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Abstract—Dual active bridge (DAB) topology has been 
recognized as the key circuit for the next generation of high-
frequency-link power conversion systems. In order to realize 
desired operating performance, DAB modulation strategies need 
to be selected carefully. Different modulation strategies have been 
considered and combined into a hybrid one, which is able to fully 
optimize performance. However, to develop a hybrid modulation 
strategy, the conventional methods including harmonic model and 
piecewise model have difficulty in balancing modeling accuracy 
and manpower burden. Although recent data-driven modulation 
approaches can automate the design process, the accuracy of data-
driven models decreases nontrivially with the existence of outliers 
and without sufficient data. Hence, to alleviate human-dependence 
and improve modeling accuracy, this paper proposes an AI-based 
design with data trimming (AI-DT) for hybrid phase shift 
modulation. Two two-degree-of-freedom modulation strategies are 
considered for the sake of optimal current stress performance. AI-
DT firstly adopts the one-class support vector machine (SVM) to 
exclude outliers. Second, the state-of-the-art extreme gradient 
boosting (XGBoost), which is insensitive to training data size, is 
adopted to build data-driven current stress models for the DAB 
converter. After that, differential evolution (DE) algorithm helps 
to choose modulation strategy and optimize modulation 
parameters for optimal current stress. Generally, the proposed AI-
DT is developed in an automated fashion, which largely relieves 
manual computational complexity while exhibiting satisfactory 
modulation accuracy. The effectiveness of the proposed AI-DT 
approach has been experimentally verified with a 1kW hardware 
prototype, realizing optimal current stress under full operating 
conditions with more than 96.5% as peak efficiency.  

Index Terms—dual active bridge, phase shift modulation, 
hybrid modulation, current stress, artificial intelligence, outlier 
detection, XGBoost, differential evolution algorithm. 

I. INTRODUCTION 

Firstly proposed in the early 1990s [1], dual active bridge 
(DAB) topology has been recognized as the key circuit for the 
next generation high-frequency-link power conversion systems 
[2], [3]. Without line-frequency transformers, it features light 
weight and compact size. Moreover, other advantages of the 
DAB converter include bidirectional power transfer capability, 
high power density and ease to realize zero voltage switching 
(ZVS) [4]. Nowadays, DAB converters can be found in various 
applications like battery energy storage systems [5], back-to-
back systems [6], solid state transformers [7], [8], electric 
vehicles [9], etc.  

Among the emerging research works regarding DAB 
converters, modulation strategy is an important topic as it can 
achieve flexible power control and enhance operating 
performance. Single phase shift modulation (SPS) [10] is a 
classical modulation strategy for DAB converters which adjusts 
the outer phase shift between the primary full bridge and the 
secondary full bridge. SPS modulation is easy to implement, 
however, it fails to achieve a wide ZVS range and satisfactory 
efficiency performance. To relieve these pains, one more degree 
of freedom, which is the inner phase shift of the full bridge, is 
added to SPS to realize dual phase shift (DPS) [11] and extended 
phase shift (EPS) modulation [12], [13]. If two inner phase 
shifts of two full bridges are set as independently adjustable 
parameters, it becomes triple phase shift (TPS) modulation [14]. 
TPS has three degrees of freedom and can be regarded as the 
generalized version of SPS, DPS and EPS.  

To realize the best performance of DAB converters in the full 
operating range, some researchers work on hybrid modulation 
(HM) strategies. Shen et al. applied EPS and TPS to achieve 
practical ZVS operation of all switches over the full operating 
range while minimizing the conduction losses [15]. Amit et al. 
explored the combination of different modes of TPS to achieve 
the highest efficiency over a wide operating range [16]. A more 
complicated hybrid duty modulation was introduced by Di et 
al., which added two more degrees of freedom based on TPS 
to minimize rms current and extend the soft-switching range 
[17].  

Nevertheless, the conventional design of a HM suffers from 
massive human-dependence, resulting in time-consuming 
model building and optimization processes and inaccurate 
models. For example, to optimize the current stress to protect 
power devices and achieve high efficiency, the conventional 
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design method will first build models with harmonic model or 
piecewise model. On one hand, the harmonic model has low 
accuracy because only the fundamental component is 
considered. On the other hand, the piecewise model is 
complicated in that it requires manual derivation for every 
different operating mode in one modulation strategy. If a HM is 
considered, expression derivation needs to be done manually for 
every single modulation strategy. After models are built, the 
complex current stress expressions, consisting of higher order 
nonlinear terms, will be optimized with mathematical 
approximations or numerical algorithms, both of which can 
decrease the modeling accuracy. Thus, the complexity of 
conventional design approaches will be too high when the 
optimization of current stress is considered in a HM strategy 
because of the heavy computation both in model building and 
optimization. Moreover, the issue of poor modeling accuracy 
may occur resulting from mathematical approximations or 
inaccurate algorithms. How to ameliorate the heavy computation 
due to massive human-dependence and achieve high modeling 
accuracy simultaneously is the main focus of this paper. 

Recently, stepping into the era of artificial intelligence, more 
and more researchers in power electronics are considering 
adopting artificial intelligence (AI) tools to accelerate and 
automate such complex model building and optimization 
processes. The prevailing computer-aided approaches take 
advantage of AI algorithms to optimize power converter designs. 
For instance, for the circuit parameter design of a CLLC-type 
DAB converter, a latest particle swarm optimization (PSO) 
variant is adopted to optimize cascaded gain margin and 
efficiency while considering parameter fluctuations [18]. In [19], 
mathematical hybrid automation describes the constrained state-
space equations of various modes to optimize the phase shift 
modulation of DAB converters for optimal current stress 
performance. Besides, reinforcement learning techniques have 
been applied for the optimization of modulation strategies for 
various objectives, such as optimal reactive power [20], 
minimum current stress [21], etc. 

These computer-aided design approaches are limited to 
automate optimization process, but the model building process 
which occupies the majority of development time remains 
human dependent. To automate such time-consuming model 
building process, data-driven approaches are gaining popularity. 
For example, Qun et al. made use of deep belief network, a 
generative graphical deep learning model, to realize fault 
diagnosis for a closed-loop single-ended primary inductance 
converter [22]. To stabilize voltage of dc-dc converters in dc 
microgrids, Mojtaba et al. adopted deep reinforcement learning 
technique [23]. Neural network (NN) has also been used in the 
realization of TPS modulation for DAB converters [24]. [25] 
adopted feedforward NN for the accurate modeling of efficiency 
of buck converters. Li et al. utilized NN to replace manual 
performance derivation and optimization [26]. [27] applied AI 
algorithms for efficiency-oriented optimization for DAB 
converters under TPS modulation.  

However, most of the AI techniques used to automate the 
model building and optimization processes are inappropriate 
due to some unneglectable disadvantages. Foremost, the 

common existence of outliers is not considered, which can 
seriously undermine the learning accuracy as discussed in [28]. 
Due to the presence of outliers, the modeling accuracy of latest 
NN-based design approaches like [26] and [27] suffers. 
Consequently, how to exclude the abnormal data to improve the 
modeling accuracy is also a focus of this paper. 

Except for failing to consider data abnormality, most AI 
algorithms are sensitive to training data size, resulting in either 
underfitting or overfitting. If a shallow NN or a simple decision 
tree is applied, it is prone to underfitting because of insufficient 
learning capacity. While a deep NN may have an overfitting 
problem for learning the training data too well and require large 
set of data and heavy computation [29]. Hence, an AI technique 
that is flexible with data size and has good accuracy is expected 
in the application for power electronics.  

On the basis of the aforementioned analysis, outlier detection 
and data trimming are leveraged to improve modeling accuracy. 
In electrical engineering, outlier detection techniques are mostly 
used for condition monitoring, such as the machinery condition 
monitoring [30], battery reliability testing [31], metering 
equipment monitoring [32], etc. In this paper, the one-class 
support vector machine (SVM) is specially selected by virtue of 
its high performance for detecting outliers and low algorithm 
complexity. Moreover, a promising AI algorithm, the extreme 
gradient boosting (XGBoost) proposed by Chen and Guestrin in 
2016 [33], is adopted since it can attain satisfactory modeling 
accuracy with significantly less training data than deep learning 
approaches, and it is light in computation and free from 
overfitting. 

In this research work, we propose an AI-based design with 
data trimming (AI-DT) for a hybrid phase shift modulation for 
DAB converters with optimal current stress. In this HM strategy, 
EPS and DPS are considered for different operating conditions, 
both of which have two degrees of freedom. This choice can 
balance the optimal operating performance and the ease of 
implementation. The proposed AI-DT approach consists of two 
phases. In Phase One, training data is generated with simulation 
software, and one-class SVM algorithm is utilized to trim 
abnormal data points, alleviating the severity of outliers. After 
the data trimming, XGBoost, as one of the state-of-the-art AI 
techniques, is applied to build data-driven current stress models 
for EPS and DPS modulation strategies. In Phase Two, 
differential evolution (DE) algorithm is adopted to find optimal 
hybrid modulation parameters to achieve minimum current 
stress. In a nutshell, AI-DT has the following merits:  
 First, AI-DT is executed automatically, pointing out the 

potential way forward for applying AI techniques to 
automate and accelerate the development of modulation 
strategies in power converters. 

 Second, the current stress performance of the HM will be 
optimal compared to any single two-degree-of-freedom 
modulation strategy. 

 Third, the influence of abnormal data is studied, and the data-
driven modeling accuracy is improved since the adopted one-
class SVM excludes harmful outliers. 

 Fourth, the carefully selected XGBoost model is more 
appropriate than other ML techniques, attaining good 
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accuracy with less data required. 
This paper is organized as follows. Detailed explanations 

about EPS and DPS modulation strategies, and the conventional 
methods and challenges to model current stress are elaborated 
in Section II and III, respectively. Section IV, and V present 
Phase One, and Two of the proposed AI-DT, respectively. In 
Section VI, one detailed case study is illustrated according to 
the provided specifications. To validate the effectiveness of AI-
DT, experimental results are analyzed in Section VII. Finally, 
the conclusion of this paper is summarized in Section VIII.  

II. OPERATING PRINCIPLE OF EPS AND DPS MODULATIONS  

A. Topology of DAB Converter  

The topology of DAB converter is described with Fig. 1. A 
high frequency transformer connects two full bridges together. 
It realizes galvanic isolation and transfers power. The turn ratio 
of the transformer is n. vAB and vCD are defined as the ac voltages 
of primary and secondary full bridges, respectively. iL is the 
current through the leakage inductor of the transformer (Lk).  
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Fig. 1. Topology of the DAB converter.  
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Fig. 2. EPS modulation scheme: (a) EPS1; (b) EPS2.   

B. Operating Principles of EPS Modulation 

In EPS modulation, there are two degrees of freedom, outer 

phase shift Do and inner phase shift Di. If Di is applied to the 
secondary full bridge, we name it EPS1 and if it is applied to the 
primary full bridge, we refer to it as EPS2.  

Fig. 2 illustrates the gate drive sequences of switches and 
definition of two phase shift parameters in EPS. The upper and 
lower switches in each switching leg are driven with 50% duty 
cycle complementarily when dead time is neglected. Ts is the 
switching period and T is half of Ts  [12]. In both kinds of EPS 
modulation, Do shares the same definition, which is the phase 
shift between the primary full bridge and the secondary full 
bridge (Q1 and Q5). The adjustable range of Do is [-1, 1]. As 
shown in two black text blocks in Fig. 2, the full bridge where 
Di is applied is the difference between EPS1 and EPS2. In EPS1, 
the secondary full bridge has an inner phase shift Di and Q7 will 
have a DiT time delay compared to Q5. In this case, vCD is a 
three-level voltage waveform. Conversely, in EPS2, the primary 
full bridge has an inner phase shift Di and Q3 will have a DiT 
time delay compared to Q1. And in this situation, vAB is a three-
level voltage wave. Thanks to the zero voltage plateaus of the 
three-level wave, backflow power is zero which decreases the 
circulating power.  Both in EPS1 and EPS2, the adjustable range 
of Di is [0, 1]. To achieve the decreased circulating power, when 
the voltage conversion state is boost or buck mode, EPS1 or 
EPS2 will be selected accordingly [34], [35]. Compared to 
traditional SPS modulation, EPS modulation shows better 
efficiency and current stress performance as well as wider ZVS 
operating range [36], [37].  

C. Operating Principles of DPS Modulation 

DPS modulation also has two degrees of freedom, outer phase 
shift Do and inner phase shift Di. In contrast to EPS modulation, 
its Di applies to both of the full bridges.  

Fig. 3 describes the gate drive sequences of switches and 
definition of two phase shift parameters in DPS. The upper and 
lower switches in each switching leg are still driven with 50% 
duty cycle complementarily when dead time is neglected. Do 
shares the same definition and adaptable range as that in EPS. 
The primary full bridge and secondary full bridge both have an 
inner phase shift Di, which means Q3 and Q7 will have a DiT 
time delay compared to Q1 and Q5, respectively [11]. As shown 
in Fig. 3, vAB and vCD of both bridges are three-level voltage 
waveforms. The adjustable range of Di is [0, 1]. Compared to 
SPS modulation, DPS is also able to decrease current stress, 
improve efficiency and expand ZVS operating range [38], [39].  
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Fig. 3. DPS modulation scheme.   
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In EPS and DPS modulations, the transferred maximum 
power can both be calculated with (1) where fs is the switching 
frequency. And accordingly, the design range of Lk can be 
calculated with (2). 

1 2
max 8

s

nVV
P

f L
=   (1) 

1 2

max
8k

s

nVV
L

f P
≤  (2) 

III. CONVENTIONAL MODELING METHODS OF CURRENT STRESS 

iL Lk

+  vL  -
V1 V2

vAB vCD

 
Fig. 4. Equivalent circuit of a single-inductor non-resonant DAB converter. 

Generally, two methods are usually considered to build the 
steady-state models for the DAB converter: the harmonic model 
and the piecewise model. In this paper, current stress is 
evaluated with the peak-to-peak current through Lk (Ipk).  

A. Harmonic Model  
Fig. 4 gives the equivalent circuit of a single-inductor non-

resonant DAB converter, from which we can find that vAB and 
vCD are high-frequency square waves.  

In the harmonic model, vAB and vCD are expressed with the 
Fourier series transformation. A unified model for EPS and DPS 
modulations is provided by [40]: 
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in which βo is the outer phase shift angle, and βi1 and βi2 are the 
inner phase shift angles for primary and secondary full bridges, 
respectively. In EPS modulation, only one of βi1 and βi2 is equal 
to zero. While in DPS modulation, βi1 is equal to βi2. Based on 
(3), the voltage across Lk (vL) can be expressed as vAB - vCD. After 
that, iL can be obtained by dividing vL by the impedance of Lk. 
And then Ipk can be calculated accordingly by taking the peak-
to-peak value of iL.  

  
Fig. 5. Descriptions on building harmonic models. 

 Fig. 5 gives a visual representation of harmonic model 
analysis, taking vAB and vCD in EPS1 as an example. Because of 
space limitations, only 1st, 3rd, 5th and 7th harmonics are 
displayed. But in reality, it has infinite orders of harmonics.  

Thus, the pain point of the harmonic model is the trade-off 
between modeling accuracy and computational load. It is 
extremely hard to calculate all components of the harmonics, 
but when only the fundamental component is considered, 
accuracy is compromised.  

B. Piecewise Model 

The other frequently used model is the piecewise model. As 
the name suggests, this method analyzes iL piece by piece within 
one switching period through the inductor volt-second balance 
principle [41], [42]. iL(t) of every time segment in every 
operating mode is derived individually. Fig. 6 gives an example 
of piecewise analysis, which segments iL in DPS modulation 
into 8 parts.  

This method, even though performs better than the harmonic 
model with regards to modeling accuracy, the derivation of Ipk takes 
a lot of manual efforts as it requires the analysis of iL(t) in every 
time segment for all operating modes and modulation strategies. 

Piecewise Analysis (DPS as an example)

VAB VCDiL

Segment
vAB
vCD
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0 V1 0 0 -V1 0

00 V2 V2 0 0 -V2 -V2

t1 t2 t3 t4 t5 t6 t9t7 t8
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Fig. 6. Descriptions on building piecewise models. 

C. Challenges of Existing Modeling Methods 

Overall, the conventional harmonic and piecewise modeling 
methods suffer from heavy computation induced by 
sophisticated derivation process and poor modeling accuracy 
due to limited harmonics or mathematical approximations, 
which are summarized in Fig. 7. How to automate the human-
dependent modeling process to free manpower burden while 
keeping high modeling accuracy is the main challenge of this 
paper. 
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Harmonic or Piecewise Approach

Low Modeling 
Accuracy

Heavy 
Computation

Low Modeling 
Accuracy

Heavy 
Computation

Limited 
harmonics

Mathematical approximations

Segment-by-segment

Analyze all operating modes 
& modulation strategy

Piecewise 
Model 

Harmonic 
Model 

Or

 
Fig. 7. Challenges of conventional modeling methods. 

Although recent NN-based data-driven approaches [24], [26], 
[27] can alleviate human-dependence, the lack of considerations 
of data outliers and the sensitivity to data size will reduce 
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modeling accuracy. As shown in Fig. 8, data outliers will lead 
to deviated behaviors, and the accuracy of NN drops with the 
decrease of training data size. Consequently, this paper aims at 
mitigating the negative impacts of abnormal data points and 
ensuring that the data-driven model is robust to data size.  

Modeling of Current Stress via Latest Data-Driven Approaches

Ground truth

Outliers

With outliers, regression 
curve deviates

Deviation

Data size

Sensitive 
to data size

x

y Accuracy

 
Fig. 8. Challenges of recent data-driven modeling methods. 

IV. THE PROPOSED AI-DT PHASE ONE: BUILD DATA-DRIVEN 
CURRENT STRESS MODELS WITH DATA TRIMMING 

This paper proposes a two-stage AI-DT, which is conducted in 
a fully automated fashion to ameliorate heavy manual derivation. 
In this section, Phase One of the proposed AI-DT is introduced, 
which is to build data-driven current stress models with the data 
trimming technique and the advanced XGBoost algorithm. 
Detailed steps in Phase One will be explained first, followed by 
illustrations of the operating principles of the one-class SVM for 
data trimming and the XGBoost for data-driven modeling.  

A. Phase One: Build Data-Driven Current Stress Models 

Phase One aims to build data-driven models for current stress 
of DAB converters under different modulation strategies. With 
the integration of simulation software, one-class SVM and the 
specially adopted XGBoost model, the surrogate models of 
current stress under different operating conditions and 
modulation strategies are automatically built. The steps of Phase 
One shown in Fig. 9 is illustrated in detail as the following.  

EPS1: Select 
Simulation 
Conditions:  

P, V2, Di

3×N1×N2×M1 
Combinations 
of ( P, V2 , Di)

Phase One: Build Data-Based 
Current Stress Models
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obtained from Step 3.
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Simulation 
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Step 3: Section IV-B
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×
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Fig. 9. Flowchart of Phase One of AI-DT. 

Before the start of Phase One, the operating conditions must 
be specified, including input voltage V1, range of output voltage 

[V2min, V2max], range of power transferred [Pmin, Pmax] and 
switching frequency.  

After these preparations, Phase One will follow the flowchart 
below, which consists of four steps.  

In Step 1, combinations of simulation conditions need to be 
determined for both EPS1, EPS2 and DPS modulations. These 
combinations will be used for running simulations in Step 2. 
Simulation conditions include operating parameters (power 
transferred P and output voltage V2), modulation strategy (S), 
and modulation parameters Di. P, V2 and Di can be uniformly 
sampled within the range [Pmin, Pmax], [V2min, V2max] and [0, 1], 
respectively. S will be chosen among EPS1, EPS2 and DPS 
modulation strategies. The number of samples for P, V2 and Di 
is N1, N2, M1 and thus total number of combinations will be 3× 
N1 × N2 × M1. 

In Step 2, a simulation model is built in PLECS [43], [44] and 
it runs for 3× N1 × N2 × M1 combinations of operating conditions, 
which are decided in Step 1. PLECS is chosen because it has 
high simulation accuracy while maintaining the fast simulation 
speed attributable to lookup tables. The current stress results (Ipk) 
provided by the simulation are trimmed in Step 3.  

In Step 3, a popular outlier detection algorithm, the one-class 
SVM algorithm, is used to exclude abnormal current stress 
results. One-class SVM finds a hyper-sphere decision boundary 
that incorporates normal data and excludes abnormal data. The 
clean training data after the data trimming is given to Step 4 for 
data-driven modeling of current stress performance. 

In the last step, a data-driven current stress model, XGBoost, 
is trained. During training, XGBoost will learn the relationships 
between inputs (P, V2, S, Di) and output (Ipk). Strategy selector 
S encodes the considered modulation strategies. By specifying 
different values of S, the current stress performance of different 
modulation strategies can be evaluated. After training, it will 
become a surrogate model for current stress under hybrid 
modulation strategy, which is able to evaluate current stress 
performance under any operating condition and modulation 
strategy within the specified ranges.  

B. Application of One-Class SVM in AI-DT for Data Trimming 

×

×
×

×
×

Decision 
boundary

Outliers

Inliers

×

+
R

c

ξi 

Radius
Center

Φ(xi)

• Data inside or on the 
decision boundary

• Data outside the 
decision boundary

Outliers, Excluded

||Φ(xi)-c||2 <= R

||Φ(xi)-c||2 > R

Inliers, Kept

 
Fig. 10. Principle of the one-class SVM for data trimming. 

In AI-DT, to prevent outliers from reducing the data-driven 
modeling accuracy, the one-class SVM algorithm is specially 
adopted. The one-class SVM maps the data points to a higher 
dimensional feature space and finds a hyper-sphere that includes 
normal data and excludes outliers. As shown in formula (4) and 
Fig. 10, the radius R of hyper-sphere is minimized, where c is 
the center, Φ is the feature mapping function, ξi is a slack 
variable to consider soft margin, l is the total number of data, 
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and υ is a parameter controlling the length of R. The one-class 
SVM is carefully adjusted to exclude most outliers, benefiting 
the accuracy of the proposed data-driven modeling approach. 

2

2 2

1
min

. . ( ) , 0

 
+ 

 
Φ − ≤ + ≥

∑ ii

i i i

R
l

s t x c R

ξ
υ

ξ ξ
 (4) 

C. Application of XGBoost in AI-DT for Data-Driven Modeling 

XGBoost, which is an ensemble learning algorithm based on 
decision trees, is used rather than NN for regression purpose 
because of the following distinctive advantages. First, XGBoost 
is not data intensive, which means that it can attain high 
modeling accuracy with less data required compared with NN. 
Second, XGBoost consists of a series of weak decision trees, so 
overfitting is greatly relieved. Moreover, the structure of 
XGBoost can be easily adjusted [33]. With XGBoost, high 
modeling accuracy and light computation load are achieved 
simultaneously. The training process of XGBoost is described 
with Fig. 11.  
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Fig. 11. Schematic diagram of XGBoost 

XGBoost contains k decision trees, and each tree aims to learn 
yk, which is the residual between the target output value y* and 
the cumulative outputs of all previous trees. To take the first 
decision tree as an example, target output value y* is compared 
with the output of Decision Tree 1 (f1) and the corresponding 
residual is marked as y2. With boosting learning strategy, y2 will 
be marked as the target output value for Decision Tree 2 and 
compare with the output f2 to obtain the residual y3 for the next 
tree. This rule applies to other trees. To generate the kth tree, the 
objective function in (5) is minimized to tune the learnable 
parameters θk of this tree. When objk is minimized, the output of 
the kth tree (fk) will get closer to yk. The final output of the 
XGBoost system can be obtained by summing up the outputs of 
all decision trees.  

In our case, the target output value y* is equal to the targeted 
value of Ipk

* and final output of this XGBoost system is the 

predicted value of Ipk for the specified input features (P, V2 and 
Di), expressed with (6).  

( ) ( )θ θθ θ θ

− 
= − = − − 
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∑

2
12

*
, ,

min min min
k k

k k k

k

k k k i k
i

obj y f y f f  (5) 

( ) ( )2 2
1

, , , , , ,
=

= ∑
k

pk i i i
i

I P V S D f P V S D  (6) 

In summary, with the application of XGBoost in Phase One, 
a data-driven current stress model can be obtained without any 
complicated mathematical derivation.   

V. THE PROPOSED AI-DT PHASE TWO: OPTIMIZE CURRENT 
STRESS WITH DIFFERENTIAL EVOLUTION ALGORITHM 

This section introduces Phase Two of the proposed AI-DT, 
which is to find the best modulation strategy and optimize 
modulation parameters with differential evolution (DE) 
algorithm [45]. In Phase Two, the DE algorithm interacts with 
the trained XGBoost surrogate models of current stress from 
Phase One to automatically optimize modulation parameters. 

DE is selected due to its robust and consistent optimization 
performance and fast computation speed [46]. Compared to 
genetic algorithm which is suitable for discrete optimization, 
DE is designed for solving continuous optimization since it is 
founded on vector arithmetic. Compared to PSO, DE can 
enhance population diversification to improve optimization 
performance since candidate solutions are not affected by the 
global best solution. Moreover, being beneficial from the 
floating-point arithmetic, DE exhibits fast computation speed. 

Initialize basic DE parameters (NP, F, CR) 
and initialize DE population with (8)

Evaluate objDE of Di_jG  with XGBoost 
model obtained in Phase One

For given P, V2

G = G + 1

Collect optimal Di and objDE  
for the specified different P, V2

NO

YES
Is G > maximum iteration time ?

S = EPS1

S = EPS2
S = DPS

For given P, V2

For given P, V2

Compare objDE of three strategies 
and save optimal S and Di

Mutation: generate VjG with (9) 

Crossover: generate UjG with (10)

Selection: generate Di_jG+1 with (11) 

 
Fig. 12. Flowchart of Phase Two. 

DE algorithm is composed of three evolutionary operators, 
which are mutation, crossover and selection [47], [48]. Mutation 
is used to add weighted difference to reference individual to 
create a mutant individual. Crossover generates a new 
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individual based on the mutant individual and a current 
individual. And selection is used to evaluate the performance of 
this new individual and choose between it and the current 
individual.  

In our case, for specified P and V2, DE will search for the 
optimal Di value and optimal current stress performance for 
EPS1, EPS2 and DPS modulation strategies. The objective for 
DE is expressed with (7). After that, the optimal current stress 
performance of these three strategies will be compared and the 
best strategy is selected. On the basis of the XGBoost model 
obtained in Phase One, Phase Two will apply DE algorithm with 
the flowchart in Fig. 12.  

Under selected P and V2, the objective is: 

( ) ( )1 2
min min ( , , , )=

i i
DE pk outD D

obj I S D P V  (7) 

Subject to: 
EPS1, EPS2, DPS ∈  S  (7a) 

≤ ≤0 1
i

D  (7b) 

Under one modulation strategy S, firstly, some DE parameters 
need to be initialized, including population size NP, differential 
weight F and crossover probability CR. The individual of the 
population in generation G is written as Di_jG where j ∈[1, 2, …, 
NP]. Initialization of the whole population follows (8), in which 
Di_min is 0 and Di_max is 1. rand(0, 1) is a random variable within 
the range of (0, 1). After evaluation of objDE of the population, 
DE performs mutation operations to generate VjG with formula 
(9), where Di_bestG is the best individual in generation G with 
lowest objDE value. This will be followed by a crossover 
operation with formula (10). The crossover result UjG will be 
compared with the current individual Di_jG with regards to objDE 
during the selection operation, as described with (11). Finally, 
termination of this algorithm is based on the iteration times. 
Among EPS1, EPS2 and DPS, the modulation strategy and 
corresponding Di which contribute to lowest objDE will be saved 
for the specified P and V2. 
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U
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To conclude this section, for any given P and V2 condition, 
the optimal modulation strategy S and optimal modulation 
parameter Di can be obtained by following Phase Two. 

( ) ( )_
_ 1

_

, if 
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 <= 
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jG DE jG DE i jG
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VI. CASE STUDY 

This section presents a case study for the application of the 
proposed AI-DT.  

The specifications of the design conditions are listed in Table 
I. PR is the rated output power and the adjustable range for P is 

100W to 1000W. V2R is the rated value of V2 and the adjustable 
range for V2 is 160V to 240V.  

TABLE I. DESIGN CONDITIONS 
Rated Conditions 

PR 1000 W V1 200 V 
V2R 200 V fs 20 kHz 

Adjustable Range 
P 100W-1000 W V2 160V-240 V 

 

Switching Device 
Series C2M0080120D, Cree Dead Time 400 ns 
RDS(on) 80 mΩ VDSS 1.2 kV 

Isolated Transformer 
Inductor Lk 166.7 μH 

A. Phase One: Build Data-Driven Current Stress Models 

With the flowchart in Fig. 9, XGBoost model can be built for 
current stress performance under different modulation strategies. 

In Step 1, N1, N2, M1 are set to be 20, 20 and 40. That means 
20 samples, 20 samples and 40 samples are taken for P, V2 and 
Di, respectively. And thus the total number of combinations will 
be 3× N1 × N2 × M1 which is equal to 48000.  

These combinations are run through PLECS simulation, and 
the corresponding current stress performance is recorded in Step 
2. In Step 3, the one-class SVM is carefully adjusted to exclude 
most of outliers and keep normal data. The one-class SVM 
algorithm has two major hyperparameters: the kernel function 
and the soft margin coefficient υ. The kernel function indicates 
the nonlinear projection of input feature space to higher 
dimensional kernel space. Besides, as formularized in (4), the 
soft margin coefficient υ adjusts the effective radius. A larger 
coefficient υ means smaller radius of the decision boundary, 
excluding more outliers. The selected hyperparameters of one-
class SVM given in Table II follow the recommendation in [49]. 

After the data trimming of Step 3, in the last step, a XGBoost 
model is trained with these clean simulation results. The clean 
simulation data after data trimming is partitioned into training 
set (60%), validation set (10%) and testing set (30%), which are 
used for training current stress model, selecting 
hyperparameters, and testing the trained XGBoost model on 
new and unseen data points, respectively. Among all the 
hyperparameters of XGBoost algorithms, learning rate, 
maximum tree depth, L2 regularization factor and number of 
estimators are adjusted since these hyperparameters have 
significant impacts on modeling accuracy. Possible model 
structures are enumerated to find the optimal one which 
achieves the lowest error on validation set. Some basic settings 
of XGBoost are listed in Table II.  

TABLE II. SETTINGS OF ONE-CLASS SVM AND XGBOOST MODEL 
Structure of One-Class SVM 

Kernel Radial basis function 
Soft margin coefficient υ 0.25 

Structure of XGBoost Model 
Inputs S, Di, P, V2 
Output Peak to peak current Ipk 

Maximum depth of trees 8 
Learning rate 0.1 

L2 regularization factor 3 
Number of estimators 1470 
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B. Phase Two: Optimize Current Stress with DE Algorithm 

By following the flowchart in Fig. 12, DE algorithm will be 
adopted to find the optimal Di and current stress performance 
for EPS1, EPS2 and DPS modulation strategies. Some key 
parameters in DE algorithm are listed in Table III.  

The results of Phase Two are described graphically in the 
followings. Fig. 13, Fig. 14 and Fig. 15 give the optimal Di value 
for EPS1, EPS2 and DPS modulation strategies.  

TABLE III. SETTINGS OF DE ALGORITHM 
Structure of the Selected NN 

Inputs S, Di, P, V2, XGBoost model Ipk(S, Di, P, V2) 
Output Minimal Ipk under given S, P, V2 

Population size NP 20 
Maximum iterations 100 
Differential weight F 0.5 

Crossover rate CR 0.7 
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Fig. 13. Optimal Di for EPS1 given by the DE algorithm in Phase Two. 
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Fig. 14. Optimal Di for EPS2 given by the DE algorithm in Phase Two. 
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Fig. 15. Optimal Di for DPS given by the DE algorithm in Phase Two. 
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Fig. 16. Optimal current stress performance obtained by Phase Two. 

The optimal current stress performance for these modulation 
strategies is shown in Fig. 16. Three power levels (100W, 500W, 
1000W) have been taken for example as described as Zone I to 
Zone III. As we can find, at low power level (P = 100W), DPS 
gives best current stress performance in the full voltage range. 
While at medium and high power levels (P = 500W and 1000W), 
EPS2 stands out in buck mode (V2 < 200V) and EPS1 
outperforms the others in boost mode (V2 > 200V). At the 

boundary between buck and boost modes, three modulation 
strategies are optimized to be the same as SPS modulation, 
which has been validated in paper [50].  
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Fig. 17. The proposed AI-DT scheme in full voltage and power ranges. 

Therefore, after comparing current stress performance of 
these three modulation strategies, the proposed AI-DT scheme 
in full voltage and power ranges can be obtained, as shown in 
Fig. 17. The optimal current stress of the proposed AI-DT is 
shown in Fig. 18. The control diagram to realize the proposed 
AI-DT is given in Fig. 19, where the outer phase shift Do is 
regulated by the output of PI controller for closed-loop voltage 
and power regulation, the strategy selector selects the best 
strategy based on the results of Fig. 17, and the optimal 
modulation parameters of EPS1, EPS2, and DPS are provided 
in Fig. 13, Fig. 14, and Fig. 15, respectively.  
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Fig. 18. Current stress performance of the proposed AI-DT scheme in full 
voltage and power ranges. 
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Fig. 19. Control diagram of the proposed AI-DT. 

C. Case Analysis 

As what shows in Fig. 13 to Fig. 17, when the voltage gain is 
closer to unit gain, the optimized modulation strategy tends 
towards SPS modulation. It proves that when the DAB 
converter operates with unit gain, SPS modulation enjoys the 
optimal performance in current stress, as discussed in [50]. 

Compared with DPS modulation, EPS modulation performs 
better at higher power level. The difference between DPS and 
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EPS is that DPS has three-level voltage in both vAB and vCD while 
EPS has two-level voltage in either vAB or vCD. The extra zero-
voltage plateau in DPS helps relieve reverse current, but it also 
requires larger current to achieve a specific power level, leading 
to worse current stress performance at higher power level. 

With regards to the selection of EPS1 and EPS2 in buck or 
boost mode, the three-level voltage should be applied to the 
higher voltage side. For example, in boost mode, EPS1 realizes 
a three-level voltage in the secondary side. This is because that 
the zero-voltage plateau in the higher voltage side helps 
eliminate more reactive power. As a result, it contributes to less 
circulating current and smaller current stress.  

D. Computational Time and XGBoost Modeling Accuracy of 
the Design Case 

The major advantage of the proposed AI-DT is its fully 
automation, where the model building process is automated with 
the one-class SVM and the specially adopted XGBoost, and the 
optimization process is automated with the DE algorithm. The 
proposed AI-DT can automate the conventional human-
dependent design and accelerate the design cycle.  

To reveal the computational time of AI-DT, the processing 
time of the computing platform of Intel Xeon E5-1630 with four 
CPU cores and 16 GB RAM is provided in Table IV. According 
to Table IV, 1 day and 3 hours are spent on running all 48000 
simulations and the training of XGBoost models requires 6 
minutes. The time of the automated modeling process of AI-DT 
is neglectable compared to the time-consuming manual 
derivation, which greatly reduces modulation design cycle. 

TABLE IV. PROCESSING TIME OF AI-DT 
Phases Computing Platform Processing Time 

Step 2 of Phase One: 
Run Simulations Intel Xeon CPU E5-

1630 with 16 GB 
RAM and 4 CPU cores 

1 day and 3 hours 

Step 3 of Phase One: 
XGBoost Training 6 minutes 

Phase Two: Optimize 
Current Stress with DE 

1 hour and 14 
minutes 

Without data 
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Fig. 20. Modeling accuracy with different data trimming techniques. 

In addition, the negative impact of outliers and the better 
performance of the one-class SVM compared with other data 
trimming approaches are shown in Fig. 20. Without data 
trimming, the percentage deviation is 0.903%, while the 
deviation reduces significantly after applying data trimming, 
and the minimum deviation 0.355% is achieved with the 
adopted one-class SVM algorithm. As for the algorithm 
complexity, thanks to the inherent sparseness of support vector 
machine, the time and space complexity of one-class SVM is 
significantly better than others. 
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Fig. 21. Modeling accuracy of the trained XGBoost model for current stress with 
respect to different training data size. 

Moreover, to validate the good performance of the specially 
adopted XGBoost model, the modeling accuracy of XGBoost 
with respect to different data size is evaluated and shown in Fig. 
21. Three baselines are compared, including support vector 
regression, NN in Matlab toolbox, and NN in [27]. Among the 
regression models, the selected XGBoost model has the lowest 
percentage deviation on test data, which is only 0.355% given 
100% of data for training. Moreover, when the percentage of 
training data decreases, the modeling accuracy of XGBoost is 
consistently good, lower than 0.7%. The comparisons in Fig. 21 
justify the selection of XGBoost in the proposed AI-DT. 

VII. EXPERIMENTAL VERIFICATION 

DAB
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Load

Air Switch

Oscilloscope
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Fig. 22. Prototype platform in the hardware experiments. 

A hardware prototype has been designed to verify the 
effectiveness of the proposed AI-DT for the design case in 
Section VI, as shown in Fig. 22. The specifications of the 
experiments have been listed in Table I. Furthermore, the 
experimental set-up consists of a dSPACE RTI 1202 MicroLab 
box for modulation and control, a LeCroy WaveRunner 
providing voltage and current measurements, a power supply, 
and a variable resistive power load. 

A. Operating Waveforms 

The operating waveforms of different V2 and P are listed below.  
Fig. 23 gives the waveforms under rated operating conditions 

when P is 1000W and V2 is 200V. Under this condition, the 
optimal modulation strategy is EPS1 with Di equal to 1, which 
is same as SPS modulation. It can be seen that the DAB 
converter operates stably.  
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vp: [200V / div]

vs: [200V / div]

iL: [5A / div]
Time: [20 μs / div]

V1: [100V / div]

V2: [100V / div]

Iout: [5A / div]

Time: [100 μs / div]  
(a)                                                         (b) 

Fig. 23. Operating waveforms of the DAB convert under AI-DT when P is 
1000W and V2 is 200V: (a) vp, iL and vs; (b) V1, V2 and Iout. 

More operating conditions have been tested on this prototype. 
The modulation strategy and parameters for different conditions 
are decided with the proposed AI-DT method. Fig. 24 presents 
the operating waveforms of 500W and 100W when V2 is 200V. 
The buck operating mode when V2 is 160V is shown in Fig. 25, 
covering 1000W, 500W and 100W. And the boost operating 
mode when V2 is 240V is shown in Fig. 26 for full power range.  
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Time: [20 μs / div]  
(a)                                                         (b) 

Fig. 24. Operating waveforms of the DAB convert under AI-DT when V2 is 
200V: (a) P = 500W; (b) P = 100W. 
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vp: [200V / div]

vs: [200V / div]

iL: [5A / div]
Time: [20 μs / div]  

(a)                                                         (b) 
vp: [200V / div]

vs: [200V / div]

iL: [2A / div]

Time: [20 μs / div]  
(c) 

Fig. 25. Operating waveforms of the DAB convert under AI-DT when V2 is 
160V: (a) P = 1000W; (b) P = 500W; (c) P = 100W. 
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Fig. 26. Operating waveforms of the DAB convert under AI-DT when V2 is 

240V: (a) P = 1000W; (b) P = 500W; (c) P = 100W. 

B. Voltage and Load Step 
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Fig. 27. Operating waveforms for voltage steps: (a) voltage steps from 240V to 
160V and then back to 240V; (b) zoom-in scope of vp, vs and iL.  

The experiments about voltage and load steps have also been 
conducted as shown below.  
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Fig. 28. Operating waveforms for load steps when V2 is 240V: (a) output power 
steps from 500W to 1000W and then back to 500W; (b) zoom-in scope of vp, vs 
and iL. 
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Fig. 29. Operating waveforms for load steps when V2 is 160V: (a) output power 
steps from 500W to 1000W and then back to 500W; (b) zoom-in scope of vp, vs 
and iL. 

In Fig. 27, when the DAB converter is operating at 240V and 
1000W conditions, V2 changes from 240V to 160V and back to 
240V again. According to the proposed AI-DT, the modulation 
strategy will also switch. Fig. 27 (b) shows the zoom-in steady-
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state waveforms of the two modulation strategies, thereby 
validating the hybrid operation under different operating 
conditions. 

The waveforms of load step when V2 is 240V and 160V are 
given in Fig. 28 and Fig. 29, respectively. The output power 
changes from 500W to 1000W and then back to 500W again. 
The zoom-in scopes for two operating zones are given in Fig. 
28(b) and Fig. 29(b). It can be seen that the DAB converter 
exhibits speedy recovery after steps and the modulation 
methods are changed accordingly. 

Therefore, the real-time operating capability of the proposed 
AI-DT approach is verified.  

C. Current Stress, Zero Voltage Switching (ZVS) and 
Efficiency Performance of the Proposed AI-DT  

Performance of the proposed AI-DT with regards to current 
stress, ZVS, and power efficiency is evaluated below. 

Fig. 30 presents the results in the buck operating mode (V2 = 
160V). The performance of AI-DT integrates the best current 
stress performance of DPS and EPS together, so that the optimal 
current stress is always achieved in the full power range. The 
power efficiency has also been tested, which indicates good 
performance compared to single DPS, EPS or SPS modulation, 
too. The peak efficiency is above 96.5%. Fig. 31 gives the 
results in the boost operating mode (V2 = 240V). The current 
stress performance of the proposed AI-DT is still optimal in the 
full power range, with the power efficiency matching or 
exceeding the ones for the individual modulation strategies. The 
peak power efficiency is measured to be above 96.0%. 
Additionally, the current stress performance and power 
efficiency performance of AI-DT under unit gain (V2 = 200V) 
are plotted in Fig. 32.  
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Fig. 30. Experimental current stress (Ipk) and efficiency (η) of SPS, best DPS, 
best EPS, and the proposed AI-DT when V2 is 160V: (a) Ipk; (b) η. 

The optimization of current stress performance can broaden 
the ZVS range in the meantime. As the waveforms of vp, vs, and 
iL shown in Fig. 23 and Fig. 24, under unit-gain mode, ZVS of 
all 8 switches has been satisfied. Under buck mode shown in Fig. 
25, all-switch ZVS is realized for medium and high power, and 
the optimal DPS adopted in 100 W achieves ZVS for 6 switches 
(Q1~ Q4, Q7, Q8), while ZVS for Q5 and Q6 is not satisfied. 

Under light load conditions, DPS slightly sacrifices the ZVS 
performance to reach optimal current stress. For boost operation 
shown in Fig. 26, the optimal EPS1 realizes full ZVS for 1000 
W and 500 W, and 6 switches attain ZVS under light load 
conditions. 
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Fig. 31. Experimental current stress (Ipk) and efficiency (η) of SPS, best DPS, 
best EPS, and the proposed AI-DT when V2 is 240V: (a) Ipk; (b) η. 
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Fig. 32. Experimental current stress (Ipk) and efficiency (η) of the proposed AI-
DT when V2 is 200V: (a) Ipk; (b) η. 

 As shown in these figures, the superiority of the proposed 
AI-DT is obvious when the DAB converter is not operating at 
unit gain.  The proposed AI-DT is able to realize optimal current 
stress performance in the full voltage and full power ranges with 
only two degrees of freedom in modulation implementation.  

To prove the satisfactory modeling accuracy of the proposed 
AI-DT approach, the theoretical current stress performance 
evaluated by the trained XGBoost models is compared with 
experimental results. As shown in Fig. 33, the theoretical 
current stress Ipk given by XGBoost models only has 2.2% 
accuracy difference from experimental results on average, 
which is mainly caused by environmental noise. Hence, the 
modeling of AI-DT approach is in accordance with experiments, 
and the potential model discrepancy is handled in this article. 
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Fig. 33. Comparison between theoretical current stress performance evaluated 
by XGBoost models and experimental performance. 
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To sum up, the experimental results above have empirically 
validated the feasibility and excellence of the proposed AI-DT 
comprehensively.  

VIII. CONCLUSION  

In this paper, an AI-based design with data trimming (AI-DT) 
for hybrid phase shift modulation is proposed, which combines 
two two-degree-of freedom modulation strategies, EPS and 
DPS. This proposed AI-DT approach is able to optimize current 
stress performance of the DAB converter. Besides that, the 
proposed AI-DT is developed automatically with the assistance 
of AI tools, which alleviate the negative influence of outliers, 
improve modeling accuracy, and relieve heavy computation 
loads. Generally, the proposed AI-DT approach consists of two 
phases. In the first phase, the one-class SVM algorithm is 
adopted to exclude outliers for data trimming, and the extreme 
gradient boosting technique is used to develop a data-driven 
current stress model for the DAB converter. In the second phase, 
differential evolution algorithm is adopted to find optimal 
modulation strategy parameter for a specific operating condition. 
The effectiveness of the proposed AI-DT approach has been 
validated by 1kW hardware experiments, in which the optimal 
current stress is realized under full operating conditions. 

The crucial key to attain high modeling accuracy is to ensure 
that the built simulation model accords well with the 
experimental results. To mitigate threats posed by model 
discrepancy, the following directions can be investigated in the 
future. First, instead of using simulation data, experiments can 
be practical data source for data-driven modeling. Furthermore, 
the hybrid combination of simulation data and experiments can 
be explored. Moreover, modern AI structures like attention 
neural networks, physics-informed neural networks, multi-task 
learning can be retrofitted to facilitate the practicality of data-
driven models. 
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