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Abstract: Cooking oil fumes are full of dangerous chemicals that are bad for human health. Volatile
organic compounds (VOCs) in cooking oil fumes are not only emitted in the form of gas but may
also accumulate with other substances in oil fumes and form particulate matter emitted into the
atmosphere. Different forms of VOCs can enter different regions of the human body and have varying
effects on health. This paper investigated the VOC emission types found in some cooking fumes. The
findings demonstrate that organic contaminants from edible oils were released as gas and particle
matter, with gas being the predominant component. The fraction of gaseous VOCs steadily declined
as oil temperature rose, whereas the proportion of VOCs released as particulate matter gradually rose.
It is possible to assume that the increase in oil fume with temperature was caused by the original oil’s
components volatilizing more frequently under the influence of vapor pressure and that chemical
reactions were not the primary cause of oil fume creation.

Keywords: cooking oil fume; VOCs; distribution form; GC-MS

1. Introduction

The fumes emitted from heating vegetable oils contain a large amount of volatile
organic compounds (VOCs), some of which have been linked to cancer, including polycyclic
aromatic hydrocarbons (PAHs), aromatic amines, nitro-polycyclic aromatic hydrocarbons,
etc. [1–6]. Long-term exposure to cooking emissions was linked to kidney damage [7],
diseases of female reproductive organs [8,9], decreased lung functions [10,11], and also
lung cancer among non-smoker women [12–14], according to epidemiological research.
VOCs from cooking oils may be released as gases or particles [15,16], which can have a
variety of health effects on different regions of the body [17]. In order to comprehend the
impact of cooking fumes on human health and to build the groundwork for future studies
on VOC exposure in the human body, it is necessary to analyze the components of VOCs in
various emission forms.

Cooking methods are indicated by the temperature of the oil, and as the temperature
of the oil rises, so does the rate of VOC emission [18]. When See and Balasubramanian [19]
investigated four different cooking techniques, they discovered that deep-frying produced
the most chemical components and Particulate Matter 2.5 (PM2.5), followed by stir-frying,
boiling, and steaming. According to Kabir and Kim’s research [20], stir-frying emits
3–5 times as many volatile organic compounds (VOCs) as deep-frying.

Another key element influencing the emission of VOCs is the kind of oil. Based on
GC-MS, He et al. [21] investigated the chemical makeup of VOCs released by vapors from
cooking oil. They discovered that aldehydes, ketones, and alkanes dominated the gas-phase
VOCs released from five common vegetable oils. The sequence of the VOC concentrations
at 260 ◦C is olive oil > peanut oil > sunflower oil > soybean oil > blending oil. Fatty
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acids were discovered to be the primary constituents of particle-phase VOCs released from
various vegetable oils in the research of particle-phase VOC composition [22–24]. Different
vegetable oils generate particle-phase VOCs in the following order: olive > peanut > canola
> soybean > sunflower [25,26].

All known studies have evaluated the VOC emissions from cooking oils either in
the gas phase or the particle phase, while the phase distribution of VOCs under various
conditions has not yet been investigated. The emission types of three common vegetable
oils (canola, sunflower, and corn oils) during the heating process were studied in this study.
Controlling the oil temperature with relevant literature allowed for the simulation of the
steaming, frying, and deep-frying processes. The distribution of VOC emission and the
impact of oil product and oil temperature on the distribution of VOCs were investigated
using GC-MS analysis of the collected oil fume samples.

Additionally, the health risks of the main cooking pollutants (benzene, dichloromethane,
and trichloromethane) of various oils at various temperatures were evaluated. The find-
ings, particularly the health risk analysis under different circumstances, will significantly
advance the field of health assessment research.

2. Materials and Methods
2.1. Experimental Materials and Apparatus
2.1.1. Experimental Materials

The following vegetable oils that are commonly consumed by citizens were chosen:
pressed canola oil, pressed first-class sunflower seed oil, and corn germ oil.

2.1.2. Experimental Apparatus

The main instruments include GC-MS (Thermo Scientific ISQ 1300, Waltham, MA,
USA), a cascade impactor, a gas flowmeter (Alicat Scientific, Tucson, AZ, USA), a heating
device (ceramic heating plate with temperature controller, relay, and stainless-steel oil cup),
an electric muffle furnace (SX-G04133), and a 0.9 m × 0.7 m × 1.6 m fume hood. The
schematic illustration of the experimental apparatus is shown in Figure 1.
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2.2. Sampling and Analysis Method
2.2.1. Sample Collection

Quartz filter paper was used in this experiment to collect PM10 and PM2.5 from
cooking odors. Prior to sampling, the quartz filter paper was placed in a muffle furnace and



Int. J. Environ. Res. Public Health 2023, 20, 1796 3 of 12

burned for 4 h to eliminate organic materials. The muffle furnace was heated as follows:
the temperature was maintained at 150 ◦C for one hour, then increased to 300 ◦C for two
hours, and finally to 450 ◦C for one hour.

The sampling was performed in a fume hood. A ceramic heating plate with a tempera-
ture controller was used to heat 20 milliliters of vegetable oil to 130 ◦C, 190 ◦C, and 270 ◦C,
respectively. The sample pump was turned on for air extraction after the oil temperature
had stabilized. Particles larger than 10 µm and 2.5 µm were collected on quartz filter sheets
in the cascade impactor for 15 min at a flow rate of 28.3 L/min. The oil fume was diverted
partially into the gas-washing bottle after passing through the cascade impactor to absorb
gas-phase VOCs with acetone. A flow meter was used to control the flow rate of the oil
fume through the gas-washing bottle at 0.1 L/min. Parallel samples were made for each
experimental state during the test.

2.2.2. Sample Analysis

Organic matter in particles on quartz filter paper was extracted for 15 min using
ultrasonic oscillation with a 5 mL acetone solution. A 1 mL supernatant solution sample
was obtained and kept in the GC-MS injection container after shaking and standing still.
The gas-phase VOC sample was obtained straight from the washing gas bottle (1 mL
solution) and placed into the GC-MS injection bottle.

The temperature of the chromatographic column was raised from 40 ◦C to 250 ◦C
at a rate of 10 ◦C/min during the GC-MS analysis and was sustained for 0.5 min (total
time was 21.5 min). The scanning range for mass spectrometry was 45 m/z to 350 m/z.
The gathered samples were examined one at a time using Thermo Xcalibur software
(Thermo Scientific Xcalibur 4.0.27.10, Thermo Fisher Scientific Inc., Waltham, MA, USA).
The retention time was used to determine the chromatographic peaks after determining the
effective chromatographic peaks in each spectrogram by adjusting the parameters of peak
morphologies.

VOCs in the oil fume were quantified using the area normalization method and
toluene equivalent conversion [21]. The formula for calculating the concentration of VOCs
components was:

ci =
ni × M
V × ET

× 273 + T
273 + T0

(1)

where ci is the concentration of each component of VOCs (µg/m3); ni is the molar number
of each component of VOCs; M is the molar mass of toluene (92.14 µg/µmol); V is the
sampling flow rate (L/min), taking as 28.3 for calculating the concentration of particulate
matter and 0.1 for calculating the gas-phase VOCs. ET is the sampling time (15 min). T
is the temperature of the oil fume, that is, the heating temperature of cooking oil (130 ◦C,
190 ◦C, and 270 ◦C, respectively). T0 is the temperature at standard state (20 ◦C).

3. Results
3.1. Composition of Oil Fume Emission

The collected samples were analyzed one by one with the help of Thermo Xcalibur
software. After identifying the effective chromatographic peaks in each spectrogram
by setting the parameters of peak shapes, the chromatographic peaks were determined
according to the retention time. Figure 2 showed n-hexadecanoic acid identified from
gas-phase samples from canola oil heated at 130 ◦C with a retention time of 24.70 min.
Compared with the NIST database, the matching degree was 60.62%. The major detected
substances in the fumes of the three oils are shown in Table 1.
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The detected components of oil fumes in this study were similar to those found in
earlier research. For example, Fang et al. extracted the volatile components of fumes
from different seed oils and found that they mainly contained aldehydes and alcohols [27].
Sun et al. collected and analyzed VOCs from home-cooked dishes in various regions
and found that alkanes had a high content, ranging from 33% to 71% [28]. Peng et al.
pointed out that kitchen smoke contains acids, aldehydes, alcohols, and polycyclic aromatic
hydrocarbons [29].

3.2. Rate of Oil Fume Emission

The VOC emissions of edible oil depend on the kind and temperature of the oil. As
shown in Figure 3, the three types of edible oils released VOC concentrations that fluctuated
with oil temperature. The data ranges of data were shown in Figure 3. The fume emission
of three oils increased by roughly 20–30% when the oil temperature rose from 130 ◦C to
270 ◦C. The VOCs content of the corn oil emission was the least compared to the other two
types of edible oils, and it was also the least variable at different temperatures. According
to this result, corn oil is more suitable for high-temperature cooking, such as stir-frying and
deep-frying.
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Figure 3. Emission concentrations of three vegetable oils at different temperatures.

After a temperature increase, the fume emission may increase due to physical, chem-
ical, or a mixture of both types of change. If it is due to physical changes, the vapor
pressure of the various components in the liquid oil rises with temperature, increasing the
emission. If it is due to chemical transformation, something new is formed. Unsaturated
fatty acid triglyceride could decompose during the heating process, producing free fatty
acid, free glycerol, glycerol monoester, and diglycerol [26]. Free fatty acids degrade at high
temperatures, and the rate of decomposition increases as the temperature of the oil rises,
accelerating the generation of VOCs [30].

3.3. Emitting Forms of Oil Fume

The influence of oil temperature on the distribution of VOCs emission form of three
vegetable oils is shown in Figure 4. The VOC emission types of three vegetable oils were
distributed consistently. The major form of VOC emission was the gas phase, accounting
for 98–99% of total emissions, while the proportions of PM10 and PM2.5 were roughly
equal. Furthermore, as the oil temperature increased from 130 ◦C to 190 ◦C, the distribution
of VOCs emission form was nearly uniform. However, when the oil temperature was raised
from 190 ◦C to 270 ◦C, the amount of gas-phase VOCs emitted by canola, sunflower, and
corn oils was reduced by 0.9%, 0.6%, and 1.3%, respectively. Both the relative proportions
of PM10 and PM2.5 rose, with PM2.5 growing at a somewhat faster rate than PM10.
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The increase in granular fume at high temperatures could be due to the release and
coagulation of more components with higher molecular weights and boiling points, or
it could be due to the formation of new macromolecules, which must be determined by
analyzing the specific components in fume.

3.4. Changes in the Component Ratio of Oil Fume

The boiling temperatures and volatilities of VOC components are complex. As a
result, the distribution of VOC components emission form varies substantially with oil
temperature. The composition and distribution of VOCs in three different types of cooking
oil were investigated. The major components of cooking VOCs were discovered to be
acids and alcohols. The other components, which included a few aldehydes, benzenes,
and unidentified oxidation products, accounted for a minor amount. Figure 5 depicts
fluctuations in the total quantities and relative proportions of alcohols, acids, and other
compounds exhaled by the three vegetable oils at different oil temperatures. In general,
acids were the predominant constituents of cooking VOCs, but the quantity and form
distribution of acids in total VOCs vary with oil type and heating temperature.
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As the principal pollutant in canola oil fume VOCs, the rate and form of acid re-
lease were obviously affected by temperature. The overall concentration of acid in VOCs
from canola oil rose with the increasing oil temperature, from 72.1 mg/m3 at 130 ◦C to
88.4 mg/m3 at 270 ◦C. When the oil temperature was less than 190 ◦C, the amount of
acid in PM10, PM2.5, and gas pollutants were less impacted by temperature fluctuations,
which ranged from 31% to 33%, 39% to 40%, and 69% to 74%, respectively. When the
temperature of the oil increased from 190 ◦C to 270 ◦C, the relative fraction of acids in
PM10 and PM2.5 increased dramatically, reaching 71% and 74%, respectively, exceeding
the amount of gas-phase pollutants (69%). The quantities of hexanoic acid, heptanoic acid,
octanoic acid, and nonanoic acid, with boiling points of 205 ◦C, 223 ◦C, 250 ◦C, and 255 ◦C,
respectively, in PM10 and PM2.5 collected at 270 ◦C were considerably greater than those
collected at 130 ◦C and 190 ◦C, according to GC-MS analysis of oil fume. When the oil
temperature did not approach the boiling temperatures of the alkanes, it was supposed
that just a small portion of the alkanes collected with other components in the oil fume to
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form particles and were ejected into the atmosphere. When the oil temperature reached
the boiling temperatures of alkanes, a high number of alkanes volatilized, increasing the
possibility of collision between diverse compounds in the oil fume, resulting in a significant
rise in the relative proportion of acids in PM10 and PM2.5.

Furthermore, temperature affected the concentration of alcohols in canola oil fume, but
the ratio of alcohols in pollutants did not change correspondingly with temperature. The
overall concentration of alcohols in the canola oil fume increased from 18.5 to 25.7 mg/m3

as the oil temperature increased from 130 ◦C to 270 ◦C, while the total concentration of
other types increased from 7.0 to 13.4 mg/m3. When the oil temperature increased from
130 ◦C to 190 ◦C, the proportion of alcohols and other organic compounds in the three types
of emission forms barely altered. The proportion of fatty acids increased significantly when
the oil temperature climbed from 190 ◦C to 270 ◦C due to the volatilization and breakdown
effect. As a result, the fraction of alcohols and other organic molecules was reduced.

Sunflower oil and corn oil’s VOC variations with temperature were comparable to
those of canola oil. One distinction was that compared to canola oil (7–10%) and corn
oil (8–9%), sunflower oil had a larger relative fraction of other chemicals in gas-phase
pollutants (21–28%). The gas-phase VOCs released by sunflower oil may contain more
dangerous substances since other products from the oxidative breakdown of vegetable oil
contained small amounts of aldehydes, benzenes, and other harmful molecules.

PM2.5, PM10, and the gas phase of the fumes were taken as the determining factors,
and the relative content of alcohol and acid of all three oils was compared through single-
factor analysis of variance (ANOVA). The results are shown in Figure 6. It can be seen
that the significance levels of alcohol and acid comparison between PM2.5 and PM10 are
0.16187 and 0.69848, respectively, indicating that the relative content of alcohol and acid in
large and small particle size particles is basically the same. In addition, the significance
levels of alcohol and acid comparison between PM2.5 and gas phase are 0.00244 and
0.00321, respectively, and the significance levels of alcohol and acid comparison between
PM10 and gas phase are 0.00003 and 0.00066, respectively, all of which are less than 0.01,
indicating that the content of alcohol and acid in gas phase fumes is significantly higher
than in particle phase fumes. This suggests that various impurities in oil, including various
non-volatile components, can also be emitted in the form of condensation with alcohol and
acid components.
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3.5. Carcinogenicity of Gaseous Oil Fume

According to the US Environmental Protection Agency’s (US EPA) list of toxic pol-
lutants in the atmosphere, many toxic volatile organic compounds were detected in our
experiment, primarily methylene chloride, trichloromethane, and benzene. As a result,
long-term exposure to the population’s cooking fume environment increases the risk of
a variety of cancers. According to the Risk Assessment Information System (RAIS), the
carcinogenic toxic effects of pollutants in oil fumes are classified and their carcinogenic
risks are assessed.
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The following formula can be used to calculate lifetime cancer risk (LCR) [31]:

LCR = CDI × SF (2)

where LCR is the lifetime cancer risk (dimensionless); SF is the carcinogenic slope factor of
pollutants (kg/mg); and CDI is the chronic daily intake of carcinogenic pollutants (mg/kg).

The following formula is used to calculate CDI of toxic exposure:

CDI =
C × IR × t × EF × ED

BW × AT
(3)

where, C denotes the concentration of atmospheric pollutants obtained from monitoring
results (mg/m3); IR denotes the adult respiration rate (1.3 m3/h); t denotes the daily expo-
sure time (h); EF denotes the exposure frequency (250 day/year, upper limit); ED denotes
the age of exposure (25 years); BW denotes the body weight (65 kg); AT denotes the age of
cumulative effect (25 years for non-carcinogenic effect; 70 years for carcinogenic effect).

The LCR of dichloromethane, trichloromethane, and benzene in the three oils at
various temperatures is shown in Figure 7. According to the information in the figure:
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The LCR values of the three oils in gaseous VOCs all exceeded 10−4, indicating a high
potential carcinogenic risk. The canola and corn oils both had LCRs that exceeded the
limit value in particulate matter, whereas the sunflower oil had LCRs that were within the
potential risk range (10−6–10−4).
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The carcinogenic risk of various carcinogens in gaseous and particulate fume was not
in the same order. Dichloromethane, trichloromethane, and benzene were the LCR sequence
of gaseous VOCs and particulate matter in the canola oil. Trichloromethane had the highest
LCR in gaseous VOCs of the sunflower oil, followed by dichloromethane and benzene.
The particulate matter LCR order of the sunflower oil was benzene, trichloromethane, and
dichloromethane. Dichloromethane had the largest LCR of the gaseous VOCs of the corn
oil, followed by trichloromethane and benzene. The temperature had a significant impact
on the LCR of corn oil particles, and there was no clear hierarchy among the carcinogens.

The LCR of benzene, trichloromethane, and dichloromethane in various cooking oil
fume increased as oil temperature rose, with dichloromethane being more temperature-
dependent. The LCR of methylene chloride did not exceed the limit when canola oil
particles were heated to 130 ◦C, but it did so when the temperature was raised to 270 ◦C.
The LCR of methylene chloride did not exceed the limit when corn oil particles were heated
to 130 ◦C, but it did so when the temperature was raised to 190 ◦C.

The finding of carcinogenic VOCs was in line with earlier studies. For instance, Linx-
uan Li et al. examined the carcinogenic risk range of volatile organic compounds of canola
in the state of particulate matter and demonstrated that benzene and dichloromethane
were the primary ones [16]. J.E.C. Lerner et al. conducted a cancer risk study of volatile
organic compounds trichloromethane and benzene in electromechanical maintenance and
automotive painting centers and showed that the LCR of benzene and trichloromethane
exceeded the limit value and had cancer risk [32]. Zhang Dingchao et al. studied the health
risks of benzene and other substances in volatile organic compounds in commonly used
oils (rapeseed, soybean, peanuts, corn, and lard), indicating that benzene has a high risk
of cancer in cooking [33]. This study expands on earlier research by ranking the carcino-
genic risks of various carcinogens in gaseous and particulate oil fumes in order to more
thoroughly assess fume’s carcinogenicity.

4. Conclusions

The phase distribution, composition of each phase, and carcinogenic risk of oil fumes
were studied through experimentation. It was found that the majority of the organic
pollutants that were released during the heating of the edible oils were in the gaseous
state. The amount of VOCs in gas steadily declined as oil temperature rose, whereas the
amount of VOCs released as particulate matter gradually increased. VOCs in the gas phase
and particle phase have different transmission abilities in the air. Therefore, compared to
just analyzing the composition of oil fumes in previous studies, this study provides more
valuable guidance for the VOC diffusion and health concern prediction of oil fumes. The
results of this study were obtained from the procedure of heating oil. Food components
may have varied effects during different cooking techniques; thus, further research is
required since the phase analysis of the VOCs produced by oil is more complicated.
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