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i Executive summary 

The Workshop on Unavoidable Survey Effort Reduction 2 (WKUSER2) focused on best-available 

approaches that can minimize information loss and ensure continuity in survey time series when 

unavoidable changes to survey effort occur. WKUSER2 recognised that reductions, reallocations, 

or increases in survey effort present similar set of problems, and therefore concentrated on all 

aspects of survey effort changes. The workshop reviewed available research, current practices, 

and recommended future directions on four key topics: (i) key elements of flexibility of a survey, 

(ii) why and how to combine data from different sources (e.g. surveys, fishery sampling) and

deal with survey gaps, (iii) how to configure estimation and simulation models, and (iv) review

existing tools and technology to evaluate consequences of survey effort changes.

Road maps were developed for the key topic areas i, ii, iii, and iv, whenener possible, to assist 

scientists and survey managers in making decisions on how to evaluate and mitigate the impact 

of survey effort changes on data and advice quality. Many tools are available or are being devel-

oped for that purpose, but the group recognized two important needs during the workshop: i) 

defining clear objectives and priorities of a survey, which are essential to properly evaluate con-

sequences of survey changes; and ii) making all tools accessible, reproducible, and transparent 

to benefit the whole community. This requires organisational and cultural shift to create support 

systems that ensure the development and sustainability of such tools in the future.  
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1 Introduction 

1.1 Unavoidable Survey Effort Reduction 

Fisheries-independent surveys of marine resources (hereafter referred to as surveys) are an im-

portant source of the information used in fish stock and ecosystem assessments, and fisheries 

research. Surveys are often the only source of information providing population abundance es-

timates, spatial distribution, and population structure data needed for sustainable management 

of marine resources. In addition, environmental data collected during surveys are used to de-

velop ecosystem indicators for assessment of the ecosystem health as well as forecasting poten-

tial changes to marine resources in response to climate change.   

Surveys follow standardized and repeatable scientific protocols that assure the continuity of both 

survey design and the data collected. Nevertheless, most survey programs have to make sub-

stantial changes to survey operations from time to time due to challenges such as reductions in 

staff and budgets, bad weather and vessel breakdowns / repairs / unavailability. Other chal-

lenges are associated with changes in the environment such as ocean warming and shifts in spe-

cies distributions. Lastly, human activities such as commercial fisheries and wind energy devel-

opments can also affect surveys by restricting access to sampling locations. These challenges of-

ten result in effort reductions, which typically compromise the long-term objectives of survey 

series in terms of accuracy, precision, and consistency of population estimation. 

Failure to adapt to changing needs is the biggest challenge to survey programmes. Not adapting 

will mean obsolescence: the value of the survey is gradually reduced to the point where it is not 

worth continuing to collect the data. Defining best practice beyond broad generalizations is chal-

lenging because of the differences in the survey objectives, severity of impacts on survey design 

in different areas for different resources. However, changes often need to be implemented in a 

short time-frame, leaving little time for planning and quantitative evaluation, so there is a need 

to develop methods and tools that provide a better understanding of the risks and allow evalu-

ation of different mitigation options when changes to the survey effort are made. 

1.2 Challenges in making changes to survey effort 

The overarching challenge when dealing with survey effort reductions is the understanding of 

the consequences in terms of precision and bias associated with survey sampling processes, 

which includes operational, environmental & biological processes. The first ICES Workshop on 

Unavoidable Survey Effort Reduction (WKUSER, 2020) focused on the following key issues: 

• How to choose the survey data products to focus on? (e.g. abundance, composition)

• How to reduce the effort? (e.g. sampling density, spatial coverage, survey frequency)

• How to measure consequences of change in sampling effort?

• How to assess value or loss of information?

• How to minimize loss of information and optimize survey effort?

• How to assure continuation of the standardized time-series?

• How to assure constant catchability or, how to deal with variable catchability?

• What is the minimum survey effort required to provide useful information?

• How to weigh environmental vs biological data when deciding on effort changes?

• How to propagate increased uncertainty from survey to stock assessment outputs?
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The outcomes of WKUSER (2020) included: 1. Documentation of current processes and strategies 

for dealing with survey effort reduction and roadmaps (which are already guiding decisions of 

survey managers). 2. Better understanding of sampling and “total uncertainty” and a roadmap 

for research needed to obtain “total uncertainty”. 3. Increased knowledge on how to plan for 

survey calibrations and how to communicate calibration and survey continuity needs to stake-

holders. 4. Increased awareness of the tools to help decision making that are currently available 

(or in development) and their utility in helping the decision-making process and informing the 

quality of survey deliverables and advisory products. 

1.3 The need for the WKUSER2 

WKUSER 2020 and the ICES Working Group on Improving Use of Survey Data for Assessment 

and Advice (WGISDAA) identified issues that needed attention and additional work, which re-

sulted in the proposal for WKUSER2 to be conducted in 2022. Changes to survey operations are 

a recurring theme in many monitoring agencies, and more coherent planning and a long-term 

response strategy is desirable. It is important to have a better understanding of the effects of 

these changes on survey time-series, in particular in relation to stock assessment advice. A clearer 

understanding is needed of the mitigation measures that can be implemented to minimise the 

impact of such changes. Because survey scientists / managers often have to make near instanta-

neous decisions, it is valuable to have a framework or a set of methods that can be applied to the 

specific problems. This can allow decisions to be made in the absence of data or the opportunity 

to evaluate options statistically.  

WKUSER2 met in Galway, Ireland on 13-17 September 2022 to address the following terms of 

reference (TORs): 

• TOR 1: Survey design for flexibility. Review and summarise desired attributes of survey

design that allow for flexibility when dealing with unavoidable changes in survey effort

and need to expand survey into new areas of species expansion due to changes in the

ecosystem.

• TOR 2: Combining surveys, dealing with data gaps. Collate advice on methods to com-

bine data from different sources, how to deal with data gaps and how to perform survey

calibrations.

• TOR 3: Modelling and simulations. Further develop model-based estimation, model

validation through simulations, use of auxiliary information to improve survey data

products, including appropriate propagation of uncertainty.

• TOR 4: Tools and technology development. Describe the development of methods that

aim to provide quantitative decision-making tools that describe the effects on the quality

of the survey deliverables and ultimately advisory products.

1.4 How does WKUSER2 fit into the EOSG and ICES 

The ICES Ecosystem Observation Steering Group (EOSG) is responsible for guiding and sup-

porting fisheries-independent data collection, i.e. all at-sea scientific surveys collecting data on 

marine resources and the ecosystem using research oceanographic vessels. The mandate given 

to EOSG is to ensure the various data requests from assessment and ecosystem scientists are met 

with effectively coordinated, integrated, quality-assured products from cost-effective monitor-

ing in the ICES region and beyond. 
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ICES has recently released three key documents: the Science, Strategic, and Advisory plans. From 

these documents the priorities for EOSG can be given as follows: 

1. Assessing quality, reproducibility, and transparency;

2. Incorporating innovation, future of scientific survey means, and tools; and,

3. Identifying needs for the ecosystem approach, particularly focusing on regionalization.

In 2022, two key workshops are planned under EOS: WKUSER2 and WKPILOT-FIRMOG (Fish-

eries Independent Regional Monitoring Groups). WKUSER2 has a mandate to progress on: As-

sessing survey data quality, reproducibility, and transparency, and Incorporating innovation 

while preparing for the future of scientific survey methodology and tools while operating in 

reduction of effort. As such, WKUSER2 is an important part of the strategic reflection needed for 

EOSG and ICES with accompanying necessary innovation and adaptation to a changing envi-

ronment (in both ecological and societal terms). 

WKPILOT-FIRMOG is planned for November 2022 and is focused on making better use of the 

collective research survey data within a region. This workgroup will investigate the workability 

of a regional group on fisheries independent data. Since the topic is strongly related to optimi-

zation of the use of the surveys at the regional level, participation in this workshop was pro-

moted to the WKUSER2 participants. WKPILOT-FIRMOG directly links to point 3 of ICES strat-

egy, i.e. identifying needs for the ecosystem, approach, and focusing on regionalization. 

1.5 Conduct of the workshop 

WKUSER2 took place in Galway, Ireland on 13-17 September 2022 and was attended by 47 peo-

ple from 12 countries (USA, Ireland, Norway, Canada, Sweden, Denmark, Spain, UK, Italy, 

France, Portugal and The Netherlands); 39 people attended in person and 8 remotely. 

The agenda of the meeting is provided in Annex 3. The first day of the meeting consisted of six 

30-minute keynote presentations as well as discussions on the challenges and priorities of the

workshop. The second day consisted of twenty-one 15-minute presentations related to the ToRs

of the workshop (section 4 collated all abstracts from the talks). The presentations were intended

to provide a basis for the discussions in the subgroups. The remaining 2½ days consisted mainly

of subgroup work: agreeing on outputs and report writing. Each of the ToRs was addressed by

a separate subgroup and each subgroup had between seven and twelve members. Each sub-

group had two or three subgroup leaders. Subgroups reported in plenary to the group on the

fourth day of the workshop.

On the morning of the fourth day of the workshop, one of the participants tested positive for 

COVID-19. The workshop chairs decided to conduct the remainder of the meeting remotely. 

Some participants attended from their hotel rooms, others gathered in hotel lobbies, cafes and 

outdoor terraces. Unfortunately, at least 8 participants contracted COVID-19. 

WKUSER2 taught us a few lessons (summarised in section 3.2) that future hybrid workshops 

(e.g. WKUSER3) could benefit from. 
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2 TOR Group Reports 

The following summarises the results of each TOR group addressing each term of reference. 

2.1 TOR I.  “Survey design for flexibility”:   Review and 
summarize desired attributes of survey design that al-
low for flexibility when dealing with changes in survey 
effort and need to expand survey into new areas of 
species expansion due to changes in the ecosystem.  

Subgroup leads: Lewis Barnett, Kai Wieland          

Participants: Joel Vigneau, Ralf van Hal, Andy Lipsky, Catherine Foley, Dave Stokes, Jason Con-

ner, Annica de Groote, Philip Politis (remote), Elizabeth Phillips (remote), Daniel Vilas (remote) 

While the WKUSER workshop series is intended to address unexpected survey effort reduction, 

perhaps it would be better to consider it as a need to transform unexpected effort reduction into 

expected effort reduction and address it proactively. One solution that meets this need is the de-

velopment of flexible survey sampling designs and estimators that enable the survey practitioner 

to react to short or long term reductions in sampling effort.  

What do we mean by flexible surveys? We define flexible surveys as: approaches which facilitate 

multiple robust estimation options to retain the ability to acquire consistent and/or approxi-

mately unbiased estimates given change in survey resources, distribution of resources and mon-

itoring access, and observation requirements. 

WKUSER1 (ICES, 2020a) introduced the discussion on the need to anticipate unexpected survey 

effort reduction to cope with urgent or anticipated situations (extreme weather, vessel break-

down, non-accessibility of certain areas, increase of surveyed areas and/or parameters/variables 

to collect with the same effort, decreased budget, etc.). WKUSER1 then evaluated the conse-

quences of these effort reductions on survey outputs, stock assessments and fisheries manage-

ment and highlighted the need to consider different strategies for coping with survey changes in 

time. These strategies included spreading reductions as evenly as possible through the survey 

effort distribution and increasing flexibility in survey implementation.   

WKUSER1 elaborated on the current processes used in dealing with unavoidable change in sur-

vey effort. These are:  

• Improving survey efficiency, e.g. reducing tow time to certain extent, increase working

hours, introducing new technology for easing the staff workload, improving catch pro-

cessing mainly with more subsampling

• Reducing station density

• Reducing survey frequency
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• Changing survey design

• Cancelling surveys as the ultimate solution when no funding is available

WKUSER2 focused on survey design in relation to flexibility. Indeed, it was deemed that survey 

flexibility is a constant need since the scientist in charge of implementing a survey is dealing, 

together with the vessel master, with the daily plan to adapt the survey design to in situ context. 

Over a time series of indices, it is very unlikely that all years were monitored exactly with iden-

tical design. A common example of consequences for the quality of the indices comes from sur-

veys with stratified designs with a large number of strata and, hence, few fishing operations per 

strata. Year after year, the risk of having poorly or unsampled strata is high with direct conse-

quences on the robustness of the time series of indices. A key desired attribute of a flexible survey 

design is one that avoids allocating a small number of samples to a large number of strata. More 

broadly, the consensus is that survey scientists should carefully consider their survey objectives, 

required sampling area and habitat, available resources, and statistical assumptions that can best 

be met by their survey capabilities when designing a survey for flexibility. 

2.1.1 Survey flexibility, objectives, assumptions, and design 

One of the primary concerns of sampling design is the error of the estimates thereof. Estimation 

error consists of two sources: bias (i.e. systematic error) and variance (i.e. random error). Bias, 

that is the degree to which an estimate deviates systematically from its study parameter, may 

exist for various reasons, two that are relevant for the fishery survey practitioner: 1) design-bias, 

where sampling violates the assumptions of independent and identically distributed (IID) sam-

ples; 2) selection-bias, where sampling diverges from a defined study population. Design-bias 

may occur in sampling designs such as sampling from a systematic grid, because even though 

samples are identically distributed, they are not independent. Selection-bias may occur when the 

population of interest is not confined to the sampling frame of the study (e.g. a study area limited 

by international borders), resulting in a sample population that may not derive from the same 

distribution as the study population. 

If a survey estimate is design-unbiased, as in simple random sampling with replacement, 

wherein samples conform to the assumptions of IID, the error of this estimate is equal to its var-

iance. However, it is often infeasible or undesirable to execute a design-unbiased survey, for 

reasons including: cost efficiency per sampling unit (e.g. vessel fuel cost); management require-

ments for spatially balanced observations; accessibility of sampling units within a study area 

(e.g. gear-inaccessible habitat, offshore windfarm or pipeline infrastructure, international bor-

ders). Sampling designs that may be biased include systematic sampling, where an estimate will 

be biased if there are patterns in the study population that covary with the sampling pattern 

(Gabler and Stenger 2012), and stratified sampling using an allocation algorithm (e.g. Neyman 

allocation) that prioritises factors other than randomness in samples. 

The appropriate statistical design of a survey will depend on the objectives of the study. A num-

ber of survey designs can be considered inflexible. For example, simple random sampling is often 

used when any bias is unacceptable to the study objectives, but logistical inefficiencies make such 

a design inflexible (e.g., adding sampling units that are long distances away from the natural 

survey progression). Similarly, systematic sampling, which often enables the most precise point 

estimates at the risk of some unknown bias, is also inflexible because the full sampling plan must 

be completed to avoid bias associated with spatially unbalanced sampling (unless the resolution 

of the sampling universe can be coarsened to cover the entire remaining domain, which is not 

possible in a fixed-station design). In contrast, a cluster sampling design, which enables design-
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based evaluation of the variance of an estimate, is a flexible design that can yield more infor-

mation on variance within and among cluster units, but resulting in fewer primary sampling 

units (see TOR II for definitions of sampling terminology) and larger variance estimates. By im-

posing stratification on a study area, it may be possible to improve precision while maintaining 

unbiased estimates. Stratification may also facilitate the combination of multiple sampling strat-

egies in a hybrid design, however one must ensure that the appropriate estimators are available 

and employed. Below, we discuss general properties of designs that make them more or less 

flexible, and how to approach design decisions with statistical robustness. 

2.1.1.1 If stratification is to be used for survey sampling designs, the objectives of 
stratification should be clearly identified.  

From Cochran (1977) the potential reasons for stratifying are as follows: 

1. If data for certain subdivisions are to be known with specific precision.

2. Certain administrative needs may dictate the use of a subdivision of the population. For

example, the agency conducting the sampling may have fieldworkers, each of whom

must oversee a portion of the population.

3. Sampling problems may differ for different parts of the population and sampling ap-

proach will be appropriate for each situation.

4. Stratification can produce a gain in precision in the estimates of the parameters of the

entire population. It may be possible to divide a heterogeneous population into sub-pop-

ulations, which are themselves more homogeneous. If each stratum is homogeneous, in

the sense that the measures vary very little from unit to unit, a precise estimate of each

stratum can be obtained from a small sample. These estimates are then combined to ob-

tain an accurate estimate of the entire population.

The number of divisions of the population for sampling purpose will be directly dictated by the 

answers to the question of the objectives of the stratification. When it comes to stratifying for 

increasing the precision of the estimates, Cochran expresses that the ideal variable to stratify by 

is the value of y - the quantity to be measured in the study. If we could stratify by y-value, there 

will be no overlap between strata, and the within-stratum variance would be smaller than the 

total variance, especially if there are many strata. In practice, of course, one cannot stratify ac-

cording to the values of the variable to be measured. But certain cases may approach this situa-

tion, and thus provide large gains in precision, if they satisfy the three following conditions: 

1. The population is composed of sets that vary greatly in size

2. The main variables to be measured are related to the sizes of the sets

3. A good measure of set size is available to determine strata

These conditions apply perfectly to length sampling in auctions, where all fish are graded by 

commercial categories, i.e. ranges of individual weights which are directly linked to the length 

of the fish. In the survey design to estimate marine resources abundance and biomass, the use of 

trawlable areas linked to a range of bathymetry is often used for stratifying the population. These 

trawlable areas may obey the three conditions although point 2 may only apply to a subset of 

targeted species. It is important to note that Cochran (1977) inferred the optimal number of strata 

in a population and demonstrated that very small reduction of variance is expected over 6 strata. 

file:///D:/Dropbox/My%20PC%20(HI-11721)/Documents/ICES_report/WKUSER/Combining%23_TOR_II._
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The advantages of using fewer strata in fisheries independent surveys is commonly agreed (Ga-

varis and Smith, 1987, Folmer and Pennington, 2000). 

2.1.1.2 Survey design should ensure even distribution of samples throughout the 
surveyed area 

This principle, highlighted in WKUSER, is often a non-written objective of survey designs, which 

sometimes may lead to some aversion to the use of random draw of fishing operations in a large 

area or an incentive to create a maximum number of strata. We note that while strata are not 

always defined by spatial boundaries in geographical space, they are typically discussed in this 

context within this report. Three options to ensure maximum randomness and even distribution 

of samples were discussed, with more details given in the sections on strategic (2.1.4.1) and tac-

tical (2.1.4.2) pathways to survey flexibility: 

• Systematic sampling: Division of the surveyed area in N identical surfaces (cells), N be-

ing the planned number of samples so that one sample is taken in each cell of the grid.

• Advantages: Easy to implement, given to be more precise than the simple random

sampling, samples evenly distributed throughout the sampling areas.

• Conditions: Randomness of the design is conditioned to a random draw of the first

position in the cell. Then after there are different options but the most commonly

used one is to repeat that position in every cell of the grid. It may be as simple as

dividing every cell into two (e.g. North / South or East/ West), three or four areas,

draw in which area should sampling occur and proceed.

• Advantages in terms of flexibility: the size of the N’ surfaces to sample (N’ < N for

any reason occurring during the survey) is totally flexible and can easily be

adapted to the N’ remaining samples to be taken; Differentiated inclusion proba-

bilities between the first samples (1/N) and the remaining (1/N’) would allow sta-

tistical inferences without bias.

If needed to extend the geographical area with the same effort, adapt the size of

the grid as necessary.

• Disadvantages: Not easy to estimate the variance, with the possibility to use the

variance of random draw as a proxy. This can only be done if the condition (point

above) is respected.
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Figure 2.1-1: Systematic survey sampling design illustration 

• Random draw with an exclusion zone (buffer): Defining a radius around the sample

meant to determine a minimal distance between two samples

• Advantages: Easy to implement, variance well defined, size of the radius ensuring

the even distribution of the samples, the radius offers a bit of flexibility to the vessel

master in positioning the gear and in tow direction.

• Conditions: radius size to be determined objectively (e.g. using a predetermined

threshold in mean decorrelation distance derived from previously collected data)

and documented.

• Advantages in terms of flexibility: since the samples have been drawn at random,

there is the possibility to remove samples at random from the remaining number

of primary sampling units at any moment in time, provided that redefined inclu-

sion probabilities are attached to each sample.

If need to extend the geographical area with the same effort, not much to do except

maybe increase the radius around each sample.

More research needs to be developed in this case on the flexibility potential and

the need to avoid systematic effect of samples being collected with spatial ordina-

tion (i.e. vessel collecting samples between nearest locations first).

• Disadvantages: Difficult to implement in narrow strata, e.g., near the continental

shelf edge where depth changes significantly over a small area.
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Figure 2.1-2 Random draw with exclusion zone sampling design illustration 

• Mixed systematic and random draw: Allocate part of your total number of samples to a

systematic grid and draw at random the remaining number of samples (see Zhao et al.

2018 and Zinger 1980).

• Advantages: The systematic part comes as the priority samples to be covered; the

same variance statistics apply to both (see point above on systematic sampling);

when used in a stratified design, the systematic part represents the even part all

over the surveyed area and the random draw can be done using optimised alloca-

tion (e.g. Neyman allocation)

• Conditions: as for the systematic sampling, draw at random the first position in the

cells and repeat the position for all the systematic parts.

• Advantage in terms of flexibility: As for the random draw, the extra samples can

be removed randomly as required with the reduction of effort.

If needed to extend the geographical area with the same effort, adapt the size of

the grid as necessary.

• Disadvantages: Same as for both systematic and random sampling.
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Figure 2.1-3: Mixed systematic and random draw sampling design illustration 

In conclusion, the desired attributes of survey design that allows for flexibility is to i) stratify 

parsimoniously the total survey area and document clearly the reasons for stratifying and ii) use 

a sampling design with as much probabilistic nature as possible taking the three options detailed 

above as potential candidates. It is worth noting that some variants of these are said to provide 

better estimation accuracy and precision (e.g. Liu et al. 2009). Finally, documentation of the pro-

cess for determining a stratification is critically important to making coherent changes to the 

survey in the future. For example, one common challenge is when habitat or range shifts require 

an extension of the survey domain, in which case it is necessary to understand and replicate the 

same design principles from the core survey to these extended areas.  

2.1.2 Summary of literature review 

A review of the limited literature regarding design and modification of flexible fishery-inde-

pendent surveys, demonstrated that statistical guidance has generally been consistent with the 

conclusions of the discussions and presentations of TOR 1 (Madow 1953; Cochran 1977; Gavaris 

and Smith, 1987; Folmer and Pennington, 2000; Chen et al. 2004; Liu et al. 2009; Xu et al. 2015a,b; 

Zhao et al. 2018). However, this guidance is typically not well synthesized within a single text as 

it bridges the statistical methods with the specific logistics of application to fisheries and ecolog-

ical monitoring. Perhaps partly as a result of this disconnect, or out of necessity due to the need 

for in situ decisions, there are many cases where there appears to be a divergence between ide-

alized statistical guidance and practical implementation of survey modifications. We hope that 

the sections below (particularly 2.1.4) synthesize our knowledge in a framework that is more 

actionable for survey practitioners and the stock assessment enterprise. First, we highlight a few 

case studies where surveys were faced with challenges, the mitigation steps taken, and lessons 

learned.  

2.1.2.1 Gulf of Alaska bottom trawl survey 

The NOAA Fisheries, Alaska Fisheries Science Center Gulf of Alaska bottom trawl survey has 

been monitoring demersal living resources of the continental shelf and slope of this productive 
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region since 1984. The survey has historically used a stratified random sampling design, where 

strata were largely defined by depth. Beginning in 2011 (Raring et al., 2016), survey resources 

were reduced from three to two chartered commercial vessels, requiring some decision regard-

ing how the fewer vessels and total number of samples would be allocated across the region. 

Coincidentally, neither of the two vessels had enough wire on their winches to conduct survey 

hauls at extreme depths, so it was decided that the response would be to drop all sampling from 

the deepest strata, from 700 to 1000 meters. Eliminating an entire strata is suboptimal because it 

is simultaneously changing the boundary of the survey domain and the total effort, and limits 

the interpretation of the time series using only design-based indices. However, it still allows one 

to use model-based estimators, but those methods must use additional information to predict 

the response in an unsampled area, which is often difficult to do with high predictive skill. Upon 

revisiting this survey design to make it flexible to variation in survey effort, Oyafuso et al. (2022) 

proposed an alternative approach (Oyafuso et al. 2021) to improving efficiency and flexibility by 

optimizing stratification and sample allocation relative to a constraint on the precision of an es-

timate (in this case a suite of abundance index CVs across species of interest). They simulated 

fish densities across the complete spatial domain from a spatiotemporal GLMM conditioned on 

the full suite of historical data, then simulated sampling with the proposed and existing designs 

to compare their performance at multiple effort levels. The results showed that there was a trade-

off between precision and bias, where most notably the prior design was expected to give more 

precise estimates but with less accurate estimates of the true precision than under the proposed 

design. Furthermore, for species that have a significant portion of their habitat on the continental 

slope, the truncation of sampling at 700m could lead to bias in the scale of design-based abun-

dance estimates. Oyafuso et al. (2022) demonstrated that the design could be truncated at 700m 

and re-stratified while continuing to provide unbiased design-based estimates of abundance 

(with improved accuracy of associated uncertainty) with a similar total number of primary sam-

pling units. This was accomplished by implementing a novel approach to sample allocation 

among strata, which can be reallocated as new data are collected or added flexibility. In sum-

mary, to the extent possible one should seek to avoid dropping entire strata to conserve inference 

to a given spatial footprint, and each survey group should consider preparing for unavoidable 

survey effort changes by employing a framework/tool to objectively redistribute primary sam-

pling units among strata to support decision making when survey changes are needed. 

2.1.2.2 Northeast Atlantic surveys 

From about 1999 onwards, demersal trawl surveys in the NE Atlantic area began to coordinate 

under the International Bottom Trawl Surveys (IBTS) working group at ICES (ICES, 2017). Sur-

vey designs and gears were already established in the area by that time and difficulties in stand-

ardising these aspects in particular generated much discussion and review. Broadly speaking: 

the North Sea (NS) Area is a fixed station design with a common survey trawl and ostensibly 

similar target species and depth range throughout the area. With the exception of the west of 

Scotland (referred below as Western Area, WA), in the Atlantic area the surveys are stratified 

random designs. Trawls are often tailored to local, area specific target species, depth ranges and 

bottom type. Differences between WA survey series in catchability assumptions as well as min-

imal overlap between surveys meant that it has been problematic to address gaps in survey cov-

erage. This made annual data collection quite inflexible compared to a NS standardised com-

bined index, although evolving assessment methods have gone some way to addressing that.  
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For this reason, The International Program of Standardised Trawl Surveys (ICES, 2001) 

(IPROSTS) undertook a review of methods and design between the IBTS WA surveys for Scot-

land, France and Ireland. Integral was whether calibration coefficients would be required to pro-

duce standardised combined indices as these particular surveys utilised similar survey trawls 

already. The analytical approach was for a series of parallel fishing tows between vessels and it 

built on the work of (Fryer et al, 2003 and Milar and Fryer, 1999). Results indicated that, where 

numbers at length for a species appeared in the catch on both paired hauls, reasonable precision 

was seen above 15-20 paired hauls (Figure 2.1-4).  

Figure 2.1-4: Results of IPROSTS comparative hauls length frequency analysis for haddock (left) and poor cod (right). 
Upper panel shows the weighted average back-transformed smoothing curve with 95% confidence intervals. Lower 
panel gives the number of paired tows available in the analysis. A ratio of 0.5 would indicate that both vessels caught 
equal amounts for that species at that length, i.e. overall catchability was equal. 

One of the first recommendations towards ensuring flexible survey designs for WA surveys 

therefore came from the IPROST outputs suggesting even moderate datasets of paired haul data 

could provide two important inputs for data collection programs. One being that trends in one 

survey series could be useful to predict likely trends in missing data of another survey, should 

in-survey issues arise. The second use for collecting paired data on an ongoing basis would be 

to monitor relative changes such that unintentional drift in catchability didn’t develop unnoticed 

over time in either survey. Changes to survey designs were implemented over the proceeding 

few years to ensure at least a minimal ‘corridor’ of spatio-temporal overlap between neighbour-

ing surveys annually. Compared to a specific calibration exercise, this would be cost neutral and 

incrementally build an up to date data set if and when needed. 
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In planning ahead for the potential need to adjust a survey design ‘on the fly’, some largely 

pragmatic design adjustments can be seen in a few NE Atlantic surveys. The Irish Anglerfish & 

Megrin Survey (IAMS) for example is another random stratified survey coordinated under IBTS 

(see Kelly et al, 2021). Many random (potential) sampling positions are generated, incrementally 

the positions with the shortest distance to their nearest neighbour are removed. A rank is as-

signed to each sampling position in reverse order to the sequence in which they were removed. 

So, if 1000 potential locations are generated, the pair of stations with the shortest nearest-neigh-

bour distance is identified and one of those stations is removed from the set and it will receive 

the rank 1000. The nearest neighbour algorithm is repeated, and the next station is removed and 

allocated the rank 999 etc. Before the survey, a target number of n stations is decided and the 

sampling positions with rank 1 to n are selected to be sampled. If early on in the survey it be-

comes clear that survey effort will be reduced, a lower number of stations can be selected. The 

point of allocating a ranking to the stations that is related to the distance to their nearest neigh-

bour is that whichever value of n is chosen, the sampling positions will always be randomly but 

evenly distributed in space (Figure 2.1-5). This provides the chief scientist with a theoretically 

unbiased design for dropping stations where a significant issue arises, while still maintaining 

spatial coverage. 

Figure 2.1-5: Distribution of sampling positions when n = 500 stations (left), 200 (middle) and 100 (right) are selected. 
Regardless of the choice of n stations, they will be evenly distributed in space. This allows changes to be made at short 
notice without repeating the station selection procedure. 

In a recent IAMS survey for example, significant weather events led to the likelihood that large 

areas or even strata would not be sampled. Prioritising stations based on their rank, was com-

bined with reducing the tow time to the minimum allowed for a valid haul. This ensured the 

number of ‘valid’ hauls per day were maintained as high as possible, while also re-allocating 

some resources from fishing back into transit between stations. This proved very successful in 

terms of achieving station targets. However, a few questions remain and are being investigated. 

Firstly, the impact of systematically introducing a ~25-30% reduction in tow time and equivalent 

increase in ‘end effects’ (Battaglia et al, 2006; Moriarty et al, 2018). Secondly, if dropping stations 

of approximately equal ‘priority’ as you move through the survey area is optimal? Are there 

gains to be made by optimising hauls in areas of higher variance? A few WA surveys now em-

ploy spatio-temporal models to produce relative or absolute indices and have a lot of model 

diagnostics to hand suggesting where spatial model fits are poorest. When working against the 

clock, and even against the weather, one can be faced with dropping the next few stations to the 

east or the west all being of mixed lower priority status. It is tempting then, where priorities over 

the whole day will not be so clear cut, to review the performance of the indices and surmise 

whether heading east vs west would bring the greater benefits of precision over the risk of bias.   
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An additional consideration with random stratified surveys specifically comes back to the catch-

ability assumption. Even with an agile survey design, relative indices will assume relative sta-

bility in the distribution of the population being sampled. Invariably trawl efficiency will vary 

with depth, ground type and so forth (Godø and Engås, 1989; Von Szalay and Sommerton, 2005). 

One of the drivers for reviewing flexible survey designs derives from possible shifts in spatial 

distribution of the stock. Where this involves depth or movements into neighbouring surveys 

with different catchabilities it is also useful to monitor stability in which survey areas are con-

tributing most to the index over time (e.g. discussion in Palma-Pedraza, 2020).  

In terms of design-based surveys, the Mackerel and Horse Mackerel Egg Survey is coordinated 

under ICES across about eight countries and covers the area from the west coast of Norway down 

to the Gulf of Cadiz in the south. Sampling across the survey area runs from January to July 

every three years. Covering such a large area means an adaptive strategy has been used in allo-

cating sampling levels along fixed transects. This is to ensure the outer bounds of the egg distri-

bution can be identified and population therefore contained. Recent surveys have encountered 

some difficulties in ensuring that can still be done as egg distribution has stretched survey re-

sources. Survey protocols have thus evolved to recommend a first pass using every second tran-

sect and sample the alternate transects on the return legs (ICES, 2019). The recommendation re-

mains however to not drop two consecutive transects so as to maintain spatial coverage while 

also minimising data gaps. Again this approach can alleviate moderate reductions in survey ef-

fort, but struggles to address the impact of a complete vessel(s) breakdown or significant spa-

tial/temporal shift in the population being sampled.  

Given the discussion above, there are risks with current survey designs with possible spatial-

temporal shifts in fish populations along with escalating costs and carbon footprints with sur-

veys. That being the case, it may be useful for some species to look at sampling just following 

natural aggregations such as spawning for example where the subjects themselves do some of 

the commuting. Clearly recruitment estimates become less precise, but stock definition in con-

trast is simplified.  

2.1.3 Summary of workshop presentations. 

The plenary presentations from this TOR touched on several common challenges and a few new 

suggestions for pathways to improving survey flexibility in general and specifically with appli-

cation to certain ecosystems and surveys.  

Lewis Barnett introduced a new multivariate optimization approach to improve survey effi-

ciency and flexibility by reducing the number of strata in the Gulf of Alaska Bottom Trawl Survey 

and allocating primary sampling units to provide the best chance of meeting survey objectives. 

In this case, the primary objective was to provide abundance estimates with a minimum standard 

of precision across all assessed stocks. The research demonstrates how moving from univariate 

survey optimization tools (e.g., those based on Neyman optimization) to multivariate tools (e.g., 

via this application of the Bethel algorithm) can help improve survey flexibility by tuning a sur-

vey design to allocate effort in proportion to the data needs for management while accounting 

for differences in species distributions and relative importance to a fishery or ecosystem (Oya-

fuso et al, 2021; 2022). 
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Patrik Börjesson discussed challenges with reduced effort (due to rising fuel costs) and spatial 

preclusion (due to marine protected areas and wind farm development) of bottom trawl surveys 

in the Kattegat and Skagerrak. He and his team are in the midst of determining how to prioritise 

stations within existing fixed station designs and how to potentially combine data from surveys 

with different designs to make up for survey reductions. They are approaching station prioriti-

sation through a sensitivity analysis to determine which stations have the greatest influence on 

key data products such as abundance indices. Finally, they are hoping to evaluate the conse-

quences of prior surveys changing from fixed station to stratified random designs.  

Annica de Groote presented proposed changes to the design of the Kattegat cod survey. The 

existing design consists of a station grid that is stratified and then sampled within strata with a 

mixture of random sampling and independent random groups depending on the stratum. An-

nica proposes using spatially balanced sampling using the local pivotal method, which creates a 

strong negative correlation between inclusion indicators of units that are close to each other, 

based on the values of some auxiliary variables. As a result, nearby units are unlikely to appear 

together in a sample, which also aids in providing representative dispersion of effort throughout 

the domain. 

Jason Conner presented an analysis of the eastern Bering Sea bottom trawl survey, evaluating 

the expected impact of changes in survey effort, statistical design, and estimators. They used a 

simulation framework, conditioning a spatiotemporal GLMM on the historical systematic survey 

and simulating survey sampling. They found that systematic sampling provided the most pre-

cise abundance estimates across three species, in accordance with sampling theory, but only 

when the appropriate local estimators were used (those computed on small groupings of sam-

ples over space). Applying appropriate estimators could make up for losses in precision due to 

reductions in total effort. 

Zack Oyafuso presented a proposed new bottom trawl survey design for the U.S. Chukchi Sea. 

He fitted a spatiotemporal GLMM to limited historical data from two gear types and many spe-

cies to serve as an operating model over which to optimise stratification and sample allocation 

using a genetic algorithm and the Bethel algorithm as described in Oyafuso et al. (2021). He 

found that a stratified random sampling design provided the best expected results in terms of 

consistent, reliable and precise estimates of abundance. Such a design would also facilitate more 

flexibility in future changes to the design, as opposed to a systematic design. The systematic 

design also produced biased precision estimates and less consistent results across effort levels. 

Thus, a new stratified random design is proposed for if and when future monitoring is needed 

in the Chukchi Sea. 

Andy Lipsky presented a summary of the challenges and opportunities arising from the massive 

expansion of offshore wind farms on the Pacific, Gulf of Mexico, and Atlantic ocean with large-

scale construction set to begin in the northeast U.S.. Most importantly, he and collaborators are 

developing a strategy to account for the development of offshore wind farms by determining 

how preclusion of many sampling gears due to wind farms will influence the interpretation of 

existing long-term fisheries survey data. They are also attempting to determine the effects of this 

buildout on the coastal habitat and physical oceanography, and what impact that may have on 

fish distributions. Readers should look out for the final strategy for mitigating the impacts of 

offshore wind energy development on fisheries surveys, to be released in the Fall of 2022 by 

NOAA Fisheries and the Department of the Interior’s Bureau of Ocean Energy Management. 
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2.1.4 Recommendations for designing flexible surveys. 

Flexibility against changes in survey effort should be incorporated into both existing and new 

survey designs; however, determining how to accomplish this is rarely straightforward. We pro-

pose the use of a roadmap or decision tree to provide guidance on designing flexible surveys 

(Figure 2.1-6).   

In the initial design of flexible surveys, decision makers and survey practitioners must have a 

clear agreement on the objectives and priorities of a survey. This may include precision targets 

or thresholds for population estimates based on stock assessment data needs and the relative 

importance of different stocks to a fishery. Objectives may also include estimation of environ-

mental variables that are important for ecosystem-based fisheries management (e.g., biodiversity 

indices, forage abundance, temperature, oxygen and salinity landscapes). Survey objectives are 

often not explicitly stated in such a way, making decisions difficult as there is no framework for 

evaluating consequences relative to the survey objectives. When there is no guidance as to the 

prioritisation of objectives, it should be explicitly stated that the aim is to equally weight all ob-

jectives to obtain the most robust estimates across all components of an ecosystem, community, 

or assemblage. With clear, stated objectives, survey scientists may then consider appropriate and 

available modes of observation (e.g. trawl, trap, video, etc.) to address the study’s objectives. 

Given these modes of observation, scientists may then develop an appropriate statistical design 

and determine how to allocate sampling effort within this design to best address the objectives. 
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Figure 2.1-6: Road map providing guidance to increase the flexibility of existing survey designs or create new flexible 
designs. 

Should a change in survey effort become necessary, it is essential for survey personnel to evalu-

ate the consequences of various potential changes that can accommodate the shift in survey effort 

and communicate the risks of implementation to agency leadership (those tasked with ultimate 

oversight of the assessment enterprise). If it is determined that consequences of a design change 

are minimal, no change in survey design is necessary. Rather, implementation may be adjusted 

through reallocation of survey effort to accommodate the required effort reduction. If, however, 

potential consequences of effort reduction are substantial, adjustments to the survey are required 

(see Tables 2.1.1 and 2.1.2). Determining thresholds for what magnitude of change in estimates 

requires a change in the survey is not straightforward and will likely require simulation analyses 

specific to the focal system to determine how a given change in an estimate will affect manage-

ment advice (e.g., by propagating the change through a simulated stock assessment model). 

Changes to survey design may take the following forms: 

1. Changes in design (which may also require changes in estimation)

2. Changes in observations amount and type
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A change in survey design requires either a complete redesign of the survey (i.e. the creation of 

a new time series) or the alteration of existing survey methodologies. For example, an alteration 

of an existing survey may result in the expansion or contraction of the survey’s spatial domain. 

The result of survey alteration may require calibration of new methods to historical survey prod-

ucts, perhaps incorporating retrospective analyses and simulation. Should calibration be logisti-

cally infeasible, alternative alteration approaches may include reliance solely on model-based 

estimation or adjusting inclusion probabilities and thus modifying design-based estimates. 

Alternatively, survey practitioners may change observations associated with a survey design. 

This may include changing the amount or frequency of observations or the type of observation. 

For example, the inclusion of supplemental surveys or data may allow for a flexible solution to 

changes in survey effort.  

Regardless of the type of change to a survey, it is critical that survey scientists document the 

potential consequences of inaction along with clear and objective reasoning for why and how 

modifications were or were not made. In the two sections below, we expand on strategic and 

tactical pathways to survey flexibility in the face of common challenges through design, obser-

vation, and estimation. We encourage survey scientists and stock assessment authors to carefully 

consider the consequences of inaction and the costs and benefits of each pathway to modifying 

surveys to address these consequences. 

2.1.4.1 Strategic pathways to survey flexibility 

Table 2.1-1 demonstrates long-term (one to many years ahead of cruise), strategic options for 

survey flexibility in the face of three categories of common changes that represent challenges to 

survey continuity. These changes include 1) decreased survey resources (time, money, vessels, 

staffing) relative to the scope of objectives (e.g., the number of stocks to monitor or the area of 

the sampling domain), which could encompass cases where the survey resources are simply not 

keeping pace with changes in the scope of objectives; 2) habitat expansion or contraction, which 

includes modifications to the amount of habitat available to the survey due to species range 

shifts, expansion or contraction; 3) reduced sampling universe, wherein some portion of the prior 

survey domain are no longer accessible to traditional sampling gear. For each change, we detail 

the consequences of inaction to emphasize the risk of failing to adjust the survey enterprise, and 

then provide options for actions that would account for such changes while ensuring survey 

continuity. In each subsection below, we elaborate on the options for accounting for survey 

changes, structured by the source of flexibility: sampling design, observation method, and esti-

mation method. 

2.1.4.1.1 Sampling design 
Several different sampling designs from existing fisheries surveys were presented during 

WKUSER2, which included: systematic and random trawl surveys, systematic transect acoustic-

trawl surveys, and fixed station trap and video surveys. Various flexibilities in these designs 

were discussed, which were generally caused by emergent decreases in sampling capability dur-

ing survey execution, and how in many such situations these solutions were required to be cre-

ated in-situ with little time to consider the full scope of consequences. The consensus of TOR I is 

that contingency designs should be made in advance and that the impacts of such contingencies 

should be well defined relative to the study objectives and priorities. Much of this contingency 

planning is covered in the subsequent section Tactical Pathways to Survey Flexibility, while here 

we emphasize that when substantial changes are necessary, survey planners should consider 

adoption of statistical designs that lend themselves to flexibility in the long term. 
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Classes of sampling designs that offer more flexibility are those that use probabilistic sampling 

and stratification, such that samples can be added or subtracted randomly while simply account-

ing for differences in inclusion probability in the estimation process. Likely the most common of 

such methods in fisheries surveys is the stratified random sampling, which facilitates design-

unbiased estimation that is robust to most prudent survey modifications through re-stratification 

and/or sample reallocation (see Tactical Pathways to Survey Flexibility below for additional de-

tails).  Cluster sampling can be another flexible survey design that maximizes the number of 

samples collected per research platform with unbiased estimators. One implementation of clus-

ter sampling would treat each vessel sampling day as a cluster unit. Pre-selected random starting 

points would be allocated, and in one day, the vessel would acquire as many samples (e.g. trawls) 

as feasible, using a random direction and distance for each subsequent sample. Transit between 

random starting points could be done overnight to begin a new cluster the following day. An-

other example would be the adaptive cluster sampling that concentrates samples where a tar-

geted species is likely to be abundant. Such design can be favored when monitoring highly patch-

ily distributed species that are rare in marginal habitat (or as it is applied in many acoustic tran-

sect surveys to find the edges of the core range). Here, the selection of adjacent sampling units 

are made given that an observation meets a specific criteria, such as occurrence of a particular 

species or observation of population density above some threshold value. 
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Table 2.1-1: Strategic pathways to survey flexibility (long term ahead of survey) 

Source of flexibility to ensure comparability over time 

Change Consequence Sampling design Observation Estimation 

Decreased survey resources 
(relative to scope of objectives) 

Variance increase; po-
tential bias; reduced in-
formation quality; time-
liness of management 
advice 

Reduce sampling density; Reduce domain area 
and maintain sampling density; Use random-
ized design with flexible allocation; Optimize 
design to prioritize objectives to reduce their 
scope; change statistical design; reduce survey 
frequency 

Change to more cost-efficient obser-
vational methods (or combine with 
other traditional or non-traditional 
methods) 

Correct for bias; correct for change in variance 
structure; use auxiliary information to shrink 
variance 

Habitat expansion or contrac-
tion 

Bias due to change in 
spatial or temporal 
availability; changes in 
variance structure, total 
uncertainty 

Extend domain, potentially at cost of de-
creased sampling density (informed by, e.g., 
tagging research); use adaptive sampling; re-
stratify; change statistical design 

Combine alternative observational 
methods (time-efficient, habitat-ap-
propriate combine surveys) and per-
form calibration 

Evaluate change in spatial availability; stitch 
together years with different spatial distribu-
tion of observations; correct for change in 
catchability or selectivity 

Reduced sampling universe Bias; changes in vari-
ance structure, total un-
certainty 

Reduce scope of inference (spatial domain); in-
crease resolution of design grid; change statis-
tical design 

Combine alternative observational 
methods or data sources and perform 
calibration; Integrate auxiliary infor-
mation within inaccessible habitats 

Develop and test for robust environment-biol-
ogy relationships to predict in unobserved lo-
cations using modeling and simulations (given 
appropriate “before” data) 
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Nevertheless, one of the most flexible sampling designs might be a combination of systematic 

and random sampling. Zinger (1980) proposed unbiased estimators for the mean of a finite pop-

ulation and its variance. The systematic component of sampling would be allocated on a coarse 

grid so that the number of stations could be reliably sampled with some fraction of total expected 

sampling effort. Then a random, or equal probability stratified random, component would over-

lay the sampling frame, excluding the systematic sampling units. Thus, in situ reductions to ran-

dom sampling could be accomplished using random elimination of remaining random samples 

if the need arises, without introducing bias to the mean or standard error. 

2.1.4.1.2 Observation method 
Changes due to decreased survey resources, changes in habitat domains, or reduced sampling 

universe may necessitate changes in our observation systems, including survey platforms and 

survey sampling methods.  Such changes require an examination of the survey objectives and 

sampling priorities.  Survey objectives are often broad and prioritization is often overlooked as 

the desire for and use of survey data are significant and heavily relied on for the management of 

many stocks.  A clear set of survey objectives, potentially including priority or ‘core’ objectives 

and secondary objectives that can be dropped if needed, will aid in decision-making related to 

necessary changes in observations. These objectives may be related to representation (e.g., bio-

diversity monitoring, characterization of the environment) or to prioritization among species to 

obtain more precise/accurate abundance and compositional data for specific stocks while accept-

ing less precise/accurate estimates for other stocks, based on importance to management. An 

example of observation system change in response to a decrease in survey resources may include 

the following: reducing overall survey effort (e.g., days at sea, or the number of primary sam-

pling units), reducing biological sampling by prioritizing what sampling metrics will be exe-

cuted per survey effort, e.g., reduction in biological subsample sizes and analysis such as priori-

tization of species for stomach content analysis, lengths, ageing structures, or maturity infor-

mation. An example of observation system changes in response to changes in habitat domains 

include the following: adaptively expanding beyond original survey area bounds if surveyed 

species are detected near the boundaries and using alternative sampling methods. Examples of 

observation system changes in response to a reduction of the sampling universe may include the 

following:  using smaller vessel platforms or unmanned systems to effectively and safely operate 

in wind energy areas where larger vessels may be excluded, using remote sampling techniques 

including acoustics, optical, or emerging eDNA sampling methods to accurately and precisely 

obtain samples in untrawlable habitats where areas of change are likely, integrating other data 

such as environmental covariate data from other sources of information that can be used to make 

necessary inferences. 

2.1.4.1.3 Estimation method 
If we adjust the sampling design in response to changes in the survey conditions (available re-

sources, habitat or sampling universe), we also need to adjust the estimation, since sampling and 

estimation are intertwined (at least from a design-based perspective). For instance, assume that 

the sampling design is stratified sampling with simple random sampling within strata. If we 

respond to a budget cut or a habitat change by reducing the total sample size or changing the 

allocation of the sample over strata, this affects the inclusion probabilities of the sampling units 

and thus the estimation. A smaller sample size will also increase the variance of the parameter 

estimates. We can try to counteract this in the estimation by use of auxiliary information. A de-

sign-based model-assisted way of doing this is regression estimation, see e.g. Ch. 6-8 in Särndal 

et al (1992). If the auxiliary variables covary with the study variable, the regression estimator has 

smaller variance than the design-unbiased estimator. The regression estimator is however only 

approximately unbiased (for large samples). Another example of the relationship between sam-

pling and estimation is if the sampling universe is reduced. Involuntary exclusion of part of the 
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target population from sample selection is a type of cut-off sampling. In general, cut-off sampling 

leads to biased estimates of target population parameters. One way of dealing with this is to use 

a ratio adjustment for the cut-off part of the population (see e.g. p. 531-533 in Särndal et al (1992)). 

Another possibility is to estimate the cut-off through modelling. 

2.1.4.2 Tactical pathways to survey flexibility 

Table 2.1.2 demonstrates short-term (immediately prior to, or within cruise), tactical options for 

survey flexibility in the face of three categories of common changes that represent challenges to 

survey continuity (defined in section 2.1.4.1 above).  The format is similar to Table 2.1.1, with the 

addition of a column distinguishing how solutions vary according to the type of survey design 

currently in place. In each subsection below, we elaborate on the options for accounting for sur-

vey changes, structured by the source of flexibility: sampling design, observation method, and 

estimation method. 

2.1.4.2.1 Sampling design 

On the tactical timescale, decisions about required survey changes must be heavily weighted by 

the existing statistical design of the survey. The sources of flexibility and the diversity of options 

varies substantially depending on the sampling design. One useful dichotomy here is that de-

signs using probability sampling (those that assign an explicit, non-zero probability of sampling 

each primary sampling unit in the domain), particularly in combination with stratified sampling, 

generally allow for the most flexibility. In contrast, non-probability sampling designs (e.g., fixed 

station designs) are more limiting due to the fact that randomized reallocation of samples among 

areas is not always possible or straightforward. 

Systematic sampling designs are inflexible because the predefined sampling extent must be com-

pletely sampled and no added efficiencies (such as minimizing distance travelled between pri-

mary sampling units selected for observation, Oyafuso et al. 2022) are available to survey prac-

titioners. Phillips reported on several events in the time series of the coast-wide Pacific hake 

acoustic-trawl survey where sampling platforms became unavailable and the transect spacing 

was coarsened to allow observations covering the full spatial extent of this survey. A contingency 

plan for systematic sampling may consider ad hoc stratification of the sampling frame, where 

completed samples are pooled into 1 or more strata with the original sampling resolution and 

random starting point and remaining samples are collected into 1 or more new strata with a 

separate resolution and starting point. Then the design-based estimates for these strata may be 

combined using area-weighted stratification methods. The utility of this approach for point sam-

pling methods such as trawl, trap, or drop-camera surveys can be limited by the distance be-

tween consecutive sampling locations and the time it takes for a vessel to transit this distance. 
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Table 2.1-2: Tactical pathways to survey flexibility (short term: just prior or within cruise) 

Source of flexibility to ensure comparability over time 

Change Consequence Type of survey Design Observation Estimation 

Decreased survey re-
sources (relative to 
scope of objectives)

Potential bias; change 
in variance structure; 
change in spatial do-
main 

Non-probability sam-
pling (e.g., fixed sta-
tions) 

Decrease resolution of sampling 
grid 

Prioritize sampling (e.g., increase sub-
sampling of biological data for some 
species) 

Account for differences in inclusion proba-
bility, sample density; models to fill in data 
gaps 

Probability sampling 
(e.g., stratified random) 

Reallocate samples with lower 
density in some strata given ob-
jective criteria; aggregate strata 

Prioritize sampling (e.g., increase sub-
sampling of biological data for some 
species) 

Account for differences in inclusion proba-
bility; models to fill in data gaps 

Habitat expansion or 
contraction 

Bias due to change in 
spatial availability 

Any Add new strata to best partition 
the sampling universe; redesign 

Evaluate whether conditions differ in 
portions of the sampling universe 
added or removed 

Account for differences in inclusion proba-
bility; models to fill in data gaps (e.g., ac-
count for missing prior data from new 
strata) 

Reduced sampling uni-
verse 

Bias; changes in vari-
ance structure, total 
uncertainty 

Non-probability sam-
pling (e.g., fixed sta-
tions) 

Reduce stations; increase station 
density 

Gather alternative data (e.g., environ-
mental only) 

Account for differences in inclusion proba-
bility, sample density; models to fill in data 
gaps 

Probability sampling 
(e.g., stratified random) 

Reallocate samples with lower 
density in some strata given ob-
jective criteria 

Gather alternative data (e.g., environ-
mental only) 

Models to fill in data gaps 

28     |
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Simple random sampling designs are also inflexible due to the need to rigorously adhere to a 

defined sampling allocation. When non-random processes are imposed on random sampling 

(e.g. sampling at the end of a survey is truncated), bias is introduced to a design that is meant to 

be unbiased. As with the systematic sampling design, contingency plan – ad hoc stratification 

whereby the remaining sampling frame is constituted into a different stratum and inclusion 

probabilities for proportional sampling are calculated – may be useful. 

On the other hand, stratified random sampling designs are flexible in that the partitions needed 

to respond to effort reallocation are established and based on biological or physical criteria. How-

ever, the presence of too many strata risks the inability to calculate reliable estimates of variance. 

Thus, adding strata to account for a habitat expansion is often the best response unless samples 

are already stretched too thin across many strata, in which case it may be necessary to aggregate 

strata via poststratification. If the strata are allocated samples proportional to their area, then 

altering sampling density in one or more strata requires using estimators for probabilities pro-

portional to size (Cochran, 1977).  

2.1.4.2.2 Observation 

Probably the most common problems that affect surveys are short-term, arising from a variety 

of factors including weather, mechanical, or personnel issues. Such problems may also occur at 

more than one stage of a given survey, compounding the impact to that survey year.  It is neces-

sary to plan for this reduction in effort as this is a question of “when” rather than “if” and surveys 

must be prepared to adapt quickly.  

Reductions in survey effort will have consequences and reductions to accuracy and precision for 

any species should be clearly communicated.  Perhaps the most important factor to guide the 

decision-making process for how to deal with reduced effort is prioritization of objectives and 

desired level of precision from survey estimates.  For example, a CV of 20% may be desired for 

some species, but a CV of 40% may be acceptable for others.  All components of data collected 

by a survey should be prioritized, including the species of interest, survey region, biological 

sampling and auxiliary sampling (e.g. oceanographic and plankton).  Some prioritization may 

require analyses, such as quantifying the acceptable level of subsampling or optimal number of 

samples per strata.  Although priorities may change over the course of a long-running survey 

time-series, these priorities should remain consistent when dealing with short-term effort reduc-

tions to avoid confusion in the decision-making process.  

Often, those executing surveys are not statisticians and require clear guidelines for making deci-

sions to reduce sampling effort in order to limit any potential to introduce bias or violate the 

statistical survey design.  It is important to avoid dropping entire strata and sample reductions 

should be spread throughout the entire survey region when possible.  To do so, decisions must 

be made early with the full picture of the remaining survey region and available effort in mind. 

Methods, and tools to implement them, could be developed to allow those executing surveys to 

make decisions regarding which samples to remove.  It may be desirable to remove the samples 

from the farthest, deepest or most difficult areas of a survey due to the increased gain in time; 

however, doing so routinely could bias estimates and alter the perception of distribution.  

There are other viable options to avoid losing entire stratum by increasing the efficiency of the 

survey progress or by reducing the amount of effort at any one location.  Increasing the transit 

efficiency where applicable could be an effective way to mitigate impacts due to lost survey time. 

Approaches such as the “traveling salesperson problem” may help to optimize survey routes 

and decrease the overall time required to complete a survey.  Increasing the efficiency of survey 

execution may often be at odds with reducing costs.  Completing a survey quicker might require 

faster transit speeds or increased personnel, which does not guarantee success and may not be 
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feasible for many surveys due to vessel or other limitations.  Another option may be to reduce 

the tow or transect duration or distance.  For surveys with relatively long tow durations (~30 

minutes), reducing the duration (to ~15 minutes) may increase the overall number of samples 

taken in a survey and may allow sampling in areas difficult to operate due to bad bottom or fixed 

gear by shortening the overall path to be sampled.  Surveys should have clear and established 

tolerance ranges for the optimum and minimum sample distance and duration.  Tools can be 

developed for use at sea to measure and verify this in real time to ensure standardization 

throughout a survey time-series.  Calculated indices of abundance must properly account for the 

shortened tow duration. In addition to accounting for differences in effort when expanding esti-

mates of local density to regional abundance, it is necessary to consider how such changes may 

influence catchability or detection probability, thus some additional research effort may be re-

quired to allow for more efficient sampling and observation near the boundaries of excluded 

zones. 

2.1.4.2.3 Estimation 
Regardless of the type of change that survey practitioners are faced within the short term (just 

prior to or within a cruise), there are typically two options for mitigating these changes in situ: 

1) adjusting design-based estimators to account for modified sample density or inclusion proba-

bilities (the probability that a given primary sampling unit would be sampled); 2) accounting for

unbalanced sampling using model-based estimators that can provide an informed estimate for

unsampled areas given spatial and/or temporal correlation or by relying on established relation-

ships between the response and some covariate(s) that can be measured in areas without direct

ecological observation. If the existing survey design is flexible enough to allow for design-based

estimation with modified inclusion probabilities, this is the most straightforward and low-cost

approach. However, one should be careful to ensure that such changes are not introducing bias.

When approach 1 is not possible or does not meet all the survey objectives it is often necessary

to use approach 2 with model-based estimators to fill in missing data or otherwise integrate mul-

tiple data sources with different temporal or spatial extents. Specifically, it is becoming increas-

ingly common to use spatiotemporal models to knit together surveys or account for unbalanced

data (Ono et al. 2018; Ianelli et al. 2019; O’leary et al. 2020; Thorson et al. 2021).

2.1.5 What are the current major challenges? 

2.1.5.1 Disruption of Surveys due to Offshore Wind Energy Development 
As of 2022, North America and Europe are pursuing aggressive climate mitigation strategies to 

decarbonize national energy systems. The use of offshore fixed and floating wind technologies 

are being advanced to achieve these goals. The U.S. has set a target of 30 gigawatts of offshore 

wind production by 2030 with a pathway to 110 gigawatts by 2050 (GWEC, 2022). In 2021, The 

European Commission set a 300 gigawatt goal for 2050 (GWEC, 2022) with new commitments 

by some European nations to increase and speed up these targets to address an energy crisis and 

the war in Europe. The amount of marine space needed to develop necessary transmission sys-

tems and turbine generators is substantial.  In the U.S., reaching the 2030 targets will require 

approximately 3,411 turbine generators and approximately 10,000 miles of new submarine ca-

bling over 2.37 million acres in the Northeast U.S. shelf ecosystem (BOEM, 2022a). As of Septem-

ber 2022, over 22.37 million acres of the U.S. northeast shelf ecosystem has been designated by 

the Bureau of Ocean Energy Management (BOEM) as offshore wind leases, wind energy areas, 

and wind planning areas (BOEM, 2022b, BOEM, 2022c). Applying similar technology require-

ments, the 110 gigawatts U.S. target will require over 10,000 turbines and 33,000 miles of subma-

rine cable. Development at this pace, scale, and magnitude could have profound interactions on 

the marine ecosystem, NOAA trust resources, and the survey enterprises need to monitor pop-

ulations, stocks, and ecosystem conditions (Saba et al. in press).  This emerging new use requires 
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existing regional fisheries independent survey programs to evaluate the space-use impacts asso-

ciated with this development on survey missions/operational requirements. This presents both 

a massive challenge and opportunity to evaluate and propose potential changes in the design, 

observation systems, and estimation approaches to meet existing and new scientific require-

ments.  

The U.S. has evaluated the effects and impacts of this proposed development and determined 

there would be major adverse impacts on NOAA’s ability to continue to conduct existing core 

long term fisheries independent surveys that underpin the management of commercial and rec-

reational fisheries and conservation and recovery of protected marine mammals, sea turtles, and 

fish species (BOEM, 2022c). This analysis determined that offshore wind development would 

have four primary impacts: 1.Preclude the ability for NOAA to continue to carry out its large 

vessel and aircraft survey missions in wind energy areas due to operational safety issues, 2. Im-

pact existing statistical survey designs, 3. Result in habitat change that could result in changes in 

variance structure of stocks/populations inside and outside wind areas, and 4. Impact survey 

efficiency  by increasing vessel transit time and reducing aircraft operations (Hare et al., 2022). 

To address these impacts NOAA Fisheries has collaborated with its sister agency, the Bureau of 

Ocean Energy Management, to develop a programmatic strategy and mitigation framework to 

address the challenges of implementing current scientific surveys in a new era of offshore wind 

energy development. 

NOAA Fisheries Survey Mitigation Implementation Strategy is national in scope but focused on the 

Northeast U.S. region and describes goals, objectives, a strategy framework, and actions neces-

sary to effectively mitigate the impacts of offshore wind. The document provides guidance and 

direction for survey program leads to develop mitigation plans for impacted surveys. In the 

Northeast region there are thirteen long-term surveys that will be impacted by proposed offshore 

wind development and require such plans. Survey mitigation plans would include a number of 

elements including: the objectives of the survey, specific stakeholders for the data collected, eval-

uation of  impacts on the design and sampling methods of the survey through e.g. observation 

system simulation and modeling approaches; planned mitigation measures that would include 

solutions to the impacts on statistical design and sampling methods, necessary calibrations 

and/or data integration approaches, estimated costs, and proposed schedules for implementa-

tion. Plans would also include mechanisms for adaptive management, evaluation, and peer-re-

view, communication strategies necessary to implement the plans, and database design, man-

agement, and data availability and accessibility requirements for new or altered data streams.  

Early actions NOAA Fisheries is taking to mitigate impacts on the Northeast Fisheries Science 

Center’s (NEFSC) fishery-independent, multi-species bottom trawl survey include development 

of a spatial model framework to simulate and evaluate the impacts of spatial overlap of wind 

energy development in the survey area and evaluate alternative sampling strategies to minimize 

impacts of wind energy development on estimates of abundance and distribution for multiple 

fish and invertebrate stocks currently sampled by the survey (ref Angelia Miller talk]. NOAA 

Fisheries is also advancing survey mitigation activities to address the impacts to the NEFSC At-

lantic Scallop Survey enterprise which consists of a dredge survey, habcam survey, and various 

other cooperative partner monitoring efforts. The New England Fisheries Management Council 

established the Atlantic Sea Scallop Survey Working Group to develop recommendations to im-

prove the Atlantic sea scallop survey system; including integration of existing scallop surveys, 

mechanisms to incorporate new approaches to address survey spatial coverage, sampling inten-

sity and frequency; data standardization, storage and access, and ways to address potential im-

pacts from offshore wind development (NEFMC, 2022). In addition, NOAA Fisheries is at an 

early phase of augmenting its HabCam observation system from a vessel towed system that will 

not be capable of sampling within wind energy areas to an uncrewed system capable of operat-

ing autonomously within wind energy areas. 
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2.1.5.2 Technological creep and calibration for vessel and gear changes 
Regardless of the underlying survey design, standardized long-term monitoring to create time-

series has also to be flexible enough to deal with changes in vessels, gears, and technological 

developments. The first consideration is often to deal with these changes by performing calibra-

tion experiments to provide conversion factors. However, carrying out special vessel/gear cali-

bration experiments is almost impossible due to high effort need and such an approach is un-

likely to provide conclusive conversion factors, as changes are expected to be relatively small 

and require large numbers of observations to statistically detect them (for more extensive dis-

cussion, see TOR II. Thus, understanding survey gear efficiency is critical for minimising the 

amount of physical calibration that is needed (Somerton et al. 2007). 

Furthermore, technological creep is likely to occur as minor changes are introduced (e.g. newer 

gear materials, improved bridge software, etc.) over time. However, as time passes, the accumu-

lation of limited/very limited changes might become more and more significant. This is espe-

cially the case in multi vessels/country monitoring situation which could lead to deviation in the 

standardized population indices.  

Owing to the technological creep, it is unclear how new vessel/gear should be calibrated to es-

pecially, as these minor changes are often not well documented. Hence, WKUSER2 supports the 

conclusion from WKNSIMP (ICES 2019) favouring pragmatic approaches for combining time 

series as discussed more extensively in TOR II.  

2.1.5.3 Survey costs 
At sea surveys are generally expensive so most of the surveys are already designed to be cost-

effective as budgets are often limited. Oversampling is for various reasons (budget, ecological 

impact, workload) unlikely to occur in a manner that makes reductions possible without losing 

precision and accuracy or increasing the likelihood of bias. Some reduction in effort might be 

possible in some cases but will lead to a higher risk of short-term impacts e.g. weather and me-

chanical malfunctioning might affect a survey season in such a way that the information gained 

from the survey no longer has any value because the signal to noise ratio becomes too low (e.g., 

the CV of an abundance index is so high that population trends cannot be identified). 

Flexibility in respect to sampling additional habitats or by following a species distribution has a 

similar impact as reducing effort. It is possible when time spent in the original survey area is 

reduced to allow time in the new areas. Such a reduction in the original area might lead to a 

reduction in the precision and accuracy in the original area. This might be acceptable when the 

standards of the original objects are reduced. However, there is again the risk that the infor-

mation will fall below the noise level. When the signal to noise ratio of a survey becomes too low, 

the total costs made for the survey are wasted. 

2.1.5.4 Impact of increasing fuel costs 
Reducing the fuel cost of a survey comes to reducing either or both the distance covered and the 

gear towing. The former is counter-intuitive when thinking of flexibility, since a solution to avoid 

any mid-trip surprise would be to make a first visit of the whole surveyed area before densifying 

the samples in a second part. Other solutions such as cluster sampling using a day or half a day 

as a primary sampling unit (was also discussed above), but this would deserve more research 

and testing.  

There were discussions regarding increasing the efficiency of transit times which is a significant 

source of fuel consumption.  There are fuel consumption trade-offs between increasing vessel 

transit speed and sailing fewer sea days v.s. reducing transit speed to conserve fuel over the 

duration of a survey. Another option is to utilize tools or methods to optimize the route on which 

a survey is executed or utilize varying ports between sampling legs to minimize transit distances. 

Combining#_TOR_II._
Combining#_TOR_II._
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Another solution could herald in internationally coordinated design when the whole area is cov-

ered by many nations and vessels, so that there may be room to reallocate the sampling using a 

minimum distance allocation. An example for this would be the NS-IBTS. Here, however, it must 

be ensured that there remains a minimum overlap between the different vessels in order to allow 

the estimation of potential vessel/country effects in model-based calculation of the abundance 

indices as outlined by WKINSIMP (ICES 2019). The west coast Pacific hake survey is conducted 

by two vessels, one from the US and one from Canada. This serves to, in some cases, minimize 

the total transit time either vessel needs to make by designing the survey based on the planned 

port location of the vessels prior to, during, and after the survey is completed. 

The forthcoming workshop (WKPILOTNS-FIRMOG) will use the North Sea as a test case on 

providing an overview of all surveys providing data to ICES fisheries and ecosystem advice and 

this regional overview could provide the necessary information for considering such survey op-

timization. Reducing the towing force of a gear has a lot of potential, using additional means of 

collecting data together with the main gear (see section on UAVs and e-DNA), reducing the tow 

duration, working on gear rigging and/or using video. These are options developed in several 

ongoing research projects (e.g. SmartFish, Game of trawls, FishGenome), workshops, e.g. 

WKING (ICES, 2020b), monitored and discussed in ICES/WGFTFB under the supervision of 

ICES/DSTSG, which outputs and synthesis of work will need to be discussed in further WKUSER 

sessions.     

2.1.6 Recommended future directions. 

1. Develop and deploy tools to evaluate the costs and consequences of making survey

changes, along with inaction, and communicate with transparency

2. If survey changes are needed, implement change incrementally (to allow attribution of

effect)

3. Document and disseminate descriptions of the changes made

4. Improve collaboration between survey practitioners and stock assessors and within dis-

ciplines across national boundaries

5. Consider reducing effort made to acquire each replicate to limit lost observations, partic-

ularly when there is inadequate space or time to obtain an observation given conven-

tional protocols (e.g., by taking smaller subsamples of biological data, or shorter tow or

transect length or duration; however, note that these changes require an evaluation of

their potential effect on catchability or detection, but may be a last resort if traditional

collection methods are unsuitable)

6. Create survey-specific protocols for making objective in situ modifications when needed

7. Adopt probability sampling designs to the extent possible

8. Create objective criteria for how to make design changes such that observations can be

removed or added with statistical rigor

9. Collaborate with other working groups facing similar challenges (e.g., WGOWDF,

WGNAEO, WGIBTS, WGFTFB)
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2.2 TOR II. “Combining surveys, dealing with data gaps”: 
Collate advice on methods to combine data from dif-
ferent sources, how to deal with data gaps and how to 
perform survey calibrations 

Sub-Group Leads: Jim Thorson, María Grazia Pennino          

Participants: Iosu Paradinas, Madison Hall, Patrik Börjesson, Yves Reecht, Guillermo Martin, 

Bríd O'Connor, Corina Chaves (remote), John Gabriel Ramirez (remote) 

2.2.1 Why it is often necessary to combine surveys 

Fisheries-independent surveys provide primary information to understand the stock status for 

both commercial and non-target fish species, often providing the only data source available to 

estimate relative abundances for non-commercial species. These surveys tend to be discrete mon-

itoring programs, operating at local scales usually associated with the exclusive economic zones 

of countries that manage the surveys. However, populations often extend beyond jurisdictional 

boundaries and, therefore, the integration across national jurisdictional boundaries and multiple 

surveys is often required (Pinsky et al., 2018; Moriarty et al., 2020; Maureaud et al., 2021).   

Similarly, surveys typically sample only a portion of the population existing at a given location. 

In some cases, this portion is (essentially) a random subsample of the population at that location. 

If this subsampling process is random and its rate is constant across space and time, then its 

effect can sometimes be approximated by estimating a catchability coefficient and/or selectivity 

function when subsequently using a survey-based data product (e.g., as index in a stock assess-

ment model). However, in other cases the portion that is sampled may not be random.  For ex-

ample: 

1. Bottom trawls primarily sample those individuals that are near the bottom, and acous-

tic/midwater trawls sample primarily those higher in the water column

2. Baited gears (hook-and-line or videotrap) will likely only sample individuals that re-

spond quickly to bait

3. Surveys operating in the one season may miss the portion of the stock at that location

that is available to a fishery operating in a different season

In these cases, each survey technology is applicable to a portion of a given population. 

In probability sampling theory (Cochran, 2007), we often seek to identify a set of primary sam-

pling units that are (1) non-overlapping, (2) cover the entire stock, and (3) can be associated with 

a known “inclusion probability”, where alternative sampling designs involve different protocols 

for assigning inclusion probabilities to sampling units (see Table 2.2.1 for definitions). This set of 

sampling units is then called the sampling frame.  Even in cases when a sampling gear can only 

sample some subset of the sampling frame, we still find it useful to define this “stockwide sam-

pling frame” that covers the entire stock so that we can make inference from the gear to the entire 

stock (see Fig. 2.2.1). We can then refer to a separate “survey-specific sampling frame” for each 

individual survey, representing sampling units from the stockwide frame that are included for 

sampling by that survey given the gear used and other logistical constraints. This allows us to 

apply design-based estimators for each survey-specific sampling frame individually, and also 

potentially to define a separate design-based estimator for the stockwide frame. For example, we 

might define a stockwide sampling frame that includes primary sampling units defined as all 

combinations of defined geographical areas and also defined vertical layers of the water column. 

https://www.zotero.org/google-docs/?LDmbBo
https://www.zotero.org/google-docs/?LDmbBo
https://www.zotero.org/google-docs/?LDmbBo
https://www.zotero.org/google-docs/?UZwY7x
https://www.zotero.org/google-docs/?UZwY7x
https://www.zotero.org/google-docs/?UZwY7x
https://www.zotero.org/google-docs/?LVZp9G
https://www.zotero.org/google-docs/?LVZp9G
https://www.zotero.org/google-docs/?LVZp9G
https://www.zotero.org/google-docs/?JUfcLY
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In this case, a bottom trawl gear might access only the bottom layers, and other surveys (and 

associated sampling methods) are necessary to sample higher in the water column. In other cases, 

these survey-specific sampling frames may overlap somewhat, such that auxiliary information 

is needed to combine samples in those different sampling frames.   

Figure 2.2-1: blue circle is the stock, the square-mesh is the stockwide sampling frame, with each grid cell representing a 
primary sampling unit, red and white represents the units sampled by the most extensive survey (15 units) and every 
grid cell that is not covered by this survey is considered a gap. Green (4 units) and blue-white (3 units) cells represent 
sampling units that are sampled by other “opportunistic” data. a), b) and c) refer to different “gap-filling” scenarios. a) 
cases where the opportunistically paired samples are available to intercalibrate the primary (red) and opportunistic 
(green) surveys, b) cases where surveys do not overlap while sampling the same stock, and c) cases where there are no 
samples at all.  

Creating a sampling design involves specifying the sampling frame, but also assigning a sam-

pling (a.k.a., inclusion) probability for each primary sampling unit. Design-based estimators typ-

ically assume that these sampling probabilities are assigned a priori and that they are followed 

exactly when implementing the design.   

2.2.2 Gear calibration and fishing power ratios 

So far, we have introduced the idea of a stockwide sampling frame, where individual surveys 

each sample a portion of that stockwide frame, and some primary units are sampled by multiple 

gears. However, we have not discussed how specifically information from these different sur-

veys might be combined. Combining all these sources of information into a single estimator is 

difficult because of potential differences in catchability (the expected ratio of the sampled re-

sponse occurring in the same primary sampling unit at the same time) and/or selectivity (the 

expected ratio of the response for a given age/length/sex). Accounting for different catchabil-

ity/selectivity is called “survey calibration.” 
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Survey calibration requires that two surveys are sampling the same underlying variable. In cases 

where this is violated, then the ratio of the estimated catchability or selectivity – referred to as 

fishing-power ratio hereon – will vary systematically over time and space (i.e., because the rela-

tionship between variables being sampled by each survey itself varies over time and space). In 

this case, the fishing-power ratio might not be useful to extrapolate in space or time, which 

greatly degrades the value of estimating a fishing-power ratio.   

Survey calibration (almost) always requires paired sampling, and samples might be paired in an 

experimental or opportunistic way. The traditional approach to combine surveys is to quantify 

the gear efficiency through “experimentally paired sampling”, in which samples are conducted 

with two vessels that fish in parallel, where paired-sampling stations are allocated following a 

probability design, and subsequently comparing catches to infer an expected fishing-power ratio 

that represents its value when averaging over the sampling frame as a whole. This fishing-power 

ratio can then be applied to data from one gear to predict what would have been observed if 

sampling had occurred with the other gear. This type of calibration approach is expensive and 

dependent on availability of two research vessels. Separately estimating a calibration ratio and 

then converting data using this ratio prior to analysis also fails to propagate uncertainty about 

the fishing-power ratio. 

We introduce alternative vocabulary to understand cases when data are available but are not 

fully paired. Specifically, each survey sample has some attributes that can be measured from the 

time and place of sampling, including, but not limited to: 

1. primary unit being sampled

2. location of sampling within a primary sampling unit

3. time of day

4. vertical position

5. features of seafloor bathymetry including depth, rugosity, and aspect

6. day of year (“seasonality”)

7. sea state including tide and wave height

There are also controllable aspects of the deployment of gear, which affect the results of sampling 

given the attributes already listed.  These include: 

1. gear configuration and geometry (wing spread and bottom contact)

2. speed of towing for mobile gears

3. skipper attributes including knowledge (measured via econometrics)

These latter “controllable aspects of gear deployment” are sometimes called “catchability covari-

ates”, and these collectively measure “sampling effort”. These aspects should be measured for 

every sample, so that we can calculate effort associated with each sample. Fully paired sampling 

then has the same sampling attributes except for those attributes that are under experimental 

control. In experimentally paired sampling, an analyst can then fit a statistical model that in-

cludes experimental treatments as a factor, and estimating density for each primary sampling 

unit (or replicated samples within each), and estimating fishing power ratio as the coefficient 

associated with experimental treatments.   
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Using more formal definitions (rather than fishing power-ratio), calibration experiments are de-

signed to measure the expected ratio of the response for two or more gears in the same sampling 

unit (termed “catchability ratio”), or the ratio for a given portion of the population (termed “se-

lectivity ratio”). Sampling units are typically defined as spatial locations within a domain, and 

occurring at a fixed time, so catchability/selectivity ratios are often described as a ratio of ex-

pected responses for samples at a given place and time. When measuring a ratio for a given 

sample, one of the other gears often measures a zero (no individuals present). In this case, it is 

not possible to calculate a ratio (no division by zeros). In these cases, the measured ratio can be 

transformed to and subsequently analyzed as a proportion of the total across both gears caught 

by each individual gear (Brooks et al., 2022). As an alternative, it is possible to define fishing 

power as a ratio of expected catches (which are typically never exactly zero) rather than observed 

catches (which often includes zeros). This alternative does not require converting ratios to pro-

portions, and instead models the expectation of each gear while estimating their ratio (e.g., as a 

generalized linear model with a log-link, where the additive coefficient associated with experi-

mental treatment is the estimated log-ratio). This alternative can be derived as a thinned and 

marked point process (Thorson et al., 2022). 

In other cases, analysts might have “opportunistically paired sampling” that is similar in some 

sampling attributes but not others. In these cases, we obtain measurements of as many of these 

sampling attributes as possible, and include those as covariates to “control for” differences in 

sampling attributes that are not under experimental control. In some cases, opportunistically 

paired samples might not perfectly overlap. For example, we might have two surveys that oper-

ate in adjacent but non-overlapping areas. In this case, it is theoretically possible to still estimate 

the fishing power ratio between gears. This estimate requires assuming that the change in the 

target variable is smooth (i.e., that densities on both sides of a boundary separating surveys are 

similar). In this case, estimating a fishing power ratio for not-quite overlapping “opportunisti-

cally paired samples” is a type of “regression discontinuity design” (i.e. the rate of change be-

tween stations in adjacent strata is constrained by the assumed smoothness of the density esti-

mated by the model).   

In many cases, different gears sample different portions of a sampling frame corresponding to 

the unit stock under management or for assessment.  For example, in the Four-Spot Megrim 

(Lepidorhombus boscii) in area ICES in Divisions VIIIc and IXa, separate gears are used for Porcu-

pine Bank vs. Celtic Sea and Bay of Biscay areas. In this case, there are some “opportunistically 

paired” samples which occur at nearby locations, but which are not well paired with respect to 

other attributes (e.g., occuring in different seasons).  However, it is also possible to do experi-

mentally paired sampling, and this can help to validate estimates of catchability/selectivity ratio 

arising from analyzing opportunistically paired samples.   

When designing calibration experiments, it is important to make a calibration-experimental de-

sign that allows inference to the whole sampling frame for which calibration will be used.  For 

example, paired calibration samples might be randomized spatially over the entire spatial extent 

that is sampled by gears. It is also important to ensure that paired samples have the same value 

(or experimentally randomized values) for as many attributes as is feasible.   

Different studies have analyzed “opportunistically paired sampling” in various ways (Table 

2.2.2), and have confirmed that statistical models can offer the opportunity of overcoming chal-

lenges in combining data across surveys with varying gear efficiencies and resolutions. 

https://www.zotero.org/google-docs/?xG9x89
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Opportunistic data often also arise from a data-generating process with some unknown proba-

bility of samples in each primary sampling unit, where these sampling probabilities are clearly 

outside of experimental control. “Preferential sampling” arises when this true but unknown sam-

pling probability is correlated with target densities (Conn et al., 2017; Pennino et al., 2019; Ru-

fener et al., 2021; Alglave et al., 2022).   

2.2.3 Characteristics of alternative sampling gears 

We identify many types of sampling gears, which might require different designs to intercali-

brate in different pairwise combinations.  These gears include: 

1. Bottom trawl, whether large mesh (typically otter trawl) or small mesh (typically beam

trawls)

2. Visual surveys, whether scuba/towed/airplane-based counts, or using deployed video,

including tows, drifted, stationary, and net-mounted cameras

3. Acoustical surveys, including opportunistic, fixed-station vs. mobile, single vs. multi-fre-

quency for species/size identification

4. Traps, whether baited or behavioral, including chevron traps, pots, intercept traps, and

gill nets

5. Environmental DNA (eDNA), including metabarcoding (i.e., proportional measure-

ments) vs. calibrated qPCR (i.e., measurements of eDNA density that is calibrated against

aquaculture individuals to estimate densities)

6. Pelagic trawl, whether surface, midwater, oblique tow, using various single or paired nets

(Methot, Bongo, etc.), targeting adult, juvenile, ichthyo-, zoo- or phytoplankton

7. Shore-based sampling, e.g., purse seine, weirs

8. Hook-and-line, whether longline, angler surveys

9. Subsurface sampling gears, including van-Veen grabs, dredge

Some of these are in-situ and do not involve removing individuals from their habitat, while oth-

ers involve collecting the individuals. Gears that involve removing individuals facilitate addi-

tional types of subsampling including otoliths (for ages), weight, gonadosomatic index, etc. Each 

pair of gears presents different logistical challenges in designing a calibration study, whether 

experimental or model-based.   

These different gears then become important when designing a survey protocol that has samples 

from (almost) all primary sampling units.  For example, a small mesh trawl is typically better at 

capturing small-bodied animals than a large-mesh trawl, and large-bodied animals often have 

lower numerical density. Therefore, the large-mesh trawl can cover a larger distance without 

requiring additional time to sort individual animals by species. To cover larger distances, large-

mesh surveys often use a net with a wider opening, often pulled open using otter-trawl doors. 

However, these otter-trawls are not easily deployed in shallow water, so beam-trawls are instead 

typically used in shallow waters.  For species that utilize both shallow and deep waters for a 

given life-stage, it might be necessary to define a stockwide sampling frame that includes sam-

pling units at all depths, but then use large-mesh otter trawls offshore and small-mesh beam 

trawls inshore.  However, new technologies may then be applicable to both habitats (e.g., envi-

ronmental DNA), and these new sampling technologies present both challenges and opportuni-

ties for adapting a survey protocol.   

https://www.zotero.org/google-docs/?r1i2b7
https://www.zotero.org/google-docs/?r1i2b7
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In some cases, these gears may already be in use by commercial, recreational, and subsistence 

resource users, and we call records resulting from these activities “fishery-dependent data”. 

Fishery-dependent data can be entirely outside of experimental control (i.e., fishery CPUE), or 

might arise cooperatively with scientists following protocols that are defined a priori (i.e., coop-

erative data).   There is also increased emphasis on “citizen-science data” and these can be used 

for marine resource monitoring (Thorson et al., 2014).   

These fishery-dependent and citizen-science data typically differ from conventional surveys in 

many of the attributes listed previously, and these differences must be addressed during analy-

sis.  However, they also have many benefits including: 

• reduced survey costs

• increased sample sizes overall

• wider spatial and seasonal coverage of sampling

• improved relationships with stakeholders

• better understanding of stakeholder concerns

• information about relevant fishery trendsd

• increased buy-in of survey results

We therefore note that analyzing opportunistic (fishery-dependent and citizen-science) data has 

many ancillary benefits beyond improvements in sampling efficiency (Kaplan and McCay 2004; 

Johnson and van Densen 2007).   

2.2.4 How gaps in sampling coverage arise, and how to respond 

We define a “sampling gap” as the set of primary sampling units that have a zero probability of 

inclusion by any gear.  These sampling gaps can arise at multiple time scales: 

1. Seasonal time-scales:  gaps can arise unexpectedly for many reasons including inclement

weather, vessel technology and maintenance issues, staff injuries and illnesses, and many

other reasons. When these situations occur, survey coordinators face the decision to select

sample stations that minimise its impact on the data quality.

2. Interannual-to-decadal time-scales:  other types of spatial-temporal gaps could arise for

systematic issues as for example areas that cannot be sampled due to many reasons (e.g.,

type of habitat, spatial closures due to marine protected areas or wind farm areas).

3. Indeterminate time-scales: Spatial gaps also could be due to the species habitat as for ex-

ample for species that are in the middle part of the column of the water that is not usually

sampled; species that live in shallow waters that are not sampled by the traditional trawl

survey performed for demersal species, etc.

A survey coordinator might have the following questions when addressing sampling gaps: 

1. How to select the new or dropped sampling stations?

2. Whether to weight information differently for different managed or assessed stocks?

3. How to weigh the importance of information for other species and ecosystem compo-

nents?

In all these situations a possible solution will be to have tools that help to plan how to deal with 

these gaps on the time-scale allowed (discussed more in detail in section TOR IV ).  These tools 

may differ for species that have a persistent spatial-temporal distribution but not for species that 

have a changing distribution.  Obtaining information ahead of time to prepare is typically easier 

for long than short time scales (e.g., before new spatial closures are created).  

https://www.zotero.org/google-docs/?sILScB
https://www.zotero.org/google-docs/?sILScB
https://www.zotero.org/google-docs/?sILScB
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As stated previously, both experimentally and opportunistically paired sampling can be inter-

calibrated to develop a model that represents spatio-temporal variation in the target variable, as 

well as differences among sampling gears.  This model can then be used to simulate new data, 

and subsequently used in a simulation experiment to predict the effect of sampling changes on 

management objectives.  

In model-based approaches, it can also be helpful to compile covariates that can explain variation 

in sampling responses among primary sampling units. These covariates can then improve pre-

dictions in areas with sparse or absent data, but also require some consideration of relevant spa-

tial scales when calculating the covariate values to use.   

2.2.5 General recommendations regarding combining data 

We recommend several principles for defining a model used to integrate data from multiple 

sampling programs, including surveys, fishery-dependent and citizen-science programs (see di-

agram “Combining Data”): 

1. When multiple data sets are available but each does not individually capture the stock-

wide sampling frame, we recommend exploration of combining data sets.  This effort

would then include: (A) identifying relevant experimentally or opportunistically paired

data; (B) discussing with scientists and stakeholders whether the data sets are sampling

the same underlying variable or have some known differences that prevent combining

them; (C) fitting data sets individually and confirming that they do not disagree more

than expected from sampling variability alone; (D) if either B or C suggest it, using catch-

ability covariates to correct for known or observed differences (see Fig. 2).

2. Regardless of whether calibration (catchability/selectivity) is measured experimentally

or opportunistically, we recommend that analysts estimate densities for each data set

individually.  In cases when density maps or index trends differ between data sets, then

we recommend that analysts develop hypotheses to explain these differences.  In simple

cases, a difference may arise from low sample sizes (i.e., estimates are all within the

standard errors of the others), such that combining data types will resolve these differ-

ences.  How to estimate the statistical significance of differences is an active area of re-

search, but (Rufener et al., 2021) proposed using a chi-squared test for this purpose.  In

other cases, the estimated densities are largely consistent in which case it is straightfor-

ward to combine data in a single model while estimating catchability ratios (Grüss and

Thorson, 2019).

3. We recommend designing the collection of experimentally paired sampling data, and

evaluating whether it is worth allocating available resources to implement the design. If

opportunistically paired samplings are already being used in a model-based framework

to combine data, then these experimentally paired sampling data can then be used to

validate the estimated calibration ratio. If two data sets cannot be combined using op-

portunistically paired sampling data, then, the new experimentally paired data provides

an avenue to combine them in the future.

4. We recommend that densities measured in each data set be “area-weighted” when cal-

culating a quantity intended to represent total abundance (or other variables typically

calculated from densities).  Area-weighting implies that the index variance is derived

from the predictive variance (and covariance) at each primary sampling unit, such that

information arising from a large portion of a unit stock (a high proportion of primary

units in a sampling frame) is given larger importance than data arising from a small
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portion of a stock.  This recommendation precludes calculating separate indices and then 

combining them via an arithmetic average. It also precludes many commonly-used meth-

ods for combining indices post-hoc, including those that estimate a latent trend that is 

shared among indices produced for each data set individually (Conn, 2009; Peterson et 

al., 2021). 

5. To ensure that data sets are “area-weighted” we recommend that data be analyzed 

within a model that estimates density at each primary sampling unit, where this density 

is acknowledged to vary (i.e., as a set of fixed effects, or spatially smoothed random ef-

fects), and where catchability ratios are estimated as the ratio of expected observations 

at a given sampling unit. This catchability ratio may vary among sampling units either 

as a function of measured attributes (i.e., covariates), or based on unmeasured attributes 

(i.e., spatially varying catchability). Estimating variation in catchability is often necessary 

for both experimentally and opportunistically paired samples, to ensure that the differ-

ences among surveys are properly attributed to differences in survey attributes rather 

than differences in the spatial location of samples. 

6. When combining data that are not paired experimentally, we recommend including var-

iables to control for attributes that are not paired between gears. For example, if two gears 

differ in time of day, then we recommend estimating the response to time-of-day as a 

covariate, and then predicting densities at a standardized time of day.  This treatment 

has been called a “catchability covariate” in index standardization modeling.   

7. Where age/length/sex subsamples are available for multiple surveys, we recommend ex-

ploring age/length/sex-specific modelling to generate estimates of abundance or compo-

sition by category.  We also include continued efforts to test performance using simula-

tion, recognizing that model-based expansion of age-based indices or compositions using 

multiple data sets has received less research attention that biomass-aggregated models 

(although see Thorson and Haltuch, 2018);   

8. As a special case of #6 that deserves special mention, data are often not well paired sea-

sonally. In this case, then analysts must consider potential movement between those 

times. Analyzing the impact of movement occurring between the timing of two surveys 

is an active area of research but could be addressed using a variety of mechanistic and 

correlative approaches (Dormann et al., 2012; Hanks et al., 2015; Thorson et al., 2021); 

9. We recommend developing good-practices for diagnosing model issues when combin-

ing data sets.  Such diagnostics include: (A) checking for confounding between estimated 

random effects and catchability covariates, which arises when a catchability covariate is 

highly correlated with spatial or spatio-temporal random effects; (B) checking for prefer-

ential sampling in individual data sets by comparing estimated random effects against 

the sampling/inclusion probability for each data set; and (C) retrospective testing, where 

models are fitted to temporal or spatial blocks of available data to check for stability when 

adding/excluding data;   

10. We recommend ongoing efforts to communicate successes/failures and developing 

“good practice guidance” when applying models to intercalibrate multiple data sets for 

generating abundance indices, age/length/sex composition and other data inputs.  This 

would be most helpful if including members from the US, Europe and other regions, and 

would be helpful occurring every 2-4 years to keep up with rapid developments.   
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Figure 2.2-2: A proposed roadmap for TOR II 
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Table 2.2-1:  Definitions used in TOR II 

Term Definition 

Stock A component of a population under management or being modeled, often defined 
geographically based upon jurisdictional boundaries 

Sampling frame Complete partition of a stock into distinct and non-overlapping “primary” sampling 
units, often defined based on geographic boundaries  

Primary sampling unit One unit of the sampling frame 

Sampling design Process for assigning a sampling probability to each primary sampling units within a 
sampling frame 

Data gap Primary sampling units that have zero probability of sampling within a given design, 
either due to logistical constraints (outside of national jurisdiction, too expensive, 
limited time), technical constraints (inability to use a gear within that unit), or dis-
ruption (vessel damage) 

Paired sampling Sampling where the underlying process/variable being sampled is the same (i.e., 
measuring the same species); often this is not known until after data are investi-
gated to see if differences can be explained a priori or a posteriori 

Experimentally paired sampling Sampling with the same attributes in all respects except those under experimental 
study, i.e., occurring at the same place and time (i.e., sampling sampling unit), but 
using different gears 

Sampling attributes Aspects of sampling (either measured or latent), including those under experi-
mental control (i.e., gear, location and season in experimentally paired sampling) or 
not (e.g., weather, crew, tide), where some attributes may be partially controlled 
(e.g., tow duration and performance in a bottom trawl) 

Opportunistically paired sam-
pling 

Samples that are similar in at least one sampling attribute and different in others, 
e.g., occurring at nearby locations in space and/or time

Catchability covariates Measurements of sampling attributes that are available to control for “sampling 
confounders” when attributing sampling response to underlying stock 

Catchability ratio  Expected ratio (or proportion if data are pre-transformed) of response for two gears 
that would occur in experimentally paired samples.  This ratio might be assumed to 
be constant across sampling units, or varying among units, and is often estimated in 
a statistical model that estimates variation in stock density among primary sampling 
units and also: 

for experimentally paired samples, typically includes experimental treatment as a 
catchability covariate; or  

for opportunistically paired samples, necessarily includes multiple confounder varia-
bles as catchability covariates. 

Selectivity ratio or proportion Same as catchability ratio, but where response is defined for a specific category i.e., 
age, length, sex, etc. 
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Table 2.2-2:   List of research (not review or synthesis/perspectives) papers describing experimental or model-based 
synthesis and calibration of multiple sampling gears 

Reference Regions Gears Topics 

(Moriarty et al., 2020) northeast Atlantic Beam/Otter spatio-temporally explicit relative abun-
dance distribution maps from multiple 
surveys 

(Conn, 2010) US Atlantic coast Gillnet, castnet, hook-and-
line, recreational survey 
data, logbooks 

Hierarchical framework for analyzing 
multiple, noisy indices with the goal of 
estimating a single time series of relative 
abundance 

(Kotwicki et al., 2017) 
(Kotwicki et al., 2013) 

Bering Sea Bottom trawl and midwa-
ter-acoustic trawl 

Combine bottom trawl and acoustic-
midwater trawl to estimate acoustic 
dead-zone and vertical overlap 

(Thompson et al., 
2022) 

Gulf of Mexico Videotrap surveys (no inter-
calibration ended) 

Generate a combined index more repre-
sentative and of the relative abundances 
of commercial species 

(Shelton et al., 2014) California Current bottom trawl, autonomous 
underwater vehicle 

Essential fish habitat 

(Perretti and Thorson, 
2019) 

Northeast US bottom trawl (otter and 
beam) 

Combine nearshore and offshore bot-
tom trawls 

(O’Leary et al., 2022) Bering Sea bottom trawl Combine US and Russian bottom trawls 

(Maureaud et al., 
2021) 

global bottom trawl Inventory of bottom trawl surveys 
worldwide 

(Monnahan et al., 
2021) 

Bering Sea Bottom trawl and midwater 
acoustic-trawl 

Joint model for bottom and miwater-
acoustic trawl 

(Gwinn et al., 2019) Southeast US Chevron trap and videotrap Create a single integrated index 

(Alglave et al., 2022) Bay of Biscay Survey and commercial bot-
tom trawl 

Combine fishery and survey data for 
habitat  

(Ono et al., 2018) Bering Sea, Gulf of 
Alaska, Aleutian Is-
lands 

Bottom trawl Combine bottom trawl surveys across 
Alaska 

(Adams et al., 2021) Northeast US Bottom trawl Combine Canada and US surveys for 
quota allocation 

(Rufener et al., 2021) Western Baltic Sea Survey and commercial bot-
tom trawl 

Account for preferential sampling 

(Grüss and Thorson, 
2019) 

Gulf of Mexico bottom trawl, longline, 
acoustic-midwater trawl  

Combine biomass, counts, and pres-
ence/absence data 

(Peterson et al., 2021) Simulation study various indices Dynamic Factor Analysis (DFA) to com-
bine survey indices post-hoc 

(Grüss et al., 2021) nearshore Alaska  beam trawl, beach seine Nearshore fish atlas for nearshore habi-
tat associations 
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(Thorson et al., 2020) Bering Sea, North-
east US 

bottom trawl, midwater 
trawl 

Seasonal dynamics when combining sur-
veys 

(Martin Gonzalez et 
al., 2021) 

North Sea survey gear/ 

commercial  

Combine independent and commercial 
data sources to predict spatial-temporal 
distributions 

(Thygesen et al., 
2019) 

Namibia paired trawls statistical intercalibration in paired fish-
ing operations 

(Cadigan and Dowden 
2010) 

Simulation study data from previous paired 
trawl study (Cadigan et al 
2003) 

test calibration approaches, measure ac-
curacy of statistical inferences 

(Miller et al., 2010) Northeast US paired bottom trawls simulations, statistical behavior of cali-
bration factor estimators 

(Miller, 2013) Northeast US paired bottom trawls hierarchical models, selectivity, catcha-
bility 

(Rademeyer and But-
terworth 2013) 

South Africa paired bottom trawls catchability, calibration of new and old 
survey gear 

(Webster et al., 2019) Eastern Bering Sea setline/ bottom trawl spatiotemporal modelling, density indi-
ces, distribution models 

(Olsen et al., 2021) Red Sea Baited traps and gillnets Stratified GAMs, not spatially explicit. 
Combined CPUEs, but also functional di-
versity index. 

(Zhu et al., 2018) East China Sea Survey and commercial bot-
tom trawl 

Multivariate auto-regressive state-space 
model (MARSS); combination of CPUEs 

(Fowler and Showell 
2009) 

Scotian shelf, Can-
ada 

bottom trawl catchability calibration between survey 
vessels for abundance indices 

(Delargy et al., 2022) Wales, UK paired dredges, survey and 
commercial gear 

utilizing commercial data for estimating 
scallop abundance indices 
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2.3 TOR III. “Modeling and simulations”:   Further develop 
model performance evaluation through simulations, 
use of auxiliary information to improve survey data 
products, including appropriate propagation of uncer-
tainty 

Sub-Group Leads: Meaghan Bryan, Sean Anderson, Paul Regular 

Participants: Margaret Siple, Coilin Minto, Gwladys Lambert, Angelia Miller, Semra Yalcin (re-

mote), Anna Stroh 

2.3.1 Introduction 

Fisheries-independent surveys are usually carefully designed, accounting for species catchability 

and spatial distribution (Pennington and Strømme, 1998). Indices of abundance calculated from 

such surveys have long been derived from design-based theory, which does not require obser-

vations to follow a particular frequency distribution (Cochran, 1977; Smith, 1990). Under a de-

sign-based approach, samples are assumed to come from a finite population of sampling units 

(e.g. trawl sites) and, as such, the bias and precision of design-based mean and variance estima-

tors are a function of the survey design (Cochran, 1977; Lohr, 2021). Robust estimates of stock 

size can therefore be derived from consistently implemented surveys and, thanks to foundational 

work by Cochran (1977) and other statisticians, such “model-free” analyses have been tractable 

since the 1970s. A key caveat is that this approach requires a consistently implemented survey, 

which is an ideal that is rarely possible in the real world.  

Unfortunately, survey effort reductions are unavoidable and often force changes that violate the 

assumptions of design-based analyses (ICES, 2020a). For example, short-term changes can man-

ifest as the inability to sample stations or the cancellation of surveys due to unforeseen events, 

budget cuts, or marine spatial planning campaigns, which in turn causes gaps in temporal and 

spatial data coverage. Moreover, sudden shifts in species distribution in response to climate-

change, related ecosystem changes, and disturbance introduced by human activity (e.g., wind 
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energy developments) may lead to total or periodic reallocation of survey effort or indefinitely 

restrict survey effort spatially, and ultimately lead to increasingly biased or uncertain design-

based estimates. Though there is simplicity in the “model-free” nature of design-based estima-

tors, this simplicity offers few options for compensating for flaws in the implementation of a 

survey. It is in such circumstances when predictions from model-based approaches, which infer 

finite population characteristics based on a model for the population (Lohr, 2021), may help com-

pensate for survey inconsistencies. 

The development of model-based approaches has allowed us to address some major challenges 

that can impact estimates from fishery-independent surveys. Generalised linear, additive, and 

associated linear and additive mixed models (GLMs, GAMs, GLMMs, GAMMS) have been used 

to correct for factors such as when and where survey sampling occurs that can impact fishing 

efficiency. In recent years, geostatistical models have been developed and are increasingly used 

to account for temporal, spatial, and spatiotemporal correlations to overcome problems with 

temporally inconsistent and spatially imbalanced survey designs, changing availability of fish 

populations to existing surveys, and shifting spatial distributions. Recently, employing model-

based approaches has allowed us to use catchability and density covariates to improve estimates 

of abundance and uncertainty; leverage data from multiple surveys to develop single, compre-

hensive survey indices; and better predict species distributions (e.g., Shelton et al., 2014; Grüss 

and Thorson, 2019; Thorson, 2019a; O’Leary et al., 2020; Barnett et al., 2021; Monnahan et al., 2021). 

In the ‘Design-based inference’ and ‘Model-based inference’ sections below, we provide a review 

of design-based sampling theory; outline common characteristics of model-based approaches to 

index standardisation including decisions about response distributions, temporal structure, spa-

tial effects, and spatiotemporal structure; and touch on the topic of model validation and selec-

tion. 

Simulation modelling is an integral tool for testing new estimation methods, optimising survey 

designs and allocating sampling effort, and evaluating the impact of survey changes on abun-

dance indices, stock assessment outputs, and management advice. Depending on the simulation 

objectives, two general approaches—resampling and model-based simulations—have been 

used. In the ‘Simulation modelling’ section we discuss the importance of simulation modelling, 

provide a review of how resampling and model-based simulation approaches have been used 

and when they are most appropriate, and discuss some of their limitations. 

Overall, the aim is that the text for TOR III serves as a guide for practitioners seeking to develop 

a survey index or conduct simulation testing. The core ideas presented throughout this section 

are encapsulated in Figure 2.3.1. We conclude by providing a set of recommendations and sug-

gestions for future research. 

2.3.2 Contributed talks 

There were six talks presented in TOR III at WKUSER2. These talks introduced important con-

siderations for design- and model-based inference from survey data; emphasised the importance 

of diagnostics for determining model fit and suitability, the strengths and limitations of models 

for combining datasets, generating indices, and filling information gaps about the survey area; 

and highlighted the use of simulation to quantify the impact of survey changes on stock assess-

ment outcomes. In terms of generating indices, there was consensus that practitioners should 

continue to implement well-designed surveys with design-based estimators where possible, as 

they are stable, intuitive, and fast/easy to calculate.  
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Figure 2.3-1: Roadmap for estimation and simulation modelling exercises. 

James Thorson (NOAA AFSC) introduced spatio-temporal age- and length-composition expan-

sion implemented in the Vectorized Auto-regressive Spatiotemporal (VAST) model (Thorson 

and Barnett, 2017; Thorson, 2019b). Most existing approaches use an age-length key that is as-

sumed constant over space and time (but see Berg et al., 2014; Babyn et al., 2021). In this situation, 

sampling noise and error around age-length fit are not propagated through the age-length con-

version, so errors in the estimates of age compositions made in these models do not reflect the 

true variability. Thorson presented new features of VAST that propagate this error through to 

the final age-composition estimates.  

Maria Grazia Pennino (Instituto Espanol de Oceanografia) introduced a multispecies species dis-

tribution model implemented in INLA that uses covariance structure between surveyed species 

to fill in data gaps in abundance and distribution. This approach is similar to the “robin hood 

approach” to sharing data between poorly sampled and well sampled areas/species (Punt et al., 

2011). In a situation where there are multiple co-occurring species being surveyed, a model-

based approach can help analysts share data between species to obtain density information.  
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Meaghan Bryan (NOAA AFSC), on behalf of Lee Cronin-Fine (University of Washington and 

NOAA AFSC Affiliate), presented a closed-loop simulation framework that includes 1) a spa-

tially explicit operating model that includes a population dynamics accounting for movement 

among 8 areas on the Bering Sea shelf and slope, 2) an observation dynamic model with the same 

spatial structure generates fishery data and survey data (i.e., biomass and composition data) and 

used to model different survey strategies, 3) a spatially aggregated stock assessment model, and 

4) a catch model that feeds back into the OM. The goal of the project was to examine the impact

of survey changes (i.e., spatial extent and/or frequency) on assessment outcomes through the

management system and the economic value of the fishery. Closed-loop simulations like this are

helpful for evaluating the value of information, even if an economic model is not available and

value is estimated on a relative scale. The closed-loop simulation approach allows practitioners

to evaluate changes in management from multiple perspectives. The process of developing a

closed-loop simulation is also a valuable communication tool that can be leveraged for improv-

ing survey science and identifying areas of future research.

Semra Yalcin (DFO) introduced a simulation approach with a mechanistic model with two life 

history types (cod- and yellowtail-like), each defined by their distribution patterns (depth pref-

erence and diffusion). This study aimed to determine whether models can accurately estimate 

the accuracy of design- and model-based indices of abundance and associated variance. Using 

SimSurvey (Regular et al., 2020), Yalcin simulated a stratified random survey of two stocks (cod- 

and yellowtail-like) under four effort reduction scenarios (no change [base], random loss of ef-

fort, blocked loss of effort, and loss of strata). For each scenario, the accuracy of design-based 

estimators were compared to model-based estimates derived from sdmTMB (Anderson et al., 

2022). Yalcin found that the performance of correctly specified sdmTMB models was comparable 

to design-based estimators under the base case and random reduction scenarios. She also demon-

strated that model-based approaches, especially models using depth as a covariate, outper-

formed design-based estimates when effort was reduced in a spatially blocked pattern. Finally, 

simulation results indicate that variance estimates from the best models were accurate as the 

confidence interval coverage (portion of cases when the true population available to the survey 

was within the 95% confidence intervals) was close to 95%, and AIC appears to be an indicator 

of the most accurate models. Overall, results indicate that correctly specified model-based ap-

proaches can reduce the impact of survey effort loss on accuracy. 

Anna Stroh (ATU) presented a 4-year PhD project on improving survey abundance indices using 

spatio-temporal modelling. Four research objectives are defined: The first research objective aims 

at a comprehensive review of the causes and effects of survey (data) gaps and how they were 

dealt with. The second research objective aims at univariate approaches to study error sources 

(observational and process error), model diagnostics, and covariate structures for key species 

from the Irish Groundfish Survey. The third objective takes a multivariate approach and uses 

spatio-temporal modelling to improve the accuracy and precision of survey indices, and index 

standardisation, and aims to advance knowledge on the VAST approach. The fourth objective is 

using the MixFishSim package (Dolder et al., 2020) to create simulations for groundfish popula-

tions and test various survey designs (i.e. new gears, survey gaps caused by untrawlable areas, 

as well as to assess the power of simulations to detect true abundance metrics).  

Margaret Siple (NOAA AFSC) presented an ongoing study comparing model-based indices of 

abundance from GAMs to GLMMs (implemented in VAST). Stocks without strong agreement 
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between design- and model-based indices of abundance may benefit from additional model-

based indices for comparison, especially in cases when there may be environmental drivers with 

nonlinear effects on the population. This study uses survey data from Alaska groundfish and 

crab stocks and fits models with similar structures to compare mean abundance index values 

and estimated CVs. Groundfish stocks from the Eastern Bering Sea (walleye pollock and yellow-

fin sole) with agreement between design- and model-based indices in terms of annual indices 

did not have similar CVs over time, and the design-based index performed differently for red 

king crab, a stock with a patchy distribution that may be less likely to be captured by the survey. 

Applying different model-based indices to existing stocks can provide a basis of comparison 

and/or consensus for a model-based index, especially in cases where the assumptions of a design-

based index may be violated. 

Talks from other TORs, though not summarised here (see abstract in section 4), provide insight 

into the relative strengths of design- and model-based inference for producing indices of abun-

dance, age compositions, estimates of catchability, and other survey data products. Angelia Mil-

ler (UMass Dartmouth) presented a proposal for a management strategy evaluation that will 

evaluate the impacts of planned offshore wind developments on the east coast of the US. Miller 

summarised steps of the MSE process that have occurred so far, including a consultation with 

experts about anticipated changes in abundance and distribution of managed stocks. Through-

out this section, we draw examples from talks contributed to other TORs as needed. 

2.3.3 Design-based inference 

Design-based inference—also called randomization inference (Lohr, 2021)—treats characteristics 

of interest (e.g., numbers of fish) as fixed and introduces randomness in how the sampling units 

are chosen from a finite population of sampling units (i.e., survey design) (Särndal et al., 1978; 

Smith, 1990). Below, are two common examples:  

A simple random sample occurs when every subset of n samples (e.g., hauls) has the same prob-

ability of being drawn from a finite population of size N. In simple random sampling without 

replacement (SRSWR) the probability associated with n samples from N population units is given 

by the inverse binomial coefficient (Cochran, 1977; Lohr, 2021). In simple random sampling, the 

sample mean is the design-unbiased estimate of the finite population mean. The variance is the 

finite-population-corrected sample variance (Cochran, 1977; Lohr, 2021). 

Stratified sampling occurs when sampling units are grouped into strata (sampling subgroups; 

e.g., depth bins), samples are taken per strata, and those samples are then combined across strata.

Stratified sampling typically produces more precise estimates as the variability within strata is

often lower than the total variability (Lohr, 2021). Strata means are combined for the total sample

mean by weighting them by the proportion of the total sample units in the strata (Cochran, 1977;

Lohr, 2021). Similarly, the total sample variance uses the square of the strata weights (Cochran,

1977; Lohr, 2021). Various allocation methods are available to allocate observations to strata. Pro-

portional allocation allocates observations in proportion to the size (number of sampling units)

in the strata, whereas optimal allocation attempts to allocate observations to minimise the vari-

ance of the estimator for a given total cost (Lohr, 2021). The sample mean in stratified random

sampling weights the strata sample means by the proportion of the observations in each strata

(Lohr, 2021).

For all sampling designs though, it is important to keep in mind the recommendations provided 

in TOR I with respect to survey flexibility. 
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2.3.4 Model-based inference 

Model-based inference assumes that observations can be represented as samples from some sta-

tistical or probability model (i.e., a set of mathematical relationships). In contrast to design-based 

inference where randomness enters only in which sample units are chosen, randomness enters 

model-based inference by assuming the characteristics of interest (e.g., numbers of fish) are ran-

dom variables. Under the assumption of independent random variables with an expected pop-

ulation mean and variance, model-based estimators are the same as simple random sampling 

design-based estimators. However, model-based inference can deal with changes in methodol-

ogy and are therefore an important tool in fisheries-independent survey data analysis—particu-

larly when facing unavoidable changes to survey design where they may help limit impacts on 

survey indices (e.g., Yalcin et al. talk). Furthermore, under some conditions, model-based esti-

mators can improve upon design-based estimators, particularly in terms of precision (Petitgas, 

2001; Thorson et al., 2015). Here we provide an overview in model-based inference for practition-

ers. Detailed methodologies and comparisons among models can be found in Thorson (2019b) 

and Anderson et al. (2022). 

2.3.4.1 Distributional assumptions 
For model-based inference, we need a model, which (in a parametric setting) starts with a distri-

butional assumption for the data. This depends on the nature of the data (e.g., count, continuous 

measurements, categories). Here we briefly review common distributional assumptions. 

For count data, the Poisson distribution is often assumed (McCullagh and Nelder, 1989) with a 

rate parameter (lambda) controlling the expected rate per unit of time or space or both. Ecological 

count data often contain more variability than that expected in the Poisson (termed overdisper-

sion), which is reflected in the common use of the negative binomial, which allows for a gamma-

mixture on the Poisson rate parameter (Hilbe, 2011). The expected number of zeros under either 

a Poisson or negative binomial distribution is sometimes lower than that observed in ecological 

data, which is termed zero-inflation. Zero-inflated Poisson and zero-inflated negative binomial 

distributions are designed to deal with the excess of zeros by mixing together a count distribution 

(Poisson or negative binomial) and an additional quantity of zeros (Lambert, 1992). 

For continuous data, the distributional assumption depends on whether the observations are 

restricted to some space on the real line or not. Common positive continuous distributional as-

sumptions include lognormal or gamma distributions. These distributions are often assumed for 

catch rate data where the response is in units of mass (Maunder and Punt, 2004). Similarly to 

count data, there often exists many zeros in continuous data (e.g., no catch of a given species in 

a haul). Delta models allow for a proportion of zeros in continuous positive data by combining 

a distribution such as the binomial with the gamma (delta-gamma) or lognormal (delta-lognor-

mal) (Aitchison, 1955; Pennington, 1986; Smith, 1990; Stefánsson, 1996). The Tweedie distribution 

(Tweedie, 1984) can include discrete count distributions (Poisson) to purely continuous models 

(gamma)—the Tweedie is also termed the compound Poisson-gamma distribution. Use of the 

Tweedie in survey index estimation is typically focussed on cases with a mass at zero that are 

otherwise positive and continuous (e.g., catch weight or biomass density from survey hauls). 

The Tweedie is being increasingly adopted for index standardisation (e.g., Anderson et al., 2019), 

in part because of the speed with which it can be fit in the R package TMB (Kristensen et al., 

2016). Thorson (2021) showed how distributional assumptions can influence the scale of the es-

timated abundance indices with delta-gamma and Tweedie performing relatively well compared 

to design-based estimates. 
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While much survey index modelling focusses on single species and age-classes, models such as 

VAST allow multivariate responses that can cover multiple compositional classes (Thorson and 

Haltuch, 2019) or species (Dolder et al., 2018). VAST allows multiple categories to load on spatial 

factors explaining spatial or spatiotemporal variability (Thorson, 2019b). 

2.3.4.2 Temporal structure 
Traditionally, the main goal of fitting models to survey data has been the estimation of abun-

dance indices. This is typically achieved by including independent fixed year effects in the 

model, which then form the basis of the estimated index (see Maunder and Punt, 2004 in a 

commercial context). While a wide variety of other structures are possible (e.g., linear or semi-

parametric trends over time, random walks, or autoregressive structures), allowing for yearly 

fixed effects imparts no assumption on the inter-annual changes, leaving this to the stock as-

sessment (Stefánsson, 1996). Other more constrained structures, such as a random walk (e.g., 

Monnahan et al., 2021), are also possible. 

2.3.4.3 Spatial effects 
Incorporating spatial effects into model-based survey indices can range from blocking areas (e.g., 

strata) and simple latitudinal trends to highly flexible random fields. Geostatistical models that 

assume correlation decreases with distance among observations have been shown to improve 

upon the precision of stratified/blocked models, as the between-observation variance is ex-

plained by spatial variability whereas it would otherwise contribute to the overall variation 

(Thorson et al., 2015). Both VAST (Thorson, 2019b) and sdmTMB (Anderson et al., 2022) allow for 

Gaussian random fields that follow a spatial correlation structure (how correlation between ob-

servations decays with distance, often modelled assuming a Matérn correlation function). The 

spatial domain is broken into cells or polygons comprising a mesh specified by a set of knots; 

and correlation structure, possible anisotropy (correlation decaying at different rates in different 

directions) are estimated using marginal likelihood with software such as TMB (Kristensen et al., 

2016) or (approximate) Bayesian inference with software such as INLA (Lindgren and Rue, 2015). 

Other common approaches to modelling spatial effects include two and three-dimensional 

smooths in additive models (e.g., Berg et al., 2014; Wood, 2017).  

2.3.4.4 Spatiotemporal effects 
When combined with yearly fixed effects, an average spatial field shows how relative abundance 

or density is spread out in space across the entire modelled time period; to allow the spatial 

distribution to evolve in time requires spatiotemporal modelling. Predicted abundance at a point 

in space can vary over time in many ways. Values between years can be assumed to be condi-

tionally independent given the rest of model structure (IID), that is, separate random fields are 

estimated each year. Alternatively, an autoregressive structure allows the correlation between 

years for the same location to decay at a given rate over time. An extreme example of this is a 

random walk where the value next year is the value last year plus some process error. Practically, 

these methods can allow the spatial field to evolve over time reflecting differences in distribution 

or spatially correlated effects from missing (latent) variables that evolve over time (e.g., temper-

ature, dissolved oxygen, predator or prey effects). 

2.3.4.5 Diagnostics and model selection 
Many of the geostatistical models typically used to fit survey data for index standardisation, as 

described above, are complex statistical models and care needs to be taken that fitting routines 
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have converged, that models appropriately represent the data, and that inference from the mod-

els makes sense. 

Options for model comparison and selection include information criteria such as AIC (Akaike 

information criterion) (Akaike, 1973) or BIC (Bayesian information criterion) (Schwarz, 1978), 

likelihood ratio tests, and cross validation. We note the following: 

• Information criteria such as AIC have additional complexities when applied to mixed-

effects models and can be applied as marginal AIC, conditional AIC, or various “cor-

rected” conditional AIC versions (Liang et al., 2008; Greven and Kneib, 2010). Future work 

in geostatistical modelling for survey data could consider such corrected conditional AIC 

forms that may more appropriately penalise random effect complexity compared to cur-

rent commonly applied approaches. 

• Cross-validation represents a gold standard for model comparison, but can be time con-

suming for complex geostatistical models and introduces decisions about how to best 

split data into fitting and testing groups to assess the intended aspect of model perfor-

mance (e.g., random, spatial blocking, time blocking, space and time blocking, block size) 

(e.g., Commander et al., 2022). As an example, in the context of this workshop, prediction 

across missing areas due to survey restrictions (e.g., MPAs [marine protected areas] or 

wind farms), may be best tested by cross-validation with spatial blocking with the spatial 

blocks of approximation the same size as the restricted areas. 

• As an alternative to or in addition to model selection, parameters can be penalised or 

shrunk towards zero through the use of priors (Bayesian inference) or penalties (likeli-

hood inference) and various regularisation approaches such as ridge regression (Hoerl 

and Kennard, 1970). Penalised complexity priors are a recent area of research that may 

be particularly helpful in the context of penalising complexity in models with random 

fields (Fuglstad et al., 2019). Penalised complexity priors (and traditional priors or penal-

ties) are available in INLA (Lindgren and Rue, 2015) and sdmTMB (Anderson et al., 2022) 

for example. 

 

There are many approaches to assessing if models are consistent with the data and that inference 

from models makes sense. Options include residual inspection, self-simulation experiments, ret-

rospective peels, comparing model-based indices to design-based indices, and consulting with 

species experts. We note the following: 

 

• Residual diagnostics for geostatistical models, especially those involving spatial struc-

tured random effects estimated via the Laplace approximation, are a complex and ongo-

ing topic of research. Current best-practices for such models include one-step-ahead pre-

diction residuals (Thygesen et al., 2017) and MCMC (Markov chain Monte Carlo) residu-

als, possibly with fixed-effects fixed at their MLEs (Rufener et al., 2021), although both 

can be slow to calculate in practice. Simulation-based residuals are possible (e.g., facili-

tated with the DHARMa R package; Hartig, 2021), although it remains unclear the relia-

bility of such residuals for these models. 

• Self-simulation experiments can be used to evaluate the ability for models to be self-con-

sistent and recover parameters if new data are simulated from a fitted model; cross-model 

simulation experiments can be used to assess the consequences of model misspecification 

or the robustness of certain modelling choices (e.g., Thorson et al., 2021b). Retrospective 

peels—successively removing trailing years of data and refitting the model—can be used 

to assess self-consistency and the presence of retrospective model patterns. 
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• Finally, model-based inference from surveys can be checked by comparing it to design-

based inference when appropriate—particularly for identifying issues with abundance or

biomass scale (e.g., Thorson et al., 2021b). Species experts can be consulted to ensure that

predicted species distributions and covariate relationships (e.g., relationships with depth

or environmental variables) appear reasonable given prior knowledge.

2.3.5 Simulation modelling 

Planning and implementing fisheries-independent surveys is a non-trivial task as such surveys 

often span large areas, sample multiple species, and conduct sub-sampling for biological 

measures. It is not always possible to determine accurate and pragmatic sampling strategies us-

ing analytical methods and, as such, simulations have frequently been applied for planning and 

risk assessment purposes. In the past, the predominant use of simulation methods and models 

was to ensure appropriate allocation of effort for a given survey design and sampling domain 

(e.g., Schnute and Haigh, 2003). However, planned and unplanned changes present challenges 

to the continuity and quality of the important survey data products and can lead to greater bias 

and imprecision in their estimates. Another source of uncertainty is the rapidly changing spatial 

and temporal dynamics of fish populations. Although these complexities are acknowledged, the 

majority of simulation experiments conducted to date lack the spatial resolution to assess spa-

tially blocked effort reductions or species distribution shifts. Simulation modelling that accounts 

for spatial dynamics is increasingly needed and will play an important role in the testing of 

emerging geostatistical modelling techniques for the standardisation of indices and composition 

data and combining data sources, planning optimised survey designs over space and time and 

among species, contingency planning for anticipated in-season obstacles, and evaluating the im-

pact of survey changes on assessment outcomes through to the management system and reliant 

fisheries.  

Developing a realistic operating model that can simulate data with similar dynamics properties 

can be a daunting task because of all the complexities behind species distributions and multi-

level sampling techniques. Despite all of the nuances, practitioners frequently face scenarios 

where surveys are disrupted (e.g., exclusion from an MPA; Benoît et al., 2020) or require im-

provements and the impacts of substantive changes need to be assessed. Practitioners can apply 

two general simulation approaches to address changes in survey design and operation and to 

quantify their impacts by either resampling existing observed data or through model-based sim-

ulations. Generally, model-based simulation allows analysts to simulate data based on the fitted 

model input under different conditions, producing simulation scenarios which can be compared 

with one another, usually involving a base scenario. For reduced survey effort in particular, sim-

ulation approaches are valuable in evaluating for example i) the effect of including unconven-

tional data input (e.g., oceanographic satellite data or trophic interactions; Pennino et al., 2016; 

Barber et al., 2021), ii) the performance of various forms of combined data (ref TOR II), iii) survey 

design optimisation scenarios, iv) contingency planning for anticipated in-season obstacles, and 

v) the impact of survey changes on assessment outcomes through to the management system

and reliant fisheries.

2.3.5.1 Resampling 
Resampling methods (e.g, bootstrapping; sampling with replacement) can be used to compare 

the precision and bias of design- or model-based indices across a range of alternative sampling 

scenarios. With resampling, the analyst uses observed data to generate a large number of simu-

lated samples. A major benefit of this simulation approach is that it implicitly produces realistic 

samples as they are based on real-world data. For instance, results from a recent resampling 
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study focused on whiting in the Celtic Sea (see Stroh et al.) helped demonstrate the ability of 

spatiotemporal models to remain unbiased, albeit more uncertain, when survey effort is reduced, 

even if there is a non-random loss of a survey. Another resampling analysis of data collected in 

the Gulf of Alaska reiterated the impact of the number of hauls (primary sampling unit) on the 

variance of age-disaggregated indices; the age sub-sampling protocol had a relatively minor im-

pact (Sikey et al., Siskey et al., 2022). Jourdain et al. (2020) used similar bootstrapping methods to 

evaluate sampling protocols for Atlantic cod (Gadus morhua) in the North Sea and results were 

similar to Siskey et al. (2022). Other key benefits of resampling approaches is that they are rela-

tively quick to implement and a complex operating model does not need to be defined. It is im-

portant to note that resampling approaches assume that previous samples were representative 

of the underlying population and sampling process. 

2.3.5.2 Model-based simulations 
A limitation of the resampling approach is that the samples must conform to the historical de-

sign. That is, resampling cannot be used to simulate samples from an alternate sampling design 

(e.g., systematic samples from a stratified-random sample). Another limitation is that the “truth” 

remains unknown and, as such, performance must be measured against the best available infor-

mation, which may be insufficient. It is therefore important to consider whether previously col-

lected samples are sufficiently representative of the population and sampling process and 

whether it is necessary to know the “truth”. When doubts loom regarding the previous sampling, 

practitioners often turn to model-based simulations. When developing a simulation study, it is 

important to keep the operating model as simple as possible to meet the study objectives. De-

pending on the study, it may be useful to focus on mechanisms, empirical dynamics, or a com-

bination of both. 

Realistic population dynamics and species distributions can be generated using “mechanistic” 

models that explicitly define functions for processes such as cohort tracking or environmental 

associations (Kearney and Porter, 2009). If the objective is to test the performance of a species 

distribution model, it may be useful to simulate samples from an environmental suitability map 

derived from species-environment relationships (e.g., Leroy et al., 2016; Regular et al., 2020, Reg-

ular and Anderson talk, Yalcin et al. talk). The biggest hurdle with this approach lies with the 

process of defining response functions to various environmental variables (covariates). While it 

is conceptually appealing to define these functional relationships, the approach becomes difficult 

to apply in cases where functional relationships with the environment are not well understood. 

The same limitations apply if population dynamics need to be simulated as the functional rela-

tionships between spawning stock biomass and recruitment (Subbey et al., 2014) or environmen-

tal variables and natural mortality (Johnson et al., 2015) are rarely well defined. It is therefore 

often convenient and necessary to describe population and spatial dynamics using stochastic 

processes; that is, apply an empirical approach. 

“Empirical” simulations implicitly capture many of the temporal and spatial dependencies ap-

parent in real survey data by adding stochasticity using distributional assumptions. For example, 

noisy survey samples are frequently described using a mixture of the binomial and gamma dis-

tributions (Aitchison, 1955; Schnute and Haigh, 2003). There are a growing number of general 

tools (see TOR IV) that facilitate the fitting of empirical models to data and these same models 

can be used to simulate observations throughout the survey domain. This offers a relatively 

straightforward way to generate observations collected using different strategies. Using the ge-

ostatistical model behind VAST, Oyafuso et al. (2021) modelled the distributions of 14 species in 

the Gulf of Alaska and simulated samples from surveys with different stratifications and 
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allocations. In doing so, they demonstrated that if survey priorities change, objective modifica-

tions could be made to the stratification and allocation of the survey to lower the survey CV of 

selected species, potentially at the cost of other species. Within species, one might focus on size-

composition and assess the merits of alternate sampling protocol or estimators. Size-specific in-

dices can be obtained from geostatistical models by supplying age or length disaggregated haul-

level data. This requires the intervening application of design-based expansions of sub-sampled 

data (e.g., age length keys). A simulation self-test of this approach using VAST indicated that 

age-disaggregated model-based indices are comparable, and perhaps slightly more accurate, to 

design-based indices (Thorson talk; Thorson and Haltuch, 2019). If inefficiencies in sub-sampling 

strategies are suspected, simulations of alternate multi-level sampling of size-specific species 

distribution models may reveal unexpected flaws in the sampling design (see case study in Reg-

ular et al., 2020). 

2.3.5.3 Simulating management consequences 
Multiple resampling and model-based simulation studies have demonstrated that changes in the 

design and implementation of surveys will either improve or degrade the accuracy (bias or pre-

cision) of survey data products. When changes to the performance are observed, a natural next 

question to ask is “Does it matter?” In many cases it may be obvious that the change is so small 

that it will have a negligible impact on the assessment of the stock; however, major changes to a 

survey may result in levels of bias and variance that are too big to ignore. This is where open or 

closed-loop simulations become a useful approach to apply with the former assessing the conse-

quences to stock assessment estimates and the latter including feedback between the survey in-

dex, assessment model, and management strategy on the projected population allowing practi-

tioners to evaluate the risks associated with a changing survey. 

Open-loop simulations are a powerful tool to evaluate the performance of stock assessment mod-

els (Hilborn and Walters, 1987; Magnusson and Hilborn, 2007; Deroba et al., 2015). Performance 

is often quantified as bias and imprecision in quantities of interest to fisheries managers includ-

ing current stock size and management reference points. This simulation approach is done using 

an operating model to generate the true population and observation dynamics of a population 

for a specified period. The operating model can be conditioned on an existing stock assessment 

model or developed independently and include more complexity. Existing tools include ss3sim 

(Anderson, et al., 2014) and FLR (Kell et al., 2007) for example. Survey observations are generated 

from the observation dynamics model and used as inputs in the assessment model. The impact 

of survey information can be evaluated by simulating scenarios with different levels of observa-

tion error or bias in indices of abundance and composition data or removing entire time series. 

The quantities estimated by the assessment model are then compared to the true dynamics from 

the OM. Simulation-estimation experiments have been conducted to evaluate the impact of dif-

ferent data types and their availability on stock assessment outcomes. For example, Ono et al. 

(2015) found survey information was more informative in assessments when conducted less fre-

quently over more years than more frequently over fewer years. Muradian et al. (2019) conducted 

a simulation experiment where scenarios dropped one of four surveys to evaluate the trade-off 

in the cost of conducting the individual surveys and the information provided to the assessment 

model and, as a result, were able to rank the value of each sampling program. Studies such as 

these can help to justify the continued support for the collection of survey data. In some cases, 

we want to understand how changes in survey design will impact the management decision 

making process, this is where closed-loop simulations are a preferred method. 

Closed-loop simulations are central to the Management Strategy Evaluation (MSE) approach 

where scientists and resource managers collaboratively develop a series of operating models, 

estimation models, and candidate management strategies to test the robustness of various poli-

cies to sources of uncertainty (Smith, 1994; Punt et al., 2016). While this approach is increasingly 
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common, operating models have largely generated spatially aggregated indices at age. This has 

limited the analysts’ ability to evaluate the management implications of survey changes (i.e., 

spatially explicit survey data of varying quality are rarely simulated). Within the spatially ag-

gregated MSE context, the “shortcut approach” (ICES, 2020b) enables the evaluation of some 

change by simulating survey data with error using parameter estimates from a distribution (par-

ametric), or resampling from the data (non-parametric). If the purpose of the simulation exercise 

is to evaluate a change in survey design (for example, moving from a systematic to stratified 

random survey design), resampling approaches are no longer appropriate for the observation 

model and the dynamics of the existing survey should be included in the simulation. In this case 

existing models like MixFishSim (Dolder et al., 2020) or spatialSim (Nottingham and Millar, 2021) 

can simulate population, survey, and fishery dynamics mechanistically. Harford and Babcock 

(2016) describe one example where spatially explicit samples were simulated using an individ-

ual-based model within an MSE framework to evaluate management risks under different data 

sampling scenarios. Tools for implementing closed-loop simulation include FLR (Kell et al., 

2007), openMSE (formerly DLMtool; Carruthers and Hordyk, 2018), and SSMSE (Doering and 

Vaughan, 2022). 

2.3.6 Recommendations and future work 

Here we consider recommendations and future work based on the talks and discussion within 

this TOR. We first consider recommendations that apply primarily to simulations. Then, since 

models and simulations often go hand-in-hand, with simulations being used to test estimation 

models, and fitted estimation models being used to generate survey simulations, we consider 

recommendations that apply to both. 

Recommendations and future work for simulation modelling: 

1. Establish clearly defined goals early in the process and let those goals guide model or

simulation complexity. For example, feedback in the simulation (i.e., closed-loop simu-

lation) is needed when the goal is to evaluate the impacts of survey changes on socio-

economic and management objectives but would introduce unnecessary complexity in

other circumstances. Evaluations of tactical changes and their impacts on stock assess-

ment outcomes can often be effectively addressed by resampling existing data and using

open-loop simulation experiments.

2. Involve those working in survey implementation, survey modelling, and stock assess-

ment when designing survey simulations if possible. Identifying key uncertainties is an

important component in the development of simulation scenarios. This is where each

representative’s perspective will be impactful. For example, group discussions led to hy-

potheses about directional movement due to climate change (Cronin-Fine et al. talk) and

wind energy development (Miller et al. talk) that represented important process-level un-

certainties in the respective systems. We can expect an emergent property of the simula-

tion will be uncertainty, bias, or both in survey products due to the interaction between

process uncertainties and survey design.

3. Use closed-loop simulation to quantify the value of information in current surveys and

assess the degree to which reductions in survey effort are expected to change probabil-

ities of achieving management and conservation objectives. It is difficult to infer conse-

quences of increased index uncertainty and bias on management and economic conse-

quences without formal analyses. Value of information analyses (Harford and Babcock,

2016, Cronin-Fine talk) with closed-loop simulation can help justify survey programs,

highlight critical parts of surveys to retain, and design reduced survey programs such

that they have minimal impact on conservation and economic consequences.
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4. Consider all data streams resulting from a survey—not just indices of abundance for 

assessments. For example, indices derived from large suites of species are important for 

ecosystem modelling, indices of predator or prey species abundance provide important 

context when modelling a species of interest (Pennino et al. talk), survey data are often 

used for marine spatial planning, and biological samples (length, weight, age, and ma-

turity samples) are also critical data streams for stock assessment (Thorson talk). 

5. Maintain both resampling and model-based simulations. Resampling and model-based 

approaches each have their strengths and weaknesses. Resampling approaches are fast to 

implement and realistic complexities are “baked in” for free; however, the underlying 

truth is not known and sampling schemes are restricted based on historical sampling. 

Model-based approaches know the underlying truth and can explore entirely new sam-

pling scenarios or conditions but only incorporate the complexities in states of nature that 

are explicitly included. 

6. Improve conditioning of “mechanistic” simulation model elements through fitted em-

pirical models. Simulation models such as the model underlying the SimSurvey package 

(Regular et al., 2020) incorporate processes and mechanisms that are more complicated 

than can typically be fit to data. On the other hand, related empirical models can be fit to 

characterise aspects of such simulation models. Therefore, there is much potential in 

“linking” empirical fitted models to more “mechanistic” or semi-mechanistic simulations 

to condition aspects of the models (Regular and Anderson talk). For example, abundance 

relationships with depth or random field properties can be characterised by related em-

pirical models. 

 

Recommendations and future work for estimation and simulation modelling: 

1. Continue development of models and simulations that incorporate movement. Under-

standing changes in fish migration and distribution under climate change is a major chal-

lenge and movement is a primary cause for changes in availability and resulting survey 

catchability. Jim Thorson presented on the inclusion of fish movement in models of sur-

veyed abundance via diffusion-advection-taxis (Thorson et al., 2021a). Such models have 

the potential to improve inference about movement processes and also make better pre-

dictions of spatial distribution—potentially after sections of the survey domain have been 

excluded from survey effort (e.g. for MPAs, Benoît et al., 2020). Movement can also be 

implicitly included in survey models through, for example, seasonal spatiotemporal ran-

dom fields (Thorson talk). 

2. Consider possible improvements in realism and inference from multivariate, joint (dy-

namic) species distribution models (JSDMs). In some instances, JSDMs can improve 

model predictions, particularly for more poorly sampled species (Thorson and Barnett, 

2017; Pennino et al. talk), but a primary benefit may be improved ecological inference 

(e.g., Dolder et al., 2018; Thompson et al., 2022). In the context of unavoidable reductions 

in survey effort, JSDMs may have applicability in reducing uncertainty loss for more 

poorly sampled species and using correlations between species established in years be-

fore survey effort reductions to improve inference after effort reductions. 

3. Consider including spatially varying coefficients in SDMs of survey data to make bet-

ter local predictions of missing survey observations. Spatially varying coefficient mod-

els allow covariate effects on the response variable to vary smoothly in space (Hastie and 

Tibshirani, 1993; Gelfand et al., 2003, Thorson talk). In the context of fish surveys, this 

could, for example, let regional climate indices help predict the local distribution of a 

species (Thorson, 2019a) or allow for spatially varying trends in abundance (Barnett et 

al., 2021). 
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4. Continue to develop approaches and make existing approaches more accessible for

combining multiple data types, including incorporating data sources with preferential

sampling such as commercial catches into survey modelling. In WKUSER2, Iosu Parad-

inas (OSU) presented a joint modelling approach to combine trawl and trammel net sur-

veys, and Nathan Bacheler (NOAA SEFSC) presented the challenges of combining paired

camera and trap survey data in the Atlantic from North Carolina to Florida. The field of

integrated SDM modelling is developing rapidly (Isaac et al., 2020) and we have begun

to see applications within fisheries-independent survey modelling (e.g., Grüss and Thor-

son, 2019; Rufener et al., 2021). Integrated SDMs have the potential to help fill gaps in-

curred by unavoidable reductions in survey effort (see more discussion TOR II). In line

with this point, we recommend using and further developing tools such as MixFishSim

(Dolder et al., 2020) and spatialSim (Nottingham and Millar, 2021) that can simulate sur-

vey and fishery dynamics simultaneously to test integrated modelling approaches.

5. Continue developing approaches for propagating uncertainty from survey data

through to indexes of abundance and stock assessment. TOR II of the first WKUSER

meeting focused on total survey uncertainty, which is a value that incorporates error from

biophysical processes, observation processes, and analytical considerations (ICES, 2020a,

pp 18–30). TOR III from WKUSER2 largely focused on analytical considerations for sur-

vey index production, particularly geostatistical methods that attempt to estimate uncer-

tainty and mitigate bias introduced by flaws in the implementation of a survey. While a

number of simulation studies have shown that these methods produce confidence inter-

vals with expected rates of coverage (e.g., Jardim and Ribeiro, 2007; Yalcin et al. talk),

further research is required to ensure that error introduced by pre-processing survey data

for length- or age-selectivity calibrations (e.g., Webster et al., 2020) or age-length key con-

versions (e.g., Thorson and Haltuch, 2019; Thorson talk) is accounted for and propagated

through to model-based indices and assessments. Studies that simulate size-structured

spatiotemporal populations may be useful for assessing confidence interval coverage of

length- or age-disaggregated survey indices from emerging model-based methods.

6. Develop a more rigorous and standard process for model diagnostics, validation, and

selection. There are many decisions a practitioner has to make in the process of fitting

the complex SDMs that are frequently used to model survey data (e.g., GLMMs with ran-

dom fields or GAMMs) and these decisions can have meaningful consequences on infer-

ence (e.g., Commander et al., 2022). Models with correlated random effects, and espe-

cially such models involving the Laplace approximation, can introduce several complex-

ities with model diagnostics (Thygesen et al., 2017). It would help practitioners to have

more guidance on assessing the fit of the geostatistical models often used for the purpose

of modelling survey data.

7. Maintain survey designs such that design-based estimators can still be applied if at all

possible, given unavoidable survey effort reduction. While model-based estimators can

account for many inconsistencies in survey design or implementation, they are likely to

perform best with data that also work for design-based estimators, and designed-based

estimators have several advantages including being trusted, intuitive, easy to calculate,

and easy to communicate.

8. Develop open-source well-documented user-friendly tools for new models and simu-

lation approaches. This encourages rapid uptake of approaches among practitioners and

allows the community to efficiently build on past work. This topic is covered in detail

within TOR IV.
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2.4 TOR IV. “Tools and technology development”: Describe 
technological and analytical tools (e.g. R packages, AI, 
video analysis, etc.) that can provide quantitative as-
sessment of the effect of effort changes on the quality 
of survey deliverables and advisory products

Sub-Group Leads: Espen Johnsen,  Zack Oyafuso  

Participants: Emily Markowitz, Nathan Bacheler, Derek Bolser, Kristan Blackhart, Lukas DeFil-

ippo, Matthew Siskey  

The goal of this TOR is to review the technology and analytical tools that are available to assess 

the effect of survey changes on the quality of survey deliverables, stock assessments, and advi-

sory products. During the plenary session of WKUSER2, a number of presentations discussed 

the application of available tools, techniques, and technologies that would help researchers 

achieve the goal of TOR IV. In addition, discussions that stemmed from them also highlighted 

possible gaps that are present in the current suite of tools (e.g., availability and accessibility of 

tools). We intend to provide advice in order to guide survey and stock assessment scientists in 

their analyses given their objectives and data availability. Below, we discuss the recommenda-

tions for survey tools and technology across three main themes:  

• 2.4.1 Evaluation: Effects of changes in survey designs/total effort on survey products and

assessment/management outputs.

• 2.4.2 Mitigation: How to mitigate the effects of survey changes identified by those evalu-

ations.

• 2.4.3 Accessibility: Approaches to increase the availability, transparency, and standardisa-

tion of survey tools and their outputs.
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2.4.1 Tools for Evaluation of the Impacts of Survey Changes 

Simulation testing is a principal tool used to evaluate the effects of anticipated changes in survey 

design and total effort on survey products and stock assessments that use them. Mechanistic 

simulation models make explicitly defined assumptions about the underlying relationships 

among ecological variables (e.g., demographic rates, habitat suitability, movement, species in-

teractions). Correlative simulation models describe these underlying relationships empirically 

(i.e., fitting of observations via a specified model structure). The simulation tools presented in 

this workshop included both mechanistic and correlative models (Table 2.4-1), but a common 

workflow included 1) specifying an operating model from which surveys could be simulated, 2) 

calculating survey products resulting from this simulated truth (e.g., estimated abundance and 

associated precision), and 3) evaluating the effects of using these survey products on down-

stream stock assessments and management output.  

Table 2.4-1: Software used to evaluate and/or mitigate impacts of survey changes on survey products 

Software Name Description and Use Source/Workshop Exam-
ples 

R-INLA Approximate Bayesian inference for Latent Gaussian 
Models. R-INLA is a major component of other pack-
ages in this Table including VAST and sdmTMB. Used 
to simulate spatiotemporal population density for use 
in survey evaluation.  

Lindgren and Rue (2015); 
Kotwicki and Ono (2019); 
Conner (WKUSER2); Pa-
radinas (WKUSER2) 

SamplingStrata Optimisation software for the design of multivariable 
(i.e., multispecies) stratified random designs via the 
Genetic and Bethel algorithms. Used to mitigate ef-
fort reduction by optimising effort allocations across 
strata with lower total sampling effort.  

Barcaroli 2014; 
Oyafuso(WKUSER2); 
Barnett (WKUSER2) 

sdmTMB Spatiotemporal generalised linear mixed effects 
model via template model builder, R-INLA, and Gauss-
ian Markov random fields. Used in abundance index 
estimation, species distribution modelling, and spatio-
temporal simulation of population density.  

Anderson et al. 2022; 
Regular/Anderson 
(WKUSER2) 

SimSurvey Simulation framework to evaluate sampling protocol 
of dynamic populations that vary across ages, time 
and space. Used to simulate survey designs (e.g., sim-
ple and stratified sampling) along with hierarchical 
sub-sampling of lengths and ages. 

Regular et al. 2020; Yacin 
(WKUSER2); 
Regular/Anderson 
(WKUSER2); Miller 
(WKUSER2) 

spatioTemporalIndices Latent Gaussian spatiotemporal model.. Used to esti-
mate abundance indices by length-class with uneven 
survey coverage.  

Breivik et al. 2021 

StoX & Rstox Calculates estimates of abundance and catch-at-age 
from acousitc trawl surveys and fishery-dependent 
data 

Johnsen et al. 2019 

https://www.r-inla.org/
https://barcaroli.github.io/SamplingStrata/
https://pbs-assess.github.io/sdmTMB/index.html
https://paulregular.github.io/SimSurvey/
https://github.com/NorskRegnesentral/spatioTemporalIndices
https://github.com/StoXProject/StoX


70 | ICES SCIENTIFIC REPORTS 5:13 | ICES 

SurveyIndex GAM-based approach to index production for bio-
mass and compositional data. Used in both estima-
tion and simulation of spatiotemporal population 
densities. 

Berg et al. 2014; Siple 
(WKUSER2); Markowitz 
(WKUSER2) 

VAST Spatiotemporal delta-generalized linear mixed model 
fitted via template model builder, R-INLA, and Gauss-
ian Markov random fields. Used in both estimation of 
abundance indices and simulation of spatiotemporal 
population densities.  

Thorson (2019); Thorson 
et al. (2015); Thorson 
and Haltuch (2018); 
Thorson and Barnett 
(2017); Oyafuso 
(WKUSER2); Barnett 
(WKUSER2); Thorson 
(WKUSER2s); 

2.4.1.1 Tools for Evaluation of the Impacts of Survey Changes 
Simulation testing is a principal tool used to evaluate the effects of anticipated changes in survey 

design and total effort on survey products and stock assessments that use them. Mechanistic 

simulation models make explicitly defined assumptions about the underlying relationships 

among ecological variables (e.g., demographic rates, habitat suitability, movement, species in-

teractions). Correlative/empirical simulation models describe these underlying relationships em-

pirically (i.e., fitting of observations via a specified model structure). The simulation tools pre-

sented in this workshop included both mechanistic and correlative models (Table 2.4-1), but a 

common workflow included 1) specifying an operating model from which surveys could be sim-

ulated, 2) calculating survey products resulting from this simulated truth (e.g., estimated abun-

dance and associated precision), and 3) evaluating the effects of using these survey products on 

downstream stock assessments and management output.  

2.4.1.2 Summary of Existing Approaches to Evaluate the Impacts of Survey 
Changes 

Mechanistic and semi-mechanistic simulation models allow the user to develop operating mod-

els where functional relationships among ecological variables are explicitly specified by the user. 

The R package SimSurvey (Regular et al. 2020) is a recently developed tool for simulating age-

structured and spatially explicit population dynamics. SimSurvey was designed to simulate sam-

pling designs (e.g., simple random sampling, stratified random sampling, etc.) as well as hierar-

chical sampling protocols (i.e., subsampling length and length-stratified age data at the haul 

level). Miller’s case study in this workshop proposed the use of this tool to evaluate changes in 

survey outputs due to reductions in survey area, highlighting the potential utility of this tool to 

support evaluations of anticipated effort changes. The specification of causal and explicit rela-

tionships in the simulation is a strength of these mechanistic simulation tools but these relation-

ships can be difficult to parameterize and groundtruth. However, in their keynote presentation, 

Regular and Anderson proposed pairing output from geostatistical models to inform mechanis-

tic simulation models. 

Correlative models rely on empirically-driven specifications of ecological distributions and rela-

tionships conditional on observed data. These types of models were more common in the case 

studies presented by workshop participants relative to mechanistic models. The most common 

R packages used for simulation among the talks presented in this workshop were VAST (Thor-

son et al. 2016) and R-INLA (Lindgren and Rue 2015). Spatial and spatiotemporal variation in 

density are usually defined via latent variables (e.g., random fields), and fixed effects on density 

https://github.com/casperwberg/surveyIndex
https://github.com/James-Thorson-NOAA/VAST
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and catchability can be fitted via linear, polynomial, and nonlinear relationships (e.g., splines 

similar to those used in the mgcv R package). The R package sdmTMB (Anderson et al. 2022) is 

a recently developed package that also has the capability to simulate densities from a fitted spa-

tiotemporal model similar to VAST. SurveyIndex (Berg et al. 2014) is a GAM-based approach to 

fit similar types of spatiotemporal models; workshop case study presentations (Siple and Mar-

kowitz) focused on its use in abundance index generation but simulation is also a function of the 

package. Although less tools are available for simulating acoustic trawl surveys, Holmin et al 

(2020) produced an observation model by combining the NORWegian ECOlogical Model system 

(NORWECOM;  Skogen et al. 1995) and the StoX survey estimation tool (Johnsen et al. 2019) to 

test different in silico survey strategies. 

In addition to simulation approaches, survey effort changes could also be evaluated using purely 

data-driven or empirical approaches that rely on resampling techniques or simply data removal. 

A couple of case study presentations during the workshop highlighted these approaches. DeFil-

ippo’s WKUSER2 presentation analyzed the impacts of dropping bottom trawl survey stations 

on survey CV and resulting stock assessment and management output. Another presented study 

used a bootstrap sampling approach to evaluate how data-weighting metrics for age composi-

tion (i.e., input sample size), stock assessment output (i.e., estimates of overfishing limit), and 

otolith sampling costs were affected by changes to otolith sampling rates (± 0%, 33%, 67%) and 

changes to sampling methods (i.e., whether changes to sampling were administered via a change 

in the number of otoliths collected per tow or the number of tows upon which otoliths were 

sampled) (Siskey et al., 2022). Applications of resampling techniques were fewer in the cases 

presented in WKUSER2 than WKUSER1, replaced by more simulation approaches. This is con-

current with the development of new software and packages to simulate populations (Table 

2.4-1). Resampling techniques are more easily implementable relative to simulation methods but 

assume the data are representative of the population and limit evaluation of other sampling de-

signs or sampling of new areas. 

2.4.1.3 Limitations of Existing Approaches and Recommendations for Future De-
velopment 

Existing methodology and software packages for evaluating the effects of survey design changes 

rely primarily on simulation analyses. While the design and characteristics of these simulations 

may vary, the metrics used to evaluate alternative sampling designs are typically the precision 

and accuracy of survey data products. We recommend that simulation approaches consider a 

broader range of metrics for evaluation (e.g., accuracy and precision of model-based indices and 

compositional estimates; Siskey et al., 2022). Indeed, as model-based indices become more com-

mon, optimising surveys with respect to design-based estimates alone may lead to incomplete 

or one-sided recommendations. 

In addition to considering a wider range of survey data products, we recommend that evalua-

tions of survey design changes also consider outcomes beyond the survey data products them-

selves. In particular, linking survey simulations with stock assessment models to explore the 

effects of design changes on assessment model estimates (e.g., overfishing limits) offers several 

advantages. Stock assessment models provide the guidance that is ultimately used in manage-

ment decision-making, and typically incorporate multiple data sources (e.g. survey abundance 

indices, fisheries harvest data, and compositional data from both surveys and fisheries) which 

interact to affect model predictions via a joint likelihood (Maunder and Punt, 2013). As such, 

variation in the precision or accuracy of survey data products may not necessarily affect assess-

ment model output in a predictable manner. Thus, optimising survey design with respect to the 

quality of survey data products alone may not necessarily be representative of the effects on 

assessment outcomes. We recommend building the capacity for existing survey simulation ap-

proaches and software packages to interface with stock assessment models (e.g., Stock Synthesis, 
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ASAP, etc.) in order to propagate the simulated effects of survey design changes into assessment 

outputs. Similarly, building interfaces between survey simulation approaches and existing pack-

ages for management strategy evaluation (MSE; e.g., openMSE, mseR, SSMSE) would allow fur-

ther investigation of the impacts of survey design and effort reduction on management and eco-

nomic objectives (e.g., Cronin-Fine presentation). 

An additional challenge for simulation approaches that evaluate survey designs is to consider 

the role of environmental change and non-stationarity. Existing methods for simulating and 

evaluating survey design are based on fixed functional relationships (e.g., mechanistic models) 

and/or conditioning on existing survey data (e.g., semi-empirical/empirical methods). However, 

climate change is likely to lead to non-stationarity in the biological processes underlying these 

functional relationships as well as spatial, spatiotemporal, and multispecies covariance struc-

tures. As such, inferences on survey design choices based on simulations conditioned on existing 

data/relationships may break down as future conditions change, leading to decisions that are 

optimal for present but not future conditions. Considering that changing ecosystems and species 

distributions are major challenges for fisheries-independent surveys, including predictions of 

future states (and associated uncertainty) in survey design simulations is an important consid-

eration. Accounting for environmental change and uncertainty in survey simulation approaches 

may be achieved by linking existing survey simulation packages and regional climate models 

(e.g., Bering 10k ROMS). As such, we recommend development of improved interfaces between 

climate and ecosystem models and survey simulation tools as a priority in future developments.  

Beyond improving the capabilities of existing simulation approaches to consider a broader range 

of objectives and inputs, we also recommend building the capacity for such simulations to be 

deployed in a tactical capacity. Often the initial effort to develop a reliable simulated operating 

model (be it mechanistic or empirical) can be substantial, making these approaches difficult to 

deploy for in-season decision making. While some effort reductions may be anticipated over 

longer time horizons (e.g., foreseen budget cuts, area closures), often such circumstances may be 

unanticipated until the survey is under way (e.g., area inaccessibility due to weather, unantici-

pated crew shortages, vessel breakdowns). As such, we recommend that survey groups build 

and maintain the capacity to rapidly evaluate effort reductions within the survey season. This 

can likely be accomplished using existing software and approaches by ensuring that models are 

adequately developed and conditioned prior to the survey season. Rather than being forced to 

confront these decisions with little or no empirical guidance, we recommend that survey pro-

grams plan for unanticipated effort reduction challenges by having flexible simulation tools con-

ditioned and ready to evaluate situations that may arise. For instance, if hazardous weather is a 

consistent problem for a given survey area, making it difficult to complete the prescribed sam-

pling plan, field staff may need to decide which stations/areas to drop to minimise impacts. Hav-

ing a simulation model that can objectively evaluate a suite of possible options would provide 

valuable information for in-season decision-making.  

Finally, there is little guidance on the suitability of alternative survey simulation approaches for 

different situations. While a range of approaches and software packages exists (e.g., mechanistic, 

semi-empirical, empirical; SimSurvey, VAST, sdmTMB), the strengths and limitations of each 

are seldom discussed in the literature, providing little information for a prospective analyst to 

choose among available options. Furthermore, available approaches and software packages are 

seldom evaluated side-by-side. If different approaches provide conflicting advice, this should be 

considered in the treatment of uncertainty in the results of the simulation model. We recommend 

further study comparing alternative survey simulation approaches and software packages, and 

better characterization of the differences between them in the literature to provide information 

for analysts. 
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2.4.2 Tools for Mitigating Impacts of Survey Change 

Survey effort reductions occur for a variety of reasons (e.g., reductions in days at sea owing to a 

lack of staff, untrawlable conditions or habitat, reduced funding for processing collected sam-

ples, etc.) and are an unavoidable aspect of conducting fishery-independent surveys. Tools to 

mitigate the impacts of survey changes are available at the survey design and estimation stage, 

and when selecting observation methodologies.   

2.4.2.1 Estimation Models 
Design-based methods have been the most common approach for generating survey indices and 

age/length compositions. Based on sampling theory, these indices often use information on sur-

vey design (i.e., effort, stratum area) to expand information collected at the tow level (e.g., catch, 

length frequency, age frequency) up to the population level (i.e., population abundance, popu-

lation-at-length, population-at-age). Advantages of design-based indices include relative ease of 

interpretability and a long history of implementation. It is highly advantageous for data collec-

tors to understand the index calculation process so that the impact of decisions made can be fully 

understood, and the relative simplicity of design-based indices facilitates this. Case study 

presentations by Barnett and Oyafuso used the Bethel algorithm to perform multispecies opti-

mizations of optimal effort allocation for stratified random designs in the Gulf of Alaska region 

across a range of total effort levels. While useful for planning, this tool can be used in the short-

term for mitigating in-season reduced sampling. The advantage of this approach is that decisions 

of where to reduce sampling (i.e., across strata) are done objectively in a way to minimise the 

information lost (i.e., loss in precision) from reduced effort, however the choice of species weight-

ings in the optimization need to be considered by survey planners.  

Changes to survey area and effort that result in spatial and/or temporal imbalances in survey 

data may be overcome by using model-based approaches for generating survey data products. 

Model-based indices assume that the quantity of interest (e.g., biomass, age composition, fish 

condition) can be described by a statistical model with terms that explain spatio-temporal pat-

terns in the distribution of a stock. This property makes model-based indices especially well-

suited for dealing with unbalanced survey effort and shifting distributions of stocks (WKUSER2 

presentation from Paradinas). Model-based indices also allow for gears to be combined in the 

creation of a unified index, and naturally facilitate testing, development, and inclusion of new 

data collection methods in survey programs. Many of the simulation tools developed for evalu-

ation of survey change are geostatistical spatiotemporal models (Table 2.4-1). Studies that have 

compared model-based indices derived from these tools (e.g., Brodie et al. 2020; Breivik et al., 

2021; Anderson et al. 2022) found that models fit with these tools can be configured in similar 

ways to produce similar outputs, but their specific properties make implementation, interpreta-

tion, and capabilities variable depending on the specific survey to which they are applied.  

2.4.2.2 Platforms 
In the event that fishery survey vessels cannot complete a full survey, there are several options 

for alternative survey platforms that can collect the missing data. One option is to employ a co-

operative approach in which industry partners survey areas where the fishery survey vessel can-

not. For unplanned, short-term reductions in survey coverage, industry partners are generally 

well-equipped to mobilise and provide data in a rapid manner, but issues arise in the context of 

legal permissions, funding to conduct survey effort, arranging contracts, and perhaps most im-

portantly, standardisation between survey vessels and gear. For planned disruptions, differences 

in configurations and designs between the survey vessel and the industry vessel can make in-

dustry vessels better equipped to sample in challenging areas (e.g., wind farms, areas untraw-

lable to survey trawling gear). Another option that involves industry partners is direct use of 
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fishery-dependent data without changes to fishing practices. This approach presents problems 

related to selectivity, catchability, and preferential sampling, but may be useful for both planned 

and unplanned disruptions as it provides data where they would otherwise not exist. It is most 

advantageous to use these data for specific needs (e.g., compositional data) but could also be 

used for generating abundance indices (with some challenges already mentioned in TOR II). 

Fishing vessels can also be equipped with devices that allow collection of additional data beyond 

their catch to provide data that would otherwise be lost in a design change or effort reduction 

(e.g., echosounders on ships of opportunity, cameras). 

An additional option when survey effort is reduced or designs are changed is the employment 

of uncrewed systems (Chu et al., 2019; Thompson and Guihen, 2018; Sepp et al., 2022). For un-

planned reductions, uncrewed systems can be used to maintain survey coverage when and 

where it is not possible to conduct crewed surveys (e.g., De Robertis et al. 2021). For planned 

reductions, uncrewed systems may be more nimble than crewed platforms, allowing sampling 

in challenging areas (e.g., wind farms). They may also be useful for expanding survey effort in 

both spatial and temporal domains in an efficient and cost-effective manner. However, there are 

significant issues associated with uncrewed systems surveys related to the lack of biological sam-

pling associated with them. This is an especially important issue for uncrewed acoustic surveys, 

which need compositional data to scale acoustic backscatter and estimate the biomass of specific 

species and age classes. In the absence of fishery-independent compositional data, fishery-de-

pendent data could be used with its limitations in mind, but further research is needed to vali-

date this approach (see presentation by Bolser). If circumstances preclude a typical allocation of 

effort to survey vessels, further efforts to integrate and validate data collected by uncrewed sys-

tems could result in an expansion of survey effort and new streams of data that otherwise would 

not be possible in a given logistical or funding situation. 

2.4.3 Future Directions 

Specific observation methods (i.e., sensors, gears, combinations of gears) and data processing 

techniques show promise for minimising the impact of a loss of survey effort or specific type of 

data. However, significant advancements are necessary before implementation in regular fishery 

resource survey program operations. For example, environmental DNA (eDNA) sampling can 

be conducted with minimal effort and can yield insights about species composition, distribution, 

and abundance (Shelton et al. 2016; Lacoursière-Roussel et al. 2016; Rourke et al. 2022). Promising 

research in a fishery resource survey program suggests that eDNA-derived estimates of the dis-

tribution and abundance of Pacific hake (Merluccius productus) closely reflect trawl-derived es-

timates at a broad scale for the U.S. West Coast (Shelton et al. 2022). It will be necessary to work 

towards a more nuanced description of species compositions and conduct calibration experi-

ments for eDNA sampling to fully compensate for a lack of data collected by other means, but at 

present eDNA sampling could be useful for partial compensation. Other genetics-based ap-

proaches (e.g., close kin mark recapture) show promise for generating estimates of population 

size (Bravington et al. 2016; Ruzzante et al. 2019; Trenkel et al. 2022) but have different burdens 

on sampling effort than conventional surveys (e.g., focus on tissue vs. biomass sampling), which 

might be advantageous in the event of unplanned or planned reductions in survey effort.  

Broadband (i.e., frequency modulated) acoustic sampling can differentiate species more accu-

rately than is possible with analysis of single frequency (i.e., continuous wave) data (Benoit-Bird 

et al. 2020; Boswell et al. 2020; Roa et al. 2022). However, at present there are obstacles to em-

ploying broadband acoustic data to provide species composition data that are equivalent to data 

collected by other gears. These include a lack of target strength information for common species 

and a lack of reproducible and scalable methods for classifying scattering sources. When meth-

ods for processing broadband acoustic data advance, they will facilitate independent uncrewed 

Combining#_TOR_II._
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systems surveys that produce results that may be comparable to conventional acoustic surveys. 

Corroborating estimates of species composition derived through broadband methods with esti-

mates of compositional data derived from spatio-temporal models fit to available (e.g., fishery-

dependent) data has the potential to add confidence to results (presentation by Bolser). Artificial 

intelligence and machine learning approaches have the potential to facilitate scalable processing 

of broadband acoustic data (Malde et al. 2020), and will be highly beneficial to develop for pro-

cessing acoustic and optical data in general (e.g., Richards et al. 2019; Kilfoil et al. 2020; Roa et al. 

2022). If such methods are applied to data collected by automated systems deployed on fishing 

vessels (e.g., camera sampling for composition and length measurements), they can provide a 

large amount of data that could be useful for addressing gaps in survey data. For these examples 

of observation methods and data processing techniques, advancement in methodologies to ad-

dress design changes and reduction in survey effort could not only meet this need, but also even-

tually result in the provision of richer data for assessments.  

2.4.4 Accessibility of Tools to Analyse Changes to Surveys 

Simulation models, packages, code routines for producing survey indices, and other critical tools 

for the survey enterprise produce vital inputs to contemporary fisheries management. Ease of 

use, predictable outputs, and clear documentation are crucial to maintaining stakeholder trust 

and ensuring defensible scientific results. As science agencies encounter increasing instances of 

unavoidable effort reduction in their scientific surveys due to budgetary constraints, climate im-

pacts, and shifts in survey focus, it is more important than ever that technology and software 

tools meet community standards and needs.  

Fisheries researchers often find themselves in a position of having to quickly develop bespoke 

solutions to immediate problems that are then adapted and distributed for broader use beyond 

their original intent. Software development standards and best practices are widely available, 

but are not broadly adopted by fisheries practitioners. Fisheries tools are often developed by 

individuals without professional software development training, made to address a specific 

problem, distributed to other potential users without adequate documentation, and lack a plan 

for long term maintenance of the tool despite their importance and utility. However, these issues 

can be addressed by taking organisational and cultural steps towards improvements in tool ac-

cessibility and usability, tool documentation and transparency, tool checking and code review, 

and tool testing and comparison. Additionally, improvements in data governance, while beyond 

the scope of WKUSER, are key to improving the transparency and accessibility of data necessary 

to plan and evaluate the impacts of survey effort reductions on fisheries.  

We have compiled a list of recommendations for tool developers on three fronts: (1) Tool acces-

sibility and usability, (2) documentation and transparency, and (3) checking and review. 

2.4.4.1 Tool Accessibility and Usability 
An issue hampering forward progress in addressing unavoidable survey effort reductions is not 

necessarily the lack of adequate tools to assess impacts to abundance indices and resulting catch 

advice of survey reductions, but the accessibility and usability of currently available tools. A 

current challenge that is relatively easy to address is the lack of available information on the full 

suite of tools available to support assessing changes to surveys. Table 2.4-1 provides an im-

portant contribution towards filling this gap, by compiling a list of common survey tools and 

their attributes.  

1. Developers of survey tools should ensure their tools are made widely available by shar-

ing their tools and resources to a central tool repository for easy access and discovery e.g.,
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NOAA Fisheries Integrated Toolbox (https://noaa-fisheries-integrated-

toolbox.github.io); alternative or additional toolbox locations with a more international 

focus may also be considered.  

2. Useful information to include on the user interface of a tool include: the tool name, de-

scription, link to github repository or website (e.g., pkgdown page), capabilities and out-

puts from the tool, developer and contact information, maintenance information, plat-

form and build environment information (e.g., the `sessionInfo()` function in the R soft-

ware environment), run checks and level of testing, statistical and computational limita-

tions, and a description of tool diagnostics.

2.4.4.2 Tool Documentation and Transparency 
Documentation shows users how to appropriately apply tools to their situation or research ques-

tion. Thorough tool documentation should include metadata (e.g., when the tool was developed, 

by who, when it was last updated); descriptions of function or tool intended use, guides, inputs, 

and outputs; minimal reproducible examples; and case studies and vignettes. Moving towards a 

standardised layout and documentation procedure for model and tool manuals would be helpful 

to both developers and users. This procedure will help developers understand what information 

should be included and help users to readily and efficiently find the information they need to 

appropriately assess and apply the tool. As noted above, documentation should include exam-

ples of the tool in action. Often an example is provided of successful use of the tool, but addi-

tional, more nuanced examples would help users better understand operational use and capacity 

of the tool. These nuanced examples could include instances where the tool was inappropriately 

applied, where another tool would have been a better choice and why, or what unsatisfactory 

results may look like.  

1. Software tools to support surveys must have thorough and standardised documentation

to ensure users beyond the original developer can successfully utilise the tool and under-

stand results.

2. To the extent practicable, variable definitions, data and variable input formats, and data

output formats should be standardised to improve comparability between tools and en-

terprise cross-tool collaboration opportunities.

It is imperative that tools developed and distributed to users outside of the development team 

meet contemporary software development standards and best practices. Often, the development 

of software is prioritised by applied research needs and less so on meeting community standards 

for wider use. To meet this goal, fisheries researchers must have the support of program manag-

ers and leadership to maintain tools. This support can be in the form of time, training, and re-

sources for the tool developer or team to systematically improve the tool or to hire professional 

developers who can upkeep the tool. This is not often the case, whether development is con-

tracted out to professional developers (with no plan in place for maintenance), or it is necessary 

to adopt the perspective that tools are effectively valueless without helpful and intuitive docu-

mentation and documentation is an integral part of the tool development process. Many of these 

best practices for tool and package development are outlined by institutions like the ROpenSci 

(www.ropensci.org/).  

2.4.4.3 Tool Checking and Code Review 
Creating standardised and comprehensive code checking routines is imperative, as many of the 

products being used for producing survey indices and assessing the impact of survey effort re-

duction need to be professional and defendable. These products often inform catch advice and 

funding priorities and thus have major legal and economic implications. Products produced for 

these efforts should represent the best available science and be predictably applicable by anyone 

who attempts to use them.   

http://www.ropensci.org/
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Each tool or model must be assessed through test routines to ensure the product is continuing to 

produce anticipated results. These tests should be implemented through known case studies and 

unit testing packages like the testthat R package (Wickham 2011) or similar. Rigorous peer re-

view should follow guidelines from or similar to the rOpenSci code review standards, be clearly 

scheduled (e.g., each version release, annually), and should be conducted by different scientific 

team members and product developers. Scientific team members are critical for assessing if there 

are advances in science or methodology that need to be incorporated into the product. Profes-

sional product developers are trained resources that can ensure that changes in support pack-

ages, operating systems, and system preferences will not inadvertently cause the product to 

‘break’ or produce incorrect results.  

1. Each tool should have an accompanying unit testing script and follow guidelines on code

review standards.

2. Each public facing tool undergoes regular, end-to-end, peer review to make sure the tool

is performing consistently and correctly. Tools should be assessed by both researchers

who can assess the science, methodology, and outputs, and by product developers who

can ensure the durability of the product as technology and platforms change.

2.4.4.4 Tool Testing and Comparison 
With the large and ever-growing body of research, development, and tools, it is essential that 

guidelines are formulated to help users choose the most appropriate tool or model for the appli-

cation. The selection of which tool to use is largely a subjective process, skewed heavily by the 

comfort of the user with the tool being used and availability and simplicity of the model. How-

ever, little information is available on how to provide quantitative comparisons of survey tools 

and models. As noted above, some single-species comparison studies have been conducted (in-

cluding case studies presented during this workshop) that conclude with inexplicable mis-

matches in results between methods and tools.  

1. ICES should commission a broad cross-comparison study of groups of common survey

tools to validate model outputs and assumptions.

2. ICES should develop simple decision trees to support user evaluation of common groups

of survey tools.

In addition to providing additional assurance in the results and interchangeability of available 

tools, a cross-comparison study would also be invaluable towards developing guidelines for tool 

users for model and tool selection. Currently, no such generalised guidelines (e.g., decision trees 

or similar decision support tools) exist for the survey community.  
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3 Synthesis of the Workshop 

3.1 Summary of each TOR group 

3.1.1 TOR I. “Survey design for flexibility” 

Why is it important to have a flexible survey? This was the main question that established the 
need for WKUSER2 workshop in Galway, Ireland in September 2022. Simply put, fish distribu-
tion may change unpredictably in response to changing environmental and anthropogenic forc-
ings (e.g. range expansion, contraction, etc), monitoring resources may fluctuate due to budget 
reduction, vessel breakdown, and the sampling frame can also be reduced due to establishment 
of MPAs or wind farms for example. Not adapting to these changes mean obsolescence: the value 
of the survey is gradually reduced to the point where it is not worth continuing to collect the 
data. 

TOR I therefore started with creating a definition of a flexible survey: Approaches which facili-
tate multiple robust estimation options to retain the ability to acquire consistent and/or approx-
imately unbiased estimates given change in survey resources, distribution of resources and mon-
itoring access, and observation requirements.  

The group then provided short-term (just prior or during cruise, named as “tactical” – Table 
2.2-1) as well as long-term (in the planning stage, long time ahead of survey, named “strategic” 
– Table 2.2-2) recommendations for making flexible adjustments to the survey design to preserve
the continuity/comparability of the survey time series over time when facing unavoidable survey
effort changes due to i) decreased survey resources, ii) habitat expansion or contraction, or iii)
reduced sampling universe.  The flexibility was tackled from three axes i.e. combining/changing
gear, considering alternate/auxiliary observation method(s), and improving/developing estima-
tion method(s).

The main take home messages from the group were as follow: 

1. Tools (that are accessible, transparent, and reproducible) are needed to evaluate the
cost/consequences of “reduced survey effort”. But in order to evaluate, objective criteria
and prioritizations are needed.

2. These objectives and priorities should be generated together with stock assessment sci-
entists, biologists, managers, and stakeholders.

3. If changes are deemed necessary, it is best to evaluate the proposed design/sampling
changes a priori, if possible. These proposed changes (as suggested in Table 2.2-1 or
Table 2.2-2) should also be incremental, documented, with “quality control” i.e. assess
whether the objectives were achieved and the associated cost.

4. The above evaluation should also consider contingency plans in case of sudden unfore-
seeable problems.

3.1.2 TOR II: “Combining surveys, dealing with data gaps” 

One pathway to creating a flexible survey was to develop an estimation method that can combine 
various data sources – the term “data sources” is used here because data is not limited to the 
survey but could also be coming from the fishery or other sources. TOR II investigated best prac-
tices in doing so. Combining data from different surveys should start with understanding each 
survey and their sampling frame & design i.e. what “portion” of the stock each survey covers? 
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If two (or more) data sources have something in common i.e. the samples overlap in space, time, 
or biological attributes (such as depth, SST, etc), then, data could potentially be combined. How-
ever, doing so requires estimating the difference in scale between the data sources (i.e. catchabil-
ity, or selectivity ratio). These differences can be  estimated via a “paired sampling experiment” 
(where two vessels fish in parallel thus overlap in most attributes except for the treatment fac-
tor(s). Such experiments are costly but provide a straightforward way to scale the two data 
sources). Alternatively, these differences in scale can be estimated via “opportunistically paired 
sampling” (when data sources share only part of attributes). This method often estimates the 
scaling factor within the model itself but requires including covariate(s) that control for the dif-
ference in attributes between the data sources i.e. the “catchability covariate”. The group also 
recommended that data sources should always be analysed separately first to find and under-
stand any discrepancies. If differences are explainable and reasonable, then, user need to think 
about how to weight the datasets (e.g. by area coverage of the stock) or data products (i.e. index 
of abundance). Finally, one should always perform diagnostics to examine whether the com-
bined model exhibits potential issues such as: preferential sampling, parameters confounding, 
or retrospective pattern.  

However, there are situations where data sources do not have enough (or any) overlap. In that 
case, one should stop trying to combine data. Instead, they should analyse the data inde-
pendently and/or investigate experiment or changes in sampling design that may increase over-
lap between the data sources. 

3.1.3 TOR III. “Modelling and simulations” 

In this TOR, participants reviewed and identified gaps in the current best practices for using/de-
veloping simulations and modelling tools to answer questions related to the changes in survey 
effort. They did so from a practitioner point of view to avoid getting lost in the detail. 

The group first reviewed the modelling best practices (section 2.3.4). These practices can be 
largely grouped into two important considerations: model development (e.g. choice between 
single species vs. multi-species model, available and important covariates, spatial and  temporal 
scale of the covariates, etc.) and model validation and diagnostics (e.g. model convergence, pa-
rameter estimates, trustworthiness of covariance matrix, residual analysis).  

The group next reviewed current best practices in developing simulation models (section 2.3.4). 
Two major pathways of simulation were identified: resample-based (which captures all the in-
tricate structure in the data but lacks the “truth” to compare the estimates against) and model-
based (where the truth is specified but is more challenging to capture all the important factors 
and interactions affecting the population of interest and data generation process). Model-based 
simulation can further be divided into two sub-types: mechanistic model (i.e. where user explic-
itly simulate/specify the underlying mechanisms that generated the observed survey data – thus 
is very flexible but may not reflect the true data generation process) and correlative/empirical 
model (i.e. that is based on a model fit to actual data hence can better reflex the observed pattern 
but is constrained by model specifications and data availability. Such models may be limited in 
use for evaluating future conditions). The group also highlighted the importance of extending 
the simulation to evaluate the risk of survey effort reductions to achieving management and/or 
conservation objectives i.e. conducting management strategy evaluations.  

While the progress in simulations and estimation methods has been apparent (e.g. through de-
velopment of software packages; Table 2.4-1), there are still many remaining challenges. For ex-
ample: clear objectives of the survey need to be defined early in the process (see also TOR I), 
tools that can simulate and test all data streams resulting from a survey (not just indices of abun-
dance but also biological data) are needed. In addition, tools are needed for integration of 
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different data types (e.g. acoustic, eDNA that are increasingly being discussed/used to mitigate 
survey effort reduction). These new tools should also be open-source, user-friendly, and well-
documented to increase its usefulness (a discussion point that is tackled in more detail in TOR 
IV). 

3.1.4 TOR IV. “Tools and technology development” 

In this TOR, participants investigated tools, technologies, and concepts that are currently avail-
able and important when assessing the effect of effort reduction on the quality of survey deliv-
erables and advisory products. 

First, they focused on the existing tools to evaluate sampling design changes and created a table 
with R packages and other software programs that are currently available and their capabili-
ties/limitations (summarized in Table 2.4-1). Many of the currently available solutions are fo-
cused on the development of computational/statistical estimation methods capable of handling 
various “data issues”. Other tools can help with adding/changing survey “platforms” e.g. in-
stead of focusing only on survey data, they can fill in the gaps or complement the data with 
fishery dependent data, or use new technologies e.g. saildrones to collect data where it was im-
possible before. Moreover, novel types of data and data processing methods are increasingly 
being investigated/available (e.g. video, still images, broadband acoustic, artificial intelligence 
for data processing) and these can potentially be used to address the problem of “unavoidable 
survey effort” and more. 

All these new methods and tools can address many of the issues described here but there is a 
great need for standardization and making these tools accessible, reproducible, and transparent. 
We need to move away from a black-box situation as new users need to be able to fully under-
stand and control what they do. Furthermore, increasing transparency also requires that code 
documentation, testing, and examples are accessible and easily understandable to the public. 

Some institutions have started moving in this direction (e.g. NOAA fisheries integrated toolbox, 
or the TAF framework in ICES) but this is something that WKUSER2 would like to push forward 
to the national and international communities and make it the standard for the future. This also 
means that institutions/country/funding sources need to act and implement measures to develop 
a framework that can support the maintenance and updates to the available tools. Many tool 
developers might not have adequate experience with software development training to ensure 
that their tool is accessible, reproducible and transparent.  

3.2 Lessons learned on workshop conduct 

• A large number of presentations were planned for the second day of the workshop. Par-
ticipants were asked to leave time for discussion but most presentations took the full 15
minutes allocated, leaving no time for discussion. Time for discussion was only possible
because a number of presentations were retracted. Stronger guidance on time limits may
have allowed for more discussion time. Alternative ways to ask/collate questions may
also have been beneficial (e.g. online chat, flipchart etc) these questions could help the
subgroups and report writing (even if they could not be discussed in plenary).

• While all contributed presentations were informative, a more balanced representation
would have been beneficial; there was a strong focus on NOAA work and on modelling
and less on sampling design and operational issues. A better balance could have been
achieved by targeting / encouraging presentations on certain topics.

• Each of the subgroups was productive and efficient. This was largely due to the direction
provided by the subgroup leaders. They were chosen (well before the meeting) for their
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expertise on the subject but also for their skills in leadership and facilitating discussions. 
This approach contributed significantly to the success of the workshop. 

• It is difficult to facilitate meaningful remote participation. Ensuring that remote partici-
pants can see presentations, hear discussions, and ideally see the presenter and audience
is challenging. Allocating this task to a dedicated person would have been helpful but it
is a full-time task. In absence of a strong focus on remote participation it would have
been good to communicate more clearly that video links were provided mainly to allow
people to listen in (and learn), rather than actively contribute.

• COVID-19 guidelines vary by country, venue and over time. It is important to plan for
changes in guidelines and what to do if participants contract covid before, during or even
after the meeting: what actions should be taken; who should be informed and how; al-
ternative venues; remote access; support for people who are self-isolating; etc. It is also
important to inform participants of these plans and to make sure they can be contacted
at short notice (e.g. through a whatsapp group). Not all of these facets were in place and
some time was lost during the unplanned transition from an in-person to a fully remote
meeting.

3.3 Scope for further development – topics for future re-
search 

WKUSER 2 continued on the work initiated during WKUSER 1(ICES 2020) on improving the 
understanding of uncertainty associated with survey sampling processes (operational, environ-
mental & biological). WKUSER 2 provided advice on designing surveys for flexibility, methods 
for combining data and dealing with data gaps, and synthesizes best-practices as well as limita-
tions of existing frameworks to test the consequences of survey effort reductions. WKUSER 2 
also identified remaining challenges and research topics that should be considered in the future 
in the short-, mid-, and long-term.  

3.3.1 Major challenges to survey practitioners 

The WKUSER workshops identified major challenges that survey practitioners face in address-
ing the needs for maximizing survey efficiency and adapting surveys to new environments. The 
challenges include limited resources, administrative and governmental requirements specific to 
different countries, and many kinds of boundaries that prevent seamless sampling of the ecosys-
tem.  
Problems with fish moving across survey and country boundaries create logistical challenges 
because not all surveys can be easily modified due to jurisdictional issues. In these situations, it 
is important to develop international agreements to assure efficient collaboration between sur-
vey groups. Even within national borders, issues emerge when survey effort must shift into the 
jurisdiction of another organization or group. Coordination between groups is imperative in 
these situations, as difficult decisions must be made about the allocation of resources (e.g., funds, 
human capital, ship time) and standardization between surveys. The expansion into new areas 
can present a number of new logistical challenges beyond jurisdiction due to: increase or change 
of survey footprint, the need to obtain new resources, development of sampling strategies for 
new areas, collection of all required permits, etc. Developing good surveys in new areas also 
requires knowledge about the area, but since the area is new, the information about habitat and 
the distribution of species may be limited. In cases of expansion of survey into new areas, it may 
be desirable to perform initial preliminary survey(s) with the goal to inform future survey design 
for assessment purposes.  
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Many survey programs are also struggling because of a limited number of staff, which make it 
difficult to complete surveys and work on important issues necessary to modify the survey in 
response to new developments in survey science and changes in environment. Many organiza-
tions within the ICES community are set up in a way that separates data collections from assess-
ment programs. This separation is seriously hindering progress of modernizing surveys. Organ-
izations need to create mechanisms for the survey and stock assessment scientists to have pro-
ductive communication and collaboration. Survey programs that depend on chartered commer-
cial fishing vessels often face problems such as limited number of boats available from an aging 
fleet that are difficult to modify to meet survey needs. The number of research vessels is also 
limited and building research vessels takes a long time and is very costly. In addition, the crew 
on the research vessels are usually not as experienced in some of the survey methods (e.g. bottom 
trawling) as members of the fishing vessels, which can make the survey difficult or even impos-
sible to conduct on a research vessel. Further, when the skill level of crew changes between sur-
vey legs or years there could be unquantified changes in catchability.   
At the heart of the issues discussed in WKUSER2 is the decision whether to break time series and 
incorporate new technologies, sampling strategies, and change survey area or continue sampling 
the same way and account for new dynamics by changing estimation methods alone. It is diffi-
cult to make generalized recommendations as all, some, or none of these options may be prudent 
in different situations, and this decision should be made through careful deliberation between 
surveyors, assessors, managers, and stakeholders with the aid of simulation studies and field 
tests. It is important to develop frameworks for making these types of decisions, as when eco-
system dynamics, habitat types, species distributions, and survey resources change, inaction can 
have similar consequences to action on survey products and assessments.  

3.3.2 Research topics in the short-term 

• Decision trees for survey managers for different types of surveys and different issues.
• Development of universal survey analysis tools to process survey data. Assure that tools

can be used across different survey types and databases (e.g. R packages, augment exist-
ing code from researchers and make it universal for the processing survey data and/or
estimating reductions impacts). Universal survey tools will make analytical studies easier
and continue to streamline the process of QC of the survey data.

• Development of methods to evaluate importance criteria for survey locations. These cri-
teria can be determined using environmental data and information on animal distribu-
tion and abundance from the past. For example, the information on density, variance, or
spatio-temporal covariance could be used to identify consistent patterns to allow for
lower sampling in the future. The information from the past surveys can be used to allo-
cate effort relatively to the expected information contents. Adaptive sampling based on
previous data and expected distribution can help with efficient effort allocation.

• Develop methods for dealing with elimination of entire survey areas (e.g. due to area
closures to trawling, wind farms, high commercial fishing densities).

• Consider technological developments to improve the ability to collect more data with
higher accuracy and less effort (e.g. by using automated weight, length, age, and species
classification methods).

• Increase ecosystem data collection during survey for use in model-based estimation and
process studies to inform spatio-temporal models and decrease uncertainty in model-
based estimates of survey data products.

• Use simulation studies to explore causes of additional variability estimated within assess-
ment models.



ICES | WKUSER2   2023 | 85 

• Perform calibration exercises during existing surveys to test different designs using the
same gear.

• Continue exploration of model-based estimation and make comparisons with design-
based estimates.

3.3.3 Research topics in the mid-term 

• Develop methods for multispecies/multi-objective optimization, addressing tradeoffs be-
tween data types and different approaches for estimating survey data products. Develop
alternative metrics as basis for optimization, provide advice on how to agree on optimi-
zation metrics. Develop strategies for communication with stakeholders on how to bal-
ance survey objectives (e.g., focus particularly on less abundant species, environmental
information, etc.) and to agree on weights for different species and different data types
(e.g. consider developing multivariate matrix to weigh between environmental and bio-
logical objectives).

• Prepare for the ecosystem change. Conduct ecosystem process studies to inform catcha-
bility and spatial dynamics of species on seasonal level and in response to the climate
change.

• Continue working on methods to design surveys that allow for flexibility in survey effort
allocation between years and between areas to maximize information that can be ob-
tained from surveys.

• Develop methods for optimal stratification and sample allocation to achieve reduced un-
certainty from a given effort. For example, consider changing sampling density within
strata of existing surveys in response to expected changes in distributions.

• Provide advice on how to expand surveys into the new areas where species are moving
to.

• Research topics in the long-term
• Develop and test technological methods to obtain absolute or relative estimates of bio-

mass or abundance to: calibrate existing surveys, obtain estimates of survey catchability
and variation in catchability, and/or to improve outputs from existing surveys.

• Develop methods for incorporating new technologies to reduce data processing require-
ments. For example, use video surveys at some sampling locations.

• Perform studies on use of AI or other multivariate approaches to discover predictable
relationships between available ecosystem data and data products needed for assessment
and advice.

3.4 What’s next? 

WKUSER participants agreed that there is a need to continue WKUSER work to assure progress 
in modernization of the survey enterprise. The challenges and issues resolved and remaining to 
date are complex and require continuous work. The last two WKUSER meetings showed a very 
good participation rate (~ 50 people, including leading researchers from all around the world) 
and productive outputs. Therefore, WKUSER provides the necessary venue for continued re-
search coordination and cooperation to assure progress in the critical research areas as defined 
by WKUSER TORs which are also in line with the WGISDAA and EOSG missions.  
Between WKUSER 1 and 2, the focus of the workshop expanded from unavoidable survey effort 
reduction to adapting surveys to periodic effort reductions due to logistical issues and 
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implementing changes to surveys that are necessary due to many different biological and eco-
logical issues (presented above in this report). Because of this generalization of the focus of 
WKUSER, an additional recommendation is that the WKUSER should change its name in the 
future to reflect this expansion in focus.   
During the October 2022 meeting, WGISDAA confirmed their support for the next workshop 
and discussed priorities for TORs for consideration for the next edition of the workshop. It was 
recommended that future work includes continued advice on how to conduct necessary changes 
to survey, increase in understanding of the level precision (bias) of survey data products that is 
required for survey data to be useful for assessments, and expanding work into data products, 
other than indices of abundance. WGISDAA also pointed out the importance of incorporating 
new technologies into existing surveys and in starting new surveys.  
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4 Abstracts from Presentations 

Simulation tools for survey data products – Keynote presentations 

Simulation tools for survey data products present and future 

Sean Anderson (remote), Paul Regular, DFO (Canada) 

Abstract: The adage that change is the only constant presents a major challenge to standardized 
surveys of marine resources. Changing technologies, weather, budgets, and priorities frequently 
disrupt the continuity of standardized indices and complicate the provision of science advice. 
Simulation studies are frequently employed to assess the impacts of such changes. Approaches 
can be grouped into two categories: (1) mechanistic, which aim to generate a system based on 
underlying theoretical relationships, and (2) empirical, which simulate from a model that de-
scribes observed data via fitted approximations. Advances in computational tools have enabled 
the development of species distribution models that form the basis of many contemporary sim-
ulation studies. Here, we review several such tools in the context of simulating survey data prod-
ucts. For example, ‘virtualspecies’ can simulate mechanistic species distributions based on envi-
ronmental suitability; however, it lacks several complexities common in fish surveys and stock 
assessment. ‘SimSurvey’ is a semi-mechanistic tool that combines an age-structured model and 
Gaussian random fields to simulate populations that vary in space and time. A crux of such 
mechanistic models is how to condition them to reflect realistic population dynamics. One ap-
proach is through fitting related empirical models such as ‘sdmTMB’, ‘VAST’, or ‘INLA’, which 
can also be used to simulate population dynamics themselves, but lack built-in multi-stage sam-
pling tools. We review and touch on strengths and limitations of selected tools that can evaluate 
stock assessment and management consequences of simulated changes to surveys including 
‘ss3sim’, ‘SSMSE’, ‘openMSE’, and the FLR toolset. Finally, we consider future directions for sim-
ulation tools including better tools for linking empirical models to mechanistic and semi-mech-
anistic models, sampling tools for existing empirical simulation models, incorporating financial 
cost into simulation tools, improved multispecies mechanistic survey simulation tools, and tools 
for simulating survey data from species on the move under climate change. 

The importance of multivariate and seasonal dynamics in simulation designs, and 
tools to address it 

James Thorson, NOAA (USA) 

Abstract: Fisheries scientists use simulation experiments throughout their enterprise, but reliable 
inference depends upon how closely the simulation model represents real-world processes.  As 
a result, conditioning simulation models upon system observations improves inference in many 
simulation experiments.  I therefore discuss circumstances where multivariate spatio-temporal 
models are uniquely suited to evaluate alternative sampling designs and estimators.  I start by 
highlighting trait-based multispecies models, which use trait information to specify shared re-
sponses to known or latent environmental drivers, and where species complexes are represented 
by covariance in spatial dynamics.  These have been used as simulation models to optimize 
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survey designs under alternative stratification and frequency constraints, but (to my knowledge) 
have seen limited use as operating model when evaluating closed-loop management perfor-
mance.   

Despite their importance, spatial simulation models typically have little capacity to represent 
within-year dynamics.  This lack is important when evaluating new sampling designs and esti-
mators, given that these frequently involve samples occurring at different times of year.  To elab-
orate, I classify seasonal spatio-temporal models as being either implicit (where seasonality is 
represented as affecting catchability) or explicit (where density is tracked at every date, year, and 
location), and either mechanistic (where seasonal dynamics occurs via advective-diffusive-taxis 
movement) or descriptive (where seasonal patterns arise from spatially correlated variables).  I 
highlight a few practical implementations of each, and conclude by recommending greater em-
phasis on seasonal spatio-temporal simulations that condition upon available data.   

TOR I. Survey design for flexibility: Review and summarise desired 
attributes of survey design that allow for flexibility when dealing 
with changes in survey effort and need to expand survey into new 
areas of species expansion due to changes in the ecosystem. 

A Flexible Approach to Optimizing the Gulf of Alaska Groundfish Bottom Trawl Sur-
vey Design for Abundance Estimation 

Lewis Barnett, NOAA (USA). 

Abstract: Flexible and efficient survey designs are needed to mitigate problems associated with 
unavoidable fluctuations in sampling effort over time. We use simulation to evaluate the perfor-
mance of stratified random survey designs for a multispecies survey, the Gulf of Alaska (USA) 
bottom trawl groundfish survey, under alternative stratifications and sampling effort allocations 
to achieve targets for abundance index precision across species. In the new approach, we com-
bined a genetic algorithm to optimize the placement of stratum boundaries over the simulated 
data with a multivariate Bethel optimal allocation algorithm. This method minimized total sur-
vey sample size subject to target precision constraints on abundance indices for a suite of species 
of high commercial or ecological relevance. Given the proposed and status quo survey designs, 
performance metrics of bias, precision, and uncertainty in precision estimates were computed 
across repeated simulations using independent draws with observation error. To determine how 
the spatial scale of optimization may produce the most precise and accurate abundance estimates 
at the scale required for informing management decisions, we conducted the optimization at two 
spatial scales: a regional scale and the finer scale of management area. In general, newly opti-
mized survey designs at both spatial scales produced abundance estimates with similar precision 
to the status quo survey, yet also increased the accuracy of abundance estimates and both preci-
sion and accuracy of their associated variances by reducing biases present for some species. 
Overall, we found that precision targets across species could be met under the proposed optimal 
effort allocation, regardless of which species were prioritized for greater precision. We deter-
mined the proposed optimized survey is practically feasible by solving the Traveling Salesperson 
Problem to determine the optimal station order, which indicated that the distance between sta-
tions and total expected cruise duration is similar to the status quo. We conclude that the pro-
posed design is expected to improve the accuracy of abundance indices and their variances for 
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many species with no change in average effort, while also providing improved continuity in the 
face of interannual changes in effort and management priorities. 

Optimizing survey effort in ICES division 27.3.a, the Kattegat and Skagerrak 

Patrik Börjesson1, Annica de Groote2 

1Department of Aquatic Resources, Swedish University of Agricultural Sciences.  

2Department of Energy and Technology, Swedish University of Agricultural Sciences. 

Abstract: Abundance and biomass of demersal species in the Kattegat and Skagerrak are moni-
tored through several bottom trawl surveys, some of which have been carried out for decades. 
The expansion of offshore wind power and implementation of nature reserves and Natura 2000 
areas may entail limitations in which areas be monitored with bottom trawl fishing in the future. 
In addition, increased ship costs including fuel costs and budget restrictions already limit what 
can be carried out in some of these surveys. Within the project "Optimizing survey effort in ICES 
division 27.3.a”, we will evaluate the effectiveness of current and alternative survey designs, and 
look at options for combining different surveys. Initially, we will focus on the Swedish parts of 
the ongoing investigations, but we hope to expand the work to a collaboration with Norwegian 
and Danish colleagues. 

At present, seven bottom trawls surveys operate in the area on an annual basis. These include 
three internationally coordinated surveys; the International bottom trawl survey (NS-IBTS), the 
Baltic international trawl survey (BITS) and the Kattegat cod survey (CODS), and four national 
surveys; the Norwegian shrimp survey (NO-SH), the Danish sole survey (DK-SO), the Swedish 
coastal survey (COASTS) and the Swedish Skagerrak survey (SKAGS). Together these surveys 
generate data from more than 400 hauls per year, approximately corresponding to 0.01 haul per 
km2. 

The Kattegat and Skagerrak Seas were included in the NS-IBTS quarter 1 survey in the 1970s and 
the quarter 3 survey was initiated in 1991. The area is mainly fished by Sweden and in quarter 1 
a list of fixed stations are used, currently 27 hauls in Skagerrak and 19 hauls in Kattegat. The 
Swedish quarter 3 survey was following the same protocol until 2005 when the design was 
changed to a semi-random depth stratified design, but the changes has so far not been evaluated. 

In this study, we compare the depth-stratified design with the standard NS-IBTS design based 
on two hauls per ICES rectangle. We also evaluate the fixed station design to determine how 
much the different stations contribute to trends in target species abundance and indices used for 
evaluation of MSFD indicators. Ranking different stations will enable an informed reduction in 
effort if needed, and may free up ship resources that could be used to increase overlap with other 
surveys, or for one-off initiatives. 

Use of balanced sampling for a cod survey in Kattegat 

Annica de Groote1, Patrik Börjesson2 

1Department of Energy and Technology, Swedish University of Agricultural Sciences. 2Depart-
ment of Aquatic Resources, Swedish University of Agricultural Sciences. 
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Abstract: The Kattegat cod survey is a Swedish-Danish survey conducted annually since 2008 
(except 2012) in Kattegat. It is managed jointly by SLU Aqua (Department of Aquatic Resources, 
Swedish Agricultural University) and DTU Aqua (National Institute of Aquatic Resources, Tech-
nical University of Denmark). The main goal of the survey is to provide fisheries independent 
data for monitoring trends in abundance, biomass, recruitment and distribution of cod. The re-
sults are used to strengthen scientific advice on the cod stock in Kattegat. The survey design has 
remained largely unchanged since 2008, but some weaknesses with the current design are emerg-
ing and could justify a change. In this presentation, we consider an alternative to the existing 
sampling design.   

First, let’s have a brief look at the main features of the survey. The main target species is cod. 
Due to lack of a sampling frame for cod, the target population is defined as the sea area of Kat-
tegat and the number (or weight) of cod is treated as an attribute of this population. Sea area is 
converted into a finite population by use of a grid of 5×5 nmi cells placed over the area, and the 
list of all squares is used as the sampling frame. The main target variables are catch of cod by age 
class, and the parameters of interest are mainly the population totals of these variables. The pop-
ulation of squares is partitioned into five strata. In some strata, squares are selected by simple 
random sampling (SRS), and in others by independent random groups (IRG). Chartered Swedish 
and Danish commercial trawlers with scientific staff onboard collect the data. The vessels are 
free to choose a starting position and tow direction for one haul within each selected square. 
From collected data, population totals are estimated with the usual (Horvitz-Thompson, HT) 
estimator for stratified SRS.  

The present design has many strengths: i) Conversion of sea area into a finite population of 
squares makes it possible to use well-known finite population sampling and estimation methods; 
ii) the squares also ensure a spatial distribution of the hauls; iii) the use of probability sampling
to select squares provides some protection against selection bias and guarantees an “objective”
sample; iv) the stratification is likely to improve the precision of the estimators; v) the use of IRGs
in some strata facilitates investigation of potential “vessel effects” (i.e. whether reported catches
vary depending on vessel); and vi) the estimation formulae are simple, at least for stratum and
population totals. The design also has some weaknesses: i) it does not support estimation of pa-
rameters for geographical domains that cross the borders of squares, which is problematic since
there is increasing demand for domain estimates (linked to the introduction of various fishing
regulations); ii) unequal sample inclusion probabilities complicate statistical data analyses, such
as regression and time series analyses; iii) the non-probability sampling of haul locations within
large squares carries a risk of selection bias; and iv) use of IRG complicates planning and execu-
tion of the fieldwork and deviations from the plan are common.

Based on the above, the main requirements on a sampling design for the cod survey are the 
following: The design should be probability-based and make use of auxiliary variables to im-
prove precision and ensure spatial distribution of hauls; good precision should be pursued for 
cod estimates and also for estimates for other species; the design should be flexible in terms of 
estimation for different domains of study; and the design should allow simple estimation of pop-
ulation parameters, as well as statistical analyses of collected data.  

One alternative to the present sampling design is spatially balanced sampling. A sample is said 
to be “balanced” on some auxiliary variables if the HT estimates of the population totals of the 
auxiliary variables equal the known true values. In surveys of the environment, sampling units 
are likely to be spatially correlated. For instance, in a trawl survey, two hauls close to each prob-
ably produce more similar catches than two hauls far apart. Methods to distribute a sample ge-
ographically, and at the same time balance it on some auxiliary variables, are called spatially 
balanced sampling. One way of selecting a spatially balanced sample is the local pivotal method 
(LPM), which creates a strong negative correlation between inclusion indicators of units that are 
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close to each other, based on the values of some auxiliary variables. As a result, nearby units are 
unlikely to appear together in a sample. Spatially balanced sampling with LPM is used e.g. in 
the Swedish National Forest Inventory (NFI) and National Inventories of Landscapes in Sweden 
(NILS). 

As an illustration of the method, let us look at the NILS sampling design. The sampling frame 
used in that survey is a map of all land and freshwater in Sweden, plus a buffer zone. The area 
of the frame is denoted a_F and the sampling units are “tracts”, where a tract consists of 196 
circular plots ordered in a regular grid within a 1 ×1 km square. A sample of tracts is selected in 
two phases. First, a very large sample of tracts is selected from the frame by systematic sampling 
of one tract per 100 hectares, corresponding to a sampling intensity of c=1/100. Selected tracts 
that end up in the buffer zone are included in the sample if some of their plots are in the popu-
lation. In the second phase, a final sample of tracts of size n is selected from the phase one sample, 
using LPM and inclusion probabilities c-1(n/aF). It follows that the sampling intensity for the 
final sample is constant (n/aF). 

A spatially balanced design, similar to that in NILS, appears to match the sampling design re-
quirements for the cod survey. However, the method needs to be tailored to the specific condi-
tions and needs of the cod survey, e.g. appropriate sampling units must be defined (such as cir-
cular plots with 2.5 km radius), and auxiliary variables must be selected. In addition, the system-
atic sampling in phase one must be specified, since it can be conducted in different ways.  

  

Designing for change: the impact of altering sampling design and density on survey 
indices 
 

Jason Conner1, Stan Kotwicki1, Kotaro Ono2 and Lewis Barnett1 

1NOAA (USA) 

2IMR (Norway) 

Abstract: Fisheries-independent bottom trawl surveys are employed throughout the world to 
provide fisheries managers with abundance indices (AIs). Disruptions to AI time-series may oc-
cur for a myriad of reasons, including: survey logistics (e.g. vessel availability or breakdowns), 
distribution shifts (e.g. changes in the vulnerability of a fish stock to a survey), funding shortfalls 
(e.g. inability to procure vessels or staffing) and conflicts with infrastructure (e.g. active fisheries 
affecting survey sampling). Understanding the impacts of changes to sampling design and den-
sity on the accuracy and precision of AI estimates is therefore pivotal to the sustainable manage-
ment of fisheries. We present a case-study of an AI time-series of 35 years in the eastern Bering 
Sea for Atheresthes stomias (arrowtooth flounder), Gadus chalcogrammus (walleye pollock), Gadus 
macrocephalus (Pacific cod) and Limanda aspera (yellowfin sole). Using a spatio-temporal model to 
simulate distributions for each species, we evaluated 3 sampling designs (simple random, strat-
ified random and systematic grid) and 4 sampling densities. Additionally, we assessed the accu-
racy and precision of 2 alternative estimators for estimating the standard error of the mean for 
systematic sampling.   

Our findings support the sampling theory principle that systematic sampling results in higher 
precision estimates than simple random or stratified random sampling at each sampling density 
for each species. The increase in precision for systematic sampling designs, however, is sacrificed 
when borrowing the standard error estimator for random sampling, resulting in mean relative 
biases from 24% to 63%. These relative biases may be ameliorated by using either of the 2 
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alternative standard error estimators based on localized groupings of observations we evaluated. 
Our study establishes a benchmark for addressing the consequences of changes to survey sam-
pling on AIs used for fisheries stock assessments. 

 

 
Distribution of the percent relative standard error (PRSE), often referred to as the coefficient of 
variation, of simulated mean CPUE by sampling density (panel columns), grouped by SE esti-
mator (X-axis) for each of 4 species (panel rows). Survey sampling and estimators consist of sim-
ple random sampling (SRS), stratified random sampling (STR) and systematic sampling (SYS). 
Boxplots represent the estimates PRSE (N = 35,000, means labeled in black), whereas the red 
violin plots represent the distribution of the "true" PRSE for each simulation (N=350; means la-
beled in red). Note that the Y-axis is log-scale and that the distribution of "true" PRSE is the same 
for SESYS, SELO5 and SEST4 estimators because these are based on the same SYS surveys. 

 

Survey design evaluation of a new multispecies bottom trawl survey in the US Chuk-
chi Sea 
 

Zack Oyafuso, NOAA (USA) 
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Abstract: The US Chukchi Sea is an extremely dynamic area with climate change and offshore 
fishing affecting the marine ecosystem as well as the Arctic coastal communities that rely on 
healthy ecosystems. In anticipation for more frequent ecosystem monitoring in the region, it is 
urgent for there to be robust planning and research on the best means to flexibly allocate limited 
survey resources. This analysis focused on the types of bottom trawl surveys (otter and beam 
trawl) standardized by the NOAA-NMFS-AFSC and three types of survey designs: simple ran-
dom, stratified random, and systematic. First, spatiotemporal distributions for 20+ representative 
demersal fish and invertebrate taxa were fitted using the VAST R package. We then simulated 
taxon densities from the spatiotemporal distributions to evaluate design-based estimates of 
abundance and precision from the three survey designs across a range of sampling effort. Modest 
increases in precision were gained from stratifying the design when compared to a simple ran-
dom design with either a similar or decreasing level of uncertainty and bias of the precision 
estimates. There were often strong tradeoffs between the precision and bias of the systematic 
estimates of precision across species. We did not find inconsistencies in the bias of the estimated 
abundance indices across designs but sample precisions were slightly negatively biased, with 
the systematic designs being the most biased. The stratified random design provided the most 
consistent, reliable, and precise estimates of abundance indices and is likely to be the most robust 
to changes in the survey design. 

Addressing interactions between offshore wind energy development and fisheries 
independent surveys in the United States: Development of a NOAA Fisheries and 
BOEM federal survey mitigation implementation strategy for the Northeast U.S re-
gion  

Andy Lipsky, Jon Hare, Kathryn Ford, Brad Blythe, Brian Hooker, Brandon Jensen,, Lisa Pfeiffer 

NOAA, USA 

Abstract: The U.S. Department of Commerce’s National Oceanic and Atmospheric Administra-
tion (NOAA) Fisheries and the U.S. The Department of the Interior’s Bureau of Ocean Energy 
Management share a commitment to develop offshore wind energy, while protecting biodiver-
sity and promoting ocean co-use. There are many elements to achieve these goals, including mit-
igation of the impact of offshore wind energy development on NOAA Fisheries surveys. Nation-
ally, NOAA Fisheries assesses the status of approximately 450 fishery stocks, 200 marine mam-
mal stocks, and 165 threatened and endangered species. These assessments rely on more than 50 
long-term, standardized surveys, many of which have been ongoing for more than 30 years. Each 
survey uses different methods, platforms, and designs, with the goal of providing information 
on a subset of species to support sustainable management. For example, bottom trawl surveys 
provide information on bottom fishes, plankton surveys provide information on the early life 
stages of fishery species as well as ocean production (phytoplankton and zooplankton), and air-
craft and vessel visual surveys provide information on the abundance and distribution of whales, 
dolphins, and seals. Owing to the precautionary approach, increased uncertainty in the data 
originating from these surveys typically results in more restrictive management. As a result, 
NOAA Fisheries has made extensive efforts to maintain consistency in surveys over time to re-
duce uncertainty and increase accuracy and precision. Sustaining surveys with consistent sam-
pling designs/methods is an essential feature of their value, allowing understanding of the status 
and trends of managed species consistently through time. These surveys are essential for sus-
tainably managing our nation’s fisheries, promoting the protection and recovery of marine mam-
mals and endangered and threatened species, conserving coastal and marine habitats; and are 
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also critical to understanding the impacts of climate change on marine resources and marine 
ecosystems. During the environmental review of the first offshore wind energy project in U.S. 
federal waters, four impacts to NOAA Fisheries surveys were identified: 1.Preclusion of NOAA 
Fisheries sampling platforms from the wind development area due to operational and safety 
limitations; 2.Impacts on the random-stratified statistical design; 3.Alteration of benthic and pe-
lagic habitats, and airspace, requiring new designs and methods to sample new habitats; and 4. 
Reduced sampling productivity through navigation impacts of wind energy infrastructure on 
aerial and vessel surveys. For this reason, in 2021 NOAA Fisheries and BOEM committed to 
developing a federal survey mitigation implementation strategy to mitigate the impacts of off-
shore wind energy on NOAA Fisheries surveys. In Fall 2022, the final implementation strategy 
will be released. This presentation will provide an overview of the process of developing the 
strategy and outline key elements of the approach for developing, implementing, and adapting 
NOAA fisheries survey mitigation activities in response to the impacts of offshore wind devel-
opment. 

TOR II. Combining surveys, dealing with data gaps: Collate advice 
on methods to combine data from different sources, how to deal with 
data gaps and how to perform survey calibrations. 

Using spatio-temporal models to provide compositional data for acoustic surveys: 
facilitating autonomous vehicle sampling and inferences on non-target species in a 
fishery resource survey program 

Derek Bolser1*, Aaron Berger2, Dezhang Chu2, Jim Hastie2, Julia Clemons2, Lorenzo Ciannelli1 

1Cooperative Institute for Marine Resources Studies, Oregon State University 

2Northwest Fisheries Science Center, NOAA Fisheries 

*Present affiliation: Office of Science and Technology, NOAA Fisheries

Abstract: Pairing compositional (i.e., size, age) data with acoustic data is required to estimate 
fish biomass-at-age from an acoustic survey. Accordingly, considerable effort is expended to col-
lect biological samples of the species or species complex of interest in most fishery resource sur-
vey programs. The need for biological samples limits the use of acoustic data collected by alter-
native platforms (e.g., autonomous vehicles) or surveys of non-target species for generating bio-
mass-at-age indices for the stock assessment of a target species, even if the target species can 
reliably be identified in the acoustic data. However, compositional data from sources independ-
ent of the acoustic survey could be fit to spatio-temporal species distribution models and replace 
contemporaneously collected biological samples when their collection is not possible. We evalu-
ated the validity of this procedure by examining a case study with Pacific Hake (Merluccius 
productus; ‘hake’) on the U.S. West Coast. Specifically, we generated estimates of compositional 
data with a vector-autoregressive spatio-temporal (VAST) model fit to a combination of fishery-
dependent and fishery-independent data that were independent of the hake acoustic trawl (AT) 
survey. The performance of the VAST model was assessed with simulation testing and compar-
isons between VAST estimates of age composition and those from midwater trawls in the hake 
AT survey. The challenges we encountered when fitting the VAST model to a relatively rich 
dataset (e.g., data coverage, age class resolution, model stability in simulation testing) indicated 
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that this approach may not be suitable in all situations, but our model produced estimates of age 
composition that were reasonably comparable to midwater trawls (+/- 10% over the entire do-
main, +/- 2% in data-rich regions). Our approach allows us to use acoustic data collected in an 
autonomous vehicle (Saildrone) survey and a non-target (coastal pelagic species) survey to esti-
mate hake biomass-at-age, which dramatically increases the amount of data used to understand 
hake biomass distribution. Ultimately, the ability to differentiate species in the acoustic data and 
the potential for differences between survey platforms remain major hindrances to using esti-
mates derived from this approach in a stock assessment, but ongoing research is addressing these 
challenges (e.g., development of machine learning algorithms, broadband acoustics research, in-
ter-vessel comparisons). In an increasingly challenging funding environment, using spatio-tem-
poral models to provide compositional data for acoustic surveys could allow survey programs 
to maintain historical coverage or leverage acoustic data from other survey programs, ships of 
opportunity, and autonomous vehicles to expand survey coverage. 

Integrating different fishery surveys through joint modelling 

Iosu Paradinas, AZTI (Scotland) 

Abstract: In this study we focused on the use of Integrated Species Distribution Models (ISDMs). 
ISDMs are able to formally accommodate different types of data and scale proportional gear 
efficiencies. ISDMs use joint modeling to integrate information from different surveys to fit 
shared environmental, temporal and spatial effects. Conventional ISDMs assign equal weights 
to every data point, thus borrowing more information from the larger dataset. This may not al-
ways be desirable, so we investigate the potential effect of different data weightings. We illus-
trate this method first using a simulated example and a case study that combines data coming 
from a fishery independent trawl survey and a fishery dependent trammel net survey on {\it 
Solea solea}. We find that ISDMs produce better results and improve predictions, while we urge 
that ISDMs require proportional gear efficiencies across surveys. Lastly, we explore ensemble 
modelling to combine population trends, and obtain similar results given when the response 
variable and link functions are the same. 

Combining trap and video data from the US Southeast Reef Fish Survey to index reef 
fish abundance 

Nathan M. Bacheler1, Kyle W. Shertzer1, and Walter J. Bubley2

1Southeast Fisheries Science Center, US National Marine Fisheries Service, 101 Pivers Island 
Drive, Beaufort, NC 28516, USA 

2South Carolina Department of Natural Resources, 217 Fort Johnson Road, Charleston, SC 29412, 
USA 

Abstract: Numerous economically important fish species associate with reef habitats on the con-
tinental shelf of the southeast United States Atlantic coast.  These fish have been surveyed annu-
ally since 1990 using baited chevron fish traps by the Southeast Reef Fish Survey (SERFS), and 
video cameras were added to traps region-wide in 2011 to provide relative abundance infor-
mation for trap-shy species.  For many reef-associated fish species, relatively precise trap- and 
video-based indices of abundance (CVs < 0.20) are now available, but their inclusion in stock 
assessments is complicated because these indices are not independent.  We review the various 
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approaches that have attempted to combine SERFS trap and video indices of abundance for use 
in stock assessments.  One approach, developed by Gwinn et al. (2019), used a Bayesian state-
space model that incorporated paired gear observations to estimate gear-specific catchabilities 
and ultimately combine trap and video data into a single index, but this approach makes the 
strong assumption of equal selectivity between gears.  A second approach was to treat the indices 
as independent and include both into the stock assessment, and then have the weights of those 
indices sum to 1.0 in the assessment.  A strength of this approach is that selectivity does not have 
to be equal between gears.  The last approach, developed by Conn (2010), was to use a hierar-
chical model formulation where each index provides a sample of relative abundance, but the 
indices are subject to index-specific sampling and process errors.  This approach was robust to 
differences in selectivity.  The Gwinn et al. (2019) and Conn (2010) approaches are both Bayesian 
state-space models, but they differ in that the Conn (2010) approach uses annual index values 
(and can incorporate any indices, related or not), while the Gwinn et al. (2019) approach uses 
raw data and was specifically designed for paired observations.  When SERFS trap and video 
indices have been combined for use in stock assessments in the southeast United States, the most 
common approach has been Conn (2010) with the selectivities of the two gears implicitly as-
sumed to be equal.  Some recent work has investigated ways to maintain separate selectivities 
within the assessment model even when fitting to the single, combined index produced by the 
Conn (2010) approach.  

  

Attributes of the US-Canada Integrated Ecosystem and Acoustic Trawl Survey for Pa-
cific hake that contribute to successful fisheries management, ecosystem monitor-
ing, and expanded collaborations 
 

Elizabeth Phillips1, Rebecca Thomas1, Julia Clemons1, Chelsea Stanley2, and Stéphane Gauthier2,3 

1NOAA Fisheries Northwest Fisheries Science Center, Fishery Resource Analysis and Monitor-
ing Division, Seattle, WA, USA 

2Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, BC, Canada 

3Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada 

Abstract: The coast-wide Pacific hake (Merluccius productus) groundfish stock on the west coast 
of the U.S. and Canada has been monitored jointly by both countries since 1995. The Pacific 
Hake/Whiting Treaty was signed in 2003, and the joint U.S.-Canada Integrated Ecosystem and 
Acoustic Trawl Survey for Pacific hake has been led since then by scientists from Canada’s De-
partment of Fisheries and Oceans (DFO) and NOAA Fisheries Northwest Fisheries Science Cen-
ter’s (NMFS) newly formed Fisheries Engineering and Acoustic Technologies team. The coast-
wide stock assessment survey is conducted biennially in odd years, and biomass estimates are 
provided to stock assessors working under the joint treaty. An additional stock assessment sur-
vey was also conducted in 2012 due to high uncertainty in the 2009 and 2011 assessments. During 
even years, research cruises are conducted to improve and expand survey capabilities, refine 
acoustic species discrimination and classification, and address Scientific Review Group (SRG) 
requests aimed at improving the stock assessment.  

The success of this joint survey and management approach is due in large part to cooperation 
between scientists and managers from NMFS and DFO, which allows for a flexible survey design 
and greater ability to combine surveys and deal with data gaps. This includes coordinated survey 
and research planning throughout the year, open and transparent communication between 
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NMFS and DFO survey and stock assessment scientists, and built-in modularities that ensure 
complete surveys of the entire coastal Pacific hake stock.   

A key attribute of the joint U.S.-Canada Integrated Ecosystem and Acoustic Trawl Survey for 
Pacific hake is its two-vessel design, which allows for the entire area from southern California to 
Dixon Entrance, Alaska to be surveyed in approximately 3 months between June and September. 
The survey consists of 10-nmi spaced transects along most of the coast, covering ~221,000 km2, 
and the two-vessel design overcomes limitations in days-at-sea allocations for each survey team, 
which typically are not enough to cover the full geographic area in the required time window. 
By splitting the survey effort between two vessels, one led by NMFS and one led by DFO, the 
spatiotemporal resolution of the sampling, including transect spacing, is less likely to be sacri-
ficed. Furthermore, the use of two vessels allows for coordination of geographic coverage by 
vessel, including interleaving transects to increase efficiency, and flexibility in the northern and 
southern survey extent.  

The two-vessel design also provides flexibility in the event that either vessel becomes unavaila-
ble. Because both countries are committed to covering the entire geographic area without prior-
itizing work in their country's waters over the other country, scientists can effectively collaborate 
on operations to ensure survey goals are met when ship time is limited or a ship becomes una-
vailable. For example, in 2021 survey scientists from NMFS and DFO coordinated efforts to max-
imize transect resolution to ensure complete geographic coverage when DFO’s vessel became 
unavailable, resuming the original survey design after another DFO vessel was identified. Reg-
ular communication with the Joint Technical Committee ensured that changes in survey design 
and sampling resolution were acceptable for stock assessment purposes. Similarly, in both 2005 
and 2007, DFO’s vessel experienced mechanical issues, and the NMFS vessel was able to take 
over the full survey.  

A critical component of combining data from two platforms is an inter-vessel calibration (IVC) 
to ensure that the data collected by each vessel are comparable and not biased. Each time a new 
vessel is used by either country, an IVC must be performed. In 2019 the CCGS Sir John Franklin 
became the primary survey platform for DFO, although mechanical issues and the COVID pan-
demic prevented use of this vessel until 2022, when a 7-day IVC was conducted to combine data 
with NOAA Ship Bell M. Shimada. The IVC involved both vessels operating in close proximity, 
side-by-side, collecting simultaneous acoustic data from the same area to compare hake Nautical 
Area Scattering Coefficient (NASC) across multiple hake aggregation sizes and water depths. 
This involved constant communication between the vessels, and close coordination of transect 
and fishing efforts. Data sharing during the IVC and all survey effort is another important com-
ponent of the joint survey, and applies to echo sounder calibration, data acquisition at-sea, expert 
scrutinized and judged echogram data exports, and the hake biomass estimate that is provided 
to stock assessment scientists. NMFS and DFO scientists coordinate acoustic and trawl data shar-
ing throughout and after each survey, making data processing and biomass estimation efficient 
and collaborative. Furthermore, scientists from both groups have laid out clear priorities in terms 
of data requirements, making it easier to prioritize decisions related to survey effort and design 
that may impact data acquisition and quality. Open discussions about maximizing at-sea data 
collections have also led to broader ecological sampling and monitoring, including oceano-
graphic data collections during nighttime operations when trawling operations are not occur-
ring. This coordinated approach also facilitates expanded collaborations within NMFS and DFO 
programs, and with external partners that are expanding our ability to provide data to multiple 
stakeholders.  
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Cooperative rockfish research as supplemental survey effort: an early example from 
the Gulf of Alaska 

Madison Hall, Mark Zimmermann, Pete Hulson, Brad Harris, Suresh Sethi, Curry Cunningham, 
John Gauvin, Julie Bonney, Stan Kotwicki 

NOAA (USA).  

Abstract: In Alaska, groundfish bottom trawl surveys conducted by the National Marine Fisher-
ies Service (NMFS) use standardized fishing gear that is unable to sample in hard, rough, and 
rocky areas. Over the lifetime of the Gulf of Alaska (GOA) bottom trawl survey, many rough and 
rocky habitat stations have been marked as "untrawlable" and eliminated from sampling plans. 
For fish species that prefer rocky habitats, biomass estimates from the standardized surveys may 
be imprecise and/or negatively biased due to the exclusion of these areas. Even though NMFS is 
unable to sample in "untrawlable" habitats, several species that inhabit rocky habitat types are 
successfully targeted by commercial fisheries. Specifically, Pacific Ocean perch (Sebastes alutus), 
northern (S. polyspinis) and dusky (S. variabilis) rockfish are commercially important to the 
Amendment 80 catcher-processor fleet and the Kodiak-based catcher vessel trawl fleet in the 
Gulf of Alaska. Our project, the Science-Industry Rockfish Research Collaboration in Alaska 
(SIRRCA), has been working with the GOA fishing industry to build a cooperative survey that 
uses industry vessels and gear to sample in areas that are "untrawlable" to the NMFS bottom 
trawl survey. During the pilot phase of our project we have collected data on two catcher/pro-
cessor vessels and one catcher vessel, successfully sampling 34 NMFS survey stations. SIRRCA 
project tows focus on either calibrating catch per unit effort (CPUE) between vessels, or gathering 
rockfish biomass information at “untrawlable” survey stations. We plan to use SIRRCA data as 
a supplemental source of population abundance data to inform, and perhaps improve, official 
GOA rockfish stock assessments. Additionally, we are using simulations to explore the impacts 
of omitting important habitats on rockfish biomass estimate bias and CV. We believe SIRRCA’s 
cooperative science model holds great promise for fisheries science, and we hope that sharing 
our cooperative model will help the development of other cooperative fishery projects both na-
tionally and globally. 
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TOR III. Modelling and simulations: Further develop model perfor-
mance evaluation through simulations, use of auxiliary information 
to improve survey data products, including appropriate propagation 
of uncertainty. 

Model-based expansion of age, length, and prey subsampling while estimating 
equivalent multinomial sample size 

James T. Thorson, NOAA (USA) 

Abstract: Multivariate spatio-temporal models can be fitted to point-count data for multiple spe-
cies, ages, sizes, or other relevant categories.  The approach can standardize spatially unbalanced 
survey data, and estimated age-compositions are used annually as data in major stock assess-
ments using bottom-trawl surveys in the eastern and northern Bering Seas.  Here, I briefly review 
how the estimated precision for model-based abundance-at-age can be converted to an approxi-
mate multinomial sample size, for use as an upper bound on model-based age-composition 
weighting.  I also outline how this approach has been extended to estimate total predator con-
sumption based on independent surveys of predator density and stomach contents.  I use these 
examples to argue that the approximate multinomial sample size is a natural and simple metric 
for measuring the impact of effort reductions on the precision of survey products.  I conclude by 
recommending further research regarding model performance, either empirically testing how 
subsampling survey effort (either age and length subsampling, or total survey stations) affects 
either estimated precision, or simulation-based evaluation of bias and confidence interval cover-
age.   

Multivariate geostatistical models for correcting sampling bias 

Maria Grazia Pennino1, Xavier Barber2, David Conesa3, Iosu Paradinas4 Joaquín Martínez-Mi-
naya5, Antonio López-Quílez3

1Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio 
Faro, 50-52, 36390 Vigo, Spain. 

2Center of Operations Research (CIO), Universidad Miguel Hernández, 03202 Elche, Spain. 

3Department of Statistics and Operations Research, University of Valencia, 46100 Valencia, 
Spain. 

4Scottish Ocean’s Institute, University of St Andrews, St Andrews KY16 9AJ, UK. 

5Department of Applied Statistics and Operational Research, and Quality, Universitat Politecnica 
de Valencia, Valencia, 46022, Spain. 

Abstract: Information about the distribution of marine species can essentially be derived from 
two main sources, namely, fishery-independent data (scientific surveys at sea) and fishery-de-
pendent data (collection and sampling by observers in commercial vessels). Commonly scientific 
survey data are considered to be of higher quality because sampling and collection are 
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scientifically designed and standardized to ensure that estimates, as species occurrence and 
abundance, are unbiased.  

However, under certain circumstances, surveys may produce imprecise estimates of species oc-
currence and abundance, particularly for species with preferential habitats that are in strata only 
partially included in the survey sampling design or for catchability issues.  Indeed, catchability 
is influenced by diverse sources of variation such as size, time, density, and location. The spatial 
variation of catchability reflects some aspects of resource behaviour like population aggregation 
and movement, and habitat preference by developmental stage. In these cases, the spatial species 
variation is not adequately captured. This unequal survey coverage of a species distribution is 
often referred as sampling bias, sample selection bias or survey bias.  

In these cases, the quality of the estimated species distribution can be strongly affected if entire 
parts of the environmental space suitable to a species are absent or poorly represented in the 
survey dataset. However, during scientific-surveys multiple species are collected at each spatial 
location which imply not only a dependence between species at each location but also association 
between species across locations. As a result, including as many as possible of these dependence 
relationships in species distribution models (SDMs) would help us to achieve unbiased estima-
tions of occurrence and abundance. Multivariate geostatistics provides a good solution to study 
the behaviour of spatially correlated species by including data observed for each species as a 
multivariate response variable. In other words, multivariate geostatistics expands the idea of 
single-species SDMs to multi-species SDMs by implementing a Joint Species Distribution Model 
(JSDM from now on) as a model containing one spatial regression model for each species.  

As predicting in multivariate geostatistical models can be complicated, we propose the use of 
Bayesian coregionalised models for multivariate spatial data, that have proved to work well in 
applied contexts. In the case of two species, a coregionalised model basically consists of a spatial 
regression model that describes the occurrence (or the abundance) of one of the species, and 
another spatial regression model that describes the occurrence (or the abundance) of the second 
species, but conditional on the latent geographical pattern of the first one. In our fishery context, 
this would imply that species well represented in scientific surveys could be used to infer the 
spatial behaviour of those species correlated but poorly represented. 

In line with this context, here we discuss a computational efficient tool to perform inference and 
prediction in JSDMs using the Integrated Nested Laplace Approximation (INLA) and associated 
software. We illustrate the performance of the coregionalized model in species interaction sce-
narios using both simulated and real data. The simulation demonstrates the better predictive 
performance of the coregionalized model with respect to the univariate models. The case study 
focuses on the spatial distribution of a prey species, the European anchovy (Engraulis encra-
sicolus), and one of its predator species, the European hake (Merluccius merluccius). Results 
presented demonstrate how multivariate geostatistical models can show underlying patterns of 
similarities and differences in distributions between species and correct possible sampling bias. 

Quantifying the Scientific and Economic Value of Surveys to Fisheries Management 

Lee Cronin-Fine1, Meaghan Bryan2 (presenter), Stephen Kasperski2, Lewis Barnett2, and André 
E. Punt1

1University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA

2Alaska Fisheries Science Center, NOAA Fisheries, Seattle, WA
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Abstract: Stock assessments are used in fisheries management to help sustain fisheries as a val-
uable economic resource. They use multiple data sources such as catch, discard and surveys. 
Surveys are an important source of information since they are independent of fisheries and col-
lect data in a more standard scientific fashion. Climate change can impact fisheries in multiple 
such as range shifts. Studies show that climate change induced range shifts have been occurring 
to multiple species in the Bering Sea of Alaska. Surveys are important information sources that 
help track these range shifts in populations. Unfortunately, surveys are very costly to run and 
could be modified in the future. Therefore, the goal of this project is to evaluate the scientific and 
economic benefits of different survey strategies through a management strategy evaluation 
(MSE) for fisheries in the Bering Sea of Alaska. This talk will discuss assumptions within the 
MSE such as how the impact of climate change is modeled and how to evaluate the economic 
impact of different survey strategies.  

Geostatistical models limit impact of reduced survey coverage on indices of abun-
dance 

Semra Yalcin1, Paul Regular1, Sean C. Anderson2 

1Northwest Atlantic Fisheries Center, Fisheries and Oceans Canada, NL, Canada 

2Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada 

Abstract: Changes in survey effort, such as reduced survey set density, reduced survey coverage, 
or exclusion from closed areas, are common challenges that may introduce bias and noise to 
indices of population size. We evaluated the performance of different methods for computing 
indices through simulations under a range of survey conditions. We simulated the population 
abundance and distribution of two fish species across space and time with SimSurvey: cod-like 
(size-specific spatial clustering) and flatfish-like (diffuse distribution). We then applied a strati-
fied random sampling procedure for each population as a base condition. For each species, we 
reduced survey effort by decreasing set density in spatially random (e.g., budget reductions), 
spatially blocked (e.g., introduction of marine protected areas), or blocked patterns that elimi-
nated entire strata. We then calculated abundance indices using design-based and model-based 
(spatiotemporal models fit with sdmTMB) approaches under several model parameterizations. 
For each simulation scenario and analytical approach, we calculated bias, accuracy, and coverage 
to assess the estimators’ ability to recover known indices. We found that correctly specified spa-
tiotemporal models had bias, accuracy, and coverage comparable to design-based estimators in 
base conditions or under spatially random survey effort reductions. However, model-based ap-
proaches with a depth covariate (especially for the more diffuse flatfish-like species with a strong 
depth preference) outperformed design-based estimators in all measures when survey effort was 
reduced in spatially blocked patterns. This effect was most pronounced when entire strata were 
lost; in this case model-based approaches—regardless of model—outperformed the design-
based approach. Overall, model-based approaches can reduce the impact of blocked survey ef-
fort loss and therefore minimize effects on population assessment and the provision of scientific 
advice. 
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PhD project: Improving fishing survey indices though the use of spatio-temporal 
models 

Anna Stroh, ATU, Ireland 

Abstract: In the context of understanding the dynamics of fish populations, a 4-year PhD re-
search project is introduced, focused on Improving fishing survey indices through the use of 
spatio-temporal models. Four main research objectives are defined: (1) Researching survey index 
estimation with a focus on survey gaps, (2) Influence of environmental covariates on univariate 
spatio-temporal models and derived indices, (3) Multivariate spatio-temporal modelling for sur-
vey index standardization, and (4) Spatio-temporal modelling and survey design. The spatio-
temporal modelling in this project will be applied to case studies in the Celtic Sea i.e. whiting. 

GAM-based methods for abundance indices in the Bering Sea 

Siple, Margaret C., Markowitz, Emily H. Kotwicki, Stan., Thorson, James., Barnett, Lewis A. K. 

NOAA (USA) 

Abstract: Model-based indices of abundance have the potential to improve our understanding 
of the state of fisheries stocks compared to “design-based” indices of abundance based on stra-
tum-weighted catch per unit effort (CPUE). However, such design-based and model-based esti-
mates may differ among approaches and methods in terms of estimated scale (i.e., the average 
of the estimates over time) or trends (i.e., rates of change over time). The relative performance of 
spatial generalized additive models (GAMs) and spatial generalized linear mixed models 
(GLMMs, e.g., VAST)  has been evaluated using simulated data. Here we use empirical observa-
tions from the NOAA Alaska Fisheries Science Center RACE bottom trawl surveys to compare 
them to one another and the traditionally used design-based indices. These models specify dif-
ferent spatial basis functions, estimate the penalty for basis-function coefficients differently , and 
differ in how (and whether) they can fit potentially complex, nonlinear relationships in fixed 
effects. The latter will be particularly important when there are nonlinearities in how the envi-
ronment drives abundance, as some models more easily fit complex, nonlinear relationships in 
fixed effects. At this working group meeting, we will present preliminary results comparing a 
design-based approach, VAST, and GAMs, using data from pollock, yellowfin sole, and red king 
crab from the Eastern Bering Sea Bottom Trawl Survey. Specifically, we will compare predictions 
using cross-validation and the covariate effects estimated by each model-based index of abun-
dance. 

We will discuss appropriate methods for evaluating and comparing design- and model-based 
indices of abundance, including blockwise cross-validation and RMSE for the existing models, 
and the potential for developing a model comparison toolbox for evaluating design-based indi-
ces and those derived from species distribution models.  This project will ultimately compare 
model-based indices of abundance created using GAMs with those created using GLMMs and 
with “design-based” indices of abundance (stratum-weighted mean CPUE) for three survey re-
gions in Alaska (the Gulf of Alaska, Aleutian Islands, and the Bering Sea).  
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TOR IV. Tools and technology development: Describe technological 
and analytical tools (e.g. R packages, AI, video analysis, etc.) that can 
provide quantitative assessment of the effect of effort changes on the 
quality of survey deliverables and advisory products 

 

Survey Simulation Experimentation and Evaluation Project (SSEEP): evaluating the 
impacts of offshore wind to the Northeast bottom trawl surveys 
 

Angelia Miller, Gavin Fay, Philip Politis, Andrew Lipsky, Catherine Foley, Kathryn Ford, Cata-
lina Roman, Madeleine Guyant, Catherine O’Keefe 

University of Massachusetts Dartmouth (USA) 

Abstract: When considering multiple-use management effects on fisheries (e.g., interactions due 
to infrastructure siting for other marine use sectors), there is a need to understand how spatial 
impacts to monitoring programs propagate through to scientific uncertainty in fisheries govern-
ance. Planned (and in-progress) wind development areas in the Northeast US and Mid-Atlantic 
overlap extensively with the footprints of the Northeast Fisheries Science Center (NEFSC) Mul-
tispecies Bottom Trawl Surveys, which have been conducted biannually since the 1960s and form 
the basis of fishery-independent data used in stock assessments for commercial and recreation-
ally important fisheries. Current survey operations will be unable to take place near wind sites. 
Without changes to statistical design, methods of sampling, or supplemental monitoring these 
impacts to survey operations may diminish the accuracy and representativeness of data the sur-
veys produce and affect the performance of stock assessment models and stock status determi-
nations. 

The Survey Simulation Experimentation & Evaluation Project (SSEEP) will apply a spatially-ex-
plicit observation simulation model for the NEFSC Bottom Trawl Surveys to evaluate the efficacy 
and statistical properties of changes to survey design as a result of preclusion to offshore wind 
areas, and also assess the performance of alternative methods for monitoring groundfish distri-
bution, abundance, and trends. A general overview of the modeling framework is provided in 
Figure 1. The model will be able to emulate environmental drivers of fish population dynamics 
and spatial distribution, fish resource distribution, and alternative sampling strategies and de-
sign, and from this produce survey data products. Changes to the accuracy and precision of de-
rived data products will then be used to compare performance of survey design alternatives 
given the various scenarios. 
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Figure 1. A simple representation of the SSEEP modeling framework. 

Simulation scenarios for comparison include species interactions with proposed wind areas and 
the survey based on a set of species characteristics; changes to species’ productivities and distri-
butions in the presence of wind development and/or other drivers of change such as climate 
change effects; implementation timelines of wind installations and its impacts on the survey; and 
alternative sampling designs and supplemental sampling strategies to maintain the efficacy of 
the bottom trawl survey in the presence of wind development. To simulate a species distribution, 
its productivity and its availability to sampling, SSEEP will create a spatial grid that mirrors the 
NEFSC bottom trawl survey and sample simulated age-structured populations by employing 
and extending the SimSurvey R package (Regular et al. 2020). A simplified example of such a 
grid along with an area closed to sampling due to wind as represented by the blue rectangle is 
illustrated in Figure 2. Spatial allocation of survey tows may include or exclude areas depending 
on the degree to which parts of the survey area are precluded by wind. 

Figure 2. A spatial grid (left) representing the coast, continental shelf, and slope with a wind area as the blue rectangle 
representing areas unavailable to the trawl survey, which will be used to distribute and sample a population (right). 



ICES | WKUSER2   2023 | 105 

Overall, SSEEP is aimed at understanding the effects of changes in scientific monitoring as a 
result of increases in ocean use on the data used to support management advice and knowledge 
of ecosystem status. The project will also provide a framework for testing how scientific moni-
toring can adapt to meet current and future anticipated needs as part of coordinated, integrative 
approaches to ecosystem-based management of marine and fishery systems while continuing to 
support best available science. 

Reference: Regular PM, Robertson GJ, Lewis KP, Babyn J, Healey B, Mowbray F (2020) SimSur-
vey: An R package for comparing the design and analysis of surveys by simulating spatially-
correlated populations. PLoS ONE 15(5): e0232822. https://doi.org/10.1371/journal.pone.0232822 

The estimated impact of changes to otolith field-sampling and ageing effort on stock 
assessment inputs, outputs, and catch advice 

Matthew R. Siskey1,5, André E. Punt1, Peter-John F. Hulson2, Meaghan D. Bryan3, James N. Ian-
elli3, James. T. Thorson4 

1School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA 

2Auke Bay Laboratories, Alaska Fisheries Science Center, NMFS, NOAA, Seattle, WA, USA 

3Resource Ecology and Fisheries Management Division, Alaska Fisheries Science Center, NMFS, 
NOAA, Seattle, WA, USA 

4Habitat and Ecological Processes Research Program, Alaska Fisheries Science Center, NMFS, 
NOAA, Seattle, WA, USA 

5Current affiliation: Washington Department of Fish & Wildlife, Olympia, WA, USA 

Abstract: Generating accurate data for stock assessments is resource-demanding, necessitating 
periodic evaluation of survey sampling designs and potential impacts on stock assessments. We 
developed a framework for bootstrapped resampling of survey age data and calculation of input 
sample sizes as a function of among-bootstrap variance in age compositions. Data from this boot-
strap estimator were then used to evaluate the influence of alternative sampling rates and meth-
ods on uncertainty in estimates of overfishing limit (OFL) calculated using stock assessment 
models. For dusky rockfish and Pacific ocean perch, a 10% decrease in the number of tows sam-
pled upon led to a predicted 5-6% increase in the CV of OFL (log-log slope = -0.576 to -0.486), 
which was greater than the 0-2% increase from a 10% decrease in otoliths-per-tow (log-log slope 
= -0.238 to -0.029). Application of this approach across all stocks monitored in the survey of in-
terest is required to identify which stocks (i) benefit the most from increased sampling of ageing 
structures, or (ii) cost the least in terms of OFL uncertainty owing to reduced sampling.  

Evaluating the effects of survey effort reduction for the NOAA eastern Bering Sea 
bottom trawl survey 

Lukas DeFilippo, NOAA (USA). 

Abstract: Fisheries-independent surveys provide critical data products used to estimate stock 
status and inform management decisions. However, changes to sampling designs can complicate 
the interpretation of survey data, as it may be difficult to disentangle the effects of such changes 
from demographic variation in the surveyed population. Nonetheless, changes in the density 
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and allocation of sampling effort may be advantageous or unavoidable due to budgetary and 
staffing constraints, hazardous weather, habitat becoming inaccessible, and shifts in species dis-
tributions and abundance over time. While the ability to modify and redistribute sampling effort 
to address changing monitoring needs can improve survey flexibility, it is important to consider 
the consequences of such changes before their implementation. Here we present a framework 
for evaluating reductions in sampling effort that relies on existing survey time-series and simu-
lation analyses. We apply this approach to evaluate the potential removal of high density sam-
pling areas surrounding St. Matthew and the Pribilof Islands from the NOAA Alaska Fisheries 
Science Center’s eastern Bering Sea (EBS) survey grid. These high density sampling areas were 
implemented to improve monitoring of king crab stocks (Paralithodes sp.) in these areas, which 
historically supported commercial fisheries but have since declined and are seldom eligible for 
harvest. Our approach considers the effect of removing these high density sampling areas on the 
focal blue (P. platypus) and red king (P. camtschaticus) crab stocks of these areas, as well as other 
crab and groundfish species monitored by the EBS survey. Using a combination of empirical and 
simulation-driven approaches, we estimate the effects of removing these high density sampling 
areas on the precision and accuracy of survey data products, as well as stock assessment out-
comes. Our analyses provides a generic framework for evaluating tactical reductions in survey 
effort that can be readily applied to other species and regions. 

GAM for Abundance Index Standardization of Alaska Bottom Trawl Survey Data 

Markowitz, Emily H., Siple, Margaret C., Kotwicki, Stan., Thorson, James.,Barnett, Lewis A. K. 
Berg, Casper W.  

NOAA (USA) 

Abstract: Indices of abundance estimates that incorporate spatiotemporal environmental covari-
ates can improve our past, present, and future understanding of the state of fishery stocks. En-
vironmental covariates like depth, temperature, and the Bering sea cold pool extent have been 
shown to drive the distribution and abundance of marine organisms in Alaska’s subarctic seas. 
These covariates may have complex, nonlinear effects on abundance that may not be well ap-
proximated by linear models often used to produce abundance indices. Generalized additive 
models (GAMs) utilize bivariate smoothing functions to estimate nonlinear responses and may 
make it easier to avoid overfitting and better account for structural uncertainty in response mech-
anisms. This presentation focuses on 1) preliminary applications of GAMs to produce indices of 
abundance, produced with assistance from the {surveyIndex} R package, for two groundfish and 
one crab species caught in the eastern Bering sea (EBS) bottom trawl survey conducted by the 
NOAA Alaska Fisheries Science Center (AFSC) Resource Assessment and Conservation Engi-
neering (RACE) Division; and 2) efforts to adapt this approach for use for other regions, surveys, 
and species. Our example GAMs incorporate environmental covariates currently used in VAST-
based abundance indices produced at AFSC so that we can ultimately compare how environ-
mental covariates and parameterization are handled between these two model-based abundance 
indices and a design-based index. We also review secondary model testing and simulation anal-
ysis tools that can be harnessed from the {surveyIndex} package to compare and interpret indi-
ces, such as cross-validation and comparing covariate effects. We propose further extensions of 
this tool to accommodate changes in survey effort, implementation and adaptation to data and 
surveys in other regions, as well as the addition of standardized outputs that will have broad 
utility across stocks and environmental drivers. 
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Annex 2: Resolution 

2021/WK/EOSG03 The Workshop on unavoidable survey effort reduction (WKUSER2), 
chaired by Stan Kotwicki, US, Hans Gerritsen*, Ireland  Kotaro Ono*, Norway will meet in Gal-
way, Ireland on 13-17 September 2022 to: 

a) Survey design for flexibility. The workshop will review and summarise desired attri-
butes of survey design that allow for flexibility when dealing with unavoidable re-
ductions and increases in survey effort and need to expand survey into new areas of
species expansion due to changes in the ecosystem.

b) Combining surveys, dealing with data gaps. Collate advice on methods to estimate
combine data from different sources, how to deal with data gaps and how to perform
survey calibrations.

c) Modelling and simulations. Further develop model-based estimation, model validation
through simulations, use of auxiliary information to improve survey data proucts, inclu-
ding appropriate propagation of uncertainty.

d) Tools and technology development. Describe the development of methods that aim to
provide quantitative decision-making tools that describe the effects on the quality of the
survey deliverables and ultimately advisory products.

WKUSER will report to by 22nd October for the attention of ACOM/SCICOM trough EOSG and 
DSTSG. 

Supporting information: 

Priority Marine surveys are expensive and under recent budgetary, poli     tical, and pandemic as-
sociated presussures a number of decisions on survey implementation have had to be 
made at very short notice and with little opportunity to evaluate different options for ef-
fort reductions the effects of which will only become apparent in the next few years. The 
previous workshop WKUSER (2020) identified      that such changes are recurring theme 
in many monitoring agencies, and more coherent planning and a long-term response 
strategy is desirable. It is in the interest of national governments making the decisions 
and ICES using such information for their advice to have a better understanding of the 
effects on stock assessment advice and a clearer understanding of the mitigation 
measures that can be implemented to minimse the impact of such events. 
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Scientific justification Most survey programs are at one time or another asked to make substantial short term 
changes in survey effort due to budgetary constrains or need for more information. Usu-
ally these requests leave little time for planning and evaluation. There is a real need to 
develop methods that provide a better understanding of the different implementation 
options, and investigation of methods that can help to optimise available resources to 
maximise information obtained from surveys. 

Often survey scientist / managers are having to make near instantaneous decisions, the 
advisory consequences of which are poorly understood by the decision makers. Having a 
framework or a set of methods that can be applied to the specific problem is highly valu-
able together with summarisations of findings for general cases, which allow survey sci-
entist to make decisions in the absence of data or the opportunity to evaluate options 
statistically. 

Resource requirements Many different approaches to evaluate effects and survey options have been developed 
independently at different times in response to specific cases. A large part of this work is 
to research programmes which provide the main input to this group are already under-
way, and resources are already committed. The additional resource required to under-
take additional activities in the framework of this group is negligible. 

Participants Expected attendance 20–30 survey and assessment scientists along with monitoring pro-
gram managers. 

Secretariat facilities None. 

Financial No financial implications. 

Linkages to advisory com-
mittees 

There is a direct link with the advisory committee as they require knowledge on the sen-
sitivity of the advice to changes in surveys in order to provide precautionary advice when 
survey information is compromised. 

Linkages to other commit-
tees or groups 

The wporkshop should link closely back to WGISDAA which will maintain the tools / 
methods and broaden the approach over time. Work with stock assessment WG is 
thought to be essential. 

Linkages to other organiza-
tions 

The work of this group is closely aligned with similar work in FAO and in the Census of 
Marine Life Programme. 
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Annex 3: Workshop agenda 

Tuesday, September 13th – Auditorium 

Registration and introduction 

09:00 Bus from galway city centre 

09:30 Registration and coffee 

10:30 Stan Kotwicki, NOAA (USA). Opening Remarks, Terms of Reference 

10:45 Hans Gerritsen, Marine Institute (Ireland). Orientation to the Facility 

11:00 Participant introductions: What do you do? What do you hope to contribute/gain from 
WKUSER ? 

WKUSER2 – Keynote presentations (20 min talk + 10 min for questions) 

11:30 Joel Vigneau, IFREMER (France). How does WKUSER fit into EOSG and ICES? 

12:00 Elizabeth Chilton, NOAA (USA). US perspective on challenges (ecosystem and cli-
mate change, fish movements, wind farms, budgets, borders, etc)  

12:30 Sven Kupschus (remote), JRC (EU). Future of EU fisheries Surveys; which challenges 
exist, which will develop and what WKUSER2 needs to consider 

13:00 Stan Kotwicki, NOAA (USA). Lessons learned from WKUSER1 and looking forward 
to WKUSER2.  

13:30 Lunch 

Challenges and priorities 

14:30 Discussion on challenges and priorities (including examples of experiences and  out-
comes, defining extend of the problem across ICES countries) 
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14:45 Discussion on specific topics to work on during workshop: 

● Why do we need flexible surveys? 
● General approaches to combining surveys Why combine surveys?   
● Advantages of simulations and  modelling 
● How to capture true uncertainty in survey data products and  stock  assess-

ment?  
● What tools do we need to improve survey data products and advice?  
● Think about which breakout session you want to work in to tackle specific 

issues.   

15:45 Session chairs: short summary of each theme session (5 min each) 

16:00 Coffee 

Simulation tools for survey data products – Keynote presentations  

16:30 Sean Anderson (remote), Paul Regular, DFO (Canada). Simulation tools for survey 
data products present and future 

17:00 James Thorson, NOAA (USA).  The importance of multivariate and seasonal dynam-
ics in simulation designs, and tools to address it 

      

17:30 Discussion on simulation tools 

17:45 Session chairs and WK chairs. Preparation for the next days: practical issues etc. 

18:00 Bus to Galway city centre 

SOCIAL EVENT 

19:30 Dinner at the Brasserie on the Corner, 25 Eglinton Street, Galway 

 

Wednesday September 14th Contributed talks – Auditorium 

9:00 Bus from Galway city centre 

TOR I. Survey design for flexibility: Review and summarise desired attributes of survey de-
sign that allow for flexibility when dealing with changes in survey effort and need to expand 
survey into new areas of species expansion due to changes in the ecosystem. 
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9:30 Lewis Barnett, NOAA (USA). Spatiotemporal models and optimization approaches 
to the design of multispecies surveys. 

9:45 Patrik Börjesson,  SLU (Sweden). Optimising survey effort in 3a 

10:00 Annica De Groote, SLU (Sweden). Improving the sampling design of a groundfish 
survey: a case study from ICES division 27.3.a 

10:15 Jason Conner, NOAA (USA). Improving design-based error estimates for systematic 
surveys and implications for model-based estimates  

10:30 Zack Oyafuso, NOAA (USA). Survey design evaluation of a new multispecies bottom 
trawl survey in the US Chukchi Sea. 

10:45 Andy Lipsky, NOAA (USA). Addressing the scientific challenges of offshore wind 
development in the US. 

11:00 Coffee 

11:30 Philip Politis, NWFSC. NOAA (USA). Multispecies bottom trawl survey: overview 
and impacts of offshore wind development. 

TOR II. Combining surveys, dealing with data gaps: Collate advice on methods to combine 
data from different sources, how to deal with data gaps and how to perform survey calibra-
tions. 

11:45 Derek Bolser, OSU (USA). Using spatio-temporal models to provide compositional 
data for acoustic surveys: facilitating autonomous vehicle sampling and inferences on 
non-target species in a fishery resource survey program 

12:00 Iosu Paradinas, AZTI (Scotland). Integrating different fishery surveys through joint 
modelling 

12:15 Nathan Bacheler, NOAA (USA). Combining trap and video data from the US South-
east Reef Fish Survey to index reef fish abundance 

12:30 Elisabeth Phillips (remote), NOAA (USA). Attributes of the US-Canada Integrated 
Ecosystem and Acoustic Trawl Survey for Pacific hake that contribute to successful 
fisheries management, ecosystem monitoring, and expanded collaborations 
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12:45 Madison Hall, NOAA (USA). Cooperative rockfish research as supplemental survey 
effort: an early example from the Gulf of Alaska 

Julia Clemons (remote), NOAA (USA). Efforts to integrate transboundary stock as-
sessment surveys in the California Current Ecosystem by 2025 

 

Thursday September 15th – plenary then subgroup work in break-
out rooms 

9:00 Bus from galway city centre 

9:30 Discussion, formulating specific topics for sub-working groups. Dividing into sub-
groups 

10:00 Work in subgroups 

11:00 Coffee 

11:30 Work in subgroups 

13:30 Lunch 

14:30 Work in subgroups 

16:00 Coffee 

16:30 Work in subgroups 

18:00 Bus to Galway city centre 

 

Friday September 16th - subgroup work, presentations, report writ-
ing 

9:00 Bus from galway city centre 

9:30 Subgroups presentations, discussion 

11:00 Coffee 
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11:30 Work in subgroups, subgroup report drafting 

13:30 Lunch 

14:30 Subgroup report drafting 

16:00 Coffee 

18:00 Bus to Galway city centre 

Saturday September 17th - synopsis & report writing 

9:00 Bus from galway city centre 

9:30 Kotaro Ono. Plenary: Synopsis: What did we learn and where do we  go from here?  

10:15 Stan Kotwicki. Challenges and priorities remaining. What’s next, practical matters? 

11:00 Coffee 

11:30 Closing remarks 

12:00 Chairs meeting and writing report 

13:00 Bus to Galway city centre 
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