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A B S T R A C T

Many hospitals struggle with insufficient capacity for their inpatients. As a result, hospitals may benefit from
an approach that evaluates the occupancy of inpatient wards. In this study, we approximate the occupancy
distributions of inpatient wards, accounting for the cases where patients relocate due to a shortage of
beds. The approximation employs a homogeneous continuous-time Markov chain to evaluate each ward as
a queue containing multiple classes of patients. We avoid computational intractability by evaluating each
ward separately and accommodating patients arriving from the remaining wards by interrupting the arrival
processes, where the interruption times follow hyper-exponential distributions. Numerical experimentation
shows that our approach is robust concerning the type of length-of-stay distribution and generally results
in a minor loss of accuracy. Further validation indicates that our model reflects the occupancy distributions
of inpatient wards in a Danish hospital.
. Introduction

Inpatient admissions continue to challenge hospitals worldwide. In
esponse to this development, many countries dedicate large fractions
f their gross domestic product to healthcare, averaging 8.8% for the
ountries in the Organisation for Economic Co-operation and Develop-
ent. Simultaneously, many hospitals aim to gain a higher throughput

y reducing the bed capacity and enforcing a shorter length-of-stay for
heir inpatients [1], thus underlining the need for more efficient ways
f utilizing the available capacity.

Several scientific studies seek to provide methods for improving
ed capacity planning in hospitals. He et al. [2], Baru et al. [3]
nd Bhattacharjee and Ray [4] present the most recent reviews of the
iterature on the topic. All three reviews acknowledge the importance of
roviding hospitals with an efficient allocation of resources, and Baru
t al. note that the problem is a recurrent topic in the literature. As a
esult, bed capacity planning for hospitals is a well-researched problem.
onversely, He et al. notice a potential for improving the patients’ flow
y considering multiple wards in the same model. The authors note
hat collaboration difficulties often arise between wards, but internal
oordination and centralized bed allocation strategies can help wards
alance their goals and improve the overall delivery of care. Thus,
ccording to He et al., an optimal strategy cannot be obtained by
onsidering wards as separate units.

∗ Corresponding author at: Technical University of Denmark, Department of Applied Mathematics and Computer Science, Anker Engelunds Vej 1, 2800 Kgs.
yngby, Denmark.

E-mail address: arean@dtu.dk (A.R. Andersen).

In this paper, we address the conclusion made by He et al. by
providing hospitals with a method for approximating the occupancy
of multiple inpatient wards by considering the hospitals that relocate
patients. We do not aim to describe the exact behavior of the inpatient
flow but rather provide a model with manegable inputs that lead
to adequate estimates of the wards’ occupancy. Hospitals employing
our approximation will be able to evaluate new resource allocation
strategies, for instance reallocation of beds, creation of new wards, or
rules for relocating patients.

1.1. Literature review

He et al. [2] and Baru et al. [3] divide the literature on bed capacity
planning into two overall modeling approaches: Simulation-based mod-
els and Markov chain-based models, where the latter includes models
from queueing theory. Bhattacharjee and Ray [4] make a similar con-
clusion for the wider scope of modeling patient flow in hospitals. He et
al. find that simulation is the dominant modeling approach, whereas
Markov chains are usually better suited for simpler systems. In ad-
dition, He et al. and Baru et al. find a few studies approaching bed
capacity planning with mathematical programming.

Bekker et al. [5] and Dijkstra et al. [6] provide the most recent stud-
ies on bed capacity planning. Both studies accommodate the problem
https://doi.org/10.1016/j.health.2023.100145
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of ensuring sufficient capacity for COVID-19 patients in the Nether-
lands. Bekker et al. present methods for predicting the admission rate
and bed occupancy, and Dijkstra et al. optimize the balance of patients
over multiple hospitals. Lam et al. [7] explore a similar approach, but
for patients in Singapore. In general, many recent studies focus on
either the allocation of resources [8–13] or patients [14]. Conversely,
some studies focus mainly on estimating the demand for beds. Davis
and Fard [15] provide theoretical bounds for an improved bed demand
forecasting model, and Wu et al. [16] develop two heuristics for
estimating the blocking probability in a tandem queueing system. de
Bruin et al. [17] and Proudlove [18,19] analyze the demand for beds in
a substantial number of hospital wards, but without inter-dependence
and with fairly simple models.

Other studies combine an analytical model with simulation. For
instance, Kokangul [20] uses simulation to estimate the number of
control parameters and their associations in a non-linear optimization
model. Wang et al. [21] present a simulation–optimization framework
incorporating an analytical surrogate to the objective function. The
framework recursively combines information from both a queueing
model and simulated samples from the system. Bierlaire et al. [22]
present a similar approach, but with an application to urban traffic.

Bekker et al. [23] study a problem in line with the findings of He
et al., where the authors assess a range of bed management policies
incorporating multiple wards. Bekker et al. find that a so-called earmark
olicy and a threshold policy result in close-to-optimal decisions. An-
ersen et al. [24] and Andersen et al. [25] present similar approaches
y considering a set of inter-dependent wards. Both studies provide
ethods for deriving a close-to-optimal allocation of resources, but only

or three wards.
In this paper, we extend the findings by Andersen et al. [24] by

roviding an approximation of the inpatient occupancy distributions
or a large set of hospital wards. We assume that new arrivals can be
elocated when all beds in the preferred ward are occupied. Only [23–
5] consider analytical models containing multiple wards in the same
ospital. However, Bekker et al. assume that blocked patients are lost
rom the system, and Andersen et al. provide an approach that is
ntractable for systems exceeding 3 wards.

He et al., Baru et al. and Bhattacharjee and Ray find that Markov
hains often restrict the size of the model. We seek to overcome this
bstacle with an aggregation method that results in only a minor loss
f accuracy. Our approximation resembles aggregation methods such
s Norton’s theorem, Chandy et al. [26], and the generalization to
tate-dependent routing by Boucherie and van Dijk [27]. However, our
pproach differs from these methods by creating a dependence between
he wards with relocated patients.

To summarize, our contributions to the literature are

• We provide an approximation of the inpatient occupancy distri-
butions. Our approximation accounts for relocated patients and a
substantial number of wards.

• We base the approximation on Markov chain modeling and show
that our approach results in only a minor loss of accuracy.

• We validate our approximation by statistically comparing the
model to the occupancy in a Danish hospital.

The rest of the paper is organized as follows: In Section 2 we present
he details of the problem from both an overall and formal perspective.
ext, in Section 3 we present our modeling approach, where the first
art contains a non-aggregated approach to modeling the system, and
he second part introduces the approximation. Section 4 contains our
umerical experiments, and Section 5 validates our approximation
sing data from a Danish hospital. Finally, Section 6 presents our
onclusions.
2

Fig. 1. Patients can be relocated to alternative wards when the beds in their preferred
ward are in shortage.

2. Problem description

We study the problem of evaluating the occupancy distributions of
inpatient wards in a hospital. We consider the wards that typically
follow after the acute part of the patients’ pathways, where patients can
be characterized by their diagnoses and treatment needs. All patients
receive the best care if they are admitted to a certain ward. Thus, if
capacity was infinite, each ward would only have to treat a single type
of patients. Naturally, wards contain a finite capacity of beds, and,
therefore, patients cannot always be admitted to the preferred ward.
Thus, in the case of bed shortage, patients will either have to receive
care in temporary buffer-beds, leave the hospital, or relocate to an
alternative ward.

Certain hospitals monitor their utilization of capacity closely, en-
suring that patients become relocated such that only a few admissions
occur in buffer-beds (cf. Fig. 1). This type of hospital is the focus of this
study since they have become increasingly more common in Denmark.
We elaborate on the formal details of our assumptions below. Note
that Appendix C, Table C.13 contains an overview of the fundamental
symbols in this paper.

2.1. Arrivals and length-of-stay

Let  = {𝐴,𝐵, 𝐶,…} denote the set of inpatient wards and  =
{𝐴,𝐵, 𝐶,…} the set of patient types. We assume that each patient type
in  prefers a ward in  , and as a result || = || = 𝑛.

We further assume that patients arrive to the hospital according to
a time-homogeneous Poisson process with rate 𝜆𝑝 ∈ R+, and that an
admitted patient occupies a bed with random exponentially distributed
length-of-stay with mean 1∕𝜇𝑝 ∈ R+, where in both cases 𝑝 ∈  .

Section 5 validates these assumptions and show that they can be
used for adequately approximating the occupancy distributions of in-
patient wards in a hospital, even when the arrival rates depend on the
day of the week.

2.2. Capacity and relocation of patients

Let 𝑀𝑤 ∈ N denote the bed capacity of ward 𝑤 ∈  , and 𝑘𝑤𝑝 ∈ N0
the number of patients of type 𝑝 ∈  that are currently admitted to
ward 𝑤 ∈  . When 𝑤 = 𝑝, the variable 𝑘𝑤𝑝 accounts for admissions
to a preferred ward, whereas when 𝑤 ≠ 𝑝, the variable 𝑘𝑤𝑝 accounts
for patients that have been relocated from their preferred ward to the
alternative ward 𝑤. A ward 𝑤 accepts admissions as long as ∑𝑖∈ 𝑘𝑤𝑖 <
𝑀𝑤. However, patients of type 𝑝 ≠ 𝑤 can only be admitted to ward 𝑤
if ∑

𝑖∈ 𝑘𝑎𝑖 = 𝑀𝑎, where 𝑎 ∈  and 𝑝 = 𝑎, i.e. when all the beds in
the ward preferred by the patients of type 𝑝 are occupied. We assume
the relocated patients of type 𝑝 choose an alternative ward 𝑤 with a
probability of 𝑟𝑝𝑤 ∈ R+. We further allow the sum ∑

𝑖∈ 𝑟𝑝𝑖 to be less
than 1, since patients may be relocated to a different hospital.
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The assumptions in Sections 2.1–2.2 form a system consisting of
parallel queues, where patients are redirected whenever the queues

re in shortage of beds. During a shortage, the system provides an
lternative possibility for the patients to receive treatment in queues
ith idle capacity. Section 3 delves into this behavior by exploring the

ystem further.

. Modeling approach

Let the matrix 𝒔 ∈ N𝑛×𝑛
0 denote the current state in the hospital, and

the associated state space. Furthermore, let 𝑘𝑤𝑝 define the elements
f the matrix 𝒔.

Now, recall the assumptions in Sections 2.1–2.2. The occupancy of
eds in the hospital can be described by a homogeneous Continuous-
ime Markov Chain (CTMC) with transition rates, 𝑞𝒔𝒔∗ ∈ R,

𝒔𝒔∗ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜆𝑝 if 𝑘𝑤𝑝 + 1 in 𝒔∗, where 𝑤 = 𝑝 and ∑

𝑖∈ 𝑘𝑤𝑖 < 𝑀𝑤 in 𝒔.
𝜆𝑝𝑟𝑝𝑤 if 𝑘𝑤𝑝 + 1 in 𝒔∗, where 𝑤 ≠ 𝑝, ∑

𝑖∈ 𝑘𝑎𝑖 = 𝑀𝑎,
𝑝 = 𝑎 and
∑

𝑖∈ 𝑘𝑤𝑖 < 𝑀𝑤 in 𝒔.
𝜇𝑝𝑘𝑤𝑝 if 𝑘𝑤𝑝 − 1 in 𝒔∗ and 𝑘𝑤𝑝 > 0 in 𝒔.

here the diagonal elements are 𝑞𝒔𝒔 = −
∑

𝒔∗∈𝑆⧵𝒔 𝑞𝒔𝒔∗ and all other
ransition rates 𝒔 ≠ 𝒔∗ are zero. In the remainder of this paper, we
enote the above model the complete CTMC.

Note however that || can be intractably large, depending on 𝑛 and
he values of 𝑀𝑤. Andersen et al. [24] describe a similar CTMC, and
how that the entire state space has exactly || =

∏𝑛
𝑖=1

(

1∕𝑛!
∏𝑛

𝑗=1(𝑀𝑖+
)
)

states. As a result, a hospital with merely 𝑛 = 6 inpatient wards
nd 𝑀𝐴 = 𝑀𝐵 = ⋯ = 15 beds leads to || ≈ 25.5 ⋅ 1027 states. The
emory requirements for the associated state distribution would be
.0 ⋅ 1014PB. For this reason, Andersen et al.’s CTMC model will often
ead to intractable computations for systems of realistic size. In this
aper, we provide an approximation of the occupancy distributions for
ealistically sized systems. Section 3.1 elaborates on the details of our
pproach.

.1. An approximation

In this section, we present an approximation of the complete CTMC.
ur approximation puts the focus on one specific ward while the role
f the other wards is merely to act as additional arrival processes to
he ward being evaluated. As defined in Section 2.1, patients primarily
rrive to wards according to independent Poisson processes. Thus,
ards containing idle beds will not relocate patients to other wards,
ut when all beds are occupied, wards relocate patients with a certain
robability to the ward in focus. As a result, the relocation process from
specific ward is Poisson whenever all beds are occupied. The process

s what one could think of as an Interrupted Poisson Process (IPP).
owever, the term IPP is usually used in a slightly restricted setting.

The 𝑀∕𝑀∕𝑐∕𝑐 queue is a blocking system, meaning that customers
rriving when all servers are busy are denied service and turned away.
hese so-called blocked customers are also sometimes denoted lost
ustomers, and in a hospital, the lost customers form an overflow
rocess.

The overflow process for the 𝑀∕𝑀∕1∕1 queue was analyzed by
uczura [28] and termed IPP. Kuczura showed that the process of
locked customers given by the IPP is a renewal process with hyper-
xponentially distributed arrival times.

In a hospital context, the time between two relocated patients is thus
Phase Type (PH) distribution (Neuts [29], p. 41; Bladt and Nielsen

30], p. 125). The PH distribution is a probability distribution defined
y the time to absorption in a CTMC. Let 𝜷 ∈ R𝑜 denote the probability
ector of initializing in the 𝑜 ∈ N phases of a PH distribution, and let
3

∈ R𝑜×𝑜 denote the phase-type generator. The transition rate matrix
f the CTMC associated with the PH distribution is
𝜞 𝜸
𝟎 0

)

,

here 𝜸 = −𝜞𝒆 denotes the exit-rate vector, and (𝜷, 0) the initial distri-
ution. In this paper, we use the notation (𝜷,𝜞 ) for the representation
f the PH distribution.

Kuczura [28] results in the two PH representations

𝜷′,𝜞 ′) =
(

(1, 0),
(

−𝛼 − 𝛾 ′1 𝛾 ′1
𝛾 ′2 −𝛾 ′2

))

, and

𝜷,𝜞 ) =
(

(𝛽1, 𝛽2),
(

−𝛾1 0
0 −𝛾2

))

hat define the same distribution. The specific relationships between
he two sets of parameters was given by Kuczura. The density 𝑓 (𝑥) can
e expressed as

(𝑥) = 𝜷′𝑒𝜞
′𝑥𝜸′ = 𝜷𝑒𝜞𝑥𝜸 = 𝛽1𝛾1𝑒

−𝛾1𝑥 + 𝛽2𝛾2𝑒
−𝛾2𝑥,

here 𝜸′ and 𝜸 are the associated exit-rate vectors. Correspondingly,
he process of blocked patients from the 𝑀∕𝑀∕𝑐∕𝑐 queue is also a
enewal process with hyper-exponentially distributed time intervals,
.e. the density 𝑓 (𝑥) can be expressed as

(𝑥) =
𝑐+1
∑

𝑖=1
𝛽𝑖𝛾𝑖𝑒

−𝛾𝑖𝑥.

n our approximation, we take inspiration from this result in the way
e model the process of relocated patients to the ward in focus. In the
∕𝑀∕𝑐∕𝑐 queue, the time periods, where relocations can occur, are

xponentially distributed. This is not true for hospitals, since inpatient
ards contain multiple types of patients. These periods will instead
ave a hyper-exponential distribution. In general, the lengths of the
ime periods will be dependent as opposed to the case of the 𝑀∕𝑀∕𝑐∕𝑐
ueue. Moreover, the time between successive transitions to the state
ith all beds occupied in the 𝑀∕𝑀∕𝑐∕𝑐 queue follows an 𝐻𝑐 distribu-

ion. This follows from a reformulation of the result mentioned above
n the 𝐻𝑐+1 distribution. The relocation process from wards that only
dmit Poisson arrivals are modeled exactly by the 𝑀∕𝑀∕𝑐∕𝑐 queue,
hile it is not necessarily true in other cases.

.1.1. Model definition
We exploit the hyper-exponential behavior in our approach by

ecomposing the complete CTMC into 𝑛 different models, where each
odel accounts for the state transitions in a single ward. For the wards
ot in focus, the relocation process is approximated as sequences of
ndependent hyper-exponentially distributed intervals by two different
yper-exponential distributions. One distribution models periods with
elocation of patients corresponding to all beds being occupied, and
nother distribution corresponding to periods where beds are idle. We
enote the wards with idle beds as open, and the wards with all beds
ccupied as being in shortage. The relocated patients are generated
ccording to a Poisson process during intervals where the wards are in
hortage. Thus, the approximation accounts for a total of 2(𝑛−1) hyper-
xponential distributions. By using this approach, the resulting state
pace is substantially reduced and far more computationally tractable
han in the complete CTMC (cf. Section 3.2).

Consider the PH representations (𝜷𝑜𝑝𝑒𝑛
𝑤 ,𝜞 𝑜𝑝𝑒𝑛

𝑤 ) and (𝜷𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒
𝑤 ,𝜞 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒

𝑤 )
f the hyper-exponential distributions accounting for when ward 𝑤 ∈

is open and in shortage of beds, respectively. The parameters 𝑜𝑜𝑝𝑒𝑛𝑤 and
𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒
𝑤 ∈ N denote the number of phases, and 𝜷𝑜𝑝𝑒𝑛

𝑤 and 𝜷𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒
𝑤 ∈ R𝑜𝑤

enote the initial probability distributions of each hyper-exponential
istribution. Additionally, the parameters −𝜞 𝑜𝑝𝑒𝑛

𝑤 𝒆 = 𝜸𝑜𝑝𝑒𝑛𝑤 and
𝜞 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒

𝑤 𝒆 = 𝜸𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝑤 ∈ R𝑜𝑤 denote the exit-rate vectors. Let el-
ments 𝛾𝑜𝑝𝑒𝑛𝑤𝑗 , where 𝑗 ∈ {1, 2,… , 𝑜𝑜𝑝𝑒𝑛𝑖 }, and 𝛾𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝑤𝑗 , where 𝑗 ∈

1, 2,… , 𝑜𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒}, denote the exit-rates associated with phase 𝑗 in ward
𝑤
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𝑤. Correspondingly, let elements 𝛽𝑜𝑝𝑒𝑛𝑤𝑗 and 𝛽𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝑤𝑗 denote the initial
probabilities associated with phase 𝑗 in ward 𝑤.

Now, let 𝑚 denote the state space of the model for a ward in focus
𝑚 ∈  . Further, let 𝐤 ∈ N𝑛

0 denote a vector with elements 𝑘𝑝 corre-
sponding to the number of patients of type 𝑝 ∈  that are currently ad-
mitted to ward 𝑚. Also, let 𝐡 ∈

∏

𝑤∈⧵{𝑚}
⋃

𝑗∈{𝑜𝑝𝑒𝑛,𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒}{1, 2,… , 𝑜𝑗𝑤}
denote the states of the 𝑛−1 wards that are not in focus. When ward 𝑤
interrupts the relocation process we have ℎ𝑤 ∈ {1, 2,… , 𝑜𝑜𝑝𝑒𝑛𝑤 }, where
ℎ𝑤 is the current phase in the hyper-exponential distribution associated
with the open ward. Correspondingly, when ward 𝑤 is in shortage of
beds, the current phase ℎ𝑤 ∈ {1, 2,… , 𝑜𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝑤 }. Let 𝐛 ∈

∏

𝑤∈⧵{𝑚} 𝑏𝑤,
where 𝑏𝑤 ∈ {𝑜𝑝𝑒𝑛, 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒} indicates whether ℎ𝑤 is associated with an
open ward or a ward in shortage of beds. Components 𝐡 and 𝐛 therefore
indicate the status of all wards in the set  ⧵{𝑚}. State 𝑡 ∈ 𝑚 combines
both 𝐤, 𝐡, and 𝐛. That is, 𝑡 = [𝐤,𝐡,𝐛].

Let the element 𝑚 encompass both the ward and patients preferring
the ward in focus. Further, let parameter 𝑞𝑚𝑡𝑡∗ ∈ R yield the transition
rate from a current state 𝑡 ∈ 𝑚 to a new state 𝑡∗ ∈ 𝑚 of a
time-homogeneous CTMC. Then,

𝑞𝑚𝑡𝑡∗ =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜆𝑚 if 𝑘𝑚 + 1 in 𝑡∗, and ∑

𝑖∈ 𝑘𝑖 < 𝑀𝑚 in 𝑡.
𝜆𝑝𝑟𝑝𝑚 if 𝑘𝑝 + 1 in 𝑡∗ where 𝑝 ≠ 𝑚. Further

𝑏𝑤 = 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒,
where 𝑝 = 𝑤 and ∑

𝑖∈ 𝑘𝑖 < 𝑀𝑚 in 𝑡.
𝛾𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝑤𝑖 𝛽𝑜𝑝𝑒𝑛𝑤𝑗 if ℎ𝑤 = 𝑗 and 𝑏𝑤 = 𝑜𝑝𝑒𝑛 in 𝑡∗. Further ℎ𝑤 = 𝑖,

and 𝑏𝑤 = 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒 in 𝑡.
𝛾𝑜𝑝𝑒𝑛𝑤𝑖 𝛽𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝑤𝑗 if ℎ𝑤 = 𝑗 and 𝑏𝑤 = 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒 in 𝑡∗. Further ℎ𝑤 = 𝑖

and 𝑏𝑤 = 𝑜𝑝𝑒𝑛 in 𝑡.
𝜇𝑝𝑘𝑝 if 𝑘𝑝 − 1 in 𝑡∗ and 𝑘𝑝 > 0 in 𝑡.

where the diagonal elements 𝑞𝑚𝑡𝑡 = −
∑

𝑡∗∈𝑚⧵𝑡 𝑞
𝑚
𝑡𝑡∗ and all other transition

rates are zero.
The cases where 𝑞𝑚𝑡𝑡∗ = 𝜆𝑚, and 𝜆𝑝𝑟𝑝𝑚, account for patients arriving to

ward 𝑚. Here, the latter is the rate of the relocation process associated
with ward 𝑤 ≠ 𝑚. The case where 𝑞𝑚𝑡𝑡∗ = 𝛾𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝑤𝑖 𝛽𝑜𝑝𝑒𝑛𝑤𝑗 , accounts for
a transition into a state where ward 𝑤 is open. That is, where the
relocation process is interrupted. Note that 𝛽𝑜𝑝𝑒𝑛𝑤𝑗 is the probability
that the PH distribution governing the open time will start in state
𝑗, and 1∕𝛾𝑜𝑝𝑒𝑛𝑤𝑗 is the expected open time of the ward. Conversely, the
case where 𝑞𝑚𝑡𝑡∗ = 𝛾𝑜𝑝𝑒𝑛𝑤𝑖 𝛽𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝑤𝑗 accounts for the transition into a state
allowing relocated patients to enter ward 𝑚. The last case, 𝑞𝑚𝑡𝑡∗ = 𝜇𝑝𝑘𝑝,
accounts for the patients discharging from ward 𝑚.

Fig. 2 illustrates the behavior of a relocation process with 𝑜𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝑤 =
2 and 𝑜𝑜𝑝𝑒𝑛𝑤 = 2 for ward 𝑤. Thus, two 𝐻2 distributions govern
the periods in which ward 𝑤 is respectively open and in shortage of
beds. The number inside each circle reflects the state in the respective
distributions, and the arrows between the circles depict a transition
from a state with shortage to an open state, and vice versa. The bold
arrows depict an arrival of a relocated patient to ward 𝑚.

3.2. Solution approach

Let 𝑸𝑚 denote a matrix of order |𝑚| where the matrix elements are
the transition rates 𝑞𝑚𝑡𝑡∗ . Furthermore, let the row vector 𝝅𝑚 ∈ R|𝑚|,
where ‖

‖

𝝅𝑚
‖

‖1 = 1, denote the stationary state probabilities of the
approximation. The state probabilities are essential for analyzing the
characteristics of ward 𝑚, such as the expected bed occupancy and
shortage probability. In order to derive these measures, we need to
solve the following linear system of equations,

𝝅𝑚𝑸𝑚 = 𝟎. (1)

The size of 𝑚 can be intractably large. This especially applies to
real-life systems, as we demonstrate later in Section 5. We therefore

rely on the numerical approach of Gauss–Seidel (GS) [31, p.301] to

4

Fig. 2. Example of a relocation process associated with ward 𝑤. The circles reflect the
states of two 𝐻2 distributions. The arrows between the circles depict the transitions
between states in the process, and the bold arrows the relocation of a patient to ward
𝑚.

solve the system in (1), and store matrix 𝑸𝑚 using a compact format.
We note that similar iterative approaches are also applicable, such as
successive over-relaxation and the power method, but we found these
to converge much slower than GS in our initial tests. The details of how
we generate the system in Eq. (1) are described in Section 3.2.1.

In order to solve the system in Eq. (1), one obviously needs to start
by defining the parameters of 𝑸𝑚, including the parameters of the PH
distributions (𝜷𝑜𝑝𝑒𝑛

𝑤 ,𝜞 𝑜𝑝𝑒𝑛
𝑤 ) and (𝜷𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒

𝑤 ,𝜞 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒
𝑤 ). For the cases where

hospitals are only interested in the performance of the current system,
the parameters can be fitted using patient data. For all other cases, e.g.
if the hospital wants to analyze a new configuration of capacity, the
parameters can be fitted using samples from a simulation of the periods
where the wards are respectively open and in shortage of beds.

Finally, the model needs a decision of how many phases each hyper-
exponential distribution should contain. In Sections 4–5, we conduct
our computations using distributions with 𝑜𝑜𝑝𝑒𝑛𝑤 = 2 (corresponding to
the 𝐻2 distribution), and distributions with 𝑜𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝑤 = 1 (corresponding
to the exponential distribution).

3.2.1. Generating the model in practice
Consider the hyper-exponential distributions of the 𝑛−1 wards that

are not in focus (i.e. the set  ⧵{𝑚}). Now, let 𝑢 ∈ N denote the sum of
the number of phases of both distributions, and for convenience assume
that 𝑢 is independent of ward 𝑤. That is, 𝑜𝑜𝑝𝑒𝑛𝐴 = 𝑜𝑜𝑝𝑒𝑛𝐵 = ⋯ = 𝑜𝑜𝑝𝑒𝑛,
𝑜𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝐴 = 𝑜𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝐵 = ⋯ = 𝑜𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒, and 𝑢 = 𝑜𝑜𝑝𝑒𝑛+𝑜𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒. In this case the
state space of the approximation has a size of |𝑚| = 𝑢𝑛−1∕𝑛!

∏𝑛
𝑗=1(𝑀𝑚+

𝑗) states.
Let 𝑢𝑚𝑎𝑥 = max{𝑜𝑜𝑝𝑒𝑛, 𝑜𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒} and 𝑢𝑚𝑖𝑛 = min{𝑜𝑜𝑝𝑒𝑛, 𝑜𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒}. The

maximum number of non-zero rates in any row of the transition rate
matrix is 𝑧𝑚𝑎𝑥 = 1 + 𝑢𝑚𝑎𝑥(𝑛 − 1) + 2𝑛 leading to an upper bound of
𝑧𝑚𝑎𝑥|𝑚| non-zero elements in the entire transition rate matrix. The
corresponding lower bound has 𝑧𝑚𝑖𝑛|𝑚| non-zero elements in the entire
matrix, where each row has a minimum of 𝑧𝑚𝑖𝑛 = 2 + 𝑢𝑚𝑖𝑛(𝑛 − 1) non-
zero rates. These bounds can be useful for determining the memory
requirements for the transition rate matrix, 𝑸𝑚, and thus if the problem
has a feasible size or not. Consider a hospital with 𝑛 = 6 wards, 𝑀𝑚 = 15
beds, 𝑜𝑜𝑝𝑒𝑛 = 2 and 𝑜𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒 = 1 phases. The memory required to store
𝑸𝑚 in a compact format is in this case between 1.1 GB and 3.6 GB
(assuming 12 bytes per non-zero element). Section 4.2 shows the actual

memory usage of systems ranging between 2–6 wards.
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In the process of computing the rates, it is possible to allocate
he required memory one row at a time. First, one declares a two-
imensional array of rate values and an additional array of column
ndices (i.e. the indices of 𝑡∗). Second, one loops over each of the |𝑚|
tates, and at each state declares two dummy vectors of size 𝑧𝑚𝑎𝑥. The
on-zero transitions (both rates and column indices) of the current state
re counted and stored in the dummy vectors. The count is then used
o create the required number of slots for the non-zero transitions in
he second dimension of the arrays from the first step. The rates and
olumn indices are then finally copied into the newly allocated slots
efore moving on to the next state.

.2.2. Truncation
We may evaluate even larger systems by introducing local capacity

imits on each patient type with only a small loss of accuracy. Consider
or instance a hospital with plenty of beds where relocated patients are
are. This hospital can almost be characterized by a series of parallel
∕𝑀∕𝑐∕𝑐 queues, since the states accounting for the relocated patients

an be neglected.
In this study, we truncate the state space using local capacity limits,

nd set the limits such that the probability of exceeding them is negli-
ible. This probability is evaluated using the bound from Chebyshev’s
nequality with sample mean and variance [32]. That is, for random
ariable 𝑋,

𝑟{|𝑋 − 𝜇̂𝑝| ≥ 𝐿𝑝𝜎̂𝑝} ≤
𝑔𝑁+1

( 𝑁𝐿2
𝑝

𝑁−1+𝐿2
𝑝

)

𝑁 + 1

(

𝑁
𝑁 + 1

)1∕2
, (2)

here 𝑁 is the sample size, 𝜇̂𝑝 is the sample mean, and 𝜎̂𝑝 the sample
tandard deviation for patient type 𝑝 ∈  . These parameters can be
stimated using either patient data from the hospital or simulation,
imilar to the parameters for (𝜷𝑜𝑝𝑒𝑛

𝑤 ,𝜞 𝑜𝑝𝑒𝑛
𝑤 ) and (𝜷𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒

𝑤 ,𝜞 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒
𝑤 ). We

valuate the function 𝑔𝑁+1 using the approach in [32].
When we derive the local capacity limit 𝑦𝑝 > 0, where 𝑝 ∈  , we set

𝑝 = (𝑦𝑝 − 𝜇̂𝑝)∕𝜎̂𝑝 and calculate the bounding probability using Eq. (2).
tarting with a value of 𝑦𝑝 = 1, we increment 𝑦𝑝 until Eq. (2) yields a
ounding probability below a certain threshold. In this study, we use a
hreshold of 1 ⋅ 10−3 through all of our numerical tests in Section 4.

.3. Simulation of the complete CTMC

Discrete Event Simulation (DES) is a robust alternative to evaluating
he occupancy distributions of the complete CTMC. In our subsequent
xperiments, we employ DES to assess the error of our approximation,
nd to compare the complete CTMC to the occupancy in a real-life
ospital.

Our DES implementation use exactly the same features and pa-
ameters as described for the complete CTMC. Thus, patients are gen-
rated according to time-homogeneous Poisson processes, and they
tay at the hospital for an exponentially distributed time. Similarly,
he bed capacities and relocation probabilities determine the ward of
dmission.

We evaluate the occupancy distributions of each ward by observing
he current number of admissions at the arrival of a new patient. The
esulting frequency distributions lead to an estimate of the occupancy
istributions.

In all of our experiments, we start the DES by generating a new
rrival to an empty system. For this reason, we let the system sta-
ilize (also denoted burn-in) prior to observing the wards’ occupancy
istributions. In most of our experiments, the simulation stops when
n event occurs after a predefined time-limit. We denote this limit the
verall simulation time. The description of each experiment provides the
emaining details.
5

4. Numerical study

In this section, we present the numerical experiments that vali-
date the error and sensitivity to the length-of-stay distribution of our
approximation.

We implemented the approximation and the DES in the C++ pro-
gramming language. A single program containing both models is avail-
able for download at GitHub (see [33]). For the approximation, we used
an Expectation–Maximization (EM) algorithm from the EMpht program
to fit the parameters for the hyper-exponential distributions [34]. As-
mussen et al. [35] provide the details of the algorithm. The source code
for the EMpht program is written in C and incorporated directly into
our implementation of the approximation.

All experiments were conducted on an HPC-system using an Intel
Xeon Processor 2660v3 with ten 2.60 GHz cores (though our implemen-
tation only utilized a single core). Each job was allocated a maximum
of 128 GB of memory.

4.1. Measures of error

We employed two measures of error to validate the difference
between our approximation and the complete CTMC.

Let 𝑑𝑗 and 𝑑𝑗 denote the marginal probability of 𝑗 occupied beds,
where 𝑗 ∈ {0, 1,… ,𝑀𝑤} in the complete CTMC and approximation,
respectively. Furthermore, let 𝐷𝑗 =

∑𝑗
𝑖=0 𝑑𝑖 and 𝐷̂𝑗 =

∑𝑗
𝑖=0 𝑑𝑖 denote

he cumulative probabilities. Our first measure evaluates the supremum
ifference between the cumulative probabilities,

0 = sup
𝑗∈{0,1,…,𝑀𝑤}

{|𝐷𝑗 − 𝐷̂𝑗 |}. (3)

Although typically used for continuous distributions, the measure
n Eq. (3) resembles the test statistic from the Kolmogorov–Smirnov
est.

Our second measure is the Goodness of Fit (GOF) definition pro-
osed by de Bruin et al. [17], which is further based on Kleijnen
t al. [36]. The measure evaluates the similarity of two probability
istributions through,

1 = 1 − 1
2

𝑀𝑤
∑

𝑗=0
|𝑑𝑗 − 𝑑𝑗 |. (4)

Here, 0 ≤ 𝜖1 ≤ 1, and 𝜖1 = 1 if the distributions are equal.

4.2. Assessment of error

In this section, we assess the memory usage and error of the approx-
imation by comparing the approximated occupancy distributions to the
occupancy distributions from the complete CTMC in systems containing
2–6 wards.

The complete CTMC. The systems containing 2–3 wards were evaluated
numerically using the power method [31, p. 301], whereas the systems
containing 4–6 wards were evaluated using DES. The simulations, used
a burn-in time of 365 days and an overall simulation time of 1 825 000
days.

The approximation. We fitted the parameters of the hyper-exponential
distributions based on simulations of the system. The simulations used
a burn-in time of 365 days and was not stopped until each ward had
at least 50 samples of periods where the wards had been open and in
shortage of beds.

The approximated occupancy distributions were replicated 50 times
for systems containing 2–3 wards, and 3 times for systems containing 4–
6 wards. These replications were conducted to account for the variation
of the parameter estimates (although we eventually discovered that the
variation was close to negligible).
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Fig. 3. The average recorded memory usage for systems containing 2–6 wards. The horizontal bars reflect the minimum and maximum usage for each number of wards.
4.2.1. Input parameters
All tests used a fixed mean length-of-stay of 1∕𝜇𝐴 = 1∕𝜇𝐵 = ⋯ =

1∕𝜇 = 10 days. The systems containing 2–3 wards used a fixed capacity
of 𝑀𝐴 = 𝑀𝐵 = ⋯ = 𝑀 = 3 beds, and the systems containing 4–6 wards
used a fixed capacity of 15 beds.

For the arrival rate, we let 𝜆𝐴 = 𝜆𝐵 = ⋯ = 𝜆 = 𝜌𝑀𝜇 with 𝜌 varying
from 0.5 to 0.9 with an increment of 0.1. In all of our tests, the patients
were relocated with a uniform distribution over the alternative wards,
leading to equal occupancy distributions in all wards of the system.

4.2.2. Results
Fig. 3 illustrates the average recorded memory usage of the approx-

imation. Each level of 𝜌 leads to a different state space truncation (cf.
Section 3.2.2). The memory requirements, therefore, differ between
experiments with the same number of wards. The horizontal bars in
Fig. 3 reflect the minimum and maximum memory usage for each
number of wards.

Table 1 presents the average and standard deviation shortage prob-
ability, supremum error and GOF of the 3–50 replications of the ap-
proximation. The confidence intervals of the simulated occupancy dis-
tributions had a maximum difference of 3.3 ⋅10−3 for a confidence level
of 0.05 [37].

All of our tests resulted in occupancy distributions that were close
to the distributions of the complete CTMC. The supremum error never
exceeded an average value of 2.96 ⋅ 10−2, and the GOF remains above
an average value of 9.70 ⋅ 10−1. We found that the error of systems with
4 to 6 wards were quite similar, with the exception of one outlier in the
system with 4 wards. The 2 and 3-ward systems separated themselves
from the rest by featuring a lower slope (see Fig. 4). This behavior
was likely due to the ward capacity increasing from 3 to 15 beds
simultaneously to the system’s size.

As expected, the error seemed to be an increasing function of 𝜌 and
the shortage probability of the complete CTMC, which was a result
of the increased influence of the approximated relocation processes.
Conversely, the tests did not indicate that the error would increase
substantially for systems where the loads are larger than in these
experiments.
6

4.3. Sensitivity to the length-of-stay distribution

The length-of-stay distributions of inpatients can be far from expo-
nentially distributed (see e.g. [24]). We therefore assessed the sensi-
tivity of our approximation by comparing the model to simulations of
the complete system, where we replaced the exponential length-of-stay
distributions with log-normal distributions. The configurations of the
complete system and the approximation were otherwise identical to the
tests in Section 4.2.

4.3.1. Input parameters
We tested systems containing 2 to 6 wards with 𝜌 ranging from 0.5

to 0.9. In addition, we used a fixed mean length-of-stay of 1∕𝜇 = 10
days across all patient types in  . The standard deviation, 𝜎, of the
simulated log-normal distribution was tested on five different levels:
1∕(2𝜇), 1∕𝜇, 2∕𝜇, 4∕𝜇 and 6∕𝜇.

4.3.2. Results
The resulting occupancy distributions were close to the distributions

of the complete system across all tests (see Table 2). Specifically,
the average value of 𝜖0 never exceeded 3.02 ⋅ 10−2, and 𝜖1 remained
above an average value of 9.81 ⋅ 10−1. Switching to the log-normal
distribution and increasing the standard deviation to above the level of
the exponential distribution appeared to have a negligible effect. Fig. 5
illustrates this behavior. The largest relative increase in mean error
from 1∕𝜇𝑖 to 6∕𝜇𝑖 is merely 6%. This result was likely caused by the
close resemblance to the 𝑀∕𝑀∕𝑐∕𝑐 queueing system. In the 𝑀∕𝑀∕𝑐∕𝑐
queue, the state distribution is completely insensitive to the type of the
service-time distribution [38, p. 122].

5. Application to a hospital case

In this section, we use data from a real hospital to validate our
approach. The purpose of the section is to demonstrate that the model’s
assumptions (cf. Section 2.1–2.2) adequately reflect the wards’ occu-
pancy, and that the model can be employed to evaluate changes to the
organizational structure in a hospital.
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Fig. 4. The supremum error (cf. Eq. (3)) as function of 𝜌 for systems containing 2–6 wards.
Table 1
Assessment of error between the approximation and the complete CTMC. Shows the average and standard deviation of the shortage probability,
sup. error and GOF of the 3–50 replications of the approximation.
#Wards 𝜌 Shortage prob. Shortage prob. Sup. error GOF

Complete CTMC Average Std. dev. Average Std. dev. Average Std. dev.

2 0.5 1.70⋅10−1 1.73⋅10−1 9.17⋅10−3 1.25⋅10−2 9.70⋅10−3 9.87⋅10−1 9.64⋅10−3
2 0.6 2.35⋅10−1 2.39⋅10−1 1.15⋅10−2 1.32⋅10−2 1.04⋅10−2 9.87⋅10−1 1.03⋅10−2
2 0.7 2.99⋅10−1 3.04⋅10−1 1.42⋅10−2 1.52⋅10−2 1.10⋅10−2 9.85⋅10−1 1.09⋅10−2
2 0.8 3.58⋅10−1 3.69⋅10−1 1.70⋅10−2 1.80⋅10−2 1.25⋅10−2 9.82⋅10−1 1.24⋅10−2
2 0.9 4.12⋅10−1 4.25⋅10−1 1.69⋅10−2 1.81⋅10−2 1.16⋅10−2 9.82⋅10−1 1.15⋅10−2

3 0.5 1.72⋅10−1 1.74⋅10−1 7.03⋅10−3 9.48⋅10−3 7.66⋅10−3 9.90⋅10−1 7.63⋅10−3
3 0.6 2.40⋅10−1 2.44⋅10−1 9.55⋅10−3 1.17⋅10−2 8.70⋅10−3 9.88⋅10−1 8.56⋅10−3
3 0.7 3.07⋅10−1 3.12⋅10−1 1.28⋅10−2 1.24⋅10−2 1.09⋅10−2 9.87⋅10−1 1.08⋅10−2
3 0.8 3.69⋅10−1 3.77⋅10−1 1.23⋅10−2 1.39⋅10−2 8.80⋅10−3 9.86⋅10−1 8.65⋅10−3
3 0.9 4.24⋅10−1 4.33⋅10−1 1.16⋅10−2 1.20⋅10−2 8.84⋅10−3 9.88⋅10−1 8.77⋅10−3

4 0.5 5.86⋅10−3 6.01⋅10−3 1.12⋅10−4 2.41⋅10−3 3.74⋅10−4 9.98⋅10−1 2.66⋅10−4
4 0.6 2.33⋅10−2 2.31⋅10−2 1.15⋅10−3 6.40⋅10−3 3.17⋅10−3 9.94⋅10−1 3.17⋅10−3
4 0.7 6.69⋅10−2 6.53⋅10−2 5.39⋅10−3 1.49⋅10−2 7.62⋅10−3 9.85⋅10−1 6.99⋅10−3
4 0.8 1.42⋅10−1 1.49⋅10−1 1.20⋅10−2 2.96⋅10−2 2.39⋅10−2 9.70⋅10−1 2.30⋅10−2
4 0.9 2.35⋅10−1 2.42⋅10−1 6.92⋅10−3 2.37⋅10−2 9.05⋅10−3 9.76⋅10−1 7.93⋅10−3

5 0.5 6.24⋅10−3 6.00⋅10−3 6.26⋅10−5 1.20⋅10−3 5.74⋅10−4 9.98⋅10−1 2.73⋅10−4
5 0.6 2.40⋅10−2 2.35⋅10−2 3.55⋅10−4 3.20⋅10−3 1.55⋅10−3 9.96⋅10−1 1.17⋅10−3
5 0.7 6.66⋅10−2 6.50⋅10−2 2.50⋅10−3 8.71⋅10−3 3.46⋅10−3 9.91⋅10−1 3.07⋅10−3
5 0.8 1.42⋅10−1 1.41⋅10−1 5.79⋅10−3 1.51⋅10−2 6.19⋅10−3 9.84⋅10−1 5.46⋅10−3
5 0.9 2.35⋅10−1 2.22⋅10−1 2.08⋅10−2 2.91⋅10−2 1.37⋅10−2 9.71⋅10−1 1.36⋅10−2

6 0.5 6.04⋅10−3 5.97⋅10−3 1.08⋅10−5 7.68⋅10−4 2.14⋅10−4 9.99⋅10−1 1.98⋅10−4
6 0.6 2.32⋅10−2 2.35⋅10−2 1.74⋅10−4 4.43⋅10−3 1.10⋅10−3 9.96⋅10−1 1.09⋅10−3
6 0.7 6.51⋅10−2 6.86⋅10−2 2.39⋅10−3 1.84⋅10−2 8.13⋅10−3 9.82⋅10−1 8.13⋅10−3
6 0.8 1.40⋅10−1 1.40⋅10−1 1.12⋅10−2 1.70⋅10−2 1.79⋅10−2 9.82⋅10−1 1.72⋅10−2
6 0.9 2.35⋅10−1 2.40⋅10−1 1.66⋅10−2 2.66⋅10−2 9.04⋅10−3 9.73⋅10−1 9.00⋅10−3
We begin by presenting an overview of the data and parameters
elating to the inpatient wards in the hospital. Next, we present our
ata in a statistical validation of the complete CTMC. The DES evaluates
he state probabilities of the complete CTMC, since deriving an analyt-
cal (as well as numerical) solution was computationally intractable.
fter validating the model, we show that the difference between the
pproximation, the simulated complete CTMC and the observed occu-
ancy is minor. Finally, we present an example of evaluating a new
rganizational structure using our approximation.

Our case is based on 11 inpatient wards in a Danish hospital.
rrivals to these wards often originate as acute admissions, and the
7

majority of arrivals are therefore random non-elective admissions. The
hospital uses a centralized coordination unit to control the patient flow.
The coordination unit monitors the occupancy in the 11 wards and
ensures that patients are relocated according to the system described
in Section 2.

5.1. Data and parameters

Table 3 presents an overview of the ward and patient type charac-
teristics. We omit the underlying diagnoses and clinical specializations
to ensure anonymity of the hospital. The data for our study covers the
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Fig. 5. The approximation compared to the complete systems containing 2–6 wards with log-normal length-of-stay distribution. The abscissa accounts for the standard deviation,
and the ordinate accounts for the maximum average sup. error across the five (0.5 to 0.9) varying levels of 𝜌.
Table 2
The sensitivity of the CTMC approximation to the standard deviation of the length-
of-stay distribution. The asterisks indicate that we present the maximum average and
standard deviation of the five levels (0.5–0.9) of 𝜌.

#Wards 𝜎𝜇 Sup. error GOF

Average* Std. dev.* Average* Std. dev.*

2 1∕2 2.85⋅10−2 1.46⋅10−2 9.81⋅10−1 1.40⋅10−2
2 1 2.78⋅10−2 1.45⋅10−2 9.81⋅10−1 1.39⋅10−2
2 2 2.69⋅10−2 1.48⋅10−2 9.81⋅10−1 1.43⋅10−2
2 4 2.82⋅10−2 1.53⋅10−2 9.82⋅10−1 1.46⋅10−2
2 6 2.95⋅10−2 1.46⋅10−2 9.83⋅10−1 1.42⋅10−2

3 1∕2 1.84⋅10−2 9.06⋅10−3 9.87⋅10−1 8.52⋅10−3
3 1 1.82⋅10−2 9.17⋅10−3 9.86⋅10−1 8.60⋅10−3
3 2 1.86⋅10−2 9.35⋅10−3 9.86⋅10−1 8.72⋅10−3
3 4 1.99⋅10−2 9.59⋅10−3 9.87⋅10−1 9.08⋅10−3
3 6 1.81⋅10−2 9.45⋅10−3 9.86⋅10−1 8.95⋅10−3

4 1∕2 3.02⋅10−2 2.35⋅10−2 9.98⋅10−1 02.23⋅10−2
4 1 2.94⋅10−2 2.40⋅10−2 9.98⋅10−1 2.27⋅10−2
4 2 2.85⋅10−2 2.38⋅10−2 9.98⋅10−1 2.26⋅10−2
4 4 2.36⋅10−2 2.37⋅10−2 9.94⋅10−1 2.21⋅10−2
4 6 2.27⋅10−2 2.23⋅10−2 9.90⋅10−1 2.13⋅10−2

5 1∕2 2.93⋅10−2 1.40⋅10−2 9.98⋅10−1 1.39⋅10−2
5 1 2.92⋅10−2 1.39⋅10−2 9.98⋅10−1 1.39⋅10−2
5 2 2.90⋅10−2 1.36⋅10−2 9.98⋅10−1 1.35⋅10−2
5 4 2.85⋅10−2 1.35⋅10−2 9.95⋅10−1 1.34⋅10−2
5 6 2.77⋅10−2 1.32⋅10−2 9.93⋅10−1 1.31⋅10−2

6 0.5 2.67⋅10−2 1.67⋅10−2 9.98⋅10−1 1.55⋅10−2
6 1 2.64⋅10−2 1.65⋅10−2 9.98⋅10−1 1.57⋅10−2
6 2 2.69⋅10−2 1.74⋅10−2 9.98⋅10−1 1.67⋅10−2
6 4 2.71⋅10−2 1.82⋅10−2 9.95⋅10−1 1.76⋅10−2
6 6 2.71⋅10−2 1.84⋅10−2 9.94⋅10−1 1.73⋅10−2

period from the 1st of Jan., 2019 to the 29th of Feb., 2020 and was
obtained from the hospital’s patient register system containing admis-
sion and discharge times, wards, diagnoses, and ages of the admitted
patients. From these data, we derived the mean number of arrivals per
day, the mean length-of-stay of each patient type (cf. second and third
column in Table 3), and relative frequencies reflecting the relocation
of patients in the system. The latter is presented in Appendix A,
Table A.9.
8

Further analysis indicated that days of the week have an effect
on the mean number of arrivals. Specifically, Appendix B, Table B.11
indicates that fewer patients arrive during the weekend, whereas the
weekdays coincide with the overall mean. Section 5.3 delves into the
impact of this behavior on the model’s adequacy.

For the input parameters, we let the arrival rate, 𝜆𝑝, equal the
mean number of arrivals, the rate, 𝜇𝑝, equal the reciprocal of the mean
length-of-stay, and the probabilities 𝑟𝑝𝑤 equal the relative frequencies
in Table A.9.

The ward capacities, 𝑀𝑤, were obtained from the documentation
of the capacity coordination meetings in the hospital, where the val-
ues in parentheses indicate the allocated number of hallway-beds. In
this paper, we include the hallway-beds in the wards’ capacity. The
observed ward occupancy distributions were obtained from the period
1st of Dec., 2019 to 29th of Feb., 2020.

5.2. Statistical validation

We validated the complete CTMC by comparing the simulated oc-
cupancy distributions to the observed distributions from the hospital.
Three types of hypothesis tests were employed based on the null-
hypothesis that the complete CTMC reflects the occupancy of the real
wards. Each test was conducted by estimating the distribution of the
test statistic (under the null-hypothesis) through repeated simulations
of the complete CTMC. Regardless of the specific test statistic, we
stopped each simulation when the sum of frequencies in the ward
occupancy distributions reached the same number of observations as in
the observed occupancy distributions. The observed test statistic was
then compared to the set of the simulated statistics to determine a
𝑝-value for the test.

We use this approach, since Pearson’s 𝜒2 test requires that observa-
tions are independent, in which case the test statistic would follow the
𝜒2 distribution. However, in our system, successive observations of the
ward occupancy are dependent entailing that the theoretical sampling
distribution is unknown.

In our first tests, we used the supremum difference in Eq. (3) as our
test statistic. The remaining tests used Pearson’s statistic,
∑

𝑗∈0,1,…,𝑀𝑤
(𝜔𝑗 − 𝑒𝑗 )2∕𝑒𝑗 , and the sum of the squared difference,

∑

(𝜔 − 𝑒 )2, respectively. Here, 𝜔 ∈ N and 𝑒 ∈ R+ are the
𝑗∈0,1,…,𝑀𝑤 𝑗 𝑗 𝑗 𝑗
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Table 3
Estimated arrival rate, Length-Of-Stay (LOS), capacity and the bed load associated with each ward and patient type. The parentheses contain
the number of hallway-beds.
Wards & patient types Mean arrivals per day (𝜆𝑝) Mean LOS in days (1∕𝜇𝑝) Capacity (𝑀𝑤) Load per bed (𝜆𝑝∕𝑀𝑤𝜇𝑝)

A 14.206 2.917 52 (4) 0.797
B 11.368 3.995 40 (2) 1.135
C 8.068 4.492 26 (2) 1.393
D 6.542 1.361 20 (0) 0.445
E 4.767 3.918 20 (0) 0.933
F 2.898 4.215 18 (2) 0.679
G 4.215 4.227 22 (0) 0.810
H 2.392 7.311 24 (0) 0.729
I 1.915 7.438 22 (2) 0.647
J 0.943 8.249 8 (0) 0.972
K 0.955 1.470 3 (0) 0.468
o
h
s
C
w
F

Table 4
Result of validating the null-hypothesis that the complete CTMC reflects the occupancy
in the hospital. Tests are conducted using three different test statistics, where asterisks
mark the p-values below 0.05.

Ward Sup. error Pearson’s statistic Squared difference

Value 𝑝-value Value 𝑝-value Value 𝑝-value

A 0.16669 0.09194 780.65457 0.00824* 11 334.31632 0.08146
B 0.12893 0.12068 173.85506 0.04742* 4003.57897 0.05358
C 0.18811 0.00298* 151.99977 0.01706* 4870.66950 0.00148*
D 0.09397 0.28794 87.11908 0.13990 2246.25536 0.15884
E 0.19167 0.02458* 137.06917 0.02798* 3598.64270 0.01596*
F 0.10429 0.45320 37.11216 0.22472 680.16812 0.16426
G 0.05274 0.77682 22.56196 0.58638 604.62651 0.45924
H 0.14010 0.40852 64.49395 0.15550 1100.72300 0.07104
I 0.31426 0.05598 115.78919 0.04728* 1620.49825 0.00482*
J 0.20353 0.28164 12.44600 0.29426 83.68756 0.16846
K 0.33132 0.00005* 49.12755 0.00008* 790.36829 0.00048*

Table 5
Validation of error for the approximation (with modified parameters). Compares the
approximation to a simulation of the complete CTMC (Approx. ⇔ Complete), the
omplete CTMC to a simulation containing the parameter modifications (Complete

Modified), and lastly the approximation to the observed occupancy distributions
Approx. ⇔ Observed).
Ward Approx. ⇔ Complete Modified ⇔ Complete Approx. ⇔ Observed

Sup. error GOF Sup. error GOF Sup. error GOF

A 2.42⋅10−2 9.76⋅10−1 1.49⋅10−3 9.98⋅10−1 1.42⋅10−1 8.47⋅10−1
B 2.36⋅10−3 9.97⋅10−1 2.80⋅10−4 1.00⋅10−0 1.28⋅10−1 8.60⋅10−1
C 5.15⋅10−3 9.95⋅10−1 7.14⋅10−4 9.99⋅10−1 1.83⋅10−1 8.16⋅10−1
D 5.13⋅10−3 9.95⋅10−1 4.67⋅10−4 9.99⋅10−1 9.69⋅10−2 8.64⋅10−1
E 1.61⋅10−2 9.84⋅10−1 1.24⋅10−3 9.99⋅10−1 1.77⋅10−1 8.22⋅10−1
F 5.27⋅10−2 9.47⋅10−1 6.60⋅10−4 9.99⋅10−1 1.43⋅10−1 8.32⋅10−1
G 2.43⋅10−2 9.76⋅10−1 5.28⋅10−4 9.99⋅10−1 6.83⋅10−2 9.09⋅10−1
H 2.79⋅10−2 9.72⋅10−1 4.26⋅10−3 9.96⋅10−1 1.51⋅10−1 7.75⋅10−1
I 1.95⋅10−2 9.81⋅10−1 4.64⋅10−3 9.95⋅10−1 3.30⋅10−1 6.55⋅10−1
J 1.12⋅10−2 9.89⋅10−1 1.15⋅10−3 9.99⋅10−1 2.14⋅10−1 7.39⋅10−1
K 3.95⋅10−2 9.61⋅10−1 1.01⋅10−2 9.90⋅10−1 2.90⋅10−1 7.10⋅10−1

Table 6
Shortage probabilities of each ward for the approximation (with modified parameters),
a simulation of the complete CTMC, a simulation containing the modified parameters,
and lastly the observed distributions.

Ward Approximation Complete CTMC Modified CTMC Observed

A 0.060 0.068 0.069 0.016
B 0.220 0.222 0.222 0.131
C 0.366 0.372 0.371 0.220
D 0.001 0.001 0.001 0.003
E 0.158 0.167 0.167 0.059
F 0.151 0.187 0.186 0.126
G 0.171 0.189 0.189 0.154
H 0.102 0.119 0.115 0.054
I 0.071 0.082 0.079 0.057
J 0.258 0.268 0.267 0.211
K 0.252 0.289 0.299 0.093
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observed and expected frequencies in the ward occupancy distribution
with 𝑗 occupied beds.

Let matrix 𝑋𝑖 denote the simulated frequencies of replication 𝑖,
where element 𝑥𝑖𝑗 ∈ N0 denotes the frequency for 𝑗 ∈ {0, 1,… ,𝑀𝑤}
ccupied beds. We replicated the simulation a total of 50 000 times;
ence 𝑖 ∈ {1, 2,…50000}. Now, let 𝜏(𝑿𝑖,𝝅) ∈ R+ denote the test
tatistic of replication 𝑖, where 𝝅 is the state distribution of the complete
TMC. We derived 𝝅 by simulating the system until convergence,
hich we found corresponds to a simulation time of 1 825 000 days.
or the Pearson’s and squared difference statistics, we evaluated 𝑒𝑗 by

multiplying the ward-marginal distribution from 𝝅 by the number of
observations. For the supremum difference statistic, we used the same
ward-marginal distribution to estimate 𝐷𝑗 (cf. Eq. (3)).

Let 𝜏(𝝎,𝝅) denote the test statistic for the observed frequencies, 𝝎.
The fraction of replications where 𝜏(𝑿𝑖,𝝅) > 𝜏(𝝎,𝝅) gives the 𝑝-value
of the test.

5.2.1. Results
Table 4 presents the test statistic and the resulting p-values for each

hospital ward. We found a notable difference in the sensitivity between
the three tests. Pearson’s statistic generally derived the smallest p-
values, whereas Eq. (3) derived the largest. Using a significance level
of 0.05, we found that Eq. (3) rejected the null-hypothesis in 3 cases,
Pearson’s statistic rejected 6 cases, and the squared difference rejected
4 cases. All three tests rejected Ward C, E and K, although the 𝑝-value
of Ward E was borderline.

On the other hand, the three tests accepted 5 of the 11 wards, and
the model seems to fit Ward G particularly well. This is confirmed by
the graphical comparison in Fig. 6.

We also found that wards with hallway-beds often result in a low
𝑝-value. A descriptive investigation of these wards shows that the poor
fit is often the result of an overestimation of the right-tail probabili-
ties. The top graph of Fig. 6 illustrates this behavior. Conversely, our
tests almost consistently accept wards without hallway-beds. Thus, the
deviance between the model and the observed distributions must be
largely due to the model not completely reflecting the hospital’s policy
regarding the use of hallway-beds. Patients might be discharged early
to avoid the use of hallway-beds, and the hallway-beds might not be
fully available, or only used when other wards are overcrowded.

The following section delves into the specific differences between
our approximation, the complete CTMC, and the observed occupancy
distributions.

5.3. Validation of the approximation

In this section, we compare the approximated occupancy distribu-
tions to the observed distributions from the hospital. Subsequently,
we validate the effect of evaluating the system with a day-dependent
arrival rate.

Our approximation would be computationally intractable if it was to
account for the individual mean length-of-stays of all 11 patient types.
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Fig. 6. The approximated, simulated (based on the complete CTMC) and observed ward occupancy distribution for Ward C and G, respectively.
Table 7
Mean occupancy of each ward. Shows the approximated occupancy (column 2) and the day-dependent occupancy (column 3–9). The last column
displays the average occupancy of all seven days of the week.
Ward Approx. Monday Tuesday Wednesday Thursday Friday Saturday Sunday Average

A 44.77 41.33 43.60 45.65 46.92 46.89 44.96 41.81 44.45
B 37.17 35.31 36.75 37.33 37.68 37.52 36.42 34.83 36.55
C 24.48 23.56 24.13 24.28 24.35 24.41 24.14 23.51 24.05
D 9.11 9.11 9.40 9.53 10.24 10.35 9.57 8.73 9.56
E 16.81 16.08 16.40 16.78 16.91 17.21 17.13 16.35 16.69
F 14.75 13.57 14.34 14.81 15.28 15.46 14.91 13.87 14.61
G 18.89 18.08 18.47 18.85 19.07 19.37 19.12 18.30 18.75
H 19.62 18.67 19.14 19.68 20.07 20.47 20.29 19.25 19.65
I 16.95 16.36 16.53 16.76 17.13 17.63 17.79 17.00 17.03
J 6.24 5.63 5.98 6.16 6.27 6.25 6.41 6.04 6.11
K 1.70 1.54 1.81 1.80 1.85 1.86 1.81 1.70 1.77
a
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Table 8
Shortage probability and expected daily number of preferred admissions of each ward
in the current and new organizational structure. Ward L* comprises the consolidation
of Ward A, C and G.

Ward Capacity (𝑀𝑤) Current New

Shortage
prob.

Daily pref.
adm.

Shortage
prob.

Daily
pref. adm.

A 52 0.06 13.35 – –
B 40 0.22 8.87 0.21 9.02
C 26 0.37 5.11 – –
D 20 0.00 6.54 0.00 6.54
E 20 0.16 4.01 0.15 4.07
F 18 0.15 2.46 0.09 2.64
G 22 0.17 3.49 – –
H 24 0.10 2.15 0.06 2.26
I 22 0.07 1.78 0.04 1.83
J 8 0.26 0.70 0.22 0.73
K 3 0.25 0.71 0.24 0.72
L* 100 – – 0.08 24.46

The minimum requirements for storing the non-zero transition rates
for the largest ward are 4650.6PB. For this reason, we evaluated the
 s

10
system by employing the same mean length-of-stay to all patient types.
Specifically, we set the mean length-of-stay to a value of 1, and the
rrival rates to 𝜆𝑖∕𝜇𝑖 to maintain the loads in the system. This allowed
s to reduce the vector 𝒌 to a scalar.

Consequently, the state space reduces to a size of |𝑚| = 𝑢𝑛−1(𝑀𝑚 +
). The resulting complete memory usage for the largest ward is now
.0 GB. Since we no longer account for the differences between pa-
ients, we expect that the error of the approximation is larger than
etermined in Section 4.2. We evaluate the loss of accuracy by com-
aring the complete CTMC to a simulation of the system with the same
arameter modifications as were used in the approximation.

.3.1. Results
Table 5 compares the occupancy distributions of all 11 wards,

nd Fig. 6 visualizes the occupancy distributions of Ward C and G.
able 5 includes the errors, firstly between the modified approximation
nd a simulation of the complete CTMC, next between a simulation
f the system with the same parameter modifications and the com-
lete CTMC, and finally between the modified approximation and
he observed occupancy distributions. Table 6 presents the associated
hortage probabilities.
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Table A.9
Relocation probabilities, 𝑟𝑝𝑤, used in the evaluation of the hospital case. The last column shows the probability that a patient of type 𝑝 ∈  is
relocated to another hospital instead of relocated to an alternative ward in the set  .
/ A B C D E F G H I J K Other

A – 0.083 0.158 0.009 0.036 0.143 0.168 0.185 0.114 0.022 0.006 0.076
B 0.150 – 0.077 0.013 0.077 0.277 0.124 0.082 0.034 0.025 0.083 0.058
C 0.263 0.059 – 0.004 0.013 0.131 0.204 0.191 0.098 0.016 0.004 0.017
D 0.005 0.202 0.000 – 0.053 0.000 0.005 0.000 0.000 0.000 0.005 0.730
E 0.128 0.080 0.033 0.000 – 0.045 0.082 0.078 0.219 0.002 0.005 0.328
F 0.137 0.187 0.155 0.008 0.019 – 0.154 0.097 0.054 0.009 0.087 0.093
G 0.154 0.068 0.184 0.010 0.095 0.169 – 0.092 0.113 0.006 0.005 0.104
H 0.189 0.051 0.159 0.000 0.028 0.194 0.160 – 0.155 0.009 0.006 0.049
I 0.195 0.094 0.105 0.000 0.060 0.081 0.107 0.158 – 0.172 0.002 0.026
J 0.061 0.049 0.019 0.000 0.038 0.027 0.064 0.000 0.387 – 0.000 0.355
K 0.012 0.460 0.036 0.000 0.053 0.025 0.022 0.000 0.000 0.000 – 0.392
Table A.10
Relocation probabilities, 𝑟𝑝𝑤, used for evaluating the new organizational structure. Ward
nd patient type L* denotes the merging of the former Ward A, C and G.
/ B D E F H I J K L* Other

B – 0.013 0.077 0.277 0.082 0.034 0.025 0.083 0.351 0.058
D 0.202 – 0.053 0.000 0.000 0.000 0.000 0.005 0.010 0.730
E 0.080 0.000 – 0.045 0.078 0.219 0.002 0.005 0.243 0.328
F 0.187 0.008 0.019 – 0.097 0.054 0.009 0.087 0.446 0.093
H 0.051 0.000 0.028 0.194 – 0.155 0.009 0.006 0.508 0.050
I 0.094 0.000 0.060 0.081 0.158 – 0.172 0.002 0.406 0.026
J 0.049 0.000 0.038 0.027 0.000 0.387 – 0.000 0.144 0.354
K 0.460 0.000 0.053 0.025 0.000 0.000 0.000 – 0.070 0.391
L* 0.073 0.008 0.038 0.144 0.172 0.109 0.018 0.005 – 0.434

For the observed distributions, our evaluations of GOF (cf. Eq. (4))
ere similar to the results that were obtained by de Bruin et al. [17].
he errors between the approximation and the complete CTMC were ex-
ectedly larger than encountered in our experiments from Section 4.2.
ard F displays the largest supremum error of 5.27 ⋅ 10−2, exceeding

he maximum average error of 2.96 ⋅ 10−2 in Table 1. Conversely, the
omparison between the simulation with modified parameters and the
omplete CTMC shows that the loss of accuracy due to the modification
s minor. Ward K displays the most substantial supremum error of
.01 ⋅ 10−2, but most of the distributions are almost identical to the
omplete CTMC.

Table 7 presents the effect of using the day-dependent arrival rates
rom Appendix B, Table B.11 by simulating the mean occupancy on
ach day of the week. The confidence intervals of the simulated mean
ccupancy have a maximum difference of 0.116 for a confidence level
f 0.05. The table shows that although the estimates differ between the
ays, they only deviate by a maximum of 12.0% and an average of 3.4%
rom the approximated occupancy in the second column. Thus, the
ccupancy do not deviate substantially when taking the day-dependent
rrival rate into account.

.4. Example of an application

In this section, we demonstrate how to evaluate a new organiza-
ional structure in a hospital using our approximation. We base our
emonstration on the data from Sections 5.1–5.2 and evaluate the effect
f merging 3 out of the 11 wards in the hospital. The example is for
emonstration purposes only, and does not account for the medical
spects of merging the wards in the hospital.

Other possible applications of our approximation include optimizing
he allocation of beds, assessing the creation of new wards in the
ospital, assessing the implications of extending the length-of-stay, and
eriving new relocation rules.

We validate the solution of our example using the shortage proba-
ility and the expected number of preferred admissions per day. The
atter is defined by the product between the arrival rate 𝜆𝑝, and the
robability that ward 𝑤 ∈  can admit a new arrival of type 𝑝 ∈  ,

where 𝑝 = 𝑤.
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Appendix B, Table B.12 contains a complete overview of the relo-
cated patients, and shows that Ward A, C and G share a substantial
20.7% of the relocated patients. Thus, we expect that merging the
capacities of these wards will have a notable effect on the number of
preferred admissions of the affected patient types. Let L∗ denote the
new ward and the associated patient type, and let  ′ =  ′ = {𝐴,𝐶,𝐺}
denote the set of wards and patient types from the current system that
are merged together. Ward 𝐿∗ has a capacity of 𝑀𝐿∗ =

∑

𝑖∈ ′ 𝑀𝑖 beds,
an arrival rate of 𝜆𝐿∗ =

∑

𝑖∈ ′ 𝜆𝑖 and mean length-of-stay of 1∕𝜇𝐿∗ =
∑

𝑖∈ ′ (𝜆𝑖∕𝜆𝐿∗ )∕𝜇𝑖. For the probability of relocating to Ward L∗, we let
𝑟𝑝,𝐿∗ =

∑

𝑖∈ ′ 𝑟𝑝𝑖, and for patients that relocate from Ward 𝐿∗, we let
𝑟𝐿∗ ,𝑤 =

∑

𝑖∈ ′ 𝑟𝑖𝑤𝜆𝑖∕𝜆𝐿∗ . The resulting parameters are 𝑀𝐿∗ = 100 beds,
𝜆𝐿∗ = 26.49 admissions per day, and 1∕𝜇𝐿∗ = 3.61 days. Appendix A,
Table A.10 presents the adjusted relocation probabilities.

5.4.1. Results
Table 8 presents the improved shortage probabilities and expected

number of preferred admissions of all wards. We find that merging
Ward A, C and G increases the number of preferred admissions of
the merged patient types from 21.96 to 24.46 patients per day. This
corresponds to a relative improvement of 11.4%. The improvement is
6.3% for the preferred admissions among all wards. The organizational
changes result in minor improvements for the wards that were not
included in the merge.

6. Conclusion

Efficient resource allocations are essential to any hospital. This
particularly applies to hospitals that are subject to high uncertainty,
increasing demand, and scarce resources. The scarcity pushes the inpa-
tient wards in hospitals to relocate patients resulting in an additional
layer of difficulty for hospitals to assess the occupancy of their inpatient
wards.

In this paper, we accommodate the need for creating an overview
of the occupancy in a hospital, by providing an approximation of the
occupancy distributions. The approximation evaluates the wards in
sequence. Each evaluation includes a ward in focus, and the alternative
wards by modeling the time where they are open and in shortage of
beds, respectively.

We conducted several numerical experiments indicating that our ap-
proximation is adequate. Specifically, we found an average supremum
difference between the approximated and exact occupancy distributions
between 7.68⋅10−4 and 2.96⋅10−2. The experiments also indicated that
the difference is not notably affected by the shortage probability nor
the type of the length-of-stay distribution.

In addition, we conducted a statistical test indicating that our as-
sumptions adequately reflect most inpatient wards in a Danish hospital.
The deviations were most apparent in wards containing hallway-beds.
A further validation showed that the approximated occupancy distri-
butions resemble the observed distributions (similar to de Bruin et al.
[17]), and that they do not deviate substantially when we include
time-dependent arrivals.
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Table B.11
The mean number of arrivals on each day of the week.

Ward Overall mean (𝜆𝑝) Mean number of arrivals

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

A 14.21 14.77 16.03 16.74 16.66 14.56 10.62 9.98
B 11.37 13.03 12.61 13.03 13.49 11.84 8.07 7.42
C 8.07 8.62 9.02 8.59 8.72 8.85 7.08 5.57
D 6.54 7.33 6.11 6.95 7.92 6.57 5.40 5.48
E 4.77 4.75 5.10 5.20 4.66 6.08 4.00 3.55
F 2.90 3.75 3.10 3.39 3.34 3.00 2.00 1.68
G 4.22 4.35 4.52 4.54 4.33 4.89 3.30 3.57
H 2.39 2.67 2.74 2.62 2.64 2.80 1.77 1.48
I 1.92 2.12 2.00 1.98 2.15 2.44 1.58 1.12
J 0.94 1.38 1.25 1.21 1.00 1.18 0.33 0.23
K 0.96 1.48 1.05 1.10 1.13 0.93 0.66 0.33
Table B.12
The expected daily number of patients of type 𝑝 ∈  that are relocated to ward 𝑤 ∈  .
/ A B C D E F G H I J K Other

A – 0.080 0.153 0.009 0.035 0.138 0.162 0.179 0.110 0.021 0.006 0.073
B 0.379 – 0.195 0.033 0.195 0.700 0.313 0.207 0.086 0.063 0.210 0.147
C 0.789 0.177 – 0.012 0.039 0.393 0.612 0.573 0.294 0.048 0.012 0.051
D 0.000 0.001 0.000 – 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004
E 0.102 0.064 0.026 0.000 – 0.036 0.065 0.062 0.174 0.002 0.004 0.261
F 0.074 0.101 0.084 0.004 0.010 – 0.083 0.052 0.029 0.005 0.047 0.050
G 0.123 0.054 0.147 0.008 0.076 0.135 – 0.073 0.090 0.005 0.004 0.083
H 0.054 0.014 0.045 0.000 0.008 0.055 0.045 – 0.044 0.003 0.002 0.014
I 0.030 0.015 0.016 0.000 0.009 0.013 0.017 0.025 – 0.027 0.000 0.004
J 0.015 0.012 0.005 0.000 0.010 0.007 0.016 0.000 0.098 – 0.000 0.090
K 0.003 0.127 0.010 0.000 0.015 0.007 0.006 0.000 0.000 0.000 – 0.108
Table C.13
Overview of the fundamental symbols and definitions.

Symbol Definition

 ,  The set of inpatient wards and patient types.
𝑤, 𝑝, 𝑚 An arbitrary ward, patient type, and the ward in focus, respectively.
𝜆𝑝, 𝜇𝑝 The arrival and service rates of patient type 𝑝.
𝑟𝑝𝑤 The relocation probability of patient type 𝑝 and ward 𝑤.
𝑀𝑤 The bed capacity of ward 𝑤.
𝑘𝑤𝑝, 𝑘𝑝 The number of currently admitted patients in the complete CTMC and approximation, respectively.
𝒔, 𝑡 The state definitions of the complete CTMC and approximation, respectively.
, 𝑚 The state space of the complete CTMC and approximation, respectively.
𝑸𝑚, 𝑞𝒔𝒔∗ , 𝑞𝑚𝑡𝑡∗ The transition matrix of the approximation, and rates of the complete CTMC and approximation, respectively.
𝝅𝑚 The state distribution of the approximation.
𝜷𝑜𝑝𝑒𝑛
𝑤 , 𝜷𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒

𝑤 Initial probability distributions of the alternative ward 𝑤.
𝜞 𝑜𝑝𝑒𝑛

𝑤 , 𝜞 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒
𝑤 Phase-type generators of the alternative ward 𝑤.

𝜸𝑜𝑝𝑒𝑛𝑤 , 𝜸𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝑤 Exit-rates of the alternative ward 𝑤.
𝑜𝑜𝑝𝑒𝑛𝑤 , 𝑜𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝑤 The number of phases of the alternative ward 𝑤.
𝒉, ℎ𝑤 The current phase of the hyper-exponential dist. related to an alternative ward.
𝒃, 𝑏𝑤 Indicates if alternative ward 𝑤 is open or in shortage.
𝑑𝑗 , 𝑑𝑗 , 𝐷𝑗 , 𝐷̂𝑗 Exact and estimated marginal and cumulative probabilities for 𝑗 beds.
𝜌 The ward load (per bed).
𝑖, 𝑗 Generic index variables.
To propagate the use of models for bed capacity planning, we
ropose that future work investigates the sensitivity to load-dependent
ehavior, such as premature discharges to avoid overcrowding.

Furthermore, the simplicity of the hyper-exponential distribution
akes the model ideal for computational implementation as well as
arameter fitting, but our approach does not impose any restrictions on
he type of PH distribution. Future work should therefore investigate
he potential benefits of employing general PH distributions in the
odel.
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