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ABSTRACT
Emergency Medical Services (EMS) constitute a crucial pillar of modern cities by
providing urgent medical responses to citizens. As urbanised areas grow, adequate
planning must be undertaken to ensure the health safeguard of people in need.

The study of EMS is often conducted via simulation, as the assessment of planning
decisions is generally not feasible in the actual systems. However, simulation models
can become computationally expensive to run. To address this issue, metamodels
can be employed to approximate the input-output mappings underlying the former,
being traditionally characterised by functional simplicity and computational speed.

In this work, a simulation metamodelling strategy supported on an active learn-
ing scheme is proposed to analyse the survival rate outcome of a simulated EMS.
Through a series of training grids, the algorithm guides the exploration process to-
wards simulation input regions whose output results match a specific survival rate
of interest defined a priori. This provides a computationally efficient way of explor-
ing the associated search space by channelling the computational effort to the most
important input values combinations. Across two sets of experiments, we show that
the presented approach can identify such relevant simulation input regions for differ-
ent targeted survival rate thresholds while minimising the associated computational
burden. Simultaneously, it is also shown that this approach is easily expandable to
include multiple search values. The conclusions support the advantages of employing
this kind of methodology in the EMS modelling field, where its application is still
rather seldom and mostly unknown to the best of our knowledge.
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Active Learning; Simulation Metamodelling; Gaussian Processes; Emergency
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1. Introduction

In 2018, more than half of the world’s population was estimated to be living in cities
or urban areas. The next decade’s projection is that this proportion reaches approxi-
mately 60% and that one-third of the people are likely to be settled in cities with five
hundred thousand citizens or more (United Nations, 2018, 2020).

The exponential growth of the urbanised areas will generate increased pressure
on the existing urban infrastructures and the need to plan for new ones (Rodrigue,
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2020). The growing volumes of passengers will inevitably require more and improved
transport systems services (Belokurov et al., 2020; Enoch et al., 2020; Ferreira et al.,
2020; Zhang et al., 2020). Furthermore, due to the increasing international trade sup-
ported on an interconnected global economy, the impacts of this growth are not set
to be locally restricted to the cities and their vicinities. As a consequence, the need
for commercial trade plays a fundamental role in the increasing demand for freight
transport (Archetti and Peirano, 2020; Dulebenets, 2020; Heinold, 2020; Pasha et al.,
2020; Rosano et al., 2018). Despite the unprecedented social and economic shutdowns
worldwide due to the COVID19 pandemic during 2020, the world economy is ex-
pected to expand around 5.6% by the end of 2021 (World Bank, 2021). In any case,
if not taken into proportionate consideration, the aforementioned multifaceted growth
can lead to undesirable and even irreversible transformations. Nevertheless, the po-
tentially negative consequences of these changes, including environmental and health
concerns (Nieuwenhuijsen, 2020), can be minimised and handled if proper technical
and policy decisions are taken in the present, with a strategic planning view for the in-
evitable steady urban growth (Levy, 2016; Marengo, 2014; Martine et al., 2007; Weber
and Puissant, 2003).

As the population density increases within urban settlements, so does too the
demand for mobility. Transportation systems play a particularly vital role: they
are the backbone that supports sophisticated social and economic advancements. A
healthy economic activity inevitably requires the movement of people, goods, and ser-
vices (Moore and Pulidindi, 2013). Thus, it is not a surprise that urbanisation gener-
ally follows the evolution of transportation (Rodrigue, 2020), and vice-versa (Hensher
et al., 2004), within a positive feedback loop. Moreover, with this intense urbanisation
and agglomeration of people, the concerns for health and safety conditions increase ac-
cordingly (Vlahov and Galea, 2002). To this end, Emergency Medical Services (EMS)
constitute a crucial pillar of today’s cities by providing urgent medical responses to
their citizens, particularly those in serious life-threatening situations. In (Bélanger
et al., 2019), a review of the last ten years of EMS research is provided, focusing on
the current state of the art modelling tools and projecting future trends whereas An-
dersson et al. (2020) presents three concrete managerial cases of EMS in the scope
of strategic decision support systems. On the other hand, Poulton et al. (2019) ad-
dresses the problem of optimising ambulance routing to decrease response times to
life-threatening events under blue light conditions.

EMS performance is highly dependent on the characteristics and idiosyncrasies of
the urban environment in which they are integrated and on the information available
to the service operator. Especially in highly populated areas, such systems’ emergency
response is inevitably constrained by multidimensional urban dynamics. Heavy traffic
and population movements have a particularly relevant and direct impact on the EMS’s
outcome (Amorim et al., 2019b). To address the potential hindrances in implementing
and deploying emergency services, strategic, tactical, and operational planning must
be undertaken to ensure the proper emergency response of people in need of medical
assistance.

The study of EMSs is often conducted via simulation-based modelling, as the assess-
ment of planning decisions and policy solutions is generally not feasible in the actual
real-world systems. However, despite their obvious advantages, simulation models can
become computationally expensive to run whenever a high degree of realism and detail
is required (Law, 2015). To address this shortcoming, simulation metamodels (Fried-
man, 2012; Gramacy, 2020) can be used to approximate the simulation results. More-
over, as these models are still explicitly dependent, to a reasonable extent, on the data
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generated by the underlying simulators they are designed to mimic, their performance
can be further improved with active learning (Settles, 2010; Wang and Zhai, 2016).
As a learning paradigm within machine learning, active learning aims to attain high
prediction performance with as few data as possible. This economical approach to
model training is achieved by providing the subjacent algorithm to choose the points
from which it learns actively.

In this work, by combining elements of both simulation metamodelling and active
learning, an integrated methodology is proposed to study the survival rate outcome of
an EMS simulator by exploring its input space more efficiently. Employing a Gaussian
Process (GP) as a metamodel, the algorithm guides the exploration process in the di-
rection of simulation input regions whose output results match a specific survival rate
threshold defined in advance by the user. This is achieved by a series of training grids
and sub-grids that get iteratively closer to the input regions of interest. The results
show that this approach can identify such relevant simulation input regions while min-
imising the computational workload simultaneously, turning the exploration process
more efficient. We also show that the approach is trivially adaptable to incorporate
different output search values.

From the obtained results, we draw several practical implications for the EMS mod-
elling field and possible directions for improvements in future works. The conclusions
support the advantages of employing this kind of integrated active learning metamod-
elling strategies in the design, study and evaluation of simulated EMS. To the best
of our knowledge, their application is still rather seldom and mostly unknown by the
field researchers and practitioners.

The remainder of the paper is organised as follows. The next section summarily
reviews the main ideas, concepts and tools supporting the presented methodology and
several related applications. Section 3 present the proposed methodology, followed
by Section 4 where we detail the experimental setting and subsequently explore the
results. Finally, Sections 5 and 6 draw several immediate implications and future lines
of improvement and applications within the research field of EMS.

2. Background

By definition, simulation metamodels (Friedman, 2012), also known as emula-
tors (McClarren, 2018), surrogates (Gramacy, 2020), response surfaces (Box et al.,
1987), or sometimes more broadly as auxiliary models, aim at approximating the
input-output functional relationships inherently defined by simulation models. They
are often employed to approximate and explore simulation results, thereby mimick-
ing the behaviour of the simulator itself (Kleijnen, 1987, 1979), particularly within
experimental settings characterised by computationally expensive simulation runs.

To adequately serve their purpose, simulation metamodels should be defined as
fast, tractable and intelligible formulas whose both input and output domains generally
match that of the original simulation model. Kleijnen and Sargent (2000) mentions four
main goals for simulation metamodelling, namely, real-world problem understanding,
output prediction, optimisation, and verification/validation. In this work, we mostly
focus on the first two objectives. Consequently, it is assumed that the simulation
model in use is perfectly calibrated and correctly describes the real-world situation
under study.

Song et al. (2017) summarise the metamodeling methodology in three major steps,
namely, 1) definition of the experimental design, 2) metamodel specification, and 3)
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metamodel learning/fitting. The first step consists of strategically sampling the input
space to generate a data set for the metamodel training. This step is shared with the
standard simulation procedures discussed in the previous section. Then, steps 2 and 3
are conducted sequentially. While the former involves selecting a family of functional
forms for the metamodel, the latter regards the fitting procedure of the selected meta-
model to the data set obtained from step 1. For a more in-depth description of the
metamodeling approach and unfolding in ten detailed steps suggestions, please refer
to (Kleijnen and Sargent, 2000).

As already mentioned, simulation metamodels are essentially functions that are
employed in such a way as to mimic the underlying simulation input-output mappings,
which are often intractable or unknown. This approximation is conducted by fitting
these functions to pre-generated sets of simulation results. As expected, metamodels
still rely on data produced by the underlying simulation models, which can be viewed
as a modelling bottleneck, particularly in the context of expensive simulation models
or when intensive and systematic input space exploration is required. Additionally,
it is no surprise that simulation metamodels also suffer from the popular problem
deemed as “curse of dimensionality”, especially in the context of large-scale modelling
settings, as pointed out by Wang and Shan (2006). Hence, depending on the problem’s
nature and for the sake of tractability and interpretability ease, many applications
restrict the metamodel fitting procedure to a particular and bounded subset of a
much larger simulation input space and may not even consider all the input variables
at once. This bounded sub-set is called the domain of applicability, or experimental
region, encompassing the definition of the input domain in which the metamodel should
be a valid approximation for the underlying model and real-world problem under
study (Kleijnen and Sargent, 2000).

Within the previously mentioned kind of experimental scenarios where labelled (sim-
ulation) data is hard to obtain, active learning (Li and Sethi, 2006; Settles, 2012; Wang
and Zhai, 2016) emerges as an opportune learning paradigm and modelling approach
aiming at increasing a model’s predictive performance with as few training points
as possible. This is essentially accomplished by designing algorithms with the ability
to actively choose the training points from which they learn iteratively, being ulti-
mately characterised by the sequential selection of the most informative points that
simultaneously boost the model’s training efficiency and predictive performance. Be-
sides the learning model itself, the entire process is also guided by a label provided
called the oracle, whose task is to provide on-demand labelled instances which are
subsequently incorporated into the expanding training set. In the context of simula-
tion metamodelling, the oracle is represented by the simulator corresponding to the
computer implementation of the underlying simulation model. Finally, the iterative
process cyclically repeats itself across the alternating phases of model fitting, label
acquisition, and training set expansion until a certain stopping criterion is satisfied.

The ability to measure the informativeness of a given unlabelled data point or to
quantify model uncertainty is a core concept subjacent to any active learning system.
Essentially, the idea is that seeking the most informative points and exploring high
uncertainty regions of the feature space reduces data redundancy and boosts model
training efficiency, besides helping in attaining a good trade-off balance between model
prediction performance and computational costs of label acquisition.

Bridging both approaches of simulation metamodelling and active learning is the
Gaussian Process (GP) framework. Due to its Bayesian properties, it provides pre-
dictions in the form of Gaussian probability distributions, with specified mean and
variance. As a proxy for either information or uncertainty, this predictive variance can
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be naturally adopted to develop active learning strategies to seek the most informative
points and explore the uncertainties within the simulation input space. GPs have a
long tradition of being employed as metamodels (Gramacy, 2020; Kleijnen, 2009), as
well as in active learning settings (Ling et al., 2016; Yue et al., 2020). When applied
to spatial data, the GP framework is called Kriging (Chilès and Desassis, 2018) within
geostatistics, constituting a widely used interpolation technique in the field.

Within the field of simulation and machine learning applied to EMS planning, state
of the art has yet to build grounding supports. While simulation-based optimisation
approaches are quite popular among researchers and practitioners and the body of
knowledge is rich, there is still a lot to grow on the usage of new technologies and
methods, particularly those that might take advantage of big data and real-time in-
formation, as indicated by Bélanger et al. (2019).

Simulation modelling is a recurrent tool to design, plan and study EMS. For exam-
ple, in (Begicheva, 2020) the authors use simulation to identify the most important
variables affecting the usage of EMS. In (Hu et al., 2020), simulation is used to identify
ambulance travel times under different traffic conditions. These works focus primarily
on identifying the underlying characteristics or parameters that can serve as input for
a planning or assessing model. On the other hand, Enayati et al. (2020) proposes a
stochastic model to optimise the EMS service planning and assesses it using a simula-
tion model to compare the proposed model against existing policies. Similarly, Yang
et al. (2019) implemented a simulation model to evaluate the performance of the am-
bulance location problem.

It is therefore clear that simulation is a reliable approach as an assessment tool in
EMS planning. However, it still lacks generalised solutions to offer decision-makers
the tools to assess and comprehensively compare multiple scenarios. Here is where
we believe that metamodelling techniques, combined with active learning that helps
reduce the hardly avoidable computational costs, have the potential to answer those
needs. The first insights into the potential of metamodelling on this topic can be
seen in (Yousefi and Yousefi, 2019) and in recent earlier works (Amorim et al., 2019a;
Antunes et al., 2019a,b). The present work aims at stimulating the much-required
developments and further applications within the field.

3. Methodological Approach

The methodology explored in this paper follows an active learning strategy integrated
within a metamodelling setting. In the following, we first briefly present the GP frame-
work, as it constitutes the core modelling tool of the work developed herein, and then
the active learning metamodelling approach itself with more detail.

3.1. Gaussian Processes

A GP is a collection f of random variables in which any finite set forms a mul-
tivariate Gaussian distribution (Rasmussen and Williams, 2006). Any GP is com-
pletely defined by two functions: the mean, mf (x), and the covariance (or kernel),
kf (x,x

′), where x and x′ are two different input observations, and is commonly de-
noted by GP(mf (x), kf (x,x

′)). Within a standard regression problem y = f(x) + ϵ,
where ϵ ∼ N (0, σ2) is the random noise term, a GP prior is placed over f(x), i.e.,
f(x) ∼ GP(mf (x), kf (x,x

′)).
It is usual for the mean and covariance functions to have a certain number of
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free parameters, also called hyperparameters of the GP, which can be estimated via
marginal likelihood maximisation with respect to the training data. After this fitting
procedure, the conditional distribution for an unobserved data point x∗ is given by
f∗|X,y,x∗ ∼ N (kf (X,x∗)

⊤[Ky]
−1y, kf (x∗,x∗) − kf (X,x∗)

⊤[Ky]
−1kf (X,x∗)), where

Ky is the covariance matrix of the noisy observations, X is the design matrix com-
posed by the independent variables and y is the vector containing the values of the
dependent variable. Each GP prediction comes in the form of a Gaussian distribution.
Hence, instead of a single point-wise estimate, GPs provides an entire range of possible
values, weighed by a density function. This intrinsic Bayesian property allows the GPs
to encode the uncertainty associated with its estimates and the underlying process
being studied. The predictive variance kf (x∗,x∗)− kf (X,x∗)

⊤[Ky]
−1kf (X,x∗) can be

viewed as a proxy for both data and prediction uncertainties. Higher variance trans-
lates into more dispersion, which in turn implies more variability around the mean.
This property allows straightforward implementations of active learning schemes by
setting, for example, the predictive variance as an information criterion for selecting
new data points.

It is worth mentioning that, whereas the mean function can be set to zero in most
applications, the covariance function, however, plays a crucial role in establishing the
GP’s modelling performance. The latter essentially encodes the notions of similarity,
spatial nearness and joint variability among the observations. This is the reason why
GPs are can be viewed as kernel-based machines. A common default and general-
purpose choice for their kernel is the Squared Exponential, also known as Radial
Basis Function, generically defined as kf (x,x

′) = σ2
f exp

(
−1

2(x− x′)⊤M(x− x′)
)
,

where σ2
f is the variance of the underlying signal function f , M = diag(σ)−2, and

σ = [σ1, σ2, . . . , σD]
⊤ is a positive, real-valued vector containing the characteristic

length-scales of each of the D dimensions of the input feature space. These individual
scales allow the fitting procedure to select the most appropriate weights for each input
dimension according to their magnitude and importance, thus explaining why it is
also called the Squared Exponential with Automatic Relevance Determination (SE-
ARD). Besides being infinitely differentiable, it can serve as a universal approximator
for arbitrary functions (Micchelli et al., 2006), among several other sound proper-
ties (Rasmussen and Williams, 2006).

3.2. Active Learning Strategy

The strategy followed in this work combines crucial elements of both active learning
and simulation metamodelling, similar to that of (Antunes et al., 2018) and (Antunes
et al., 2019a). Figure 1 briefly depicts the proposed methodology, whose general ob-
jective is to approximate the behaviour of the simulation model under study around
predefined output values of interest and corresponding triggering input region. This
is achieved by using a GP that, while modelling the functional relationship between
the simulation input and output spaces, ultimately guides the training process itself
towards such simulation output value.

Three essential ingredients must be defined a priori to starting the algorithm. These
are the predefined simulation output search value (sV ) of interest, the initial training
grid (trGrid), and the search grid (sGrid). The algorithm is designed to provide the
user with a directional search towards the sets of input values or input regions that
trigger, via simulation, output values that lie close to sV by successive predictions
over sGrid. It is worthwhile to mention that, contrary to sV and sGrid, which are
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both fixed structures, trGrid evolves as part of the active learning scheme.
For the sake of simplicity, this work focuses on the two-dimensional case, although

the proposed methodology also applies to high-dimensional spaces. The method is
deemed as directional since the GP effectively directs the iterative metamodelling
process towards the input regions that are more likely to assume output values closer to
sV . This directionality is accomplished by considering a series of iterative training grids
and corresponding sub-grids that approximate the simulation results in the vicinity of
sV . These grids are sequentially added to the increasing training grid. The GP, used as
a metamodel, guides the expansion process of trGrid towards identifying simulation
input regions whose simulation results are close to the predefined output value of
interest. This allows the user to concentrate the computational workload (associated
with each simulation run) specifically in these input regions, turning the exploration
process not only faster but more efficient.

Figure 1(a) depicts an example of a training unit grid and its associated sub-grids.
The unit grid is composed of four contiguous sub-grids, defined by a set of nine points
arranged in a square shape. The same principles apply to any rectangular shape. Each
vertex represents a Cartesian pair of values within the simulation input space whose
corresponding simulation results (output values), simR, were previously computed.
The training set denoted by (trGrid, simR) is then a labelled data set. Furthermore,
observe that the unit grid and sub-grid have several points in common, which could
imply repeated simulation runs. Although this might prove useful for simulation mod-
els that exhibit a high degree of stochasticity, such scenarios were not particularly
addressed in this work. As the iterative process advances, the sub-division of the suc-
cessive grids continues recursively.

On the other hand, the search grid sGrid, besides being characterised by a static
structure, has a different nature and purpose. It is only comprised of input data points
for which the associated simulation results are not known. Thus, it comprises what is
often called unlabelled simulation instances or observations, and it is exclusively used
for prediction purposes. It should be highly dense so that the GP can predict over
sGrid with increased great detail. Contrary to the training stage, prediction does not
require much computational effort, and it is often a relatively fast procedure. This is
valid not only for the GP framework but also for the vast majority of the machine
learning tools.

In practice, sGrid is the simulation input region in which the user aims to explore the
simulation output behaviour, in particular, to eventually locate the set of input values
that trigger sV . Although not completely required, some prior knowledge regarding
the simulation model is desirable when defining this grid. There is no point in defining
a search grid in which the search value is never triggered. Hence, expert opinion and
experience are of utmost importance in this stage so that sGrid encompasses some
prior knowledge as to where sV is most likely to be triggered within the simulation
input space.

Following Figure 1(b), the algorithm starts with the labelling process of the points
contained in the initial training set. For each input point in this grid, a simulation
experiment is run so that the corresponding simulation output result is obtained. The
vector of all these output values is denoted by simR and the associated data set by
(trGrid, simR). Notice that in this first iteration, trGrid matches the training unit
depicted in blue previously seen in Figure 1(a).

Afterwards, a GP is fitted to (trGrid, simR), and predictions are made over the
unlabelled set sGrid, effectively serving as a simulation metamodel. These predictions
are estimates for the simulation output results associated with the points within the
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(a) (b)

Figure 1.: (a) Grid-based training unit (blue) with corresponding sub-grids (red), and
(b) proposed active learning methodology with 1-10 representing the iterative flows in
chronological order.

Inputs: sV , trGrid, sGrid
While APV not stable do

1: Train a GP using trGrid and obtain predictions over sGrid.
2: Select unlabelled sub-grids whose prediction points are closest to sV .
3: Run the simulator to obtain the output results for the selected sub-grids.
4: Expand trGrid with the newly obtained simulation results.
5: Update APV .

End
Output: Trained GP, trGrid.

Figure 2.: Pseudocode for the presented active learning metamodelling strategy.

search grid. As mentioned in Section 3.1, the GP predicts in the form of a probabil-
ity distribution, particularly providing the predictive variance associated with each
prediction. This variance is then used to compute the Average Predictive Variance
(APV ) over sGrid, and its stability is accessed. For obvious reasons, this step is not
applicable during the first iteration, as there are no previous iterations whose APV
values can be compared to. Finally, sub-grids are defined, and some are selected to
incorporate trGrid, naturally expanding it. This selection is conducted according to
the predictions provided by the GP by computing the point-wise Euclidean distance
between the GP surface and the nearest point comprising the horizontal plane defined
by z = sV . Hence, only those sub-grids whose predicted values are closer to sV are
added to the training grid.

Hereupon, the entire active learning process is iteratively repeated until APV shows
no signs of significant variation between iterations. Observe that APV is viewed as a
measure of the GP’s overall prediction performance. As the training set is expanded
by successive finer grids whose simulation results lie closer to sV , APV is expected
to decrease from iteration to iteration. This decrease should reach a lower bound,
representing the point from which the GP is not capable of further improving its
predictions. At this point, the simple addition of new points to the training set is a
waste of time and computational resources. In the end, this methodology is designed to
provide a final and fine mesh grid that encloses the region contained in the simulation
input space that specifically triggers the search value of interest. This approach is
summarised in the form of a pseudo-algorithm in Figure 2.
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4. Experimental Setting

In this section, an experimental illustration of the proposed approach is presented. To
this end, a recently developed EMS simulator, designed for a real-world case study,
was used, and two sets of experiments were conducted, including the validation of the
obtained results.

4.1. EMS simulator

In this work, the EMS simulator developed by (Amorim et al., 2018) was used as a case
study. This simulation model implements the allocation and dispatching of emergency
vehicles according to the closest idle vehicle rule (Haghani and Yang, 2007; Jagten-
berg et al., 2017; Yang et al., 2005). The underlying model relies on an agent-based
simulation design where a city agent serves as the operator of the emergency medi-
cal service. After answering emergency calls, it allocates and dispatches idle vehicles
to emergency locations. Each event is represented by an agent that encloses several
characteristics that describe the type of medical emergency, location, and timestamp.
Within the simulation, these events are set off according to a historical emergency call
database and, as well as to the probability of location change, forwardly discussed in
more detail. The vehicles are also formulated as agents that immediately react to the
city agent requests.

Most real-world EMS are still developed and managed by rudimentary and outdated
vehicle dispatching and reallocation rules. Essential factors such as traffic conditions,
roadblocks, vehicles’ exact positions, and emergency demand predictions are not en-
tirely considered during EMS planning. These and other time-dependent elements
do have a fundamental impact on the emergency system’s response (Schmid, 2012).
However, since the beginning of the 21st century, the proliferation of ubiquitous in-
telligent technologies (Kindberg and Fox, 2002) and the development of the Internet
of Things (IoT) (Li et al., 2015), has culminated in unprecedented data growth. With
this information technology revolution, EMS staff, practitioners, and researchers, in
addition to the traditional historical data, are now able to access, collect and pro-
cess large amounts of heterogeneous real-time information, such as traffic congestion,
satellite-based navigation, and emergency alerts.

4.1.1. Inputs

The mentioned EMS simulation model features three kinds of inputs, namely, the
location change probability, traffic error, and station locations. Whereas the former
two assume real values in the interval [0, 1], the latter assumes discrete positive values,
[0, 1, 2, ...), additionally breaking down into 90 independent, although related, inputs
dimensions. These inputs correspond to a 90-node emergency response network for
possible station locations. For this work, 15 of these 90 possible locations were assigned
to hold emergency stations. Figure 3 depicts the spatial distribution of the selected
locations within the city of Porto. Here, darker areas correspond to higher values
of emergency demand. This historical data consists of 35k emergency call records
collected from the Portuguese Institute of Medical Emergencies (INEM) (Gomes et al.,
2004) between 2012 and 2013. Table 1 summarises the locations and the number of
vehicles per station.

On the other hand, the location change probability and the traffic error inputs are
designed to reflect the operating conditions of the EMS somehow, as well as to induce
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Table 1.: Stations used and number of emergency vehicles per station.

location 14 17 21 23 29 30 35 7 46 47 48 63 67 86 108
vehicles 2 2 3 2 5 4 2 2 3 4 4 1 4 1 3

a degree of variability often present in real-world systems. The former is particularly
useful to emulate the expected stochasticity of the emergency events’ spatial distribu-
tion. High values of probability change mean that the emergency locations present in
the historical data are more likely to change. This introduces unforeseen dynamics in
the spatio-temporal distribution of the emergency events, forcing the simulated EMS
to respond accordingly.

With no surprise, the traffic error input relates to the road network conditions,
although it does not directly affect the vehicle’s travel times. Instead, it represents
how traffic errors lead to bad operational decisions when dispatching vehicles. Consider
the scenario where there is no traffic congestion, roadblocks, or other factors that can
increase travel times. For a given emergency event, the optimal dispatching decision
would be to assign the closest idle vehicle. However, the best dispatching decision is
not trivial when heavy traffic occurs (e.g., peak hours). Moreover, errors might occur
even with real traffic information, such as communication delays or data transmission
problems.

Considering traffic errors instead of the traffic information allows measuring dis-
tances by travel times rather than in length units. In practice, the time it takes for a
vehicle V to arrive at an emergency location E is far more crucial than the distance
between its dispatching station location and E. Especially under severe traffic condi-
tions, smaller distances do not imply reduced travel times. Therefore, traffic errors are
considered in terms of time units, reflecting the intrinsic dynamics of traffic conges-
tion and other road network conditions, ultimately leading to more robust dispatching
decisions.

4.1.2. Outputs

To evaluate the performance of the underlying EMS, two output metrics are considered
in this simulation model, particularly the response time and survival rate. The vehicle
response time measures how much time it takes for the medical staff to assist the
victim. As a single-point quality measure for the entire dispatching operation, the
sum of all emergency events or its corresponding average can be considered.

As for the survival rate, it represents the victims’ likelihood of survival, which will
depend simultaneously on the response times and severity of the emergencies. Again,
the sum or average over all the medical occurrences can be considered to assess the
overall performance of the EMS. In this work, only the survival output is taken into
consideration for modelling purposes.

4.2. Results

From a regression point-of-view, a GP is used to model the underlying functional
relationship between the inputs, namely, location change probability and traffic error,
and the output as the survival rate. Two sets of experiments were considered. Whereas
the first considers only one search value, the second illustrates the methodology for two
search values. In both experiments, we considered the mean the GP as the average of
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Figure 3.: Locations of the 15 emergency vehicle stations in Porto, Portugal. Darker
regions represent higher emergency risk.

the simulation output value within the training set, whereas the covariance function
was set to the widely known SE-ARD kernel already mentioned in Section 3.1. We
also used the GP implementation available from Rasmussen and Williams (2006).
The experiments were conducted in Matlab R2019b on a 2.7 GHz Quad-core Intel i7
processor with 16GB of RAM.

Our methodology aims to efficiently search for regions in the input simulation space
that trigger a particular output value, or values, of interest. In the particular case of
the mentioned EMS simulator, the proposed approach tries to identify sets of values
defined within the space defined by the ranges of the probability change and traffic
error inputs, [0, 1]×[0, 1], that trigger, through simulation, a user-specified output value
lying in survival rate’s range, [0, 1]. An active learning and metamodelling approach is
adopted so that exhausting and systematic computer experiments are avoided, thereby
turning the exploration process of the EMS simulator’s input space not only faster but
more efficient.

As highlighted in Section 3.2, the proposed algorithm requires three components
to be defined in advance, namely, sV , trGrid and sGrid. The latter two are shared
across the two sets of experiments. The initial training grid is set as the nine-point
training unit depicted in blue in Figure 1(a), whereas the search grid is defined as
a mesh grid of 10,000 unlabelled points uniformly distributed in [0, 1]2. The edges
of both squared grids match those of the input domain being explored. The search
values varied according to the experiment and were arbitrarily set for the sake of
demonstration.

4.2.1. Experiment 1

In this experiment, the active learning strategy was applied to identify the input region
most associated with survival rate values close to 50%. Thus, 0.50 was set as the search
value of interest, i.e., sV = 0.50. The results are summarily depicted in Figure 4 and 5.

As the initial training grid is comprised of a set of labelled data points, that is,
input-output tuples resulting from a series of computer experiments, a GP is fitted to
these simulation results. This first approximation, represented by a three-dimensional
surface, can be observed in Figure 4(a), and it corresponds to the GP predictions made
over sGrid. The same panel does show not only the surface contours but also the
input points constituting trGrid. Hereafter, using the GP predictions, the algorithm
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searches for the best-suited sub-grids (recall the red grids in panel (a) from Figure 1) to
advance with the learning process. The best candidates are associated with those GP
predictions whose values are closer to 0.50. This selection requires the computation
of the Euclidean distance between the GP approximation and the plane z = 0.5.
Observing Figure 4(b), the sub-grid delimited by [0.0, 0.5] × [0.0, 0.5] was selected as
the best candidate to be added to trGrid for the following iteration. In other words,
this means that it is most likely to contain simulation input values that trigger the
search value 0.50.

The predictive variances related to each GP prediction are then averaged out over
sGrid, and thus APV is computed. Finally, the selected sub-grid is labelled by the
simulator. This is attained by running the simulation model with the input values
associated with the selected sub-grid points. Naturally, each two-dimensional data
point corresponds to a single simulation run.

The algorithm proceeds in an iterative manner, alternating between the GP train-
ing/fitting stage, simulation runs, and the expansion of the training data. Figures 4(d)-
(f) show the results from the last three iterations, as well as the final configuration
stages of trGrid. The algorithm was able to detect that the series of sub-grid de-
fined within [0.0, 1.0]× [0.625, 0.750] specifically trigger simulation output values close
to 0.50. This input region approximately matches the intersection area between the
plane z and the GP surface. On the other hand, Figures 5(a)-(h) show the sequence of
the distances between the search value and surface provided by the GP. Darker colour
tones imply smaller distances. Here we can observe that the search procedure does
not evolve linearly, not at least in the first iterations. As more points are added to the
training grid, the GP reacts with different prediction behaviours until it eventually
stabilises. The obtained simulation input region of interest is visible in Figure 5(h),
here depicted as a dark narrow horizontal band.

The GP’s fitting performance within the input region identified by the algorithm is
supported by the finer grid of training points enclosing it. Note that the sub-grids grad-
ually added to the training grid get narrower as the process advances. Thus, sGrid
expands towards the input regions of interest defined by sequentially and increas-
ingly finer grids. This is not only expected but also the ultimate goal of the proposed
methodology. The algorithm stops when the addition of a new training point does not
improve the fitting of the GP, i.e. when APV starts not to vary significantly from
iteration to iteration. Figure 5(i) shows the evolution of APV . The algorithm required
17 iterations to stop.

It is worthwhile to mention that, in this work, the main objective of the GP is not
to serve as the perfect simulation metamodel. Although it should be, of course, a rea-
sonably good approximation for the underlying simulation model, most importantly,
it should guide the active learning algorithm towards the identification of the most
informative input points with regards to the simulation output search value. These
points, arranged in grids, lead the algorithm in the direction of relevant input regions
while minimising the computational workload. This ultimately turns the exploration
process of such regions faster, as well as more efficient.

4.2.2. Experiment 2

In this experiment, the algorithm was extended to encompass two search values,
namely, sV1 = 0.40 and sV2 = 0.55. Again, these values are arbitrarily set for the
sake of illustration. Figures 6 and 7 summarize the results. The main goal of this
experiment was to show that the proposed algorithm can be easily adapted to a multi-
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(a) (b) (c)

(d) (e) (f)

Figure 4.: Iterative GP surface approximations and associated countour plots with
sequential training grids and sV = 0.50. Panels (a)-(c) and (d)-(f) correspond to
iterations 1-3 and 15-17, respectively. The flat horizontal surface is located a z = 0.50
(search value).

directional nature. As expected, the problem gets more challenging as the number of
search values, input domain range, and dimensionality increase.

Following the same strategy, the algorithm starts from the simple nine-point grid
(see Figure 6(a)), ending up with a mesh grid of training points, as seen in Figure 6(f).
Within this final grid, two series of finer sub-grids clearly stand out from the rest,
in particular the grids defined by [0.0, 1.0] × [0.875, 1.0] and [0.0, 1.0] × [0.375, 0.50],
corresponding to the input regions that trigger sV1 and sV2, respectively.

In Figure 7, panels (a)-(h) show several non-consecutive steps in the evolution of
the distance (or absolute difference) between the GP surface and each of the search
values. Here, notice that, contrary to the input region associated with sV1, which is
highlighted by the dark tone horizontal strip seen in panel (g), the same does not
hold for sV2 (see panel (h)). In terms of distances, we observe that instead of a single
narrow region, a wider band is also visible, roughly defined within [0.0, 1.0]× [0.0, 0.5].
Although the algorithm was able to identify the input region that effectively triggers
the output value of 0.55, it does take any particular attention to the surroundings of
that value. Consider the scenario where the GP partially exhibits a near-flat surface
parallel to the search value plane (z2 = 0.55 in this case) and that the distance between
the two is sufficiently low. Here, the algorithm will ignore most of the associated GP
predictions, to the detriment of those near the intersection zone between both surfaces,
despite the closeness to sV2. This is what has occurred in this experiment, and it is
observable, for instance, in Figure 6(f). On the other hand, the same did not happen
to sV1 since the GP surface does not present a flat shape parallel to z1 in the vicinity
of this search value, as depicted in the same figure. An improvement to address this
kind of situation should be considered in the future. Figure 7(i) shows that this time,
the algorithm took 29 iterations to stop, as well as the expected decrease of APV .
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(g) (h) (i)

Figure 5.: Absolute difference between the obtained GP surface aproximations and
sV = 0.50. Panels (a)-(d) and (e)-(h) correspond to iterations 1-4 and 14-17, respec-
tively. Panel (i) depicts the evolution of the Average Predicted Variance.

14



(a) (b) (c)

(d) (e) (f)

Figure 6.: Iterative GP surface approximations and associated countour plots with
sequential training grids with sV1 = 0.40 and sV2 = 0.55. Panels (a)-(c) and (d)-(f)
correspond to iterations 1-3 and 27-29, respectively. The flat horizontal surfaces are
located a z1 = 0.40 and z2 = 0.55, representing the two search values.

4.3. Validation

In this section, we present the results of a series of computer runs in order to assess
the general predictive performance of the GP-based metamodel within the obtained
final grids. We summarise these results in Table 2.

Several error-based metrics were used, namely Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), and Root Relative Squared Error (RRSE). The re-
ported average values were obtained from 30 random computer runs and 10 test
points. Each metric was computed by comparing the predictions provided by the GP
from the last iterations against the corresponding simulation outputs. Within each
experiment, we compared the GP’s predictive performance inside and outside the ob-
tained training grids. Here, the grids used for validation correspond to the finer grids
that ultimately lead to the identification of the input region of interest, particularly
[0.0, 1.0]×[0.625, 0.750], and [0.0, 1.0]×[0.375, 0.50]∪[0.0, 1.0]×[0.875, 1.0], respectively
for experiments 1 and 2.

We can see in Table 2 that the GP consistently performs better inside each obtained
grid as opposed to the outside. As more points are acquired during the active learning
procedure, particularly towards the unknown input regions of interest, the density of
the training grid increases locally. Thus, it is expected that the GP yields increased
predictive performance within the finer obtained grids. This behaviour is particularly
highlighted within the RMSE and MAE columns.
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Figure 7.: Absolute difference between the obtained GP surface aproximations and the
two search values. Iterations 1-3 are depicted in panels (a)-(c) and (d)-(f), respectivelly
for sV1 = 0.40 and sV2 = 0.55. Panels (g) and (h) represent the two last iterations
for each corresponding search value. Panel (i) depicts the evolution of the Average
Predicted Variance.

Table 2.: Averaged performance results from 30 random runs for the two experiments.

Experiment Grid Search Value sV RMSE MAE RAE RRSE

1
inside

0.50
0.0049 0.0039 0.3658 0.3917

outside 0.0428 0.0360 0.6441 0.6677

2
inside

0.55 0.0033 0.0026 0.5255 0.5603
0.40 0.0054 0.0045 0.3690 0.3805

outside 0.55 & 0.40 0.0302 0.0231 0.5730 0.6451
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5. Practical Implications

The proposed method is used, as stated, to explore the input space that leads to pre-
determined outputs. This process opens doors to a “reverse engineering” methodology,
benefiting from existing transport system models, leading to a novel traffic and mobil-
ity planning approach. As of now, city planners, transport providers, and researchers
build transport system models (or use existing ones) when faced with the necessity of
improving a specific performance indicator of their system. With these models, they
are able to test and assess possible measures, changes, or additions that may or may
not lead to an improvement of the specified indicator. This process requires the defi-
nition of potential scenarios, and their respective analyses within the defined models,
through an interactive process of trial-and-error in which the user continuously fine-
tunes them or eventually proposes new ones until they reach a satisfactory output
performance. Such scenario design and planning processes, which must be guided by
specialised domain knowledge, traditionally require systematic simulation experimen-
tation and exploration.

With the presented approach and the results obtained herein, there is the possibil-
ity of reversing the analysis by first defining the target output of interest or even a
collection of possible output values and only then exploring the corresponding input
domain that triggers them through simulation. This methodology would allow for an
efficient and expeditious analysis of transport system requirements or changes, which
would improve the decision mechanism and would offer a better overview of the pos-
sible solutions. Hence, the proposed approach provides EMS managers and planners
a method to identify input domain regions that most influences a certain target per-
formance of interest. In this case, the input domain is the location of vehicles and the
uncertainty of traffic and demand. This allows them to quickly identify where to rein-
force resources and where, for example, traffic uncertainty will have a higher impact.
In practice, the approach can provide practitioners with a solution matrix with the
station configurations that, for a certain condition, would improve the target metric
such as the survival rate discussed in this paper.

This work was highly motivated by recent early work. In the same context of EMS
and emergency response systems, Amorim et al. (2019a) has proposed an integrated
strategic and tactical planning decision methodology to address the problem of op-
timal ambulance location, particularly relying on a GP-based metamodel to mimic
the real-world system state as a complement to a location optimisation model. Using
such a metamodel, a local search for feasible and reasonable solutions was employed
with successful results. In most modelling situations, evaluating a single solution might
require several minutes or even hours. Therefore, a metamodel-based simulation was
preferred since it allows a rather fast evaluation of alternative solutions with a mi-
nor and controlled accuracy loss. In this particular setting, the metamodel took the
role of the simulator, effectively proposing a heuristic approach based on simulation
metamodelling to help solve the underlying hard optimisation problem.

On the other hand, it is worthwhile mentioning that a pre-trained GP was used
during the entire optimisation process. Although this heuristic proved to attain good
results, we believe that it can be further improved if active learning is added to the
equation. Instead of using a pre-trained GP, a more dynamic learning approach can be
easily adopted by integrating the three main entities, namely, the simulation model,
the optimisation model, and the active learning metamodelling strategy as the link
between them. From the optimisation problem perspective, both the simulation model
and metamodel are treated as black-boxes that provide alternative empirical evidence
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with respect to the real-world system since experimenting in the latter can prove to be
prohibitively or impractical. Therefore, active learning can be employed to effectively
balance the challenging trade-off between computational parsimony and accuracy loss.
More training points can be added by request as the optimisation process evolves to
steer the learning towards important input regions and, consequently, to increase the
prediction performance of the simulation metamodel.

To the best of our knowledge, the recent works of Amorim et al. (2019a) and Antunes
et al. (2019a) constitute one of the first applications of simulation active learning
metamodelling to an EMS simulator within a simulation/optimisation setting. As of
now, most emergency response studies continue to rely on systematic and exhausting
simulation experiments on a trial-and-error basis. This often poses a considerable
hindrance to a parsimonious modelling and decision-making process. Hence, we are
certain that the conjoint use of active learning and simulation metamodeling represent
important complementary tools for researchers and practitioners in the field.

The obvious burden of this methodology falls on the data acquisition to train the
metamodel, inevitably requiring the use of the simulation model. This drawback is also
the main motivation for our directional approach, which steers the metamodel training
phases to the most important simulation input regions from a modelling point of view.
The proposed approach will always be dependent on the simulation model itself. The
idea is that we extract as few training points as possible, especially avoiding redun-
dancy, in the most informative way possible. Nevertheless, despite the complexity of
the underlying problem and simulation model, we can eventually bypass the simula-
tion burden of an in-depth exploration of scenarios. Additionally, we can even target
specific simulation outcomes to understand the input regions directly responsible for
influencing them.

6. Conclusions & Future Work

This paper presents a methodology combining active learning and simulation meta-
modelling, which identifies relevant regions within the simulation input space that
specifically triggers an output value previously set by the user. The survival rate out-
come of a state-of-the-art EMS simulation model, modelled after the city of Porto,
Portugal, was used as a case study.

The results show that, by employing a GP as a metamodel, the presented approach
can effectively guide the exploration process of the input space of a simulation model
towards those input regions whose output values are close to predefined search values
of interest while minimising the computational workload at the same time. This is
achieved by allocating the simulation runs to cover specific subregions of the input
search space, thus making the exploration process more efficient and faster. It is also
shown that it is trivially generalisable to multiple output search values.

The presented work can be improved in several directions. Several plans for future
work are as follows:

• The possible correlation between simulation outputs can be useful to improve
the metamodelling performance. This would also allow the exploration of mul-
tiple distinct output metrics simultaneously. Hence, a multi-output regression
setting, namely the multi-output GP framework, will be considered in upcoming
developments.

• Natively invertible models, such as Normalizing Flows, should also be explored
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as a natural means of a tentative inversion of the relationship between simulation
input and output spaces.

• Adopting popular design for computer experiments, such as the Latin-hypercube,
and combining them with the proposed sub-grid sequence, should further im-
prove the statistical significance of the proposed approach.

• The grid-based search should be revisited. The generalisation for more appro-
priate geometric arrangements, depending on the properties of the simulation
input space under analysis and the particular goals of the metamodelling ap-
proach, should be an object of further study.

• Compare the current approach with similar alternative methods, including dif-
ferent active learning schemes and stopping criteria.

• Improve the presented method by encompassing the development of heuristics
(e.g., local search) within simulation-optimisation approaches, which are com-
monly used tools in the research field of EMS planning and related decision
support systems.

• Explore new EMS simulation models with increased input/output dimensionality
for further testing and to induce future developments.

As a final note, and following up on the last point, recall that the current simulation
model focuses on exploring vehicle location and its impact on patient survival. In it,
the uncertainty of the demand and traffic conditions is included as key parameters that
directly influence the survival outcome performance of the EMS response. With this
in mind, further improvements can be made in order to make the simulation model
more realistic, namely:

• Inclusion of other operational inputs parameters such as vehicle types, crew
composition and capacity would allow the proposed model to give further insights
on the tactical planning;

• Dynamic vehicle location is also worth exploring and could be implemented in
further research by expanding the input vector into a sequence of vectors that
would describe the location of vehicles along a predefined period.

• Several other uncertainty parameters can be implemented to tackle issues such
as the busyness of hospitals, patients’ processing times, or even assistance time
at the emergency location.

• Experiment with new survival functions. The usage of these functions for mea-
suring the performance of EMS response is still scarce since more research on
the topic regarding different emergency types is required.

In sum, it is our understanding that only a handful of works involving active learning
and simulation metamodels techniques are currently available in the EMS literature.
To this end, we believe that this work constitutes an important contribution to the
related body of knowledge. We believe that the results presented herein will initiate
fruitful discussions among researchers and practitioners and ultimately foster more
developments and multidisciplinary applications within the EMS modelling field.
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