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Abstract
Mass loss from the world’s ice sheets and glaciers is one of the largest contributors to
ongoing sea level rise. For both the Greenland and Antarctic ice sheets, a significant part
of the mass loss stems from changes in ice dynamics, with many marine-terminating out-
let glaciers consistently accelerating and retreating. Ice velocity is an essential variable
in monitoring the state of ice sheets and glaciers. Over the past several decades, a rev-
olution in the quality and availability of Synthetic Aperture Radar (SAR) satellite data
has allowed frequent ice velocity retrievals to be carried out over major parts of the ice
sheets. Particularly, the EU/ESA Sentinel-1 SAR satellites have been widely utilized in
the generation of seasonal, annual, and multi-annual velocity retrievals, owing to their
extensive coverage, facilitated by the Terrain Observation by Progressive Scans (TOPS)
acquisition mode. So far, however, routine Sentinel-1 ice velocity measurements have relied
solely on amplitude-based methods, which produce measurements of significantly lower ac-
curacy and resolution than phase-based Differential SAR Interferometry (DInSAR). The
main reason for this discrepancy is the added complexity introduced to interferometric
processing by the TOPS acquisition mode, where along-track motion is coupled to the
interferometric phase.

In this thesis, a refined image coregistration approach is developed, which alleviates the
TOPS-related challenges and allows interferometric ice velocity retrieval from the extensive
Sentinel-1 polar archive. A demonstration is provided of a combined DInSAR and ampli-
tude offset tracking 2D velocity retrieval, which exploits the high accuracy and resolution
of DInSAR in slower-moving inland regions and the ability of offset tracking to retrieve
measurements from fast-flowing glacier outlets, highlighting the synergy between the two
techniques. In the context of ice velocity retrieval, particularly in downstream regions,
phase unwrapping errors is the most prominent error source in DInSAR measurements.
Here, a method is designed to detect and discard measurements affected by unwrapping er-
rors. The method is based on an estimate of pixel connectivity and is particularly effective
at detecting high magnitude errors.

Finally, several demonstrations are provided of the capabilities of Sentinel-1 DInSAR time
series measurements in monitoring changes in ice dynamics, with a focus on specific regions
of the Greenland ice sheet. On longer time scales (multiple years), the high sensitivity of
DInSAR allows for estimating trends in flow speed, even in slow-moving regions, where
only subtle changes occur. On shorter time scales (months or even weeks), the DInSAR
time series may reveal complex motion patterns and transient dynamic events. Multiple
instances of hydrology-dynamic events, related to the drainage of both supraglacial and
subglacial lakes, are documented in the thesis. Observations of such events are crucial
for improving our understanding of hydrological processes in glaciers and ice sheets and
the extent of their impact in the future. Collectively, these demonstrations highlight the
potential of applying Sentinel-1 DInSAR measurements in investigating various types of
ice dynamic changes on multiple time scales.
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Resumé på dansk
Massetab fra verdens iskapper og gletsjere er en af de største bidragsydere til igangværende
havniveaustigning. For både Grønlands og Antarktis iskapper stammer en betydelig del af
massetabet fra ændringer i isdynamikken, hvor mange hav-terminerende udløbsgletsjere
konsekvent accelererer og trækker sig tilbage. Isens hastighed er en essentiel variabel i
overvågningen af indlandsisens og gletsjeres tilstand. I løbet af de sidste mange årtier har
en revolution i kvaliteten og tilgængeligheden af Syntetisk Apertur Radar (SAR) satellit-
data gjort det muligt at udføre hyppige ishastighedsmålinger over store dele af iskapperne.
Især er EU/ESA Sentinel-1 SAR-satellitterne blevet brugt i vid udstrækning i genererin-
gen af sæsonmæssige, årlige og flerårige hastighedsmålinger på grund af deres omfattende
dækning, faciliteret af Terrain Observation by Progressive Scans (TOPS) optagelsesmeto-
den. Indtil videre har rutinemæssige Sentinel-1 ishastighedsmålinger udelukkende anvendt
amplitudebaserede metoder, som producerer målinger med væsentligt lavere nøjagtighed
og opløsning end fasebaseret Differential SAR Interferometry (DInSAR). Hovedårsagen
til dette er den ekstra kompleksitet, der introduceres til interferometrisk behandling af
TOPS-data, hvor azimuth bevægelse er koblet til den interferometriske fase.

I denne afhandling udvikles en raffineret billedkoregistreringstilgang, som afhjælper de
TOPS-relaterede udfordringer og tillader interferometriske ishastighedsmålinger fra det
omfattende Sentinel-1 arkiv i polare områder. Der gives en demonstration af en kom-
bineret DInSAR og amplitude offset tracking 2D hastighedsmåling, som udnytter den høje
nøjagtighed og opløsning af DInSAR i langsommere indlandsområder samt offset trackings
evne til at optage målinger fra hurtigtflydende gletsjerudløb, hvilket fremhæver synergien
mellem de to teknikker. I forbindelse med måling af ishastigheder, især i ablationszonen,
er faseudpakningsfejl den mest fremtrædende fejlkilde i DInSAR-målinger. Her demonstr-
eres en metode designet til at detektere og kassere målinger påvirket af udpakningsfejl.
Metoden er baseret på et estimat af pixel-forbindelse og er særligt effektiv til at detektere
fejl af høj størrelse.

Endeligt gives adskillige demonstrationer af Sentinel-1 DInSAR tidsseriemålinger til overvågn-
ing af ændringer i isdynamikken. På længere tidsskalaer (flere år) giver den høje følsomhed
af DInSAR mulighed for at estimere tendenser i flowhastighed, selv i langsomt bevæ-
gende områder, hvor der typisk kun forekommer subtile ændringer. På kortere tidsskalaer
(måneder eller endda uger) kan DInSAR-tidsserier afsløre komplekse bevægelsesmønstre
og forbigående dynamiske hændelser. Flere forekomster af hydrologi-dynamiske hændelser,
relateret til dræning af både supraglaciale og subglaciale søer, er dokumenteret i afhandlin-
gen. Observationer af sådanne hændelser er afgørende for at forbedre vores forståelse af
hydrologiske processer i gletsjere og iskapper samt omfanget af deres påvirkning i fremti-
den. Tilsammen fremhæver disse demonstrationer potentialet af anvendelsen af Sentinel-
1 DInSAR-målinger til undersøgelser af forskellige typer dynamiske ændringer på flere
tidsskalaer.
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Chapter 1 | Introduction

Sentinel-2 true color composite showing calving fronts of the Helheim, Fenris, and
Midgård glaciers.
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1.1 Importance of dynamic ice mass loss
For the past three decades, global sea level has been rising with an average rate of 3 mm
per year, a rate which has been increasing in recent years (Nerem et al., 2018), fueled,
in large part, by rising temperatures caused by anthropogenic greenhouse gas emissions
(Marzeion et al., 2014; IPCC, 2021a). Future projections suggest that sea level rise (SLR)
will continue throughout the century (IPCC, 2021b), leading to extensive socio-economic
damage, due to floods and extreme weather events (Jevrejeva et al., 2018; Vousdoukas
et al., 2017). Main contributors to SLR are thermal expansion of the ocean, also known as
steric sea level rise (Church et al., 2011), and mass loss from ice sheets and glaciers around
the world (WCRP Global Sea Level Budget Group, 2018). During the period 2006-2018,
glacier and ice sheet mass loss was the largest contributor to SLR (IPCC, 2021b). Loss of
mountain glaciers also threatens freshwater availability of local populations (McGranahan
et al., 2007).

The ongoing mass loss from the world’s ice sheets and glaciers is well documented (Box
et al., 2022; IMBIE team, 2018, 2019; Slater et al., 2021; Hugonnet et al., 2021). For a
given glacier or ice sheet, the net mass gain (or loss) is measured by the mass balance,
computed as the net accumulation minus the net ablation. Accumulation occurs through
snowfall, which eventually compacts into glacial ice, and through refreezing of glacial melt
water. Ablation occurs through surface melt, basal melt occurring at the interface between
the ice and the underlying bedrock (Karlsson et al., 2021), and through dynamic discharge
of ice by marine-terminating outlet glaciers (also known as calving). The latter term is
generally referred to as dynamic mass loss, while the balance between accumulation and
surface melt is referred to as the surface mass balance (SMB). A glacier or ice sheet is
generally partitioned in two zones: the upper zone (at higher elevation), known as the
accumulation zone, where accumulation exceeds the melting rate, leading to a gain in
mass, and the lower zone, known as the ablation zone, where the opposite is true. The
equilibrium line altitude defines the surface elevation of the border where accumulation
and ablation rates (on average) are in perfect balance. On a large scale, ice sheets are
dome-shaped, and gravity causes ice to flow, such that ice may be transferred from the
accumulation zone into the ablation zone. Acceleration in flow speed generally means an
increase in mass loss, as more ice is transferred to lower elevation, where it may undergo
melt or calving. In the interior ice sheet, at high elevations, ice flow is quite slow (on the
order of a few meters per year (m/y) to a few tens of m/y). On outlet glaciers at the margin
of the ice sheet, flow speeds may exceed several kilometers per year. As ice or melt water is
discharged into the ocean, it directly contributes to sea level rise. The Greenland ice sheet
holds a potential sea level equivalent of 7.4 m (Morlighem et al., 2017), while the Antarctic
ice sheet holds a potential SLR of 57.9 m (Morlighem et al., 2020). The combination of all
other glaciers (excluding the two ice sheets) are estimated to hold a sea level equivalent
on the order of 0.3 m (Farinotti et al., 2019; Millan et al., 2022). Over the period 1992 to
2020, the largest SLR contributions stem from glaciers (globally, excluding the ice sheets)
and the Greenland ice sheet (17.1 ± 4.4 mm and 13.5 ± 2.1 mm, respectively) while the
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Antarctic ice sheet SLR contribution was 7.4± 2.4 mm (IPCC, 2021b). Throughout this
thesis, the main focus is on dynamics of the Greenland ice sheet, and particular emphasis
is put on the North East Greenland Ice Stream (NEGIS). However, the developed methods
may just as well be applied to the Antarctic ice sheet or glaciers and ice caps elsewhere.

Figure 1.1: Mass loss of the Greenland ice sheet, estimated by the latest Ice Sheet Mass
Balance Intercomparison Exercise (IMBIE), partitioned between surface mass balance and
dynamic mass loss contributions. (Image source: IMBIE team, 2019).

In recent decades, mass loss of the Greenland ice sheet has consisted of roughly equal con-
tributions in negative SMB and dynamic mass loss (IMBIE team, 2019), while mass loss
of the Antarctic ice sheet stems primarily from increased dynamic mass loss (IMBIE team,
2018). Separation of the SMB and dynamic mass loss contributions relies on several tech-
niques and measurements, including satellite altimetry (Sandberg Sørensen et al., 2018),
satellite gravimetry (Velicogna et al., 2014), modeling of SMB (Fettweis et al., 2017), and
estimation of ice discharge (Howat et al., 2007; Mankoff et al., 2020), which, in turn, relies
on accurate measurements of ice flow velocity (Mouginot et al., 2017) and ice thickness
(Morlighem et al., 2017). Fig 1.1 shows an estimated time series of mass change of the
Greenland ice sheet, distinguishing between the SMB and dynamic components (IMBIE
team, 2019). The partitioning between SMB and dynamic mass loss contributions (as well
as their magnitudes) shows substantial variation across different geographical regions and
different time periods (Mouginot et al., 2019b). Dynamic mass loss increases have been
linked to the calving front retreat of outlet glaciers across the Greenland ice sheet (King
et al., 2020). An example of such a retreat is shown in Fig. 1.2. Past studies point to
links between ice dynamic changes, in the form of both calving front and ice flow variation,
and various ocean and atmosphere processes (Howat et al., 2010; Khazendar et al., 2019;
Luckman et al., 2015; Smith et al., 2020).

Monitoring ice flow velocity is essential for understanding the dynamic behaviour of a
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glacier or ice sheet. Glacier flow has been observed to vary on time scales ranging from
decadal, (multi-)annual, and seasonal (Joughin et al., 2018b; Luckman et al., 2006; Moon
et al., 2014; Moon et al., 2020; Mouginot et al., 2015; Mouginot et al., 2018; Vijay et
al., 2019) to sub-seasonal time scales, often associated with transient hydrological events
(Andrews et al., 2018; Christoffersen et al., 2018; Bartholomew et al., 2010). Constraining
current and projected mass loss estimates requires accurate measurements of ice velocity,
preferably with high spatiotemporal resolution, such that processes responsible for both
long-term and transient ice flow changes may be understood.

The Global Climate Observing System defines ice velocity as an Essential Climate Vari-
able and specifies target requirements of 100 m resolution, 0.1 m/y accuracy, and 30
day measurement frequency (WMO, 2016). While the launch of the Sentinel-1 satellites
(among other missions) enables velocity retrievals with a temporal resolution of 6 to 12
days, approaching the required accuracy and spatial resolution is infeasible with current
tracking-based routine velocity retrievals. Instead, the requirements may be approached
with interferometric processing, which is the main topic of this PhD project.

Figure 1.2: Evolution of the calving front location of Jakobshavn Isbræ (Sermeq Kujalleq),
the fastest flowing glacier in Greenland. During 1999 to 2016, the calving front retreated
more than 10 km, while flow speed and thinning rate of the glacier increased. From
2017, the calving front re-advanced, associated with decreases in glacier flow speed and
thinning rate - a change that has been linked to anomalous cooling of nearby ocean water
(Khazendar et al., 2019). (Image source: Andersen et al., 2019)
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1.2 Remote sensing for ice flow mapping
Measurements of ice flow velocity have long been acquired through in-situ methods us-
ing, e.g., tellurometers (Dorrer et al., 1969), Transit (NAVSAT) satellite receivers (Mock,
1976), and later Global Positioning System (GPS) satellite receivers (Hvidberg et al., 1997;
Thomas et al., 2000). While in-situ methods have produced, and continue to produce
(Hvidberg et al., 2020; Maier et al., 2019; Sole et al., 2011), valuable results on individual
areas of interest, they are naturally resource intensive and limited in spatial (and often
temporal) coverage. Throughout the past ∼50 years, the rapid development in satellite
remote sensing technology has allowed remote retrieval of ice velocity over glaciers and ice
sheets worldwide, with increasingly improved data quality and spatiotemporal coverage.
Two classes of imaging satellites have been extensively used in the retrieval of ice velocity,
namely optical and Synthetic Aperture Radar (SAR) satellites. Both types of satellites
are typically flown in near-polar, sun-synchronous orbits, meaning that measurements are
acquired at the same local time on ground.

Optical satellites carry multi-spectral sensors, which record light at multiple wavelengths
in the visible (and usually near-infrared) parts of the electromagnetic spectrum, similar
to a modern camera. Through the comparison of images acquired with a certain time
separation, the motion of features may be tracked and quantified, yielding an estimate
of velocity when the temporal separation is taken into account. This method is typically
denoted as feature tracking or offset tracking (Scambos et al., 1992), and it is also appli-
cable to SAR measurements - it will be further described in section 2.2. A long archive
of optical satellite images exists, provided in part by the NASA/USGS Landsat program
and MODIS sensors and, more recently, the EU/ESA Sentinel-2 and -3 missions. Several
commercial satellites exist, carrying high resolution (decimetric) optical sensors. Although
such sensors typically have small swath sizes, which are less ideal for ice sheet mapping,
they have proven valuable in retrieving surface properties and ice flow on mountain glaciers
(Millan et al., 2019). Optical sensors rely on sun illumination of the imaged area, as they
carry passive sensors, which implies that measurements in polar regions are not available
during winter. Another limitation is cloud cover, which is opaque at optical wavelengths.
In spite of these limitations, optical ice velocity measurements have been used extensively
in mapping ice flow on the ice sheets of Greenland (Joughin et al., 2018b) and Antarctica
(Mouginot et al., 2017), as well as glaciers worldwide (Millan et al., 2022). Furthermore,
optical sensors have provided a valuable tool in generating surface elevation measurements
for use in Digital Elevation Models (Howat et al., 2014; Porter et al., 2018). In the work
related to this thesis, optical ice velocity retrievals were not carried out.

Conversely to optical sensors, a SAR is an active sensor, carrying a transmitting and
receiving radar system. Consequently, SAR sensors do not rely on sun illumination, and
as the radar transmits and receives electromagnetic waves at microwave frequencies (often
in the L, C, or X frequency bands, corresponding to 1-12 GHz), SAR acquisitions are
not limited by cloud cover. A SAR is an imaging radar, meaning that a two-dimensional
image is acquired with each pass of the satellite. The image is complex, as it includes both
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the amplitude and phase of the reflected radar signal. Analyzing images with a certain
time separation, measurements of motion may be obtained through several methods. The
amplitude signal allows for ice velocity measurement through tracking-based techniques
(Gray et al., 1998; Strozzi et al., 2002), similar to those applied to optical data. The
phase signal may be exploited through several techniques (Goldstein et al., 1993; Bechor
& Zebker, 2006; Jiang et al., 2017a), collectively known as interferometric techniques.
In general, phase-based techniques yield velocity measurements of significantly higher
accuracy and spatial resolution, compared to amplitude-based measurements. Section
2.1 provides an introduction to the principles of SAR image acquisition and the relevant
terminology, and section 2.2 describes the various methods that allow for retrieval of ice
velocity from SAR measurements. In the following, a brief outline of some important past
and current SAR satellite missions is provided.

The first scientific (non-military) spaceborne SAR system was carried on the NASA satel-
lite Seasat (Born et al., 1979), launched in 1978. As implied by the mission name, Seasat’s
main focus area was the marine sector, particularly measuring surface wave fields and sea
ice properties. Launch of satellite SAR sensors greatly accelerated from the 1990’s, with
the European Space Agency (ESA) launching the ERS-1 and ERS-2 satellites in 1991 and
1995, respectively, followed by the ENVISAT satellite in 2002, and the Canadian Space
Agency (CSA) launching Radarsat-1 in 1995. All of these satellites carried C-band (5.4
GHz) SAR systems, which were used for ice velocity mapping (Goldstein et al., 1993;
Joughin et al., 1996; Joughin, 2002; Mouginot et al., 2012; Rignot & MacAyeal, 1998;
Thiel et al., 1996), among other applications. Of special note should be the ERS tandem
operation, in which the orbits of ERS-1 and ERS-2 were reconfigured to yield a 24 hour
repeat pass period, allowing for interferometric measurements that would be infeasible
with the standard 35-day period (Cumming et al., 1997; Mohr et al., 1998). Meanwhile,
the Japanese Aerospace Exploration Agency (JAXA) launched the JERS-1 and ALOS-1
satellites in 1992 and 2006, respectively, which both carried L-band (1.2 GHz) SAR sys-
tems, also used in ice flow mapping (Nakamura et al., 2007; Rignot, 2008). At the time
of operation of all of these systems, the main limitation in ice velocity retrieval was the
limited amount of data (Joughin et al., 2018a). The relatively small swath size and low
duty cycle (the amount of time the SAR sensor can be operated during an orbit) of the
SAR systems meant that mapping was only possible for select regions, with a relatively
low revisit frequency, and ice sheet-wide velocity retrievals in Greenland or Antarctica
were generally not feasible. The next generation of SAR satellites addressed this limita-
tion through new acquisition modes. The Radarsat-2 and ALOS-2 satellites, launched by
CSA and JAXA in 2007 and 2014, respectively, both employ the ScanSAR mode (Moore
et al., 1981), which trades resolution in one of the image dimensions for a larger swath
size. The TerraSAR-X and TanDEM-X satellites were launched by the German Aerospace
Agency (DLR) along with EADS Astrium in 2007 and 2010, respectively, carrying X-band
(9.6 GHz) SAR systems. The satellites have been frequently used in ice velocity retrievals
(Floricioiu et al., 2008), but have also been extensively operated in a tandem orbit, allowing
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for the generation of high quality DEMs of extensive coverage (Rizzoli et al., 2017). The
Italian Space Agency (ASI) and Ministry of Defence launched the four COSMO-SkyMed
satellites in 2007-2010, which, among other applications, have been used to map grounding
lines of marine-terminating glaciers (Milillo et al., 2017). Fig. 1.3 shows two examples
of ice sheet-wide ice velocity mosaics generated using data from several of the SAR satel-
lite systems described above. The SAR images used to compile the mosaics span several
decades, meaning that the resulting velocity field is an estimate of the long-term average
field.

Figure 1.3: Ice velocity mosaics for the Greenland ice sheet (adapted from Joughin et al.,
2018a) and Antarctic ice sheet (adapted from Mouginot et al., 2019a). The Greenland
mosaic was generated using data from ERS-1/2, ALOS-1, Radarsat-1, TerraSAR-X, and
Landsat-8. The Antarctic mosaic contains data from ERS-1/2, ENVISAT, ALOS-1/2,
Radarsat-1/2, Landsat-8, and Sentinel-1.

Arguably, the most impactful SAR mission for consistent monitoring of ice dynamics has
been the EU/ESA Sentinel-1 program. Since their launch in 2014 and 2016, respectively,
the two Sentinel-1 satellites have gathered an extensive archive of polar measurements,
with a particularly thorough spatiotemporal coverage of the Greenland ice sheet. The
satellites employ the Terrain Observation by Progressive Scans (TOPS) acquisition mode
(De Zan & Monti Guarnieri, 2006), which allows for a wide swath and hence comprehensive
coverage in velocity retrievals (Nagler et al., 2015). The extensive coverage of Sentinel-1
combined with its open data policy (meaning that anyone is able to download the data) and
the advancement of both processing techniques, computing power, and storage capacity
has allowed for routine ice velocity retrieval over nearly the entire Greenland ice sheet,
the majority of Antarctic outlet glaciers, and most other glaciers (Solgaard et al., 2021;
Mouginot et al., 2017; Joughin et al., 2018b; Lei et al., 2021). Fig. 1.4 shows an example of
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routinely generated Sentinel-1 ice velocity mosaics over Greenland. Such routine retrievals,
however, have exploited only the amplitude signal of Sentinel-1, as the TOPS acquisition
mode introduces specific challenges for interferometric processing (Mouginot et al., 2019a;
Joughin et al., 2018a). Hence, a large archive of phase data over polar regions remains
unexplored. The main goal of this PhD project is to unlock this archive and demonstrate
its potential in monitoring ice dynamics.

Figure 1.4: Examples of 24-day ice velocity mosaics generated with Sentinel-1 offset track-
ing measurements through the PROMICE program. (Image adapted from Solgaard et al.,
2021).

1.3 Scope and outline of the thesis
The overall goal of the PhD project is to enable the exploitation of the vast archive of
Sentinel-1 phase data in ice velocity retrieval. Aside from developing and implementing
interferometric (DInSAR) routines for Sentinel-1 data, the aim is to demonstrate the value
of DInSAR measurements in investigating changes in ice dynamics, particularly on short
time scales and in slower-moving (inland) regions, where performance greatly exceeds
that of tracking-based methods. The main research objectives of the PhD project can be
summarized by the following three elements:

1. Design and implement methods allowing the interferometric retrieval of ice velocity
from Sentinel-1 TOPS-mode measurements

2. Improve robustness of the Sentinel-1 interferometric algorithm for operational large-
scale ice velocity retrieval

3. Demonstrate the potential of Sentinel-1 interferometry in studies of ice dynamic
changes, exploiting the increased spatiotemporal resolution and accuracy
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The thesis is comprised of six chapters, including the present introduction. Chapter 2
provides relevant background knowledge on SAR image acquisition and methodologies re-
lated to ice velocity retrieval. Chapter 3 addresses the first objective, documenting the
work carried out to meet the coregistration requirements for applying Sentinel-1 TOPS in-
terferometry over moderate and fast-flowing ice. Chapter 4 documents efforts related to
the second objective. Particularly, the work relates to the detection of phase unwrapping
errors - the most prominent DInSAR error source in the context of ice velocity retrieval,
which may yield errors of large magnitudes and extent. Chapter 5 presents the work
carried out under the third objective, providing demonstrations of Sentinel-1 DInSAR
time series measurements. Specifically, the high accuracy and temporal resolution of the
measurements are used to investigate both long-term (subtle) changes in flow speed and
abrupt transient dynamic events. Finally, Chapter 6 provides brief conclusions of the
PhD project along with an outlook on potential future work. Chapters 3, 4, and 5 col-
lectively include four journal manuscripts (three published and one currently in review).
Each manuscript is introduced and briefly summarized in the main text, while the full
manuscripts are provided in Appendix A. Supplementary materials are provided in Ap-
pendix B.
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Chapter 2 | Background

Sentinel-1 intensity image showing ice calving into the ocean in Sulzberger Bay,
Antarctica.
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2.1 SAR image acquisition - geometry and terminology
The goal of this section is to establish relevant terminology relating to the acquisition and
processing of SAR images. The section is by no means a complete introduction to the con-
cepts of SAR systems and processing, but aims to provide the reader with the background
necessary to appreciate the results presented in the thesis. For a thorough introduction,
the reader is referred to, e.g., Curlander and MacDonough, 1991 and Cumming and Wong,
2005. In the present section, an outline of the so-called Stripmap mode, which is the earli-
est and simplest SAR acquisition mode, is given. This is supplemented by a description of
the Terrain Observation by Progressive Scans (TOPS) acquisition mode, employed by the
Sentinel-1 satellites, in section 2.3. Section 2.2 introduces various methods for measuring
motion with SAR images. Finally, sections 2.4-2.6 describe relevant error sources, the
DInSAR calibration procedure, and the combination of multiple SAR velocity retrievals
for inferring 3D motion, respectively.

A SAR system is, essentially, a radar mounted on a moving platform. The system may be
airborne (mounted on airplanes, or even drones), however, throughout the thesis the focus
lies on spaceborne, satellite SAR sensors. Conversely to optical sensors and radar/laser
altimeters, which are generally pointed in the nadir direction, SAR sensors are side-looking.
In the basic Stripmap acquisition mode (see Fig. 2.1), the sensor is pointed (approximately)
perpendicular to the satellite flight path. The projection of the flight path to ground is
known as the azimuth. As the satellite travels through orbit, the radar transmits and
receives electromagnetic pulses of a certain microwave carrier frequency. In the case of
Sentinel-1 the carrier frequency is 5.4 GHz, translating to a wavelength of 5.6 cm. The
reader may be familiar with a simple stationary radar system, in which timing information
of a received pulse is translated into a measure of distance, also known as range, to an
object that reflected the transmitted pulse. With SAR, a given object (or target) on
ground is illuminated by multiple pulses, as the satellite passes by and the target enters
the antenna beam footprint. For each received pulse, reaching the antenna after being
reflected and scattered by a target, a signal, or echo, is recorded. The echo consists of
an amplitude (relating to the strength of the reflected wave) and a phase (relating to the
scattering properties of the given target and, in principle, the distance to the target).

With this, we have established the two-dimensional nature of a SAR image, the dimensions
being the sensor flight path, known as azimuth, and the sensor line-of-sight (LoS), also
known as the slant range (i.e. the slanted line between the radar and target, sometimes
abbreviated to just range). Simply arranging the recorded echoes line-by-line, however,
would lead to an image of very poor resolution. This is because the azimuth antenna beam
width and the length of the radar pulse, which collectively define the area within which
targets contribute to the echo recorded at a given pixel, are both on the order of several
kilometers. Instead, to achieve a much better resolution, on the order of a few meters,
advanced signal processing techniques are applied to the received echoes. To improve
the slant range resolution, a relatively common technique known as pulse compression is
applied. The method involves transmission of a coded pulse, e.g. using linear frequency
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Figure 2.1: Sketch outlining the SAR acquisition geometry of the Stripmap mode. The
various parameters are described in the text. (Adapted from Cumming and Wong, 2005)

modulation (FM), followed by correlation with the incoming echoes - a process known as
matched filtering. The technique used to obtain high resolution in azimuth is what gives
rise to the name synthetic aperture radar. In principle, the technique corresponds to pulse
compression. It exploits the fact that echoes from a single target are received with a range
of Doppler frequency shifts, which, through signal processing, yields a synthetic aperture
(i.e. antenna) of several kilometers. As the antenna beam passes by a given target, the
Doppler shift of the received echo varies with the sensor-to-target velocity, from positive
values (when the sensor is approaching the target), to zero (when the sensor is exactly at
the range of closest approach, also known as zero-Doppler time, see Fig. 2.1), and finally
to negative values (as the sensor moves away from the target). With the antenna pointed
roughly perpendicular to the azimuth, and under the assumption of a relatively narrow
antenna beam in azimuth, the Doppler time series for the target will be linear, giving rise
to a linear frequency modulation in the azimuth dimension (which in range was achieved
through pulse coding). As the received echoes are recorded coherently (i.e. preserving the
phase of the signal), the Doppler histories allow for compression in the azimuth dimension,
which yields a resolution that is independent of range.

With the range and azimuth compression performed, the resulting SAR image is denoted
as focused. The focused SAR image is also known as a Single Look Complex (SLC) image,
where ”single look” refers to the fact that no spatial averaging has been performed and
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”complex” refers to the fact that both an amplitude and a phase signal is recorded. For
FM signals, the time-domain resolution is simply 1/B, i.e. the inverse of the bandwidth,
which in the slant range case is determined by the width of the transmitted chirp and in
the azimuth case depends on the total range of measured Doppler shifts (which in turn
is dependent on antenna properties). The digital sampling is controlled by the receiver
electronics in the range case and by the pulse repetition frequency in the azimuth. Nat-
urally, the sampling frequencies must be larger than the corresponding bandwidths, to
comply with the Nyquist theorem and avoid undersampling. Hence, an image pixel is
always smaller than the resolution cell. Several important trade-offs exist in the selec-
tion of all of these (and more) parameters (Curlander & MacDonough, 1991; Cumming &
Wong, 2005), which we will not cover further in depth here. In the focused SAR image,
each pixel is usually placed at the zero Doppler position, corresponding to the range and
azimuth time of closest approach, such that the azimuth and LoS image dimensions are
perpendicular, even if the sensor is not pointed perfectly perpendicular to the flight path
(see Fig. 2.1, where the acquisition is squinted slightly forward by an angle, θs). Each
pixel is represented by a complex number, corresponding to the amplitude and phase of
the coherent sum of scattered signals returning from the area represented by the pixel.
Note that the SAR image is actually slanted and hence does not align with the ground
plane. Assuming horizontal (flat) terrain, a given slant range distance, R0, is projected to
ground range, Rg, as:

Rg =
R0

sin θi
(2.1)

where θi is the incidence angle of the radar look vector relative to a vertical line from the
horizontal plane (see also Fig. 2.8). Assuming flat terrain, the ground range resolution
increases with increasing distance from the radar, asymptotically approaching the slant
range resolution. In order to accurately reference an image to ground (referred to here as
geocoding) or to reference one SAR image to another (known as coregistration), a priori
knowledge on the terrain height is required, typically provided in the form of a Digital
Elevation Model (DEM).

A perfect point target, i.e. a target that perfectly reflects the transmitted pulse, would
yield the following signal, which can be considered an approximation of the SAR impulse
response:

s1(τ, η) = A1 exp (jψ1) pr (τ − τ0) pa (η − η0) exp (−j2πfcτ0) exp (j2πfDC(η − η0)) (2.2)

where (τ, η) are the range and azimuth time coordinates, respectively. Note that these
time coordinates are associated with their corresponding spatial coordinates (slant range,
R, and azimuth, x) as:
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τ =
2R

c
(2.3)

η =
x

Vr
(2.4)

where c is the speed of light, and Vr is the effective velocity of the satellite in a rectilinear
coordinate system (Cumming & Wong, 2005). The factor two in eq. (2.3) accounts for the
fact that τ measures the two-way travel time of the radar wave (i.e. from the sensor to the
target and back again). Returning to eq. (2.2), R0 and η0 represent the range and azimuth
time at closest approach, respectively. fc is the radar carrier frequency, related to the radar
wavelength, λ, through λ = c/fc. A1 and ψ1 are amplitude and phase terms relating to the
observed target and pr and pa are two sinc-like functions modulating the amplitude in the
range and azimuth dimensions. Finally, fDC is the so-called Doppler centroid frequency,
which is the Doppler frequency of the target at the beam-center crossing time, ηc (see Fig.
2.1). If the sensor line-of-sight is perfectly perpendicular to the flight path, ηc = η0, and
the Doppler centroid is zero. If the line-of-sight is oriented backward or forward (as in
Fig. 2.1) from the perpendicular, the Doppler centroid is negative or positive, respectively.
Note that the phase of the measured signal consists of three contributions, one dependent
on electromagnetic properties of the observed target, one dependent on the range to the
target and the radar wavelength, and one dependent on the Doppler centroid and the
azimuth time coordinate. The two latter phase terms allow for motion measurements,
through methods outlined in the following section.

The first phase term depends on the scattering properties of the observed target, and
hence also on the radar wavelength. In practice, the observed target is rarely a perfect
point target. Instead, the received signal stems from the superposition of reflections from
many scatterers distributed within the resolution cell, which is generally on the order of
tens of m2 in area. This gives rise to the phenomenon known as speckle. Two neighboring
resolution cells, covering, for instance, a field of crops or a glacier, will consist of similar
scattering elements (leaves or stems from the crops in the first case or ridges in the ice
surface in the latter case, all of the same scale as the radar wavelength). However, the exact
pattern of constructive and destructive interference arising from the coherent summation
of reflections from the various scatterers is unlikely to be exactly the same between the
two resolution cells. Consequently, speckle may lead to a substantial difference in the
received amplitude and phase in neighboring pixels. Speckle is the cause of the grainy
effect observed in the intensity image in Fig. 2.2 and the seemingly random pattern
observed in the SLC phase images in Fig. 2.3. Speckle is often referred to as speckle
noise, as it is an unwanted signal in many applications. Reduction of speckle is almost
always performed in interferometric applications by performing so-called multi-looking,
corresponding to a spatial averaging of measurements. Naturally, the speckle reduction
obtained from spatial averaging comes at the cost of reduced resolution. Fig. 2.2 shows
an example of the effects of multi-looking.
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Figure 2.2: Sentinel-1 intensity image (i.e. amplitude squared) from an area around
Copenhagen Airport before and after multi-looking. Speckle is clearly observed over fields,
grass areas near the airport, and even over the ocean to the very left. Multi-looking
substantially reduces speckle but leads to an image of coarser resolution.

2.2 SAR-based ice velocity retrieval
In this section, an outline of various methods for measuring displacements based on a
pair of SAR images is provided. The methods are well established and have been applied
to older SAR sensors (ERS, ALOS-1, Radarsat-1, etc.) as well as Sentinel-1 for various
applications, e.g. seismic or volcanic activity, ground subsidence, or ice motion (Goldstein
et al., 1993; Massonnet et al., 1994; Joughin, 2002; Jiang et al., 2017b; Mouginot et al.,
2019a). Note that all of the methods measure displacement occurring in the time between
the two SAR acquisitions, also known as the temporal baseline. Velocity measurements are
simply computed as the measured displacement divided by the temporal baseline, which
implicitly assumes that the observed displacements occur at a constant velocity. In the
context of ice flow measured with temporal baselines of 6 or 12 days (the shortest possible
with Sentinel-1), this assumption is generally assumed to be valid, although the presence of
sudden transient flow changes could lead to a misinterpretation (as displacements occurring
over times shorter than the temporal baseline of the SAR acquisitions will be averaged
over the full temporal baseline).

For the phase-based motion retrieval methods, a prerequisite is that the two SAR acquisi-
tions are coregistered, i.e. resampled to a common grid, such that the phase is compared
at the same location in the two images. In practice, the secondary image (i.e. the second
acquisition) is resampled to the geometry defined by the reference image (i.e. the first
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acquisition). Although several approaches to coregistration exist, throughout the work
presented here, coregistration is carried out through a back-projection approach, in which
the geometry of the reference image is first referred to an Earth ellipsoid, then to the
geometry of the secondary image, using FFT interpolation to allow sub-pixel precision.
This allows for a resampling of the secondary image into the reference geometry. The
process is known as geometrical coregistration and requires a DEM and precise orbit state
vectors (Sansosti et al., 2006). Note that the exact correspondence between reference and
secondary image pixels also depend on underlying motion within the imaged scene. This
aspect is especially relevant in the case of Sentinel-1 TOPS measurements, and hence
coregistration is a central element in Sentinel-1 interferometry. Refinements of the TOPS
coregistration process is the topic of Chapter 3.

In the following, theoretical derivations assume the case of Stripmap acquisitions. Section
2.3 details important differences related to the TOPS mode, and hence to Sentinel-1 mea-
surements, as well as an additional motion retrieval method unique to TOPS acquisitions.
Table 2.1 gives a brief recap of the most important advantages and disadvantages of each
of the described methods. Fig. 2.6 shows example ice velocity retrievals for the various
methods.

Table 2.1: Overview of SAR motion retrieval methods described in sections 2.2-2.3.

Method Component Advantages Disadvantages

DInSAR LoS Superior resolution and accuracy
Phase unwrapping needed, only

LoS component, relative
measurements

MAI Azimuth
Measures all sources of azimuth
misregistration, (generally) no

unwrapping

Low resolution/accuracy
(especially for TOPS mode)

BO-MAI Azimuth
Measures all sources of azimuth

misregistration, higher
accuracy/resolution than MAI

Only applicable within
TOPS/ScanSAR burst overlaps

Offset
tracking

LoS +
azimuth

2D motion, no unwrapping,
applicable in fast flow

Low resolution and accuracy

2.2.1 Differential SAR interferometry

Differential SAR Interferometry (DInSAR) is a technique that estimates ground motion
through the difference in phase signal between subsequently acquired SAR images, also
known as repeat-pass interferometry. The received SAR signal of a point target, s1(τ, η),
was described by eq. (2.2) above. We now imagine a second SAR image, acquired a certain
time ∆t after the first, during which the target has moved a distance corresponding to
∆R = ∆τc/2 in slant range and ∆x = ∆ηVr in azimuth:
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s2(τ, η) ∝ exp (jψ2) exp (−j2πfc(τ0 +∆τ)) exp (j2πfDC(η − (η0 +∆η))) (2.5)

where amplitude terms have been omitted. Assuming coregistered images, an interfero-
gram is simply formed as the multiplication of the first image with the complex conjugation
of the second image:

ID = s1(τ, η) · s∗2(τ, η) = |s1 · s∗2| exp (ϕD) (2.6)

where the interferogram phase, i.e. the phase difference between the two acquisitions, can
be separated in the following contributions:

ϕD = ∆ψ +
4π∆R

λ
+ 2πfDC∆η +∆ϕtopo +∆ϕtropo +∆ϕiono (2.7)

The first term is related to the difference in scattering properties of the given target be-
tween the two acquisitions, i.e. the speckle effect described in the previous section. If
the scattering properties of the target (or resolution cell) are similar in the two acquisi-
tions, then ∆ψ has a distribution that is closely centered around a mean value of zero
(Bamler & Hartl, 1998). The statistical similarity of the scattering properties is defined
as the interferometric coherence. As coherence decreases, the distribution of ∆ψ widens,
and phase noise increases. A moderate level of coherence is a necessity for performing
interferometric measurements. In the case of complete loss of coherence, also known as
decorrelation, between the two acquisitions, ∆ψ will have a uniform distribution in the
interval [0; 2π] and hence dominate the retrieved phase signal, making retrieval of ground
motion impossible. In the context of ice velocity retrieval, loss of coherence may occur
due to, e.g., surface melt, precipitation, rearrangement of snow layers due to winds, and
shear stress caused by high velocity gradients. Such sources of coherence loss are typically
denoted as temporal decorrelation, as their effect is increased with an increasing temporal
baseline. Several other sources of decorrelation exist (see also section 2.4). Interferomet-
ric coherence is determined through the complex cross-correlation between the two SAR
acquisitions:

γ =
E (s1 · s∗2)√

E (|s1|2)
√
E (|s∗2|2)

≃ ΣN
i=1s1 · s∗2√

ΣN
i=1|s1|2

√
ΣN
i=1|s∗2|2

(2.8)

where E(·) indicates the expected value, which in the final approximation is replaced by a
summation over N image samples, assuming ergodicity. As previously mentioned, speckle
noise may be reduced through multi-looking, which is usually done in DInSAR applications
with window sizes of a few resolution cells in each dimension (resulting in a resolution on
the order of 20-100 m for the final output measurements). In some applications, spectral
filters, originally proposed by Goldstein and Werner, 1998, are used to further reduce
phase noise.
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The second term in eq. (2.7) is related to the difference in the sensor-to-target distance
between the acquisitions, ∆R, i.e. the displacement of the target in the LoS direction,
which is the desired signal in DInSAR. The third term is dependent on the Doppler
centroid frequency and the displacement in the azimuth dimension. In general, this phase
term is considered negligible for Stripmap acquisitions, where fDC is typically close to
zero and has a negligible variance across the scene. The fourth term, ∆ϕtopo, relates to
the difference in range caused by the sensor viewing the target from two different vantage
points specifically in case of a non-zero distance in the plane perpendicular to the LoS,
which is known as the perpendicular baseline. The phase term can be considered as two
separate contributions: the phase that would be observed from a perfectly flat surface
(referred to as the flat-earth phase) and the additional phase difference caused by local
topography. In the case of DInSAR, where we wish to measure ground motion, these
phase contributions can be estimated, and thus compensated for, through knowledge of
the satellite orbit path and a DEM covering the scene. Alternatively, the sensitivity
to topography can be used to generate DEMs, as has been done extensively (Rabus et
al., 2003; Rizzoli et al., 2017). The final two terms in eq. (2.7) represent differences
in propagation delay in the troposphere, ∆ϕtropo (caused by differences in, e.g., water
vapor levels), and in the ionosphere, ∆ϕiono (caused by modulation of the radar signal by
the electron content). Several past studies have investigated methods for estimating and
compensating the tropospheric and ionospheric phase contributions (Bekaert et al., 2015;
Brcic et al., 2010; Scott & Lohman, 2016; Yu et al., 2018). Such methods are not applied
in the DInSAR processing presented in the thesis.

Fig. 2.3 shows an example of two Sentinel-1 SLC images, acquired 6 days apart near the
ice front of Zachariae Isstrøm, Greenland. The phase images of the individual SLCs are
seen to contain no interpretable information, however the interferometric phase contains
a clear signal where coherence is retained.

Assuming all other phase contributions in eq. (2.7) can be eliminated or neglected, the
measured interferometric phase is seen to be directly proportional to the LoS displacement,
∆R, and the radar wavelength, λ. Note that the radar wavelength is only a few centimeters
(5.6 cm in the case of Sentinel-1), illustrating how DInSAR is sensitive to motion of
very small scale, yielding high accuracy velocity retrievals. The process of computing
displacement is, however, complicated by the fact that we are measuring a phase signal.
The measured phase is obtained through the comparison of the received signal with a stable
reference oscillator in the sensor. The phase measurement is constrained in the interval
[−π;π] (or −180 to 180 degrees) and is often denoted as the wrapped phase. However, the
interferometric phase difference may easily exceed 2π, which corresponds to a displacement
of just λ/2. In that case, the correct phase will consist of the measured ϕD plus/minus
some integer multiple of 2π:

ϕunw = ϕD + 2πN (2.9)
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Figure 2.3: Example of an interferogram generated from a pair of Sentinel-1 SLC images
near the outlet of Zachariae Isstrøm. The first two columns show the intensity (squared
amplitude) and phase of the SLC images. Note how the SLC phase images show a uniform
distribution, with seemingly no usable information. The third column shows the interfero-
metric coherence and the differential phase obtained from DInSAR (after eliminating the
topographic phase contribution). The dense fringe pattern indicates a high amount of mo-
tion. Coherence is lost in regions of high motion gradients, due to a change in orientation
of the ice fabric caused by high shear stresses (Goldstein et al., 1993).

where N is an integer. The process of solving eq. (2.9) for all pixels in the scene is known
as phase unwrapping and involves integration of the 2D wrapped phase image, resulting
in the unwrapped phase image, ϕunw. Several approaches to phase unwrapping have been
developed and extensively applied (Goldstein et al., 1988; Costantini, 1998; Chen & Zebker,
2000; Fornaro et al., 1996). A requirement for successful phase unwrapping is that the
local phase gradient, i.e. the phase difference between neighboring pixels, does not exceed
π radians, corresponding to a displacement difference of λ/4, as this would otherwise cause
ambiguities. Fig. 2.4 shows an example of a wrapped and unwrapped phase image. From
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Figure 2.4: Subset of a Sentinel-1 interferogram near the southwest coast of Greenland.
To the left, the wrapped differential phase is shown. The unwrapped phase is shown to
the right. Both phase images are shown in units of radians. Pixels with a coherence
level below 0.2 are discarded and are shown as transparent. Note how (presumed) phase
unwrapping errors occur for two small regions, which show very steep gradients in the
unwrapped phase. The errors occur near areas where coherence is partially lost, as shown
by the transparent pixels.

the unwrapped phase, LoS velocity measurements are computed as:

vLoS = ϕunw · λ

4πT
+ ϵ (2.10)

where T is the temporal baseline of the SAR image pair and ϵ represents all error terms,
such as phase noise, inaccuracies of the DEM used to eliminated topographic signals, and
tropospheric/ionospheric effects. In the derivations above, a perfect coregistration is as-
sumed. Aside from the phase unwrapping process itself, which in many cases can be quite
challenging, the problem of retrieving motion is further complicated by the fact that the
unwrapped phase image provides measurements that are relative, i.e. referred to a seed
point selected in the unwrapping process. In order to retrieve absolute displacements, one
must refer the measurements to one (or more) point(s) of known displacement. This pro-
cess is known as calibration and is described further in section 2.5. The calibration process
may also mitigate large-scale errors caused by orbital uncertainties and/or atmospheric
error contributions, which may also be relevant in offset tracking and Multi-Aperture
Interferometry measurements.
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2.2.2 Multi-aperture interferometry
One of the main limitations of the DInSAR technique is that only one component of
the three-dimensional motion vector is measured, namely the component in the sensor
LoS direction. Multi-Aperture Interferometry (MAI) is a phase-based technique that is
sensitive to motion in the azimuth direction, making a 2D velocity retrieval from a single
SAR image pair possible by combining both methods. The MAI method involves the
generation of interferograms generated with upper and lower spectral sub-bands of the two
SAR acquisitions followed by the computation of a so-called double difference interferogram.
The first proposal for such a method used sub-bands in the range dimension in order
to estimate absolute phase (Madsen & Zebker, 1992). A similar method was proposed
with the objective of refining image coregistration using both range and azimuth sub-
bands (Moreira & Scheiber, 1998; Scheiber & Moreira, 2000) and was given the name
Spectral Diversity. Finally, the azimuth Spectral Diversity method was reformulated with
an emphasis on measuring physical motion, rather than misregistration. This method was
named MAI (Bechor & Zebker, 2006) and is the one presented here.

The MAI principle can be understood through the following relation between the Doppler
centroid frequency, fDC , and the sensor squint angle, θs (recall Fig. 2.1), (Cumming &
Wong, 2005):

fDC =
2Vs sin θs

λ
≃ 2Vsθs

λ
(2.11)

where the second equality, and hence the proportionality between Doppler centroid and
squint angle, holds for small angles. The relation above confirms the intuitive idea that a
forward-squinted acquisition leads to a positive Doppler shift, while the opposite is true
for the backward-squinted case. The relation also suggests that extracting part of the
Doppler spectrum (i.e. band-pass filtering the azimuth spectrum) effectively generates
a squinted acquisition. Hence, an interferogram may be formed by the (synthetically)
forward-squinted acquisitions, which are centered on the higher Doppler centroid frequency
fuDC :

Iu ∝ exp (j∆ψu) exp (j2πfc∆τ) exp (j2πfuDC∆η) (2.12)

and similarly, a backward-squinted interferogram, centered on the lower Doppler centroid
f lDC becomes:

Il ∝ exp (j∆ψl) exp (j2πfc∆τ) exp
(
j2πf lDC∆η

)
(2.13)

A double difference interferogram can now be formed by interfering the two squinted
interferograms (showing only phase terms):

IMAI = Iu · I∗l ∝ exp (j∆ψ) exp
(
j2π

(
fuDC − f lDC

)
∆η

)
(2.14)
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and it is noted that the phase term related to LoS displacement cancels out in the MAI
interferogram, leaving behind only a term related to phase noise, ∆ψ, and a term related to
azimuth displacement, ∆η. In section 2.2.1, it was stated that, for Stripmap acquisitions,
the azimuth displacement term in the interferometric phase of eq. (2.7) is often neglected,
as the Doppler centroid frequency is close to zero. In the MAI phase, however, the azimuth
displacement is proportional not to the original Doppler centroid, but to the difference in
Doppler centroids between the upper and lower sub-bands, ∆fDC = fuDC − f lDC . Hence,
ignoring error terms, azimuth displacement can be retrieved from the MAI interferogram
phase as:

∆x = ∆ηVr = ϕMAI ·
Vr

2π
(
fuDC − f lDC

) (2.15)

Azimuth velocity is then obtained simply as ∆x divided by the temporal baseline of the
image pair. Note that, similarly to DInSAR, MAI measures a timing difference, ∆η, which
in practice relates not only to displacement. In the MAI case, the measured phase, and
hence timing difference, contains the following additional contributions:

∆η = ∆ηmotion +∆ηorb +∆ηcoreg +∆ηiono (2.16)

where the first component relates to the physical displacement, i.e. the signal of interest.
The remaining components are related to uncertainties in the orbit state vectors, coregis-
tration errors, and ionospheric propagation, respectively. From eq. (2.15) it is seen that
the sensitivity to azimuth displacement is determined by the Doppler frequency separation,
∆fDC , motivating a large separation between the two sub-bands. On the other hand, as
the total available bandwidth is finite, increasing the frequency separation means that the
bandwidth of each sub-band must be decreased (see Fig. 2.5). The bandwidth determines
the azimuth resolution and hence a trade-off exists between maximizing the frequency sep-
aration and maximizing the sub-band width. Previous studies derive an optimal frequency
band separation as 2/3 of the azimuth bandwidth (Bamler & Eineder, 2005).

Just as DInSAR, the MAI method relies on interferometric coherence being retained. Due
to the limited bandwidth (and the relatively low sensitivity, compared to DInSAR), a
high amount of multi-looking is typically necessary in order to generate displacement
measurements with an acceptable noise level. Consequently, MAI measurements usually
have lower resolution than those obtained with DInSAR (see Fig. 2.6). An advantage
of the relatively low sensitivity, however, is that phase unwrapping is often not required,
as the azimuth motion that would be required to exceed a phase of 2π is generally high
enough to cause complete loss of coherence (particularly for Sentinel-1). In some cases,
this may mean an improvement in coverage, compared to DInSAR.

2.2.3 Amplitude-based offset tracking
Offset tracking techniques allow for the measurement of motion in both the LoS and az-
imuth directions. For a given image pair, the amplitude terms, defined in eq. (2.2), are
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Figure 2.5: Example of azimuth (i.e. Doppler) band-pass filtering required for MAI mea-
surements. The upper and lower sub-bands (corresponding to a forward- and backward-
squinted acquisition, respectively) are generated from the full spectrum. Note that the
original spectrum is centered around 70 Hz, indicating that the image was acquired with
a slightly forward-squinted geometry. The data stems from an ERS-2 image.

used to track the misregistration between the two acquisitions in each dimension (Scambos
et al., 1992; Gray et al., 1998). Although several types of tracking techniques exist, the
most widely applied method, and the one used for offset tracking measurements presented
in this thesis (Solgaard et al., 2021), is based on a two-dimensional Normalized Cross Cor-
relation (NCC) between the two amplitude (or intensity, i.e. amplitude squared) images
(Strozzi et al., 2002; De Lange et al., 2007). Image patches of a certain size (generally tens
of resolution cells in each dimension, corresponding to >500 m for satellite SAR sensors)
are extracted from the reference image and used to generate the NCC field by correlat-
ing with patches of the same size in the secondary image. To reduce the computational
workload, a search window is defined, in which the correlation is computed with a certain
posting, which is typically some fraction of the patch size. For each patch, a 2D displace-
ment estimate is obtained by determining the distance from the patch location in the
reference image to the maximum of the NCC field. Sub-pixel displacement measurements
are achieved through FFT interpolation. Note that the two images do not need to be
resampled to the same grid (i.e. coregistered), although misregistrations caused by the
difference in acquisition geometry must still be estimated, in order to separate them from
shifts due to physical motion.

Surface features such as cracks and crevasses in the ice may be observed, and hence tracked,
in SAR amplitude images, similar to optical images. Conversely to the optical case, how-
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ever, SAR offset tracking may also be carried out in areas that do not contain visible
features. This is because of the speckle noise inherent in SAR images. A given patch in
the reference image will show a certain distribution of speckle in the amplitude signal and
assuming no major changes happen to the surface scattering properties, i.e. assuming a
relatively high coherence level, this speckle distribution may be tracked to its new location
in the secondary image. In that case, the process is usually referred to as speckle tracking
(Strozzi et al., 2002), although the method implementation is no different from the fea-
ture tracking case. The fact that the same method can be used to simultaneously track
velocities over fast-flowing glacier fronts, where coherence is often lost but visible features
may be abundant, and over the slower-moving ice sheet interior, where coherence is often
high but few visible features are present, is one of the advantages of SAR offset tracking.
Another advantage is that motion can be measured in two dimensions, meaning that the
three-dimensional velocity vector may be retrieved by combining measurements acquired
from two satellite tracks with different look angles (Joughin et al., 1998). Finally, while
the offset tracking algorithm is more computationally intensive than DInSAR, it does not
include the often delicate phase unwrapping procedure. A disadvantage of tracking-based
measurements is that their accuracy is limited by the resolution cell size (several meters)
as opposed to the radar wavelength (few centimeters) in the DInSAR case. Estimates
of offset tracking displacement errors are on the order of 1/100th to a few tenths of the
resolution cell size in each dimension (Bamler & Eineder, 2005; De Lange et al., 2007),
which is about an order of magnitude worse than the accuracy expected with DInSAR,
dependent on the signal-to-clutter ratio when tracking features and the coherence level
when tracking speckle. As for the resolution of the output measurements, in the worst
case it will be equal to the size of the image patch used for matching (tens of resolution
cells in each direction), while in the best case it will be equal to the posting distance (a
fraction of the matching patch) (Pritchard et al., 2005), meaning that also the resolution
is about an order of magnitude poorer than for DInSAR (compare Fig. 2.6a-b with Fig.
2.6c).

2.3 Sentinel-1 and the TOPS acquisition mode
In the description of SAR acquisitions and motion retrieval above, the simple Stripmap
mode has been assumed. The focus of this thesis, however, is interferometric measure-
ments generated with acquisitions from the Sentinel-1 satellites, which apply the Terrain
Observation by Progressive Scans (TOPS) mode. This section provides a description of
the Sentinel-1 satellites, the TOPS acquisition mode and its consequences in relation to the
discussed motion retrieval methods, and finally an additional motion retrieval technique,
which exploits the MAI principle and is unique to the TOPS (and ScanSAR) mode.

The Sentinel-1 satellite constellation is part of the EU’s Copernicus program, managed
by the European Space Agency. The constellation consists of two satellites, Sentinel-1A
and -1B, launched in April of 2014 and 2016, respectively. The satellites carry a C-band
(5.4 GHz, corresponding to a wavelength of 5.6 cm) SAR system and travel in a polar sun-
synchronous orbit with a repeat-pass period of 12 days. The orbits of the two satellites
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Figure 2.6: Line-of-sight and azimuth ice velocity measurements from various SAR motion
retrieval methods for Sentinel-1 data in the vicinity of the Northeast Greenland Ice Stream.
(a)-(b) LoS offset tracking for 6- and 12-day image pairs, (c) DInSAR LoS velocity for a
6-day pair, (d)-(e) azimuth offset tracking for 6- and 12-day pairs, (f)-(g) azimuth velocity
from MAI for 6- and 12-day pairs, (h) BO-MAI azimuth velocity measurements for a
6-day pair. Note that certain biases/artefacts impact the Sentinel-1 offset tracking and
MAI measurements. These are further discussed in Chapter 3. (Figure adapted from
supplementary material of Andersen et al., 2020 - see also Appendix B.1).

are separated by 180◦ in phase, such that the repeat-pass period of the constellation
becomes 6 days. Since December 23rd 2021, however, Sentinel-1B has been unavailable
due to a power failure, and in August 2022 efforts to restore the SAR system were halted.1

1https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-1/Mission_ends_for_
Copernicus_Sentinel-1B_satellite
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Two additional satellites, Sentinel-1C and 1-D, have been planned to replace the 1A/1B
satellites at the end of their lifespan, with the Sentinel-1C launch moved forward to the
first half of 2023 as a response to the outage of Sentinel-1B.2

Fig. 2.7 illustrates the Sentinel-1 Interferometric Wide (IW) TOPS acquisition mode,
which is the standard mode of operation over land.3 Conversely to the Stripmap case,
where the antenna squint angle is kept constant and measurements are recorded within a
single swath, the TOPS mode involves scanning of the antenna within individual bursts
in three neighboring sub-swaths. Within each burst, the antenna scans in the azimuth
direction, moving from the aft (backward-looking) to fore (forward-looking). The steering
is done electronically with a phased-array antenna. The sub-swaths are recorded sequen-
tially, switching the elevation angle of the antenna every time a burst has been completed.
The total swath width (combining all sub-swaths) is 250 km and the length of each burst
is 20 km. As indicated in Fig. 2.7, there is an azimuth overlap region between neighboring
bursts roughly 2 km in length (and an overlap between sub-swaths, also of 2 km width).
In the generation of contiguous IW image mosaics, bursts are usually stitched together
such that the overlap region consists of half of the first-acquired burst and half of the
latter-acquired burst (the same goes for neighboring sub-swaths).

The scanning of the antenna has several consequences for the acquired data. First, the
image resolution is roughly 5 m × 20 m in ground range/azimuth (with the ground range
resolution varying with range, cf. eq. (2.1)), i.e. the azimuth resolution is about 4-5 times
lower than the range. Consequently, multi-looking is typically applied with an uneven
number of range and azimuth pixels, such that the resulting ground resolution cell is
roughly square. The low azimuth resolution is a consequence of the decreased observation
time, caused by scanning the antenna across each burst, which in turn allows for recording
a very wide swath (De Zan & Monti Guarnieri, 2006). The trading of azimuth resolution
for a wider swath is the aim of the TOPS mode. Other SAR satellites have applied
the similar ScanSAR mode, in which several sub-swaths are also recorded in bursts, but
without azimuth scanning of the antenna. An advantage of the TOPS mode, however, is
that the antenna steering leads to a nearly uniform signal-to-noise ratio in azimuth, which
is not the case for ScanSAR (De Zan & Monti Guarnieri, 2006).

The antenna steering causes a significant Doppler frequency variation across each burst.
For sub-swath IW1, the Doppler frequency varies from −2.6 kHz at the burst start to
+2.6 kHz at the burst end (Yague-Martinez et al., 2016). Referring back to eq. (2.7), it
is seen how even a small, constant azimuth misregistration, ∆η, will lead to an azimuth
phase ramp in the interferometric phase of each burst (while a varying misregistration
pattern will cause a more complex phase contribution). Consequently, accuracy require-
ments of the image coregistration are substantially stricter for DInSAR in the TOPS case,

2https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-1/Ride_into_orbit_
secured_for_Sentinel-1C

3https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes/
interferometric-wide-swath
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Figure 2.7: Sketch showing the geometry of the Terrain Observation by Progressive Scans
(TOPS) acquisition mode, specifically the Interferometric Wide (IW) mode of Sentinel-1,
with three sub-swaths in range. The antenna is electronically steered from aft to fore,
which leads to azimuth burst overlaps that are measured with two different look vectors.
(Figure adapted from Merryman Boncori, 2019).

compared to the Stripmap case. In applications measuring (small-scale) displacements
over solid earth, the coregistration accuracy requirements have been met through the use
of precise orbit data, high quality DEMs, and data-dependent methods that seek to esti-
mate misregistrations using offset tracking (Scheiber et al., 2014) or the Extended Spectral
Diversity technique (Prats-Iraola et al., 2012; Yague-Martinez et al., 2016). In the case
of glaciers or ice sheets, however, ice motion may cause a large (non-uniform) contribu-
tion to ∆η, which may lead to biased measurements and substantial issues in the phase
unwrapping process. Resolving this challenge is the topic of Chapter 3.

Another consequence of the Doppler centroid variation is that a deramping (Miranda,
2017), i.e. a basebanding of the signal, must be performed prior to any interpolation or
filtering of a TOPS image. Deramping is thus required during, e.g., image coregistration
and MAI processing.

2.3.1 Burst overlap multi-aperture interferometry with TOPS mode
As indicated by Fig. 2.7, each of the burst overlap regions are observed twice by the sensor.
First, the overlap is measured by the forward-looking antenna (with a Doppler centroid on
the order of +2.6 kHz), then, the overlap is observed with the backward-looking antenna
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(with a Doppler centroid on the order of −2.6 kHz). With the MAI principle, described in
section 2.2.2, azimuth displacement information was extracted by synthetically generating
forward- and backward-squinted acquisitions through band-pass filtering. In the TOPS
burst overlaps, however, the squinted acquisitions are carried out separately, and the MAI
interferogram may be generated simply as the double-difference interferogram between
the forward- and backward-looking interferograms, without the need for band-pass filter-
ing. This method was first used in the formulation of the Extended Spectral Diversity
coregistration refinement technique (Prats-Iraola et al., 2012), which seeks to estimate a
constant misregistration, however in this thesis, we refer to the method as Burst Overlap
Multi-Aperture Interferometry (BO-MAI), as the aim is generally to utilize the spatially
varying measurements to estimate collectively motion and misregistration terms. A further
description of the BO-MAI method and how it was used in aiding TOPS coregistration
for DInSAR ice velocity retrievals is presented in Chapter 3.

An advantage of BO-MAI measurements, compared to the MAI case, is that band-pass
filtering of the images is not required. Consequently, the BO-MAI measurements utilize
the full azimuth bandwidth and a smaller amount of spatial averaging is required to
lower the noise floor in the azimuth motion measurements (see Fig. 2.6h for an example
BO-MAI retrieval). Additionally, recall from eq. (2.15) that the sensitivity of the MAI
phase to azimuth displacement is governed by the difference in Doppler centroid, ∆fDC =

fuDC−f lDC . In the MAI case, the frequency separation will be some fraction of the azimuth
bandwidth, which is on the order of 320 Hz, while in the BO-MAI case, the frequency
separation is on the order of 4-5 kHz. While this means a substantially higher sensitivity
of BO-MAI measurements, it also carries the consequence that phase ambiguities may
arise in the presence of large azimuth motion. This point is further addressed in section
3.4. Note that the BO-MAI measurements may be used both for coregistration refinement
purposes and as estimates of azimuth motion within the burst overlaps (Jiang et al., 2017a;
Li et al., 2021).

2.4 Error sources in SAR-based velocity measurements
In the following, a brief description of various error sources related to SAR motion re-
trieval methods is provided. Emphasis is put on error sources pertaining to (Sentinel-1)
DInSAR, as this method is the main focus of the thesis. In the case of DInSAR, any error
contributions in the interferometric phase, δϕ, translates to a LoS velocity error following
eq. (2.10), that is:

δvLoS = δϕ
λ

4πT
(2.17)

where T is the temporal baseline.

Decorrelation
In section 2.2.1, the phenomenon of temporal decorrelation was introduced, which arises
from differences in the scattering properties within a resolution cell in the time between
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two subsequent acquisitions. Another contribution of decorrelation is spatial decorrela-
tion, which arises from viewing the given resolution cell from two (slightly) different look
angles. Hence, this contribution increases with increasing perpendicular baseline. The
orbital tube of Sentinel-1 is relatively small, meaning that perpendicular baselines tend
to be small. Consequently, in our application domain, spatial decorrelation is generally
assumed to comprise a smaller (though non-negligible) contribution, compared to tempo-
ral decorrelation caused by surface melt or precipitation. Spatial decorrelation is usually
separated in a contribution due to horizontal spread of scattering elements (sometimes
denoted as baseline decorrelation) and a contribution due to vertical spread of scatter-
ers, denoted as volume scattering, which is indeed relevant over ice and snow, where the
penetration of microwaves is generally non-zero (Weber Hoen & Zebker, 2000).

Coregistration errors lead to a misalignment in the phase centers between the two ac-
quisitions, which may also cause decorrelation. Finally, decorrelation may also arise from
thermal noise in the radar receiver system. Thus, in practice, the interferometric coherence
γ can be divided into the following components:

γ = γspatial · γtemporal · γcoreg · γthermal (2.18)

The DInSAR phase error standard deviation associated with decorrelation can be approx-
imated as (Rodriguez & Martin, 1992):

σϕn =
1√
2NL

·
√
1− γ2

γ
(2.19)

where γ is the interferometric coherence and NL is the equivalent number of looks (i.e.
the number of independent samples, which depends on the level of multi-looking). Hence,
phase noise is lower for higher amounts of multi-looking and for regions of higher coherence,
which is also true for amplitude offset tracking.

In the context of ice velocity retrieval, complete decorrelation (i.e. a coherence level
close to zero) tends to limit coverage, particularly in regions where large amounts of
surface melt or precipitation occur. Assuming a moderate level of coherence (higher than
∼0.3), on a pixel level, decorrelation phase noise is generally not a source of substantial
error. However, as will be demonstrated in Chapter 4, phase unwrapping errors, which are
typically associated with areas of low coherence, may propagate into high coherence areas.
Hence, the distribution of coherence across the scene may greatly affect the occurrence of
medium- and large-scale unwrapping errors.

Topographic estimation errors
For DInSAR, errors in the estimated topography, i.e. deviations of the surface elevation
from the applied DEM, lead to a phase contribution of:

δϕz = ∆z
4π

λ
· B⊥
R0 sin (θl)

(2.20)
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where B⊥ is the perpendicular baseline between the vantage points of the two satellite
acquisitions and θl is the angle between nadir and the radar LoS. Hence, there is a direct
proportionality between perpendicular baseline and topographic phase error. As Sentinel-1
was designed primarily for differential interferometry, the orbital tube is narrow, meaning
that perpendicular baselines are generally small, with B⊥ < 150 m for the majority of
image pairs (Barat et al., 2015). Furthermore, high quality DEMs of extensive polar
coverage are widely available (Rizzoli et al., 2017; Porter et al., 2018). Consequently,
errors related to the topographic phase contribution are assumed to have a minor influence
on Sentinel-1 DInSAR measurements.

Tropospheric effects
As SAR satellites orbit the Earth at a distance on the order of 700 km, the transmitted and
received radar waves must propagate through the entirety of the Earth’s atmosphere. In
the troposphere (the bottom ∼15 km of the atmosphere), the refractive index, and hence
the velocity of the radar wave, may vary depending on the temperature, air pressure, and
the amount of water vapor and liquid water content. In the DInSAR derivations presented
so far, the wave speed was assumed to be constant. In that case, the refraction of the
radar waves may be interpreted as an additional phase delay, τtropo, or equivalently an
additional path (in range) traveled by the wave, ∆Rtropo. Consequently, differences in
the refractive index caused by, e.g., an increase in the tropospheric water vapor content
between the two SAR acquisitions will contribute directly a phase term:

δϕtropo = 2πfc∆τtropo (2.21)

Tropospheric phase errors may arise from differences in stratified delay or turbulent delay.
Stratified delay relates to the vertical distribution of the refractive index. A difference in
tropospheric stratification between image acquisitions leads to a phase contribution that
varies with topography. In some cases, data from numerical weather prediction may be
used to compensate for the stratified delay error (Doin et al., 2009). Turbulent delay
arises from horizontal mixing in the troposphere, often related to thunderstorms or other
weather events (although a difference in turbulent delay may also exist under clear sky
conditions). The phase errors caused by turbulent effects are generally not possible to
accurately model. The errors will typically lead to spatially correlated patterns.

Ionospheric effects
The radar waves also travel through the ionosphere, which spans from about 50 km altitude
to the exosphere (beyond the satellite orbit). In the ionosphere, solar radiation leads
to free electrons, which may impact the propagating radar wave. The amount of free
electrons between the sensor and target, denoted the Total Electron Count (TEC), may
differ between subsequent SAR acquisitions due to, for instance, changes in solar wind. In
that case, a phase contribution due to ionospheric propagation delay will arise:

δϕiono
= 2πfc∆τiono (2.22)
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The ionospheric delay has the following relation to the change in TEC and the radar carrier
frequency (Brcic et al., 2010):

∆τiono ∝
∆TEC

f2c
(2.23)

meaning that lower frequency SAR systems (e.g. L-band) are substantially more affected.
Although C-band SAR systems often show negligible ionospheric phase errors at low or
mid latitudes, in polar regions, where TEC variations are generally much larger, this is
not always the case. Generally, ionospheric effects occur on large spatial scales (Brcic
et al., 2010). For azimuth shift measurements, such as the ones carried out with MAI
and offset tracking, ionospheric delay may lead to streaks of high magnitude errors in the
azimuth dimension (Gray et al., 2000). Examples of this are seen in the azimuth velocity
measurements in Fig. 2.6.

Phase unwrapping errors
In the absence of various phase error sources and decorrelation, phase unwrapping is, in
principle, a trivial process. In practice, however, coherence loss occurs to some extent in
every application of DInSAR. Consequently, the unwrapping process is, generally speaking,
an ill-posed problem that is far from trivial. As previously mentioned, ambiguities arise if
local phase gradients exceed π radians, which may happen due to, for instance, physical
motion exceeding λ/4 or decorrelation leading to excessive phase noise. In such regions, the
true unwrapped phase cannot be unambiguously recovered. However, the presence of such
ambiguities may also complicate the unwrapping of the surrounding regions (see Fig. 2.4).
Ultimately, the unwrapping algorithm must decide on some integer multiple of phase cycles
(i.e. 2π radians) to add/subtract from each pixel (recall eq. (2.9)). Alternatively, the pixel
should be masked out. Most phase unwrapping algorithms utilize a pixel-wise quality
estimate such as the coherence image to mask out areas where an unambiguous phase
signal is not expected. Still, local inconsistencies often occur, and in some cases, these
may propagate into regions where unwrapping errors would otherwise not be expected (i.e.
regions of high coherence). Consequently, phase unwrapping errors may yield errors of a
large spatial extent and as the algorithm seeks to resolve integer multiples of 2π radians,
errors may also be of significant magnitudes. For Sentinel-1 interferograms with a 6-day
temporal baseline, a phase unwrapping error of just a single phase cycle corresponds to
an error in estimated LoS velocity of 1.7 m/y, which is already much greater than the
expected DInSAR accuracy (Andersen et al., 2020). Dependent on the scene specifics
(and the unwrapping algorithm) errors may reach many phase cycles, far exceeding other
DInSAR error sources. Phase unwrapping errors and their detection is the topic of Chapter
4.

2.5 Calibration of DInSAR measurements
In order to retrieve displacement (or velocity) measurements from the relative phase differ-
ences obtained after unwrapping, calibration is required. The unwrapped phase measure-
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ments are referred to some arbitrarily selected seed point. The goal of the calibration is to
estimate an absolute (global) phase offset, corresponding to a constant offset in range, and
refer the relative measurements to the true displacement field. Aside from the error con-
tributions described in the previous section, uncertainties of the baseline between the two
acquisitions (in the form of orbit and timing errors) may lead to an error contribution that
varies across the scene. In practice, the absolute phase error may be modeled as a constant
baseline error. Hence, one approach is to consider all slow-varying (and constant) errors
as baseline uncertainties. Calibration is then performed by selecting a series of so-called
Ground Control Points (GCPs), where elevation and motion is known, and estimate a cor-
rection, following the approach described by Mohr and Boncori, 2008. We consider only
linear baseline errors (in azimuth and range). Accurately estimating a varying baseline er-
ror requires a series of GCPs that are distributed across the full scene. In some cases, this
may not be practical, and we instead estimate a constant (global) offset, neglecting the
linearly varying errors. For DInSAR retrievals covering large regions, however, the linear
baseline model was generally found to outperform the constant error estimation, when a
reasonable GCP coverage is possible, as it may also account for large-scale atmospheric
error contributions.

A common approach is to select GCPs in stationary regions (e.g. bedrock near the margin,
nunataks, etc.), where motion can be assumed to be zero over the temporal baselines of
DInSAR retrievals. However, this approach may be problematic, as the combination of
steep terrain and high motion gradients at the ice/bedrock transitions sometimes lead
to phase unwrapping errors. If such GCPs are used for calibration, those unwrapping
errors may propagate to the rest of the scene. Therefore, our approach has generally
been to select GCPs in slow-moving parts of the glacier/ice sheet under investigation
(velocity magnitudes lower than a few tens of m/y), where motion is assumed to show
little variation over the relatively short time scales considered. The velocity at each GCP
is then estimated from a multi-year average map (projected to the SAR LoS), while the
elevation may be obtained from a DEM.

2.6 Combining measurements for 3D velocity retrieval
Many glaciological applications require two- or three-dimensional ice velocity measure-
ments, preferably in a local Cartesian coordinate system, i.e. the velocity vector, v =

[vx, vy, vz]
T (where (x, y) refer to the horizontal surface and z is the vertical dimension).

The methods described in this chapter all measure motion in the SAR image dimensions,
line-of-sight and azimuth, and all, except for offset tracking, measure only one of these
motion components. Consequently, measurements from multiple motion retrieval methods
and/or multiple satellite tracks are required to resolve the 2D/3D velocity field. Tracks
are divided in the categories of ascending and descending, in which the satellite passes
from south to north or from north to south, respectively. As most SAR senors, includ-
ing Sentinel-1, are permanently right-looking, tracks in each category have similar look
angles and thus measure roughly the same motion components. Hence, a combination of
ascending and descending tracks are required if only a single measurement type is used.
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Figure 2.8: Sketch showing the SAR look vector elevation angle (also known as grazing
angle), θ, and orientation angle, ϕ, as well as the incidence angle, θi, in relation to a local
(x, y, z) or (east, north, up) Cartesian coordinate system. The angle θi is known as the
local incidence angle.

It is often assumed that ice flow follows the slope of the surface, which can be formulated
as:

vz =
dz

dx
vx +

dz

dy
vy (2.24)

where the surface gradients can be determined from a DEM. This assumption is known as
the surface-parallel flow assumption (Joughin et al., 1998; Mohr et al., 1998). It should
be noted that the assumption is less valid in areas of non-zero surface mass balance, i.e.
areas of high accumulation or ablation, where there is a non-zero velocity contribution
due to ice submergence/emergence (Joughin et al., 1998). With this, the following inverse
problem of the form u = Hv + ϵ can be formulated:



vr1

va1
...

vrN

vaN


=



cos θ1 cosϕ1 + sin θ1 ∂z
∂x cos θ1 sinϕ1 + sin θ1 ∂z

∂y

− sinϕ1 cosϕ1
...

...
cos θN cosϕN + sin θN ∂z

∂x cos θN sinϕN + sin θN ∂z
∂y

− sinϕN cosϕN


[
vx

vy

]
+ ϵ (2.25)

where vrn and van represent LoS and azimuth velocity measurements from the nth image
pair, θn is the look vector elevation angle for pair n (i.e. the angle from ground level to the
LoS) and ϕn is the horizontal orientation angle for pair n (see Fig. 2.8, which shows the
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relation between SAR geometry and a local Cartesian coordinate system). ϵ represents
error terms. Assuming independent, normally distributed and zero-mean noise for each
retrieval, the following diagonal covariance matrix can be assumed:

Σ =


σ2r1 0 · · · 0

0 σ2a1 · · · 0
...

... . . . ...
0 0 · · · σ2aN

 (2.26)

where σrn and σan are the estimated standard deviations of the LoS and azimuth velocity
measurements, respectively, for the nth image pair. The system can then be solved through
weighted least squares, with the solution:

v̂ = (HTΣ−1H)HTΣ−1u (2.27)

The system may be solved using only DInSAR measurements, which generally have the
highest accuracy, however in that case, both ascending and descending measurements
are needed. Alternatively, azimuth measurements from either MAI or offset tracking (or
BO-MAI) are required. Note that the inversion of measurements from N image pairs
implicitly assumes that the velocity field is unchanged through the span of the image
acquisition times. If a series of image pairs spanning long periods are combined, the result
may be considered a (pseudo)-average velocity, where the sampling may be irregular due
to, e.g., loss of interferometric coherence.
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Chapter 3 | Meeting coregistration
requirements of TOPS
interferometry on ice

Interferometric phase of a Sentinel-1 differential interferogram covering part of the
Northeast Greenland Ice Stream.
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3.1 TOPS mode interferometry in the presence of fast motion
The TOPS acquisition mode inherently leads to a coupling between the interferometric
(i.e. DInSAR) phase and azimuth misregistrations, ∆η, as shown by eq. (2.7). As in-
dicated by eq. (2.16), the azimuth misregistration may be separated in terms involving
limitations of the geometric coregistration and orbit uncertainties (∆ηcoreg and ∆ηorb), a
term related to ionospheric effects (∆ηiono), and finally a term related to physical motion
in the azimuth direction (∆ηmotion). In some applications, a sufficiently accurate geomet-
ric coregistration may be achieved and the ionospheric and azimuth motion terms may be
considered negligible. In the case of glaciers and ice sheets, large displacements are often
present over most of the imaged scene, generally with a spatially varying magnitude and
direction. Hence, the azimuth motion term cannot be neglected. While it is true that the
coupling between azimuth motion and interferometric phase is simply a characteristic of
the TOPS acquisition mode (De Zan et al., 2014), and not strictly speaking an error term,
the phase unwrapping process may be significantly complicated by the occurrence of phase
discontinuities at burst boundaries. The phase discontinuities, or phase jumps, occur in
the burst overlap region, where the Doppler centroid makes a sudden change from positive
to negative values. Fig. 3.1a shows an example of a Sentinel-1 TOPS interferogram over
a region in northeast Greenland with a purely geometric coregistration (i.e. based only on
a DEM and orbit data). Phase jumps are clearly observed at nearly all burst boundaries.
As demonstrated in section 3.3, the phase ramps caused by unaccounted azimuth motion
may lead not only to ramps and discontinuities in the resulting velocity measurements,
but also to phase unwrapping errors, which may result in velocity errors of tens (or even
hundreds) of m/y.

This chapter documents the work carried out to resolve the challenges related to coregis-
tration of Sentinel-1 TOPS images for DInSAR processing. The remaining three sections
focus on different approaches to refining image coregistration. Section 3.2 outlines methods
previously published on the topic and discuss their merits in the case of Sentinel-1 inter-
ferometric ice velocity retrieval. Section 3.3 presents a coregistration refinement based on
an external, average velocity estimate as well as BO-MAI measurements. Finally, section
3.4 provides a more thorough description of the BO-MAI coregistration refinement.

3.2 Data-dependent coregistration refinement approaches
Common to all the coregistration refinement methods presented in this chapter is the goal
of estimating some (or all) of the contributions to azimuth misregistration (i.e. coregis-
tration errors, ionospheric effects, azimuth motion, or some combination of these) and
subsequently account for the azimuth shifts caused by these contributions in the image
coregistration. Then, the DInSAR phase is interpreted as purely arising from motion in
the zero-Doppler LoS direction, as in the Stripmap case. Scheiber et al., 2014 evaluated
the performance of using offset tracking and MAI to estimate the spatially varying pattern
of azimuth misregistration and tested the approach on TerraSAR-X TOPS acquisitions.
An advantage of this and other data-dependent approaches is that the offset tracking and
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Figure 3.1: Sentinel-1 TOPS interferogram obtained from a 6-day image pair using various
coregistration strategies. (a) Geometric coregistration with no refinements, (b) with a
refinement based on MAI measurements, (c) with a refinement based on an external multi-
year average velocity map, and (d) with a refinement based on the external average velocity
map and an additional refinement based on BO-MAI measurements. (Figure adapted from
Andersen et al., 2020).

MAI measurements are sensitive not just to azimuth motion, but to all sources of azimuth
misregistration. For Sentinel-1, however, two issues arise in the application of such a
coregistration refinement. First, due to the limited azimuth bandwidth, the multi-looking
window size required to achieve an acceptable noise level of the MAI or offset tracking
measurements means that spatial variability of the azimuth motion pattern cannot be
captured (see also section 3.4 and the associated manuscript). Additionally, for image
pairs consisting of one acquisition from each satellite (i.e. S1A/S1B or S1B/S1A pairs), a
swath-dependent azimuth bias exists, which affects both offset tracking and MAI measure-
ments. Recent studies suggest that the bias may be related to an S1A antenna anomaly
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occurring in summer 2016 (Gisinger et al., 2021). Both satellites are required to generate
image pairs with the lowest possible temporal baseline of 6 days, which is favorable for
DInSAR processing. The bias does not affect same-satellite image pairs, however, in that
case, the minimum temporal baseline is 12 days, which leads to a substantial increase in
phase noise, due to increased temporal decorrelation. Fig. 3.1b shows an example interfer-
ogram obtained after applying the coregistration refinement based on MAI measurements.
Evidently, the phase jumps have only increased in magnitude, compared to the case of no
coregistration refinements, which is a result of the swath-dependent azimuth bias. Offset
tracking measurements contain a similar noise level as MAI and are also affected by the
bias. Note that an additional artefact impacts the LoS offset tracking measurements, seen
as patches that roughly align with burst edges in Fig. 2.6a. The MAI and offset tracking
coregistration refinement approach is further documented in section 3.3 and the associated
manuscript.

Another approach for coregistration refinement, which was briefly mentioned in the previ-
ous chapter, is the Extended Spectral Diversity (ESD) method (Prats-Iraola et al., 2012;
Yague-Martinez et al., 2016). The ESD approach involves the measurement of azimuth
misregistration within TOPS burst overlaps via the BO-MAI method. With ESD, how-
ever, instead of providing spatially varying measurements within each burst overlap, a
uniform scene-wide azimuth shift is assumed, which is then estimated using available mea-
surements from all burst overlaps. This method has been successfully applied in DInSAR
applications where the majority of the imaged scene is nearly stationary, such that ESD
may estimate the shift caused by a (presumably) uniform azimuth coregistration error,
∆ηcoreg (Cigna & Tapete, 2021; Yague-Martinez et al., 2016). In the case of ice velocity
retrieval, azimuth misregistration will, generally, contain a major contribution from ice
motion in the azimuth dimension, which is unlikely to be perfectly uniform. Hence, there
is a need for estimating a spatially variable coregistration refinement. To this end, we ap-
plied the BO-MAI measurements directly, after some spatial averaging via multi-looking,
to refine the azimuth coregistration within burst overlaps. Similar to the MAI and offset
tracking measurements, the BO-MAI measurements are sensitive also to other sources of
misregistration, such as ionospheric effects, which may then be corrected for. The obvious
downside to the BO-MAI refinement is that it is only applicable within burst overlaps.
The BO-MAI coregistration refinement is further documented in sections 3.3 and 3.4 and
the associated manuscripts.

3.3 Using average velocity estimates for coregistration
refinement

Barring major ionospheric effects, the main contributor to azimuth misregistration on
glaciers and ice sheets is the azimuth component of ice motion. While several methods are
available, which directly estimate the azimuth misregistration term, as described in the
previous section, none of these were found to provide a reliable coregistration refinement.
Aside from the (presumably) antenna-related bias, the azimuth bandwidth of Sentinel-
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Figure 3.2: Sentinel-1 TOPS interferogram from a 6-day image pair in the upstream parts
of Helheim glacier. Panel (a) shows the interferogram obtained with a geometric coregis-
tration with no refinements, while panel (b) shows the result of applying the coregistration
refinement based on both an external average velocity map and BO-MAI measurements.

1 leads to MAI and offset tracking measurements of relatively low accuracy. Instead, we
sought to refine image coregistration through an external estimate of ice velocity within the
scene. As previously described, routine measurements are carried out using offset tracking
methods on data from Sentinel-1 (and other sensors) (Solgaard et al., 2021; Joughin
et al., 2018a). Combining range and azimuth measurements from several tracks allows
for the estimation of the three-dimensional velocity field (assuming surface-parallel flow),
as described in section 2.6. Using data from several months, or even years, an average
velocity field may be computed, where the noise level is substantially reduced by the
temporal averaging. In the manuscript described below, we demonstrate a TOPS image
coregistration refinement based on a multi-year average velocity estimate and a second
refinement based on the BO-MAI method. An additional example of the effects of the
coregistration refinements, from a different region of the Greenland ice sheet, is given in
Fig. 3.2.

In the following, a brief summary and outline of the main results is provided for the
manuscript:

J. K. Andersen, A. Kusk, J. P. M. Boncori, C. S. Hvidberg, and A. Grinsted,
Improved ice velocity measurements with Sentinel-1 TOPS interferometry,
Remote Sensing, vol. 12, no. 12, p. 2014, doi:10.3390/rs12122014 (2020)

The full manuscript is provided in Appendix A.1 and supplementary material is provided
in Appendix B.1.
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3.3.1 Summary of Andersen et al. (Remote Sensing, 2020)
A Sentinel-1 TOPS interferometric processing chain is presented, which uses an exter-
nal velocity estimate, in this case a 2016-2019 average velocity mosaic generated through
PROMICE (Solgaard et al., 2021), to correct for the bulk of azimuth motion in the im-
age coregistration. While the average velocity mosaic naturally does not capture other
misregistration sources (such as ionospheric contributions) or local deviations from the av-
erage velocity pattern, we find that the external velocity estimate provides a substantial
improvement in the form of significant reduction in phase jumps at burst boundaries, as
seen in Fig. 3.1c and Fig. 4 in the manuscript. For some burst boundaries, the external
velocity refinement does not quite resolve the phase discontinuities, presumably because
of local velocity variations or ionospheric effects. To further improve the coregistration,
particularly within the burst overlaps, in which the interferometric phase is especially sen-
sitive to azimuth misregistration, we define an additional coregistration refinement, using
multi-looked BO-MAI measurements. An example is seen in the top right of Fig. 3.1d
and Fig. 4 in the manuscript. It is noted that the BO-MAI measurements may also serve
as azimuth velocity measurements (although these are affected by other sources of mis-
registration, such as ionospheric effects). With the refined image coregistration carried
out, the velocity extracted from the interferometric phase is assumed to be related only
to motion in the line-of-sight direction, similarly to the Stripmap case. The manuscript
also documents the previously described issues with MAI and offset tracking-based az-
imuth coregistration refinements (see the Appendix and supplementary material of the
manuscript).

The TOPS DInSAR processing chain is demonstrated for a large drainage basin in North-
east Greenland, using three ascending and four descending Sentinel-1 tracks. The region
is chosen for two main reasons: 1) the basin includes the Northeast Greenland Ice Stream
(NEGIS), which is a unique dynamic feature of high scientific interest, extending more
than 600 km inland, and 2) velocity measurements from GPS stakes are available, cour-
tesy of the EastGRIP (East Greenland Ice-core Project) team (Hvidberg et al., 2020). The
availability of GPS retrievals allows for a validation of the TOPS DInSAR measurements.
Additionally, we carry out offset tracking processing for the same Sentinel-1 data set. The
range offset tracking measurements allow for a comparison with the DInSAR measure-
ments, as they measure the same motion component. Furthermore, we demonstrate a
combined DInSAR and offset tracking 2D velocity product, through a weighted inversion
as described in section 2.6 as well as in the manuscript, which exploits the advantages
of both methods: DInSAR measurements are the dominant contributor where they are
available, while offset tracking measurements are needed to capture fast-flowing regions
near marine-terminating glacier outlets.

The GPS stakes are situated far upstream on the NEGIS, where only minor velocity
change is expected. Hence, even though the temporal alignment of the SAR and GPS
measurements is not perfect, a valid comparison is expected. The GPS validation shows a
standard deviation of 0.18 m/y in the x-direction and 0.44 m/y in the y-direction for the
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DInSAR measurements, which is a factor five lower than the offset tracking measurements
alone and even a factor two lower than the multi-year average offset tracking mosaic. In
the generation of the combined velocity product, several phase unwrapping errors were
identified in the DInSAR measurements, leading to substantial velocity errors near the
glacier outlets. In this case, the unwrapping error-prone regions were manually masked
out in the DInSAR measurements (such that only offset tracking measurements contribute
to the velocity inversion in these regions). Chapter 4 documents work that was carried
out to address this issue.

3.4 Exploiting burst overlaps for additional refinement
In the manuscript presented in the previous section, a coregistration refinement based
on BO-MAI was introduced. This method was further elaborated upon in a separate
publication:

A. Kusk, J. K. Andersen, and J. P. M. Boncori, Burst overlap coregistration for
Sentinel-1 TOPS DInSAR ice velocity measurements, IEEE Geoscience and
Remote Sensing Letters, vol. 19, pp. 1–5, 2021, doi:10.1109/LGRS.2021.3062905
(2021)

The section below provides a brief summary of the manuscript, which is provided in full
in Appendix A.2.

3.4.1 Summary of Kusk et al. (IEEE GRSL, 2021)
This paper provides a more thorough description of the BO-MAI coregistration refinement
method introduced in (Andersen et al., 2020). Note that, in this manuscript, the MAI and
BO-MAI methods are referred to as SD and BO-SD (where SD stands for Spectral Diver-
sity), respectively, which is more in line with past nomenclature (where split-bandwidth
techniques have usually been referred to as Spectral Diversity when pertaining to coregis-
tration refinements).

We first provide formal expressions on the interferometric phase uncertainties associated
with the SD and BO-SD methods, as well as the error in line-of-sight velocity that would re-
sult from interpreting those phase uncertainties as motion (eqs. (4)-(6) in the manuscript).
It is noted that, at the burst boundaries, the BO-SD technique provides a phase uncer-
tainty that is 40 times smaller than that of the SD method. Fig. 2 in the manuscript
shows the uncertainty in LoS velocity resulting from the SD and BO-SD refinements as a
function of coherence level for different multi-looking (i.e. spatial averaging) window sizes.
For comparison, the estimated LoS velocity uncertainty associated with speckle noise in
the interferogram, using a multi-looking window on the order of 60 m × 60 m, is also
shown. Here, it is seen that the SD measurements would require multi-looking with a
window size exceeding 700 m to reach a noise level that is comparable with the interfer-
ogram phase noise. Conversely, BO-SD measurements lead to a LoS velocity uncertainty
of less than 0.1 m/y even with a modest multi-looking window size of about 85 m × 85 m
and moderately low coherence values. The higher spatial resolution of BO-SD means that
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local variations of the azimuth ice velocity or ionospheric errors may be captured.

As the BO-SD technique is only applicable within the burst overlaps, in some cases, resid-
ual phase discontinuities may occur at the overlap edges (for instance, see Fig. S3 in
Appendix B.1). In order to diminish such residual phase jumps, we introduce an azimuth
tapering function to the BO-SD measurements, before applying them in the coregistration.
In principle, this introduces a small error in the BO-SD correction term near the burst
overlap edges, however, the residual phase jumps are generally well suppressed, lowering
the risk of phase unwrapping errors.

As the sensitivity of BO-SD measurements to azimuth misregistration is high, compared to
SD, wrapping of the BO-SD phase may occur if azimuth motion exceeds 40 m/y (assuming
a 6-day interferogram), which is not uncommon even in far upstream parts of glaciers. For
the ESD method, a periodogram estimation method was suggested (Yague-Martinez et al.,
2016), which is, however, not applicable in the present case, where local estimates must
be carried out (as opposed to an image-wide estimate). Instead, we seek to account for
the bulk of azimuth motion through the external multi-year average velocity map, such
that the remaining BO-SD phase contribution is restricted to an interval of 2π radians
and thus does not require unwrapping. Naturally, this approach would fail in regions that
show local velocity variations (in azimuth) larger than 40 m/y, however such regions are
likely to be fast-flowing glacier outlets, where interferometric coherence is lost anyways,
preventing DInSAR retrievals entirely.
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Chapter 4 | Towards reliable DInSAR
ice velocity retrievals

Sentinel-1 coherence image in a region with fast flow, supraglacial lakes, and crevasses.
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4.1 Phase unwrapping errors in DInSAR ice velocity retrievals
In Andersen et al., 2020 (section 3.3), we showed the potential of a combined DInSAR and
offset tracking velocity retrieval. The implemented coregistration refinements resolve the
TOPS-related DInSAR challenges, namely the coupling between azimuth misregistration
and differential phase, meaning that remaining limitations are similar to those associated
with Stripmap imagery. The comparison with GPS indicated an accuracy of the DInSAR
measurements far exceeding offset tracking capabilities, however, one issue was that even
with the measures for phase unwrapping error mitigation implemented in the inhouse DIn-
SAR processing chain, unwrapping errors were observed in parts of the downstream region.
Hence, this observation motivated efforts to further detect and mitigate phase unwrapping
errors, with the goal of achieving a more reliable operational DInSAR processing scheme.

As previously mentioned, unwrapping errors may have a large spatial extent as well as
magnitudes of a nearly arbitrary number of phase cycles, leading to potential ice velocity
errors of tens or even hundreds of meters per year. As such an error magnitude far exceeds
other DInSAR error sources, and in some cases even the noise level in offset tracking mea-
surements, detection of unwrapping errors is important for DInSAR applicability. Because
unwrapping errors are spatially correlated, they are generally not reduced by multi-looking.
Their spatial correlation, however, means that unwrapping errors may often be recognized
by visual inspection of the unwrapped interferogram (or velocity measurements) as patches
surrounded by unrealistically high gradients - an approach that is often used in practice
(Mouginot et al., 2019a). For large scale, routine ice velocity retrievals, however, visual
inspection of individual measurements becomes a cumbersome task. Another common
practice approach is to manually determine a border, beyond which unwrapping errors
are deemed likely and hence DInSAR is not carried out (Joughin et al., 2018a). Such
a border is often based on an a priori velocity field, as unwrapping errors are typically
associated with high motion gradients (a finding that is further documented in section
4.2). An obvious downside to this approach is that no DInSAR ice velocity measurements
are acquired beyond the selected border, even if error-free retrieval is possible for some
image pairs.

In other applications, unwrapping error detection (and correction) has been based on the
principle of phase closure of interferogram triplets (Yunjun et al., 2019; Pinel-Puyssegur et
al., 2018). For applications on glaciers, however, such an approach is not straightforward.
First, coherence may vary substantially between neighboring 6- and 12-day image pairs,
meaning that, for many regions, it may not be possible to retrieve measurements across the
triplet pairs. Furthermore, as demonstrated in section 4.2, it is often the same areas that
are prone to unwrapping errors across subsequent interferograms, meaning that the risk of
an unwrapping error occurring in two, or even three, of the triplet interferograms is non-
negligible. In that case, it is not straightforward to determine which of the interferograms
contain errors and which do not.

In the context of ice velocity retrieval, unwrapping errors are often related to shear margins,
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i.e. transition areas from slow-moving ice to the fast-flowing part of a glacier or ice stream,
where coherence loss may occur due to rotation of the ice fabric. In one of the first
demonstrations of DInSAR ice velocity measurements, Goldstein et al., 1993 proposed an
adaptive multi-looking strategy, where the multi-looking window size is reduced within
shear margins. Fig 4.1 shows a portion of a shear margin as seen in the same Sentinel-
1 interferogram (6-day baseline) with different levels of multi-looking. The reduction in
spatial averaging means an increase in phase noise, but also an increase in resolution, which
makes it possible to unambiguously resolve the phase signal in the region where the motion
gradient is highest. Hence, with the lowest amount of multi-looking (right-most column
in Fig. 4.1), velocity may be retrieved over the full extent of the shear margin, as seen
in the unwrapped phase images. Aside from being an advantage in terms of diminishing
some instances of unwrapping errors, high resolution measurements of dynamics across
shear margins are of high interest to glaciologists. One disadvantage of this approach
is that computing time drastically increases as multi-looking is decreased. Additionally,
areas where phase noise is high (and motion gradients are relatively low) may benefit from
higher levels of spatial averaging. Hence, the multi-looking should be decreased mainly
in areas such as shear margins, where the benefits outweigh the disadvantages. Such an
adaptive multi-looking approach was not implemented in the course of this project, but
could be further investigated in the future.

The following section presents the design, implementation, and performance of an inter-
ferogram masking approach, which aims to detect and mask out phase unwrapping errors.

4.2 Connectivity approach for phase unwrapping error
detection

As demonstrated in the manuscript presented shortly, regions that are separated by low
coherence pixels (e.g. due to fast flow, surface melt, and ice/bedrock transitions) are more
likely to contain phase unwrapping errors. As these sources of coherence loss are often
associated with regions near outlet glacier fronts, this motivates the approach of manually
defining a boundary, beyond which DInSAR is avoided. However, such an approach implies
that no DInSAR velocity measurements will be available for regions beyond the boundary,
meaning that the substantial accuracy and resolution improvements offered by DInSAR
are not realized. Hence, the ideal solution would involve detection of unwrapping errors
on an image pair level, i.e. depending on characteristics of the image pair at hand.

Some unwrapping algorithms, including the algorithm of the DTU IPP software (Kusk
et al., 2018) applied in the generation of all interferograms in this chapter and the asso-
ciated manuscript, apply a segmentation approach (Mohr & Boncori, 2008; Hubig et al.,
2000), which aims to reduce unwrapping error occurrence. The first step is the generation
of a mask based on the coherence estimate. Pixels below a certain coherence threshold are
masked, followed by a morphological erosion of the valid pixels, which serves to mask out
areas bordering low coherence pixels. A segmentation is then performed, separating valid
pixels into a collection of connected segments (shown as the different colored segments
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Figure 4.1: Example of a 6-day Sentinel-1 interferogram subset covering parts of a shear
margin. From left to right, the applied multi-looking window size is decreased. The plot
labels show the decimation factor in range × azimuth - the multi-looking factor is about
1.5 times these numbers. The top row shows the wrapped interferogram phase, while
the bottom row shows the unwrapped phase image, both in radians. Transparent pixels
indicate areas where the unwrapping algorithm could not determine a solution.

in Fig. 4.2b). If GCPs with accurately known velocity values are available within each
segment, a segment-wise calibration can be performed, effectively correcting for unwrap-
ping inconsistencies across different segments. Alternatively, small disconnected segments
may be discarded. The approach is relatively effective at preventing unwrapping error oc-
currence in scenes with highly varying coherence patterns, such as glaciers and ice sheets.
However, as shown in Fig 4.2c, some unwrapping errors may persist even with the appli-
cation of the segmentation method. In this case, an unwrapping error of large scale and
magnitude occurs in a region that is almost, but not quite, disconnected from the largest
segment of the scene.

To combat such instances of unwrapping errors, an approach was defined, which seeks to
mask pixels based on their connectivity to the rest of the scene. The approach, along with
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Figure 4.2: Example of the coherence segmentation approach used to reduce phase un-
wrapping error occurrence. Panel (a) shows the coherence, while panel (b) shows the
result of the segmentation of the masked coherence image (with transparent pixels indi-
cating masked data). The data shown here stems from a simulation, and hence the true
distribution of unwrapping errors is known (and shown as number of phase cycles in panel
(c) in geocoded geometry). In this example, both small- and large-scale unwrapping errors
remain even after applying the masking and segmentation method.

an investigation of its performance, was documented in the manuscript:

J. K. Andersen, J. P. M. Boncori, and A. Kusk, Connectivity approach for
detecting unreliable DInSAR ice velocity measurements, IEEE Transactions
on Geoscience and Remote Sensing, vol. 60, pp. 1–12, 2022, doi:10.1109/TGRS.
2022.3169722 (2022)

The full manuscript is provided in Appendix A.3 and supplementary material is found in
Appendix B.2. In the following, a brief summary of the paper is provided.

4.2.1 Summary of Andersen et al. (IEEE TGRS, 2022)
The unwrapping error detection method presented in this paper builds on a definition of
pixel connectivity. There are many possible approaches to defining such a parameter - in
this case, we base our method on the connectivity measure first defined in Galli, 2001. The
pixel connectivity estimation is based on a confidence measure, i.e. a measure of quality
of each pixel, for which the coherence is an obvious choice. Section II-B of the paper pro-
vides a concise description of the connectivity measure. As a side note, experiments were
conducted to test the effects of various weighting functions applied to the confidence map
prior to estimating the pixel connectivity (some examples are shown in Fig. 4.3). None
of the weighting functions, however, appeared to significantly improve the performance
of the connectivity masking method. The connectivity is computed for each pixel with
respect to a certain reference pixel. In the examples shown in the main text, the reference
pixel is manually selected in a region of consistently high coherence, in the inland portion
of the imaged scene. The reference point selection may be automated by selecting a point
of maximum coherence in the largest image segment, based on the segmentation approach
described in the previous section (see also the supplementary material in Appendix B.2).
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Figure 4.3: Various weight functions applied to the confidence (i.e. coherence) map prior
to estimating pixel connectivity.

With the connectivity measure computed for each pixel, a mask is generated by a simple
thresholding of the connectivity map. The rationale is that low connectivity values are
strongly related to unwrapping error occurrence (see Fig. 5 in the manuscript). Essential
to the performance evaluation of the connectivity-based masking approach is the genera-
tion of a data set of simulated interferograms. The simulation approach is described in the
paper’s appendix. For the performance evaluation, the downstream part of NEGIS was
selected, as this constitutes a particularly challenging region for phase unwrapping, with
high velocity gradients and frequent coherence loss. As the true velocity field is known
for the simulated image pairs, the distribution of unwrapping errors can be accurately
determined as pixels where the deviation between the DInSAR output LoS velocity field
and the input field exceeds the levels that are expected due to phase noise (see Fig. 4.2c
in the previous section and Fig. S2 in Appendix B.2).

With the simulated data set, consisting of 60 interferograms covering drastically different
coherence scenarios, the best-performing connectivity threshold, ϵc, is determined. There
is a certain class imbalance between the pixels with unwrapping errors and the valid (i.e.
error-free) pixels. The number of valid pixels far exceeds the number of error pixels,
however, we argue that masking of an unwrapping error pixel is more important than
the erroneous masking of a valid pixel. Consequently, the performance of the masking
algorithm is evaluated through the recall and precision estimates, which, in the context
of a detection algorithm, place more emphasis on the positive class (i.e. the unwrapping
error pixels). In the present case, recall can be considered the estimated probability that
an error pixel is detected, while precision is the estimated probability that a pixel drawn
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from the pool of all masked pixels is actually an error pixel. It is the goal of the masking
algorithm to maximize both of these measures, however, to reflect the added importance
of masking error pixels (compared to the erroneous masking of the same amount of valid
pixels), we argue that maximizing the recall should be prioritized over maximizing the
precision. This prioritization can be formalized through the Fβ-score:

Fβ = (1 + β2)
precision · recall

β2 · precision+ recall
(4.1)

which is a measure of performance of a detection algorithm, where recall is considered
β times as important as precision. In this case, we opt to use β = 2, and thus use the
F2-score as a performance parameter to be maximized (see Fig. 4.4 for a visualization
of the relationship between recall, precision, and F2-score). Connectivity thresholds are
evaluated in increments of 0.05, and a maximum F2-score is found for the threshold ϵc =

0.30 (see Table 1 in the paper). With this threshold, the majority of unwrapping errors
are detected (recall of 0.86), although a substantial amount of valid data is also masked
(precision of 0.52). Importantly, the results also show a relation between connectivity and
unwrapping error magnitude, where lower connectivity values are associated with higher
error magnitudes (see Fig. 5 and Table 1 in the paper). Thus, although the optimum
connectivity threshold of 0.30 does not detect all unwrapping errors, remaining errors
have a median magnitude of 1.7 m/y (i.e. one phase cycle).

The connectivity masking method is also demonstrated for a set of real image pairs from
several Sentinel-1 ascending and descending tracks (section IV). Although the true distri-
bution of unwrapping errors is of course unknown for these image pairs, some errors may
be identified purely from visual inspection. On a qualitative level, a threshold of 0.30 also
appears reasonable for the real image pairs. The paper is rounded off by a discussion of
the advantages and further challenges of the connectivity masking method.

4.3 Simplistic machine learning approaches for phase
unwrapping error detection

The manuscript presented above demonstrated a clear linkage between low connectivity
and unwrapping error occurrence. As evidenced by the mediocre precision of the con-
nectivity masking method, however, not all low-connectivity regions lead to unwrapping
errors. In an effort to exploit the detection power of the connectivity measure, while lim-
iting the amount of valid data discarded, a small study was conducted with a focus on
utilizing simple machine learning methods for improving the pixel-wise masking approach.

Three different supervised binary classification algorithms were applied along with the
simulated data set presented in the previous section. The classification algorithms are
logistic regression as well as two ensemble methods using the Decision Tree method, namely
AdaBoost and Random Forest. Aside from the pixel connectivity measure, a total of four
other input features are provided to the algorithms: interferogram coherence, intensity
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Figure 4.4: F2-score as a function of precision and recall, used in assessing the performance
of a detection algorithm where recall is weighed higher than precision.

of the reference SLC image, the surface topography, and the multi-year average velocity
(projected to the radar line-of-sight). The inclusion of multiple input features allows the
algorithms to determine more complex patterns that lead to unwrapping errors, as opposed
to simply thresholding on one feature. The classification models are trained on a subset
of the simulated data set, where the output feature is simply the binary unwrapping error
mask (0: valid pixel, 1: unwrapping error). Hence, the unwrapping error magnitude is not
considered.

Each of the classification models are trained on a randomly selected subset of the simu-
lated data set, as the full data set consists of >109 pixels, which would require excessive
computation times. Furthermore, it is interesting to see how well the models perform
when trained on a limited amount of data. Before sampling the data, four interferograms
are reserved, allowing for an evaluation of the models’ predictive performance on full inter-
ferograms where no samples have been used in model training. A relatively small subset
is then sampled from the remaining data set. This sampling process is also used to re-
solve the inherent class imbalance, by randomly sampling an equal amount of valid pixels
and error pixels from the data. The data subset is then used for determining the best-
performing hyper-parameters for the various classification models. This is done through a
5-fold cross-validation setup using 80% of the data, while the remaining 20% is used for as-
sessing performance of the final models. The methodology is further elaborated along with
a presentation of the results, and a discussion of these, in a short unpublished manuscript
in Appendix A.4.
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The results of the study indicate a good performance of the classification models, which
achieve both a higher recall than the connectivity masking approach described in the
previous section and a substantially higher precision. As discussed in the manuscript,
however, the study does have certain limitations, and it is unclear exactly how well the
results generalize to other data sets. Further investigation on this topic could be carried
out as future work. Concerning other possible approaches related to unwrapping error
detection, whether applying the connectivity measure or not, an obvious direction would
be to try to capture the spatial correlation of unwrapping errors. As seen through multi-
ple examples in the previous sections, unwrapping errors tend to form contiguous regions,
typically containing roughly the same magnitude error, surrounded by a high gradient to
the neighboring areas. Some attempts were made to identify zones of unwrapping errors
through the difference in output LoS velocity measurements with respect to a multi-year
average velocity mosaic. While such an approach may allow for detecting obvious errors
of high magnitudes, it is not obvious how to reliably separate low/moderate magnitude
unwrapping errors from real velocity variations (e.g. due to seasonal effects or transient
dynamic events). Hence, a simple masking of the velocity deviation, based on some thresh-
old, will run the risk of biasing measurements towards the a priori velocity field and discard
dynamic fluctuations that are actually of great interest.
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Chapter 5 | Investigating ice flow
changes with Sentinel-1
DInSAR time series

Land-terminating glacier in South Greenland. (Photo courtesy of Marie B. Jensen).
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5.1 Sentinel-1 time series processing over the NEGIS region
One of the main goals of the PhD project was to exploit the frequent revisit time of
Sentinel-1 (6 days for much of the Greenland ice sheet) and the high accuracy of the DIn-
SAR technique to demonstrate the value of dense ice velocity time series. The Northeast
Greenland Ice Stream (NEGIS) was, once again, selected as an area of interest.

The work presented in this section was carried out in collaboration with Jérémie Moug-
inot (IGE, Université Grenoble-Alpes). Additionally, the majority of the presented off-
set tracking measurements (from September 2016 onwards) were processed by Anne Sol-
gaard (GEUS). Finalization of the analyses and documentation of the results in a journal
manuscript or letter is ongoing work. In this section, we present some of the obtained
results along with (preliminary) analyses and conclusions.

Introduction
The NEGIS is a unique feature of the Greenland ice sheet, being the only ice stream with en-
hanced ice flow 600 km inland from the margin. It is drained by three marine-terminating
outlet glaciers: Zachariae Isstrøm (ZI), Nioghalvfjerdsfjorden (NG), and Storstrømmen
Glacier (SG), collectively draining an area of more than 16% of the Greenland ice sheet
and holding a 142 cm sea level equivalent (Mouginot et al., 2019b). While NG and SG
have been close to mass balance in recent decades, ZI detached from a stabilizing sill dur-
ing the 1990s. Beginning in 2012, ZI experienced a period of greatly accelerated retreat
and thinning, leading to the melting of its remaining ice shelf and a significant mass loss
(Mouginot et al., 2015). Previous studies have examined how changes in stress balance
at the ice margin, influenced by warmer air and ocean temperatures, impact ice dynam-
ics and mass distribution in the downstream regions (Khan et al., 2014; Mouginot et al.,
2015), however it remains to be established how the interior ice sheet has responded to
such changes. In other words, the extent to which inter-annual and/or seasonal changes
in ice motion, caused by variations in the grounding and calving line positions, as well as
other forcings, propagate upstream of the glaciers is still unclear.

In this study, we investigate recent evolution in ice dynamics on NEGIS and its surround-
ings by generating a time series of ice velocity using Sentinel-1 acquisitions from the past
6 years (2015-2021). We use DInSAR to retrieve high accuracy measurements of a high
temporal resolution (with sampling frequency down to 6 days, when both satellites are
active and interferometric coherence is retained) and a high spatial resolution (on the
order of 50 m × 50 m). Amplitude-based offset tracking is also applied, allowing for a
comparison between the time series obtained with the two methods. The measurements
allow for examining changes in ice flow on both long and short time scales - from multi-
ple years to seasonal, monthly, or, in some cases, even weekly changes. Particularly, we
wish to investigate the spatial extent in which long-term dynamic changes are observed
with each of the two methods. Additionally, we wish to determine whether sudden speed-
ups observed near the ZI and NG glacier fronts during summer are also visible further
upstream. Finally, in an exploratory manner, we are looking for any signs of transient
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dynamic events, without a preconceived idea of exactly what type of dynamic responses
to expect.

Data and methods
We processed Sentinel-1 Interferometric Wide swath images from an ascending track
(T074), covering the outlets of ZI/NG/SG as well as the slower-moving upstream parts
of NEGIS (see Fig. 5.1). We utilize all available images since the launch of Sentinel-
1A (although the earliest available acquisitions in this region are from 2015) to generate
densely sampled velocity time series. DInSAR velocity measurements are generated with
all possible 6-day image pairs, i.e. the minimum temporal baseline, as loss of coherence
and phase aliasing increase significantly for higher baselines. When no measurements are
available from Sentinel-1B (prior to September 2016) 12-day interferograms are generated.
Offset tracking velocity measurements are generated for 12-day image pairs. Although
tracking-based measurements also suffer from coherence loss, feature tracking may still be
possible in some regions and the increased motion observed with a longer baseline effec-
tively increases the SNR. Additionally, using 12-day image pairs avoids the sensor-specific
biases affecting tracking retrievals with one acquisition from each of the S1A/S1B satellites
(Gisinger et al., 2021; Solgaard et al., 2021).

Interferometric measurements are carried out following the approach described in (Ander-
sen et al., 2020; Kusk et al., 2021) (see also sections 3.3-3.4), using a 2016-2019 multi-year
average velocity mosaic generated through PROMICE (Solgaard et al., 2021) and the 90
m TanDEM-X Digital Elevation Model (Rizzoli et al., 2017) in the coregistration and
phase flattening steps. Multi-looking is performed with a factor of 15 × 3 in range/az-
imuth for each interferogram and velocity measurements are resampled to the same polar
stereographic grid with a 50 m × 50 m pixel spacing. Offset tracking measurements follow
the approach from Solgaard et al., 2021. Note that we exclusively use LoS offsets, which
for Sentinel-1 are of a much higher quality than azimuth offsets and allow for a direct
comparison with DInSAR. The offset tracking measurements are resampled to a 500 m
× 500 m grid covering the same region as the DInSAR measurements. The DTU IPP
software (Kusk et al., 2018) is used in the generation of both types of measurements.

Previous studies on Sentinel-1 ice velocity provide accuracy estimates of LoS measurements
from individual image pairs on the order of tens of m/y for offset tracking (Solgaard
et al., 2021) and ∼0.5 m/y for DInSAR (Andersen et al., 2020) in regions where phase
unwrapping errors are not expected. Individual measurements may be affected by multiple
error sources (cf. section 2.4). Both techniques are affected by spatial and temporal
decorrelation, although offset tracking, in some cases, may still be able to track features.
Atmospheric effects may also occur, in the form of variations in ionospheric electron count
and tropospheric water content. In the case of DInSAR, a calibration is performed with a
linear baseline model (cf. section 2.5), which may partially mitigate long-wavelength error
effects. Note, however, that an ideal distribution of GCPs across the extent of the scene
is not possible in the present case, as we wish to avoid having GCPs in areas that are
either prone to unwrapping errors or may be expected to show variation in velocity across
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Figure 5.1: Overview of the NEGIS area studied with DInSAR and offset tracking time
series. The black rectangle shows the extent of the ascending Sentinel-1 track, T074,
with the magenta arrow indicating the (ground-projected) LoS, green triangles represent
Ground Control Points used for DInSAR calibration, and black dots indicate various
points of interest that are further investigated throughout the section. Teal lines indicate
grounding lines for ZI and NG (i.e. the transition zone from grounded to floating ice,
which for ZI is close to the glacier front) (Mouginot et al., 2015), and dashed green lines
show transects used in Fig. 5.9. The underlying color scale shows 2016-2019 average speed
(from PROMICE).

the span of the time series. The latter condition particularly limits the GCP coverage, as
preliminary investigations suggested that long-term velocity changes may occur even in
relatively slow-moving regions. For offset tracking, calibration is not performed (Solgaard
et al., 2021).

Arguably, the most important DInSAR error source is phase unwrapping errors, which
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may reach magnitudes far exceeding all other error sources. Unwrapping errors tend to
occur in and around regions of high decorrelation, meaning that in the context of ice
velocity retrieval, they are more likely further toward the ice sheet margin where surface
melt and shear zones associated with high motion gradients are prevalent (cf. Chapter
4). Although a method was developed to reduce the occurrence of such errors (presented
in section 4.2), this method was, as a starting point, not applied to the measurements
here. The reason is that a main focus of the present time series analysis is to reveal
brief summertime accelerations and other transient changes in ice dynamics. With the
relatively low precision of the connectivity-based detection algorithm, there is a risk that
some of these transient events get masked out and go unnoticed. Hence, the produced time
series will inevitably contain some unwrapping errors. A mitigating factor is that once a
long time series is generated, large magnitude unwrapping errors will often stand out as
obvious outliers when plotting the LoS velocity time series for a given point of interest.
Such outliers can then be manually inspected to determine whether they are likely caused
by unwrapping errors or by actual dynamic changes.

Preliminary inspections of the obtained velocity time series suggested a roughly linear
trend in velocity over a large part of the NEGIS region. In order to investigate the magni-
tude and extent of acceleration/deceleration, we perform a linear regression over the full
time series for each pixel. As described above, outliers of large magnitudes may occur in
the DInSAR time series, due to the phase unwrapping process. With an Ordinary Least
Squares (OLS) regression approach, a few large magnitude outliers may heavily influence
the estimated trend. Therefore, we opt to use the Theil-Sen estimator to estimate the
trend in the DInSAR velocity time series. The Theil-Sen estimator is a non-parametric
method, in which the slope of a data set is computed as the median of the slopes between
all individual pairs of measurement points (Sen, 1968). The method is unbiased, has low
sensitivity to outliers, and competes well with OLS even in cases where the normality
assumption is valid (in fact, the standard error of the Theil-Sen estimator may be sub-
stantially lower than that obtained with OLS, even under normality, as long as there is
heteroscedasticity (Wilcox, 2001)). A confidence interval for the estimated Theil-Sen slope
is computed from the collection of slopes between pairs of measurements. Hence, a 95%
confidence interval is determined as the interval containing the middle 95% of the slopes
between measurement pairs. The confidence interval allows for testing the significance of
the estimated trend - that is, if the confidence interval contains zero, the trend is assumed
to be insignificant, and vice versa. For offset tracking measurements, the error distribution
is closer to a Gaussian and the difference between results obtained with OLS and Theil-
Sen is generally smaller than for DInSAR. For consistency, and because the offset tracking
retrievals do contain a scarce amount of large-magnitude outliers, all the regression results
shown here are based on the Theil-Sen estimator. Regression is only performed for pixels
where a minimum of 50 observations are available.
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Results
Fig. 5.2 shows, for each pixel in the track T074 time series, the relative annual accelera-
tion, computed as the LoS velocity Theil-Sen slope divided by the intercept of the fit, as
obtained with DInSAR and offset tracking measurements, respectively. Note that if the
flow direction vector is assumed to be constant over the measurement period, the relative
acceleration computed from the LoS measurements is equivalent to the absolute change
in speed. A linear trend is only shown for pixels where a significant trend is observed,
meaning pixels for which the 95% confidence interval does not overlap zero. Note that
some areas, in which meaningful results were not obtained, are masked. These are areas
of bedrock, areas of very low LoS velocities (vLoS < 15 m/y average speed) and areas
where the LoS and flow direction are nearly perpendicular. Additionally, the shear mar-
gins in the fast-flowing parts of NEGIS do not contain data (as coherence is lost in every
retrieval).

Both methods observe a similar pattern within the bulk of the faster-flowing ice stream,
i.e. a significant acceleration in the range 0.2-1.5%/y, increasing to >2%/y close to the ice
front (where only offset tracking measurements are available). With DInSAR, however,
significant acceleration is observed until roughly 230 km upstream of the ZI ice front, the
corresponding distance being 190 km for offset tracking. The DInSAR measurements also
indicate acceleration in a large region between the ZI and NG branches of the ice stream.
For the northern stream leading to NG, only a small acceleration is observed with DInSAR
(on the order of 0.2%/y), which is not observed with offset tracking. Both methods show
a general deceleration of the NEGIS branch leading to SG (less than 0.5%/y) and a large
relative deceleration for the smaller sub-stream emerging from the northern part of this
branch (reaching nearly 5%/y). Finally, both methods detect a large relative acceleration
in a sub-stream extending east of the main ZI branch.

Fig. 5.3 shows velocity time series plots for three points: one within the NEGIS branch
leading to ZI, one in the branch leading to NG, and one in the slow-moving region in
between these two branches. Looking first at the time series from the ZI branch (point
P1), we observe that the data, particularly the DInSAR measurements, conform fairly
well to the linear model, with an acceleration of about 1%/y. DInSAR measurements
are scarce prior to September 2016, as coherence is often lost in this fast-flowing region
for 12-day pairs. Unwrapping errors are also prevalent in this region, as evidenced by the
relatively large amount of outliers. Note, however, that the outliers in September 2020 and
November 2021 are actually not caused by unwrapping errors, but by an extensive dynamic
response, which will be further investigated in section 5.2. Finally, a slight deceleration is
observed in late summer in 2019. The time series from the NG branch (point P2) shows
a much more modest acceleration of about 0.2%/y. Interestingly, a slow-down appears at
the end of summer in both 2019 and 2020, similar to the slow-down of the ZI branch in
late August 2019. Unfortunately, the dynamic pattern leading up to this slow-down is not
captured, due to lack of coherence (a general issue of both the DInSAR and offset tracking
techniques in summer for this region). In the summer of 2018, decent coverage is available,

60 Synthetic Aperture Radar TOPS-mode Interferometry for Ice Velocity Retrieval



Figure 5.2: Results of linear regression (using the Theil-Sen estimator) applied to the
full Sentinel-1 track T074 time series of LoS velocity measurements from DInSAR and
offset tracking. Panels (c) and (d) show the estimated relative acceleration (i.e. the
trend relative to the intercept of the fit, expressed in %/y), where significant at the 95%
confidence level, for offset tracking and DInSAR, respectively. Panel (a) shows 2016-2019
average speed (from PROMICE) and panel (b) shows 2018-2021 surface elevation change
from the ICESat-2 L3B/ATL15 product at 1 km resolution (Smith et al., 2021).

and a relatively stable velocity is observed. Finally, for the slow-moving area between the
NG and ZI branches (P3), no discernible short-term patterns are observed. A relative
acceleration of more than 1%/y is observed with DInSAR (which is barely significant with
the offset tracking measurements). Again, coherence is mostly lost during summer.

The results in Fig. 5.2 indicates areas where a significant trend is observed in the gen-
erated time series, suggesting that these areas are unlikely to have zero trend. However,
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Figure 5.3: Time series plots showing relative (left y-axis) and absolute (right y-axis) LoS
velocity from track T074 DInSAR (red) and offset tracking (blue) measurements for the
points P1-P3 (shown in Fig. 5.1). Dashed lines show the Theil-Sen linear regression fit.
Relative LoS velocity measurements are referred to the intercept of the Theil-Sen fit. Note
that some large magnitude outliers exist outside of the axis limits, to allow a zoomed in
view of the bulk of the data set.

based on these results, one cannot directly infer that areas where a significant trend is
not observed actually have zero acceleration. Within the main branch of NEGIS, the DIn-
SAR measurements indicate a significant trend until about 230 km upstream from the ZI
grounding line. To determine how small of a trend would be detectable in the area further
upstream (around point T1 in Fig. 5.2), given the noise parameters of our DInSAR time
series, a sensitivity test was carried out in the form of a Monte Carlo simulation. An

62 Synthetic Aperture Radar TOPS-mode Interferometry for Ice Velocity Retrieval



estimate of the (pseudo)-Gaussian noise in the LoS velocity (i.e. the uncertainty caused
by phase noise, not unwrapping errors) was obtained by computing the standard deviation
of the time series from a representative point in the region, discarding the few obvious
unwrapping errors that were present. This provided an estimate of the LoS velocity stan-
dard deviation of σLoS = 0.8 m/y. The intercept of the Theil-Sen fit, i.e. the LoS velocity
at the start of the time series, is about −60 m/y (in this case we simply use the absolute
value). Inspecting individual time series in the region, we estimate that roughly 5% of
measurements are affected by an unwrapping error, while about 20% of measurements are
missing, due to either loss of coherence or lack of Sentinel-1 acquisitions (relevant for parts
of 2015 and 2016). Using these parameters, we generate synthetic time series of 6 years in
length, a sampling frequency of 6 days, Gaussian noise determined by σLoS , 20% missing
data (removing measurements at random), 5% outliers in the form of unwrapping errors
with random magnitudes in the interval 15 m/y to 150 m/y, and a known (true) trend. We
then perform a Theil-Sen regression on the synthetic time series and determine whether
or not a significant trend is observed (given a 95% confidence level). This experiment is
repeated for a range of (true) trends. For each trend value, a total of N = 1000 realizations
are carried out, each time estimating whether or not a significant trend is obtained. This
allows for the computation of a significant trend detection rate for each trend. For a given
true trend, this detection rate can be interpreted as the probability of actually observing
a significant trend.

The result of the Monte Carlo sensitivity analysis for the far upstream region (point T1) is
shown in Fig. 5.4. Note that the true trend is given as a relative trend (in units of percent
of the intercept velocity per year, as in Fig. 5.2). Fig. 5.4 indicates that, given a trend of
0.2 %/y, a significant trend would be observed more than 95% of the time. Conversely, for
a trend of 0.1 %/y, significance would be concluded only 50% of the time. Hence, for this
region, we find that a relative acceleration of a magnitude around 0.1 %/y or smaller could
exist in this far upstream region. Note that the estimated relative sensitivity corresponds
to an absolute LoS velocity trend sensitivity of (0.1 %/y)/100% · 60 m/y = 0.06 m/y2.
This estimate, however, is only accurate for the parameters above, which were defined
for the specific region in upstream NEGIS. The level of phase noise, coherence loss, and
unwrapping errors may all be different in other regions.

While estimating accurate long-term trends in ice velocity is valuable in itself, the main
value in obtaining a densely sampled velocity time series is, arguably, the possibility of
observing dynamic changes that occur on time scales shorter than multiple years. In
the following, we present time series measurements from a few different locations, which
demonstrate interesting (non-linear) dynamic behaviour and highlight the added value
of monitoring changes in ice flow speed at a high temporal resolution. Fig. 5.5 shows
DInSAR and offset tracking LoS velocity time series for each of the locations.

Inspecting first the velocity time series for P4 in Fig. 5.5, which is located right at the
intersection of the shear margins of the NG and ZI branches, reveals that the relatively
large observed acceleration in this area is highly non-uniform. In fact, the acceleration
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Figure 5.4: Monte Carlo sensitivity analysis estimating minimum detectable (relative)
trend in velocity using the Theil-Sen estimator, given characteristics of the DInSAR data
in the vicinity of point T1 in Figs 5.1/5.2. The plot shows the rate of detection of a
significant trend (y-axis), given a true relative velocity trend (x-axis, expressed in percent
of the intercept velocity per year) and a starting velocity of 60 m/y. For each true velocity
trend sampled, a total of N = 1000 experiments is conducted. In each realization, a 6 year
time series (sampled with a frequency of 6 days) is generated, adding Gaussian noise with a
standard deviation σLoS = 0.8 m/y. Additionally, 20% of the data is discarded (simulating
loss of coherence) and an additional 5% of the data are converted to unwrapping errors
by adding a random outlier magnitude in the interval 15 m/y to 150 m/y.

appears to occur at two distinct points in time, namely the summers of 2019 and 2020,
where accelerations of nearly 10% and 5%, respectively, occur. Surface melt in northeast
Greenland was high for the 2019 and 2020 summers, compared to previous summers (see
Fig. 5.6), and inspection of the interferometric coherence reveals a much larger presence
of melt ponds and crevasses in early September 2019 and 2020, compared to the previous
summers (2017 and 2018) and to the period right before the speed-ups are observed (May-
June 2019/2020). Fig. 5.7 shows a comparison between early and late summer coherence
retrievals for the years 2018 and 2019. Interestingly, following each of the two summer
speed-ups is a period of gradual slow-down. This could, perhaps, be caused by a decrease in
available melt water in the subglacial system (after a sudden influx of water, which could
explain the summer speed-up), or through the transition into a more efficient drainage
system, i.e. the evolution of efficient drainage channels in the ice and/or underlying
sediments. This interpretation would be consistent with the conceptual model of the
dynamic response caused by a subglacial drainage event suggested by Livingstone et al.,
2022. It is not quite obvious, however, whether or not the observed dynamic response
is indeed related to surface melt and subsequent subglacial water routing, and the exact
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Figure 5.5: Time series plots showing relative (left y-axis) and absolute (right y-axis) LoS
velocity from track T074 DInSAR (red) and offset tracking (blue) measurements for the
points P4-P6 (shown in Fig. 5.1). Dashed lines show the Theil-Sen linear regression fit.
Relative LoS velocity measurements are referred to the intercept of the Theil-Sen fit. Note
that some large magnitude outliers exist outside of the axis limits, to allow a zoomed in
view of the bulk of the data set.

cause of the speed-ups remains a point of further research. It should be noted that the
speed-up in 2020 coincides with a (presumed) subglacial drainage event propagating far
along the ZI branch (documented in section 5.2) and a slight deceleration within the NG
branch, as shown in Fig. 5.3.

Similarly, inspecting the time series for point P5 in Fig. 5.5, located in a sub-stream in
the northern part of the SG branch, reveals a velocity history which does not conform
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Figure 5.6: Extent of surface melt over the Greenland ice sheet in late July 2017-2020.
The melt extent, indicated in red, is identified as areas where a minimum of 1 mm sur-
face melt is predicted by an SMB model (Langen et al., 2017). Data was acquired from
DMI/PolarPortal: http://polarportal.dk/en/greenland/ (accessed on 16th August 2022).

to a simple linear model. A substantial increase in speed (about 20%) occurs between
late 2015 and April 2016. Note that only a few data points are available during this
time (partially due to a lack of Sentinel-1 acquisitions and partially due to increased
decorrelation in 12-day image pairs) and one might reasonably assume that unwrapping
errors affect the earliest measurements. Visual inspections of the wrapped and unwrapped
interferograms from before and after the speed-up, however, suggest that this is not the
case. Additionally, there is a reasonable agreement between offset tracking and DInSAR
measurements, which can be considered (mostly) independent retrievals. From May 2016
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Figure 5.7: Interferometric coherence for Sentinel-1 interferograms (track T074) acquired
in early June and September 2018 (top) and 2019 (bottom). Note that the presence of
crevasses and surface lakes/ponds, seen as cracks and small polygons of lost coherence, is
substantially increased in summer 2019, coinciding with a speed-up of the region border-
ing the intersection of the ZI/NG shear margins (which are seen as black bands, due to
coherence loss). The point P4 refers to the same point indicated in Fig. 5.1 and for which
the velocity time series was shown in 5.5.

onward, the speed gradually decreases, at a varying rate, until reaching roughly the same
velocity as in 2015. SG has long been known as a surge-type glacier (Mouginot et al.,
2018), although previous studies (to my knowledge) has not investigated the behaviour of
this particular sub-stream. The downstream parts of SG do not contain a meaningful time
series as the flow direction is nearly perpendicular to the LoS. The onset of the observed
early-2016 speed-up is a point of further investigation.

P6 in Fig. 5.5 shows the observed time series for a small slow-moving glacier just west
of the NG outlet. Here, we observe a long-term deceleration, on the order of 5%/y, but
also a seemingly seasonal pattern. In this region, DInSAR coverage is consistently lacking
in summer (presumably due to extensive surface melt), making it harder to interpret the
seasonal signal. It appears that velocity is consistently highest during early summer, i.e.
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the onset of the melt season (with the exception of 2019). Such a dynamic response would
be consistent with the model proposed by Davison et al., 2019 for a glacier on a hard
bed. In this context, a hard bed refers to a surface consisting of non-deformable bedrock,
as opposed to a soft bed, which contains deformable sediments and till. As an efficient
drainage system has not yet been established at the onset of the melt season, surface melt
water from crevasses and moulins may cause a decrease in basal friction, and hence a higher
degree of basal sliding (Davison et al., 2019). Note that the offset tracking measurements
struggle to map the seasonal pattern, as the signal-to-noise ratio becomes small in this
slow-moving region.

Near the glacier fronts of ZI and NG, velocity peaks of high magnitudes occur during all
summers since 2015, as shown by the offset tracking measurements in Fig. 5.8. These
downstream summer speed-ups have also been documented with in-situ GPS measure-
ments (personal communication, Abbas Khan). While oceanic warming of the ice, which
affects glacier calving processes (Straneo & Heimbach, 2013), has been observed to cause
long-term changes in the dynamics of ZI and NG (An et al., 2021; Mouginot et al., 2015),
the summer speed-ups have previously been associated with surface melt water infiltrating
the subglacial system, causing increased sliding speeds through bed lubrication (Vijay et
al., 2019). One of the objectives of this study was to investigate whether a corresponding
speed-up is observed in the upstream parts of those glaciers. In the DInSAR measurements,
however, similar velocity peaks are not apparent (see Fig. 5.3). It should be noted, again,
that observational gaps are present for most summers (particularly during 2019-2021), as
coherence loss tends to be more pronounced during melt season. The accelerations at the
fronts occur relatively briefly, beginning sometime in June, peaking in July, and returning
to pre-event speeds during August. This is exactly the period in which coherence is often
completely lost, meaning that a potential dynamic response in the upstream regions may
simply be missed due to observational gaps. Measurements over the 2018 summer, where
DInSAR coverage is better, do not suggest a summer speed-up (Fig. 5.3), however, the
summer speed-up was also much smaller at the glacier outlets, likely due to a smaller
amount of surface melt that year. For NG (point P2 in Fig. 5.3), a slight deceleration
was observed in late August/September for multiple summers. Such a deceleration is also
observed at the ZI front (and in the upstream parts for the year 2019), however it is not
readily apparent at the NG front.

The region in which we observe significant flow acceleration through the DInSAR LoS
velocity measurements coincides well with the region in which ice thinning (i.e. negative
surface elevation change) is observed by ICESat-2 laser altimetry, as seen in Fig. 5.2.
Ice thinning may be caused both by increased surface melting and by flow acceleration
(that is, ice is transported downstream faster than new ice, transported from upstream or
generated through snowfall, can replace it). The latter term is often referred to as dynamic
thinning. As seen in Fig. 5.2, the thinning rates on ZI and NG are comparable (although
ZI shows high thinning rates further upstream from its grounding line, compared to NG).
A recent study (An et al., 2021) concluded that, during the last four decades, thinning
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Figure 5.8: Sentinel-1 offset tracking LoS velocity time series for two points near the NG
(top) and ZI (bottom) grounding line, respectively. Locations of the two points, F1 and
F2, are shown in Figs. 5.1 and 5.2.

induced by surface melt has been small, relative to the total thinning observed on ZI,
suggesting that dynamic thinning is the dominant contributor for this glacier (along with
thinning due to oceanic warming close to the grounding line). Conversely, for NG, the
surface melt contribution is close to the observed thinning rate, indicating that dynamic
thinning plays a smaller role. These observations are well in line with our results, where
ZI is observed to show a substantially higher flow acceleration than NG.

Fig. 5.9 presents transect plots showing relative acceleration (from DInSAR and offset
tracking) along with surface elevation change from ICESat-2 altimetry for transects A
and B, indicated in Fig. 5.1. For transect A, which follows the ice stream towards the
ZI grounding line, thinning is observed at a roughly constant rate from about 180 km to
50 km upstream, where DInSAR and offset tracking also measure a moderate (relative)
acceleration. Then, as we approach the ZI grounding line, both thinning and relative
acceleration drastically increase. For transect B, which traverses through the slow-moving
region between the NG and ZI branches, ending at the intersection of the shear margins,
a small relative acceleration is observed across the transect with DInSAR, whereas offset
tracking only finds significant acceleration in the last stretch of the transect, closer to the
shear margins, where relative acceleration increases to around 2%/y. The surface elevation
data set shows increasing thinning (although of a relatively low magnitude) across most
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Figure 5.9: Transect plots showing estimated relative ice flow acceleration from DInSAR
(red line) and offset tracking (blue line) along with 2018-2021 surface elevation change from
ICESat-2 data (green line, values shown on y-axis to the right). The top and bottom panels
show results along transects A (ZI branch) and B (slower-moving region between the ZI and
NG branches), respectively. The transects are indicated in Fig. 5.1. Transparent bands
indicate the 95% confidence interval for the DInSAR and offset tracking measurements, and
±3 times the estimated standard error for the ICESat-2 product. Note that acceleration
values are only plotted where significance is found. The x-axis shows distance along the
transect, with 0 representing the lowest elevation - for transect A, this is near the ZI
grounding line, while for transect B, this is near the intersection of the ZI/NG shear
margins.

of the transect, trailing off as we approach the shear margin intersection.
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Discussion and conclusion
A limitation of the DInSAR method is that only motion in the radar LoS direction (i.e. a
combination of horizontal and vertical contributions) can be measured. For areas where
the ice flow vector is perpendicular to the LoS, horizontal motion sensitivity is lost. Al-
though a single satellite track yields only 1-dimensional measurements, assuming a con-
stant flow direction, relative change in speed may still be estimated, as demonstrated here.
A common approach for obtaining the full ice flow vector with DInSAR is to combine mea-
surements from an ascending and descending track with the assumption of surface-parallel
flow (Joughin et al., 1998). A disadvantage of this approach is that image pairs from the
ascending and descending tracks available over this region only have a 50% temporal over-
lap, which may introduce inaccuracies when short-term flow changes occur. Furthermore,
in our experience, interferometric coherence may vary substantially in the span of just a
few days and retrieval of the velocity vector is, of course, limited to areas where coherence
is retained for both tracks. Consequently, we opt to analyze the LoS velocity measure-
ments from a single track directly. Under the assumption of a constant flow direction, the
relative change in LoS velocity from a single track was interpreted as the relative change
in absolute speed. Note, however, that this assumption breaks down in some cases, for
instance in areas near (and beyond) glacier grounding lines or where local dynamic effects
lead to vertical motion (as presented in section 5.2).

The availability of several years of observations allows the estimation of a multi-year trend
in ice velocity (see Fig. 5.2). As exemplified in Fig. 5.5, however, the motion history
does not conform to a simple linear model for all locations, highlighting the added value
of DInSAR in generating time series of high temporal resolution and high accuracy, and
the importance of analyzing full time series. Naturally, observations of transient ice flow
changes are limited by the satellite repeat period (which is currently 12 days, after the
failure of S1B in December 2021), and further limitations may be imposed in the case of
coherence loss, which, in the context of the Greenland ice sheet, increases rapidly with
increasing temporal baseline. Even with 6-day image pairs available, coherence loss is a
significant obstacle in summer (at least for the region investigated here), as for instance
seen in P6 in Fig. 5.5. It should be noted that this obstacle is also present for offset
tracking. Although offset tracking is often advertised as not relying on retained coherence
as heavily as DInSAR, this is only true in the presence of trackable features, which is far
from always the case, particularly in upstream regions.

We presented a densely sampled time series of velocity measurements in the NEGIS region
using both tracking- and phase-based techniques on Sentinel-1 data. We demonstrated
how phase-based measurements provides improved accuracy and resolution, increasing
the sensitivity to changes in ice motion on both long and short time scales. A roughly
constant acceleration of the ice stream is observed far inland, more than 200 km from
the Zachariae Isstrøm ice front with a magnitude up to about 1%/y, increasing to several
percent per year towards the grounding line. The upstream parts of Nioghalvfjerdsfjorden
Glacier appear to be more stable, showing little to no acceleration, which is in line with
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previous studies investigating changes closer to the ice front. Additionally, acceleration is
observed in the slow-moving region outside of the ice stream. Close to the shear margins,
a sudden speed up occurs during two consecutive summers, suggesting a possible relation
to surface melt conditions. In a small sub-stream near Storstrømmen Glacier, a sudden
speed-up was observed over the course of a few months, followed by a long-term return to
pre-event speeds. Finally, we demonstrated the ability of DInSAR to capture a consistent
seasonal pattern over a small, relatively slow-moving glacier, which was not apparent in
tracking-based measurements. The findings illustrate how regions far inland are impacted
by various forcings, be it warmer air temperatures or dynamic changes occurring near the
ice front of the large outlet glaciers. The exact forcings relevant in each of the observed
cases remain to be fully established. This study demonstrates a so far under-utilized
potential for measuring changes in ice motion with high accuracy and temporal resolution
by applying interferometric techniques to the Sentinel-1 archive.

The remaining two sections of this chapter investigate two cases of a transient dynamic
response, both related to hydrological events.

5.2 Subglacial hydrology-dynamic effects observed on NEGIS
In analyzing time series of DInSAR measurements, a standard approach within the PhD
project has been to inspect, for each image pair, a map of the difference between the
output LoS velocity and some reference LoS velocity field, for instance the pixel-wise
median LoS velocity over the full time series, or a certain representative retrieval. In
regions where DInSAR retrieval is possible, velocity variations are often of a relatively
small magnitude (<10%). Hence, visualizing velocity anomalies, with respect to some
reference field, provides a clearer picture of potential dynamic changes, rather than simply
inspecting the LoS velocity retrievals. The reference field could also be taken as the LoS-
projection of a multi-year and multi-sensor average velocity map, however, as these are
typically at a substantially lower resolution than the DInSAR measurements, there is a risk
of interpolation artefacts being disguised as small-scale velocity changes. Consequently,
the reference field is instead taken as the pixel-wise median DInSAR LoS velocity. The
median is preferred over the mean, as a few unwrapping errors of large magnitude may
(locally) cause a substantial bias in the mean. In many cases, the velocity anomaly maps
simply show negligible deviations from the reference field or patterns that may be inferred
to arise from residual unwrapping errors or atmospheric effects. However, some cases
show distinct features that are clearly unrelated to the known error sources and can (with
high confidence) be interpreted as dynamic effects. In this section, a presentation is
provided of an apparent hydrology-dynamic event (meaning a dynamic response associated
with subglacial and/or supraglacial hydrology), extending far along the NEGIS, revealed
by DInSAR time series measurements. It should be stressed that the work presented
in this section is recent and unfinished. Hence, in-depth analyses and interpretations
of the DInSAR measurements (in combination with other data sources), preferably in
collaboration with experts in subglacial hydrology, is work to be carried out beyond the
PhD project. This is further addressed at the end of the section.
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Figure 5.10: Overview of the NEGIS study area showing 2016-2019 average velocity mag-
nitude from PROMICE (Solgaard et al., 2021) (a) and bed elevation from BedMachine
v4 (Morlighem, 2021) (b). The blue and magenta rectangles indicate the outlines of Figs.
5.11-5.12 and Fig. 5.13, respectively. The black dashed line indicates the drainage path-
way inferred from propagation of the observed uplift wave (with the dotted line indicating
a secondary branch-off), further described in the text. Magenta dots indicate points of
interest further analyzed in Figs. 5.15 and 5.16.

An overview of the study region is provided in Fig. 5.10, which shows the average veloc-
ity magnitude (Solgaard et al., 2021) and bed elevation (Morlighem, 2021), along with
outlines showing the locations of the presented DInSAR measurements. Note that bed
elevation varies substantially along the ice stream, with a complicated pattern of cavities
and protrusions further upstream, and a deep (but locally relatively smooth) basin further
downstream.

Fig. 5.11 shows Sentinel-1 DInSAR measurements from one ascending track (T074) and
one descending track (T112) in the downstream portion of NEGIS (blue rectangle in Fig.
5.10). The plots show anomalies in LoS velocity, i.e. the deviation of the given DInSAR
retrieval from the median over the full 2016-2021 DInSAR time series. Note that the T074
measurements stem from the time series presented in section 5.1. For the descending track,
the same processing parameters are used. Looking first at the T074 measurements in the
bottom panels of Fig. 5.11, a negative LoS velocity anomaly is observed in a large-scale
wave propagating downstream of Zachariae Isstrøm through late August and September.
Within this wave, however, ”bead-like” patterns are observed, which show a LoS velocity
anomaly that changes from positive to negative values in subsequent acquisitions. In the
T112 measurements (top panels of Fig. 5.11), the same bead-like pattern is observed,
while the large-scale wave of uniform anomaly values that was observed in the T074 data
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Figure 5.11: Sentinel-1 DInSAR LoS velocity anomalies (with respect to median) in the
downstream NEGIS region (indicated by the blue rectangle in Fig. 5.10). Measurements
are shown for both a descending track (top row) and an ascending track (bottom row).
The ground-projected LoS vector and incidence angle are indicated in the top right corner
of each panel.

is much less pronounced. Considering the LoS vectors, which are indicated by a horizontal
arrow and an average incidence angle in Fig. 5.11, and the convention that positive motion
is considered towards the radar, a qualitative interpretation of the dynamic response is
given in the following.

For T074, the ground-projected LoS is almost parallel to the horizontal ice flow direction
(which is shown as quivers in Fig. 5.10) within most of the ice stream. Consequently,
the large-scale negative LoS velocity anomaly would be consistent with a speed up of the
ice stream towards the margin. Conversely, the ground-projected LoS of T112 is nearly
perpendicular to the horizontal flow direction in the majority of the ice stream, meaning
that a general speed up in the horizontal flow would lead to only a minor (positive) signal
in the LoS velocity anomaly for this track. Hence, the large-scale smooth anomaly field
that spans the full ice stream is consistent with a speed up in the horizontal flow direction.
Instead, the more intricate and small-scale bead-like signal is consistent with vertical
motion. As both tracks feature a similar incidence angle, the sensitivity to vertical motion
is roughly the same, and uplift causes a positive LoS velocity anomaly in both tracks
(while subsidence causes a negative signal). From Fig. 5.11, it is seen that the bead-like
structures show anomalies of matching signs between the two tracks for the image pairs
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Figure 5.12: Sentinel-1 offset tracking LoS velocity anomalies (with respect to the 2016-
2019 PROMICE average velocity map) in the downstream NEGIS region (indicated by the
blue rectangle in Fig. 5.10). The acquisitions correspond to the DInSAR measurements
shown in Fig. 5.11. Note that an ad-hoc calibration of the measurements was performed
by subtracting the mean difference with respect to the average 2016-2019 velocity map, as
measured outside of fast-flowing regions, in order to mitigate the S1A/S1B bias (described
in section 3.2).

that have the closest temporal overlaps. These observations, in combination with the
fact that variations in horizontal velocity does not seem likely to generate the bead-like
signatures, leads to the likely conclusion that these local anomalies are caused by vertical
motion. With this interpretation, it is observed that each of the bead-like structures first
exhibits uplift (positive anomalies), followed by subsidence (negative anomalies), as the
wave propagates downstream. A quantitative separation of the horizontal and vertical
motion components would require acquisitions from a third LoS, which is not available. In
section 5.3, a case is presented in which the inversion is performed using only two different
LoS (and some assumptions on the ice flow), however, in the present case the temporal
overlap between the ascending and descending acquisitions is deemed too small (compared
to the propagation speed of the dynamic response) for this method to be viable, and we
stick to a more qualitative analysis.

Fig. 5.12 shows the same LoS velocity anomaly time series as in Fig. 5.11, but captured
instead with Sentinel-1 offset tracking. Note that a calibration of the measurements was
performed by estimating a swath-wide constant bias, in order to account for the S1A/S1B
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Figure 5.13: Vertical displacement anomalies inferred from Sentinel-1 DInSAR measure-
ments in the downstream NEGIS region (indicated by the magenta rectangle in Fig. 5.10).
All measurements are from the descending track (T112). The ground-projected LoS vector
and incidence angle are indicated in the top right corner of each panel.

bias (as discussed in section 3.2). While the smooth velocity wave, which we attribute to a
horizontal speed up, is indeed visible in the T074 measurements, the bead-like structures
associated with vertical motion are less clear in the offset tracking measurements. Close
comparison between the offset tracking and DInSAR measurements do show similarities
at some of the areas of suspected vertical motion, however, without the DInSAR mea-
surements available for comparison, it is difficult to confidently separate these areas from
noise.

Fig 5.13 shows a DInSAR motion anomaly time series obtained for the upstream portion
of NEGIS (magenta rectangle in Fig. 5.10) in the months leading up to the time series
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shown in Fig. 5.11. Note that all panels of the figure show measurements from the
descending track, as the ascending track does not cover the upstream parts. In this case, a
qualitative inspection of the measurements does not suggest a wave of horizontal speed-up,
as was observed further downstream. Instead, the observed anomalies show only the bead-
like pattern, which is assumed to stem from vertical motion (and some long wavelength
deviations, which are assumed to arise from, e.g., atmospheric error contributions and
imperfect calibration). Consequently, the measurements in Fig. 5.13 have been projected
from the LoS to vertical, simply by dividing by the cosine of the incidence angle, θi, and
scaled to displacement anomalies (over the course of the 6-day baseline) instead of velocity
anomalies - that is:

∆dvertical =
∆vLoS
cos θi

· 6

365.25
(5.1)

assuming a LoS velocity given in meters per year. Arguably, interpreting these measure-
ments as displacements instead of velocities is more meaningful, as they likely occur at
non-uniform rates, in some cases at timespans shorter than the 6-day temporal baseline.
Similarly to the measurements in the downstream portion, the upstream measurements
show the propagation of bead-like features, appearing first as uplift, followed by subsidence
after one or more weeks. Note that many of the bead-like structures show subsidence of
relatively low magnitudes long after the uplift wave has propagated further downstream.
The uplift generally appears at shorter time intervals and higher magnitudes, suggesting
that the uplift occurs at a high rate, while the following subsidence takes longer. The
measured uplift events are mostly on the order of 5 to 15 cm (over the 6-day temporal
baseline) or smaller, but for the events during July 25th to August 6th uplift exceeding
30 cm (over 6 days) is measured.

By manually tracking the occurrences of uplift, the propagation path of the uplift wave was
mapped. It is shown as the black dashed line in Fig. 5.10. Note how the propagation of the
uplift wave closely follows features in the bed elevation, and not the ice flow direction. The
uplift wave appears to propagate towards the local (downstream) bed elevation minimum,
suggesting that the observed dynamic response is strongly linked to subglacial conditions.
From July 25th, the uplift wave branches off into two components: one moving further
downstream, towards the Zachariae Isstrøm outlet, and a component propagating east
(showing somewhat lower uplift magnitudes), which is indicated by the dotted line in Fig.
5.10. In total, propagation of the main component of the uplift wave can be tracked for
more than 350 km, from the far upstream parts of NEGIS (where flow speed is less than
100 m/y) to the downstream region about 60 km from the Zachariae grounding line (where
flow speed exceeds 500 m/y). The propagation of the main uplift wave component occurs
over almost a full year (January to October 2020), while the secondary branch is tracked
through about 6 months (from July to December 2020).

Seemingly, the only physical process that is consistent with the dynamic response observed
in the DInSAR measurements is the movement of subglacial water, i.e. transport of
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water beneath the ice. Preliminary inspections of the Sentinel-1 intensity and coherence
images in the upstream regions do not indicate the presence of supraglacial lakes (that is,
lakes formed on top of the ice sheet) or collapse basins, suggesting that the water does
not stem from an abrupt drainage of melt water lakes on the surface (such an event is
instead documented in section 5.3, in a different region). Dynamic activity, in the form
of vertical surface displacement, related to the drainage and filling of subglacial lakes
has previously been measured using DInSAR (Gray, 2005; Palmer et al., 2015), altimetry
(Fricker et al., 2007) and DEM differencing (Willis et al., 2015). Compared to the latter
two methods, DInSAR has rarely been applied in mapping subglacial activity, likely due
to the limited coverage over Antarctica, where most subglacial lakes have been observed.
A very recent study utilized Sentinel-1 DInSAR to measure uplift from subglacial water
flow under an Antarctic glacier in Dronning Maud Land (Neckel et al., 2021), and found
results that are in many ways similar to the ones shown here. Subglacial lakes have also
been detected using radar-echo sounding measurements (Palmer et al., 2013; Ashmore
& Bingham, 2014), which may reveal lakes that are inactive (that is, lakes that do not
undergo volume change and hence do not cause surface displacements). Subglacial lake
drainages have been observed to initiate transient ice flow accelerations on the Antarctic
ice sheet, through lubrication of the bed beneath the ice, thereby affecting the total ice
sheet mass balance (Stearns et al., 2008; Siegfried et al., 2016; Das et al., 2008). Hence,
understanding the interplay between subglacial hydrology and ice dynamics is important
to accurately model the evolution of ice sheets both on short and long time scales.

Transport of subglacial water has long been observed to occur on large scales in Antarc-
tica, where pooling of water into subglacial lakes and drainage of said lakes through inter-
connected drainage pathways has been documented (Wingham et al., 2006; Fricker et
al., 2007). Analyses based on hydrological potential estimates and radar-echo soundings
suggest that basal water and subglacial lakes are likely prevalent under much of the Green-
land ice sheet as well, particularly under fast-flowing regions such as NEGIS (Livingstone
et al., 2013; Oswald et al., 2018; Jordan et al., 2018). So far, however, substantially
fewer observations have been made of subglacial lake activity on the Greenland ice sheet,
compared to its Antarctic counterpart, and no observations have been made of lakes be-
neath fast-flowing glaciers. A recent mapping of subglacial lakes under the Greenland ice
sheet, using airborne radar-echo sounding and measurements of surface elevation change,
found no indication of lakes in the NEGIS region, although it is stressed that the radar
sounding-based method may have difficulties in separating subglacial lakes from saturated
sediments, that are expected to be present at the uniformly thawed bed under NEGIS
(Bowling et al., 2019; MacGregor et al., 2022).

Tracking the propagation of the uplift wave, along the path indicated by the dashed black
line in Fig. 5.10, it is noted that the propagation speed of the wave strongly varies. From
late January (first panel in Fig. 5.13) to mid July (where the propagation path starts
to branch off into a main and secondary branch) the wave covers a distance of 130 km,
corresponding to a speed of about 750 m/day. From here, along the main path, the wave
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propagates 95 km until August 24th (first panel of Fig. 5.11), corresponding to a wave
speed of about 2.3 km/day. Finally, the wave propagates 135 km through the fast-flowing
portion of the ice stream leading to the Zachariae Isstrøm outlet from August 24th to
(about) September 20th, corresponding to a speed of 5 km/day. In the latter of those
sectors, the DInSAR measurements also indicate a widespread increase in horizontal ice
flow speed. Fig. 5.14 shows the BedMachine v4 bed elevation (Morlighem, 2021) along
the main component of the uplift wave propagation path. The plot indicates the extent
and timing of the propagation through the three sectors described above (with sector 1
indicating the most upstream sector and sector 3 indicating the downstream sector). Also
shown is the extent and timing of the most prominent uplift events. Note that most, but
not all, of the observed uplift events coincide with a depression at the bed. Aside from
the local depressions and protrusions, the bed elevation is observed to actually increase
in sector 1 and most of sector 2. From about 190 km along the transect, bed elevation
decreases and becomes locally smooth in the majority of sector 3, aside from the very
beginning and end of the sector. This could explain the relatively slow propagation of
the uplift wave through sectors 1 and 2, compared to the fast propagation through sector
3. The increase in propagation speed coincides with the late melt season, where it is
believed that efficient drainage systems may have developed (Bartholomew et al., 2010).
The transition to a more efficient drainage system is, however, often associated with a
decrease in ice flow velocity (Bartholomew et al., 2010), conversely to the horizontal ice
flow speed-up interpreted from the DInSAR observations in Fig. 5.11.

A hypothesis on the mechanism behind the observed uplift wave is that water is trans-
ported downstream, filling up bedrock cavities along the way. The water alters effective
pressure at the ice/bedrock transition, leading to uplift of the ice. Once a given cavity is
filled, additional supply of basal water causes runoff further downstream and eventually a
drainage of the cavity (Livingstone et al., 2016). Once water has migrated downstream,
the ice surface (slowly) subsides, presumably back to its original elevation. Naturally,
the time required to fill a given cavity depends both on the cavity size and on the sup-
ply of melt water. Both of these factors may vary, which likely contributes to the large
variation in propagation speed of the observed uplift wave. This interpretation is also pre-
sented in previous studies (Gray, 2005; Neckel et al., 2021), where similar characteristics
in the dynamic response of subglacial hydrological activity is observed for two slow-moving
Antarctic glaciers. In those studies, however, the authors find no evidence of an increase in
ice flow speed (although in the latter study, this could be due to geometry of the DInSAR
acquisitions, as the LoS is nearly perpendicular to the flow direction). Based on the lack
of flow acceleration, Neckel et al., 2021 suggest that the subglacial water is transported
through efficient transient channels, either through the ice or through canals in the sub-
glacial sediments. Whether this deviation from the NEGIS event presented here (where
horizontal flow acceleration is inferred) is due to differences in the underlying mechanism
of the routing of subglacial water, or simply due to a difference in the DInSAR sensitivity
to horizontal motion, remains uncertain.
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Figure 5.14: Interpolated bed elevation from BedMachine v4 (Morlighem, 2021) along
the main propagation path of the uplift wave (shown by the dashed line in Fig. 5.10),
divided into three sectors, as described in the text. Blue lines show the extent (along the
propagation path) of the most prominent observed uplift events, with the date indicating
the onset of uplift, taken as the earliest date of the DInSAR image pair in which uplift
was first observed. Note that the x-axis indicates distance from the first observed uplift
event (i.e. furthest upstream).

A natural point of interest is to determine the origin of the melt water transported during
the event. In a recent study, Karlsson et al., 2021 presented estimates of basal melt water
contributions for the full Greenland ice sheet from three main sources: geothermal heat
(assumed to cause a roughly constant melt rate at the bedrock), frictional heat (arising
from sliding of the ice across the bed), and surface melt heat (i.e. heat transferred from
surface melt water as it penetrates to the subglacial domain). In the northeast region,
where NEGIS is situated, Karlsson et al., 2021 estimate relative contributions of each of
these sources to be 46%, 36%, and 18%, respectively. For NEGIS, however, it is noted that
a suspected ”hot spot” beneath the ice stream likely exists (Smith‐Johnsen et al., 2020),
meaning that the geothermal heat contribution may be underestimated. Additionally,
the frictional heat contribution is significantly higher within NEGIS than in most of the
surrounding regions (see also Fig. 1 in Karlsson et al., 2021). Finally, the surface melt
contribution seems unlikely to have a meaningful contribution for the present event, at
least in the first 80 km of the event propagation path, where surface elevation is above
2000 m and the dynamic response is observed during winter.
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Figure 5.15: Vertical displacement anomaly time series inferred from Sentinel-1 DInSAR
measurements at points D1 (top) and D2 (bottom), the locations of which are indicated
in Fig. 5.10. Measurements stem from the descending track T112 and all measurements
points are from 6-day image pairs.

Finally, the event presented here is by no means unique. In fact, similar events, in which
a bead-like pattern of uplift and subsequent subsidence propagates downstream, were
observed for every year of the processed time series. The extent and magnitude of the
(inferred) uplift waves vary across the span of the time series, with some events being more
thoroughly documented than others, depending on whether coherence is retained. While
the various events do not all propagate along the same pathway, several events are observed
to propagate (at least partially) along the main pathway outlined in Fig. 5.10. In Fig.
5.15, the DInSAR time series of vertical displacement anomaly, computed via eq. (5.1), is
shown for points D1 and D2 (indicated in Fig. 5.10). For point D1, which is located on the
propagation path of the original event, uplift signals are observed for three separate events:
in April 2020 (corresponding to the event shown in Fig. 5.13), in September-October
2020, and in May-June 2021. Note that the uplift in September 2020 occurs just as the
original early-2020 uplift wave has passed through the furthest downstream point in the
propagation pathway. Although coherence loss is more frequent in the following months,
available measurements suggest that the late 2020 uplift wave traverses roughly the same
pathway as the early 2020 event. Fig. 5.15 also shows the vertical displacement anomaly
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time series for point D2, which is located outside the original propagation pathway. Here,
an uplift event is observed in February 2021, after which an uplift wave propagates from D2
to D1 (where uplift is then observed in May-June 2021). For the 2020 events, however, no
dynamic response was observed at D2, exemplifying the differences in drainage pathways
for the various events. Fig. 5.16 shows the corresponding time series as inferred from
offset tracking measurements, including measurements from both 6-day and 12-day image
pairs. Comparing these measurements to Fig. 5.15 demonstrates how DInSAR is essential
in analyzing dynamic changes at this scale.

As mentioned at the beginning of this section, further analysis of the acquired DInSAR
time series, including a comprehensive mapping of all inferred uplift/subsidence signals
and a comparison with other available data sources, will be the topic of work beyond the
present PhD project. Particularly, a mapping of local hydropotential should be carried
out, allowing a comparison between the observed dynamic response and expected drainage
pathways. It is worth noting that the main propagation path of the observed uplift wave
actually coincides roughly with a drainage pathway simulated based on hydropotential
mapping in a previous study (Livingstone et al., 2013). Additionally, it is of interest to
compare the DInSAR measurements to those of ICESat-2, similar to Neckel et al., 2021.
One limitation with ICESat-2 is that measurements are acquired in narrow tracks with a 91-
day repeat period. As shown here, the dynamic response of subglacial water movement may
unfold on time scales down to 6 days (or less) and individual uplift events may be limited in
spatial extent. Combining the vast and frequent coverage provided by Sentinel-1 and the
high sensitivity to vertical motion, DInSAR measurements may provide a highly valuable
method for mapping the dynamic response of changes in subglacial hydrology. One of
the main limitations of DInSAR measurements is the quantitative separation of vertical
and horizontal motion components, which is not straightforward. Still, depending on the
available satellite tracks and their orientation with the ice flow direction, the measurements
may provide constraints that are crucial in understanding the dynamic response and its
extent, as well as the frequency at which hydrology-dynamic events occur.

82 Synthetic Aperture Radar TOPS-mode Interferometry for Ice Velocity Retrieval



2017 2018 2019 2020 2021
Dec Fe

b
Apr Ju

n
Aug Oct

Dec Fe
b

Apr Ju
n

Aug Oct
Dec Fe

b
Apr Ju

n
Aug Oct

Dec Fe
b

Apr Ju
n

Aug Oct
Dec Fe

b
Apr Ju

n
Aug Oct

Dec

0.4

0.2

0.0

0.2

0.4

V
e
rt

ic
a
l 
m

o
ti

o
n
 a

n
o
m

a
ly

 [
m

]

Offset tracking (6-day)

Offset tracking (12-day)

2017 2018 2019 2020 2021
Dec Fe

b
Apr Ju

n
Aug Oct

Dec Fe
b

Apr Ju
n

Aug Oct
Dec Fe

b
Apr Ju

n
Aug Oct

Dec Fe
b

Apr Ju
n

Aug Oct
Dec Fe

b
Apr Ju

n
Aug Oct

Dec

0.4

0.2

0.0

0.2

0.4

V
e
rt

ic
a
l 
m

o
ti

o
n
 a

n
o
m

a
ly

 [
m

]

Offset tracking (6-day)

Offset tracking (12-day)

D1

D2

Figure 5.16: Vertical displacement anomaly time series inferred from Sentinel-1 offset
tracking measurements at points D1 (top) and D2 (bottom), the locations of which are
indicated in Fig. 5.10. Measurements stem from the descending track T112, with purple
markers indicating measurements from 6-day image pairs and blue markers indicating
12-day pairs.

5.3 Wintertime lake drainage cascade observed with DInSAR
This section documents a study, in which Sentinel-1 DInSAR measurements were used
to capture the dynamic response of a series of supraglacial lake drainages, occurring in
western Greenland in the winter of 2018, with extraordinary detail. The full study is
presented in the following manuscript:

N. Maier, J. K. Andersen, J. Mouginot, F. Gimbert, and O. Gagliardini, Win-
tertime lake drainage cascade triggers large-scale ice flow response in Green-
land, Science, [in review] (2022)

which is provided in Appendix A.5, with supplementary material found in Appendix B.3.
Note that the supplementary material also includes the section Materials and Methods,
which documents the methodologies used. In the following, some introductory comments
concerning the investigations are given, followed by a brief summary of the main findings
of the paper.

A dynamic response, in the form of an ice speed-up, was first observed in routinely gen-
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Figure 5.17: 24-day horizontal velocity magnitude mosaics from PROMICE Sentinel-1
offset tracking (Solgaard & Kusk, 2021; Solgaard et al., 2021), showing the dynamic
response of the lake drainage cascade in the vicinity of Nordenskiöld glacier (the inset
in panel (a) shows the extent of the imaged region). The measurements show relative
change in velocity magnitude, with respect to the PROMICE product spanning 20180117
- 20180210.

erated Sentinel-1 offset tracking measurements. An example is shown in Fig. 5.17, which
shows measurements from 24-day PROMICE mosaics. Optical satellite imagery from
Landsat 8 and Sentinel-2 was used to identify lake drainages in the time before, during,
and right after the observed dynamic response. In optical images, lake drainages are ob-
served as an abrupt change from the smooth surface of the ice ”lid” (a relatively thin layer
of ice that is usually generated when a surface lake freezes over winter) to a collapse basin,
which shows a rugged, fractured surface in the depression left by the drained lake. The
change in ice flow following a lake drainage is caused by the influx of water to the ice-bed
interface, causing increased sliding due to the added lubrication. A total of 15 supraglacial
lakes were observed to drain over the course of March 2018. This observation is unusual,
as such drainage events are generally believed to occur only during the melt season in
summer. The offset tracking measurements do indeed reveal a general speed-up in ice
flow following the identified drainages. With the limited accuracy and spatial resolution,
however, these measurements do not reveal distinct patterns in the flow response, and
the horizontal velocity measurements do not indicate whether or not a vertical motion
component exists. With DInSAR measurements, intricate details in the dynamic response
are observed (cf. Fig. 1 in Appendix A.5).
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A time series of Sentinel-1 DInSAR velocity retrievals from multiple tracks (yielding multi-
ple lines-of-sight) spanning the drainage event was acquired. These measurements reveal a
wave of accelerating ice flow, propagating from the initially draining lakes towards the mar-
gin. The DInSAR time series allows for monitoring the evolution of the dynamic response,
as it propagates, triggering other supraglacial lake drainages, which in turn impact the
dynamic response. Because of the high spatiotemporal resolution, it is possible to inter-
pret the changes in ice flow in relation to the subglacial conditions and infer details about
the drainage pathways. Additionally, exploiting the sensitivity of DInSAR measurements
to both vertical and horizontal motion, we decompose the velocity contributions into a
horizontal component and a vertical component. While this is not strictly possible without
three different lines-of-sight, acquired simultaneously, we make the assumption that the
horizontal flow-direction remains unchanged and use measurements from one ascending
and one descending track, each with a 6-day temporal baseline, which have a temporal
overlap of 4.5 days, to make the decomposition possible. The horizontal flow-direction
is estimated from a multi-year average velocity map. The approach is further described
in the Materials and Methods section in Appendix B.3. Estimating the vertical motion
component is of great importance, as the measurements provide valuable knowledge on the
drainage characteristics, specifically revealing a bead-and-thread structure that is similar
to that observed during some subglacial lake drainages (including the dynamic response
documented in section 5.2).

5.3.1 Summary of Maier et al. (Science, 2022)
According to current understanding of the coupling between hydrology and dynamics on
the Greenland ice sheet, ice flow acceleration caused by the drainage of supraglacial lakes,
which store melt water, commonly occur in summertime when melt conditions prevail. In
winter, where there is an absence of surface melt, drainage events leading to a large-scale
dynamic response have been assumed improbable. Hence, the hydrology-dynamic coupling
is generally considered on a seasonal time scale. Our observations show an expansive
dynamic response, forced by the cascading drainage of a series of supraglacial lakes in
wintertime. The dynamic response lasted more than 30 days, propagating more than
160 km from the highest lakes to the margin and affected an area of 5200 km2. The
earliest draining lake, which triggered the cascade, is located at high elevation (>1600 m),
above the time-averaged snow line, and an analysis of historical satellite data revealed that
this lake had been accumulating melt water without draining for nearly five decades (see
Appendix B.3). Several other lakes also stored melt water for years before being drained
by the cascade event. Hence, not only do the results suggest that this type of transient
drainage event may occur in wintertime, they also suggest that melt-forcing may affect ice
dynamics long after the melt is produced, meaning that the hydrology-dynamic coupling
spans time scales much longer than a single season.

Because the drainage event occurs during winter, where external forcing due to surface
melt is absent, it provides an opportunity to investigate the properties of the drainage
system as the event unfolds. Using high resolution DInSAR measurements, decomposed
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into a horizontal and vertical motion component, we can carefully track the velocity wave
as it travels towards the margin underneath the ice, mapping the multi-threaded drainage
pathways and estimating the drainage velocity through these pathways. The vertical
motion estimates reveal details about changes in flow pathways and bed separation. All
of these findings provide important constraints for hydrology-dynamic models, which are
needed to predict the response of ice sheets to rising temperatures.

A precursory search using DInSAR processing in the region near the observed event re-
vealed two additional winter lake drainage events (in 2019 and 2021, see Fig. S9 in Ap-
pendix B.3). Although these events are of a smaller scale, the observations suggest that
winter drainage events are likely a relatively common phenomenon. For the cascading
drainage event, we estimate a 1− 4% increase in marginal ice discharge over the affected
area. Coupled with the fact that climate warming is expected to increase both melt pro-
duction and the capacity of melt water storage, these findings suggest that melt-forced
winter drainage events may increase in frequency in the future and play an important role
in the evolution of the ice sheet.
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Chapter 6 | Conclusions and outlook

Sentinel-1 differential interferogram phase over Petermann glacier in north Greenland.

Synthetic Aperture Radar TOPS-mode Interferometry for Ice Velocity Retrieval 87



The overall goal of this PhD project has been to enable the exploitation of the vast archive
of Sentinel-1 phase data for ice velocity retrieval and to demonstrate the value of interfer-
ometric (DInSAR) measurements in investigating changes in ice dynamics. In Chapter 1,
the research objectives of the PhD project were condensed into three key elements, which
are repeated here:

1. Design and implement methods allowing the interferometric retrieval of ice velocity
from Sentinel-1 TOPS-mode measurements

2. Improve robustness of the Sentinel-1 interferometric algorithm for operational large-
scale ice velocity retrieval

3. Demonstrate the potential of Sentinel-1 interferometry in studies of ice dynamic
changes, exploiting the increased spatiotemporal resolution and accuracy

Chapter 3 addressed the first objective. Here, several approaches to meeting the strict
requirements on azimuth coregistration for TOPS-mode DInSAR, in the presence of sub-
stantial scene-wide motion, were investigated. The combination of two separate coregis-
tration refinement methods was found to perform the best. The first refinement method
utilizes an estimate of 2D average velocity and accounts for the bulk of azimuth motion
within the scene, while the second method is based on the principles of multi-aperture
interferometry and provides an additional refinement near TOPS burst boundaries, where
sensitivity to registration errors is the highest. The chapter included a demonstration
of the Sentinel-1 DInSAR processing chain, in combination with offset tracking measure-
ments, for a large drainage basin northeast Greenland, including a validation with GPS
velocity retrievals. Throughout the project, the refined coregistration procedure has been
used on an extensive amount of Sentinel-1 image pairs, performing quite consistently in
eliminating inter-burst phase discontinuities. In some instances, residual discontinuities
may remain, particularly in the presence of ionosphere-induced phase errors. Recently, an
auxiliary timing annotation data set was developed (Gisinger et al., 2022), which seeks
to improve Sentinel-1 geolocation accuracy, taking into account both atmospheric effects
as well as effects from solid Earth tides. The data set was demonstrated for use in offset
tracking ice velocity retrieval (Gisinger et al., 2022). In the future, it would be interesting
to investigate the potential improvements for DInSAR.

Chapter 4 addressed the second objective. After developing a robust method for TOPS
coregistration on ice, we found that the main obstacle in applying Sentinel-1 DInSAR
measurements at an operational (i.e. fully automated) level is the occurrence of phase
unwrapping errors, particularly in regions near the ice sheet margin. Therefore, the main
focus in efforts to improve the robustness of the DInSAR algorithm was on the detection
of unwrapping errors. A masking algorithm was designed, based on a measure of pixel
connectivity, and validated using a simulated data set. The algorithm effectively detects
unwrapping errors, particularly those of high magnitudes, although with a mediocre preci-
sion, meaning that some valid data is discarded along with the errors. In campaign-style
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ice velocity retrievals over large regions, where multiple satellite tracks are combined to
infer a single seasonal/annual 2D velocity map, the connectivity-based masking method is
effective at discarding errors that might otherwise drastically impact the results through
the inversion process and lead to unrealistic velocity fields. However, in cases where one
seeks to map a transient dynamic response, the duration of which spans only a few satellite
acquisitions, the risk of discarding valid data may outweigh the benefits of detecting poten-
tial unwrapping errors. Hence, increasing the precision of the algorithm would be a crucial
improvement to its applicability. Chapter 4 also documented a preliminary investigation
into applying simple machine learning methods to generate a more reliable unwrapping
error mask, with increased recall and precision, based on pixel connectivity as well as other
parameters. Improved unwrapping error detection algorithms might also seek to better
exploit the spatial correlation in phase unwrapping errors. Ultimately, the goal is for the
DInSAR processing chain to reach the same level of robustness and automation as that
implemented for offset tracking. While the connectivity-based masking approach provides
a major step towards that goal, future work should seek to further refine the method, with
the objective of minimizing the need for user input and manual inspection in large-scale
(ice sheet-wide) processing scenarios.

Finally, addressing the third research objective, Chapter 5 provided several demonstrations
of the capabilities of Sentinel-1 DInSAR in investigating dynamic changes in ice flow. The
high spatiotemporal resolution of Sentinel-1 DInSAR measurements allow for dense ice ve-
locity time series. As an example, a 2015-2021 time series was generated for the Northeast
Greenland Ice Stream and its surroundings. The time series was used both for mapping
the extent of long-term (i.e. multi-year) acceleration/deceleration and for studying more
complex (local) dynamic changes. Time series were generated using both DInSAR and off-
set tracking, allowing a comparison between the methods. In the estimation of long-term
velocity trends, the lower noise level in DInSAR leads to an improvement in motion sen-
sitivity, revealing acceleration also in slow-moving regions, where the high relative noise
level of offset tracking makes the method insensitive to low-magnitude changes. When
investigating short-term dynamic changes, the higher accuracy of DInSAR effectively al-
lows for a better temporal resolution of investigated events. This is demonstrated for
several areas, in which distinct changes in the velocity field occur over just a few months,
which are not readily apparent in offset tracking retrievals. The yet expanding extensive
Sentinel-1 polar archive allows for similar investigations to be carried out in other sec-
tors of both Greenland and Antarctica, however, the loss of Sentinel-1B has a substantial
impact on the retrieved DInSAR time series, as the 12-day temporal baseline available
with one satellite yields significantly poorer coherence, particularly in the ablation zone.
Fortunately, current plans see Sentinel-1C in orbit in the first half of 2023.

Future efforts should seek to exploit Sentinel-1 DInSAR measurements to investigate accel-
eration (or deceleration) in other regions of the Greenland ice sheet as well as the Antarctic
ice sheet, particularly within inland parts of major glaciers, where tracking-based measure-
ments may not capture the relatively subtle changes. For Antarctica, Sentinel-1 coverage
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is not as extensive as it is for Greenland, providing images mainly over the ice sheet mar-
gin. This situation will improve with the launch of the NISAR (NASA-ISRO Synthetic
Aperture Radar) satellite in 2024, which prioritizes Antarctic coverage (Rosen et al., 2016).
Studying the inland response to recent calving and thinning of major Antarctic ice shelves
(Greene et al., 2022) would be valuable for future efforts in monitoring and predicting
ice dynamics in Antarctica. Furthermore, as glaciers and ice caps outside of the polar
ice sheets (in areas such as High-mountain Asia, the Canadian Arctic, Patagonia, etc.)
collectively comprise the largest contributor to current sea level rise, future efforts may
also seek to generate Sentinel-1 DInSAR time series in these regions, potentially aiding in
monitoring the acceleration in mass loss that has recently been observed (Hugonnet et al.,
2021). Challenges in these regions could be the occurrence of radar shadowing effects, due
to steep slopes, and a lack of reference velocity maps (for use in the coregistration refine-
ment processing step) with sufficient accuracy, although availability of global ice velocity
mosaics has recently improved (Millan et al., 2022; Scambos & Fahnestock, 2016).

Chapter 5 also presented two investigations on transient dynamic events related to sub-
glacial and supraglacial hydrology - one on NEGIS and one in the vicinity of Nordenskjold
Glacier in the southwest of Greenland. These investigations exploit the sensitivity of
DInSAR measurements to both horizontal and vertical motion, in order to interpret the
dynamic response caused by the transport of water through the subglacial hydrological
system. For the NEGIS event, indications of uplift and subsequent subsidence are observed
in a bead-and-thread structure extending more than 400 km from the Zachariae Isstrøm
ice front. Further downstream, DInSAR measurements indicate a horizontal flow speed up
superimposed on the bead-like uplift pattern. A preliminary analysis of the observations is
provided in the thesis, while a more thorough investigation, incorporating also additional
data sources, will be a topic of future work.

In the case of the Nordenskjold event, the combination of DInSAR measurements and
optical satellite data revealed an expansive cascade of supraglacial lake drainages occurring
in wintertime. The drainage cascade was associated with both a significant horizontal
flow speed up (locally exceeding 200% of pre-event measurements) and a bead-and-thread
structure showing uplift and subsidence. As coverage from multiple Sentinel-1 tracks is
available, and coherence is generally well retained due to the absence of surface melt, a
detailed characterization of the dynamic response was possible, including a decomposition
of the observed motion into a horizontal (flow-directed) and vertical component. Historic
analysis of optical satellite imagery revealed that the lake at highest elevation, which
triggered the drainage cascade, had been increasing in area for almost half a century
without draining. The findings redefine the timescales on which melt forcing is considered
to affect ice dynamics and allow for detailed insight in the dynamic response of supraglacial
drainage events.

Finally, for both of the transient hydrology-dynamic events presented in Chapter 5, pre-
cursory searches indicated similar events occurring nearby in the years up to or after the
original observations, suggesting that neither of the observed events are unique, but occur
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with some frequency in various regions of the ice sheet. So far, Sentinel-1 data has not been
heavily utilized in investigating hydrology-dynamic events. We show that, using interfer-
ometric techniques and the broad coverage provided by Sentinel-1, these measurements
may be highly valuable in constraining such events. Future work will include further anal-
ysis of the observed hydrology-dynamic events on NEGIS, as well as searches for similar
events in other regions of the Greenland (and Antarctic) ice sheet.
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Abstract: In recent years, the Sentinel-1 satellites have provided a data archive of unprecedented

volume, delivering C-band Synthetic Aperture Radar (SAR) acquisitions over most of the polar

ice sheets with a repeat-pass period of 6-12 days using Interferometric Wide swath (IW) imagery

acquired in Terrain Observation by Progressive Scans (TOPS) mode. Due to the added complexity

of TOPS-mode interferometric processing, however, Sentinel-1 ice velocity measurements currently

rely exclusively on amplitude offset tracking, which generates measurements of substantially

lower accuracy and spatial resolution than would be possible with Differential SAR Interferometry

(DInSAR). The main difficulty associated with TOPS interferometry lies in the spatially variable

azimuth phase contribution arising from along-track motion within the scene. We present a Sentinel-1

interferometric processing chain, which reduces the azimuth coupling to the line-of-sight phase signal

through a spatially adaptive coregistration refinement incorporating azimuth velocity measurements.

The latter are based on available ice velocity mosaics, optionally supplemented by Burst-Overlap

Multi-Aperture Interferometry. The DInSAR processing chain is demonstrated for a large drainage

basin in Northeast Greenland, encompassing the Northeast Greenland Ice Stream (NEGIS), and

integrated with state-of-the-art offset tracking measurements. In the ice sheet interior, the combined

DInSAR and offset tracking ice velocity product provides a spatial resolution of 50 × 50 m and

1-sigma accuracies of 0.18 and 0.44 m/y in the x and y components respectively, compared to GPS.

Keywords: ice velocity; Greenland ice sheet; Sentinel-1; TOPS; DInSAR

1. Introduction

Ice velocity is an essential parameter in the study of ice sheet and glacier dynamics. It governs

the discharge of ice from the accumulation zone to the edges of outlet glaciers and hence influences

estimates of ice sheet mass balance and sea level rise [1,2]. Furthermore, ice velocity measurements

constitute valuable input for constraining and validating numerical ice sheet models and for inversions

seeking to infer, for example, basal sliding patterns and ice thickness.

Application of Synthetic Aperture Radar (SAR) satellites to ice motion monitoring has long been

established. SAR-based measurements are currently obtained either through amplitude-based feature

and speckle tracking (collectively referred to as offset tracking) [3,4] or through Differential SAR

interferometry (DInSAR), a technique exploiting the radar phase [5]. Offset tracking has the advantage

of producing two-dimensional velocity measurements, namely along the range (satellite line-of-sight)

and azimuth (flight path) dimensions, and is applicable even on fast-flowing outlet glaciers, which may

reach velocities as high as several km/year. The accuracy and resolution of the amplitude-based
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offset tracking velocity retrievals, however, are generally substantially poorer than those obtained

with DInSAR [6], although the latter technique provides only measurements of the range motion

component. A comprehensive review of SAR-based ice velocity measurement techniques applicable to

Stripmap imagery is provided in [6].

In recent years, the European Space Agency (ESA) Sentinel-1A (S1A) and Sentinel-1B (S1B) SAR

missions have been generating an unprecedented archive of regularly acquired free and open access

data. Its main acquisition mode over land, namely Terrain Observation by Progressive Scans (TOPS) [7],

trades off azimuth spatial resolution for wide swath coverage, allowing full coverage of the Greenland

ice sheet to be achieved every 6–12 days. Concerning ice motion, however, such an archive is not being

exploited to its full extent. Sentinel-1-based ice velocity products are in fact exclusively based on SAR

offset tracking [8–11], whereas DInSAR is applied solely to Stripmap-mode imagery from other SAR

missions [10,12]. This is a limitation particularly for the ice sheet interior regions, where the velocity

magnitudes are often below the measurement accuracy provided by offset tracking. Even though

interior velocities are slow, it is of high interest to monitor dynamical changes related to fast-flowing

ice streams in order to detect how marginal acceleration and thinning spread inland [13], or to infer

knowledge of basal hydrology from ice velocity patterns [14].

TOPS interferometry on ice sheets is complicated by the azimuth antenna steering of this

acquisition mode, which significantly increases the sensitivity of the interferometric phase to azimuth

misregistration compared to the Stripmap and ScanSAR case. For scenes covering near-stationary areas,

Extended Spectral Diversity (ESD) was proposed in [15,16] to estimate a constant (i.e., scene-wide)

azimuth offset to refine the results of geometric coregistration based on precise orbits and a Digital

Elevation Model (DEM). Ice motion applications provide an additional challenge, however, since

the projection of the underlying horizontal surface motion causes the azimuth misregistration to be

spatially varying. In [17], a TOPS DInSAR approach based on adaptive azimuth coregistration and

Multi-Aperture Interferometry (MAI) azimuth motion measurements was presented and demonstrated

on TerraSAR-X TOPS acquisitions. However, this method was never applied to Sentinel-1 data.

Sentinel-1 TOPS DInSAR was used in [18] to measure ice velocity on glaciers in the Canadian Arctic

using the approach mentioned above for stationary scenes, which was justified for an area of interest

in which motion was confined to glacier tongues with velocity magnitudes within ∼ 35 m/y. In [19],

Sentinel-1 TOPS DInSAR was used to measure ice velocity and grounding line location for a set of

glaciers in West Antarctica, using offset tracking to estimate and remove the phase contribution due to

azimuth misregistration.

In this paper, we demonstrate the feasibility of generating Sentinel-1 TOPS DInSAR ice velocity

measurements in the interior of the Greenland ice sheet using a DInSAR processing approach based

on an azimuth coregistration refinement, as in [17]. However, after investigating different approaches,

we select a different method to generate such a refinement. We assess the performance of our algorithm

for the full Zwally 2.1 drainage basin [20], containing the North East Greenland Ice Stream (NEGIS),

using both ascending and descending tracks from the Sentinel-1 winter campaign 2019–2020 and

the surface parallel flow assumption [21] to generate 3D DInSAR velocity measurements. These are

compared to GPS velocity retrievals as well as to 3D ice velocity mosaics based on amplitude offset

tracking alone.

Section 2 outlines the data utilized in this study and describes the SAR data processing methods.

Section 3 presents the ice velocity maps obtained for the Zwally 2.1 drainage basin using both offset

tracking and DInSAR and their comparison with GPS measurements. Section 4 provides a discussion

on the performance of Sentinel-1 TOPS DInSAR and on the requirements to include this processing

algorithm in the routine generation of Greenland-wide ice velocity products. Conclusions are drawn

in Section 5.
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2. Data and Methods

2.1. Data

We utilized Sentinel-1A/B IW SLC images from the 2019–2020 Greenland winter campaign,

during which the acquisition plan prioritized a frequent, comprehensive coverage of the Greenland

ice sheet. We processed 3 acquisition cycles for 4 descending and 3 ascending passes, meaning that

for each track, a total of five 6-day image pairs and three 12-day pairs could be formed. An overview

of the processed Sentinel-1 images is found in Table 1. Figure 1 shows the coverage of the processed

Sentinel-1 tracks along with an outline of the region of interest, i.e., the Zwally 2.1 drainage basin,

containing the NEGIS.

Figure 1. (a) Sentinel-1 tracks processed in this study (black rectangles), Zwally drainage basins [20]

(dark blue polygons and numbers), GPS measurements used for validation (black dots), and Ground

Control Points used for the calibration described in Section 2.4 (gray triangles). (b) Zoom of the

area located within the dashed rectangle in panel a, containing the EastGRIP GPS measurements

(circles). (c) Area of interest for this study, shown in panel a. In all panels the color scale represents

the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) multi-year velocity mosaic

described in Section 2.1.

External datasets used for the SAR data processing include the 90 m Tandem-X DEM [22],

Sentinel-1 Precise Orbit Ephimeredes files downloaded from: https://qc.sentinel1.eo.esa.int/aux_

poeorb/, and a Greenland-wide multi-year average (2016–2019) ice velocity mosaic, based on the

monthly ice velocity products distributed by the Geological Survey of Denmark and Greenland

(GEUS) within the Danish Programme for Monitoring of the Greenland Ice Sheet (PROMICE) [9].

These measurements were carried out with Sentinel-1 intensity offset tracking (cfr. Section 2.2),

exploiting all available observations from 14 September 2016 to 17 June 2019, and are referred to as the

PROMICE multi-year velocity mosaic throughout the remainder of this paper.

Validation of the core measurement techniques and of the final ice velocity mosaics was carried

out using GPS measurements provided by the East Greenland Ice-core Project (EastGRIP). These cover

transects both across and along the upstream part of NEGIS, as shown in Figure 1b. Additionally,

measurements were collected for a 5 × 9 grid of stakes (spaced 2.5 km apart) just outside of the shear
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margin. The GPS measurements provide a range of velocities for validation between approximately

10–60 m/y and strain rates (i.e., velocity gradients) in the order of 10−3 y−1 near the NEGIS shear

margin [23].

Table 1. Overview of Sentinel-1 image pairs processed for the Zwally 2.1 drainage basin test case. In the

case of DInSAR, every available 6-day pair from the listed cycles (i.e., 5 image pairs per track) was

used, while all available 12-day pairs were used in offset tracking processing (3 image pairs per track).

Track Orbit Cycles Acquisition Dates

31 Ascending A: 188, 189, 190/B: 118, 119, 120 16 December 2019–15 January 2020
54 Descending A: 188, 189, 190/B: 118, 119, 120 18 December 2019–17 January 2020
74 Ascending A: 188, 189, 190/B: 118, 119, 120 19 December 2019–18 January 2020
83 Descending A: 188, 189, 190/B: 118, 119, 120 20 December 2019–19 January 2020
89 Ascending A: 188, 189, 190/B: 118, 119, 120 20 December 2019–19 January 2020
112 Descending A: 188, 189, 190/B: 118, 119, 120 22 December 2019–21 January 2020
170 Descending A: 188, 189, 190/B: 118, 119, 120 26 December 2019–25 January 2020

2.2. Intensity Offset Tracking

A reference offset tracking processing was carried out using the IPP processing software developed

at the Technical University of Denmark [24]. Intensity data patches of size 256 × 64 (range × azimuth),

corresponding to about 900 × 900 m on the ground, are selected on a regular grid of 40 × 10 pixels in

the master SLC, corresponding to 560 × 560 m on the ground, and the corresponding patches in the

slave SLC are located using the satellite orbits and a DEM. For each patch pair, the normalized

2D cross-correlation surface is calculated, and the position of the correlation peak is estimated

with sub-pixel accuracy using FFT oversampling and a parabolic fit on a region surrounding the

peak. Displacement estimates are accepted based on thresholds for the correlation (>0.05) and the

signal-to-noise ratio (>7), i.e., the ratio of the peak to the surrounding correlation surface. These

thresholds are the same used for the offset tracking processing within PROMICE and hence are not

fine-tuned for this specific data set. The output is two offset maps (i.e., range and azimuth offsets),

from which outliers are removed based on local medians using the approach described in [25]. Error

estimates are generated by calculating the local standard deviation for each pixel in the displacement

maps in a 5 × 5 neighborhood. Finally, the displacements and error estimates are scaled to velocity

and geocoded to form slant range/azimuth velocity maps on a polar stereographic grid with 250 m

spacing. The calculation of Cartesian velocity components is deferred to a later stage, as described

in Section 2.5, since this allows to "fuse" measurements generated using different techniques and

acquisition geometries.

2.3. Sentinel-1 TOPS Interferometry

2.3.1. Theoretical Background

Regardless of the SAR acquisition mode, for example, Stripmap or TOPS, the phase of a

differential interferogram pixel ∆φ contains the following range- and azimuth-dependent contributions,

respectively ∆φr and ∆φa:

∆φ = ∆φr + ∆φa = −
4π

λ
vr∆T + 2π fDC∆η (1)

where λ is the radar wavelength, vr represents the range velocity component due to surface motion

(positive towards the satellite), ∆T represents the time difference (temporal baseline) between

acquisitions, fDC is the pixel’s Doppler centroid frequency, and ∆η represents the azimuth position

difference (misregistration) expressed in time units, which is in turn given by:

∆η = ∆ηmotion + ∆ηorb + ∆ηiono (2)
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where ∆ηmotion is due to the underlying horizontal surface motion, and ∆ηorb and ∆ηiono represent

respectively the contributions of orbital uncertainties and ionospheric propagation. The azimuth

motion contribution is related to the azimuth velocity component va in an equivalent rectilinear

geometry as follows:

∆ηmotion =
va∆T

Vr
(3)

where Vr is an effective velocity [26], which is in the order of 7100 m/s for remote sensing satellites in

near-polar orbit. Range and azimuth velocities are related to the 3D ice velocity vector, v =
[

vx, vy, vz

]T

as follows:
[

vr

va

]

=

[

cos θ cos φ cos θ sin φ sin θ

− sin φ cos φ 0

]







vx

vy

vz






(4)

where angles φ and θ describe the orientation of the line-of-sight (LoS) vector pointing from the pixel

under consideration to the sensor, with the horizontal angle φ measured counter-clockwise from the

y-axis of the map projection and the elevation angle θ measured from the ground to the LoS vector.

In the Stripmap case, fDC in Equation (1) is at most a few hundred Hz for current yaw-steered

SARs, and its variations between adjacent pixels amount to a small fraction of a Hz, causing ∆φa and its

spatial gradient to be negligible compared to ∆φr. However, for the TOPS acquisition mode, due to the

azimuth antenna steering, the instantaneous Doppler centroid magnitude varies from Stripmap-like

values at the burst center to as much as 2.6 kHz at the burst edges [16], where more importantly

also a variation of up to 5.2 kHz occurs within one azimuth pixel. For a 6-day Sentinel-1 image pair,

based on Equations (1)–(3), an azimuth motion va of 10 m/y will cause a maximum intra-burst ∆φa

variation from −0.12π rad at burst start to 0.12π rad at burst end, as well as a phase jump of 0.24π

rad at the azimuth burst boundaries. If such a phase contribution were erroneously interpreted as

being due to ∆φr in Equation (1), this would lead to a maximum vr error of 0.2 m/y. Furthermore,

as pixel phase differences approach +/−π, errors amounting to integer multiples of 2π rad will arise

in the unwrapped DInSAR phase, corresponding to integer multiples of 1.67 m/y in terms of vr.

This example shows that even for slow moving ice sheet areas, with horizontal ice motion magnitudes

in the order of a few tens of m/y, the contribution of the azimuth phase term in Equation (1) should

not be neglected.

The rationale of the algorithm we describe in Section 2.3.2 is to estimate the misregistration due

to ∆ηmotion in Equation (3) to reduce its contribution to Equation (1). The residual DInSAR phase can

then be interpreted as being due to the range term ∆φr alone, as for the Stripmap case, and scaled to

yield the LoS velocity vr. As a by-product, azimuth velocity va can also be accurately retrieved in the

burst overlap regions.

2.3.2. Processing Algorithm

Our TOPS DInSAR algorithm is shown in Figure 2. Most steps are identical to those of a Stripmap

DInSAR processor, albeit for a more complex coregistration approach detailed below. After image

coregistration, the interferogram is formed from the mosaicked SLCs. We applied multilooking with a

15 × 3 averaging factor in range/azimuth (about 50 × 50 m on the ground) and a 10 × 2 decimation.

Phase unwrapping is carried out using a Minimum Cost Flow algorithm with coherence-based

weights [27], masking out results for areas with a coherence below 0.2. Finally, the unwrapped

interferogram is scaled to yield a line-of-sight displacement map. A calibration is performed for each

displacement map using the procedure described in Section 2.4 and Ground Control Points (GCPs)

extracted from the PROMICE multi-year velocity mosaic (cfr. Section 2.1).
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Figure 2. Block diagram showing the interferometric processing chain for a single Sentinel-1 Terrain

Observation by Progressive Scans (TOPS) image pair.

Coregistration is based on a resampling lookup table containing the range and azimuth slave

SLC coordinates corresponding to each master SLC pixel. The lookup table is computed using precise

orbits and a DEM, as in the Stripmap case [28], but also an external ice velocity mosaic, consisting of

maps of the horizontal ice velocity components vx and vy. Within the processor, the latter are scaled to

obtain the displacement between the master and slave acquisitions, and projected onto the azimuth

dimension of the master SLC image using the second line in Equation (4). The resulting azimuth

motion map is then used to refine the slave azimuth coordinates in the resampling lookup table.

Since external ice velocity mosaics are based on spatially and temporally averaged SAR

and/or optical measurements [8–11], they could fail to account for temporal variations in the ice

motion patterns and other dataset-specific sources of azimuth misregistration, such as ionospheric

streak contributions [29]. These limitations could be avoided in principle by estimating the

azimuth misregistration directly from the image pair at hand, using several available techniques.

We investigated the use of offset tracking and MAI, as proposed respectively by [17,19], and of

Burst-Overlap MAI (BO-MAI), the implementation of which is detailed in Appendix A. For Sentinel-1

data, however, we find that the measurement accuracy of MAI, and even more that of offset tracking,

are too low to be beneficial and are influenced by a swath-dependent azimuth registration bias between

the Sentinel-1A/B imagery, as detailed further in Appendix A. In contrast, an additional refinement

based on BO-MAI, consisting of the steps within the dashed rectangle in Figure 2, was found to provide

a slight improvement (<±0.1 m/y) compared to using the external ice velocity mosaic alone.

An application example of the above-mentioned coregistration approaches is shown in Figure 3.

The wrapped DInSAR phase is shown in Figure 3a in the case of a Stripmap-like coregistration, based

only on a DEM and precise orbits. Substantial phase jumps occur at almost every burst overlap,

often exceeding 0.5–1.5 rad as seen in Figure 4a, which shows the average unwrapped azimuth phase

gradient for sub-swath IW3. Locally the phase discontinuities may exceed several radians. Figure 3b

shows the results when MAI azimuth velocity measurements (Figure A1c in Appendix A) are used to

refine the coregistration. Surprisingly this worsens the phase discontinuities in the slow-moving areas

of the ice sheet, which show roughly the same magnitude at each burst boundary (Figure 4b). This is

due to a bias in the MAI and azimuth offset tracking measurements, when applied to S1A/S1B pairs,

as discussed further in Appendix A. The effects of measurement noise, due to decorrelation, are also
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seen in the top-left area of Figure A1c, while compared to the non-refined coregistration, several

phase jumps located on the fast-flowing ice stream are actually reduced. Figure 3c shows the case of a

refined coregistration based on the PROMICE multi-year velocity mosaic described in Section 2.1. This

approach almost completely eliminates the phase jumps seen in Figure 3a,b (as shown in Figure 4c).

Applying an additional coregistration refinement based on BO-MAI azimuth velocity measurements

(Figure A1d) results in only minor changes that are barely noticeable (Figures 3d and 4d), albeit for the

very first burst overlap in IW3. The case in which the azimuth coregistration is refined with intensity

offset tracking measurements is not shown, since this yields very similar, although slightly noisier,

results to those based on MAI, due to the similar properties of the azimuth velocity measurements

provided by these methods (compare Figures A1b,c).

(a) (b)

(c) (d)

Figure 3. Wrapped DInSAR phase in radar geometry obtained using no azimuth coregistration

refinement (a); a refinement based on Multi-Aperture Interferometry (MAI) (b); on the PROMICE

multi-year velocity mosaic (c); and on the PROMICE multi-year velocity mosaic followed by

Burst-Overlap (BO)-MAI (d). The dashed black rectangle indicates the region investigated in Figure 5.

(Master/slave acquisitions: 22 December 2019 (S1A)/ 28 December 2019 (S1B), track: 112 descending)
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Figure 4. Average azimuth gradient of the unwrapped interferogram phase in sub-swath IW3 for each

of the four processing approaches presented in Figure 3, i.e. using no azimuth coregistration refinement

(a); a refinement based on Multi-Aperture Interferometry (MAI) (b); on the PROMICE multi-year

velocity mosaic (c); and on the PROMICE multi-year velocity mosaic followed by Burst-Overlap

(BO)-MAI (d) . The dashed red lines indicate the location of azimuth burst overlaps, while the dashed

black lines indicate the region investigated in Figure 5.

To assess the impact of the wrapped phase discontinuities on the final DInSAR measurements,

the phase of the interferograms shown in Figure 3 was unwrapped and scaled to obtain LoS velocities.

Figure 5 shows a subset of the LoS velocity map obtained from each of the interferograms shown in

Figure 3, omitting the poorly-performing MAI refinement case. The bottom plot of Figure 5 shows the

line-of-sight velocity across the profile indicated by a dashed line in the three velocity maps. While the

inclusion of the BO-MAI coregistration refinement yields a velocity profile that is indiscernible from

solely applying the external ice velocity mosaic refinement, the non-refined case shows discontinuities

up to 1.5 m/y near the azimuth burst overlaps. For an underlying va of 50 m/y, this is consistent with

the discussion in Section 2.3.1. Note that in this case, the non-refined coregistration does not result

in apparent phase unwrapping errors. In general, however, the unwrapping algorithm cannot be

expected to reliably resolve phase ambiguities across the burst boundaries, and substantial unwrapping

errors, leading to biases in the velocity measurements, may occur when applying the non-refined

coregistration (see Figure S1 in the Supplementary Material).
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Figure 5. TOPS DInSAR line-of-sight velocity in radar geometry for the region within the dashed

rectangle in Figure 3 obtained using no coregistration refinement (a), a refinement based on the

PROMICE multi-year velocity mosaic (b), and on the PROMICE multi-year velocity followed by

BO-MAI (c). Panel (d) shows line-of-sight and azimuth velocity (purple dashed line and right y-axis)

along the profile indicated by the dashed line in (a–c). Azimuth velocities are based on the PROMICE

multi-year mosaic.

2.4. Calibration and Error Estimation

Since DInSAR measures displacement relative to a reference point, namely the phase unwrapping

seed, a calibration is required for each unwrapped interferogram in order to obtain absolute velocity

estimates and to account for timing and orbit errors present in the radar data. The unknown absolute

phase corresponds to a constant range offset, whereas orbit errors will result in slowly varying errors.

In practice, it is difficult to separate the two effects, and we follow the approach in [30], modeling

the unknown displacement as being due to a constant baseline error, and use GCPs to estimate

the horizontal and vertical components of the error. Usually GCPs are selected in stationary areas

(e.g., bedrock), but this approach has several problems with the present dataset. The region under

consideration is an ice sheet bordered by steep mountainous terrain, with isolated bedrock areas

separated by glaciers. The phase unwrapping algorithm is often not able to correctly unwrap across

steep topography and ice/rock transitions, resulting in many of the stationary areas being prone to

unwrapping errors. If GCPs are selected in such regions, the estimated velocity will be biased with

respect to the ice-covered areas, affecting the overall calibration. Instead, we choose slow-moving

GCPs on the ice sheet (|v|<18 m/y, corresponding to 0.05 m/d) from the PROMICE multi-year mosaic

(Section 2.1), under the assumption that the velocity in such areas does not vary significantly with time.

The error estimate of the calibrated displacement for each pixel is also carried out as described in [30],

based on the interferometric coherence and the uncertainties of the GCP height and velocity estimates.

The selected GCPs are shown in Figure 1a.
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2.5. Fusion of Velocity Measurements

Both DInSAR and intensity offset tracking measure the radar components of ice velocity, DInSAR

providing only the range (LoS) component, vr, and offset tracking providing also the azimuth

(along-track) component, va. In order to calculate the horizontal components of the Cartesian velocity

vector, v =
[

vx, vy, vz

]T
, we assume surface parallel flow, according to which vz = ( ∂z

∂x vx +
∂z
∂y vy) [21],

and use all available measurements (DInSAR, intensity offset tracking, or both) and Equation (4) to set

up, for each output pixel, a weighted linear least squares problem, u = Hv + ǫ, which can be stated as:
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+ ǫ (5)

where vrn is the measured LoS velocity from pair number n and van is the corresponding azimuth

velocity (not available for DInSAR measurements). The angles φn and θn describe the LoS vector for

the master image of pair number n (cfr. Equation (4)). The local height gradient at the pixel under

consideration, ( ∂z
∂x , ∂z

∂y ), is calculated numerically from the available DEM. The noise vector is assumed

normally distributed with zero mean and diagonal covariance matrix Σ:

Σ =













σ2
r1 0 · · · 0

0 σ2
a1 · · · 0

...
...

. . .
...

0 0 · · · σ2
aN













(6)

with σrn and σan indicating the estimated standard deviations of the range and azimuth measurements

for pair n. The weighted least squares solution to this system is:

v̂ = (HT
Σ
−1H)HT

Σ
−1u (7)

and the resulting covariance matrix of the estimate is HT
Σ
−1H from which the error estimates for v̂

can be retrieved as the diagonal elements.

The formulation above implies that for each pair, both range and azimuth measurements are

available, but in case only DInSAR products are available, u and H will contain only rows with LoS

measurements, and H may become ill-conditioned if the contributing DInSAR pairs are acquired

from nearly parallel tracks. In the absence of azimuth velocity measurements, we thus require both

ascending and descending LoS measurements to produce a valid output.

3. Results

3.1. SAR-Based Ice Velocity Mosaics

The intensity offset tracking method described in Section 2.2 was applied to all 12-day image pairs

available in Table 1, which amount to three pairs per track. We found this to be the most favorable data

selection for offset tracking, since the ice motion contribution in a six-day time span is often below

the noise floor of offset tracking measurements, especially in the slow-moving regions, and also due

to azimuth and range measurement biases affecting S1A/S1B pairs (cfr. Section 4 and Appendix A).

The resulting horizontal ice velocity magnitude within the Zwally 2.1 drainage basin is shown in

Figure 6a. Figure 6b shows also a different intensity offset tracking result, based solely on range

intensity offset tracking. The two offset tracking results are quite similar, although the following

differences can be noticed: (a) the range/azimuth map (Figure 6a) shows an improved coverage, since
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a single ascending or descending track is sufficient to solve for the horizontal motion components in

Equation (5), whereas an ascending/descending overlap is required for the range offset tracking case

(Figure 6b); (b) the ionospheric streak contribution, for example, around (lat,lon)=(78N,42E), is absent in

the range offset tracking mosaic (Figure 6b); (c) the latter shows a more prominent spatially-correlated

noise pattern, particularly near the southern tip of the NEGIS, due to a known Level-1 processor

block-processing effect affecting the range offsets, as discussed further in Section 4.

Figure 6. Horizontal velocity magnitude for Zwally drainage basin 2.1 [20] (dark blue polygons) based

on (a) range/azimuth intensity offset tracking, (b) range intensity offset tracking, (c) the TOPS DInSAR

approach presented in this paper, (d) the fusion (weighted average) of DInSAR and range/azimuth

intensity offset tracking. The dashed polygons in panel (c) enclose DInSAR results that were discarded

(cfr. Section 4) and not used in the generation of the fused result shown in panel (d).
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Figure 6c shows the velocity magnitude obtained using the TOPS DInSAR approach outlined

in Section 2.3, applied to all available six-day pairs in Table 1, which amount to five image pairs

per track. This is the most favorable data selection for DInSAR, since it maximizes the temporal

coherence and reduces the fringe rate in fast-flowing regions, improving the phase unwrapping results.

The azimuth coregistration refinement (illustrated in Figure 2) was carried out using the PROMICE

multi-year velocity mosaic as an external ice velocity mosaic, whereas the BO-MAI refinement was

omitted since its contribution in this area of interest was found to be below 0.1 m/y. Compared

to the offset tracking results one immediately notes the improvement in resolution, particularly in

slow-moving regions where a much smoother pattern is observed. The DInSAR velocity product

resolution is about 50 × 50 m on the ground, while the resolution of the offset tracking velocity

products is, at best, the 560 × 560 m posting of the measurements. The velocity pattern at the

upstream part of NEGIS appears much better resolved in the DInSAR product: the two sub-streams

that merge into NEGIS and are barely visible in the offset tracking results are clearly resolved by

DInSAR. Moving further downstream of NEGIS, one observes the main limitation of DInSAR, namely

that velocity cannot be retrieved reliably on fast-flowing outlet glaciers. In Figure 7, we show the

difference in velocity magnitude as obtained by DInSAR and range/azimuth offset tracking (Figure 6a)

as well as the difference between DInSAR and the PROMICE multi-year velocity mosaic. Large

spatially-correlated differences in velocity magnitude of >30 m/y are observed towards the outlet

glacier fronts, and represent the typical signature of phase unwrapping errors [30]. In order to reduce

the effect of phase unwrapping errors in the final velocity product, we discarded the DInSAR results

within the regions indicated by the dashed polygons in Figure 6c. These polygons were generated

manually, based on the comparison between DInSAR and the PROMICE multi-year velocity mosaic

(Figure 7b).

Figure 7. Velocity magnitude difference between: (a) DInSAR and range/azimuth offset tracking

results (Figure 6a,c, respectively) (b) DInSAR and the PROMICE multi-year velocity mosaic (Figure 1a).

The dashed polygons enclose DInSAR results that were discarded (cfr. Section 4). GPS measurements

used for validation are shown as black dots. Zwally drainage basins [20] are traced in gray.

Figure 6d shows the final ice velocity magnitude mosaic obtained by the fusion of all DInSAR

and range/azimuth intensity offset tracking measurements, as described in Section 2.5. In the interior

parts, DInSAR dominates the fusion result, due to its lower standard deviation, and hence a velocity
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pattern that is virtually identical to Figure 6c is observed. In faster flowing regions, such as some shear

margins and the outer parts of the outlet glaciers, the fusion with offset tracking significantly improves

the measurement coverage compared to DInSAR alone. The final spatial resolution and accuracy

of the ice velocity mosaic is spatially variable, and the uncertainties provided by the framework of

Section 2.5 account for variations in the data coverage, as well as for the difference in accuracy between

DInSAR and offset tracking. Mosaics of the 1-σ uncertainties associated with the horizontal velocity

components, σvx and σvy , are shown in Figure S2.

3.2. Validation

As validation, we compare the horizontal ice velocity measurements from each of the four

SAR-based ice velocity mosaics in Figure 6 to available velocity measurements from EastGRIP GPS

stakes (see Section 2.1). The GPS and radar data are in the same polar stereographic projection, and we

compare the two horizontal components (vx and vy) separately. The results of the GPS comparison

are shown in Figure 8 and a summary of error statistics (where the error is computed as vSAR − vGPS)

is provided in Table 2. For the offset tracking cases we note a slightly better (i.e., lower) standard

deviation of ∆vx when applying only range offsets, while the ∆vy standard deviation is lower when

including azimuth offsets. This is not surprising, as the x and y directions are roughly aligned with the

radar range and azimuth directions, respectively, at polar latitudes. Figure 8 shows the results for the

DInSAR-only case, corresponding to Figure 6c, since the fused ice velocity mosaic in Figure 6d leads

to a virtually identical comparison at the GPS locations, due to DInSAR measurements dominating

the weighted fusion in Equation (5). This is also noted in Table 2, where the difference in error

statistics between DInSAR and the DInSAR/offset tracking fusion is seen to be negligible. As expected,

the DInSAR results show a substantially better agreement with GPS, compared to offset tracking.

The standard deviation for ∆vx and ∆vy is 0.18 and 0.44 m/y—respectively, a factor four and factor

five better than what was obtained with intensity offset tracking. In terms of bias, i.e., the mean of ∆vx

and ∆vy, the DInSAR results show values of virtually zero for the vx component and about −0.4 m/y

for the vy component, which is in the order of the error standard deviation. The low biases indicate

that the DInSAR calibration procedure, utilizing GCPs in slow-moving areas of the ice sheet, has been

successful, at least for the region in the vicinity of the GPS locations. For the offset tracking cases,

biases of 2.8 m/y in range and −5.2/−9.5 m/y in azimuth are observed. The individual range and

azimuth offsets were not calibrated, as we found a calibration based on a slowly-varying polynomial

to generally introduce more errors than it resolves. The bias and standard deviation for ∆vy is higher

for range-only offset tracking due to the reduced sensitivity to motion in the y direction, which is

roughly aligned with azimuth.

Table 2. GPS comparison statistics. Columns show mean and standard deviation of ∆vx and ∆vy, which

indicate the difference in velocity between SAR and GPS measurements, for each of the horizontal

velocity components in m/y. 61 co-located GPS and SAR measurements were used in each case.

Method ∆vx Mean ∆vx Std. ∆vy Mean ∆vy Std.

PROMICE 2016–2019 −0.51 0.31 −0.83 0.74
OTR (range/azimuth) 2.80 0.80 −5.22 2.31

OTR (range only) 2.80 0.77 −9.53 2.64
DInSAR only 0.00 0.18 −0.41 0.44

DInSAR+OTR (range/azimuth) 0.02 0.18 −0.47 0.44

Figure 9 shows velocity magnitude profiles following the black and orange lines indicated in

Figure 1b, for the range/azimuth offset tracking results (Figure 6a) and for DInSAR (Figure 6c) along

with the PROMICE multi-year velocity mosaic. The profiles pass through several of the GPS locations

and demonstrate the difference in terms of measurement bias between the DInSAR and offset tracking

measurements (red and blue lines, respectively). Also, the difference in spatial resolution and error
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variance between the different processing methods is apparent, with the offset tracking measurements

varying several m/y over very short distances, while the DInSAR measurements generally show a

smoother pattern. To verify the quality of the azimuth motion information used to refine the DInSAR

coregistration, we also compare the PROMICE multi-year velocities with the GPS data. Although these

are also based on intensity offset tracking, measurements have been averaged over several years, thus

showing a smaller variance compared to the campaign offset tracking case. Compared to DInSAR

however, the PROMICE multi-year mosaic shows a worse agreement with the GPS (see Table 2) and a

worse spatial resolution, as seen in Figure 9.

Figure 8. GPS comparison for the two horizontal velocity components vx (left column) and vy

(right column) obtained via range/azimuth offset tracking (top row), range/range offset tracking

(middle row), and DInSAR (bottom row). 61 GPS retrievals, acquired by EastGRIP, were used.

Figure 9. Velocity magnitude profiles for DInSAR (Figure 6c), range/azimuth offset tracking (Figure 6a),

and the PROMICE multi-year mosaic (Figure 1a) along the black line (a) and the orange line (b) in

Figure 1b.
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4. Discussion

We have demonstrated a DInSAR processing scheme for Sentinel-1 TOPS ice velocity retrieval

over a large drainage basin in Northeast Greenland. As expected, TOPS DInSAR provides accurate

high resolution measurements in the slower-moving regions of the ice sheet, while offset tracking

must still be used to obtain measurements over fast-flowing outlet glaciers. In general, refinement of

the azimuth coregistration using the external PROMICE multi-year velocity mosaic was successful

in reducing phase discontinuities at burst boundaries. For some image pairs we noted residual

phase discontinuities even after applying such a refinement (e.g., Figure S3c), most likely due

to ionospheric effects and to small biases in the PROMICE multi-year product towards the ice

sheet interior (cfr. Figure 7b). The BO-MAI refinement often succeeded in reducing such residual

discontinuities (e.g., Figure S3d), although the impact on the resulting velocity measurements was

small (∼0.1 m/y) in all the test cases we processed, which is why we denote BO-MAI as an optional

step in our processing approach.

Aside from the improvement in spatial resolution and accuracy, the TOPS DInSAR velocity

measurements also appear to be more immune to various data and/or processing artifacts affecting

range and azimuth registration, but not the DInSAR phase. These include: (a) A sub-swath dependent

bias (in the order of 15–30 m/y) affecting the MAI and azimuth offset tracking measurements from

Sentinel-1A/1B or 1B/1A 6-day image pairs (see Appendix A); (b) An ∼10 m/y bias affecting

range offset tracking measurements from Sentinel-1A/1B or 1B/1A 6-day image pairs (Figure S6c

and Table S1, and Figure S8c and Table S3), which is consistent with the 15 cm average range

misregistration observed between S1A and S1B SLC products in corner reflector experiments [31];

(c) An artifact observed in all range offset tracking measurements, presumably due to block-processing

approximations of the Level-1 Sentinel-1 processor [32], which is the main cause of the "patchy"

appearance of the slow-moving areas in the southern part of the Zwally 2.1 drainage basin in

Figure 6a,b. Examples of the latter artifact are shown in Figures S6 and S8.

TOPS DInSAR velocity retrievals allow for improved analysis of ice dynamics and drainage.

As the noise level in DInSAR retrievals is far lower than that obtained with offset tracking, it is

generally not necessary to perform data stacking in order to achieve reliable velocity estimates.

Hence, assuming frequent Sentinel-1 coverage, accurate velocity estimates can be generated on a

sub-monthly time scale for the interior ice sheet, allowing for analysis with high spatial and temporal

resolution, for example, monitoring intra-seasonal variations in ice dynamics. The improved ice

velocity measurements also allow for improved estimates of strain rates in very high spatial and

temporal resolution, thereby resolving the shear margins of fast flowing ice streams, where strain rates

increase an order of magnitude over spatial scales of a few 100 m [23]. Ice velocity measurements are

additionally applied in the evaluation of both surface mass balance (SMB) products and numerical ice

sheet models. With more accurate estimates of the interior ice sheet velocity pattern, validation of SMB

products and numerical ice sheet models becomes increasingly reliable [14,33,34].

The vast majority of the Greenland ice sheet moves with velocities <200 m/y and thus

measurement accuracy and resolution could be greatly improved for ice sheet-wide velocity retrievals

by routinely applying DInSAR along with intensity offset tracking. A pre-requisite to achieve DInSAR

measurements of the quality described in this paper, is the availability of overlapping ascending

and descending six-day acquisition pairs. In Greenland, this is currently limited to the winter

acquisition campaigns and to areas of special interest, such as NEGIS, although the additional capacity

provided by the forthcoming Sentinel-1C satellite could allow an increased availability of such data.

From the processing point of view, the main challenges to be addressed in the design of an operational

TOPS DInSAR/offset tracking processing scheme covering the entire Greenland ice sheet lie in (1)

automatically discarding DInSAR measurements in areas prone to phase unwrapping errors; (2)

consistently calibrating the DInSAR measurements; and (3) efficiently carrying out phase unwrapping

of interferograms consisting of a large number of adjacent data slices, which can be challenging from

the computational resource point of view, especially if network-based algorithms such as [27] are used.
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A final note concerns the availability of external ice velocity mosaics to be used for the azimuth

coregistration refinement in Figure 2. Although in this paper we relied on the PROMICE multi-year

velocity mosaic, any Greenland-wide ice velocity mosaic of comparable accuracy could be used,

such as those made available by [8–11]. If such a multi-year velocity mosaic is not available for

a region of interest, one could in principle apply offset tracking (or MAI) to estimate the azimuth

velocity prior to performing DInSAR. As mentioned in Section 2.3.2, however, the accuracy of

offset tracking/MAI measurements based on only a single image pair was found to be too low to

yield an adequate coregistration refinement. Hence, one would need to process an ensemble of

acquisitions for the offset tracking/MAI azimuth velocity measurements to reach a noise level low

enough to provide improvements over the simple geometric coregistration. Finally, since the fused

DInSAR/offset tracking measurements show a better agreement with GPS compared to the PROMICE

multi-year mosaic (cfr. Section 3.2), once the first ice sheet-wide velocity mosaics exploiting Sentinel-1

TOPS DInSAR are generated, these can be used as improved external ice velocity mosaics for the

coregistration refinement within subsequent data processing.

5. Conclusions

Ice velocity measurements are frequently used for a host of different glaciological and

climatological applications. With the launch of the Sentinel-1 satellites, the scientific community

has been provided with an extensive SAR data coverage of the polar ice sheets. The contribution of this

study is to demonstrate how the Sentinel-1 TOPS data archive can be further exploited by applying

DInSAR processing in ice velocity retrieval. We present ice velocity measurements for the Zwally 2.1

Greenland drainage basin, applying TOPS DInSAR in the interior and intensity offset tracking over

fast-flowing outlet glaciers. In comparison with available GPS measurements, the DInSAR ice velocity

retrieval shows an accuracy that is four times better than that obtained by offset tracking, with standard

deviations of 0.18 and 0.44 m/y in the x and y directions, respectively. Furthermore, the resolution of

the DInSAR measurements are about 50 × 50 m on the ground, which is an order of magnitude better

than what can be obtained with offset tracking.

In our DInSAR processing approach, image coregistration is refined by applying a correction

in azimuth based on an external ice velocity mosaic and optionally an additional correction in

burst overlaps using BO-MAI. With this refined coregistration approach, the TOPS-specific DInSAR

challenges mainly related to phase discontinuities at the burst boundaries are overcome and the

resulting DInSAR measurements are affected by the same coherence and phase unwrapping limitations

that apply to Stripmap-mode DInSAR. Concerning the routine application of the method presented

in this paper to the entire Greenland ice sheet, the main challenges lie in the integration of DInSAR

and offset tracking measurements in areas which are more prone to phase unwrapping errors, and in

the calibration of the DInSAR measurements. Also, these challenges, however, are well-known

and are actually simplified compared to the Stripmap case, due to the wide coverage of the TOPS

acquisition mode.
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Appendix A. Azimuth Ice Velocity Measurements with Sentinel-1

The methods available to measure azimuth ground motion with Sentinel-1 TOPS data include:

offset tracking, either based on coherence maximization [38] or on image amplitude as described in

Section 2.2; Spectral Diversity, also known as MAI [39,40]; the method referred to in this paper as

BO-MAI [41–43]. The latter two techniques exploit ∆φa in Equation (1), by generating the following

double-difference interferogram, the phase ∆φMAI of which is given by:

∆φMAI = arg {(MuS∗
u)(MlS

∗
l )

∗} (A1)

where ∗ denotes the complex conjugate, M and S denote master and slave SLC, and u and l denote

forward- and backward-squinted acquisitions, respectively. An estimate of the azimuth misregistration

∆η in Equation (2) is given by:

∆η =
∆φMAI

2π( fu − fl)
(A2)

where fu and fl are the azimuth center frequencies of the forward- and backward-squinted SLCs,

respectively. In MAI, the latter are generated via azimuth band-pass filtering of the master and slave

acquisitions, exploiting the limited available azimuth bandwidth, which is about 325 Hz [16]. BO-MAI

instead is applicable only within the azimuth burst overlap regions, where it exploits the large Doppler

frequency separation created by the azimuth antenna steering. This varies between 4.4 kHz and

5.2 kHz depending on the image sub-swath [16], and thus provides a sensitivity to azimuth motion,

which is an order of magnitude higher compared to MAI based on Equation (A2).

For the MAI implementation, the master and slave SLC images were deramped (i.e., basebanded),

following the procedure described in [44], prior to band-pass filtering to generate forward- and

backward-looking azimuth sub-bands. These were selected to have a bandwidth of 162 Hz (i.e., half

the available azimuth bandwidth) each and a frequency separation of 162 Hz. The MAI processing

approach described in [45] was then used, generating a full-resolution MAI interferogram and

multi-looking with a factor of 20 × 5 in range and azimuth respectively, corresponding to 70 × 70 m on

the ground. Finally, an adaptive phase filtering was carried out [46], with filter strength parameter

α = 0.8 and spectral estimation window size of 64 × 64 in range and azimuth, respectively. Phase

unwrapping was not carried out since for Sentinel-1 6-day image pairs, azimuth velocities would have

to be larger than ∼ 1300 m/y in order to require phase unwrapping, and for such high displacements

loss of coherence would hinder the retrieval of meaningful measurements anyway.

BO-MAI was implemented by forming the double-difference interferogram from the forward

and backward squinted acquisitions for each azimuth burst overlap. A multi-looking of 12 × 3 in

range/azimuth was applied (corresponding to about 50 × 50 m on the ground), followed by an

adaptive filtering [46] with filter strength α = 0.8 and spectral estimation window size of 8 × 8

in range/azimuth. The term ( fu − fl) in Equation (A2) was computed as the local difference in the

instantaneous Doppler centroid frequencies within the burst overlap. Due to the much larger frequency

separation in Equation (A2), ice motion of about 40 m/y is sufficient to cause the BO-MAI phase for a

6-day pair to exceed π rad, which would require phase unwrapping even for slow moving regions of

the ice sheet. To avoid this delicate processing step, we generate the double-difference interferogram in

Equation (A1) after applying the external ice-velocity mosaic to refine the coregistration lookup table,
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as shown in Figure 2. This removes the bulk of the azimuth motion contribution, so that BO-MAI can

be applied to the residual interferometric phase without the need for unwrapping. The final azimuth

velocity estimate is obtained by adding back the motion contribution from the external ice velocity

mosaic to the BO-MAI measurements.

Figure A1 presents azimuth velocity measurements for the scene shown in Figure 3, which have

been derived from the azimuth projection of the PROMICE multi-year mosaic (a), intensity offset

tracking (b), MAI (c), and BO-MAI (d). The BO-MAI measurements are spatially discontinuous, since

they can only be carried out in the burst overlap regions, and clearly show the best agreement with the

PROMICE multi-year mosaic. All measurements based on a single image pair, namely Figure A1b–d,

are clearly affected by ionospheric streaks [29], which are instead significantly reduced in the PROMICE

multi-year mosaic (Figure A1a) due to temporal and spatial averaging. A substantial part of the scene

also shows significant loss of coherence for the MAI and offset tracking cases. Table A1 presents a

comparison between each of the azimuth velocity retrievals shown in Figure A1 and the azimuth

projection of the available GPS velocity measurements. The BO-MAI approach shows an accuracy that

is comparable to the PROMICE multi-year mosaic, despite being based on only a single image pair

(note also that only seven GPS measurements are co-located with burst overlaps for this image pair).

Offset tracking and MAI are seen to yield substantially poorer accuracy, with standard deviations

being in the order of 10 m/y.

Offset tracking and MAI also show an unexpected swath-dependent bias compared to BO-MAI

and to the PROMICE multi-year mosaic, which is confirmed by the GPS comparison shown in Table A1.

A similar azimuth bias was observed for all the processed 6-day pairs (Table 1), i.e., pairs consisting

of one image from Sentinel-1A and one from Sentinel-1B, whereas it was never observed for 12-day

pairs, i.e., S1A-S1A or S1B-S1B pairs (Figures S5 and S7). The magnitude of the bias depends on the

sub-swath and was found to be between 15 and 30 m/y for 6-day image pairs, based on the average

differences with respect to the PROMICE multi-year mosaic (see Table A2). The sign of the bias changes

depending on whether the master image was acquired from Sentinel-1A or -1B (cfr. Figure S7, Tables

S3 and S4), suggesting that it is caused by a relative azimuth misregistration between the S1A and

S1B SLC products. Indeed our findings are consistent with the corner reflector experiment described

in [31], which reports an average azimuth misregistration of 39 cm between S1A and S1B SLC products,

based on reflectors located mainly within sub-swath IW1 and partly within IW2. This corresponds to

an azimuth velocity bias of 23.7 m/y for a 6-day temporal baseline.

Concerning DInSAR, the use of the MAI measurements in Figure A1c within the coregistration

refinement step in Figure 2 surprisingly increases the phase-discontinuities at the burst boundaries

(Figure 3b) compared to a purely geometric coregistration approach (Figure 3a). Such discontinuities

are instead reduced by using the azimuth-projected PROMICE multi-year mosaic (Figure A1a) and

BO-MAI (Figure A1d), as shown in Figure 3c,d, respectively. A possible interpretation is that the

S1A/S1B SLC azimuth misregistration bias concerns only the image amplitude, namely the observable

in the corner reflector experiments and in intensity offset tracking, but not the image phase, which is

the observable in BO-MAI and in DInSAR. The reason for observing this bias with MAI, which is also

a phase-based technique, could be due to the effect of band-pass filtering, which creates a coupling

between the existing amplitude misregistration and the interferometric phase.
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(a) (b)

(c) (d)

Figure A1. Azimuth velocity in radar geometry obtained from (a) re-projection of the PROMICE

multi-year velocity mosaic; (b) azimuth intensity offset tracking on a single Sentinel-1 image

pair; (c) Multi-Aperture Interferometry on a single Sentinel-1 image pair; and (d) Burst-Overlap

Multi-Aperture Interferometry on a single Sentinel-1 image pair. The measurements in (b–d) are

obtained from the same image pair shown in Figures 3–5. Black circles indicate GPS locations.

Table A1. GPS comparison statistics for the azimuth velocities shown in Figure A1. Columns show

mean and standard deviation of ∆vaz, which indicates the difference in velocity between SAR and GPS

measurements in m/y. 61 co-located GPS and SAR measurements were used in each case, except for

BO-MAI, as only 7 GPS measurements lay inside burst overlaps.

Method ∆vaz Mean ∆vaz Std.

PROMICE multi-year (offset tracking) 0.91 0.72
Azimuth offset tracking −22.02 13.63

Multi-Aperture Interferometry (MAI) −18.24 8.92
Burst-Overlap MAI (BO-MAI) −0.79 1.10
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Table A2. Mean difference in azimuth velocity for each sub-swath between the offset tracking, MAI,

and BO-MAI results in Figure A1b–d and the PROMICE multi-year mosaic in Figure A1a. All values

are in m/y.

∆vaz Mean

Method IW1 IW2 IW3

Offset tracking (6-day) −29.94 −16.80 −19.65
MAI (6-day) −26.20 −13.63 −15.02

BO-MAI (6-day) −1.13 1.11 0.73

References

1. Shepherd, A.; Ivins, E.; Rignot, E.; Smith, B.; van den Broeke, M.; Velicogna, I.; Whitehouse, P.; Briggs, K.;

Joughin, I.; Krinner, G.; et al. Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature 2020, 579,

233–239. [CrossRef]

2. Box, J.E.; Colgan, W.T.; Wouters, B.; Burgess, D.O.; O’Neel, S.; Thomson, L.I.; Mernild, S.H. Global sea-level

contribution from Arctic land ice: 1971–2017. Environ. Res. Lett. 2018, 13, 125012. [CrossRef]

3. Gray, A.; Mattar, K.; Vachon, P.; Bindschadler, R.; Jezek, K.; Forster, R.; Crawford, J. InSAR results from

the RADARSAT Antarctic Mapping Mission data: Estimation of glacier motion using a simple registration

procedure. In Proceedings of the IGARSS ’98. Sensing and Managing the Environment, 1998 IEEE

International Geoscience and Remote Sensing (Cat. No.98CH36174), Seattle, WA, USA, 6–10 July 1998;

Volume 3, pp. 1638–1640. [CrossRef]

4. Strozzi, T.; Luckman, A.; Murray, T.; Wegmüller, U.; Werner, C.L. Glacier motion estimation using SAR

offset-tracking procedures. IEEE Trans. Geosci. Remote. Sens. 2002, 40, 2384–2391. [CrossRef]

5. Goldstein, R.M.; Engelhardt, H.; Kamb, B.; Frolich, R.M. Satellite radar interferometry for monitoring ice

sheet motion: Application to an Antarctic ice stream. Science 1993, 262, 1525–1530. [CrossRef] [PubMed]

6. Merryman Boncori, J.P.; Langer Andersen, M.; Dall, J.; Kusk, A.; Kamstra, M.; Bech Andersen, S.; Bechor,

N.; Bevan, S.; Bignami, C.; Gourmelen, N.; et al. Intercomparison and Validation of SAR-Based Ice Velocity

Measurement Techniques within the Greenland Ice Sheet CCI Project. Remote Sens. 2018, 10, 929. [CrossRef]

7. De Zan, F.; Guarnieri, A.M. TOPSAR: Terrain observation by progressive scans. IEEE Trans. Geosci.

Remote. Sens. 2006, 44, 2352-2360. [CrossRef]

8. Nagler, T.; Rott, H.; Hetzenecker, M.; Wuite, J.; Potin, P. The Sentinel-1 mission: New opportunities for ice

sheet observations. Remote Sens. 2015, 7, 9371-9389. [CrossRef]

9. PROMICE Scientific Data Portal: Sentinel-1 Greenland Ice Velocity, produced by GEUS and DTU Space.

Available online: http://www.promice.org/PromiceDataPortal/ (accessed on 22 July 2020).

10. Joughin, I.; Smith, B.E.; Howat, I.M. A complete map of Greenland ice velocity derived from satellite data

collected over 20 years. J. Glaciol. 2018, 64, 1–11. [CrossRef]

11. Mouginot, J.; Rignot, E.; Scheuchl, B.; Millan, R. Comprehensive annual ice sheet velocity mapping using

Landsat-8, Sentinel-1, and RADARSAT-2 data. Remote Sens. 2017, 9, 364. [CrossRef]

12. Mouginot, J.; Rignot, E.; Scheuchl, B. Continent-wide, interferometric SAR phase, mapping of Antarctic

ice velocity. Geophys. Res. Lett. 2019, 46, 9710–9718. [CrossRef]

13. Mouginot, J.; Rignot, E.; Bjørk, A.A.; van den Broeke, M.; Millan, R.; Morlighem, M.; Noël, B.; Scheuchl, B.;

Wood, M. Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. PNAS 2019, 116, 9239–9244.

[CrossRef] [PubMed]

14. Smith-Johnsen, S.; De Fleurian, B.; Schlegel, N.; Seroussi, H.; Nisancioglu, K. Exceptionally high heat flux

needed to sustain the Northeast Greenland Ice Stream. Cryosphere 2020, 14, 841–854. [CrossRef]

15. Prats-Iraola, P.; Scheiber, R.; Marotti, L.; Wollstadt, S.; Reigber, A. TOPS Interferometry with TerraSAR-X.

IEEE Trans. Geosci. Remote. Sens. 2012, 50, 3179–3188. [CrossRef]

16. Yague-Martinez, N.; Prats-Iraola, P.; Gonzalez, F.R.; Brcic, R.; Shau, R.; Geudtner, D.; Eineder, M.; Bamler,

R. Interferometric Processing of Sentinel-1 TOPS Data. IEEE Trans. Geosci. Remote. Sens. 2016, 54, 1–15.

[CrossRef]

Synthetic Aperture Radar TOPS-mode Interferometry for Ice Velocity Retrieval 123



Remote Sens. 2020, 12, 2014 21 of 22

17. Scheiber, R.; Jager, M.; Prats-Iraola, P.; De Zan, F.; Geudtner, D. Speckle tracking and interferometric

processing of TerraSAR-X TOPS sata for mapping nonstationary scenarios. IEEE J. Sel. Top. Appl. Earth Obs.

Remote. Sens. 2014, 8, 1709–1720. [CrossRef]

18. Sánchez-Gámez, P.; Navarro, F.J. Glacier surface velocity retrieval using D-InSAR and offset tracking

techniques applied to ascending and descending passes of sentinel-1 data for southern ellesmere ice caps,

Canadian Arctic. Remote Sens. 2017, 9, 442. [CrossRef]

19. Scheuchl, B.; Mouginot, J.; Rignot, E.; Morlighem, M.; Khazendar, A. Grounding line retreat of Pope, Smith,

and Kohler Glaciers, West Antarctica, measured with Sentinel-1a radar interferometry data. Geophys. Res. Lett.

2016, 43, 8572–8579. [CrossRef]

20. Antarctic and Greenland Drainage System. Zwally, J.H.; Giovinetto, M.B.; Beckley, M.A.; Saba, J.L. 2012.

Available online: https://icesat4.gsfc.nasa.gov/cryo_data/ant_grn_drainage_systems.php (accessed on 22

July 2020)

21. Joughin, L.R.; Kwok, R.; Fahnestock, M.A. Interferometric estimation of three-dimensional ice-flow using

ascending and descending passes. IEEE Trans. Geosci. Remote. Sens. 1998, 36, 25–37. [CrossRef]

22. Rizzoli, P.; Martone, M.; Gonzalez, C.; Wecklich, C.; Tridon, D.B.; Bräutigam, B.; Bachmann, M.; Schulze, D.;

Fritz, T.; Huber, M.; Wessel, B.; Krieger, G.; Zink, M.; Moreira, A. Generation and performance assessment

of the global TanDEM-X digital elevation model. ISPRS J. Photogramm. Remote Sens. 2017, 132, 119–139.

[CrossRef]

23. Hvidberg, C.S.; Grinsted, A.; Dahl-Jensen, D.; Khan, S.A.; Kusk, A.; Andersen, J.K.; Neckel, N.; Solgaard, A.;

Karlsson, N.B.; Kjær, H.A.; Vallelonga, P. Surface velocity of the Northeast Greenland Ice Stream (NEGIS):

Assessment of interior velocities derived from satellite data by GPS. Cryosphere Discuss. 2020, 2020, 1–27.

[CrossRef]

24. Kusk, A.; Boncori, J.; Dall, J. An automated system for ice velocity measurement from SAR. In Proceedings

of the 12th European Conference on Synthetic Aperture Radar (EUSAR 2018), Aachen, Germany, June 4-7

2018; pp. 929–932.

25. Westerweel, J.; Scarano, F. Universal outlier detection for PIV data. Exp. Fluids 2005, 39, 1096–1100.

[CrossRef]

26. Cumming, I.G.; Wong, F.H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation;

Artech House: Norwood, MA, USA, 2005.

27. Mario Costantini, T. A novel phase unwrapping method based on network programming. IEEE Trans.

Geosci. Remote. Sens. 1998, 36, 813–821. [CrossRef]

28. Sansosti, E.; Berardino, P.; Manunta, M.; Serafino, F.; Fornaro, G. Geometrical SAR image registration.

IEEE Trans. Geosci. Remote. Sens. 2006, 44, 2861–2870. [CrossRef]

29. Gray, A.L.; Mattar, K.E.; Sofko, G. Influence of Ionospheric Electron Density Fluctuations on Satellite Radar

Interferometry. Geophys. Res. Lett. 2000, 27, 1451–1454. [CrossRef]

30. Mohr, J.J.; Boncori, J.P.M. An error prediction framework for interferometric SAR data. IEEE Trans. Geosci.

Remote. Sens. 2008, 46, 1600–1613. [CrossRef]

31. Gisinger, C.; Balss, U.; Breit, H.; Schubert, A.; Garthwaite, M.; Small, D.; Gruber, T.; EinedeR, M.; Fritz, T.;

Miranda, N. Recent Findings on the Sentinel-1 Geolocation Accuracy Using the Australian Corner Reflector

Array. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia,

Spain, 22–27 July 2018, pp. 6356–6359.

32. De Zan, F. (German Aerospace Center, Oberpfaffenhofen, Germany). Personal Communication, 2019.

33. Hvidberg, C.S.; Keller, K.; Gundestrup, N.S.; Tscherning, C.C.; Forsberg, R. Mass balance and surface

movement of the Greenland ice sheet at summit, Central Greenland. Geophys. Res. Lett. 1997, 24, 2307–2310.

[CrossRef]

34. Mottram, R.; Simonsen, S.; Høyer Svendsen, S.; Barletta, V.; Sørensen, L.; Nagler, T.; Wuite, J.; Groh, A.;

Horwath, M.; Rosier, J.; et al. An Integrated View of Greenland Ice Sheet Mass Changes Based on Models

and Satellite Observations. Remote Sens. 2019, 11, 1407. [CrossRef]

35. Werner, C.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. GAMMA SAR and Interferometric Processing Software;

(Special Publication) ESA SP; European Space Agency: Frascati, Italy, 2000.

36. Wegmüller, U.; Werner, C.; Strozzi, T.; Wiesmann, A.; Frey, O.; Santoro, M. Sentinel-1 Support in the

GAMMA Software. Procedia Comput. Sci. 2016, 100, 1305-1312. [CrossRef]

124 Synthetic Aperture Radar TOPS-mode Interferometry for Ice Velocity Retrieval



Remote Sens. 2020, 12, 2014 22 of 22

37. Wessel, P.; Smith, W.H.F.; Scharroo, R.; Luis, J.; Wobbe, F. Generic Mapping Tools: Improved Version Released.

Eos Trans. Am. Geophys. Union 2013, 94, 409–410. [CrossRef]

38. Derauw, D. DInSAR and Coherence Tracking Applied to Glaciology: The Example of Shirase Glacier;

(Special Publication) ESA SP; European Space Agency: Frascati, Italy 2000.

39. Scheiber, R.; Moreira, A. Coregistration of interferometric SAR images using spectral diversity. IEEE Trans.

Geosci. Remote. Sens. 2000, 38, 2179–2191. [CrossRef]

40. Bechor, N.B.; Zebker, H.A. Measuring two-dimensional movements using a single InSAR pair. Geophys. Res.

Lett. 2006, 33, L16311. [CrossRef]

41. Grandin, R.; Klein, E.; Métois, M.; Vigny, C. Three-dimensional displacement field of the 2015 Mw8.3 Illapel

earthquake (Chile) from across- and along-track Sentinel-1 TOPS interferometry. Geophys. Res. Lett. 2016, 43,

2552–2561. [CrossRef]

42. Jiang, H.; Feng, G.; Wang, T.; Bürgmann, R. Toward full exploitation of coherent and incoherent information

in Sentinel-1 TOPS data for retrieving surface displacement: Application to the 2016 Kumamoto (Japan)

earthquake. Geophys. Res. Lett. 2017, 44, 1758–1767. [CrossRef]

43. Jiang, H.J.; Pei, Y.Y.; Li, J. Sentinel-1 TOPS interferometry for along-track displacement measurement. In

Proceedings of the IOP Conference Series: Earth and Environmental Science, Beijing, China, 16–17 May 2017,

p. 012019. [CrossRef]

44. Miranda, N. Definition of the TOPS SLC Deramping Function for Products Generated by the S-1 IPF (Technical

Note COPE-GSEG-EOPG-TN-14-0025, Issue 1, Rev. 3); Technical Report; European Space Agency: Frascati,

Italy, 2017.

45. Merryman Boncori, J.P.; Pezzo, G. Measuring the north–south coseismic displacement component with

high-resolution multi-aperture InSAR. Terra Nova 2015, 27, 28–35. [CrossRef]

46. Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett.

1998, 25, 4035–4038. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Synthetic Aperture Radar TOPS-mode Interferometry for Ice Velocity Retrieval 125



A.2 Burst overlap coregistration for Sentinel-1 TOPS DInSAR
ice velocity measurements

This appendix provides the full manuscript:

A. Kusk, J. K. Andersen, and J. P. M. Boncori, Burst overlap coregistration for
Sentinel-1 TOPS DInSAR ice velocity measurements, IEEE Geoscience and
Remote Sensing Letters, vol. 19, pp. 1–5, 2021, doi:10.1109/LGRS.2021.3062905
(2021) [©2021 IEEE, reprinted with permission]
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Burst Overlap Coregistration for Sentinel-1 TOPS
DInSAR Ice Velocity Measurements

Anders Kusk , Jonas Kvist Andersen , and John Peter Merryman Boncori

Abstract— The application of Sentinel-1 interferometry to ice
velocity measurements has until recently been limited by the
significant horizontal scene motion associated with ice flow, which
causes phase discontinuities (and associated unwrapping prob-
lems) at burst boundaries in Terrain Observation by Progressive
Scans (TOPS) interferograms. Coregistering with a multiyear
averaged external velocity mosaic based on offset-tracking can
account for the bulk of the ice motion, but residual discontinuities
sometimes remain, for example, due to seasonal variations in the
ice velocity, or due to error sources such as azimuth shifts caused
by ionospheric propagation. The presented method extends the
external velocity coregistration with a local, spatially varying,
coregistration in the burst overlap regions. This is based on the
extended spectral diversity principle, which can only be applied
in the overlap regions, but offers superior accuracy and resolution
compared with traditional coregistration methods. The method
considerably reduces phase discontinuities at burst boundaries,
and potential new phase discontinuities at the overlap region
edges are suppressed by an azimuth tapering of the applied
coregistration shifts. An example scene is presented, and the
phase discontinuities before and after application of the method
are evaluated. The method is seen to remove phase discontinuities,
with no adverse effects.

Index Terms— Ice velocity, radar interferometry, Sentinel-1
(S1), synthetic aperture radar (SAR), Terrain Observation by
Progressive Scans SAR (TOPSAR).

I. INTRODUCTION

OPERATIONAL land ice velocity retrieval from
Sentinel-1 (S1) Interferometric Wideswath (IW) radar

data has until recently been limited to using amplitude-based
methods such as offset-tracking [1]–[3]. This is due to
the coupling between interferometric phase and azimuth
misregistration, which is not negligible as in the Stripmap
case. The Terrain Observation by Progressive Scans (TOPS)
acquisition mode used by the Sentinel-1 synthetic aperture
radar (SAR) instrument achieves a wide swath coverage by
acquiring data in bursts, during which the antenna beam
is electronically steered from aft to forward looking. This
ensures that each target is imaged by the same part of the
antenna pattern but leads to an azimuth-varying Doppler
centroid. If, for some reason, an azimuth misregistration is
present between the two images, this shift is projected on to
the line-of-sight (LOS) vector and contributes to the observed
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in part by the European Space Agency (ESA) under Contract 4000129620/19/
I-DT, awarded to the Phase-Based Sentinel-1 Ice Velocity (PHAB-IV)
proposal in response to the ESA Earth Observation (EO) Science for Society
Permanently Open Call. (Corresponding author: Anders Kusk.)

The authors are with the Danish National Space Institute, Technical Univer-
sity of Denmark, 2800 Kongens Lyngby, Denmark (e-mail: ak@space.dtu.dk).

Digital Object Identifier 10.1109/LGRS.2021.3062905

interferometric phase by an amount ϕa [4]

ϕa = 2π fDC(η)�η (1)

where η is the azimuth time, fDC(η) is the local Doppler
centroid, and �η is the azimuth misregistration (in seconds).
The local Doppler centroid includes both the effects of the
TOPS beam steering and the physical antenna pointing, the lat-
ter contribution being close to zero due to the yaw steering
implemented for Sentinel-1. This leads to phase variations
within each burst and to jumps at burst boundaries, where the
local Doppler centroid changes abruptly. An example of this is
seen in Fig. 1(a). In turn, this introduces a phase bias in subse-
quent ice velocity measurements, both directly and indirectly,
by inducing phase unwrapping errors, if the magnitude of such
phase jumps approaches π rad. Azimuth misregistration can
arise from orbit errors, ionospheric-induced azimuth shifts,
and actual azimuth motion between the two SAR acquisitions,
which are interfered. For ice sheets and glaciers, the motion
contribution is nonnegligible and spatially varying and must
be corrected [5]. In [6], speckle-tracking followed by spectral
diversity (SD) was applied to TerraSAR-X data to estimate
the spatially varying azimuth misregistration over each burst
and refine the coregistration. For S1 IW data with a six-day
baseline, this approach was found in [5] to be hampered by
significant swath-dependent biases [7] in the geolocation of
S1A and S1B products, and by the limited azimuth bandwidth
available within an IW image burst. In [5], it was proposed
to apply an external ice velocity mosaic, based on a multiyear
average of offset-tracking measurements, to remove the bulk
part of the misregistration due to ice motion. An example
is shown in Fig. 1(b), where the external velocity has been
used for range and azimuth coregistration, but not to flatten
the phase. For many scenes, this is enough to reduce the
burst boundary discontinuities to acceptable levels, but in some
scenes, orbital errors, ionospheric shifts, or residual azimuth
motion (due to trends or seasonal variations in the ice velocity)
can still lead to discontinuities. It is proposed in [5] in these
cases to reduce the residual phase jumps by applying a local
SD coregistration in the burst overlap regions (burst overlap
SD, or BO-SD), exploiting the large difference in the local
Doppler centroid observed between the end of a burst and
the start of the subsequent burst. This approach is further
investigated and extended in this letter.

II. METHODS

A. SD Coregistration

In the SD approach [8], the azimuth misregistration of two
complex single look complex image (SLC) images, M and

1558-0571 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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Fig. 1. Sentinel-1 interferograms (12 × 3 looks) of the NEGIS with various
levels of refinement. (a) Interferogram coregistered only with orbits and
digital elevation model (DEM). (b) Interferogram coregistered additionally
with external velocity. (c) Interferogram coregistered with external velocity
+ BO-SD. The blue rectangles indicate the overlap region used for the
plots in Fig. 3. The images were acquired from track 112 (descending) on
January 14 and 20, 2019.

S, is estimated in three steps by: 1) bandpass filtering each
image using two subbands centered about an upper and a lower
center frequency, fu and fl ; 2) generating upper and lower

interferograms between the corresponding image subbands;
and 3) forming the differential interferogram between the
upper and lower subband interferograms with a phase, �ϕSD,
given by

�ϕSD = arg
{(

Mu S∗
u

)(
Ml S

∗
l

)∗}
. (2)

The azimuth misregistration estimate, �η̂ (in seconds), then
becomes

�η̂ = �ϕSD

2π( fu − fl)
. (3)

For S1 IW imagery, the available azimuth bandwidth Ba within
each burst is around 325 Hz [4], thus limiting the optimal
subband frequency difference to about 2/3 of this value [9].
In burst overlap regions, an enhanced SD (ESD) technique
can be applied [10], which exploits the Doppler centroid
difference between the adjacent bursts, yielding a bandwidth
up to 5.2 kHz [4], with a corresponding increase in sensitivity
relative to standard SD. The BO-SD approach described in
this letter can be considered a spatially varying version of the
ESD technique.

B. Motion Errors Due to Misregistration

When using the standard SD azimuth shift estimate to
locally coregister the images, using the optimal frequency
separation derived in [9], the uncertainty in the shift estimate
translates into a phase bias uncertainty through (1) and (3),
depending on the local Doppler centroid

σϕa ,SD = 2π fDC(η)
σϕSD

2π 2
3 Ba

= 2· fDC(η)

Ba
·
√

27

16N eff

√
1 − γ 2

γ
(4)

where Ba is the processed azimuth bandwidth, Neff is the
number of independent looks averaged, γ is the interferometric
coherence, and the expression for σϕSD is based on (5) in [10].
The exact relation between the number of independent looks
Neff and the number of multilooked pixels depends on the
spectral properties of the focused SAR imagery and on the
implementation of the multilooking filter.

With BO-SD in the burst overlap region, the phase bias
uncertainty becomes [10]

σϕa,BO−SD = 2π fDC(η)· σϕBO−SD

2π� fDC

= 1

2
∘

N eff

√
1 − γ 2

γ

= Ba

3 fDC(η)
· σϕa ,SD∘

3
(5)

where it is assumed that in the overlap region, � fDC
∼=

2 fDC(η). From (4) and (5), it can be seen that at the burst
edges, the phase bias uncertainty of the BO-SD estimate is
about 40 times smaller compared with the SD one.

If the phase contribution due to azimuth coregistration errors
is interpreted as motion, the LOS velocity uncertainty is given
by

σvlos = 1

�T
· δ

4π
· σϕa (6)
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Fig. 2. Standard deviation of the LOS velocity bias estimate at the burst
edge, from standard SD and BO-SD for various averaging window sizes. The
parameters of IW2 have been used for local Doppler centroid and effective
number of looks calculation, and a temporal baseline of six days is assumed.
For reference, the black line indicates the noise of the interferogram LOS
estimate multilooked with a 12 × 3 window.

where �T is the time difference between acquisitions (tem-
poral baseline), and δ is the radar wavelength (5.55 cm for
Sentinel-1).

In Fig. 2, the plots of the LOS velocity uncertainty (at
burst edges, swath IW2) implied by (4)–(6), assuming a six-
day temporal baseline, are shown for different multilooking
window sizes. As a reference, the LOS uncertainty from
the interferogram phase noise, corresponding to a 12 × 3
multilooking window, which was used to generate the inter-
ferograms in Fig. 1, is shown. To achieve a noise level just
comparable with such an interferogram using the SD approach,
a window larger than 192 × 48 in slant range and azimuth,
respectively, corresponding to 670 m × 670 m on ground,
is required at the burst edges. If BO-SD is used, significantly
smaller averaging windows can be used and the LOS velocity
errors can be reduced to less than 0.1 m/year using a 24 × 6
window, corresponding to about 85 m × 85 m on ground,
even for quite low coherence levels. This increased spatial
resolution is very welcome since it provides a sensitivity
to the variations in the underlying ice motion and to spa-
tially varying azimuth coregistration errors due to ionospheric
propagation [11].

In addition, the BO-SD coregistration is not affected by
the swath-dependent azimuth biases observed when applying
standard SD to S1A-S1B or S1B-S1A image pairs, as detailed
in [5, Appendix A]. These amount to azimuth misregistrations
ranging between 37 and 75 μs in terms of azimuth time �η,
which lead to spatially varying interferometric phase errors
through (1) and in turn to LOS velocity errors through (6).
These values are consistent with geolocation biases measured
in [7], but to the knowledge of the authors, the source of these
biases has not been established at the time of writing.

C. Phase Unwrapping Requirements

The high sensitivity of the BO-SD phase to azimuth misreg-
istration makes it susceptible to wrapping, since a shift of just

0.05 pixels, corresponding to 40 m/year for a six-day pair, will
cause the BO-SD phase to exceed π radians at the burst edges.
Although periodogram estimation methods could be applied to
the wrapped phase, as suggested in [4] concerning ESD, their
accuracy is insufficient for the application at hand, in which
such estimates must be carried out locally, rather than on a
burst- or image-wide basis. A more practical approach is to
account for the bulk of the motion contribution to azimuth
misregistration, using a priori information. For slow-moving
regions in the interior of polar ice sheets, this can be provided
by multiyear averaged external velocity products based on
amplitude offset-tracking [5]. Of course, for regions with
seasonal variations in the order of 40 m/year, such an approach
would not be viable. However, such areas are likely to be fast-
moving glaciers, which are not candidates for interferometric
SAR (InSAR) anyway.

Azimuth shifts induced by ionospheric activity may in
extreme cases exceed 0.05 pixels [11] and in principle require
unwrapping. Such shifts are typically confined to narrow
“streaks,” which would lead to localized differential InSAR
(DInSAR) phase errors both with and without the application
of BO-SD.

III. PROCESSING ALGORITHM

The TOPS InSAR processing chain used in the following
is described in detail in [5]. The two SLCs are initially coreg-
istered burst by burst using a resampling lookup table (LUT)
based on precise orbits, a DEM, and an external ice velocity
mosaic. The BO-SD procedure is then carried out in each
burst overlap region, by forming interferograms for each burst,
applying phase averaging (early multilooking, see [12]), and
forming the differential interferogram (2) between the over-
lapping burst interferograms. The pixel-wise misregistration
estimate is calculated by scaling the differential interferogram
by the local Doppler centroid differences between the two
bursts according to (3). This shift estimate is then used to
update the resampling LUT and refine the coregistration in
the overlap region.

Since the BO-SD refinement can only be carried out in the
overlap region, this may cause discontinuities in the interfero-
gram phase, at the edges of the overlap region, although these
were in [5] generally seen to be smaller than the main discon-
tinuity at the burst boundary. These residual discontinuities
can be further suppressed by applying an azimuth tapering of
the BO-SD shift estimate before it is used in the coregistration

w(n) = 0.5 − 0.5cos

(
2π

n

No

)
(7)

where n is the azimuth line number counted from the overlap
region start, and No is the number of azimuth lines in the
overlap region. Following the refined coregistration, burst
interferograms are formed as usual, followed by burst stitching
(mosaicking) and multilooking.

IV. RESULTS

The processing scheme described in Section III was applied
to a Sentinel-1 A/B six-day image pair acquired over the North
East Greenland Icestream (NEGIS) on January 14 and 20,
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Fig. 3. Residual azimuth shift estimated with BO-SD for IW3 burst 3/4 overlap, in units of pixels. The azimuth tapering (7) is not applied here for illustration
purposes.

Fig. 4. Zoom on wrapped interferometric phase of the IW3 burst 3/4 overlap
region. (a) External velocity coregistration. (b) External velocity + BO-SD,
no tapering. (c) External velocity + BO-SD with azimuth tapering of the
applied correction.

2019, in an area with ice velocity magnitudes up to 60 m/year.
Generating an interferogram (12 × 3 looks) by coregistering
with only orbits and the TandemX 90-m DEM [13] yields the
phase shown in Fig. 1(a), with clear discontinuities at all burst
overlaps. Refining the coregistration with an external multiyear
average ice velocity product based on offset-tracking [14]
reduces the phase jumps in many parts of the scene, as shown
in Fig. 1(b). Using the method described in Section III,
the azimuth misregistration in the overlap region was then esti-
mated using BO-SD. In Fig. 3, the estimated azimuth shift for
a single overlap region (IW3 burst 3/4 overlap, indicated with
a blue rectangle in Fig. 1) is illustrated for different averaging
window sizes. Pixels with a coherence level below 0.2 were
masked in all cases. For both 12 × 3 and 24 × 6 averaging,
the noise level is seen to be significant compared with the
actual signal in many regions. A 48 × 12 averaging factor
was, therefore, selected, and the shift estimate was subse-
quently weighted with (6) and used to coregister locally the
SLCs, resulting in the interferogram in Fig. 1(c). In the

Fig. 5. Range-averaged azimuth phase gradient of unwrapped phase along
each of the three swaths with and without BO-SD refinement.

faster flowing regions, that is, in the bottom part of IW1 and
within the ice stream, in IW3, the residual discontinuities
are removed, with the fringes lining up seamlessly at the
burst boundaries. In the slower flowing regions, for example,
the upper half of IW2, the improvement is less visible, with the
effect of the azimuth-induced shift biases still seen on either
side of the overlap regions. However, the discontinuities are
seen to be smoothed out over the overlap regions, and, cru-
cially, in no case does the BO-SD coregistration seem to have a
detrimental impact. Zooming in on the overlap region between
bursts 3 and 4 in the IW3 swath (blue rectangles in Fig. 1),
we show in Fig. 4(a) the phase with external velocity coreg-
istration only [corresponding to Fig. 1(b)]; in Fig. 4(b) the
phase with BO-SD coregistration but without the tapering (6)
applied; and in Fig. 4(c) the phase with BO-SD coregistration
and tapering applied [corresponding to Fig. 1(c)]. The phase
discontinuity clearly disappears in Fig. 4(c), an effect that
was observed for all burst boundaries in the interferogram.
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To assess the residual discontinuities for the entire scene,
the phases of the interferograms in Fig. 1(b) and (c) were
unwrapped using a minimum cost flow algorithm [15], and
the phase gradient along azimuth was estimated using the
first-order differences. This phase gradient estimate was finally
averaged in range, to produce the plots in Fig. 5, showing the
average phase gradient along each swath, both for the coreg-
istration using only the external velocity and for the proposed
BO-SD coregistration. The latter is seen to consistently reduce
the discontinuities from more than 0.5 rad to below 0.1 rad,
with the residual discontinuities disappearing below the noise
floor.

V. CONCLUSION

The method proposed above significantly reduces the phase
discontinuities seen when applying TOPS interferometry to ice
sheet scenes with horizontal motion. The main improvement
comes from the introduction of an external velocity map in the
coregistration, first proposed in [5]. This step removes the bulk
of misregistration (and resulting phase discontinuities) due to
ice motion and is a prerequisite for the method presented
here, as it eliminates the need for phase unwrapping of the
BO-SD estimate. As a potential added benefit, the BO-SD shift
estimate can be saved and used on its own as an estimate of
residual azimuth motion (i.e., relative to the external velocity
map) in the burst overlap regions, as shown in [16].

The method described in this letter represents an incremen-
tal improvement, without detrimental effects, to the existing
TOPS coregistration methods for nonstationary scenes such
as ice sheets. It can be used to improve the quality of ice
velocity products based on S1 interferometry, by reducing
the discontinuities in the final velocity maps and the phase
unwrapping errors these could potentially induce. The TOPS
DInSAR algorithm described in this letter has been integrated
in the Technical University of Denmark (DTU) in-house
developed ice velocity processing system [1], and work is
ongoing to include interferometric products in the Programme
for Monitoring of the Greenland Ice Sheet (PROMICE) ice
velocity product [14] produced by the Geologic Survey of
Greenland and Denmark (GEUS) using this processor.

REFERENCES

[1] A. Kusk, J. P. M. Boncori, and J. Dall, “An automated sys-
tem for ice velocity measurement from SAR,” in Proc. 12th Eur.
Conf. Synth. Aperture Radar (EUSAR), Aachen, Germany, 2018,
pp. 929–932.

[2] T. Nagler, H. Rott, M. Hetzenecker, J. Wuite, and P. Potin,
“The Sentinel-1 mission: New opportunities for ice sheet observa-
tions,” Remote Sens., vol. 7, no. 7, pp. 9371–9389, Jul. 2015, doi:
10.3390/rs70709371.

[3] I. Joughin, B. E. Smith, and I. Howat, “Greenland ice mapping project:
Ice flow velocity variation at sub-monthly to decadal timescales,”
Cryosphere, vol. 12, no. 7, pp. 2211–2227, Jul. 2018, doi: 10.5194/tc-
12-2211-2018.

[4] N. Yagüe-Martínez et al., “Interferometric processing of Sentinel-1
TOPS data,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 4,
pp. 2220–2234, Apr. 2016, doi: 10.1109/TGRS.2015.2497902.

[5] J. K. Andersen, A. Kusk, J. P. M. Boncori, C. S. Hvidberg, and
A. Grinsted, “Improved ice velocity measurements with Sentinel-1
TOPS interferometry,” Remote Sens., vol. 12, no. 12, Jun. 2020,
Art. no. 2014, doi: 10.3390/rs12122014.

[6] R. Scheiber, M. Jäger, P. Prats-Iraola, F. De Zan, and D. Geudtner,
“Speckle tracking and interferometric processing of TerraSAR-X TOPS
data for mapping nonstationary scenarios,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 8, no. 4, pp. 1709–1720, Apr. 2015,
doi: 10.1109/JSTARS.2014.2360237.

[7] C. Gisinger et al., “In-depth verification of Sentinel-1 and TerraSAR-X
geolocation accuracy using the Australian corner reflector array,” IEEE
Trans. Geosci. Remote Sens., vol. 59, no. 2, pp. 1154–1181, Feb. 2021,
doi: 10.1109/TGRS.2019.2961248.

[8] R. Scheiber and A. Moreira, “Coregistration of interferometric SAR
images using spectral diversity,” IEEE Trans. Geosci. Remote Sens.,
vol. 38, no. 5, pp. 2179–2191, Sep. 2000, doi: 10.1109/36.868876.

[9] R. Bamler and M. Eineder, “Accuracy of differential shift estimation
by correlation and split-bandwidth interferometry for wideband and
Delta-k SAR systems,” IEEE Geosci. Remote Sens. Lett., vol. 2, no. 2,
pp. 151–155, Apr. 2005, doi: 10.1109/LGRS.2004.843203.

[10] P. Prats-Iraola, R. Scheiber, L. Marotti, S. Wollstadt, and A. Reigber,
“TOPS interferometry with TerraSAR-X,” IEEE Trans. Geosci.
Remote Sens., vol. 50, no. 8, pp. 3179–3188, Aug. 2012, doi:
10.1109/TGRS.2011.2178247.

[11] A. L. Gray, K. E. Mattar, and G. Sofko, “Influence of ionospheric
electron density fluctuations on satellite radar interferometry,” Geo-
phys. Res. Lett., vol. 27, no. 10, pp. 1451–1454, May 2000, doi:
10.1029/2000GL000016.

[12] F. De Zan, P. Prats-Iraola, and M. Rodriguez-Cassola, “On the
dependence of Delta-k efficiency on multilooking,” IEEE Geosci.
Remote Sens. Lett., vol. 12, no. 8, pp. 1745–1749, Aug. 2015, doi:
10.1109/LGRS.2015.2424272.

[13] P. Rizzoli et al., “Generation and performance assessment of the
global TanDEM-X digital elevation model,” ISPRS J. Photogramm.
Remote Sens., vol. 132, pp. 119–139, Oct. 2017, doi: 10.1016/j.isprsjprs.
2017.08.008.

[14] PROMICE Sentinel-1 Greenland Ice Velocity Dataset, Geol. Surv.
Denmark Greenland (GEUS), Copenhagen, Denmark, 2021, doi: 10.
22008/promice/data/sentinel1icevelocity/greenlandicesheet/v1.0.0.

[15] M. Costantini, “A novel phase unwrapping method based
on network programming,” IEEE Trans. Geosci. Remote
Sens., vol. 36, no. 3, pp. 813–821, May 1998, doi:
10.22008/PROMICE/DATA/SENTINEL1ICEVELOCITY/
GREENLANDICESHEET/V1.0.0.

[16] R. Grandin, E. Klein, M. Métois, and C. Vigny, “Three-dimensional
displacement field of the 2015Mw8.3 illapel Earthquake (Chile)
from across- and along-track Sentinel-1 TOPS interferometry,” Geo-
phys. Res. Lett., vol. 43, no. 6, pp. 2552–2561, Mar. 2016, doi:
10.1002/2016GL067954.

Synthetic Aperture Radar TOPS-mode Interferometry for Ice Velocity Retrieval 131



A.3 Connectivity approach for detecting unreliable DInSAR ice
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Connectivity Approach for Detecting Unreliable

DInSAR Ice Velocity Measurements

Jonas Kvist Andersen , John Peter Merryman Boncori, and Anders Kusk

Abstract— Differential synthetic aperture radar interferome-
try (DInSAR) allows for retrieval of ice velocity measurements
of high resolution and accuracy. One of the main error sources in
DInSAR is the phase unwrapping procedure. Unwrapping errors
may be caused by several processes, including shear stresses
associated with large motion gradients, which lead to loss of inter-
ferometric coherence. In many cases, unwrapping errors reach
magnitudes corresponding to velocities of tens or even hundreds
of meters per year. Traditional DInSAR implementations include
pixel masking based on coherence thresholding; however, such a
masking is not always sufficient. Consequently, the state-of-the-
art for ice velocity retrievals involves either manual inspection
of individual measurements or simply discarding measurements
in regions where ice flow exceeds a predefined threshold. Here,
we instead apply a masking based on thresholding of a pixel
connectivity estimate with respect to a reference point, which
aims to detect unwrapping errors based only on the estimated
coherence pattern. The method is tested on both simulated and
real data Sentinel-1 data from the Greenland Ice Sheet and
effectively detects the majority of unwrapping errors (recall of
0.84 for the best performing threshold), although with a relatively
low precision (0.52 for the best performing threshold). Impor-
tantly, higher magnitude unwrapping errors are associated with
lower connectivity values, meaning that undetected errors have a
significantly lower magnitude (median of 1.7 m/y, corresponding
to a single phase cycle, compared with 40.5 m/y with no masking).

Index Terms— Ice velocity, interferometry, phase unwrapping,
Sentinel-1, synthetic aperture radar (SAR).

I. INTRODUCTION

F
OR several decades, synthetic aperture radar (SAR) satel-

lite data have been applied in the measurement of ice

velocity over glaciers and ice sheets. The technique of dif-

ferential SAR interferometry (DInSAR) generally provides

measurements of higher accuracy and resolution, compared

with amplitude tracking techniques, although it cannot be

applied where velocity gradients are high enough to yield

phase ambiguities. In such regions, tracking-based techniques

must be used. Hence, the optimal scheme for ice sheet-wide

velocity retrieval uses DInSAR where possible, supplemented

by tracking-based techniques (e.g., over fast-flowing glacier

outlets). Such a scheme has previously been carried out

using several SAR systems (e.g., Radarsat, Radarsat-2, and
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Advanced Land Observing Satellite Phased Array L-band Syn-

thetic Aperture Radar (ALOS-PALSAR) [1], [2]). Since their

launch in 2014 and 2016, respectively, the European Union

(EU) Copernicus Sentinel-1 satellites have been extensively

used to provide routine velocity measurements over polar

regions, due to the extensive coverage and low revisit time

provided by the terrain observation with progressive scans

(TOPS) acquisition mode [3]. Sentinel-1 routine ice velocity

retrievals, however, have so far been based solely on amplitude

tracking, as the TOPS mode inherently leads to a coupling

between differential phase and azimuth motion, which, if not

accounted for, may result in intra-burst phase gradients and

inter-burst phase discontinuities [1]–[4]. A resolution to this

issue was presented in [5] and [6], where Sentinel-1 DIn-

SAR and amplitude tracking measurements were combined to

retrieve the ice velocity for a major Greenland drainage basin.

A remaining challenge concerning DInSAR ice veloc-

ity measurements, regardless of the SAR acquisition mode,

is related to the phase unwrapping processing step. Most phase

unwrapping algorithms seek to determine the correct number

of 2π phase cycles to add/subtract to each pixel, so that the

phase difference between any pair of image pixels is, in the

absence of other contributions, proportional to the underlying

motion gradient in the radar line-of-sight (LoS) direction.

An unwrapping error then occurs when the algorithm assigns

a wrong integer multiple of phase cycles. An error of N phase

cycles translates to an LoS velocity error through

vLoS,σ = 2π N
λ

4π1T
=

Nλ

21T
(1)

where λ is the radar wavelength and 1T is the temporal

baseline of the interferogram. For a Sentinel-1 interferogram

with a six-day baseline, an unwrapping error of a single phase

cycle translates to a velocity error of about 1.7 m/y, which

is already well above the achievable accuracy of DInSAR

measurements [5]. Generally, however, unwrapping errors

may reach magnitudes of tens of phase cycles, becoming

the most significant error source in the resulting velocity

measurements. Phase unwrapping errors arise due to phase

differences between neighboring pixels being greater than π

radians, which typically occur in and around areas exhibiting

interferometric decorrelation (loss of coherence) [7]. Decorre-

lation may result from temporal changes between acquisitions

(e.g., surface melt or precipitation), topographic effects (e.g.,

layover or shadow), spatial decorrelation, errors in geometrical

coregistration, and from large spatial gradients in the velocity

field, as are found over many outlet glaciers [7]–[10]. The

1558-0644 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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latter can lead to phase ambiguities and complete loss of

coherence in areas of excessive shear stress [11]. Conse-

quently, most phase unwrapping techniques apply a masking

of the wrapped phase pixels based on some combination of

coherence, phase residue density, intensity, topography, and

other parameters [7], [12]. In general, however, unwrapping

errors are not restricted to pixels with low coherence, high

residue density, or radar shadow regions, but may propagate

into neighboring regions. Hence, a pixel-wise masking based

on such parameters will not always successfully prevent or

discard all unwrapping errors.

Another common practice for preventing unreliable

DInSAR measurements, due to the risk of unwrapping errors,

in ice velocity retrievals is either to avoid carrying out

DInSAR in areas where velocities above a certain threshold are

expected [1] or to perform a visual inspection of each individ-

ual unwrapped interferogram to detect signs of unwrapping

errors [2]. It is not, however, always possible to distinguish

unwrapping errors from natural velocity variations. In addition,

for ice sheet-wide monitoring applications, visual inspections

would be excessively time-consuming. Finally, unwrapping

errors are not always limited to regions of fast flow, as will

be demonstrated in Section III.

The main objective of this work is to determine a procedure

for discarding unreliable DInSAR measurements within a

routine processing scheme, e.g., an ice sheet-wide velocity

retrieval. Therefore, the procedure should be as automated as

possible, requiring little input and manual inspection from the

user. In this article, we present a masking approach based

on the pixel connectivity measure, first proposed in [13].

In [13], a pixel-wise connectivity measure is presented, which

measures how well a given pixel can be connected to a selected

reference point through high coherence pixels. Unwrapping

errors are often associated with low connectivity regions,

as will also be demonstrated. The masking method is described

in Sections II and III presents a validation on simulated

data. Section IV presents an application of the method on

real Sentinel-1 data. Section V provides a discussion of the

results and the limitations of the masking approach. Finally,

Section VI presents final conclusions on the findings.

II. METHODOLOGY

A. Interferometric Processing Chain

A typical DInSAR processing chain is shown in the gray

blocks in Fig. 1. The specific approach used in this arti-

cle for interferometric processing is that implemented in

DTU’s inhouse processing software (IPP) [14], which actually

includes several processing steps prior to phase unwrapping

to reduce the occurrence and extent of phase unwrapping

errors [15]. For Sentinel-1 data, a refined coregistration is

applied, which is described in [5] along with the full process-

ing algorithm. Phase unwrapping is performed via a minimum

cost flow (MCF) algorithm. Prior to unwrapping, weights are

computed based on coherence and edge strength computed

from the interferogram magnitude [16]. A mask is generated

by discarding pixels with coherence below an adaptive thresh-

old, depending on the selected number of range and azimuth

Fig. 1. Block diagram outlining the Sentinel-1 interferometric processing
chain as presented in [5], with an added masking step based on pixel
connectivity, described in Section II-B.

looks, as well as pixels where layover or shadow effects are

predicted, based on the input digital elevation model (DEM).

Morphological erosion with a 5-pixel cross as the structure

element [15], [17] is applied to the pixels above the threshold,

thereby masking out areas bordering previously discarded

pixels. A segmentation based on 4-point connectivity is then

used to divide valid pixels into connected segments. Phase

unwrapping is then carried out, with masked pixels being

assigned a minimum weight, after which a baseline calibration

is performed for the largest segment, followed by an absolute

phase calibration of individual segments [15]. Unwrapped

measurements are converted into displacement and calibrated

through ground control points (GCPs) selected in slow-moving

areas of the ice sheet [5], [15]. Although the coherence-based

masking segmentation approach is effective at preventing

some unwrapping errors, it is not always enough to prevent

errors in particularly challenging regions. An example of this

is shown in Fig. 2(a)–(c), where an unwrapping error is

observed in a region of high coherence that is not isolated

by the coherence-based segmentation approach. We propose

the introduction of an additional processing step, following

the phase unwrapping, which serves to improve the detection

of unreliably unwrapped measurements, based on a pixel

connectivity estimate, and mask them out.

B. Masking Based on Pixel Connectivity

Unwrapping errors tend to occur in segments that are sepa-

rated by areas of low coherence, which in the case of glaciers

and ice sheets may be caused by excessive shear stress, surface

melting, or precipitation. The segmentation process described

in Section II-A allows for the detection of segments that are

completely disconnected from the remainder of the scene by

coherence pixels below a given threshold; however, regions

that are only loosely connected may remain, such as the one

in the top right of Fig. 2, and these are also prone to phase

unwrapping errors. To detect such regions, we apply a masking

procedure based on a measure of pixel connectivity, which was

previously introduced in [13] in the context of topographic

estimation. The connectivity defines how well each pixel is

connected to a selected reference point based on a confidence

map, i.e., a pixel-wise quality measure. An obvious choice for
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Fig. 2. Example showing (a) coherence, (b) segment map based on the coherence mask in the unwrapping algorithm, (c) detected unwrapping error (as
described in Section II-A), and (d) connectivity image derived from the coherence (as described in Section II-B) with the reference point shown by the red
dot. The example is a subset from a simulated interferogram (presented in Section III). Note that a large magnitude unwrapping error occurs in a region of
high coherence, which is not isolated by the coherence-based mask segmentation, but where connectivity is low.

the confidence map is the interferometric coherence, as this

is a general measure of phase quality, and, as previously

mentioned, unwrapping errors are prevalent in areas that are

disconnected by low coherence values. The connectivity at a

specific pixel is then simply defined as the lowest coherence

value encountered on the best available path to the reference

point (i.e., the path with the highest minimum coherence

value). Thus, the connectivity between a certain pixel and

the reference point is high if they can be connected by a

path of exclusively high coherence values. Conversely, a low

connectivity is obtained if the two pixels can only be connected

by paths which propagate through low coherence values.

Fig. 2(d) shows the connectivity map derived from the

coherence with the reference point shown by the red dot. The

coherence image contains a zone of low values, corresponding

to a shear margin, and connectivity is observed to be low for

pixels on the opposite side of the shear margin, with respect to

the reference point. This region of low connectivity is seen to

be associated with a large magnitude unwrapping error, which

is not isolated by the coherence-based segmentation mask.

Hence, such an error would not be corrected or discarded

by the conventional unwrapping approach, but would be

discarded by applying a masking of pixels with a connectivity

below a certain threshold. In practice, the connectivity map

is computed through Dijkstra’s single-source shortest path

algorithm [13], [18], implemented using a heap queue, which

allows for relatively fast computation of the connectivity map

(a fraction of the processing time needed for unwrapping).

Concerning the exploitation of the connectivity concept

within a DInSAR processing chain, it is suggested (although

not demonstrated) in [13] to correct large-scale unwrapping

errors by computing connectivity maps based on several

manually selected reference points followed by a calibration

with GCPs in each region. The algorithm does not, how-

ever, provide a way of quantifying a connectivity threshold

below which measurements are marked as unwrapping errors.

Furthermore, for ice velocity applications, such a correction

approach would require the availability of a dense network of

GCPs where motion is known to within a single phase cycle

(1.7 m/y for a Sentinel-1 six-day image pair), which is not

realistic. The approach we propose consists of computation

of the connectivity estimate based on a single reference

point, followed by a masking of pixels below a connectivity

threshold, �c, which are then deemed unreliable. For the

pixel-wise confidence measure used to estimate the connectiv-

ity, we experimented with various weighting functions applied

to the coherence (e.g., thresholding or sigmoidal weighting

functions); however, the best results were found using the

unweighted coherence. As the computation of connectivity

requires only the coherence image, one could choose to apply

the connectivity mask to the wrapped phase prior to phase

unwrapping. In practice, however, we found that the MCF

unwrapping algorithm performs better when applying the mask

after unwrapping, as indicated by the red box in Fig. 1.

In some instances, low coherence patches of a relatively

small spatial extent, which are typically not observed to cause

unwrapping errors, lead to low connectivity values in nearby

pixels. To avoid masking out these generally unproblematic

measurements, we apply a morphological closing to the binary

connectivity mask before applying it. A simulated dataset is

used to estimate the best performing connectivity threshold,

as presented in Section III.

III. VALIDATION ON SIMULATED DATA

In some cases, unwrapping errors may be easily recog-

nizable in the LoS velocity estimate, e.g., in cases where

the velocity field shows magnitudes or gradients that are

unrealistic (based on a priori knowledge, e.g., an average

velocity mosaic). In general, however, recognition may be

complicated by seasonal variation in the velocity field. Fur-

thermore, other potential error sources such as calibration

errors are superimposed on any unwrapping errors. Therefore,

to quantitatively examine the occurrence of unwrapping errors,

and thus to allow for a validation of the connectivity masking
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Fig. 3. Flowchart illustrating the process of interferogram simulation, which is further described in the Appendix. The two SLC images are simulated based
on a coherence estimate from a real image pair, and a known velocity field is added to the differential phase, such that unwrapping errors can be detected
through the difference between the input and output LoS velocity.

method, we generate simulated interferometric pairs of single

look complex (SLC) SAR images based on realistic coher-

ence estimates. The simulation procedure is described in the

Appendix and outlined in Fig. 3. Each simulated interferogram

contains phase contributions from speckle (estimated through

the observed coherence of a real Sentinel-1 image pair), topog-

raphy (computed through a DEM), and a known velocity field

(an LoS projection of a multi-year average velocity mosaic

derived with SAR offset tracking). While seasonal changes

in surface properties are represented by the real coherence

estimates used in simulating the interferograms, the motion

input phase contribution does not include seasonal variations,

as these are not expected to affect the general distribution

of unwrapping errors. Furthermore, the simulations do not

contain phase contributions from tropospheric and ionospheric

effects. Although these are of course important error sources

in DInSAR, they are not in general expected to cause phase

unwrapping errors, due to the high degree of spatial correla-

tion. Finally, the SLC simulation does not take into account the

observed backscatter intensity, as variations associated with an

increased likelihood of phase jumps (e.g., in layover or shadow

areas) would also be characterized by the coherence.

The simulated SLCs are input to the processing chain in

Fig. 1, using an amount of averaging corresponding to L =
58 independent looks and a coherence threshold of around 0.2.

Phase unwrapping errors are then detected by computing the

difference between the output LoS velocity from the simulated

interferogram and the input (known) velocity field. The only

phase contributions in this difference are unwrapping errors

and phase noise. The estimated standard deviation of the

phase noise for a coherence of 0.2 and L = 58 equivalent

number of looks (corresponding to the applied multi-looking)

is σn(L) = 0.52 rad. The coherence of 0.2 leads to an

upper bound noise estimate, as lower coherence pixels are

masked out in the unwrapping process. To account for phase

noise, unwrapping errors are classified as pixels for which the

difference between the resulting unwrapped phase, φunw, and

the known motion contribution, φdef , satisfies

|φunw − φdef | > 2π − 3σn(L) = 4.71 rad. (2)

Note that the unwrapping errors detected in the simulation

arising from the coherence estimate for a given image pair are

not necessarily identical to those occurring in the unwrapping

of the interferogram formed from the same imagery. This

is due to the fact that the simulation generates, for each

pixel, a single realization of the complex speckle affect-

ing the reference and secondary images, based on the real

coherence estimate. Therefore, the simulation results cannot

directly be used to mask errors occurring in the correspond-

ing real interferograms. The simulated interferograms allow

for an evaluation of the phase unwrapping process, where

unwrapping errors of any magnitude and spatial extent can be

detected.

Unwrapping errors are more prone to occur further toward

the ice sheet margin, where high shear stresses, caused by

fast-flowing glaciers, and surface melt lead to loss of coher-

ence. To evaluate the distribution of unwrapping errors and

the performance of the masking method in such a setting,

we selected a slice from an ascending Sentinel-1 track (rel-

ative orbit 74, interferometric wide (IW) swath mode, and

HH-polarization) with 13 bursts in each of the three IW

swaths, shown by the purple rectangle in Fig. 7. This slice

covers an area downstream of the Northeast Greenland Ice

Stream (NEGIS), near the outlets of the Zachariae and

Nioghalvfjerdsfjorden glaciers. We then carried out the simu-

lation procedure described in the Appendix for all possible

six-day interferograms using all acquisitions from the year

2017, leading to a total of 60 simulated interferograms. The

TanDEM-X 90 m Greenland DEM [19] and a 2016–2019

average velocity mosaic based on amplitude tracking mea-

surements generated through Programme for Monitoring of the

Greenland Ice Sheet (PROMICE) [20] were used in both image

coregistration and interferogram simulations. Fig. 4(a) and (b)

shows the multi-year PROMICE velocity projected to radar
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Fig. 4. (a) PROMICE 2016–2019 average velocity [20] projected to the scene LoS, (b) average coherence, (c) unwrapping error frequency, and (d) median
unwrapping error magnitude for the simulated interferogram ensemble (60 image pairs in total) without applying connectivity-based masking. Transparent
pixels indicate areas where data were discarded in all interferograms due to low coherence or areas where the PROMICE mosaic does not contain measurements
(including pixels over ocean). The red dot indicates the connectivity reference point, used for all simulated interferograms, and blue triangles in (a) indicate
GCPs used for 0th-order calibration of the output velocity measurements.

LoS and the average coherence level for the simulated inter-

ferograms. The coherence showed substantial scene-wide vari-

ations across the ensemble of interferograms, meaning that a

range of different conditions are represented (see also Fig. S1

in the Supplementary Material). For each simulated interfer-

ogram, unwrapping errors were detected by comparing the

obtained LoS velocity measurements with the input external

velocity field, as described above. Fig. 4(c) and (d) shows

the frequency of unwrapping errors and the median error

magnitude for the 60-image pair ensemble observed when

not applying the connectivity-based masking method. The

figures illustrate how unwrapping errors tend to occur in

areas that are confined by low coherence regions, generally

caused by shear margins. Errors are thus observed within the

downstream part of the ice stream and in the slow-moving

region east of the stream. In the latter, unwrapping errors

are more frequent; however, they also show a lower median

magnitude, compared with the errors within the ice stream.

Note that as part of the unwrapping algorithm, some pixels

are masked out based on coherence level and the detection of

layover/shadow, as described in Section II-A, leading to some

areas being masked out in all interferograms.

For each of the simulated interferograms, a connectivity

map was computed. The same connectivity reference point was

selected for all interferograms (indicated by the red point in

Fig. 4), in a region toward the interior ice sheet, where velocity

is low, coherence is typically high, and unwrapping errors

are not expected to occur. A range of connectivity thresholds

were then used to generate a mask for each interferogram.

Based on the results from a selection of test image pairs, the
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Fig. 5. (a) Histogram showing the distribution of connectivity values (distinguishing between pixels with and without detected unwrapping errors) for all
pixels in the simulated interferogram ensemble and (b) bar plot showing median unwrapping error magnitude sorted by connectivity value (in bins with a
width of 0.05) for all unwrapping error pixels in the simulated interferogram ensemble. In both the plots, the black line indicates connectivity equal to 0.30.
Note that bars in (a) are semi-transparent, such that magenta indicates overlapping bars.

structuring element for morphological closing of the masks

was selected as a 32 × 32 pixel diamond. As unwrapping

errors can be detected at a pixel level, the performance of the

connectivity masks can be quantitatively evaluated (Fig. S2 in

the Supplementary Material shows examples of connectivity

estimates and masking results for individual image pairs).

To determine the best performing connectivity threshold,

we compute the recall and precision measures obtained with

connectivity thresholds in the range [0.20; 0.50], measured in

increments of 0.05. Recall is defined as the number of true

errors detected divided by all true errors in the ensemble,

while precision is defined as the number of true errors detected

divided by all detected errors. Hence, in this context, recall can

be considered the estimated probability that a pixel affected

by an unwrapping error actually gets masked out, whereas

precision is the estimated probability that a pixel drawn from

all the masked pixels is affected by an unwrapping error.

The goal of the masking algorithm is to maximize both these

measures. A high recall indicates that the masking algorithm

is effective at detecting unwrapping errors, while a high

precision means that few valid pixels are masked. Naturally,

recall will increase with increasing connectivity thresholds,

approaching 1 in the trivial case where all pixels are masked

out, leading to 100% of errors being detected. Conversely,

for very high connectivity thresholds, precision will decrease,

since more and more valid pixels will be labeled as errors.

To determine the connectivity threshold which achieves the

best balance between recall and precision, the Fβ-score can

be applied. It is defined as

Fβ = (1 + β2)
precision · recall

β2 · precision + recall
(3)

and is a measure of effectiveness of masking assuming β

times as much importance is attached to recall as precision.

In this case, we argue that a selection of β > 1 is sensible,

meaning that a higher emphasis is put on minimizing the

number of missed unwrapping errors (high recall), rather than

minimizing the number of false detections (high precision).

Here, we opt to use the F2-score (β = 2) as a quality measure

to be maximized. Table I shows the estimated recall, precision,

and F2-score, computed for all pixels in the 60-image pair

ensemble and various connectivity thresholds. The table shows

that recall increases substantially until �c = 0.30, after which

smaller improvements are observed. Precision is maximized

at a threshold of 0.25–0.30 and then steadily drops, reflecting

the increase in false detections for higher thresholds. The

F2-score reaches a maximum at �c = 0.30, which is thus

deemed the best performing connectivity threshold. For higher

thresholds, the minor improvement in recall is canceled out

by the decrease in precision, leading to an overall decrease in

F2-score. Note that the precision of 0.52 means that almost

half of the discarded measurements actually do not contain

errors. While arguably a high price to pay to detect the major-

ity of unwrapping errors, a mitigating circumstance is that

tracking-based methods may provide coverage where DInSAR

measurements are discarded (although with a substantially

lower accuracy). Recall and precision do not consider the

magnitude of unwrapping errors. As seen in Table I, the

median magnitude of remaining errors shows a substantial

drop as the threshold is increased, suggesting that larger

unwrapping errors are associated with lower connectivity

levels.

Fig. 5 shows the distribution of connectivity, distinguishing

between unwrapping errors and valid pixels, and median

unwrapping error magnitude versus connectivity value for all

pixels in the simulated interferogram ensemble. The majority

of unwrapping errors are associated with a connectivity below

0.30, although a substantial amount of pixels below this
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Fig. 6. Unwrapping error frequency (left column), average error (middle column), and masking frequency (right column) for the simulated interferogram
ensemble after connectivity masking with a threshold of 0.25 (top row), 0.30 (middle row), and 0.35 (bottom row).

TABLE I

STATISTICS ILLUSTRATING THE PERFORMANCE OF CONNECTIVITY

MASKING WITH DIFFERENT THRESHOLDS. THE STATISTICS

ARE BASED ON ALL PIXELS FROM THE

60 SIMULATED INTERFEROGRAMS

threshold do not contain errors, as also indicated by the

precision and recall values in Table I. In addition, the median

magnitude of unwrapping errors associated with a connectivity

above 0.30 is 1.7 m/y (in fact, more than 90% of these

unwrapping errors have a magnitude of either one or two

phase cycles, corresponding to 1.7 and 3.4 m/y, respectively).

Conversely, the median magnitude of unwrapping errors below

0.30 connectivity is 47.2 m/y. Finally, Fig. 6 shows the

observed unwrapping error frequency and average magnitude

obtained by applying connectivity masking with thresholds

0.25, 0.30, and 0.35. Comparing the results with Fig. 4 demon-

strates a substantial reduction in unwrapping error frequency

scene-wide in all three cases. Increasing the threshold from

0.25 to 0.30 provides a noticeable improvement in terms of

error frequency, whereas further increasing the threshold to

0.35 leads to an increased masking frequency but only a

relatively small reduction in error frequency, as also indicated

by the observed values in Table I.

IV. APPLICATION EXAMPLE: NORTHEAST

GREENLAND ICE STREAM

The connectivity masking approach was also applied to real

image pairs. To this end, we acquired Sentinel-1 IW data

in HH-polarization from two ascending and three descending

tracks over the downstream portion of NEGIS spanning the

period December 1, 2019–January 27, 2020 (see Fig. 7 and
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Fig. 7. Overview of the Sentinel-1 data processed in this study (shown in map projection EPSG:3413). Black rectangles indicate Sentinel-1 tracks used to
estimate 2-D velocity over part of the Northeast Greenland Ice Stream (presented in Section IV), whereas the magenta rectangle indicates the subset processed
for the simulated interferograms (presented in Section III). GCPs used for calibration are shown as gray triangles and red points indicate connectivity reference
points. The color scale indicates velocity magnitude from the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) 2016–2019 average mosaic.

Table II), allowing for the retrieval of the average horizontal

velocity field with application of the surface-parallel flow

assumption [21]. For each of the image pairs, interferometric

processing was carried out as outlined in Section II-A with

multi-looking corresponding to L = 58 independent looks.

Connectivity was then estimated, with the reference point

for each track indicated in Fig. 7, and the same threshold

was applied in the masking of all image pairs. The refer-

ence points were selected based on the same rationale as

in Section III, namely, that they are in regions toward the

interior parts of the ice sheet where coherence tends to be

high and velocity is low. Based on the results from the

simulated data (see Section III), we chose to test the following

subset of connectivity thresholds, �c = {0.25, 0.30, 0.35}.
A diamond-shaped structuring element of 32 × 32 pixels

was once again used in the morphological closing of each

mask.

TABLE II

OVERVIEW OF SENTINEL-1 DATA PRESENTED IN SECTION IV.
ALL IMAGES ARE IN IW MODE AND HH-POLARIZATION. THE

SPATIAL EXTENT OF EACH TRACK IS SHOWN IN FIG. 7

Fig. 8 shows the magnitude of the horizontal velocity

field inferred from all processed tracks (following the same

inversion approach outlined in [5]), both with and without

connectivity masking. Also shown is the difference between

the velocity magnitude from the obtained measurements and
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Fig. 8. Horizontal velocity magnitude for the period December 1, 2019–January 27, 2020 obtained from the NEGIS Sentinel-1 image pairs shown in Table II
and Fig. 7(a), (c), and (e) and difference in horizontal velocity magnitude with respect to the PROMICE multi-year mosaic (b), (d), and (f) in the case of no
masking (a) and (b) and connectivity masking with a threshold of 0.25 (c) and (d) and 0.30 (e) and (f), respectively. In both masking cases, a morphological
closing with a 32 × 32 pixel diamond-shaped structuring element was applied.

the multi-year average PROMICE map, based on amplitude

offset tracking. Differences between these velocity fields may

be caused by unwrapping errors, temporal variations in the

velocity field, atmospheric effects, and calibration errors.

Inspecting Fig. 8(b) reveals several contiguous areas of high

magnitude differences, most of which are in regions that,

based on the simulation experiments, are expected to be prone

to unwrapping errors. The sharp gradients surrounding these

areas suggest that they are likely caused by unwrapping errors,

rather than, e.g., seasonal velocity variations or calibration

errors. Fig. 8(d) and (f) shows how some of the suspected

unwrapping errors are eliminated with a connectivity threshold

of 0.25, while setting �c = 0.30 appears to eliminate all

the major (suspected) unwrapping errors. Note that some

measurements, which based on the velocity difference mea-

sure are not expected to be unwrapping errors, are also
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discarded by the connectivity masking in both the cases (for

instance in the upstream part of NEGIS). This is also in line

with the expectations based on the simulation experiments,

where a precision on the order of 0.5 was estimated for

the presented connectivity thresholds. Although coherence is

generally expected to be higher in winter months, many of the

six-day interferograms in this dataset show moderately low

coherence levels toward the interior ice sheet (see Fig. S3

in the Supplementary Material). While these coherence levels

seemingly do not lead to unwrapping errors, they do lead

to low connectivity levels and consequently to the discarding

of valid measurements and a lowered precision. The case of

�c = 0.35 is not shown, as the 0.30 threshold already seems

to detect the vast majority of errors.

V. DISCUSSION

An advantage of the connectivity masking approach is that

it allows for an automated masking of each individual inter-

ferogram, independent of external datasets. Hence, instead of

discarding all measurements from a region that is expected to

be prone to unwrapping errors (as would be common practice),

one can apply connectivity masking and achieve DInSAR

velocity measurements with high reliability. We tested the

method in the downstream part of NEGIS, an area where

features often associated with unwrapping errors (such as high

levels of shear, ice–bedrock transitions, and frequent loss of

coherence) are well-represented. Although the ensemble of

simulated interferograms all cover the same region, a wide

variety of coherence (and hence unwrapping error) realizations

are observed, allowing evaluation of the connectivity masking

approach under different conditions. It is possible that the

masking performance and the optimal connectivity threshold

might show some variation for a different distribution of

coherence realizations or for different geographical regions.

The connectivity measure generally captures unwrapping

errors well, with most error pixels in the simulated dataset

being associated with lower connectivity values. As indicated

by Table I and Fig. 5(b), when applying a 0.30 connectivity

threshold, a majority of missed detections have an error mag-

nitude of a single phase cycle (1.7 m/y). Fig. S2 in the Supple-

mentary Material shows the connectivity and unwrapping error

occurrences for some of the simulated interferograms. For

one of these interferograms, an error of a single phase cycle

occurs in a large region where connectivity is moderately high,

meaning that it remains undetected by connectivity masking.

Based on our observations, the connectivity masking approach

is generally more effective at detecting unwrapping errors of

large spatial scales and large magnitudes. The morphological

closing, which is applied to reduce the number of valid

measurements discarded, may lead to missed detections of

unwrapping errors at a scale smaller than the structuring

element.

As mentioned in Section II-B, several coherence weight-

ing functions were tested in the generation of a confi-

dence measure for connectivity estimation, although we found

unweighted coherence to perform the best. It is, of course, also

possible to combine different parameters or external datasets

in the confidence measure, as long as the final measure is

normalized to an interval of [0; 1]; however, this was not

thoroughly investigated in this study.

In the evaluation of the best performing connectivity thresh-

olds, we weighted recall higher than precision, arguing that

missing the detection of unwrapping errors comes at a higher

price than discarding valid measurements. Consequently, the

threshold of 0.30, which we deemed optimal for both the simu-

lated and real data, has an estimated precision of 0.52, meaning

that nearly half of the discarded measurements are valid. Since

amplitude tracking either way must be carried out to cover

fast-flowing parts of glaciers, these measurements can be used

to provide coverage in regions where DInSAR measurements

are discarded, albeit at a lower resolution and accuracy.

However, if DInSAR and tracking-based measurements are

combined using weights that are inversely proportional to the

estimated accuracy, as in, e.g., [5], DInSAR measurements

will dominate the resulting velocity field wherever they are

available. Hence, measurements containing unwrapping errors

will not be averaged out by the combination with amplitude

tracking measurements but will propagate to the final product,

highlighting the importance of detecting as many unwrapping

errors as possible, especially those of high magnitudes, even at

the cost of low precision. Fortunately, the simulations suggest

that generally, unwrapping errors of higher magnitudes are

associated with lower connectivity levels (see Table I and

Fig. 5), increasing the likelihood of detecting larger errors.

In the cases presented here, the reference point for con-

nectivity estimation was selected manually as a point toward

the interior part of the ice sheet, where coherence is typically

higher and unwrapping errors are not generally expected. The

reference point selection could be automated by selecting the

point of maximum coherence within the largest interferogram

segment (following the segmentation process mentioned in

Section II-A). Figs. S4 and S5 in the Supplementary Material

show the connectivity maps and unwrapping error distributions

obtained for two of the simulated image pairs when using

different reference points, including the reference point defined

by the automated approach. Nearly identical masking results

are obtained for the various reference points, suggesting a

limited sensitivity to the reference point selection. For very

large scenes (e.g., Sentinel-1 tracks extending across the

Greenland Ice Sheet), reference point selection may in some

cases be somewhat complicated, e.g., in case a large region of

low coherence forms a divide between two coherent regions.

In such a case, it may be beneficial to divide the scene in

smaller subsets and process these separately. Automation of

such a process should be further investigated before the con-

nectivity masking approach is applied in a fully ice sheet-wide

operational manner.

VI. CONCLUSION

The occurrence of unwrapping errors is one of the most

significant sources of error in DInSAR ice velocity retrieval,

specifically affecting measurements toward the ice sheet mar-

gin, near glacier outlets. As demonstrated here, conventional

methods such as coherence-based masking and segmentation

alone are not sufficient to fully prevent unwrapping errors.

142 Synthetic Aperture Radar TOPS-mode Interferometry for Ice Velocity Retrieval



ANDERSEN et al.: CONNECTIVITY APPROACH FOR DETECTING UNRELIABLE DInSAR ICE VELOCITY MEASUREMENTS 4304512

We propose a masking approach based on pixel connectivity

estimation, adapted from the work of [13], to improve detec-

tion of unreliable DInSAR measurements. In this approach,

a mask is generated for each individual interferogram by

masking out pixels with a connectivity below a certain thresh-

old, specified by the user. The connectivity estimate is based

solely on the interferometric coherence and a single reference

point and hence does not require a full DInSAR time series

to be processed, nor does it rely on external datasets. For

the examples presented here, the connectivity reference point

selection was done manually; however, we argue that this

process can be automated by selecting the point of maximum

coherence in the largest interferogram segment. The results

obtained for both the simulated and real data suggest that a

reasonable connectivity threshold is on the order of 0.30. With

such a threshold, we estimate a recall of 0.84 and a precision

of 0.52, indicating that the majority of unwrapping errors are

detected, although nearly half of the discarded measurements

are not actually affected by unwrapping errors. In ice sheet-

wide routine retrievals, DInSAR measurements are, ideally,

combined with tracking-based measurements. As the coverage

of the tracking-based methods is better than that obtained by

DInSAR, coverage may still be achieved in areas that are

flagged by connectivity-based masking. Therefore, we pri-

oritize masking the majority of unwrapping errors even at

the cost of discarding some valid DInSAR measurements.

Finally, we observe a tendency for unwrapping errors of higher

magnitudes to be associated with pixels of lower connectivity

values, with the simulated interferogram ensemble showing

a median error of only 1.7 m/y for pixels with connectivity

above 0.30. Hence, larger unwrapping errors are more likely

to be detected, even when masking with relatively low con-

nectivity thresholds.

APPENDIX

INTERFEROGRAM SIMULATION

For each interferogram, the simulation procedure is as

follows.

1) Carry out a refined coregistration of a real Sentinel-1

data pair, as described in [5] and [6].

2) Estimate interferometric coherence, applying

multi-looking with a factor of 18 × 4 in range ×
azimuth. The coherence estimate is then interpolated

(using inverse distance weighting) to full resolution in

the geometry of the first SLC.

3) Simulate two complex SLCs, u1 and u2, in the same

geometry and with the same coherence as the real data

pair, according to [22]

u1 =
√

1 − γ a + √
γ c (4)

u2 =
√

1 − γ b + √
γ c (5)

where a, b, and c are uncorrelated stationary white

complex Gaussian processes of equal (unit) variance,

and γ is the estimated coherence.

4) Add deterministic phase contributions representing the

flat-earth term, the topography, and the deformation to

the first SLC image

udet
1 = u1e j (φflat+φtopo+φdef ). (6)

The flat-earth and topographic contributions, φflat and

φtopo, are estimated through precise orbits and an exter-

nal DEM, whereas the deformation phase term is com-

puted as

φdef = −
4π

λ
vLoS1T (7)

where λ is the radar wavelength, vLoS is the LoS velocity

component, and 1T is the temporal baseline, which is

equal to six days for all the interferograms presented

here. The LoS velocity is computed by projecting an

external ice velocity mosaic, e.g., a multi-year velocity

average, on the radar LoS. Atmospheric phase contri-

butions are neglected, as these generally do not lead to

unwrapping errors.

5) Finally, the simulated SLCs enter a usual DInSAR

processing scheme (omitting coregistration, as this has

already been done prior to coherence estimation). The

interferogram is formed as

I sim = udet
1 u∗

2 (8)

and once flattening is carried out, based on the same

orbit files and DEM applied in the simulations, the only

remaining phase contributions are the deformation term,

which is known, and the phase noise corresponding to

the coherence estimate.
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A.4 Simplistic machine learning approaches for pixel-level
unwrapping error detection

This appendix provides a short, unpublished manuscript, which builds upon the work
documented in Appendix A.3 and was submitted for the DTU PhD Course 02910 Com-
putational Data Analysis, taken as part of the PhD degree.

J. K. Andersen, Simplistic machine learning approaches for pixel-level unwrap-
ping error detection, unpublished (2021)
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Abstract

In this study, three supervised binary classification models are applied for the detection of phase unwrapping
errors in Differential Interferometric Synthetic Aperture Radar ice velocity measurements. The models are
trained and evaluated on a data set consisting of simulated interferograms, covering a region of the Northeast
Greenland ice sheet margin. Performance on the simulated data is impressive, with the Random Forest and
AdaBoost Decision Tree models showing accuracies on the order of 0.9. Further work should be carried out,
however, to assess how well this performance translates to real data sets from various regions on the ice sheet.

1. Introduction

Ice velocity is an essential parameter in the monitoring of contributions to sea level rise by glaciers and ice
sheets. Additionally, accurate knowledge on ice dynamics allows glaciologists to better understand the nature
and evolution of the major ice sheets. Since the 1990s, Synthetic Aperture Radar (SAR) satellites (a particular
type of imaging radars) have proved an invaluable source of ice velocity measurements [1–3]. Contrary to
optical instruments, radars do not rely on sunlight and may even measure through cloud covers - benefits that
are especially relevant in polar regions. Differential SAR Interferometry (DInSAR) is a method in which the
phase difference between two subsequent acquisitions (from two subsequent satellite passes, typically separated
by a few days) is exploited to measure ground deformation in the radar line-of-sight direction, through the
relation:

dLoS =
4π

λ
∆φ (1)

where dLoS is the line-of-sight deformation (which can be scaled to a velocity estimate), λ is the radar wavelength,
and ∆φ is the measured 2D phase difference map, also known as an interferogram. The theoretical accuracy
of DInSAR deformation measurements is a fraction of the radar wavelength (which is typically in the range of
5-25 cm).

The main limitation in DInSAR is that the measured phase differences are wrapped in an interval of [0; 2π].
Hence, a phase unwrapping procedure is required in order to determine the absolute phase difference at each
pixel, i.e. an algorithm that determines the correct integer number of phase cycles (2π radians) to add/subtract
from each phase difference. Several approaches have been applied to address this problem, e.g. [4, 5]. In this
study we assume the use of a Minimum Cost Flow unwrapping algorithm, as described in [6], and a DInSAR
processing algorithm as described in [7]. Phase unwrapping errors occur when the unwrapping algorithm
assigns a wrong integer of phase cycles to a given pixel. In this study we work with interferograms with a
6-day temporal separation and a 5.4 GHz SAR system, meaning that a phase error of 2π radians translates to
a velocity estimation error of 1.7 m/y, however, in general, unwrapping errors may have magnitudes of many
phase cycles, leading to velocity errors of tens or even hundreds of m/y. In some cases, unwrapping errors
lead to physically infeasible output velocity measurements and hence a manual inspection may allow for error
detection. In general, however, as the true velocity field is unknown, the exact extent of unwrapping errors
cannot be determined. Therefore, for the study of unwrapping error propagation, I have generated a set of
simulated interferograms based on coherence estimates from real image pairs and a known velocity field. In
such a case, the true velocity is known at every pixel and any deviations of one or more phase cycles between
the input and output velocity fields will be caused by unwrapping errors. The simulated data set will be further
described in Section 2.

Phase unwrapping errors are often induced in and around regions of low interferometric coherence, meaning
regions where the radar scattering properties of the surface undergoes change during the time between the two
acquisitions. A coherence of zero implies that the retrieved phase is pure noise, while a coherence equal to
one implies no noise. Most unwrapping algorithms apply a masking in which pixels with coherence below a
certain threshold are discarded. Such an approach, however, is not enough to prevent all types of erroneous
measurements, as unwrapping errors may propagate into regions with high coherence levels. In order to improve
the detection of such errors, I have recently investigated the performance of using pixel connectivity, first defined
in [8], to apply an additional masking of the DInSAR output. The connectivity measure is derived from the
coherence and a selected reference pixel. The connectivity for a given pixel is high if there exists a path

1
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connecting it to the reference point which passes through only high coherence values. Conversely, if the given
pixel can only be connected to the reference by passing through low coherence values, the resulting connectivity
is low. An example of a coherence image and a resulting connectivity measure is seen in Fig. 2. Note that
the reference point is selected towards the interior ice sheet, where coherence is generally high and unwrapping
errors are rarely observed. The resulting connectivity is low for image segments that are separated by zones of
low coherence (these zones are primarily caused by shear margins, i.e. high velocity gradients, which cause the
ice fabric to rotate and hence to alter its radar scattering properties).

It turns out that the connectivity measure is a relatively good indicator of unwrapping errors - the majority of
observed unwrapping errors occur in pixels with low connectivity values, as observed in Fig. 1. Hence, simply
masking pixels with a connectivity below some threshold (e.g. 0.3) performs quite well in terms of detecting
unwrapping errors. However, as also indicated by Fig. 1, this method leads to a substantial amount of false
positives (represented by the blue bars to the left of the vertical black line).

Figure 1: Histogram showing the distribution of pixel connectivity for the simulated data set presented in
Section 2. Note that a majority of unwrapping errors occur in pixels with connectivity below 0.3 (indicated by
the black line), although a substantial amount of valid pixels are also below this threshold.

The goal of this study is to improve the detection of DInSAR unwrapping errors through machine learning
methods introduced in the course, incorporating both the connectivity measure as well as other available input
features. As the simulated data set is available, we use this to construct a binary classification problem,
classifying between pixels with unwrapping errors and error-free pixels. Several methods from the course are
viable candidates in solving such a problem. Here, we investigate the performance of Logistic Regression, as
well as two ensemble methods based on Decision Trees, namely Random Forest and AdaBoost.

2. Data description

In this study we use data from the EU Copernicus Sentinel-1 satellites, which both carry a C-band SAR
system. The two satellites are in a polar orbit with a 12-day repeat cycle and are separated by 180◦, meaning
that the minimum revisit time is 6 days. As previously mentioned, a set of simulated interferograms was
generated, such that the true unwrapping error distribution is known. A total of 60 simulated interferograms
were generated based on the observed coherence in real Sentinel-1 6-day interferograms from a region in the
downstream part of the Northeast Greenland Ice Stream. Fig. 2 shows the five input features used in this
study for one of the simulated interferograms. Also shown is the obtained map of unwrapping error occurrence
for the given interferogram. Although the exact magnitude of each unwrapping error is known (and could be
used to formulate a regression problem), in this study we simply generate a binary class, where an error of any

2
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magnitude is assigned a value of 1, while error-free (also called valid) pixels are assigned a value of 0. This
binary class is then used as the output in the formulation of a supervised binary classification problem. Note
that some pixels are discarded in the unwrapping process (based on coherence and intensity levels), and those
pixels are of course excluded, since an output is not available.

The five input features are the interferometric coherence, the pixel connectivity, the radar backscatter intensity,
the scene topography, and an a priori estimate of the radar line-of-sight velocity field (a multi-annual average
velocity mosaic, re-projected to line-of-sight). Note that the topography and a priori velocity fields are identical
for all 60 simulated interferograms. The other three input features vary between interferograms.

As the scene under investigation has a wide extent (roughly 250 × 250 km) and the features are on a 50 × 50

m grid, training models on the entire data set is infeasible. Instead, the data must be heavily sub-sampled.
The sampling process also allows us to deal with the inherent class imbalance - there are many more valid
pixels than error pixels, which, if unaccounted for, may lead to poor generalization of the trained models.
The sampling process therefore consists of extracting an equal amount of valid and error pixels. The samples
are drawn at random from the entire data set (except for 4 interferograms, which are reserved for additional
validation purposes), such that different conditions are represented in the data used for model training. To keep
computation times at a reasonable level, a total of N = 20.000 pixels were selected for the final data set for
model training and evaluation. Note that this comprises a tiny fraction of the original data set, which contains
>109 samples.

Figure 2: Examples of each of the variables in the input data set, here shown for a single interferogram. The
full data set consists of 60 simulated interferograms, based on the estimated coherence from 60 real Sentinel-1
interferograms covering the same region in Northeast Greenland (Sentinel-1 track ID: 74, ascending). The
unwrapping error occurrence is a binary class, used as an output in the classification problem, with the
remaining variables used as input features. A red dot marks the reference point for the connectivity estimate.

3. Methodology

We investigate the performance of three supervised binary classification models. Logistic Regression is included,
as it is a relatively simple and easily implemented model, which does not require prior knowledge on variable
distributions or covariances. While different forms of regularization can be introduced to Logistic Regression,
in this case we choose to omit regularization, based on the fact that we have many observations and few input
features. The other two models under investigation stem from ensemble methods, both based on Decision Trees
(DTs), namely Random Forest and AdaBoost DTs. Random Forest (RF) applies the bagging principle to DTs,
where random samples are drawn in a bootstrap fashion, building multiple DTs in an effort to decrease prediction

3
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variance by averaging out noise. A further refinement is done by picking a random subset of input features to
determine each of the DTs splits - this decreases the correlation of the generated DTs, further lowering the total
ensemble variance. Conversely, AdaBoost DTs applies the boosting principle, where each DT in the ensemble is
built adaptively, emphasizing samples that lead to miss-classifications by giving these samples higher weights.
While bagging leads to a reduction in variance, boosting allows for a reduction of both variance and bias.

Model selection for the Random Forest and AdaBoost models is done through a cross-validation setup, in which
all possible combinations of the hyper-parameters listed in Table 1 are trained and tested through 5-fold cross-
validation. In all cases, the input features are standardized. The model with the highest mean test score,
which is equivalent to the mean accuracy, is then selected (for Random Forest, the out-of-bag score is used).
A total of 80% of the sampled data set is used for the model selection cross-validation, while the remaining
20% is reserved as a validation set for the final models. While different ranges of of the listed parameters were
experimented with, it should be noted that there are additional hyper-parameters, which could be tuned for
each of the methods. Hence, it is likely that an even better model could be obtained with the applied methods.

Logistic Regression Random Forest AdaBoost Decision Trees

No regularization criterion: {’gini’, ’entropy’} criterion: {’gini’, ’entropy’}
(penalty: ’none’) max_depth: {1; 20} max_depth: {1; 20}

max_features: {1; 5} max_features: {1; 5}
n_estimators: {1; 100} n_estimators: {1; 150}

Table 1: Overview of the various hyper-parameters investigated for each of the implemented models. Model
selection was based on 5-fold cross-validation, implemented through the GridSearchCV function in sklearn,
allowing testing of all combinations of parameters.

Once the best performing model parameters have been determined, the final Random Forest and AdaBoost
models are trained on the entire 80% data set. Note that we do not carry out any regularization steps to select
a simpler model (e.g. through the one-standard-error rule), meaning that there is a chance that our models will
be somewhat overfitting the sampled data set and hence not achieve optimal generalization. As no parameter
search is performed for Logistic Regression, this model is simply trained on the 80% data set to begin with.
Then, performance of the models is estimated by comparing their predictions on the remaining 20% of the data
set (not used for model selection or training) with the ground truth.

4. Results

Table 2 shows an overview of the performance of the final models, trained on 80% of the sampled data set
and tested on the remaining 20%, along with their hyper-parameters. Aside from the accuracy, also the recall
(number of true positive detections divided by all positive samples, where ’positive’ means an unwrapping
error) and precision (number of true positives divided by all positive detections) are reported. Additionally, the
Fβ-score is defined as:

Fβ = (1 + β2) · precision · recall
β2 · precision + recall

(2)

and is a measure of detection performance when considering recall β times as important as precision. In Table
2, we report the F2-score of the models, arguing that detecting as many unwrapping errors as possible is more
important than limiting the number of false positives.

Table 2 shows the Logistic Regression model performing quite well, with a recall just above 0.9, meaning that
90% of unwrapping errors in the validation set are correctly detected (the precision being somewhat lower, due
to false positives). The two ensemble methods show an even better performance: The Random Forest and
AdaBoost DTs both achieve F2-scores above 0.93, with Random Forest slightly outperforming AdaBoost in
terms of both recall, precision, and accuracy.

4
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Model Accuracy Recall Precision F2-score

Logistic Regression (no regularization) 0.880 0.904 0.864 0.896
Random Forest (criterion=’entropy’,
max depth=15, max features=5, no. es-
timators=79)

0.947 0.950 0.944 0.949

AdaBoost DTs (criterion=’entropy’,
max depth=11, max features=5, no.
estimators=143)

0.929 0.931 0.929 0.931

Table 2: Overview of performance of the final models (best performing parameters, based on model selection).
The models were trained on 80% of the sampled data set and tested on the remaining 20%.

Figure 3: Predictions of the three final models along with ground truth (columns) on four of the full simulated
interferograms, reserved from the original data set (one interferogram per row).

5
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It is interesting to investigate how well the final models can predict unwrapping errors in an entire interfer-
ogram. To facilitate this, four of the original 60 simulated interferograms were reserved (meaning they were
excluded from the training data set). Fig. 3 shows the model predictions of all three models for the four
reserved interferograms, along with the ground truth (i.e. the true distribution of unwrapping errors). For
the interferograms in the first and third rows, all three models perform impressively well, detecting the vast
majority of errors (recall higher than 0.85 in all but on case), although also including some false positives. The
ensemble methods show a somewhat higher precision than Logistic Regression. The second row interferogram,
where unwrapping errors occur within the fast-flowing ice stream, is not captured well by any of the models. A
possible explanation could be that the training samples included few instances of errors in this region. Finally,
the fourth row interferogram, which shows only local errors of small extents, leads to good results in terms of
recall, although also including a substantial amount of false positives, which drives the precision down.

5. Discussion

The greatest limitation of this study is the fact that the models are trained and evaluated on measurements from
only a single region of the Greenland ice sheet. Although the preliminary results presented here look promising,
I doubt that the models trained here would generalize well to all other ice sheet regions. Still, considering
the small amount of training data included, the results certainly motivate further investigations, particularly
into applying ensemble classification methods to the unwrapping error detection problem. A natural next step
would be to investigate the performance of the models on simulated data from different regions (perhaps even
without including samples from the new data set in the training). Eventually, a qualitative evaluation of the
model performance on real data would also be of interest.

The Random Forest model implementation automatically computes the importance of each of the input fea-
tures. The feature importance estimates obtained for the final Random Forest model are shown in Table 3.
Unsurprisingly, connectivity is by far the most important feature in the unwrapping error detection. Coherence
and backscatter intensity are the least important features. This perhaps makes sense, seeing as the lowest
coherence pixels are already masked out by the unwrapping algorithm, and the intensity image is often similar
to the coherence. Finally, both the a priori (i.e. multi-year average) velocity and topography fields show a
relatively high importance. This, presumably, reflects how the model learns to associate regions with certain
altitudes and flow speeds with a higher risk of unwrapping errors. This tendency may be problematic for a
small training data set, however as long as a wide range of unwrapping errors (i.e. errors occurring in different
regions) is represented, this behavior may be desirable. Note that other input parameters are available, such
as the pixel weights computed by the unwrapping algorithm or the unwrapped phase values - also, the effect of
omitting the less important features (such as coherence and intensity) should also be investigated.

Coherence Connectivity A priori velocity Intensity Topography

Random Forest 0.05 0.62 0.18 0.03 0.12

Table 3: Overview of estimated feature importance (rounded to two decimals) for the final Random Forest
model (hyper-parameters listed in Table 2).

Recently, I have applied a simple masking based on thresholding of the connectivity estimate. As can be deduced
from the histogram in Fig. 1, this approach is relatively effective at detecting unwrapping errors (since the vast
majority of errors are associated with low connectivity), however a significant amount of false positives are also
detected - for the full data set presented here, a connectivity threshold of 0.30 leads to a recall of 0.86 and a
precision of 0.52. The work presented here suggests to me that better results may be obtainable with either of
the three investigated models, although further work must be done to investigate the response of the models
to training data from different regions and different interferogram realizations. Also, introducing some form of
regularization in the model selection step might be beneficial and should be looked into.

Other ideas for future investigations could be applications of a semantic segmentation method through Con-
volutional Neural Networks, e.g. using the UNet architecture [9], or unsupervised approaches (applied to real
data, instead of simulations), e.g. various clustering methods.

6
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A.5 Wintertime lake drainage cascade triggers large-scale ice
flow response in Greenland

This appendix provides the full manuscript:

N. Maier, J. K. Andersen, J. Mouginot, F. Gimbert, and O. Gagliardini, Win-
tertime lake drainage cascade triggers large-scale ice flow response in Green-
land, Science, [in review] (2022)

Supplementary material for the manuscript is provided in Appendix B.3.
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One sentence summary: 

We show large changes in dynamics due to surface melt occur during winter in Greenland. 

Abstract: 

Surface melt forces summertime ice flow accelerations on glaciers and ice sheets. Here, we show that large 

melt-forced accelerations also occur in winter in Greenland. We document supraglacial lakes (SGLs) draining 

in cascades at unusually high elevation, causing an expansive flow acceleration over a ~5200 km2 region 5 

during winter. The three-component interferometric surface velocity field reveals the underlying flood 

propagation with unprecedented detail, providing novel constraints on hydrology-dynamic forcing. The 

triggering SGLs continuously grew over 40 years and suddenly released decades of stored meltwater into 

regions of the bed never previously forced, demonstrating surface melt can impact dynamics well beyond its 

production.  We show these events are common and linked to changing climate, and thus will likely impact 10 

ice sheet evolution into the future. 

Main text: 

The annual velocity cycle along the margins of Greenland is closely linked to meltwater availability (1–10). In 

early summer, the ice sheet accelerates as surface meltwater is delivered to the bed and is routed through 

an inefficient subglacial drainage system favoring high basal water pressures (1–7, 10). In late summer, 15 

drainage efficiency gains cause water pressures to decrease, decelerating the ice sheet back to or below the 

previous winter values (1–7, 10). In the absence of surface melt during the winter period, flow speed typically 

follows a monotonic increase (5, 7, 11), which is attributed to decreasing ice-bed coupling from in situ 

production of basal melt (7, 11). This cycle is the basis of current understanding of hydrology-dynamic 

coupling and how increased melt will influence flow speeds and mass loss in the future (12). 20 

Large transient changes in surface velocities are typically not expected during winter due to the absence of 

surface melt. Yet, perennial water storage of the previous summer’s meltwater can occur within supraglacial 

lakes (SGLs) that remain partially unfrozen through winter (13–17). Recent work indicates isolated lakes can 

drain during winter (13, 17), but it is thought these drainages do not have a significant impact on flow speeds 

(13). This contrasts to many observations made during summer, where SGL drainages drive multi-day 25 

accelerations across large areas due to the high water influx rates from the drainage reducing friction and 

enhancing bed velocities while propagating downgradient (1, 18–20). This phenomenon is more prominent 
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for clusters of lakes that drain successively over short time periods as a result of acceleration-driven stress 

transients that promote hydrofracturing of multiple lakes (19, 21).  

Here, we document a cascading lake drainage event that causes an expansive glacier acceleration over 30 

approximately ~5200 km2 of the ice sheet during winter in western Greenland (Fig. 1). On approximately 

March 9th 2018, two SGLs drained in a land terminating sector just south of Jakobshavn Isbræ 142 km inland 

from the westernmost ice margin and at high elevations (~1600 m) (Fig. 1, S1). This altitude corresponds to 

multi-year snowline (22), which approximates the transition between the accumulation and ablation zones. 

Before the event, no observable acceleration is detected in Sentinel-1 DInSAR line-of-sight (LoS) velocities, 35 

which are sensitive to centimeter scale surface displacements (vertical and horizontal) over the six-day 

acquisition period (Fig. 1C, Methods). These incipient drainages trigger an acceleration in the direct vicinity 

of the draining lakes marking the initiation of a marginally propagating velocity wave.  

Between March 9th and 12th, eight additional lakes drained ~40 km downstream and ~20 km north of the 

original drainage cluster (Fig. 1D, Fig. S1). During this period, LoS velocities increase up to 160% of pre-40 

drainage values. The wave exhibits a complex structure and bifurcates into two main paths. The wave 

heading west propagates towards Nordenskiöld Glacier, a relatively slow-moving outlet glacier (~200 m yr-1) 

terminating on a sediment delta (Fig. S2). This western path shows multiple branches emanating from the 

northern and southern part of the original drainage cluster that coalesce downglacier later on. The wave 

heading north propagates towards Jakobshavn Isbræ, the fastest marine-terminating outlet glacier in 45 

Greenland (>10 km yr-1), along a single branch (Fig. 1). All of these branches closely follow the troughs in the 

bed topography and SGL drainage always falls in their vicinity.  

As the event continues, the westward wave front continues to move downglacier and shows again a complex 

multi-branched structure following bed depressions. The northernmost wave front is no longer clearly visible, 

extending beyond the usable DInSAR observations. The westward branches eventually coalesce ~80 km 50 

downglacier from the original drainage site. LoS velocities within the main wave remain 160% their 

background value. Between March 18th and 24th, the westward wave front enters the main Nordenskiöld 

trough, and velocities increase to ~250% background. Between March 24th and 30th, three more SGLs are 

observed to drain about 60 km upglacier of the wave front. This drainage causes an additional acceleration 

following an angular bed trough to the north and rejoins the main wave path before entering the 55 

Nordenskiöld bed trough.  The wave front reaches the terminus of Nordenskiöld between March 30th and 

April 4th, about 25 days after its initiation. This timing coincides with the proglacial release of water from 

Nordenskiöld proglacial delta observed in optical imagery on April 2nd and 9th (Fig. S2).  

By combining different lines-of-sight obtained using ascending and descending Sentinel-1 passes and 

assuming that the displacements recorded over the different passes are similar and that horizontal flow 60 

direction remains unchanged (Methods), we invert for horizontal motion (relative to pre-drainage velocities) 

and the vertical displacement and find they exhibit strikingly distinct patterns (Fig. 2). The horizontal velocity 

field is smooth and spatially extends over tens up to a hundred of kilometers, while the uplift is concentrated 

in a bead and thread structure of characteristic width on the order or less than ten kilometers, where high 

uplift patches (~25 cm) are linked together through thinner uplift connectors of lower amplitude. Synthetic 65 

modeling validates our decomposition assumptions and the interpretation that the decomposed fields 

mainly represent horizontal and vertical motion (Fig. 2; Methods).  

We interpret the uplift which produces the complex structure in Fig. 1 as changes in bed separation and likely 

flow pathways (Fig. 2, S3, Methods) as the ~0.18 km3 of meltwater (Methods) injected into the ice-bed 

interface drains towards the margin. This is based on the following evidences: (i) neither vertical motion 70 

resulting from vertical strain or bed tangential motion are likely to produce such a pattern (Fig. S4); (ii) the 

uplifted branches correspond to hydropotential lows within the bed troughs, which is the expected pathway 

of subglacially draining water (Fig. 1A, S5); (iii) regions of highest uplift correspond to depressions in the 

hydropotential (subglacial sinks) (Fig. S6). The bead and thread uplift structure suggests a fill and spill 

drainage style that is similar to the drainage of subglacial lakes (23, 24), with water captured by each sink 75 

along the flow path and released when the pressure reaches the hydropotential lip of each depression. 
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Drainage through these regions requires overpressure, which can physically cause bed separation either due 

to the detachment of the ice base via floatation or upward cavity formation via ice creep (1, 2, 4, 25–28), and 

is thus consistent with the beads of high uplift (Fig. 2, S6). The comparatively smooth and large spatial extent 

of the horizontal field indicates much of the horizontal acceleration is not directly related to bed separation. 80 

This suggests changes in bed friction are linked to bed separation as conceptualized by (25, 29, 30) and much 

larger changes in dynamics occur through stress transmission within the ice - a behavior inferred previously 

from scarce subglacial measurement and modeling (8, 10, 31–33) but never confirmed observationally. 

Alternatively, changes in bed friction could also be set by water pressure increases beyond the uplifted 

region, however subglacial observations suggest limited pressure communication across short distances (31, 85 

34).  

We estimate the speed of the velocity wave that propagates along the interpreted Nordenskiöld drainage 

pathways (Methods, Fig. S3) to be between 0.03-0.17 m s-1 (Fig. 3, Methods). Repeat dye tracer experiments 

in Greenland have shown seasonally evolving drainage velocities, where drainage velocities of ~0.1 m s-1 were 

observed early in the melt season and increased to drainage velocities of ~1 m s-1 as the melt season 90 

progressed (35, 36). This change was inferred to reflect the transition from inefficient drainage to more 

efficient and channelized drainage pathways. Our event-averaged drainage velocity of ~0.1 m s-1 and 1-10 

km scale of the uplifted regions would imply drainage through inefficient and distributed subglacial drainage 

pathways. The inferred drainage speed slows to about 0.05 m s-1 as the water enters the Nordenskiöld final 

trough while horizontal velocities increase by 250%. This occurs even though modeled hydropotential 95 

gradients are higher than upgradient regions and no modeled subglacial sinks are present (Fig. 3) and implies 

other factors primarily control drainage speeds. One possibility is that the drainage system conductivity is 

lower within the trough, leading to lower drainage velocities even with higher hydropotential gradients. This 

could be due to the accumulation of sediments, where water drains mainly via Darcian flow, or to differences 

in the pre-existing drainage system geometry. 100 

In the absence of surface melting, which can cause SGL overspill, the drainages likely occur due to 

hydrofracture to the ice base, which occurs when water pressure within a surface crevasse exceeds the ice 

pressure (37–41). The initial formation of crevasses necessary for hydrofracture requires precursor events 

that generate tensile stress transients (19, 39). Here, no precursor is observed (Fig. 1), however it is possible 

that a short duration event would not be detected in our six-day velocity maps. Yet, the initially draining lakes 105 

are located near the snowline (Fig. 1) and are far inland from the terminus of any outlet glacier which would 

be the most plausible source of transient behavior during winter (42). Given no precursor is detected, we 

suggest it is plausible that initial fracturing occurred locally due to expansion and contraction of the ice 

surface due to large air temperature fluctuations (43, 44). The event occurred during a period of rapid cooling 

observed at nearby weather stations (Fig. S7) (45) after a well-documented arctic heatwave event (46), 110 

indicating that the event coincided with favorable conditions for thermal fracturing. Colocated near-surface 

ice temperatures also indicate an increase during this cooling, suggesting refreezing (Fig. S7), which could 

also potentially cause surface fracture via expansion. 

Once the initial lake drainage has started, the ice displacements generate stress transients that can trigger 

hydrofracture within nearby lakes (38–41), thus initiating a cascade of SGL drainages near the original 115 

drainage location (19). Interestingly, many drainages occur more than 40 km away from the initial drainage, 

and up to 14 days after the original drainage. This would indicate that their drainage is unrelated to stress 

transients related to ice-tectonic deformations around the incipient drainages and are tapped after the 

velocity wave passes and tensile stress conditions are favorable for hydrofracture.  

Prior to this event, spatially expansive winter transients due to surface melt forcing have not been previously 120 

observed (13, 17). Comparing the flow velocities before and after the flood wave passes shows that the 

influence on dynamics persists beyond the event. Regions along and around the drainage pathway have 

slowed in the regions upstream of the Nordenskiöld bed trough by 5-10% while within the Nordenskiöld bed 

trough velocities have increased by 10-20% (Fig. 1J). This implies that the passing of the subglacial flood 

ultimately decreases subglacial pressures and basal water storage in the inland regions and increases it near 125 

the margin. A lasting influence on hydrology-dynamics is also observed after lake drainages during summer, 
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where friction (1, 18) and water storage at the base (20) have been observed to change as a result of large 

influxes of water into the drainage system. Due to the winter timing of the lake drainages, this lingering 

impact might precondition the drainage system for the following summer, impacting other aspects of the 

annual hydrology-dynamic cycle. 130 

The horizontal speed-up during the event increases annual marginal ice discharge (~0.5 - 5 m) by 1-4% (Fig. 

S8) compared to a year with no winter transients.  This variability is small but on the same order as the annual 

velocity variability linked to extreme melt years in Greenland (6%) (47). However, unlike annual melt 

variability, where large-scale atmospheric patterns can produce anomalous melt rates over large areas of the 

margin (48–50), the spatial impact of the lake drainage is constrained to a region around the SGLs and 135 

drainage pathways. Thus, in order to have an impact on interannual variability comparable to anomalous 

melt years, melt-forced winter transients would need to occur frequently and in other locations. Undertaking 

a precursory search in the vicinity of Nordenskiöld glacier during the following years, we identified two 

additional winter drainage events with associated dynamic changes (Fig. S9), suggesting these events are 

likely a common part of hydrology-dynamics along the margins of the ice sheet. 140 

Tracking the evolution of the SGLs since 1972 to estimate the changes in their area through time (Fig. 4, S10, 

Methods) reveals that increasing air temperatures due to climate warming precondition the region for winter 

drainages. The SGLs that first drain occur at high elevations near the long-term equilibrium-line (22).  We 

note that many of these lakes formed and grew for decades before initially draining, and for the two highest 

lakes, this was the first observed instance of drainage after a half century of growth (Fig. 4, S10). This suggests 145 

that events like these, where high-elevation SGLs drain and trigger an expansive acceleration downgradient 

of the drainage site, are fundamentally linked to changes in melt production, which promote the formation 

of high elevation lakes and increase the availability of liquid water during winter. This is reflected in the 

historical lake evolution record. The lakes above 1570 m in altitude started to drain after 2007, those 

between 1500 and 1570 m have been draining since 2002, while those below have been draining regularly 150 

since the beginning of our observations (Fig. 4). 

Our finding clearly links dynamic changes during winter to melt-forcing, demonstrating surface melt can have 

a prolonged influence on dynamics that persists beyond the period when it is produced. Moreover, we 

demonstrate this lag can be up to decades, meaning the hydrology-dynamic cycle which is usually considered 

on an annual and seasonal basis can operate on fundamentally different timescales. With the current climate 155 

warming, both melt production and liquid water persistence during winter will increase as temperatures rise 

and the ELA migrates to higher elevations (51). We also find that once initial drainage occurs, they occur 

more frequently thereafter (Fig. 4). Thus, these high elevation drainages, which as we document here can 

initially occur during winter, might be a critical component of widening of the zone where melt-forced 

dynamics occur. Future work should set out to establish the frequency of large, melt-forced winter transients, 160 

and identify whether they result from extreme winter temperature changes or another trigger mechanism. 

The latter will ultimately determine the overall impact of melt-forced winter transients in a warmer world.   
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Figure 1 – Winter drainage cascade and dynamic response – Panels (A) and (B) show bed elevation (52, 53) 

and 1995-2016 average velocity (54). Remaining panels show the change in line-of-sight velocity (relative to 

a pre-event acquisition) for Sentinel-1 interferometric (DInSAR) measurements (Methods). Panel (C) shows 

the location of all lakes inferred to have completely or partially drained (green polygons, or dots for lakes 

smaller than 2 km2) along with the velocity anomaly field pre-drainage. The following panels show the 

sequence of lake drainages and the propagation of the resulting velocity wave. Lakes appear when they are 

inferred to drain, coincident with the period of the velocity acquisition. Velocity changes are measured from 

Sentinel-1 tracks 90 (panels (C) and (E)-(J)) and 127 (panel (D)). The black arrow indicates ground-projected 

line-of-sight, dashed lines indicate surface elevation contours, and the solid line indicates the time-averaged 

snow line (22). 
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Figure 2 – Decomposed motion – Snapshot of decomposed horizontal motion (relative to pre-drainage 

velocities) (A) and vertical surface displacement (B) during drainage event (centered around 10.6 days after 

drainage). The three interpreted flow pathways are shown with solid gray and black dashed lines. C. 

Decomposed horizontal (gray dashed) and vertical (solid black) motion along the center flowline (dashed 

black line panel C). D. Decomposition (horizontal motion - gray dashed, vertical displacement - solid black) of 

synthetic velocity wave (dotted blue) and uplift wave (dotted pink, vertical displacement (i.e. change in uplift 

over 6-day window) - dotted green) with characteristics constrained by the data (Methods).   
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Figure 3 – Subglacial drainage characteristics – (A) Percent velocity changes along one of the inferred 

Nordenskiöld drainage pathways (black dashed line in Fig. 2) as the velocity wave propagates to the margin 

(right to left). Stars show tracked wave peaks and circles show tracked wave fronts (Methods). (B) Estimated 

wave velocity using the tracked peaks (stars) and fronts (circles). Velocity marker is shown at the mid-point 

between the two tracked peaks or fronts used to estimate the speed. Dashed bounds show event integrated 

drainage velocity inferred from optical imagery (Fig. S2). (C) Left axis shows hydropotential (maroon line) 

assuming ice-overburden pressure, right-axis shows hydropotential gradients (black line), and smoothed 

hydropotential gradients (orange line) along flowline. Blue shading shows location of hydropotential 

depressions. 
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Figure 4 – Multi-decadal supraglacial lake evolution - (A) The percent fill of the lakes since 1983 relative to 

the largest area observed over the 1983-2022 period is shown. Where multiple areas are estimated for a 

year, the minimum value is shown, which generally indicates that the lake emptied in that year. The lake 

contours used to calculate the area are digitized from the Landsat archive (Methods). The altitude of each 

lake is indicated next to the lake number. (B) The area in km2 of the five highest lakes in elevation as a function 

of time is plotted (all lakes are shown in Fig. S10). We note Lake 1 could be identified all the way back to 

1972, but the data is trimmed to the timespan where all SGLs had data. 
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Chapter B | Supplementary material
for manuscripts

B.1 Supplementary material for "Improved ice velocity
measurements with Sentinel-1 TOPS interferometry"

This appendix provides supplementary material for the manuscript in Appendix A.1 (pre-
sented in chapter 3.3).

The supplementary material contains the following Figures and Tables:

Figure S1 - Line-of-sight velocity transect plot (unwrapping error case)
Figure S2 - Uncertainty estimates for horizontal velocity components in DInSAR/OTR
mosaic
Figure S3 - Additional example of coregistration refinements
Figure S4 - Azimuth phase gradients corresponding to Fig. S3
Figure S5 - Azimuth velocity measurements corresponding to image pair from Fig. 3-5
Figure S6 - Line-of-sight velocity measurements corresponding to image pair from Fig.
3-5
Table S1 - GPS comparison for measurements shown in Figs. S5-S6
Table S2 - Estimated offsets for measurements shown in Figs. S5-S6
Figure S7 - Azimuth velocity measurements corresponding to image pair from Fig. S3
Figure S8 - Line-of-sight velocity measurements corresponding to image pair from Fig.
S3
Table S3 - GPS comparison for measurements shown in Figs. S7-S8
Table S4 - Estimated offsets for measurements shown in Figs. S7-S8
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Figure S1: TOPS DInSAR line-of-sight velocity obtained using no coregistration refinement (a), a
refinement based on the PROMICE multi-year velocity mosaic (b), and on the PROMICE multi-year velocity
followed by BO-MAI (c). Panel (d) shows line-of-sight versus azimuth velocity (purple dashed line and right
y-axis) along the profile indicated by the dashed line in (a)-(c). Azimuth velocities are based on the
PROMICE multi-year mosaic. The plots cover the same region indicated by the dashed rectangle in Figure 5
in the main text, however for an interferogram generated from two different acquisitions (master/slave
acquisitions: 2019-12-28 (S1B)/2020-01-03 (S1A), track: 112, descending).
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Figure S2: Horizontal velocity component 1σ uncertainties σvx
(a) and σvy (b) for the fused DInSAR and

offset tracking mosaic in Figure 6d in the main text.
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(a) (b)

(c) (d)

Figure S3: Wrapped interferogram phase obtained for a single Sentinel-1 image pair processed with (a) no
coregistration refinement, (b) MAI coregistration refinement, (c) external multi-year velocity coregistration
refinement, and (d) external multi-year refinement + BO-MAI coregistration refinement in burst overlaps.
(Master/slave acquisitions: 2019-12-22 (S1B)/2019-12-28 (S1A), track: 31 ascending).
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Figure S4: Plots showing the average azimuth gradient of the unwrapped interferogram phase in sub-swath
IW2 for each of the four processing approaches presented in Figure S3. The dashed red lines indicate the
location of azimuth burst overlaps.
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(a) (b)

(c) (d)

(e) (f)

Figure S5: Azimuth velocity for the image pair presented in Figures 3-5 in the main text (Master/slave
acquisitions: 2019-12-22 (S1A)/2019-12-28 (S1B), track: 112 descending) as measured by (a) a re-projection
of the PROMICE multi-year mosaic, (b) BO-MAI, (c) intensity offset tracking, (e) MAI (same as Figure A1
in the main text). Additionally, (d) and (f) show azimuth velocity obtained for a 12-day pair (2019-12-22
(S1A)/2020-01-03 (S1A)), using intensity offset tracking and MAI, respectively.
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(a) (b)

(c) (d)

Figure S6: Line-of-sight velocity for the image pair presented in Figures 3-5 and A1 in the main text
(master/slave acquisitions: 2019-12-22 (S1A)/2019-12-28 (S1B), track: 112 descending) as measured by (a) a
re-projection of the PROMICE multi-year mosaic, (b) the TOPS DInSAR approach described in the main
text (calibrated based on GCPs from the PROMICE multi-year mosaic), (c) intensity offset tracking. (d)
Line-of-sight velocity obtained for a 12-day pair (2019-12-22 (S1A)/ 2020-01-03 (S1A)). Panel c shows an
example of the "patch-like" artefact in the range offset tracking measurements, which is not found in the
DInSAR measurements (panel b). It is most easily seen in the 6-day results, although it is also present in
12-day pairs, as seen in panel d.

Table S1: GPS comparison statistics for the azimuth and line-of-sight velocities shown in Figures S5 and
S6. Columns show mean and standard deviation of ∆vaz and ∆vLoS , which indicate the difference in azimuth
and line-of-sight velocity, respectively, between SAR and GPS measurements in m/y. 61 co-located GPS and
SAR measurements were used in each case, except for BO-MAI, as only 7 GPS measurements lay inside burst
overlaps.

∆vaz ∆vLoS

Method mean std. mean std.

PROMICE multi-year mosaic 0.91 0.72 -0.32 0.21
Offset tracking (12-day) -0.35 8.52 1.87 1.49
Offset tracking (6-day) -22.02 13.63 10.99 1.70

DInSAR (6-day) - - 0.05 0.15
MAI (12-day) 1.46 3.66 - -
MAI (6-day) -18.24 8.92 - -

BO-MAI (6-day) -0.79 1.10 - -
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Table S2: Mean difference in azimuth/line-of-sight velocity between the offset tracking, MAI, DInSAR, and
BO-MAI results presented in Figures S5 and S6 with respect to the PROMICE multi-year mosaic. All results
are in m/y.

∆vaz mean ∆vLoS mean

Method IW1 IW2 IW3 IW1 IW2 IW3

Offset tracking (6-day) -29.94 -16.80 -19.65 11.26 11.15 11.55
Offset tracking (12-day) -0.75 -0.10 -0.05 1.99 1.55 2.17

DInSAR (6-day) - - - 0.66 0.76 0.38
MAI (6-day) -26.20 -13.63 -15.02 - - -
MAI (12-day) 0.49 1.69 1.99 - - -

BO-MAI (6-day) -1.13 1.11 0.73 - - -
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(a) (b)

(c) (d)

(e) (f)

Figure S7: Azimuth velocity for the 6-day image pair shown in Figure S3 (master/slave acquisitions:
2019-12-22 (S1B)/2019-12-28 (S1A), track: 31 ascending) as measured by (a) a re-projection of the
PROMICE multi-year mosaic, (b) BO-MAI, (c) intensity offset tracking, (e) MAI. Panels (d) and (f) show
the azimuth velocity obtained for a 12-day pair (2019-12-22 (S1B)/2020-01-03 (S1B)), using intensity offset
tracking and MAI, respectively.
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(a) (b)

(c) (d)

Figure S8: Line-of-sight velocity for the 6-day image pair shown in Figure S3 (master/slave acquisitions:
2019-12-22 (S1B)/2019-12-28 (S1A), track: 31 ascending) as measured by (a) a re-projection of the
PROMICE multi-year mosaic, (b) the TOPS DInSAR approach described in the main text (calibrated based
on GCPs from the PROMICE multi-year mosaic), (c) intensity offset tracking. (d) Line-of-sight velocity
obtained for a 12-day pair (2019-12-22 (S1B)/2020-01-03 (S1B)), using intensity offset tracking. Panel c shows
an example of the "patch-like" artefact in the range offset tracking measurements, which is not found in the
DInSAR measurements (panel b). It is most easily seen in the 6-day results, although it is also present in
12-day pairs, as seen in panel d.
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Table S3: GPS comparison statistics for the azimuth and line-of-sight velocities shown in Figures S7 and
S8. Columns show mean and standard deviation of ∆vaz and ∆vLoS , which indicate the difference in azimuth
and line-of-sight velocity, respectively, between SAR and GPS measurements in m/y. 61 co-located GPS and
SAR measurements were used in each case, except for BO-MAI, as only 5 GPS measurements lay inside burst
overlaps.

∆vaz ∆vLoS

Method mean std. mean std.

PROMICE multi-year mosaic -0.63 0.64 0.57 0.37
Offset tracking (12-day) -2.68 9.01 0.49 1.45
Offset tracking (6-day) 24.62 9.42 -9.13 1.81

DInSAR (6-day) - - -0.23 0.19
MAI (12-day) -4.91 5.60 - -
MAI (6-day) 21.18 5.01 - -

BO-MAI (6-day) -3.49 2.36 - -

Table S4: Mean difference in azimuth/line-of-sight velocity between the offset tracking, MAI, DInSAR, and
BO-MAI results in Figures S7 and S8 with respect to the PROMICE multi-year mosaic. All results are in
m/y.

∆vaz mean ∆vLoS mean

Method IW1 IW2 IW3 IW1 IW2 IW3

Offset tracking (12-day) -2.34 -2.59 -2.01 0.83 0.53 0.13
Offset tracking (6-day) 32.44 15.86 23.27 -9.26 -9.53 -9.60

DInSAR (6-day) - - - 0.11 0.03 -0.31
MAI (12-day) -2.90 -3.03 -2.83 - - -
MAI (6-day) 32.78 14.56 20.15 - - -

BO-MAI (6-day) -4.95 -5.55 -3.09 - - -
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B.2 Supplementary material for "Connectivity approach for
detecting unreliable DInSAR ice velocity measurements"

This appendix provides supplementary material for the manuscript in Appendix A.3 (pre-
sented in chapter 4.2).

The supplementary material contains the following Figures:

Figure S1 - Examples of coherence images used in simulations
Figure S2 - Examples of coherence, connectivity, and connectivity masks for simulated
data
Figure S3 - Examples of observed coherence for image pairs processed in Section IV
Figure S4 - Connectivity reference point sensitivity analysis (example image pair 1)
Figure S5 - Connectivity reference point sensitivity analysis (example image pair 2)
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Supplementary Material for "Connectivity Approach for Detecting Unre-

liable DInSAR Ice Velocity Measurements"

Jonas Kvist Andersen1,∗, John Peter Merryman Boncori1, and Anders Kusk1

1DTU Space Institute, Technical University of Denmark (DTU), DK-2800 Kongens Lyngby, Denmark;

jkvand@space.dtu.dk (J.K.A.); jme@space.dtu.dk (J.P.M.B.); ak@space.dtu.dk (A.K.)

Figure S1: Examples of observed coherence for 9 of the Sentinel-1 image pairs used as input for interferogram

simulations (presented in Section III in the main text). The overall coherence level varies substantially, even between

subsequent 6-day image pairs (e.g. the two shown image pairs from August). The highest average coherence levels

were observed in March-April and December, while the lowest levels were observed in July-August and January.

1
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Figure S2: Examples showing coherence, connectivity, and observed unwrapping errors (i.e. difference between input

and output LoS velocity) with and without connectivity-based masking for three of the simulated interferograms

presented in Section III in the main text. The two bottom rows show unwrapping error occurrences after masking

with a connectivity threshold of 0.25 and 0.30, respectively. The connectivity reference point is indicated by a red dot.

The dates of each image pair are indicated in the top of each column. For the two interferograms to the left,

unwrapping errors of a large scale and magnitude are successfully masked out. The third column shows a case where

only small-scale unwrapping errors are present - most of these are masked out, along with with some error-free pixels,

leading to a decreased precision. Finally, the fourth column shows a case where a single phase cycle unwrapping error

occurs in a large region where connectivity is relatively high, meaning that the error is undetected by connectivity

masking (even with a threshold of 0.40).
2
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Figure S3: Observed coherence for 3 of the image pairs in each of the Sentinel-1 tracks processed in the Northeast

Greenland Ice Stream (NEGIS) data set, presented in Section IV in the main text. The red text indicates the

acquisition date of the reference image (and all the interferograms have a temporal baseline of 6 days). Note that

many of the interferograms show moderately low coherence levels, even towards the ice sheet interior.

3
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Figure S4: Connectivity (left column) and LoS velocity difference obtained after masking with a connectivity

threshold of 0.30. Each row shows the results obtained with a different reference point (indicated by a red dot) for the

simulated interferogram with acquisition dates 20170214 and 20170220. The top row corresponds to the reference

point presented in the manuscript (and in Figure S2) and the bottom row represents an automatically selected

reference point (selected as the point of maximum coherence within the largest segment in the scene).

4
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Figure S5: Connectivity (left column) and LoS velocity difference obtained after masking with a connectivity

threshold of 0.30. Each row shows the results obtained with a different reference point (indicated by a red dot) for the

simulated interferogram with acquisition dates 20170527 and 20170602. The top row corresponds to the reference

point presented in the manuscript (and in Figure S2) and the bottom row represents an automatically selected

reference point (selected as the point of maximum coherence within the largest segment in the scene).

5
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B.3 Supplementary material for "Wintertime lake drainage
cascade triggers large-scale ice flow response in
Greenland"

This appendix provides supplementary material for the manuscript in Appendix A.5 (pre-
sented in chapter 5.3).

The supplementary material contains the following:

Section - Materials and Methods
Figure S1 - Lake surface before and after drainage
Figure S2 - Changes at Nordenskiöld ice tongue
Figure S3 - Interpreted drainage pathways
Figure S4 - Vertical surface displacement components
Figure S5 - Hydropotential field near SGLs
Figure S6 - Bead and thread structure in relation to subglacial sinks
Figure S7 - Drainage event in relation to temperature variability
Figure S8 - Percent increase in annual velocity
Figure S9 - Other identified drainages and dynamic response
Figure S10 - Historical SGL area changes
Figure S11 - Spline lake-bottom interpolation
Figure S12 - Map view of spline lake-bottom interpolation

NOTE: Please note that θ in eqs. (1)-(2) refers to the SAR look vector elevation angle
(also referred to as the grazing angle), as indicated in Figure 2.8 in Chapter 2.6.
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Materials and Methods 

DInSAR Velocities 

Differential SAR Interferometry (DInSAR) exploits the difference in phase signal between 

subsequent acquisitions, which, once unwrapped, is proportional to displacement in the radar 5 

line-of-sight (LoS). Although DInSAR only retrieves a single component of the velocity vector and 

is limited to regions in which interferometric coherence is retained, the measurement accuracy 

is significantly higher than that obtained in tracking-based measurements (~0.5 m/y vs. tens of 

m/y)(54–56), as the sensitivity is limited by the radar wavelength (several centimeters) rather 

than the sensor resolution (several meters). Furthermore, the achievable spatial resolution is 10 

about an order of magnitude better than that obtained with tracking. 

We use Sentinel-1 image pairs with a 6-day temporal baseline (the shortest possible) from three 

tracks (T90, T25, and T127) to map displacements before, during, and after the lake drainages. 

LoS velocity measurements are generated following the approach outlined in (55) and (57), using 

a 2016-2019 multi-year average velocity map generated through PROMICE (56) and the TanDEM-15 

X Digital Elevation Model (58) for image coregistration and phase flattening. Interferograms are 

multi-looked with a factor of 15 x 3 in range/azimuth and unwrapped using a Minimum Cost Flow 

algorithm. The resulting 6-day LoS velocity maps have a pixel spacing of 50 m x 50 m and 

measurements from all tracks are resampled to the same (50 m x 50 m) grid. The DTU IPP 

software (59) is used for all interferometric processing steps.  20 

In some cases, we use flow-projected velocities where LoS (Fig. S7) are rotated into the flow 

direction obtained by the 2016-2019 multi-year average velocity map (56), making the 

assumption that all motion is horizontally derived. This is used to compare the increased 

displacement resulting from the winter drainage to the multi-year average velocity (Fig. S8). 

Because the flood wave (described in more detail below) causes uplift and downlift as it moves 25 

into a region and then passes, the integrated displacement will mostly reflect horizontal motion.  

Identifying winter lake drainages 

We manually identified 15 winter supraglacial lake drainages during March of 2018 using all 

Sentinel-2 (ESA) and Landsat 8 (USGS) optical imagery acquired for the region between February 

15th and April 29th, 2018. Freezing of the lake surface during winter provides a visually 30 

recognizable, near-roughness-free surface which is readily identified from the surrounding 

regions (Fig. S1). Optical imagery from the previous summer visually confirms these surfaces 

reflect locations of supraglacial lakes. Lake drainages are identified via the abrupt change from 

smooth surfaces to collapse basins from scene to scene, where the smooth frozen surfaces are 

observed to change to a highly fractured and depressed configuration. We interpret the fracture 35 

and depression to be the result from the loss of mechanical support provided by the underlying 

water, indicating drainage or partial drainage of the lake below the ice lid via hydrofracture. In 

the other instances, lakes were identified by the appearance of a new surface fracture observed 
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to intersect the lake, resulting in the roughness-free surface to entirely disappear or become 

greatly reduced in area from between two image scenes (Fig. S1). Similar surface features were 40 

also used to confirm winter drainage detection using other methods (13, 17). In some of the 

identified drainages, thermally incised sinuous drainage pathways towards the fractures are also 

observed, indicating water flow towards the fracture (Fig. S1). The acceleration resulting from 

the lake drainages was identified first, thus the search window in time and space for finding the 

lakes was well constrained prior to the systematic image search. We also identify three smaller 45 

water features (supraglacial pots) that were inferred to drain in a region of high uplift. These 

were identified via changes in backscatter from Sentinel-1 (13, 17). We interpret these features 

to be relic moulins.  

Decomposing vertical and horizontal motion 

We exploit the fact that the DInSAR measurements are sensitive to both horizontal and vertical 50 

motion to decompose the velocity into vertical and horizontal components using data from two 
ascending and descending overlapping Sentinel-1 tracks. Estimating the three-dimensional 
vector requires three spatio-temporally overlapping tracks with different viewing geometries. 
Here we estimate two components of the velocity: horizontal speed in the flow direction, 𝑢𝐹𝐷, 
and vertical speed, 𝑢𝑣, using a priori constraints on the flow direction, enabling us to use only 55 

two spatio-temporally overlapping tracks. We use the horizontal flow direction from the 
PROMICE average velocity map (2016-2019) (56) and assume that this flow direction is the same 
throughout the drainage event. The measured LoS motion from each track can then be 
decomposed as:  
 60 

𝑢𝐿𝑜𝑆 =𝑐𝑜𝑠  𝛼 𝑐𝑜𝑠  𝜃 𝑢𝐹𝐷 +𝑠𝑖𝑛  𝜃 𝑢𝑣    (1) 
 
where 𝛼 =  𝛽 −  𝜙 is the angle between the horizontal flow angle, 𝛽,  and the ground-projected 
radar LoS (described by the angle φ). We use measurements from one ascending and one 
descending track to solve for the two unknowns, 𝑢𝐹𝐷 and 𝑢𝑣. The temporal overlap between the 65 

two tracks is 4.5 days, meaning that some uncertainty is added by the fact that the two 
measurement periods do not perfectly overlap. However, given the nature of the event, where 
the increased displacement is caused by a horizontally propagating velocity wave, we expect the 
displacement to be similar. We test this assumption and our inference of uplift by decomposing 
a synthetic wave model constrained by the observations (described in next section).  70 

 
To reduce the noise from spatially correlated errors specific to each track, we estimate the 
change in, rather than absolute dynamics resulting from the drainage event.  Hence, eq. (1) 
becomes: 
 75 

𝑑𝑢𝐿𝑜𝑆 =𝑐𝑜𝑠  𝛼 𝑐𝑜𝑠  𝜃 𝑑𝑢𝐹𝐷 +𝑠𝑖𝑛  𝜃 𝑑𝑢𝑣   (2) 
 
where 𝑑𝑢𝐿𝑜𝑆 is the difference between the measured LoS velocity field and a reference field 
(taken as a DInSAR LoS measurement from the same track, prior to any of the drainages). 
 80 
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Decomposed Synthetic Wave Model 

We decompose a synthetic coupled horizontal and vertical displacement wave using the same 

procedure as for the observed data to determine how the assumptions made to decompose the 

line-of-sight-velocities distort the retrieved fields.  We model a coupled horizontal and vertical 

flowline velocity wave, which mimics a horizontal flow increase driven by bed separation, as 85 

gaussian kernels propagating across a 160 km flowline at a wave speed constrained by our data 

(0.03 – 0.17 m s-1) (see Calculating Drainage Velocities).  The width (σ between 10 and 30 km, 

width between 20 and 60 km) and amplitude (45 – 80 m yr-1 horizontal velocity increase, 0.1 - 

0.25 m vertical displacement) of the waves were chosen to approximate those observed in the 

data. We then calculate the accumulated horizontal displacement and change in uplift that would 90 

occur between the two 6-day windows that overlap by 4.5 days to match the interval between 

the T90 and T25 orbital tracks. Finally, we  decompose the signal using the mean orbital 

parameters from the T90 and T25 tracks. 

Given the model parameters and assumptions, we find the best fit for the data retrieved fields is 

a horizontal (amplitude = 60 m yr-1) and vertical uplift/bed separation wave (amplitude = 0.25 m) 95 

propagating at  a velocity of 0.08 m s-1. The best fit indicates the horizontal velocity wave is wider 

(σ = 15 km)  and precedes (by 15 km) the uplift  wave (σ = 10 km). These parameters capture the 

phase relationship between the peaks as well as the pre- and post-wave dips in vertical 

displacement observed in the decomposed fields. The phase difference between the 

decomposed and synthetic waves, as well as the pre-wave dip in vertical displacement indicates 100 

the fields are somewhat distorted compared to the original values due to the mismatch in 

temporal overlap. However, we still find we can clearly identify distinction between horizontal 

motion and vertical displacement, allowing us to infer vertical and horizontal fields from the 

decomposed data.  

Estimating approximate SGL volumes 105 

Depth retrieval based on empirical (60) or physical (61) multi-spectral methods cannot be applied 

to estimate SGL volumes due to the presence of an ice lid during winter.  Examining the near 50-

year time series (described below) also shows that many of the high elevation lakes never 

become ice-free even during summer. To circumvent these limitations and roughly estimate total 

SGL volume prior to drainage we interpolate the sub-lake bathymetry from 2 m resolution 110 

ArcticDEMs (62). We start by manually digitizing each lake-outline along the visible edge of the 

ice lid and remove this area from a corresponding ArcticDEM strip collected between 2013 and 

2017 during times where the lake volume is inferred to be lower or similar to that during the 

2018 winter.  We then interpolate a lake bathymetry using a spline (MATLAB curve fitting toolbox, 

smoothing parameter 0.9) over seven SGL cross sections (Fig. S11). The fit relies on the local slope 115 

adjacent to the ice basin to estimate the lake depth (Fig. S12). The maximum lake depths agree 

well with those found by other methods (~4-10 m) (60, 61). The ice lid elevation is estimated 

using the median of the intersecting points between the lake outline and the DEM. We can then 

estimate the lake volume by assuming a lid thickness of ~2 m which has been observed (15) and 
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modeled (16) at the end of winter and then integrate the volume at each DEM grid cell. We note 120 

that even though the method has high uncertainty, it overcomes the limitations of winter 

imagery while still being empirically based. We test the sensitivity of the volume estimates by 

repeating the procedure using 8 different DEMs for Lake 2, and show a consistency of +/- 11%. 

We note most of the lakes are identified with collapsed ice lids, such that actual volume of water 

that makes it to the bed cannot be confidently estimated, as some of the lakes may have only 125 

partially drained. Thus, we interpret these estimates as volume maximums which could have 

drained to the bed. 

Interpreting drainage pathways 

The decomposed velocity components demonstrate that the complex structure is a result of 

vertical uplift (Fig. 2) which were interpreted to represent primary drainage pathways. Using this 130 

interpretation, we manually delineate the major flow pathways using a map of the maximum LoS 

velocities recorded during the event, which retains the complex structure from the drainage site 

to the margin (Fig. S3). We identify two major westward pathways and one major northward 

drainage pathway, a secondary drainage pathway from the lake drainages that occur just 

upgradient of the Nordenskiöld trough, and a connector between the secondary and primary 135 

westward drainage pathways.  

Calculating drainage velocities 

We track the wave front and peaks for consecutive DInSAR velocity maps (using T90) to 

determine the position of the velocity wave through time along inferred drainage pathways. The 

wave front is defined as the first location on the ascending limb of the wave where LoS velocities 140 

are 10% higher than pre-drainage velocities. The wave peak is taken as the flowline maximum. 

We then differentiate the wave fronts or peaks between two consecutive flowline velocity 

profiles to get the distance traveled which is converted to velocity using the 6-day repeat period 

(Fig. 3).  

Long-term SGL evolution  145 

We document the evolution of the surface area for the 15 supraglacial lakes identified to drain 

during the event over the last 50 years. We downloaded 1275 optical images from the Landsat 

satellite record that began in 1972 (only 1983 onward is shown in Fig. 4), built a stack of sub-

images for each lake and manually digitized their outline twice a year when possible, before 

May/June when the melt season begins and a second time between August and November at the 150 

end of the melt season. We then calculated the evolution of the area of the lakes (Fig. 4) through 

time to establish the historical context of the SGL evolution preceding the winter drainage event. 
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Figure S1 - Lake evolution before and after the drainage from Landsat (L8) and Sentinel-2 (S2) 

optical images. The red outlines indicate the lake perimeters in fall 2017 prior to the event. 
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Figure S2 – Landsat images of the Nordenskiöld ice tongue showing the outwash in early April 

2018 following supraglacial lake drainages. At this time of the year the surface of the sedimentary 

delta in front of Nordenskiöld is covered with snow, making it possible to clearly identify the 

areas swept by the flow. 
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Figure S3 – Interpreted Drainage Pathways – Complex structure from max flow projected 

velocities during drainage event (track 90) were used to visually interpret inferred drainage 

pathways (black lines). Cyan fill shows drained lake locations. 
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Figure S4 – Vertical surface displacement components – Decomposed vertical motion (A),  bed 

parallel uplift (B), vertical displacement due to vertical strain (C), and bed separation (D). Vertical 

strain and bed separation were estimated with the decomposed horizontal velocity assuming 

changes in motion are derived from sliding. Bed separation is taken as the residual between the 

decomposed vertical motion and the bed parallel and vertical strain uplift.  
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Figure S5 – Zoom of hydropotential for a region that incorporates the start of three major inferred 

drainage pathways. The two westward propagating drainage pathways are separated from the 

northernmost hydropotential pathway by a small ridge of high pressure (arrow). Hydropotential 

gradients were calculated assuming ice overburden pressure. Cyan regions show locations of 

supraglacial lakes that drained during the event.  
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Figure S6 – Bead and thread uplift structure in relation to subglacial sinks and interpreted 

flowlines (same as shown on Fig. 2). Subglacial sinks are delineated with hydropotential contours.  
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Figure S7 – Drainage event in relationship to observed temperature variability – Measured air 

temperature (2 meter) and ice temperature (1 meter) from the PROMICE UPE-U AWS station 

located ~200 km north of the drainage site at a similar elevation (45). Time series records 2018 

winter heat wave and rapid cooling directly prior to first lake drainage. Ice temperature record 

(blue line) shows an increase in ice temperature as air temperatures drop, suggesting latent heat 

release from refreezing (63).  

 

 

 

Synthetic Aperture Radar TOPS-mode Interferometry for Ice Velocity Retrieval 197



 

 

14 

 

 

Figure S8 – Percent increase in annual velocity due to elevated velocities during the event.  Black 

lines show inferred flow pathways. Increase was calculated using multi-year average annual 

displacement from 2016-2019 (56) and flow projected velocities (Methods).  
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Figure S9 – Dynamic response to lake drainages identified during February 2019 40 km south of 

Russell Glacier (C,E,G) and March 2021 50 km north of Russell Glacier (D,F,H) measured with 

Sentinel-1 DInSAR (track 90) consecutive 6-day pairs. Panels (C)-(H) show the relative change in 

line-of-sight velocity (in percent) with respect to a pre-event acquisition overlayed on the 

coherence for the respective image pair. Panels (A) and (B) show bed elevation and 1995-2016 

average velocity in the region of the 2019 event (blue rectangle) and the 2021 event (magenta 

rectangle). 
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Figure S10 – The area in km2 of lakes that drained during the event is plotted as a function of 

time.  
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Figure S11 – Spline lake-bottom interpolation. Two-dimensional cross section of smoothing spline 

(red line, smoothing parameter = 0.9) fit through ArcticDEM (62) elevation data (black line) for 

all 15 lakes.  
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Figure S12– Map view of spline lake-bottom interpolation. Map view of smoothing splines 

(horizontal lines, smoothing parameter = 0.9) fit through ArcticDEM (62) elevation data 

(background data) for all 15 lakes.  
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