Downloaded from orbit.dtu.dk on: Apr 03, 2024

DTU Library

=
=
—

i

A method for accelerating pipelined cryptographic implementations

Bogdanov, Andrey; LAURIDSEN, Martin, Mehl; TISCHHAUSER, Elmar, Wolfgang

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Bogdanov, A., LAURIDSEN, Martin, M., & TISCHHAUSER, Elmar, W. (2016). A method for accelerating
pipelined cryptographic implementations. (Patent No. W02016142330).

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

https://orbit.dtu.dk/en/publications/ae230b88-80a7-430a-9d52-b91c2fee8085

wo 2016/142330 A1 | I 00N OO OO O 0 A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/142330 A1

15 September 2016 (15.09.2016) WIPO I PCT
(51) International Patent Classification: TISCHHAUSER, Elmar, Wolfgang; Rundforbiparken 3,
HO4L 9/06 (2006.01) GO6F 9/38 (2006.01) 1tv, 2850 Nerum (DK).
9C 1 2006.01
GOC 1/00) (74) Agent: ZACCO DENMARK A/S; Ame Jacobsens Allé
(21) International Application Number: 15, 2300 Kagbenhavn S (DK).
PCT/EP2016/054761 (81) Designated States (uniess otherwise indicated, for every
(22) International Filing Date: kind of national protection available): AE, AG, AL, AM,
7 March 2016 (07.03.2016) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
25) Filine L . Enelish BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(25) Filing Language: nglis DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(26) Publication Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
L. KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
(30) Priority Data: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
151579943 6 March 2015 (06.03.2015) EP PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
(71) Applicant: DANMARKS TEKNISKE UNIVERSITET SD, SE, SG, SK, SL, SM, ST, 8V, 8Y, TH, TJ, TM, TN,
[DK/DKJ; Anker Engelunds Vej 101A, 2800 Kgs. Lyngby TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(DK). (84) Designated States (uniess otherwise indicated, for every
(72) Inventors: BOGDANOV, Andrey; Amerika Plads 3A kind of regional protection available): ARIPO (BW, GH,

2mt, 2100 Kebenhavn & (DK). LAURIDSEN, Martin,
Mehl; Venggade 24, st. tv.,, 2100 Kebenhavn @ (DK).

GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

[Continued on next page]

(54) Title: A METHOD FOR ACCELERATING PIPELINED CRYPTOGRAPHIC IMPLEMENTATIONS

(57) Abstract: The present invention relates to a system and a method for pro-

v

cessing a first plurality of unprocessed messages in parallel using multiple cryp-

tographic processes in a single pipeline, where the unprocessed messages com -

Receiving at least a number
of a first plurality of
unprocessed messages
being presorted

Precomputing a first
processing window

First tteration process:
determining a first common
maximum number of
unprocessed blocks

1C

\J

Second iteration process:
determining a second
common maximum number
of unprocessed blocks

1

Determining a required
number of iteration
processes

1

Processing the unprocessed
messages

1D

f1G

1E

1F

Fig. 1

prise respective block lengths indicating a number of unprocessed blocks which
the unprocessed message may be divided into, the method comprises: receiving
at least a number of the first plurality of unprocessed messages being pre-sor-
ted, precomputing a first processing window by; determining through a first it-
1 eration process a first common maximum number of unprocessed blocks to be
processed for respective unprocessed messages to be processed, determining
through a second iteration process a second common maximum number of un-
i processed blocks to be processed for the remaining respective unprocessed mes-
sages to be processed after the first iteration, and determining a required num-
ber of iteration processes to be performed in order to process each unprocessed
block of each unprocessed message, processing the unprocessed messages asso-
ciated with the first processing window, wherein the respective unprocessed
+ messages of each respective iteration process are processed by respective mul-
tiple cryptographic processes in parallel.

WO 2016/142330 A1 WK 00N 0 R AR

DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, Published:
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, __
SL SK, SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA,

GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

with international search report (Art. 21(3))

WO 2016/142330 PCT/EP2016/054761

10

15

20

25

A Method for Accelerating Pipelined Cryptographic Implementations
FIELD OF INVENTION

The present invention relates to a system and a computer-implemented
method of processing a plurality of unprocessed messages in parallel using
multiple cryptographic processes in a single pipeline.

BACKGROUND OF THE INVENTION

In recent years, encryption has become commonplace and very widespread
with the advent of the modern global communication infrastructure.
Individuals, governments and businesses, alike nowadays, use encryption on
a daily basis. In comparison to unencrypted communication, encryption
always incurs a certain performance penalty, which tends to be particularly
noticeable on the server side, since many connections to clients have to be

dealt with simultaneously.

In order to meet the arising performance needs, microprocessor
manufactures have been starting to incorporate dedicated hardware support
for encryption functionality in their products. One prominent and industry-
wide influential example of this is the implementation of the widely used Intel
Corporation’ Advanced Encryption Standard — New Instructions (AES-NI)
instruction set. Since then almost every Central Processing Unit (CPU)
incorporates this native support for AES encryption. AES is a very widely
standardized and used encryption algorithm.

Furthermore, since AES is currently the dominant block cipher and is used in
various protocols, the new instructions are valuable for a wide range of

applications.

With such hardware support, client and servers alike can benefit from a
performance improvement of a factor of around 10 compared to conventional
software implementations. This however only applies if the encryption

algorithm is used in a mode of operation, which allows for parallelization in

WO 2016/142330 PCT/EP2016/054761

10

15

20

25

order to make use of the available instruction pipelining. Many of the most
widely used and standardized modes of operation, most notably including
Cipher Block Chaining (CBC), are inherently serial and thus cannot benefit in
full from the available hardware support. For example, an implementation of
CBC mode with AES-NI achieves a throughput of 4.5 cycles per byte (cpb)
on contemporary platforms, while a full parallel mode would have a
throughput of 0.65 cpb. Besides CBC, many other standard modes of
operation, such as Cipher Feedback Block (CFB), Output Feedback Block
(OFB), Cipher Block Chaining Message Authentication Code (CBC-MAC),
Cryptographic Message Authentication Code (CMAC), counter with CBC-
MAC (CCM) are limited by their serial nature.

PRIOR ART

The white paper “Processing Multiple Buffers in Parallel to Increase
Performance on Intel Architecture Processors” by Vinodh Gopal et al., 1 July
2010, discloses a scheduling mechanism for the processing of jobs of varying
sizes. The scheduler can be either in-order in which case the jobs are
returned in the same order as they are submitted; alternatively, the scheduler
is out-order in which case the return order can be arbitrary. The scheduler
works by starting jobs whenever enough jobs are ready, and process them in
a pipeline for the minimal time possible until a job can be returned. In the in-
order situation there is a non-optimal use of the pipeline since messages are
processed as they arrive in any unknown order and each with unpredictable
length. In the out-order situation, In the out-order situation, the scheduler
waits for enough messages to arrive that the pipeline can be filled in an
optimal way. However, this involves the problem of prolonged latency times
and a potential excessive memory consumption in case of an unfortunate

distribution of message lengths.

Various documents disclose methods to improve the throughput of a
cryptographic algorithm by parallel processing of several blocks in a pipeline.

WO 2016/142330 PCT/EP2016/054761

10

15

20

25

For instance, the article “Intel Advanced Encryption Standard (AES) New
Instructions Set rev. 3.0.17, by Shay Gueron, 1 September 2012 discloses a
method that receives a predefined size of a group of messages and
processes them together. This method may perform well for a fixed number
of messages of identical length, but its performance will degrade significantly
when message lengths are not the same, as is the usual case. This is a
problem because the distribution of message lengths will vary greatly both
over time and for different applications - thus making the method less useful.

The article “Performance of Interleaved Cipher Block Chaining in CCMP” by
Zadia Codabux-Rossan appearing in “Novel Algorithms and Techniques in
Telecommunications and Networking”, 12 December 2009 and the article
“‘Reducing Packet Loss in CBC Secured VolIP using Interleaved Encryption”
by Dansereau et al. appearing in IEEE conference proceedings, 1 May 2006
are related to a modification to the CBC encryption mode. However, none of
these articles discloses an algorithm that considers message inputs of
varying length.

The article “Use of the AES instruction set” by Ryad Benadijila, 18, October
2012 discloses information about usage of the AES-NI instructions, including
example latency and throughput for various Intel platforms. It also discloses
examples of parallel encryption of several inputs in the AES-NI pipeline.
However, nor does this article consider message inputs of varying length.

KR 2002/0071328-A discloses pipelined execution in connection with CBC.
However, nor does this patent document consider message inputs of varying
length.

US 7,603,549-B1 discloses parallel processing of several message inputs to
be processed by a cryptographic algorithm in a pipeline. However, nor does
this patent document consider message inputs of varying length.

The article “White Paper Breakthrough AES Performance with Intel AES New

Instructions”, 1 January 2010, discloses processing of data blocks for

WO 2016/142330 PCT/EP2016/054761

10

15

20

25

decryption using AES-CBC, which is inherently parallel, in a pipeline, thereby
improving the throughput. However, nor does this patent document consider
message inputs of varying length.

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide a computer
implemented method, which exploits the available parallelism offered by
simultaneous serial processing of plurality of unprocessed messages to
improve the speed of processing unprocessed messages in a single
pipelined cryptographic process.

According to the present invention, the above and other objects may be
provided by a computer implemented method for processing a first plurality of
unprocessed messages in parallel using multiple cryptographic processes in
a single pipeline, wherein the unprocessed messages has respective block
lengths indicating a number of unprocessed blocks which the unprocessed
message may be divided into, the method comprising:

receiving at least a number of the first plurality of unprocessed messages;
precomputing a list of processing windows by:

- determining through a first iteration process a first common maximum
number of unprocessed blocks to be processed for respective
unprocessed messages to be processed, wherein the determined first
common maximum number of unprocessed blocks is used to define,
for a first processing window, in the list of processing windows, how
many unprocessed blocks of which unprocessed messages to include
for processing;

- determining through a second iteration process a second common
maximum number of unprocessed blocks, if any, to be processed for
the remaining respective unprocessed messages to be processed

after the first iteration, wherein the determined second common

WO 2016/142330 PCT/EP2016/054761

10

15

20

25

maximum number of unprocessed blocks, if any, is used to define, for
a second processing window, in the list of processing windows, how
many unprocessed blocks of which unprocessed messages to include
for processing; and

- determining a required number of iteration processes to be performed
in order to process each unprocessed block of each unprocessed
message; and

processing the unprocessed messages associated with windows in the list of
windows at least comprising the first processing window, wherein the
unprocessed blocks, defined by at least the first processing window, of
respective unprocessed messages of each respective iteration process are
processed window-by-window by respective multiple cryptographic
processes in parallel.

Since the processing window determines a first common maximum number
of unprocessed blocks and then determines a second common maximum
number of unprocessed blocks for the remaining unprocessed messages
after the first iteration, parallel processing of the unprocessed messages can
be performed at an optimal or close to optimal trade-off between latency and
pipeline utilization. Especially, messages with a particularly long or short
block length are not penalized compared to messages with an average block
length. Thus, it is possible to guarantee a certain throughput and a certain

latency.

In some embodiments the unprocessed messages are received in a pre-
sorted manner, whereas in other embodiments the unprocessed messages
are pre-sorted as a step performed in connection with or as a step of
precomputing the first processing window. By pre-sorting is meant to re-order
the unprocessed messages in descending or ascending order of length.

By unprocessed message is meant that a message, which is unprocessed,
has not yet been processed by the cryptographic processes.

WO 2016/142330 PCT/EP2016/054761

10

15

20

25

A processing window thereby specifies the common maximum number of
unprocessed blocks for all messages associated with the processing window
and then a further window specifies the common maximum number of
remaining unprocessed blocks for all messages associated with the
processing window and so on for as many windows needed to process all
blocks of all unprocessed messages. This process results in a list of
windows. This list of windows specifies the order of processing the blocks of
the unprocessed messages by the respective multiple cryptographic
processes in parallel.

In one or more embodiments, the computer-implemented method is
configured to schedule the processing of unprocessed blocks of unprocessed
data or unprocessed messages in order to make full use of the instruction
pipeline even for serial algorithms.

In one or more embodiments, the unprocessed messages may be either data

and/or information.

In one or more embodiments, a message may be divided into blocks which
comprises a part of the message.

In one or more embodiments, an iteration process may be a process wherein
the unprocessed messages are analysed in order to determine a common
maximum number of unprocessed blocks to be processed for respective

unprocessed messages.

In one or more embodiments, pipelining allows Computer Processing Unit
(CPU) to execute multiple data-independent instances of a same instruction,
e.g. an instruction configured to AES-NI, such as aesenc, aesenclast,
aesdec, or aesdeclast, in an overlapping fashion. This is done by subdividing
the instruction into steps called pipeline stages, with each stage processing
its part, i.e. an unprocessed block of an unprocessed message, of one
instruction at a time, i.e. a sequentially processing of the unprocessed blocks.

The performance of a pipelined instruction is characterized by its latency L

WO 2016/142330 PCT/EP2016/054761

10

15

20

25

(number of cycles to complete one instruction) and throughput Tc (number of
instructions that can be issued per cycle).

When employing a parallelizable design to a pipelined cryptographic process,
the prevailing distribution of message lengths makes it hard to achieve the
best performance. Arranging the plurality of unprocessed messages in
parallel already in the implementation of an algorithm, comprising the
computer implemented method, opens up the possibilities of increasing the
performance in the cases of both sequential modes and the availability of
multiple shorter or medium-sized messages. In this case, the performance
penalty of serial execution can potentially be hidden by filing the pipeline with
a sufficient number of operations on independent data. In a second case,
there is a potential of increasing performance by keeping the pipeline filled
also for overhead operations such as block cipher or multiplication calls

during initialization or tag generation.

In one or more embodiments, the processing of multiple messages may be

on a single core or a multiple core CPU.

Consider the scenario where a number of messages of varying lengths need
to be processed by a serial encryption mode of operation. Unprocessed
blocks of respective unprocessed messages have to be processed in an
interleaved fashion in order to make use of the available inter-messages
parallelism. Having messages of different lengths imply that generally, the
pipeline cannot always be filled completely. At the same time, the goal to
arrange or schedule the unprocessed blocks, according to the computer
implemented method, such that pipeline usage is maximized has to be
weighed against the computational cost of making such scheduling
decisions.

According to an embodiment of the invention, a system for processing a first
plurality of unprocessed messages in parallel using multiple cryptographic
processes in a single pipeline is provided. The system comprises;

WO 2016/142330 PCT/EP2016/054761

10

15

20

25

a pipelined cryptographic processing unit,
a control logic unit,

a programmed unit configured to receive a first plurality of unprocessed
messages from the pipelined cryptographic processing unit, where the
unprocessed messages comprise respective block lengths indicating a
number of unprocessed blocks which the unprocessed message is divided
into, and at least a number of the first plurality of unprocessed messages are
pre-sorted, the programmed unit is further configured to;

precompute a first processing window by;

e determining through a first iteration a first common maximum number
of unprocessed blocks to be processed for respective unprocessed
messages to be processed,

e determining through a second iteration a second common maximum
number of unprocessed blocks to be processed for the remaining
respective unprocessed messages to be processed after the first
iteration, and

e determining a required number of iteration processes to be performed
in order to process the unprocessed blocks of the unprocessed

messages,

process the unprocessed messages associated with the first processing
window, wherein the respective unprocessed messages of each respective
iteration are processed by respective multiple cryptographic processes in
parallel,

wherein the programmed unit transmits processed unprocessed messages to

the control logic unit.

WO 2016/142330 PCT/EP2016/054761

10

15

20

In one or more embodiments, the pipelined cryptographic processing unit
may be configured to an Advanced Encryption Standard (AES), a Secure
Hash Algorithm — 1 (SHA-1), SHA-2, or SHA-3.

In one or more embodiments, the control logic unit may either be separated
from the programmed unit or implemented into the programmed unit. The
control logic unit may be an Arithmetic Logic unit (ALU) or a Central
Processing Unit.

In one or more embodiments, the system may be implemented into a server

or a computable device.

The advantage of arranging or scheduling the unprocessed messages before
processing the messages is the improved speed of processing the messages
in a serial cryptographic process or a partially serial cryptographic process.

The partially serial cryptographic process may be a combination of serial and
parallel cryptographic processes.

Table 1 below shows test results, with the usage of AES-NI, of trivial
sequential processing with and without the method for scheduling the
processing of unprocessed blocks. It is clearly seen that the advantage of
present invention is the improved speed of the processing in serial
cryptographic operation mode.

WO 2016/142330 PCT/EP2016/054761

10

15

10
Mode Sequential Sequential with | Speed-
processing (cpb) scheduling up
(cpb)

AES-ECB | 0.65 -

AES-CTR |0.78 -

AES-CBC | 4.47 0.87 5.14
AES-OFB | 4.48 0.88 5.09
AES-CFB | 4.45 0.89 5.00
AES-CMAC | 4.29 0.84 5.10

Table 1: performance comparison (cycles/byte) of sequential pro-
cessing with and without the scheduling

For example, for AES-CBC the speed of the processing, when including the
scheduling, is improved with a speed-up factor of 5.14.

In one or more embodiments, the number of the first plurality of unprocessed
messages may be determined by a parallelism degree (Par) which may be
determined as:

Par=L*Tc,

wherein L denotes the latency (in cycles) and Tc denotes the throughput (in
instructions/cycles) of the pipelined instruction in the single pipeline.

In one or more embodiments, the parallelism degree may vary depending on
the application. Alternatively, the parallelism degree may vary depending on
the load of incoming unprocessed messages.

The advantage of increasing the number of the first plurality of unprocessed
messages to be processed in parallel is that the speed of processing the

unprocessed messages improves even more.

WO 2016/142330 PCT/EP2016/054761

10

15

20

11

Table 2 shows test results, with the usage of AES-NI, of a CBC cryptographic
process with the scheduling of the unprocessed messages. In table 2, two
distributions for message lengths are considered; one where all messages
are 2048 bytes long, and one where all messages are “realistic” (i.e.
messages which are realistic in a bimodal distribution of internet traffic). It is
seen that by increasing the number of parallelism degree the relative speed
increases. For example, when the parallelism degree is set to eight the
speed of the processing (i.e. throughput of the messages) will be improved
with a factor of 6.74 for messages of 2048 bytes long and a factor of 5.15 for
realistic messages (bimodal distribution of internet traffic). However, it is seen
that the increase of speed by increasing the parallelism degree reduces
when going above Par = 7.

Parallelization degree

Sequential | 2 3 4 5 6 7 8

2K 438 (219 |147 |[111 091 |0.76 |0.66 |0.65
msg.(cpb)

Relative | X1.00 | X2.00 | X2.98 | X3.95 | X4.81 | X5.76 | X6.64 | X6.74
speed-up

‘realistic” |4.38 (242 173 |1.37 |1.08 |0.98 |0.87 |0.85
msg.
(cpb)

Relative | X1.00 | X1.81 | X2.53 | X3.20 | X4.06 | X4.47 | X5.03 | X5.15
speed up

Table 2: performance of CBC encryption (cpb) and relative speed-up for
scheduling the unprocessed messages with different parallelism
degree for fixed messenger length of 2048 bytes and realistic message
lengths.

In one or more embodiments, the processing of the unprocessed messages
by the respective multiple cryptographic processes may be configured to
perform one or more of the following processes:

e an encryption process or a decryption process,

WO 2016/142330 PCT/EP2016/054761

10

15

20

25

12

e an authenticated encryption process (with associated data) or an
authenticated decryption process, and/or a verification process of
integrity and authenticity,

e a message authentication process or a message verification process
of integrity, and/or an authenticity,

e a hashing process,

e a pseudo- random number generation process,

e a password based key derivation functions process, or

e a post-processing of true random numbers process.

In one or more embodiments, the processing of the unprocessed blocks of
the respective unprocessed messages within the respective cryptographic
processes may either be done serially or partially serial.

The advantage of this is that the method of the present invention is
configurable to any serial mode of operation, such as CBC, CFB, OFB, CBC-
MAC, CMAC, OMAC, GMAC, GOST, CLOC, SILC, VMAC, UMAC, KDF1,
KDF2, KDF3, HKDF, PBKDF1, PBKDF2, Davies-Meyer, Matyas-Meyer-
Oseas, Miyaguchi-Preneel or Sponge.

The advantage of combining the scheduling and a serial mode of operation is
that it gives a far better speed up result compared to a mode of operation
being partially serial. A further advantages is that serial mode of operation
can now be performed in parallel in a single pipeline.

Furthermore, the advantage of this is that the method of the present invention
is configurable to any partial serial mode of operation, such as GCM, CCM,
EAX, OCB3, OTR, COPA, or POET

The advantage of combining the scheduling and a partially serial mode of
operation is that it gives good speed-ups by parallelizing (using again the
independency of several unprocessed messages) the serial parts of the

WO 2016/142330 PCT/EP2016/054761

10

15

20

25

13

modes (typically initialization and finalization). This will be especially
prominent in use cases where the unprocessed messages are short, i.e for
GCM using AES-NI, the length of a short message might be equal or less
than 128 bytes. The length of a short message may depend on the
application, but mostly the length of a short message may be within a range
of 2 bytes to 128 bytes, 32 bytes to 256 bytes, or 128 bytes to 256 bytes.

A partial serial cryptographic process may be a combination of at least a
serial cryptographic process with at least a parallel cryptographic process,
and the computer implemented method may be configured to at least a serial
cryptographic. Thereby, the advantage is that a partial serial or a partial

parallel cryptographic process would experience an improved speed-up.

In one or more embodiments, the processing of unprocessed blocks of a
respective unprocessed message within a respective cryptographic process
may be done sequentially, and each unprocessed block may be processed
during a single operation.

The advantage of processing the unprocessed blocks sequentially is that the
speed of processing is reduced compared to random processing of the
unprocessed blocks.

In one or more embodiments, the pipeline may be configured to Advanced
Encryption Standard (AES), Secure Hash Algorithm — 1 (SHA-1), SHA-2, or
SHA-3.

In one or more embodiments, the pre-sorted unprocessed messages may be
sorted by decreasing length or increasing length.

The sorting of the unprocessed messages simplifies the processing, and
thereby, improves the speed of the processing of unprocessed messages
even more. The sorting can be implemented via an optimal sorting network
for the value of Par chosen by the implementation of the present invention.
Alternatively, a low-overhead algorithm, like “/nsertion Sort’, can be used.

WO 2016/142330 PCT/EP2016/054761

10

15

20

25

14

In one or more embodiments, firstly, a first list of processing windows is
computed and then, secondly, a second list of processing windows is
computed. The precomputing of a second list of processing window may be
initiated if the unprocessed messages, associated with the first list of
processings windows, have been processed by the respective cryptographic
processes, and if a second plurality of unprocessed messages with
respective block lengths is being received or has been received.

In some embodiments the list of windows is reused over further incoming

messages. This reduces overhead in precomputing the list of windows.

In some embodiments the method comprises a step of measuring the
distribution of lengths of messages at different points in time and use this
measure to decide whether to reuse the list of windows.

In one or more embodiments, the first processing window may be reused if
the unprocessed messages, configured to the first processing window, have
been processed by the respective cryptographic processes, and, if receiving
a second plurality of unprocessed messages with similar respective block
lengths as the respective block lengths of the first plurality of unprocessed
messages, or if receiving the first plurality of unprocessed messages with
respective block lengths.

In one or more embodiments, the first processing window may be reused if
the unprocessed messages, configured to the first processing window, have
been processed by the respective cryptographic processes being a two-pass
scheme, such as CCM.

In one or more embodiments, the first processing window may be reused if
the unprocessed messages, configured to the first processing window, have
been processed by the respective cryptographic processes.

WO 2016/142330 PCT/EP2016/054761

10

15

20

25

15

The advantage of reusing a processing window is that the speed of
processing a first or a second plurality of unprocessed messages would be

even more improved.

In one or more embodiments, the processing window may determine through
the second iteration process a maximum number of unprocessed blocks to
be processed of the remaining unprocessed message to be processed, and
the processing of the unprocessed message of each iteration process
associated with the processing window is processed by a respective
cryptographic process.

In one or more embodiments, the system may comprise a pipeline which may
be configured to Advanced Encryption Standard (AES), Secure Hash
Algorithm — 1 (SHA-1), SHA-2, or SHA-3

In one or more embodiments, a computer readable medium may be

configured with the system as described above.

It is an advantage that the speed improvement is significant when one or
more embodiments of the present invention is processed on an Intel based
chip architecture. Intel based chip architecture may be produced by Intel

corporation or Intel.

The advantage of the one or more embodiments of the present invention is
that it is flexible, which means that it can be implemented in any applications
using the various protocols of AES.

BRIEF DESCRIPTION OF THE DRAWING

Fig.1 shows a flow diagram illustrating a computer implemented method of
processing a first plurality of unprocessed messages in parallel using multiple
cryptographic processes in a single pipeline,

WO 2016/142330 PCT/EP2016/054761

10

15

20

25

16

Fig. 2 illustrates an example of processing a first plurality of unprocessed
messages in parallel using multiple cryptographic processes in a single
pipeline,

Fig. 3A and 3B show a flow diagram of a second embodiment and a third
embodiment of the invention, respectively,

Fig. 4 illustrates the system for processing a first plurality of unprocessed
messages in parallel using multiple cryptographic processes in a single

pipeline,

Fig. 5 shows an example of a system where a computer implemented
method, is implemented into an existing cryptographic system.

DETAILED DESCRIPTION OF THE DRAWING:

The present invention will now be described more fully hereinafter with
reference to the accompanying drawings, in which exemplary embodiments
of the invention are shown. The invention may, however, be embodied in
different forms and should not be construed as limited to the embodiments
set forth herein. Rather, these embodiments are provided so that this
disclosure will be thorough and complete, and will fully convey the scope of
the invention to those skilled in the art.

In the following the processing of the unprocessed messages by the
respective multiple cryptographic processes may be configured to following
process;

- an encryption process or a decryption process,

- an authenticated encryption process (with associated data) or an
authenticated decryption process, and/or a verification process of
integrity and authenticity,

- a message authentication process or a message verification process

of integrity, and/or an authenticity,

WO 2016/142330 PCT/EP2016/054761

10

15

20

25

17

- ahashing process,

- a pseudo- random number generation process,

- a password based key derivation functions process, or
- a post-processing of true random numbers process.

In the following, none of the embodiments, described below, are limited to a
single configuration of a cryptographic process.

In the following, the unprocessed messages may comprise data or

information.

Fig.1 shows a flow diagram illustrating a computer implemented method 1 of
processing a first plurality of unprocessed messages in parallel using multiple
cryptographic processes in a single pipeline 4. The method 1 may be also be
denoted as a schedule process.

In the following, the unprocessed messages T comprise respective block
lengths B_ indicating a number of unprocessed blocks B which the
unprocessed message T is divided into. In a first step, the method receives at
least a number of unprocessed messages T of the first plurality of
unprocessed messages k which are pre-sorted by decreasing length or
increasing length 1A.

The processing of the unprocessed messages in parallel, using multiple
cryptographic processes in a single pipeline, is determined through a first
processing window 2, 1B. The first processing window 2 is precomputed, by
firstly, determining through a first iteration process |, a first common
maximum number of unprocessed blocks B to be processed for respective
unprocessed messages T4, 1C.

Secondly, through a second iteration process |2 a second common maximum
number of unprocessed blocks B, is determined for the remaining respective
unprocessed messages T after the first iteration 14, 1D.

WO 2016/142330 PCT/EP2016/054761

10

15

20

25

18

Additionally or alternatively the processing window 2 may be determined
through the second iteration process |, a maximum number of unprocessed
blocks B to be processed of the remaining unprocessed message to be
processed.

Thirdly, the first iteration process |1 and/or the second iteration process l2
may be repeated in at least one additional iteration process so that a number
of iteration processes Ix, required to perform the processing of each
unprocessed block of each unprocessed message, may be determined (1E,
1G).

Then, the unprocessed messages T are processed in accordance with the
first processing window 2, wherein the respective unprocessed messages T
of each respective iteration process | are processed by respective multiple
cryptographic processes in parallel, 1F.

Additionally or alternatively, the processing of the unprocessed message of
each iteration process, associated with the processing window 2, is
processed by a respective cryptographic process.

Fig. 2 illustrates an example of processing a first plurality of unprocessed
messages k in parallel using multiple cryptographic processes in a single
pipeline 4. In this specific example, four unprocessed messages (M1, Mz, Ms,
and My) of the first plurality of unprocessed messages k are received and
sorted by increasing block length (By).

In this particular example, a first unprocessed message M, is divided into
three unprocessed blocks (M1 1, M1 2, and My 3) with a certain data capacity.
The first unprocessed message My has a first block length B4 of three. A
second unprocessed message M is divided into five unprocessed blocks
(M2,1, M22, M23, M24 and M25s) having a second block length By, of five. A
third unprocessed message Msis divided into eight unprocessed blocks (Ms 1,
Ms 2, M33, Ms4, Mss, Msg, M3 7, and Msg) having a third block length By s of

eight. A fourth unprocessed M4 message is divided into eight unprocessed

WO 2016/142330 PCT/EP2016/054761

10

15

20

25

19

blocks (M4,1, M4,2, M4,3, M4,4, M4,5, M4,6, M4,7, and M4‘8) having a fourth block
length B4 of eight.

The number of received unprocessed messages T may be determined by a
parallelism degree (Par), ar =L =Tc , wherein L denotes the latency (in
cycles) and Tc denotes the throughput (in instructions/cycles) of the pipelined

instruction.

The processing of the unprocessed messages (Mi, Mz, M3, and M,) are
subdivided into a number of iteration processes (l1, |2, and |3), wherein each
iteration process is configured to process as many consecutive unprocessed
blocks B as possible for as many respective messages T as possible. In the
first iteration process |1 the maximum number of unprocessed messages Ty,
having a common maximum number of unprocessed blocks B4, may be

determined by the parallelism degree Par.

In the next iteration process the degree of parallelism reduces since at least
one message will be exhausted, i.e. each block of the respective message is
processed.

In this specific example, the precomputing of a first list of processing
windows 2 comprises a first iteration process |1, where, for a first processing
window, a first common maximum number of unprocessed blocks B is set to
three for respective four unprocessed messages T1. Each row of the table
(i.e. as referred to be reference numeral 2) represents a window and the

whole table represents the list of processing windows.

In the following, the precomputation of each window in the list of windows is
also referred to as an iteration process, |I.

Furthermore, a second iteration process l; is required. In the second iteration
I2, @ second common maximum number of unprocessed blocks By is set to

two for respective three unprocessed messages To.

WO 2016/142330 PCT/EP2016/054761

10

15

20

25

20

In this situation, the parallelism degree will be reduced from four to three,
during the transfer from first to second iteration process.

Furthermore, a third iteration I3 is required, wherein a third common
maximum number of unprocessed blocks Bs is set to three for respective two
unprocessed messages Ts.

In this situation, the parallelism degree will be reduced from three to two
during the transfer from second to third iteration process.

The required number of iteration processes Ix, in order to complete the
processing of the unprocessed messages T, is set to three.

After precomputing the processing window 2, the unprocessed messages T
are processed, in accordance with the processing window 2, by respective
multiple cryptographic processes (CBC4, CBC2 and CBCs) in parallel and
within the single pipeline 4.

In this specific example, the unprocessed messages T4 for the first iteration
process |y are processed by respective cryptographic processes in parallel.
Each cryptographic process, in this specific example, is configured to a
Cipher Block Chaining (CBC) mode of operation. The cryptographic
processing would be repeated for the remaining iteration processes, i.e. the
second and the third iteration process (lz, 13).

In a further embodiment, the cryptographic processes could be configured to
other types of serial mode of operation, such as CFB, OFB, CBC-MAC,
CMAC, OMAC, GMAC, GOST, CLOC, SILC, VMAC, UMAC, KDF1, KDF2,
KDF3, HKDF, PBKDF1, PBKDF2 Davies-Meyer, Matyas-Meyer-Oseas,
Miyaguchi-Preneel or Sponge.

Alternatively, in a further embodiment, the cryptographic processes could be
configured to a partially serial mode of operation, such as GCM, CCM, EAX,
OCB3, OTR, COPA, or POET.

WO 2016/142330 PCT/EP2016/054761

10

15

20

25

21

Furthermore, the pipeline 4 may be configured to an Advanced Encryption
Standard (AES), Secure Hash Algorithm — 1 (SHA-1), SHA-2, or SHA-3.

In this particular example, the respective unprocessed messages T are being
processed by respective CBC processes (CBC4, CBC,, CBCs, and CBC.),
and each unprocessed block B is being processed in each block cipher (Exq,
Eko, or Exs).

The unprocessed blocks B of respective unprocessed message T are
processed sequentially and in parallel with other unprocessed blocks By of
other respective unprocessed messages Tx.

Alternatively, the unprocessed blocks of respective unprocessed message
are processed sequentially and in parallel with other unprocessed blocks Bx
of a second respective unprocessed message Tx.

Each output (O1, Oz O3 or Og4) of respective CBC processes transmit the
processed messages to a second unit, e.g. a logic unit (Not shown in Fig. 2).

Fig. 3A and 3B show a flow diagram of a second embodiment and a third
embodiment of the invention, respectively.

Fig. 3A shows a method 1, wherein a plurality of unprocessed messages k is
received and stored in array M[k] with corresponding block length By [k], 3A1.
The multiple messages are sorted by decreasing block length Bi[k] and
stored in array L[k] with corresponding unprocessed messages M[k], 3A2.

A length of array L[k] of above zero 3A3 indicates that at least one
unprocessed message is received. Based on a parallelism degree Par and
the received plurality of unprocessed messages k a number of the plurality of
unprocessed messages (5, r), to be processed, is determined, 3A4.

The number of the plurality of unprocessed messages (5, r), to be processed,
are initialized according to a cryptographic process which may be used for
processing each unprocessed message (5, r), 3A5. Then, a processing

WO 2016/142330 PCT/EP2016/054761

10

15

20

25

22

window is calculated 3A6, and how to calculate the processing window is
described in Fig. 1 and Fig. 2.

After the processing window is calculated, the unprocessed messages will be
processed 3A7 and returned to a second unit, e.g. a logic unit, 3A8.

Fig 3B illustrates a method 1, wherein a front end 3B1 comprises steps 3A1
to step 3A5, from Fig. 3A, in a similar order, i.e. 3A2 and 3A4 may switch
places such that the number of the plurality of unprocessed messages (5,r) to
be processed may be determined before sorting the unprocessed messages
(5,r).

A first processing window is calculated 3B2, and if the iteration process | is
less or equal the required number of iteration processes Ix, 3B3, the
unprocessed blocks B of the respective unprocessed messages T of iteration
process | are processed in respective cryptographic processes, 3B4. If the
iteration process | is above the required number of iteration process Ix, the
processed messages are finalized according to the cryptographic process
used for processing each unprocessed message T, 3B5.

In one or more embodiments, the processed messages may be removed
from the array L[k] and returned to a second unit, e.g. a logic unit, 3B6. The
remaining unprocessed messages from the array L[k] may be processed
according to the first processing window 2 or according to a second
processing window 2x, 3B2.

In one or more embodiments, a second processing window 2X may be
precomputed if the unprocessed messages T, configured to the first
processing window 2, have been processed by the respective cryptographic
processes, and if receiving a second plurality of unprocessed messages kx
with respective block lengths B.

In one or more embodiments, the first processing window 2 may be reused if

the unprocessed messages T, configured to the first processing window 2,

WO 2016/142330 PCT/EP2016/054761

10

15

20

25

23

have been processed by the respective cryptographic processes, and, if
receiving either a second plurality of unprocessed messages kx with
respective block lengths or the first plurality of unprocessed messages k with
respective block lengths.

The processed messages may be returned to a second unit, e.g. a logic unit.

Fig. 4 shows a system 10 for processing a first plurality of unprocessed
messages k in parallel using multiple cryptographic processes in a single
pipeline 4. The system 10 comprises a pipelined cryptographic processing
unit 4x1, a control logic unit 4x2, and a programmed unit 4x3 configured to
receive a first plurality of unprocessed messages k and/or information from
the pipelined cryptographic processing unit 4x1. The information could
include initialization information indicating, to the pipelined cryptographic
processing unit 4x1, that the processing of the received unprocessed
messages T is ready to be processed. Furthermore, the information could
include a finalization information indicating, to the pipelined cryptographic
processing unit 4x1, that the processing of the received unprocessed
messages T is finished.

The unprocessed messages T comprise respective block lengths BL
indicating a number of unprocessed blocks B which the unprocessed
message T is divided into, and at least a number of the first plurality of
unprocessed messages k are pre-sorted.

The programmed unit 4x3 is configured with one or more embodiments
described in Figs. 1, 2, 3A and 3B. In this specific example, the programme
unit 4x3 is configured to precompute a first processing window 2, by firstly,
determining through a first iteration 11 a first common maximum number of
unprocessed blocks By to be processed for respective unprocessed
messages Tq to be processed. Secondly, determining through a second
iteration I, a second common maximum number of unprocessed blocks B, to

be processed for the remaining respective unprocessed messages T» to be

WO 2016/142330 PCT/EP2016/054761

10

15

20

25

24

processed after the first iteration 11. Thirdly, determining a required number of
iteration processes Ix to be performed in order to process the unprocessed
blocks B of the unprocessed messages T,

Then, the unprocessed messages T associated with the first processing
window 2 are processed, wherein the respective unprocessed messages T of
each respective iteration Ix are processed by respective multiple
cryptographic processes in parallel. Then, the processed messages are
transmitted to the control logic unit 4x2.

Furthermore, the control logic unit 4x2 is configured to control the
programmed unit 4x3. The control logic unit 4x2 may receive information
from the programmed unit 4x3. The information could be an initialization
information indicating, to the control logic unit 4x2, that the processing of the
received unprocessed messages T is ready to be processed. Furthermore,
the information could be a finalization information indicating, to the control
logic unit 4x2, that the processing of the received unprocessed messages T
is finished.

The communication between the pipelined cryptographic processing unit 4x1
and the control logic unit 4x2 may involve other types of cryptographic
processes not relating to the programmed unit 4x3.

The pipelined cryptographic processing unit 4x1 may be an AES, and the
control unit 4x2 may for example be an Arithmetic Logic unit (ALU) or a
Central Processing Unit.

Fig 5 shows an example of a system 20 where a computer implemented
method 10, is implemented into an existing cryptographic system 20, wherein
the existing cryptographic system 20 comprises an existing cryptographic
process including a cryptographic software 5a2 in connection with a pipelined
cryptographic processing unit 5a3.

WO 2016/142330 PCT/EP2016/054761

10

15

20

25

25

In this specific example, a data source 5x1 could be a server, a web server or
any kind of a server or a computable device, providing a plurality of
unprocessed messages k to an existing cryptographic software 5a2. The
Cryptographic software 5a2 is configured to communicate with the computer
implemented method 5b2 and the existing pipelined cryptographic processing
unit 5a3. Furthermore, the Cryptographic software 5a2 is configured to divide
the plurality of unprocessed of messages into a first part of unprocessed
messages and a second part of unprocessed messages. The first part is
transmitted to the computer implemented method 5b2 and the second part is
transmitted directly to the pipelined cryptographic processing unit 5a3.
Thereby, the system 20 may combine the already implemented cryptographic
process, included in the cryptographic software 5a2, with the implemented
method 5b2 in order to process the unprocessed messages or data.

The first part and the second part may both be transmitted to either the
computer implemented method 5b2 or directly to the pipelined cryptographic
processing unit 5a3. Thereby, the system 20 may be configured to only
process the unprocessed messages in either the existing cryptographic
process (5a2, 5a3) or in the implemented method (5b2, 5a3).

In this specific example, the pipelined cryptographic processing unit 5a3 may
be included in a central processing unit.

In some embodiments there is provided a computer implemented method of
processing a first plurality of unprocessed messages in parallel using multiple
cryptographic processes in a single pipeline, where the unprocessed
messages comprise respective block lengths indicating a number of
unprocessed blocks which the unprocessed message is divided into, wherein
the method comprises; receiving at least a number of the first plurality of
unprocessed messages; precomputing a first processing window by:
determining through a first iteration process a first common maximum

number of unprocessed blocks to be processed for respective unprocessed

WO 2016/142330 PCT/EP2016/054761

10

15

20

25

26

messages to be processed, determining through a second iteration process a
second common maximum number of unprocessed blocks to be processed
for the remaining respective unprocessed messages to be processed after
the first iteration, and determining a required number of iteration processes to
be performed in order to process each unprocessed block of each
unprocessed message; and processing the unprocessed messages
associated with the first processing window, wherein the respective
unprocessed messages of each respective iteration process are processed
by respective multiple cryptographic processes in parallel.

When receiving at least a number of the first plurality of unprocessed
messages, the unprocessed messages may be pre-sorted. The messages
may be presorted or be sorted as a step of precomputing one or both of the
first processing window and any subsequent windows such as a second

processing window.

In some embodiments the precomputing of a second processing window is
initiated if the unprocessed messages, configured to the first processing
window, have been processed by the respective cryptographic processes,
and if receiving a second plurality of unprocessed messages with respective
block lengths.

In some embodiments the first processing window is reused if the
unprocessed messages, configured to the first processing window, have
been processed by the respective cryptographic processes, and if receiving a
second plurality of unprocessed messages with similar respective block
lengths as the respective block lengths of the first plurality of unprocessed
messages, or if receiving the first plurality of unprocessed messages with
respective block lengths.

WO 2016/142330

PCT/EP2016/054761

27

1 A computer implemented method of processing a first plurality
of unprocessed messages in parallel using multiple
cryptographic processes in a single pipeline.

2 Processing window.

2X Second processing window.

4 A pipeline.

5 A number of a plurality of unprocessed message.

10 A system for processing plurality of unprocessed messages in
parallel using multiple cryptographic processes in a single
pipeline.

20 A second system comprising the computer implemented method
and an existing cryptographic process.

T Unprocessed messages of common maximum number of
unprocessed blocks.

Tx Other unprocessed messages or another unprocessed
message.

B A common maximum number of unprocessed blocks.

Bx Other unprocessed blocks of another unprocessed message.

T1, T2, A first, second and third unprocessed messages, respectively.

and T3

B1, B2, A first, a second and a third common maximum number of

and B3 unprocessed blocks, respectively.

BL A block length.

BL1,BL2, A first block length, a second block length, a third block length

Brs, and and a fourth block length.

BL4

I Iteration number

Ix Required number of iteration processes.

WO 2016/142330 PCT/EP2016/054761
28

l4 First lteration number.

2 Second lteration number.

I3 Third lteration number.

My Message number.

My y Block number y of message x.

CBCq, A first Cipher Block Chaining, a second Cipher Block Chaining,

CBC,, and | and a third Cipher Block Chaining, respectively.

CBCs

Ex1,Ekz, A first block cipher, a second block cipher and a third block

and Exs cipher, respectively.

kK Plurality of unprocessed messages.

kx Second plurality of unprocessed messages.

1A Receiving at least a number of unprocessed messages of the
first plurality of unprocessed messages being pre-sorted.

1B Precomputing a first processing window.

1C Determining a first common maximum number of unprocessed
messages of a first iteration.

1D Determining a second common maximum number of
unprocessed messages of a second iteration.

1E Determining the required number of iterations in order to
process each unprocessed block of each unprocessed
message.

1F Processing the unprocessed messages in parallel.

1G Repeat the first and/or second iteration.

3A1 Receive k unprocessed messages.

3A2 Sort the unprocessed messages.

3A3 Check if received unprocessed messages.

WO 2016/142330

PCT/EP2016/054761

29
3A4 Determine a parallelism degree.
3A5 Perform initialization of unprocessed messages.
3A6 Precompute a processing window.
3A7 Parallel processing of unprocessed messages.
3A8 Return processed messages.
3B1 Comprises 3A1 to 3A5.
3B2 Precompute or reuse a processing window.
3B3 Check the number of iteration process.
3B4 Process the unprocessed blocks.
3B5 Finalization of processed messages.
3B6 Remove the processed messages from the plurality of
unprocessed messages.
3B7 Return processed messages.
4x1 A pipelined cryptographic processing unit
4x2 A control logic
4x3 A programmed unit
5x1 A data source
5x2 A software unit
5a2 A cryptographic software
5b2 A computer implemented method
5x3 A hardware unit
5a3 A pipelined cryptographic processing unit

WO 2016/142330 PCT/EP2016/054761

10

15

20

25

30

CLAIMS

1. A computer implemented method for processing a first plurality of
unprocessed messages in parallel using multiple cryptographic processes in
a single pipeline, wherein the unprocessed messages has respective block
lengths indicating a number of unprocessed blocks which the unprocessed
message may be divided into, the method comprising:

receiving at least a number of the first plurality of unprocessed messages;
precomputing a list of processing windows by:

- determining through a first iteration process a first common maximum
number of unprocessed blocks to be processed for respective
unprocessed messages to be processed, wherein the determined first
common maximum number of unprocessed blocks is used to define,
for a first processing window, in the list of processing windows, how
many unprocessed blocks of which unprocessed messages to include
for processing;

- determining through a second iteration process a second common
maximum number of unprocessed blocks, if any, to be processed for
the remaining respective unprocessed messages to be processed
after the first iteration, wherein the determined second common
maximum number of unprocessed blocks, if any, is used to define, for
a second processing window, in the list of processing windows, how
many unprocessed blocks of which unprocessed messages to include
for processing; and

- determining a required number of iteration processes to be performed
in order to process each unprocessed block of each unprocessed
message; and

processing the unprocessed messages associated with windows in the list of

windows at least comprising the first processing window, wherein the

WO 2016/142330 PCT/EP2016/054761

10

15

20

31

unprocessed blocks, defined by at least the first processing window, of
respective unprocessed messages of each respective iteration process are
processed window-by-window by respective multiple cryptographic
processes in parallel.

2. A method according to claim 1, wherein the number of the first plurality of
unprocessed messages is determined by a parallelism degree (Par) which is
determined as

Par =L xTc,

wherein L denotes the latency (in cycles) and Tc denotes the throughput (in
instructions/cycles) of a pipelined instruction in the single pipeline.

3. A method according to any of the previous claims, wherein the processing
of the unprocessed messages by the respective multiple cryptographic
processes are configured to perform the following processes;

an encryption process or a decryption process,

- an authenticated encryption process (with associated data) or an
authenticated decryption process, and/or a verification process of
integrity and authenticity,

- a message authentication process or a message verification process
of integrity, and/or an authenticity,

- ahashing process,
- a pseudo- random number generation process,

- a password based key derivation functions process, or

WO 2016/142330 PCT/EP2016/054761

10

15

20

25

32

- a post-processing of true random numbers process.

4. A method according to any of the previous claims, wherein the processing
of the unprocessed blocks of the respective unprocessed messages within
the respective cryptographic processes is either done serially or partially

serial.

5. A method according to any of the previous claims, wherein the processing
of unprocessed blocks of a respective unprocessed message within a
respective cryptographic process is done sequentially, and each
unprocessed block is processed during a single operation.

6. A method according to any of the previous claims, wherein each
cryptographic process is configured to perform a serial mode of operation,
such as CBC, CFB, OFB, CBC-MAC, CMAC, OMAC, GMAC, GOST, CLOC,
SILC, VMAC, UMAC, KDF1, KDF2, KDF3, HKDF, PBKDF1, PBKDF2,
Davies-Meyer, Matyas-Meyer-Oseas, Miyaguchi-Preneel or Sponge.

7. A method according to claims 1 to 5, wherein each cryptographic process
is configured to perform a partially serial mode of operation, such as GCM,
CCM, EAX, OCB3, OTR, COPA, or POET

8. A method according to any of the previous claims, wherein the pipeline is
configured to perform operations according to Advanced Encryption Standard
(AES), Secure Hash Algorithm — 1 (SHA-1), SHA-2, or SHA-3.

WO 2016/142330 PCT/EP2016/054761

10

15

20

25

33

9. A method according to any of the previous claims, wherein the pre-sorted

unprocessed messages are sorted by decreasing length or increasing length.

10. A method according to any of the previous claims, wherein the
precomputing of a second list of processing windows is initiated if the
unprocessed messages associated with the first list of processing windows,
have been processed by the respective cryptographic processes, and if a
second plurality of unprocessed messages with respective block lengths has
been received or is being received.

11. A method according to any of the previous claims, wherein the first list of
processing windows is reused if the unprocessed messages, associated with
the first list of processing windows, have been processed by the respective

cryptographic processes, and;

e if receiving a second plurality of unprocessed messages with similar
respective block lengths as the respective block lengths of the first
plurality of unprocessed messages, or

e if receiving a plurality of unprocessed messages with respective block
lengths being the same as the as the respective block lengths of the
first plurality of unprocessed messages.

12. A method according to any of the previous claims, wherein the
processing window is determining through the second iteration process a
maximum number of unprocessed blocks to be processed of the remaining
unprocessed message to be processed, and the processing of the
unprocessed message of each iteration process associated with the
processing window is processed by a respective cryptographic process.

WO 2016/142330 PCT/EP2016/054761

10

15

20

25

34

13. A system for processing a first plurality of unprocessed messages in
parallel using multiple cryptographic processes in a single pipeline, wherein
the system comprises;

a pipelined cryptographic processing unit;
a control logic unit;

a programmed unit configured to receive a first plurality of unprocessed
messages from the pipelined cryptographic processing unit, where the
unprocessed messages comprise respective block lengths indicating a
number of unprocessed blocks which the unprocessed message is divided
into, the programmed unit is further configured to:

- determine through a first iteration a first common maximum number of
unprocessed blocks to be processed for respective unprocessed
messages to be processed, wherein the determined first common
maximum number of unprocessed blocks is used to define, for a first
processing window, in the list of processing windows, how many
unprocessed blocks of which unprocessed messages to include for
processing;

- determine through a second iteration a second common maximum
number of unprocessed blocks, if any, to be processed for the
remaining respective unprocessed messages to be processed after
the first iteration, wherein the determined second common maximum
number of unprocessed blocks, if any, is used to define, for a second
processing window, in the list of processing windows, how many
unprocessed blocks of which unprocessed messages to include for

processing; and

WO 2016/142330 PCT/EP2016/054761

10

15

35

- determine a required number of iteration processes to be performed in
order to process the unprocessed blocks of the unprocessed

messages,

- process the unprocessed messages associated with windows in the
list of windows at least comprising the first processing window,
wherein the unprocessed blocks, defined by at least the first
processing window, of respective unprocessed messages of each
respective iteration are processed window-by-window by respective

multiple cryptographic processes in parallel,

wherein the programmed unit transmits processed unprocessed messages to
the control logic unit.

14. A system according to claim 13, wherein the pipeline is configured to
Advanced Encryption Standard (AES), Secure Hash Algorithm — 1 (SHA-1),
SHA-2, or SHA-3

15. A computer readable medium configured with the system according to
claims 13-14.

WO 2016/142330 PCT/EP2016/054761

1/6

Receiving at least a number
1A of a first plurality of

\ unprocessed messages
being presorted

A

1B . .
'\ Precomputing a first

processing window

A4

1C First iteration process:
\ determining a first common
maximum number of
unprocessed blocks

Y

1D Second iteration process:

\ determining a second
f 1G

F 3

common maximum number
of unprocessed blocks

v

1E Determining a required
'\' number of iteration
processes

v

—\ Processing the unprocessed
messages

1F

Fig. 1

PCT/EP2016/054761

WO 2016/142330

2/6

WO W W W WS WO WO WO WS WO WUE WOR WO TS W WO WD WS W WO WA WV WO VO WO, WO G G" WO OO WO, VOO WO TGO __ WA T T TR WOV T

I
i < N o~ -~ {
i @) O @) O !
i
j—— i e el
m - ot et pron it jrorcmid — persg
<t i - |
% PE o eemens lex3] o3| Nvﬂ %3 ,,,,,, B EE1 B C2 (e log] vl % ,,,,,, (3] o3 ﬁmw “
O i ; m F; J
i &) @) !
< e e e € (he fanr @) < Do he < e e
} i / !
s / [] i
D J PP A S S — Mst%; ttttttttt \N.t.wiiw‘ ;;;;;;;; \N:.....N ttttt !
[/ /o
/ | | \
SN T OTRIN | TR vl e e | TEN ciAl gL TN TIIN ZIN L T T TN TN
€ [4 € I} = uonesy ‘ -~ =
4 3 Z t) — = o
€ 14 1 (£2) (7€) (€v)
g 1 Xj L £l —x I —x T] —
s _ 1 i i
\ (a8 \3/ gvN | LVIAL D 9TIN | SEIN | YYN] RN L TR] TYIA N
o QBlI_\ SEN | ZEIN | YEN | SEIN | YEN | FEN L TEN | TEN SN
S N— STN | VIN | €UN | TUN | TUN | TN
! N~ . . . I\/
) SN] TN T Q/_ TN MX
s¥d50(d N

Fig. 2

WO 2016/142330

PCT/EP2016/054761

3/6

K unprocessed messages stored in M[k]

SAT with respective block lengths BL[k])

|

3A8 3A2 —

Sort(M[k],BL[k]) and store
in L[k]=(M[k],BL[K])

.

Return processed
messages

! - 3A3

ILI>0 |

»

3A5 — Perform initialization

3A6] T, B =precompute a

3A7
N unprocessed

h 4

¥y

for messages M[r]

ki

window

A4

Parallel processing of

messages

Fig. 3A

WO 2016/142330 PCT/EP2016/054761
3B7 — k]
3BT — : 3B6
Return processed | Front end p \
messages i
3B2 — T.B= precompute or | Remove r first i
reuse a window ' elements of
1 ! I L[K] '
N . U VS H
=1 3B5 — T
3B3 v Finalization of
no
I=1+1 » I<=IX » messages
yy ves M[r]
3B4 v
- Process the

unprocessed blocks of
the unprocessed
messages within |
iteration process

Fig. 3B

WO 2016/142330 PCT/EP2016/054761

5/6

10
Ax] Pipelined | f
~ cryptographic
rocessing unit [
P J 1 4x3
Programmed)
I unit
\
Ax2 Control 4)
h logic < 1

Fig. 4

WO 2016/142330 PCT/EP2016/054761

6/6

20 5x1
\ ~ Data source
5x2 532.“ Cryptographic
ha software
1 I 0
§ 5
N 2
5p2 | The computer s
Y implemented w
method
53 _| 5 | Pipelined o
— cryptographic g
processing g
unit T

Fig. 5

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2016/054761

INV.
ADD.

A. CLASSIFICATION OF SUBJECT MATTER

HO4L9/06

GO9C1/00 GO6F9/38

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

HO4AL GO9C GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Vinodh Gopal ET AL: "Processing Multiple
Buffers in Parallel to Increase
Performance on Intel Architecture
Processors White Paper",

1 July 2010 (2010-07-01), XP055209448,
Retrieved from the Internet:
URL:http://www.intel.de/content/dam/www/pu
blic/us/en/documents/white-papers/communic
ations-ia-multi-buffer-paper.pdf

1-15

[retrieved on 2015-08-25]
last two paragraphs page 6,

page 20

section Performance (page 10 to 14);

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

24 May 2016

Date of mailing of the international search report

03/06/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Manet, Pascal

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 3

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2016/054761

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

Shay Gueron: "Intel Advanced Encryption
Standard (AES) New Instructions Set rev
3.01",

1 September 2012 (2012-09-01),
XP055210876,

Retrieved from the Internet:
URL:https://software.intel.com/sites/defau
1t/files/article/165683/aes-wp-2012-09-22-
vOl.pdf

[retrieved on 2015-09-02]

page 48 - page 49; figure 37

Zadia Codabux-Rossan ET AL: "Perfromance
of Interleaved Cipher Block Chaining in
cCmp"

In: "Novel Algorithms and Techniques in
Telecommunications and Networking",

12 December 2009 (2009-12-12), Springer,
XP055210749,

ISBN: 978-9-04-813661-2

pages 53-58,

section IV

Ryad Benadjila: "Use of the AES
instruction set",

18 October 2012 (2012-10-18), XP055209451,
Retrieved from the Internet:
URL:https://www.cosic.esat.kuleuven.be/ecr
ypt/AESday/slides/Use of the AES Instructi
on_Set.pdf

[retrieved on 2015-08-25]

slides 50 to 52 and 54

KR 2002 0071328 A (FIELDCOM COMPANY LTD
[KR]; MISSION TELECOM COMPANY LTD [KR])

12 September 2002 (2002-09-12)

abstract; figures 2,3

US 7 603 549 B1 (KAY RONY [US])

13 October 2009 (2009-10-13)

column 7, lines 3-36; figure 7

DANSEREAU R M ET AL: "Reducing Packet
Loss in CBC Secured VoIP using Interleaved
Encryption",

ELECTRICAL AND COMPUTER ENGINEERING,
CANADIAN CONFERENCE ON, IEEE, PI,

1 May 2006 (2006-05-01), pages 1320-1324,
XP031004765,

ISBN: 978-1-4244-0038-6

section 3

1-15

1-15

1-15

1-15

1-15

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 3

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2016/054761

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

T

X,P

Kahraman Akdemir ET AL: "White Paper
Breakthrough AES Performance with Intel
AES New Instructions",

1 January 2010 (2010-01-01), XP055210880,
Retrieved from the Internet:
URL:http://software.intel.com/sites/defaul
t/files/m/d/4/1/d/8/10TB24 Breakthrough AE
S_Performance with Intel AES New Instructi
ons.final.secure.pdf

[retrieved on 2015-09-02]

page 5, paragraph 2

ANDREY BOGDANOV ET AL: "Comb to Pipeline:
Fast Software Encryption Revisited",
INTERNATIONAL ASSOCIATION FOR CRYPTOLOGIC
RESEARCH, ,

vol. 20160119:132339,

19 January 2016 (2016-01-19), pages 1-26,
XP061020018,

[retrieved on 2016-01-19]

the whole document

section 3

2

1-15

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 3 of 3

INTERNATIONAL SEARCH REPORT

International application No
Information on patent family members

PCT/EP2016/054761
Patent document Publication Patent family Publication
cited in search report date member(s) date

KR 20020071328 A 12-09-2002 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - wo-search-report
	Page 45 - wo-search-report
	Page 46 - wo-search-report
	Page 47 - wo-search-report

