receive coil) where the two mono-exponential signal components, 
𝑦)(𝑥) and 𝑦�(𝑥), have decay rates (𝑟) drawn from a normal distribution, 𝒩(𝜇, 𝜎*). For 𝑦)(𝑥), 𝑟	~𝒩(0.01,0.0025*) and for 
𝑦�(𝑥), 𝑟	~𝒩(0.15,0.0375*), i.e. the means correspond to the original decay rates and the standard deviations correspond to 
25% of these. To the left, the signal components are visualized with ±𝜎 and ±2𝜎 marked by the dark and light shaded areas, 
respectively. To the right, their mixing patterns are illustrated. (b): The msNMF result compared to the true decomposition. 
The spatial mixing map (𝐇) is compared to the projection of the noise-free data on to the three mean signal components, 
representing the optimal 3-component decomposition in absence of noise.  
 



  

 
Figure S3. (a): The true decomposition compared to the result of the standard NMF, i.e. without any monotonicity constraints 
(EV𝐰 = 0.922 and AUC𝐇 = 0.989). (b): The true decomposition compared to the result of the monotonous NMF, i.e. with a 
monotonicity constraint only for the non-differentiated (EV𝐰 = 0.926 and AUC𝐇 = 0.983). The signal components are given 
to the left and the corresponding mixture maps to the right. The cyan numbers are mean±SD of the encircled voxel values. 
Comp. = component.  
 



 
 
  

 
Figure S4. Results of the msNMF for simulated data with 𝜎 = 0.06 and 16 receive coils (sum-of-squares reconstruction) with 
realistic sensitivity profiles generated using the JEMRIS simulator (open source software, http://www.jemris.org/). 
Factorizations without (𝑘 = 3) and with (𝑘 = 4, 𝑐 = 1) the addition of a spatially uniform growing component are compared. 
(a): The extracted signal components. (b): The mixture maps. The uniform map for the growing component is left out. The 
true components are included for comparisons. Comp. = component. 



 
 

 
Figure S5. Results using regularized NNLS with cross-validated penalty parameter and log-spaced decay rates (software from 
the open-source AnalyzeNNLS, http://sourceforge.net/projects/analyzennls/). In each subfigure, the result is presented by the 
raw spectra, the summed spectrum with the partitioning of the decay rates using k-means clustering (𝑘 = 3) indicated, and 
finally the resulting “cluster maps” (H), compared to mixture maps of the msNMF and true maps (with the background masked 
away). (a): Results using simulated data with 𝜎 = 0.06 and a single receive coil. 𝜌	and AUC for H (NNLS) compared to true 
maps are 0.915 and 0.996 respectively. (b): Results using simulated data with 𝜎 = 0.06 and a 16-element coil array (sum-of-
squares reconstruction). 𝜌 and AUC for H (NNLS) compared to true maps are 0.640 and 0.621 respectively. 
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Abstract. Objective In the field of radiation oncology, the benefit of MRI goes

beyond that of providing high soft-tissue contrast images for staging and treatment

planning. With the recent clinical introduction of hybrid MRI linear accelerators (MR-

Linacs) it has become feasible to map physiological parameters describing diffusion,

perfusion, and relaxation during the entire course of radiotherapy, for example.

However, advanced data analysis tools are required for extracting qualified prognostic

and predictive imaging biomarkers from longitudinal MRI data. In this study,

we propose a new prediction framework tailored to exploit temporal dynamics of

tissue features from repeated measurements. We demonstrate the framework using

a newly developed decomposition method for tumor characterization. Approach Two

previously published MRI datasets with multiple measurements during and after

radiotherapy, were used for development and testing: T2-weighted multi-echo images

obtained for two mouse models of pancreatic cancer, and diffusion-weighted images

for patients with brain metastases. Initially, the data was decomposed using the

novel monotonous slope non-negative matrix factorization (msNMF) tailored for MR

data. The following processing consisted of a tumor heterogeneity assessment using

descriptive statistical measures, robust linear modelling to capture temporal changes of

these, and finally logistic regression analysis for stratification of tumors and volumetric

outcome. Main Results The framework was able to classify the two pancreatic tumor

types with an AUC of 0.999, P < 0.001 and predict the tumor volume change with

a correlation coefficient of 0.513, P = 0.034. A classification of the human brain

metastases into responders and non-responders resulted in an AUC of 0.74, P = 0.065.
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Significance A general data processing framework for analyses of longitudinal MRI data

has been developed and applications were demonstrated by classification of tumor type

and prediction of radiotherapy response. Further, as part of the assessment, the merits

of msNMF for tumor tissue decomposition were demonstrated.

Keywords: prediction framework, decomposition, longitudinal MRI, radiotherapy, tumor
features, treatment response. Submitted to: Phys. Med. Biol.
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1. Introduction

MRI has become a crucial modality within cancer management. With the ability

to deliver high soft-tissue contrast, conventional MRI techniques are part of clinical

routine to enable morphological characterization of tumors. Beyond that, advanced

MRI techniques that allow quantitative analysis can characterize the local tumor micro-

environment. This increases accuracy in tumor grading, subtype classification and

the chance to offer an optimal therapy plan [1, 2]. An example is diffusion-weighted

MRI (DWI), which is sensitive to the local cellular density, potentially important for

identification of sub-regional tumor load and for early evaluation of a tumor’s response

to therapy [3]. This is due to the response to ionizing radiation at a cellular level

occurring on a much shorter timescale (hours to days) than the volumetric response [4].

With an early response assessment there is time to adjust the therapy plan to increase

treatment efficacy or reduce unnecessary radiation [5, 6, 7, 8].

The recent introduction of hybrid MRI linear accelerator systems (MR-Linacs)[9,

10] facilitates daily MRI-based adaption of the dose plan and offers opportunities for

longitudinal MRI studies of therapy response within the normal clinical workflow. How-

ever, there is a need for more custom analysis strategies for the growing pool of longi-

tudinal MRI data. Currently, only 16 previous human studies include more than two

measurements during treatment [8], and as few as two datasets include daily measure-

ments [11, 12]. An analysis pipeline customized for longitudinal datasets requires a

method for investigating temporal tumor dynamics, but also a procedure for extracting

quantitative information from multi-contrast MRI data (consisting of three spatial di-

mensions and one b-value dimension for diffusion-weighting, for example). Most previous

studies have utilized a model-based parametrization of the data for quantification and

e.g. showed correlations between the DWI-derived apparent diffusion coefficient (ADC)

and treatment outcome, e.g. [13, 14], or between dynamic contrast-enhanced (DCE)

MRI parameters and tumor subtype and prognosis, e.g. [15, 16]. Model-based analyses,

although useful, carry the risk of introducing biased or misleading estimates if model

assumptions are wrong, e.g due to partial-volume effects. Novikov et al [17] outlines

pitfalls of modelling tissue microstructure, and Satta et al [18] highlights contradict-

ing correlations found across studies that analyzed DWI- and DCE-derived parameters,

demonstrating the problem and hence a need for alternatives such as data-driven anal-

ysis.

Among the few existing studies that included longitudinal measurements in their

correlation analysis, most of them investigated the temporal changes only by pairwise

comparisons [19, 20, 21, 22, 23, 24]. This results in extensive multiple comparisons

problems for studies involving more than 2-3 measured time points. Additionally, data

trends unfolding over several time-points will be difficult to identify, though they may

be important in a therapy outcome prediction, for example. Advanced models such as

neural networks has been used to discover patterns across time-resolved measurements
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[25, 26], but these analyses were voxel-based and thus depended on an exact image

registration between measurements. This may be problematic if morphological changes

occur during the course of disease.

Therefore, we propose an analysis framework which avoids both model-based

parametrization for quantitative mapping and the need for voxel correspondence over

time [7]. The framework provides all processing steps necessary to analyze and exploit

the dynamics across longitudinal measurements for a final prediction. As an alternative

to model-based analysis, the framework utilizes a data-driven blind-source separation

technique to decompose the MRI data. Though any decomposition technique in prin-

ciple can be used, we suggest and explore the recently published monotonous slope

non-negative matrix factorization (msNMF)[27]. The msNMF is specifically tailored for

decomposition of MR signals and has proven useful for extracting realistic components

informative of the underlying tissue structure.

The aim of this paper is to present a full prediction framework in which longitudinal

MRI data is analyzed in order to extract information with potential prognostic or

predictive value in cancer management, and to explore the msNMF as the initial

decomposition method for tumor tissue characterization. We use two previously

analysed and published data sets, T2-weighted multi-echo data for pancreatic tumor

type classification in mice, and DWI of human brain metastases for outcome prediction.

2. Methods

2.1. The prediction framework

An overview of the prediction framework is summarized in Figure 1a, and described

below.

2.1.1. Data-driven decomposition As a first step, the data matrix was separated into

latent signal components using msNMF, which is an extension of standard non-negative

matrix factorization (NMF). It constrains the signal components and their slopes (first

derivates) to be monotonous, thus enforcing near-exponential signal decays consistent

with prior expectations for the relevant data types (e.g. DWI or relaxometry). A

detailed description of the msNMF was published by Rahbek et al [27]. For brevity,

only the resulting optimization problem is summarized here:

C = ∥X−WH∥2F (1)

The norm of the residual, C, is minimized, where ∥ · ∥2F denotes the Frobenius norm.

X ∈ Rm×n
+ is the data matrix for m temporal measurement points (e.g. echo times)

and n sources (e.g. voxels). WH is the low-rank representation of the data with W

∈ Rm×k
+ being the k fundamental signal profiles and H ∈ Rk×n

+ the associated spatial

distributions (”mixture maps”). C is minimized using an alternating non-negative least
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squares (ANLS) algorithm, i.e. by optimizing one factor while keeping the other fixed.

H is optimized under a non-negativity constraint, and W is optimized under both

a non-negativity constraint and the additional monotonicity constraints. Strategies

demonstrated by Rahbek et al [27] were followed regarding implementation including

initialization, stopping criteria and rank determination.

2.1.2. Tumor heterogeneity assessment The decomposition output, k mixture maps

describing the spatial distributions of different signal features across the volume, was

analyzed for assessment of tumor features using a set of first-order radiomics. Five

percentiles, (0.1, 0.25, 0.5, 0.75 and 0.9), were used to characterize the intensity

distribution across the tumor volume, defined by a region-of-interest (ROI) for each

component. ROI histogram values have previously been demonstrated as relevant

descriptors of tumor structures [5, 7, 28, 29]. Additionally, they are robust to outliers

and imperfect image registrations as opposed to voxel-based values and the ROI mean.

The quartiles (0.25, 0.5, and 0.75) were supplemented with bins for extreme values, (0.1

and 0.9), to capture features of non-normal distributions while disregarding outliers, if

such are present. The ROI delineation is explained in coming subsections dedicated to

the individual data sets.

2.1.3. Temporal dynamics analysis The five component percentiles were calculated

for all subjects and scan time-points. To capture a trend across time-resolved

measurements, a linear fit was made for each percentile as a function of days after

first treatment. A Huber loss function was used in the regression for the fit to reduce

influence of potential outliers [30]. The baseline scan (obtained prior to treatment) was

left out from the fit. Instead, the difference between the values at baseline and the first

scan after treatment onset was calculated to include the immediate treatment response

explicitly in the prediction model. The final prediction features then constituted the

slope and intercept of the linear fit and this “difference to baseline” for each of the five

percentiles generated for each of the components. An example is presented in Figure 2

using one of the observations in the DWI dataset. Lastly, each feature was normalized to

the range [-1 1], such that all features were weighted equally in the prediction analysis.

2.1.4. Feature selection and prediction modelling The above processing resulted in a

large number of features compared to the number of samples. To avoid overfitting

and numerical instability [31, 32], the prediction analysis was thus carried out using an

integrated feature selection process. Logistic regression was used as statistical model

for prediction of classes and multiple (linear) regression for prediction of continuous

outcomes. A nested cross-validation (CV) procedure was implemented for model

training to avoid information leakage into the test data. In the outer CV loop, stratified

K-fold cross-validation was used to divide data into a number of randomly stratified

groups equal to the number of samples in the least frequent class for the classification

analysis. For the regression analysis, leave-one-out cross-validation was used, resulting
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Figure 1. (a) The full prediction framework from the data decomposition to the final

prediction. A nested cross-validation procedure was used for the feature selection and

model training (gray box). This process is illustrated more detailed in (b).

in one sample per group. As the total number of samples were low, this setting was used

to ensure that the maximum number of samples were available for training. The inner

CV loop then served to determine which features were most relevant for prediction,

and the input data was thus again divided into test and training data (Figure 1b).

To this end, we relied on a greedy approach where the features were ranked according

to test statistics from a univariate Student’s t-test with pooled variance within the

remaining groups. The performance estimated in the inner CV loop was used to

determine the optimal threshold, and the model was retrained on the entire training set

with the optimal threshold. As we did not use regularization in the current analysis, the

maximum number of features was set to 10 to avoid overfitting and rank deficiency. The

final generalization performance was evaluated in terms of the area under the receiver

operating characteristic curve (AUC) or the Pearson correlation coefficient (ρ). The

significance of the performance metrics was evaluated by a permutation test where an

empirical null distribution was formed by repeating the entire analysis 5000 times with

randomly permuted labels, which is a commonly used method for validating prediction

performance [33]. A threshold of α = 0.05 defined statistical significance.
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Figure 2. An example of the temporal fit using a Hubert loss function (dotted line).

”Days after first treatment” is used as explanatory variable. The 25th percentile of

component 1 for a random tumor is used as example data. The fitting parameters

together with the difference to baseline (dashed line) are marked with a red font as

these constitute the prediction features for this given case.

2.2. T2-weighted multi-echo imaging of mice

This dataset was previously published by Tomaszewski et al [34] and consists of MR

imaging of mice grafted subcutaneously with either slow growing human pancreatic

adenocarcinoma BXPC3 (N=8) or more aggressive mouse pancreatic adenocarcinoma

Panc02 tumors (N=10). A multi-slice multi-echo sequence with 32 echoes and 7 ms echo

spacing was used. The sequence was part of a full MRI protocol applied two hours prior

to irradiation and every 3 days after, using a 7 T animal scanner (Bruker horizontal

bore, running Paravision 6.0.1). The final imaging was performed at day 9 and day 12,

respectively, for the Panc02 and BXPC3 group. The radiotherapy consisted of a single

dose of 10 Gy irradiation, matching the dose per fraction of a clinical stereotactic body

radiation protocol. The events of imaging and radiation is schematically illustrated in

Figure 3a.

For each mouse and scan session, the tumor region, i.e. the region-of-interest (ROI),

was delineated on a high-resolution T2-weighted anatomical scan included in the full

protocol. The ROI voxels for all mice and all scan days were pooled to a single [Nechoes×
Nvoxels] matrix for the msNMF analysis. The data was normalized to start at intensity

1 to mitigate effects of irrelevant signal behavior across the brain, e.g. stemming from

receive coil inhomogeneities, which otherwise would influence the decomposition.

In the source paper [34], Tomaszewski et al calculated model-based T2-values for

each voxel in the tumor ROI and showed (statistical) differences between the two tumor

types. Additionally, the paper revealed correlations between the T2 inter-quantile range

and the therapy response defined as the tumor volume change measured between the two

last MRI scans. In this study, the data was thus ideal to test the proposed framework

for both a classification of the two tumor types and a prediction of the therapy response.
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For the therapy response prediction, the BXPC3 and Pan02 groups were pooled together

due to their small sample sizes.

2.3. DWI of brain metastases

This clinical dataset was previously analyzed by Mahmood et al [11, 35, 36] and consists

of MRI brain scans of cancer patients undergoing palliative radiotherapy. The data was

recorded using a 1 T MR system (Panorama, Philips Healthcare, The Netherlands). In

addition to T1- and T2-weighted imaging, the MRI-protocol included an echo-planar

imaging (EPI) DWI sequence with eight b-values of [0, 50, 100, 150, 400, 500, 600, 800]

s/mm2, three orthogonal diffusion-weighting directions, an effective diffusion time ∼49

ms, and a prior spectral inversion module (SPIR) for fat-suppression. The radiotherapy

consisted of 10 fractions of 3 Gy whole-brain irradiation delivered over two weeks. The

MRI scan sessions took place prior to, during, and after the treatment period (Figure

3b).

For each patient, one to three brain metastases were delineated by a radiologist

using b=800 s/mm2 images, guided by the T2-weighted data. All scans were aligned

with the baseline scan using rigid registration (SPM12 Statistical Parametric Mapping

software, version 7487 [37]) such that the baseline tumor delineation could define the ROI

for all scans. However, ROIs were expanded using a morphological dilation of 3 voxels

(5.4 mm). This was both to include sub-clinical disease, edema etc. and to increase

robustness to imperfect image registrations or inaccurate tumor delineation. ROI voxels

were pooled for all metastases, i.e. from all subjects and scan days, resulting in a [Nvoxels

× Nbvalues] data matrix for the msNMF, although input signals largely affected by noise

were discarded. These voxels were defined as having maximum signal for a non-zero

b-value. The data was normalized to start at an intensity of 1.

The full framework was tested for prediction of the local control evaluated at a

follow-up scan obtained 2-3 months after last irradiation. The tumor volume change

from baseline to follow-up, based on a radiologist’s delineation on a high-resolution

T1-weighted scan, was used to divide the metastases into responders (more than 30

% volume shrinkage) and non-responders (less than 30 % volume shrinkage). A total

of 31 metastases (23 responders and 8 non-responders) distributed in 15 patients were

analysed.

3. Results

3.1. T2-weighted multi-echo imaging of mice

3.1.1. Decomposition with msNMF An inspection of the decomposition of ranks two

to four resulted in a decomposition into three components, corresponding to 99.4%

explained data variance. Figure 4a shows the resulting signal components, all being

relatively smooth, realistic signal decays. The associated mixture maps (H) are

presented in Figure 4b for a representative mouse from each group (BXPC3 and Panc02)
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Figure 3. Timeline of the radiotherapy and MRI events, where the MRI baseline scan

(last scan before radiation) defines ”day 0”. (a): The events for the mice pancreatic

cancer study. (b): The events for the human brain metastases study. Notice the

interleaved structure with an MRI scan right after and right before every second

radiotherapy fraction*.

with the tumor ROIs shown in red. Even though both tumor types predominantly

contain the intermediate decaying signal component (yellow), it is clear from the images

that the two tumors differ in tissue heterogeneity. Looking at the mixture maps for

the long-lived signal component (blue), for example, only the BXPC3 tumor contains a

sub-area with relatively high intensity.

3.1.2. Classification of the tumor type Due to the randomization included in the K-

fold CV procedure, running the prediction framework 50 times resulted in a mean AUC

score of 0.999, i.e. an almost perfect classification of the two tumor types. Figure 5

shows this score relative to the null distribution of 5000 runs with permuted class labels.

The corresponding p-value was equal to 0.0004, which confirms that the classifier has

learned a significant class structure and could distinguish the two tumor types.

Except for a single feature related to the green signal component, the blue long-

lived signal component was the only relevant predictor in a classification of the tumor

type (Figure 5). Four percentiles are represented for this component distribution, and

both changes in intercepts and slopes explain a significant part of the variance. The
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Figure 4. (a) The msNMF signal components (W) of mouse data. (b) The associated

mixture maps (H) for two mice: one from each group. The red contour indicates the

tumor ROI. The images are presented with a common, arbitrary intensity scale.

Figure 5. The result of the logistic regression for classification of tumor type. (a):

The model AUC score (red line) compared to the null distribution generated from

5000 runs with permuted class labels (P=0.0004). (b): The most represented model

features. The bar color indicates msNMF component, and PXX indicates percentile

XX. The ”slope” and ”intercept” are from the temporal linear regression model. The

”difference to BL” refers to the difference between the baseline scan and the subsequent

scan at day 3.

latter indicates that the signal characteristics of the two tumor types differ with respect

to both starting point and changes following radiation.

3.1.3. Prediction of volume change The two groups were pooled together to a total of

18 samples for the prediction of the tumor volume change, i.e. the growth between

day 6 and 9 for Panc02 tumors and between day 9 and 12 for BXPC3 tumors.

A correlation between the true and predicted values resulted in a correlation score

ρ = 0.513 (Figure 6b), which compared to the null-distribution corresponded to a p-

value of 0.034 (Figure 6a) reaching statistical significance. Again, features of the blue

long-lived signal component were clearly of most importance to the prediction, especially

the 90th percentile intercept and the 25th percentile slope (Figure 6c).
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Figure 6. The result of the multiple linear regression for prediction of tumor volume

change. (a): The model Pearson’s correlation score (red line) compared to the

null distribution generated from 5000 runs with permuted labels (P=0.034). (b):

True versus predicted volume changes together with a linear fit presented with 95

% confidence bounds. (c): The most represented model features in the 18 CV runs.

3.2. DWI of brain metastases

3.2.1. Decomposition with msNMF Considering the mix of tumor and sub-clinical

tissues included in the ROIs, it was expected that at least three signal components

were distinguishable. The data was thus inspected and found to contain three to

five components, and as Figure 7 reveals, a rank of four was chosen for the final

decomposition. The four components were able to explain 99.1 % of the data variation,

and their behavior differed from each other both as a function of b-value (Figure 7b) and

spatially (Figure 7c). The close-ups in Figure 7c show that for this example, the main

tumor region (central part of the magenta ROI) primarily contains the two intermediate

decaying signal components (yellow and green) while a different signal composition is

seen for the surrounding abnormal tissues. The very rapidly decaying signal component

(red) shows no contrast in the presented slice except for a few small spots of high

intensity which could well be blood vessels. The intensity may be affected by flow but

the attenuation of blood signal with b-value will be strong in any case.
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Figure 7. The msNMF components for an example patient with a brain metastasis,

at scan day 1. (a): b-value=0 s/mm2 image from the initial scan session. The magenta

ROI is the result of dilating the radiologist’s delineation. (b): The signal components

(W). (c): The associated normalized mixture maps (H) indicated by frame colors.

The cyan box surrounds the tumor area and marks the region magnified in the bottom

row of images.

3.2.2. Prediction of therapy response For the classification of responders versus non-

responders 50 prediction models were generated due to the randomization included in

the K-fold CV procedure. This resulted in a mean AUC score of 0.74, which compared to

the null distribution corresponded to a p-value of 0.065 (Figure 7). The relation between

tumor features and therapy outcome was thus not strong enough for the prediction to

be significant at an α = 0.05 level. The most informative feature was the start median

(P50 intercept) of the b=0 s/mm2 data (Figure 6).

4. Discussion

The main purpose of this study was to present and demonstrate a full analysis

framework utilizing longitudinal MRI measurements for prognosis and prediction of

cancer treatment outcome. Our work was motivated by the recent release of MR-

Linacs, which is expected to increase the amount of longitudinal MRI cancer studies

in the coming years. Additionally, the potential problems and pitfalls connected with
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Figure 8. The result of the logistic regression for classification of metastasis into

responders/non-responders. (a): The model AUC score (red line) compared to the

null distribution generated from 5000 runs with permuted class labels (P=0.065). (b):

The most represented model features. The bar color indicates signal/component, and

PXX indicates percentile XX. The ”slope” and ”intercept” are from the temporal linear

regression model. The ”difference to BL” refers to the difference between the baseline

scan and the subsequent scan (day 1).

model-based analysis pointed out by, e.g., Novikov et al [1] and Satta et al [2] motivated

a framework that avoids model-based parametrization. To show its flexibility and range

of applications, the framework was demonstrated using two datasets that varied both

regarding MR contrast, number of contrast measurements, and number of time-resolved

scans. Though results were statistically significant only for the T2-weighted multi-echo

dataset, the framework could handle both types of data.

4.1. T2-weighted multi-echo imaging of mice

The preclinical data published by Tomaszewski et al[3] was ideal to use for framework

testing. Firstly, it included a set of well-resolved signals (short echo spacing) measured

multiple times during the treatment period. Secondly, the analyses of Tomaszewski et

al revealed interesting findings regarding the predictive value of the T2 inter-quantile

range (reflecting tumor heterogeneity), which were supported by histology. Finally, the

two pancreatic tumor models allowed to test the framework’s ability to do a simpler

tumor classification before testing for prediction of outcome.

The three signal components detected by the msNMF analysis clearly presents dif-

ferent relaxation features of the tumor tissue. In the raw data, decay curves contained

signal transients from RF inhomogenety in the beginning of the echo train appearing

as small oscillations, but the components are unaffected due to the msNMF constraints

(Supplementary Figure S1). As discussed in Rahbek et al[27], the decomposition is tai-

lored to give physically meaningful components. In some cases, however, the data may

not be sufficiently informative to distinguish the true (underlying) signal components

and different solutions may explain the data almost equally well. Nevertheless, the re-
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sulting decompositions may well carry predictive value.

The prediction analysis was able to distinguish between the two tumor types with

very high accuracy, and the successful stratification largely depended on tissue informa-

tion involving the long-lived signal component. This agrees with results of the source

paper [34] revealing that the BXPC3 tumor has a broader distribution of T2-values in-

cluding a longer T2 relative to the Panc02 tumor, though direct comparisons are difficult

since standard T2 estimates are compromised by partial-volume effects. Satisfactorily,

histology data confirmed a lower cellular density and more heterogeneous tissue for the

BXPC3 tumor, consistent with the detected prominence of a long-lived fluid signal [38].

Although the convincing histological difference between the two tumor types allowed

a robust classification to be expected, the results confirm that relevant tissue informa-

tion is preserved throughout the comprehensive processing and used in the classification.

The analysis was also able to predict the tumor volume change with a significance

of p=0.034 compared to the null distribution, a satisfactory prediction considering the

low number of samples for both training and testing as well as the heterogeneity intro-

duced by the use of two distinct tumor models. Again, the long-lived signal component

was crucial, both the estimated starting point and the rate of change. One explanation

could be that these values relate to the level of cell death and formation of necrosis

(supported by the histological analysis), which naturally alters the local T2-weighted

relaxation. Specifically, T2-values decrease with increasing cell density [38]. While

necrosis is an expected response to radiation, the level of necrosis before treatment can

conversely also affect the response [39, 40]. Tomaszewski et al found necrosis to be

reflected in a heterogeneity measure (the T2 interquartile range) [34]. Our results point

at the abundance of the long-lived signal component as a possible indicator of necrosis.

Due to limited data, it was necessary to pool the two tumor groups for the outcome

prediction. However, underlying biological differences may make it difficult to find a

general correlation between the data and the tumor volume response. For example, cell

swelling, the extent of which depends on the tumor type, may occur during the initial

phase of the therapy-induced apoptosis [7, 41]. If this or other radiobiological traits dif-

fer between Panc02 and BXPC3 tumors, it may explain why features of the immediate

radiation response were not relevant to the prediction model. Tomaszewski et al sup-

ports this, as they reported that slowdown of tumor growth rate was detected already

as early as day 3 for the Pan02 tumors but not until day 6 for the BXPC3 tumors.

Nevertheless, the use of two groups in one model makes the solution more generalizable,

even if the model performance is not as good. It is highly encouraging that a significant

prediction of the tumor volume change was obtained despite of variations in tumor type.

The analysis of the mice relaxometry data has confirmed the potential of our

framework and revealed that the signal component with a slow decay (long T2) was
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important in terms of successfully classifying tumor type and predicting tumor volume

change. We cannot expect it to be a general finding, but the meaningful biological

link to necrosis and high heterogeneity is interesting. Larger datasets are necessary to

robustly identify signal trends and relate these to tissue features.

4.2. DWI of brain metastases

The DWI dataset previously presented by Mahmood et al [11] is rather unique as it

contains many b-values and consists of scans acquired at each of the ten fractions dur-

ing the radiotherapy course. These properties made the dataset suited for testing of

the proposed framework, although the sample size is too small to expect reliable pre-

dictions. Additionally, the work by Mahmood et al [35, 36] showed differences between

responders and non-responders with respect to the relative ADC change during therapy

and thus indicated that DWI signals carry information useful for early stratification of

treatment response, in consistency with other studies [8, 42, 20].

The prediction was close to the threshold of significance (AUC=0.74, p=0.065)

indicating a possible relationship between the data and the response labels. The het-

erogeneity of the data could be one reason for the non-significance. The metastasis

originated from six different primary tumor types (listed in Mahmood et al [36]), and

excessive variation can make it difficult to establish a general relationship between the

signal signature and the treatment outcome with limited data. The driving feature in

the prediction originated from the b=0 s/mm2 data. A prediction test that included

only these T2-weighted data led to a very similar result (AUC=0.74, p=0.052), indicat-

ing that local T2-relaxation was relevant, while diffusion-weighted signal did not provide

additional information for the response stratification in this case. It should be empha-

sized that demonstrating group differences of the ADC as in [35, 36] does not necessarily

imply that a general pattern from input data to output label can be learned. Inter- and

intra-tumor heterogeneity may dominate the variation in the diffusion-weighted data.

There is a notable limitation connected to the use of numerical bounds to separate

and define non-responders from responders as was the case for this data. The RECIST

guidelines[43] were followed except for using tumor volume instead of tumor diameter

(as in [35, 36]). The dichotomization becomes particularly problematic here because

several observations out of the small cohort (N=31) had a relative volume change close

to the threshold. We also attempted prediction of the actual volume change using a

regression model instead, but this resulted in a poor prediction outcome (analysis not

shown). Despite the highlighted data challenges, it was demonstrated that the frame-

work is well-suited for longitudinal study designs and relevant data types, which was a

main objective.

A challenge not specific to this data, but more general for studies relying on tumor
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features, involves the definition of the tumor ROI, for example which images (DWI,

T2-weighted,. . . ) to use for delineation and which target volume (gross tumor volume,

clinical target volume, viable tumor volume, etc.) to choose [44, 45, 46]. Mahmood

et al showed how the ROI delineation strategy in conjunction with the signal fitting

method affected the estimated ADC changes [11]. This is one of the reasons that

our framework avoids model-based parameter estimation and is designed to be less

sensitive to ROI variability. The unsupervised component analysis is not confounded

by intra-voxel heterogeinity, and the ROI dilation and histogram-based assessment of

tumor features reduce the significance of exact delineations. Nevertheless, there is still

reason to be critical towards the choice of target and ROI dilation. We utilized the

delineations from [35], i.e. high-intensity regions at b=800 s/mm2 corresponding to

“viable” tumor dilated by approximately 5 mm, and obtained reasonable results of the

framework. These choices deserve investigation in studies with more data, and optimally

an automatic segmentation process can eventually replace the manual delineation.

For the preclinical data example, the mice tumors, which are generated from subcu-

taneous cell injections into the hind leg, resulted in clearly delimited large tumor regions

throughout the course of monitoring, why the ROI strategy was not an issue there.

An important aim of the proposed framework is the utilization of information from

all scans simultaneously. Previous longitudinal studies assumed independence between

the data points and treated them individually, although being related to the same pa-

tient. We argue it is better data handling to include the measurements’ dependency,

especially as there may be predictive value of the early changes for the later therapy

outcome. Also, with the improved availability of MR-Linacs there is less reason to settle

for a single scan time point. A robust linear fit has been proposed for this processing

step because it is less sensitive to small variations (noise) in the data than a fit of

higher order, which also introduces ambiguity of fitted coefficients when linear fitting is

sufficient. Linear fitting is also more robust towards missing measurements and which

time-points that are part of the longitudinal scan scheme. It is, however, possible to

use more flexible modelling in the temporal dynamics analysis, if this can be trusted to

generalize across observations without overfitting.

The proposed framework for analyzing longitudinal MRI datasets for tumor disease

management was presented and demonstrated in a structured manner (Figure 1),

highlighting all processing steps necessary to go from high-dimensional MR data to

a final prediction including an unbiased performance evaluation. The cornerstones of

this unique framework are the data-driven signal decomposition that avoids model-

based parametrization, and the histogram-based tumor heterogeneity assessment, where

tracking of individual voxels is unnecessary. Simultaneously, the framework is flexible

and allows the user to replace some of the suggested methods, including the choice

of data-driven decomposition, ROI definition, and temporal dynamics analysis. The

decomposition strategy and its associated assumptions regarding the data structure
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must be appropriate for the particular data. The unique constraints of the msNMF made

it an ideal choice for the given data examples. The fact that the framework functioned as

anticipated and even delivered convincing results for the mice data reinforces the choices

made here, and proves msNMF to be a potentially relevant decomposition technique for

identifying tumor-specific signal features. The two demonstration examples indicated a

value of the sources of tissue contrast to stratify tumors and predict therapy response.

These results show the potential of the method for detection of biomarkers sensitive to

e.g. treatment-induced changes.

For research studies, it is in principle advantageous to use independently suggested

analysis frameworks to avoid confirmation biases, but the analysis should also match

the particular data at hand. The diverse data of the example studies demonstrated

that the framework is sufficiently versatile, and thus a relevant candidate in many cases.

Overall, there are no limitations to the type of input features in the prediction, which

can also be a mix of e.g. imaging and biometric features.

5. Conclusion

Our study presented a new prediction framework developed for analysis of MRI data

from repeated measurements and showed its potential as a tool to identify possible

MRI biomarkers, specifically within the field of cancer treatment. In particular,

the framework is potentially suited for the increasing volume of longitudinal MRI

data already coming from clinical trials with the recent introduction of MR-Linacs in

radiation therapy. Furthermore, the merits of the newly developed msNMF for tumor

tissue signal decomposition was demonstrated as part of the assessment. Applications

were exemplified by classification of tumor tissue and prediction of therapy outcome

using T2-weighted multi-echo data and DWI data, respectively, demonstrating the wide

applicability of the framework.
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For the manuscript: Decomposition-based framework for tumor classification and prediction
of treatment response from longitudinal MRI

Figure S1: A sample of 1000 raw T2-weighted multi-echo signals normalized to start at
1, together with the signal components from the msNMF (black curves). For the first few
measurements, oscillations beyond the noise level are present. Such initial signal transients
are expected due to RF inhomogeneity.
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Abstract

Purpose The diffusion-weighted SPLICE (split acquisition for fast spin-echo) sequence em-

ploys split-echo rapid acquisition with relaxation enhancement (RARE) readout to provide

images almost free of geometric distortions. However, due to the varying T2-weighting during

k-space traversal, SPLICE suffers from blurring. This work presents a method for control-

ling the spatial point spread function (PSF) while optimizing the signal-to-noise ratio (SNR)

achieved by optimizing the flip angles in the refocusing pulse train of SPLICE.

Methods An algorithm based on extended phase graph (EPG) simulations optimizes the

flip angles by maximizing SNR for a flexibly chosen predefined target PSF that describes

the desired k-space density weighting and spatial resolution. An optimized flip angle scheme

and a corresponding post-processing correction filter which together achieve the target PSF

was tested by healthy subject brain imaging using a clinical 1.5 T scanner.

Results Brain images showed a clear improvement over those obtained with a standard

constant flip angle scheme. SNR was increased and ADC estimates were more accurate.

The correction filter was relatively flat indicating a high benefit from acquisition weighting

by flip angle control.

Conclusion The presented flexible method for optimizing SPLICE flip angle schemes offers

improved MR image quality of geometrically accurate diffusion-weighted images that makes

the sequence a strong candidate for radiotherapy planning or stereotactic surgery.
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1. Introduction

Diffusion-weighted (DW) MRI reflects the micro-anatomy of tissues as it probes the local

molecular mobility of water. This is particularly useful for cancer imaging as the high cellular

density of tumour tissue restricts the water movement, which results in a high DW signal

intensity of tumours compared to healthy tissue. Currently, the most common read-out used

in clinical DW-MRI is single shot echo-planar imaging (EPI). Fast k-space traversal following

a single excitation pulse ensures a low scan time minimizing the problem of motion artifacts.

However, EPI images are prone to geometrical distortions due to the high sensitivity to static

field inhomogeneities. Therefore, the benefit of DW-MRI contrast for tumour delineation in

radiotherapy planning, for example, is compromised, especially when the region-of-interest

is near an air cavity.1

Other DW-MRI sequences combine diffusion-encoding with a rapid acquisition with re-

laxation enhancement (RARE) readout.2 In this combination, it is important to address

potential violations of the Carr Purcell Meiboom Gill (CPMG) conditions that the RARE

acquisition is performed under. The CPMG conditions dictate the timing and phase rela-

tions of the refocusing pulses so they form coinciding stimulated and spin echoes with the

same phase. However, the diffusion-encoding in combination with subject motion essentially

randomizes the initial phase of the echoes. This violates CPMG conditions, causing echoes

to interfere destructively leading to severe artifacts.

Related to the work of Alsop3 and Norris et al ,4 Fritz Schick introduced the Split Acqui-

sition of Fast Spin Echo Signal for Diffusion Imaging (SPLICE) sequence,5 which overcomes

the CPMG condition violation. In SPLICE, a prolonged and imbalanced read-out gradi-

ent is used to split echoes with different phases into two families (Supporting Information

Figure S1). Thus, two sets of echoes are collected, reconstructed, and combined as mag-

nitude images. Other RARE-based DW-MRI sequences eliminate or suppress one of the

echo families to overcome the CPMG violation, resulting in a lower SNR than for SPLICE.6

The geometrical robustness of the RARE-based SPLICE makes it a compelling rival to EPI

based DW-MRI especially when accurate anatomical delineations are critical.7 However, the

longer signal sampling period causes pronounced blurring due to T2-decay during k-space

traversal.

A strategy to reduce blurring and improve image quality is to modify the signal mod-

ulation by acquisition weighting8 using a variable refocusing flip angle in the echo train.

The extended phase graph (EPG) algorithm9 calculates the magnetization response during

a multi-pulse experiment and is useful for determining the resulting k-space weighting for a

RARE or SPLICE readout. Earlier work10,11,12,13 utilized the prospective EPG formulation
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introduced by Hennig et al14 to address the inverse problem of finding the flip angle scheme

that generates a desired relaxation time contrast, and further used static pseudo steady

states (PSS) to control the signal decay. This strategy resulted in improvements, e.g., low

RF power deposition and reasonable PSFs for a given contrast, but it did not optimize the

SNR directly for a given PSF. Therefore, we employ a method for optimizing the flip angle

scheme with a main focus of improving the SNR for a chosen spatial resolution in the phase-

encoding direction, expressed via the PSF (controlled blurring).15 For diffusion-weighted

sequences, a main focus is SNR. Hence, there is limited need to control the relaxation time

contrast, which is a main difference from the earlier work referred to. Additionally, the

method avoids the analytical solution of Hennig et al ,14 which may have an imaginary out-

come and need iterative regulation of a set of flip angle control points. Instead, the method

provides an optimized refocusing scheme and a corresponding filter for post-processing to

compensate for remaining differences between the final signal modulation and the desired

k-space weighting. The strategy also facilitates comparison between refocusing schemes since

partial volume effects are inherently made similar. We validate and demonstrate the value of

the method with simulations, phantom scans and brain scanning of a healthy volunteer. A

preliminary report of the method was reported in.16 The abstract included a single imaging

example with linear phase ordering as well as an example with a center out trajectory which

is not discussed in the current paper.

2. Methods

2.1. Optimization algorithm

A normalized target distribution, T (k), is defined to describe the k-space density weight-

ing in the phase encoding-direction corresponding to the desired spatial PSF through the

Fourier transform. The sinc-shaped PSF for normal uniform weighting (constant T (k)) of

central k-space, is not desirable due to pronounced spatial side-bands, for example. T (k)

is freely selectable and given as input to the optimization algorithm together with tissue

relaxation parameters (T2, T1) and sequence specifications (echo spacing (ESP), echo train

length (ETL)). The events of a SPLICE readout are simulated using EPG calculations, from

which the final echo response, I(k), is given by the signal magnitude sum of the two echo

families (E1 and E2) for a spatial point source. Hence, I(k) represents the k-space weighting

introduced by the flip-angle scheme, and it depends on both acquisition and tissue parame-

ters. A filter, F (k), is calculated to compensate for the differences between I(k) and T (k) to

ensure the desired PSF in the resulting images (Eq. 1). For normal linear image reconstruc-

tion and fixed PSF, the SNR only depends on the flip angle scheme via the filter’s effect on

noise (Eq. 2).

T (k) = I(k) · F (k) (1)
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SNR ∝ 1√∑

k

(
T (k)

I(k)

)2
(2)

The algorithm maximizes this SNR by updating the flip angle scheme using a nonlin-

ear programming solver utilizing an interior-point method (MATLAB 2018b, MathWorks,

Inc., Natick, Massachusetts, United States). The output is the optimized set of flip an-

gles together with the final filter, preferably relatively flat as the echo response then al-

ready matches the desired signal weighting.8 Strong filters are undesirable due to de-

creased SNR and the user must therefore choose a reasonable PSF (voxel size and shape

as exemplified below) considering the application at hand. The algorithm makes it pos-

sible to compare choices theoretically, and it provides an optimal refocusing scheme for

each. The filter ensures that the target PSF is met for the chosen tissue parameters,

which enables direct SNR comparisons. Software with examples is available at https:

//github.com/sofierahbek/flip-angle-optimization.

A standard EPG framework is used, i.e. effects of finite-duration RF pulses are neglected.9

We therefore investigated whether off-resonance effects across the slice-profile are negligible

for a SPLICE sequence with a long echo train and a realistic RF pulse shape, using the open-

source JEMRIS MRI simulator.17 Additionally, JEMRIS was used to examine the build-up of

signal that is not diffusion-encoded, a possible consequence of unwanted coherence pathways

generated by the repeated refocusing pulses. Finally, the k-space signal weightings obtained

with JEMRIS simulations, EPG simulations and phantom scans were compared to verify

that the simulations are realistic and thus useful for optimization.

2.2. The choice of the target function

Inspired by Pohmann et al ,18 an example target function (T(k)) was chosen as a Hanning

function defined as in Pohmann et al : w(kn) ∝ 1 + cos(2π·kn·∆y
α

), with ∆y as the nominal

spatial resolution and the constant α set to 1.5. The resulting PSF has both a small full width

at half maximum (FWHM) and suppressed sidebands. Figure 1 illustrates this by comparing

PSFs corresponding to Hanning, rectangular (Rect), and Gaussian functions, respectively.

Additionally, the necessary compensation filters reveal that a Hanning target function also

results in a relatively flat filter (yellow) indicating that the available magnetization is used

efficiently.

2.3. Data acquisition and reconstruction

Healthy subject brain data was recorded using a 1.5 T MRI system (Ingenia, Philips

Healthcare, Best, The Netherlands) and a multi-slice single-shot SPLICE sequence modified
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Figure 1: (a) Three different designs for the target function, all normalized so
∑

k T (k) = 1. (b) The
corresponding PSF by Fourier transformation. (c) The filters needed to obtain the target functions after
optimizing the FAs, for a linear k-space sampling order. The specified SNRs are calculated by Eq. 2.

to apply user-defined flip angles. A healthy subject volunteered for scanning, after informed

consent. For all SPLICE scans, ESP=4.9 ms, in-plane nominal resolution 1.98×1.98 mm2,

slice thickness 5 mm, slice gap 5 mm, 29 slices, b-values [0, 800] s/mm2, diffusion time 40 ms,

and 3 discarded startup echoes. Measurements were conducted with a scheme of flip angles

rapidly converging to 90 degrees [145, 90, 90,. . . 90] (default setting by the scanner vendor)

and optimized schemes of variable flip angles.19 For each case, a dataset was recorded with

a fully sampled k-space, with a parallel imaging (PI) sampling scheme, and with a PI and

partial Fourier (PF) imaging sampling scheme, respectively. A linear k-space sampling order,

a PI acceleration factor of 2 and a PF factor of 0.6 was used. Table 1 shows timing parameters

for each case. Raw k-space data was extracted from the scanner to be able to apply the

filters calculated in the optimization procedure. The data was then reconstructed using

MATLAB 2018b with help from the Berkeley Advanced Reconstruction Toolbox (BART)20

and a Projection onto Convex Sets (POCS) algorithm.21

Table 1: SPLICE sequence parameters

Sampling ETL TE [ms] TR [ms] scan time [s]
Full 110 328 10525 295
PI 55 193 7892 221

PI + PF 34 86 6762 189

A multi-shot RARE sequence was included in the protocol to generate high-resolution

reference images used for tissue segmentation. A white-matter (WM) mask was created

using the Statistical Parametric Mapping toolbox, (SPM12, version 7487)22 and used for

calculation of ADC values.

The phantom experiments for validating consistency between simulations and real data

are described in Supporting Information.
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3. Results

The optimized flip angle scheme for the fully sampled data is presented together with the

compensation filter in Figure 2. The filter is relatively flat compared to the filter needed for

the reference flip angle scheme of repeated 90◦ pulses, shown for comparison. For the last

eight echoes, the flip angle is 180◦, indicating that a depletion of the longitudinal magneti-

zation (so-called z-storage) is effectively reached.

Figure 2: (a) Two flip angle schemes, the optimized (red) and a constant (blue). (b) The corresponding
compensation filters are normalized to have value 1 in the k-space center.

In Figure 3 the SPLICE b=0 s/mm2 images scaled to have equal background noise level,

are presented for a comparison between the two flip angle schemes. The introduction of

optimized flip angles has changed the signal intensity and contrast of the images, especially

for the fully sampled data. The b=800 s/mm2 data are presented in Supporting Information.

The ratio images in the third column, showing the voxel-to-voxel relative signal change

between the two datasets, make it clear that the SNR of brain matter has been improved

using the optimized variable flip angles. The mean signal improvement across the WM

segment is a factor of 2.00, 1.24, and 1.06 for the fully sampled, PI, and PI with PF data,

respectively. Thus, the SNR gain increases for longer ETLs. Contrary to the brain matter,

the signal of the CSF is slightly reduced.

ADC maps in Figure 4 show a generally higher ADC value in brain matter for the data

recorded with the optimized variable flip angle scheme. For the WM segment, an average

ADC value was estimated to 0.35×10−3 mm2/s and 0.72×10−3 mm2/s for the constant and

variable flip angle data, respectively. The latter is comparable to reported ADC values.23,24

The results of the slice-profile investigation using the JEMRIS simulator are presented in

Supporting Information. Initial transients occurred for the first three echoes, but otherwise

the slice-profile appeared relatively stable and without severe imperfections (Supporting

Information Figure S3). The build-up of steady-state signal was very low (< 2.1%) during the
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Figure 3: An example slice for the SPLICE b=0 s/mm2 data scaled with the background noise level. The
constant flip angle data, the variable flip angle data, and the ratio in dB between those are presented in the
left, center, and right column, respectively. Red colors (positive values) represent a signal increase (SNR
gain) for the variable flip angle data, and the opposite accounts for the blue colors (negative values). The
fully sampled data is presented in the top row, and the undersampled data in the two bottom rows. Coil
sensitivities were estimated only for areas within the subject, so the background is removed for undersampled
data.

entire echo train compared to the desired attenuated diffusion-weighted signal (Supporting

Information Figure S4). Additionally, Figure S4 shows that only small oscillations appeared

in each echo family although a relatively large flip angle was used in the simulation (120◦).

This warrants that E1 and E2 are not considered individually, but only summed in the

optimization algorithm. Finally, the expected consistency between simulations and MRI

phantom scans was found (Supporting Information Figure S5).

4. Discussion

The suggested optimized variable flip angle scheme resembles designs presented in earlier

work where signal stabilization during long echo trains was explicitly established.12,25,26 This

indicates that our solutions, which are optimal with respect to SNR for the given PSF, may
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Figure 4: ADC maps for the fully sampled SPLICE data, same slice as visualized in Figure 3. The left and
right map is for the constant and variable flip angle data, respectively.

also be near-optimal considering other image traits. Our method introduces flexibility in

terms of choosing the target PSF, and though a filter may be needed to realize the chosen

voxel shape, consideration of flip angle control points are not needed. Using the methods

in,25,11 for example, three angles must be chosen.

The target function suggested by Pohman et al, resulted in a relatively flat compensa-

tion filter which indicates a high benefit of the acquisition weighting obtained by varying

the refocusing flip angle. As the filter is only fully effective for tissue with the parame-

ters used in the optimization algorithm, strong filters may create substantial blurring or

artifacts for other tissues. Relatively flat filters will increase the robustness towards tissue

differences or transmit field inhomogeneities, though the latter are limited for volume coils.

Figure S6 in Supporting Information documents the robustness by presenting the PSF for

different tissues and a 10 % flip angle error. The PSF is relatively unchanged for all tissues

using the optimized flip angle scheme, whereas the sub-optimal 90◦ flip angle scheme results

in a PSF for CSF with small ”ghost” peaks and a large FWHM compared to the other tissues.

The validation test presented in Supporting Information justified the use of simulations

in the optimization algorithm. Even though JEMRIS simulations showed a better resem-

blance to actual MRI measurements, EPG simulations are computationally efficient, easy

to implement and still provide reasonable estimates of the magnetization response. This is

consistent with Weigel et al27 who compared EPG simulations with clinical measurements

and found less than 2 % difference. Full simulations (e.g. JEMRIS) or extended versions of

EPG, which takes into account the slice profile,28 are options, but our results do not show a

need for more accuracy.

The SNR improvement seen in Figure 3 confirms that an optimized design of the flip
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angle scheme is effective in practice, and further that the gain is increased for longer echo

trains. Importantly, the use of optimized flip angle schemes involves no significant trade-offs.

The lower gain for sequences with a relatively short ETL is expected, as the echo time is

shorter and the undesired signal modulation caused by the T2-weighted signal decay already

is reduced by lowering the number of echoes needed for k-space traversal. Using an optimized

flip angle design leaves room for increasing the ETL to e.g. obtain a higher spatial resolution

or avoid undersampling strategies without a large SNR trade-off.

While earlier work optimized the flip angle scheme primarily for standard RARE se-

quences, we have implemented the optimized scheme for the diffusion-weighted SPLICE

sequence and demonstrated its significance for ADC estimation (Figure 4). The SNR im-

provement has increased the accuracy of the ADC estimate over the reference scan due to the

signal bias from low SNR for high b-values when constant flip angles are used. This strongly

argues for adopting optimized flip angle designs when using RARE-based DWI sequences.

A related positive effect of the variable flip angle design is a reduction of T2 shine-through

by the inherent shortening of the contrast-equivalent TE.26 This effect was evident for the

fully sampled b=800 s/mm2 data in Supporting Information as the image contrast of the

sub-optimal 90◦ flip angle sequence indicates a strong T2 contrast compared to the optimized

sequence. A major motivation for focusing on SPLICE is its potential for DWI when geo-

metric distortion is particularly problematic such as for radiotherapy planning, where PSF

sidebands in addition compromises quantitative analysis. To that end, the results presented

in Figures 3 and 4 are promising. Despite the SPLICE focus, the presented strategy also

applies to other single-shot multi-echo sequences. However, the focus on optimizing SNR

without controlling relaxation time contrast is not ideal for most RARE applications. DWI

is an example where the method can be very useful.

The method was demonstrated using a single example subject, but the findings are general

since the optimization is independent from the diffusion-weighting, and since the motion-

sensitivity of single-shot sequences is limited. The optimization was performed under an

assumption of linear reconstruction, but non-linear methods such as compressed sensing are

similarly expected to benefit from sampling schemes guided by the desired spatial resolution.

The method is straight-forward to implement (code is provided) and directly applicable on

scanners where user-defined flip angle schemes can be introduced.

5. Conclusion

Optimizing the refocusing flip angle scheme of the single-shot SPLICE sequence improves

image quality, in particular with respect to SNR and spatial specificity. This directly benefits
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DWI, but also reduces T2 shine-through, ADC bias resulting from low SNR, and partial

volume effects. Together with the improved geometric accuracy of SPLICE relative to EPI,

this makes the diffusion-weighted SPLICE attractive for radiotherapy planning, for example.

The algorithms are readily available, and the sequence and reconstruction changes needed

are only flip angle adaptions and filtering.
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Supporting Information

SPLICE sequence diagram

Figure S1 illustrates the SPLICE sequence used in this study. It was originally published
with a stimulated echo diffusion preparation in [1].

Figure S1: Schematic presentation of the SPLICE sequence, where SS, PE and FE are the slice-selection,
phase-encoding and frequency-encoding directions, respectively. The gray blocks are diffusion-encoding
gradient pairs (which can be applied in any direction), the light blue blocks are slice-selective gradients,
and the dark blue blocks are imaging gradients. The gradients in the FE direction are imbalanced, as the
pre-phaser (gradient prior to the read-out module) is much less than half the area of the following read-out
gradients. The two families of echoes appearing (E1 and E2) are illustrated on the top line together with
the RF pulses. The flip angle is indicated for each pulse. The split-echo mode implies that no phase relation
for the refocusing pulses is required [1]. For simplicity, crusher gradients are not shown.

Diffusion-weighted images

Figure S2 presents an example diffusion-weighted SPLICE image for each of the acqui-
sitions. The sum-of-squares combination of coil images results in a non-central chi signal
distribution, and hence a bias for low SNR data.

Slice-profile investigation

The slice-profile, which depends on the refocusing pulse design (duration, shape, side-
lobes, etc.) have imperfections that may accumulate throughout the RARE readout. Severe
imperfections implying significant phase and flip angle variations across a slice could make
the EPG calculations an inaccurate representation of the actual signal. The JEMRIS simula-
tor has been used to simulate the standard SPLICE sequence as implemented by the scanner
vendor, though leaving out the diffusion-weighting module. Relevant simulation settings are:
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Figure S2: A single slice for the SPLICE b=800 s/mm2 data. Images are presented with individual, arbitrary
intensity scales. The fully sampled data is presented in the top row, and the undersampled data in the two
bottom rows. Coil sensitivities were estimated only for areas within the subject, so the background is
removed for undersampled data.

T2=100 ms, T1=1000 ms, ESP = 5.2 ms, ETL = 70, flip angles: [156, 127, 120, 120,. . . 120]◦.
Having two echo families, as is the case with the SPLICE sequence, complicates the slice
profile investigation. Since absolute images from each echo family are combined in the
reconstruction, a normal slice profile is not meaningful, except for the two echo families
separately. When separated, the profiles provide little insight into the combined spatial
variation of sensitivity, however. Hence, an effective slice profile is here defined to be the
position-dependent sum of the two absolute transversal magnetizations, i.e. a measure of
the sensitivity to magnetization in each position. The slice profiles for the individual echoes
differ, as can be expected since they represent different coherence pathways, and hence tend
to vary oppositely as a function of position across the slice: In one position along the slice se-
lection direction, the stimulated echoes may contribute most signal, whereas the spin echoes
may give most signal in another position (due to the flip angle variation along that direc-
tion). Conveniently, the sum sensitivities, and therefore the effective slice profile, tends to
be smooth as seen in Figure S3. It is also seen to be well-behaved over echoes in the sense
that the slice width remains relatively constant during the echo train, except for the initial
echoes (indicated by red dots).
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Figure S3: (a) All 70 slice-profiles and (b) every fifth of these. The slice thickness calculated as FWHM for
all echoes (c). The first three echoes, denoted by red dots, are recommended discarded due to the initial
instability.

This investigation was also performed for a flip angle scheme with more variation (not
shown). Results were similar to the presented example to the extent that conclusions were
the same. The JEMRIS simulations thus indicate that EPG calculations can be used as a
good approximation of the signal in an flip angle optimization when the first three echoes
are discarded.

Steady state signal investigation

A build-up of non-diffusion-weighted steady state signal may occur as a consequence of
unwanted coherence signal pathways. This problem was investigated by comparing the sig-
nal from a JEMRIS simulation with a 90◦ excitation pulse with one without excitation (”no
excitation”). Diffusion-weighting of the excited magnetization was simulated by multiplying
the JEMRIS output with a weighting factor (e−b·ADC). Figure S4 shows a thorough compar-
ison, presenting both the slice-profiles for the two cases as well as signal integrated over the
slice profile (echo signal). Throughout the echo train, the steady state signal is low relative
to the diffusion-weighted SPLICE signal, corresponding to approximately 2.1 % after 110
echoes.

Figure S4: Comparisons of the DW SPLICE signal with the no-excitation signal. (a): Slice-profiles. (b):
Echo signals. (c): The ratio between the echo signals, i.e. the red and green curve in (b). A b-value of 500
s/mm2 and ADC value of 800×10−6 mm2/s were used for the DW factor.
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Figure S4 (b) also shows the echo amplitude for the two echo families (E1, E2) separately.
Only very small oscillations are present even though a relatively large flip angle (120◦) is
used throughout the echo train. Theoretically, a repeated large flip angle will shift a large
portion of the signal between the two echo families for each echo resulting in oscillations
in the individual echo families. However, the imperfections of the slice-profile reduce this
behaviour and the oscillations are dampened. A JEMRIS simulation has confirmed this effect
why oscillations within each echo family have been ignored in the flip angle optimization.

Figure S5: Comparison of the EPG simulation, the JEMRIS simulation, and the MRI phantom scan for a
constant flip angle scheme (a) and a variable flip angle scheme (b). The curves represents the ratio between
the raw k-space signals from the two echo families, E1 and E2. For the EPG and JEMRIS simulations,
the k=0 signal is used, for the MRI phantom data, the square root of the signal power over the frequency
encoding direction is used.

Validation of simulations

To validate that simulations are in agreement with actual MRI scans, the k-space weight-
ing along the phase-encoding direction was compared for EPG simulations, JEMRIS simula-
tions and MRI of a spherical phantom with a homogeneous center (PIQT phantom (Philips
Healthcare, Best, The Netherlands), T1=350 ms, T2=320 ms) for two different flip angle
schemes. For the SPLICE scan of the phantom, ESP=5.2 ms, in-plane nominal resolution
3.95x3.95 mm, slice thickness 5 mm, splice gap 5 mm, 20 slices, ETL=63, TE=226 ms,
TR=4030 ms and scan time=64.5 s. Only b=0 s/mm2 data was used, and from a single
central slice. To eliminate the effect of the object, the ratio between the two echo families
(E1/E2) was considered. The resulting oscillating pattern, stemming from a signal shift
between echo families, was relatively consistent between simulations and phantom scans for
both of the tested flip angle schemes (Figure S5). This consistency supports that simulations
can be trusted in the optimization.

Robustness

The PSF for other tissues than the target is not controlled via the optimization method
and may be affected by the compensation filter. Figure S6 shows that the FWHM and
shape of the PSF remained relatively unchanged when using the variable flip angle scheme,
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while a clear increase of the FWHM for the PSF of CSF is seen for the reference scheme of
repeated 90◦ pulses. Additionally, two small ”ghost” peaks appeared. These results remained
effectively unchanged after introducing a flip angle error of 10 % and was thus robust towards
realistic RF inhomogeneities.

Figure S6: The PSFs for different tissues after applying the correction filters of Figure 2: target brain tissue
(T1=900 ms, T2=95 ms), GM (T1=1000 ms, T2=100 ms), WM (T1=800 ms, T2=90 ms), CSF (T1=2000
ms, T2=250 ms), and fat (T1=300 ms, T2=85 ms). The PSFs are presented for the 90◦ flip angle scheme
(a) and the optimized variable flip angle scheme (b), and again with an introduced RF error, corresponding
to 10 % reduced flip angles, in (c) and (d). The FWHMs of each PSF are specified in the legends.
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