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Summary
The research projects presented in this thesis are centered around
T cell specificity. T cells play a crucial role in maintaining health
by eliminating intruding pathogens and malignant cell changes.
This ability is granted via the T cell receptor (TCR), which in-
teracts with peptides presented by MHC molecules on the surface
of host cells. To ensure broad protection against any potential
pathogen, the immune system has evolved to generate highly di-
verse TCRs which may recognize a wide range of targets. How-
ever, such a complex system is inevitably very challenging to
study. Nevertheless, this thesis has been dedicated to investigate
T cell specificity via popular experimental methods and develop
immunoinformatic tools and analyses to enhance the yield of such
methods.

A commonly used method for assaying T cell specificity is peptide-
MHC (pMHC) multimer staining, which procures the distribution
of T cells responding to given peptides of a panel. This method
was applied to map SARS-CoV-2 epitopes across cohorts of in-
fected and healthy individuals, in the first project of this thesis.
We identified several immunodominant epitopes even in healthy
individuals, which suggest strong influence of cross-reactive T cells
primed for other, perhaps similar, antigens.

However, multimer staining only provides shallow insight into the
complexity of TCR recognition of pMHCs. In order to truly under-
stand the rules that govern T cell specificity, we employed single-
cell sequencing, enabling the capture of TCRαβ-chains, the cog-
nate pMHC provided by DNA-barcoded multimers, and hashing
antibodies in the second project of the thesis. As single-cell data
is polluted with multiple confounding factors, the key aim was to
develop a method to efficiently remove noise and retain accurate
pairing of TCR-pMHC.

In the third and final project, we benchmarked the previous project
against a recently released method to learn the advantages and
disadvantages of each approach. The two methods distinctively
differ by their prioritization between specificity and sensitivity of
detecting TCR-pMHC pairs.
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Resumé
Studierne præsenteret i denne afhandling, er alle centreret omkring
T celle specificitet. T celler spiller en afgørende rolle i forbindelse
med opretholdelsen af den raske krop ved at eliminere indtræn-
gende pathogener og ondartede celleforandringer. Evnen til dette
er givet via T cellens receptor (TCR), som interagerer med pep-
tider præsenteret af MHC molekyler på overfladen af kroppens
celler. For at sikre bred beskyttelse mod enhver given pathogen,
har immunforsvaret udviklet sig til at kunne generere mange forskel-
ligartede T celle receptorer, som hver især kan genkende en bred
vifte af peptider. Kompleksiteten af dette system gør dog også
studiet heraf mere problematisk. Ikke desto mindre er denne
afhandling dedikeret til at undersøge T celle specificitet ved hjælp
af populære eksperimentelle metoder samt at udvikle immunoin-
formatiske værktøjer og analyser for at fremme udbyttet af så-
danne metoder.

En gængs metode til at måle T celle specificitet er peptid-MHC
(pMHC) multimer farvning, hvilket tilvejebringer fordelingen af T
celler, som responderer på et givent peptid. Denne metode blev
anvendt til at kortlægge SARS-CoV-2 epitoper på tværs af ko-
horter af inficerede og raske individer, i det første projekt. Vi
identificerede immunodominante epitoper i self raske individer,
hvilket indikerer tilstedeværelsen af krydsreaktive T celler, som
oprindeligt blev aktiveret mod et andet og måske lignende anti-
gen.

Dog giver multimer farvning kun et overfladisk indblik i komplek-
siteten af T celle receptor genkendelsen af en pMHC. For i sand-
hed at forstå mekanismerne bag T celle specificitet, benyttede vi
os af enkelt-celle sekventering, som muliggør detektion af TCRαβ-
kæder, et kognat pMHC, og celle hashing vha. antistoffer i det
andet projekt. Fordi enkelt-celle data er forurenet pga. en række
egenskaber ved teknikken, var hovedopgaven at udvikle en metode
to effektivt at fjerne støj og bevare korrekte observationer af TCR-
pMHC.

I det tredje og sidste projekt testede vi den førnævnte metode
mod en nyligt publiceret metode for at forstå fordele og ulemper
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ved begge. De to metoder viste sig at være meget forskellige ved
hver især at prioritere modsatrettet i forhold til balancen mellem
specificitet og sensitivitet når man måler TCR-pMHC parring.
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Introduction

Our immune system is a vast, intricate and sensitive interplay
between different types of specialized cells and molecules of var-
ious functions. It keeps a delicate balance to rapidly eliminate
pathogenic infections and malfunctioning cells without damaging
healthy tissue [1]. It does so by recognizing both broad and highly
specific patterns of foreignness. This task is delegated between the
innate and the adaptive immune system. T cells, which are part of
the adaptive arm, recognize their target via their T cell receptor
(TCR). The receptor interacts with peptides presented on the Ma-
jor Histocompatibility Complex (MHC) located on the cell surface
[2, 3]. Upon interacting with a cognate peptide-MHC (pMHC)
an immune response can be initiated. If the T cell belonged to
the subclass of CD8+ T cells, the eventual effect of the response
would be cytotoxic killing [4] of cells presenting that specific pep-
tide, coined an epitope. The adaptive feature resides in T cells
being individually selected based on their specificity towards the
given set of MHC presented epitopes. Thus, a T cell repertoire is
determined by the history of pathogenic encounters and malignant
cell transformations, resulting in both unique and highly diverse
repertoires between individuals. Adding to the repertoire diversity
is the feature of genetic polymorphism of the MHC, ensuring differ-
ent peptides being presented from the same pathogen by different
individuals. The great diversity makes it challenging to accurately
describe T cell recognition, both in terms of determining the pep-
tide specificity as well as understanding the structural features
that constitutes the TCR interaction with its epitope. Gaining
better understanding of the TCR-pMHC interaction and cohesion
would aid monitoring of infectious disease progression and pave
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the way for improved T cell based immunotherapy and rational
design of vaccines [5].

Scope of the thesis
The identification of T cell epitopes is a complicated task due to
high biological variability in T cell genetics, the TCR interaction
mode, and the plethora of presented peptides. The identification
is moreover challenged by the available assay techniques, which
generally do not provide sufficient resolution to capture the exact
TCR-pMHC binding requirements which are embedded within the
amino acid sequences of the interacting partners. Recently, the
single-cell platform has developed to facilitate high-throughput
screening of T cell specificity, which holds the promise of detailed
interrogation of T cells paired with cognate targets. However, an
advent of next-generation technologies is typically followed by the
next-generation of confounding factors.

The work of this thesis aims to interrogate T cell specificity and de-
velop immunoinformatic methods for improved analysis and yield.
The primary focus has been on extracting reliable TCR-pMHC
pairing from single-cell data to enrich the field and enable the
enticing goal of clinically applicable TCR-pMHC models.
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Contents of the thesis chapters
The thesis is structed in the following way:

Chapter 1 covers the background of the biology determining T
cell specificity.

Chapter 2 covers the background of various assay techniques of
screening T cell specificity.

Chapter 3 covers the background of existing methods for mod-
eling T cell specificity.

Chapter 4 introduces the first scientific paper. The main aim of
the project was to map epitopes of the SARS-CoV-2 virus and to
determine immunodominant epitopes.

Chapter 5 introduces the second scientific paper. The main aim
of the project was to develop a framework to de-noise data from
single-cell screening of T cell specificities.

Chapter 6 introduces the third scientific paper, which is an on-
going project. The main aim was to benchmark the de-noising
framework presented in chapter 5.

Chapter 7 closes the thesis with an epilogue, discussing the key
lessons from the presented work as well as the future prospects.

3





CHAPTER1
T cell-mediated immunity

When a pathogen enters the human body a cascade of events will
be effectuated to clear the infection. One of the key events leading
to a T cell mediated immune response is the activation of dendritic
cells (DCs), which are part of the innate immune response. Den-
dritic cells ingest the materials of their surroundings (known as
phagocytosis, pinocytoses, or generally endocytosis), when trig-
gered to do so [6–8]. Captured in a phagolysosome the pathogen
is degraded into peptide fragments, a pathway known as antigen
processing. Some of these peptides will be displayed by MHC
molecules on the surface of the dendritic cell, known as antigen
presentation (see sec. 1.1). The dendritic cells become activated
if the exogenous ingestion is complemented with other signs of in-
fection, such as cytokines or binding of its pathogen-recognition
receptors [9]. The activated dendritic cell travels to the nearest
lymphoid tissue to raise a T cell response by either priming naive
T cells into mature effector cells (see sec. 1.4) or by reactivating
memory T cells which continually recirculate the lymphoid organs
[10, 11]. The T cells will each transiently contact the antigen-
presenting dendritic cell via T cell receptor (TCR) probing of the
pMHC and upon proper interaction, the T cell becomes activated
via co-stimulatory signals [12–14]. The activated T cells will pro-
liferate and migrate to the site of infection guided by signaling
molecules exuding from the innate immune cells already at work

5



CHAPTER 1. T CELL-MEDIATED IMMUNITY

[15, 16]. Upon complete clearance, a fraction of the effector T cells
will develop into memory T cells ready to fight off the pathogen
in case of reinfection [17, 18].

1.1 Antigen processing and presentation
Antigen-presenting cells (APCs), such as dendritic cells, have dif-
ferent means of antigen processing. Generally, pathogens can be
categorized as intracellular or extracelluar, indicating their pre-
ferred site of infection and replication. Typically bacteria, proto-
zoa, fungi and worms are considered extracellular, while viruses
are intracellular, as well as mutations leading to cell transfor-
mation. The site of infection hugely impacts the type of im-
mune response needed: intracellular pathogens and malfunction-
ing cells must be eliminated via cytotoxic killing of the affected cell
while extracellular pathogens can be targeted more directly with
antibodies. The different responses are raised through different
pathways of antigen processing: the cytosolic pathway, the endo-
cytic pathway, the cross-presentation pathway, and the autophagy
pathway.

The cytosolic pathway leads to MHC class I (MHC I) presenta-
tion of intracellular antigenic peptides as well as host proteome
peptides and can be performed by any nucleated cell [2]. The
pathway consist of TAP restricted transportation of proteasome
degraded cytosolic proteins into the endoplasmic reticulum (ER)
[20, 21], where the peptides are loaded onto MHC I molecules by
a loading complex composed of several ER chaperons, including
tapasin, calnexin, calreticulin [22, 23]. Once loaded, the MHC I
molecules are rapidly transferred through the Golgi apparatus en
route to the cell surface [24, 25].

The endocytic pathway leads to MHC class II (MHC II) presenta-
tion of extracellular antigenic peptides and is solely performed by
APCs and B-cells [26, 27], because the pathway requires phagocy-
tosis or macropinocytosis. In this pathway, the final ligand land-
scape is highly influenced by the cleavage motifs of the lysosomal
proteases such as cathepsins [28, 29]. The MHC II molecules ar-
rive in the late endosome where peptides compete with the MHC

6



1.1. ANTIGEN PROCESSING AND PRESENTATION

Figure 1.1: Antigen processing and presentation pathways, adapted from
Kobayashi et al [19]. (a) The cytosolic pathway processing endogenous anti-
gens to be presented on MHC I molecules. Intracellular proteins, such as virus
or tumour antigens, as well as host proteins, are processed into peptides by
the proteasome. The peptides are transported into the endoplasmic reticulum
(ER), where they are loaded onto the MHC I molecules. On the cell surface,
the pMHC I complexes present the cellular internal state to CD8 T cells. (b)
The endocytic pathway processing exogenous antigens to be presented on MHC
II molecules. Antigens from extracellular sources are engulfed via phagocyto-
sis or phagopinocytosis and contained in an endosome where they are lysed
into peptides. The late endosome describes the stage where MHC II molecules
arrive and the peptides compete for binding against the class II-associated
invariant chain peptide (CLIP). The peptide-loading process is regulated by
HLA-DO and HLA-DM. On the cell surface, the pMHC II complexes presents
the state of surrounding tissues to CD4+ T cells indicating the presence of
bacteria, opsonized viruses or cancerous cells. Alternative pathways enable
cross-presentation. The intracellular proteins may also be presented on MHC
II molecules. Via autophagy, the cytosolic peptides may be captured in an
endosome, indicated by the dashed line between the endogenous antigens in
(a) and the late endosome in (b). Likewise, extracellular proteins may be pre-
sented on MHC I molecules. Either endocytic peptides are translocated to the
cytosol via an unknown transporter mechanism, as indicated by the dashed
line between panel (b) endosome to panel (a) cytosol, or MHC I molecules
exist in endosomes outside of the ER.
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CHAPTER 1. T CELL-MEDIATED IMMUNITY

II inhibitor, CLIP, for the binding groove [30–32]. Peptide-loaded
MHC II molecules are finally shuttled to the cell surface of the
APC.

A third antigen processing pathway leads to MHC I presentation
of extracellular antigenic peptides, known as cross-presentation.
Two mechanisms have been proposed: TAP-dependent and TAP-
independent. The TAP-dependent pathway relies on a membrane
transport pathway translocating proteins of endocytic compart-
ments to the cytosol where they may enter into the cytosolic path-
way [33–35]. The TAP-independent pathway requires the presence
of MHC I molecules in the endocytic pathway [36–38]. The cross-
presentation enables presentation of intracellular antigens from
neighboring cells. Macropinocytosis allows cross-presentation of
soluble antigens [33] while phagocytosis allows cross-presentation
of bacteria [39, 40] or apoptotic cells due to viral infection [41, 42]
or tumor state [43–45].

Finally, the autophagy pathway enables MHC II presentation of
cytosolic proteins [46]. An autophagosome is the capture of cyto-
plasm in a vesicle, which is then fused with endocytic vesicles and
lysosomes where the contents are degraded. The concept is a nat-
urally occurring alternative to proteasome-mediated degradation,
where both processes maintain a well-controlled balance between
anabolism and catabolism [47]. However, the degraded proteins
are kept in endosomes which are part of the endocytic pathway
leading to MHC II loading.

The designated pathways are important for different functions,
but at its core they all result in peptide presentation by either
MHC I or II. The two classes of MHC molecules differ in their
subunit composition, in ligand interaction, and in the type of T
cell that might bind. MHC I ligands are short peptides of typically
8-11 residues [48] and are recognized by the CD8+ cytotoxic T
cells, while MHC II ligands are longer, 13-25 residues [49, 50],
and pair with the CD4+ T helper cells. The MHC ligands fit into
a cleft between the two subunits of the MHC molecule, known
as the binding groove. The mode of binding is characterized by
few anchor residues defining the interaction of the ligand with
the MHC binding groove [51, 52], allowing high variability in the

8



1.2. T CELL RECEPTOR INTERACTION WITH PEPTIDE-MHC

remaining ligand residues. This enables each MHC molecule to
present a large amount of highly diverse peptides. The ligand
residues not in the anchor positions generally face out of the MHC
binding groove and are part of the interaction with the TCR [52].

1.1.1 MHC diversity
Beyond high diversity within ligands of an MHC molecule, broad
immunological protection is also ensured by large population-wide
variations in MHC molecules amongst individuals. Diversity of
an individual’s HLA repertoire is attained in at least three ways:
polygeny, polymorphism, and allele co-dominance, and in addi-
tion, the binding cleft of MHC II is composed of two different
subunits. In humans, MHC molecules are encoded by the human
leukocyte antigen (HLA) locus. MHC I is encoded by HLA-A,
-B, and -C, while MHC II is encoded by HLA-DR, -DQ, and -
DP. The polymorphism amounts to more than 15,000 different
molecules [53–55], which ensures heterozygosity in most individu-
als, resulting in individual expression of up to 6 different MHC I
and 12 different MHC II molecules. The composition of alleles on
each parental chromosome has the biological term HLA haplotype,
however, in practice the haplotype often refers to the complete set
of alleles accounting for the total HLA profile. A pathogen may
evolve to evade any of those MHC molecules in a single individ-
ual, but across the entire human population the risk is greatly
reduced [56]. Evidence of the importance of HLA heterozygosity
for enabling presentation of different peptides comes from studies
showing how most of the allelic variation resides in regions corre-
sponding to the peptide-binding groove [57, 58].

1.2 T cell receptor interaction with peptide-MHC
Several X-ray crystallographic studies have provided detailed overview
of the TCR:pMHC binding site as well as the TCR structure it-
self, see figure 1.2a. The TCR is a covalently linked heterodimeric
protein, most often composed of an α- and a β-chain. A small
subset of T cells express γ- and δ-chains [59], which also produce
a functional TCR, however in this thesis TCRs will exclusively
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CHAPTER 1. T CELL-MEDIATED IMMUNITY

Figure 1.2: T cell interaction with peptide-MHC from X-ray crystallography
adapted from Sewell et al. [60]. (a) A ribbon model of the αβ dimerized
TCR highlighting the positions of the three CDR loops on each chain. (b)
Illustration of how an MHC I molecule can accommodate peptides of different
lengths. The longer the peptide the more it appear to ’bulge’ out of the
binding cleft. (c) Projection of CDR loops interacting with the pMHC onto
the pMHC. In the given example the MHC is HLA-A*0201 (in grey) presenting
the known epitope GLCTLVAML (stick model) from Epstein–Barr virus to the
AS01 TCR96 receptor. The colored segments on the MHC indicate the contact
points of each CDR loop. In this example, the CDR1 and CDR2 loops interact
with the MHC molecule, while only the CDR3 loops interact with the peptide
as well. This appears to be the general rule across TCR-pMHC interactions,
albeit with some exceptions [61, 62].

refer to αβ-dimers. Both chains consist of a constant domain and
a variable domain, see figure 1.3c. The TCR is anchored to the T
cell via the transmembrane region in the constant domain of both
chains. Variable domain contains three sets of loops, known as
complementarity-determining regions CDR1, CDR2, and CDR3,
closest to the pMHC.

The CDR1 and CDR2 loops are predominantly in contact with
the MHC facilitating the initial binding [60–62]. Both the CDR3
loops are most often in close contact with the peptide, and dictate
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1.3. T CELL DEVELOPMENT

the final outcome - binding or dissociation [63]. This dual speci-
ficity towards both peptide and MHC is a remnant of the TCR
maturation process elaborated in section 1.3.

The flexibility of the loops allows different residues of the CDR3
to interact with different residues of the peptide [64], indicated
in figure 1.2c, and allows the CDR3 to interact differently with
an other peptide [65–67]. Since only a few residues at the inter-
face may be essential for the specificity and binding strength, a
TCR may recognize related, but different peptides [68, 69], al-
though hypothesized to favor a certain epitope length [70]. It has
been estimated that a single TCR can bind at least 106 differ-
ent MHC-bound peptides, and perhaps even more [71]. However,
the potential diversity of all possible 9-11mer peptide sequences
combined exceeds 2 · 1014 [60]. This diversity does not even ac-
count for post-translational modifications, which further expands
the landscape of peptides. Fortunately, the number does not ac-
curately reflect the peptidome of MHC ligands since antigen pro-
cessing and presentation imposes strong restrictions on peptides,
and thus serves as a strict initial selection step [20, 21]. How-
ever, assuming that 1% of all possible peptides are presented by
an MHC molecule, the peptide landscape still exceeds the esti-
mated human T cell repertoire of 1011 T cells, which are not all
unique [72]. Thus, cross-reactivity is essential for sufficient pro-
tection, and even though 106 different targets of one T cell sounds
extreme, the functional recognition translates into a frequency of 1
in 100,000 if the total pool is 1011 peptides [60]. This small exam-
ple illustrates that observing cross-reactive binding should still be
fairly rare, which is in good accord with an experimental attempt
to directly measure this parameter [73]. Although rare, it ensures
overlapping specificities within repertoires of both individuals and
populations. Cross-reactivity reduces the risk of pathogens evad-
ing T cell mediated immunity by introducing critical mutations in
epitopes and is thereby essential for overall survival [64, 74].

1.3 T cell development
Lymphopoiesis is the process of generating a diverse repertoire of
T cell receptors which enables individuals to raise T cell mediated
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Figure 1.3: A schematic of V(D)J recombination of TCR αβ-chains adapted
from Simone et al. [75]. (a) A map of the genomic organization and somatic
recombination of TCR αβ-loci. Note how the D and J genes of the β-chain are
split in two groups. This ensures the T cell two attempts of assembling a func-
tional gene. (b) Map of the location of the three complementary-determining
regions (CDRs) within each of the two chains. CDR1 and CDR2 are germline-
encoded by the V-gene whereas the CDR3 spans the highly variable junctions
consisting of N- and P-nucleotides. The CDR3s of α- and β-chain differ in that
the CDR3 of the β-chain spans the gene junction of both D-J and V-DJ, which
allows additional variability. (c) The final αβ-dimerized receptor anchored in
the cell membrane. The CDR regions (not visible) are located at the top, in
the variable domain of the receptor in short, flexible loops.

immune responses against the wide range of pathogens and cell
transformations encountered during a lifetime. The maturation
process starts in the thymus where progenitor cells migrate to and
become thymus-dependent (T) lymphocytes, or T cells. In the
thymus, the precursors commit to the T cell lineage by initiating
TCR gene rearrangements which are illustrated in figure 1.3.

To begin with the thymocyte undergoes somatic recombination
of the β-chain genes consisting of 52 variable (Vβ), 2 diversity
(Dβ), 13 joining (Jβ), and 2 constant (C) regions, resulting in a
VDJ-C transcript [1]. During the joining of D-J and the V-DJ seg-
ments, random nucleotides are added to form highly variable junc-
tions. The joining process first involves addition of palindromic
sequences (P-nucleotides) to each segment followed by addition of
non-template-encoded (N-) nucleotides [76, 77]. Nucleotides can
also be deleted during joining, which might erase traces of the
introduced palindromes and even result in complete deletion of
the D segment. The outcomes are highly variable joining regions
of also variable length, which is what constitutes the CDR3 [78–
80]. Typically, CDR3 sequences of both chains consist of 10-19
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amino acids, most often of length 13 and 15, α and β respectively.
The CDR1 and CDR2 are shorter sequences in the range of 4-10
residues [81–85]. Both CDR1 and CDR2 reside within the V-gene
and thus only offer the variability of the number of gene segments:
70 Vα and 52 Vβ, respectively. However as the α- and β-chains
are paired the number of combinations amounts to 5.8 · 106 [1].

Since the total number of added nucleotides is random, the reading
frame is often disrupted leading to non-productive rearrangements
and therefore non-viable thymocytes. In the surviving thymo-
cytes the productive β-chain is paired with a surrogate pre-TCR
α-chains (pTα) to form a pre-TCR. Ligand-independent dimer-
ization of pre-TCRs induces both proliferation and expression of
CD4 and CD8 co-receptors while the gene rearrangement of the
β-chain is arrested [86]. The α-locus rearrangement does not begin
before reaching this double-positive (CD4+CD8+) state, thereby
ensuring that only a single β-chain is associated with the many
different α-chains in the progeny cells. The somatic recombina-
tion of the α-locus follows the same model as the β-locus, only
there is no D-gene, so the 70 Vα-genes may be joined with any
of the 61 Jα-genes [78]. Non-productive VJ joining can be rescued
by successive rearrangements which occur simultaneously on both
chromosomes and continues until positive selection or cell death.
Thus, in the strict sense, the α-locus is not subject to allelic exclu-
sion as the β-locus, and therefore some mature T cells may express
two productive α-chains. The dual receptor property does not in-
flict dual specificity, since only one of the productive TCRαβ-pairs
is likely to have responded to the positive selection and recognize
an MHC molecule [86–88].

Positive selection is the process of identifying TCRs that bind
appropriately to an MHC of the haplotype of either class I or II,
resulting in either CD8+ or CD4+ single-positive thymocytes. The
MHC will present self-peptides processed by either the direct or
the autophagy pathway [89]. The positive selection is followed by a
negative selection, eliminating thymocytes that bind too strongly
to self-peptides, thus promoting self-tolerance. The mature, naive,
co-receptor specific T cell is now ready to enter the T cell repertoire
and circulate the peripheral lymphoid tissue [1].
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1.4 T cell activation
T cell responses are initiated when a mature naive T cell encoun-
ters an activated APC in a peripheral lymphoid organ, e.g. a
lymph node [12–14]. Figure 1.4 illustrates the general features
of CD8+ T cell priming that will be described in the following.
Dendritic cells express an array of co-stimulatory molecules that
locks the naive T cell in place to properly test its specificity to-
ward the range of presented pMHCs [90–93]. In the rare case of
a TCR-pMHC match, the cell-cell adhesion is enforced and T cell
differentiation is promoted via co-stimulatory signals and cytokine
secretion [94]. The association persist throughout T cell prolifera-
tion, encouraging the progeny cells to adhere as well [13]. CD8 cy-
totoxic T cells often require excessive stimulation, perhaps due to
their destructive effector actions and probably also to distinguish
a foreign peptide presented on MHC I from self [13]. The addi-
tional stimulation is obtained from cross-primed CD4+ effector T
cells interacting with the same APC [95, 96]. Differentiation into
effector T cell alters the expression of surface proteins, enabling
the cell to locate and enter sites of inflammation and attach to
host cells to sample their pMHC repertoire (CD8+ T cells) [1].
The CD8+ cytotoxic T cells are of main interest in this theses,
and therefore, any unspecified phenotype can be assumed to refer
to the CD8+ subclass, for the remaining part.

Even though a T cell is primed by one pMHC, it can still recognize
a palette of other peptides, as described in sec 1.3. However, it is
important to distinguish between biochemical and immunological
recognition between TCR and pMHC, since not every interaction
will lead to a response [98]. As described, a T cell mediated im-
mune response requires an activated APC that efficiently signals
inflammation both for priming and for stimulating effector func-
tions. Moreover, low affinity of pMHC complexes and a threshold
requirement of TCR-pMHC interactions means that biochemical
recognition can only be translated into immunological recognition
if the source protein of the peptide is highly expressed [99]. Fi-
nally, several peripheral mechanism, such as immune suppression
by regulatory T cells and cell signalling via surface expressed or
secreted molecules, continually maintain self-tolerance of T cells
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Figure 1.4: Mechanisms in T cell priming, adapted from Kurts et al. [97].
A dendritic cell has become activated and presents peptides on both MHC
I and MHC II via direct and cross-presentation pathways (not shown). The
MHC II peptide is being recognized by a CD4 T helper cell while the MHC
I peptide is being recognized by a CD8 T cell. The priming of the CD8
T cell is enforced by sustained binding of TCR-pMHC as well as binding
of signalling receptors like CD70/CD27 and CD80/CD28. Further, the ac-
tivated CD4 T helper cell stimulates priming of the CD8 T cell with IL-2
cytokines. The dendritic cell is licensed to continue stimulating the CD8 T
cell via the CD40/CD40L signalling receptors of the CD4 T helper cell. As
a result, dendritic co-stimulatory molecules (CD70, CD80 and CD86) are up-
regulated, while inhibitory molecules, such as programmed cell death ligand
(PDL1) are downregulated to promote priming and proliferation.

cross-binding to self-peptides [100–102]. Still, it remains unre-
solved exactly how most individuals are exempt from broad im-
mune reactions that target self.
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CHAPTER2
Assaying T cell specificity

What is known today about T cell specificity is deduced from a
range of experimental assays, each with their own advantages and
disadvantages. The assays are designed for distinct purposes and
therefore measure different aspects of the TCR-pMHC binding at
different levels of resolution. Identifying epitopes, and especially
immunodominant epitopes, can guide rational vaccine design and
provide an initial step toward understanding the rules governing
specificity. However, to truly decode specificity, it is essential to
also capture the information embedded in the T cell receptor and
link it to its cognate epitope. This chapter presents the current
experimental methods of interrogating T cells for their specificity
and elucidates the critical limitations that must be addressed to
progress the field.

2.1 Common methods of screening T cells
The assays for probing the nature and quality of the TCR-pMHC
interaction can roughly be grouped into four categories: cytokine
production assays, proliferation assays, kinetic assays, and quali-
tative binding assays.
The two first methods rely on features reflecting immune responses
of activated T cells, namely cytokine production and cell prolif-
eration. Cytokine production can be used to measure both the
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frequency of antigen-responding T cells and the type of cytokines
they released, reflecting the effector function of the T cell [103,
104]. The most widely used technique is ELISPOT (enzyme-linked
immunospot). T-cell proliferation can be assessed via tracers, such
as the radioactive [3H]-thymidine or the fluorescent dye BrdU
(bromodeoxyuridine), which intercalates into replicating chromo-
somes and thereby quantifies the total amount of synthesized DNA
in a bulk culture [105, 106]. To additionally estimate precursor fre-
quency, flow cytometry can be utilized by staining cells with CFSE
(carboxyfluorescein diacetate succinimidyl ester), which binds to
amino groups of intracellular proteins [107, 108]. For each cell
cycle, the amount of dye in a cell is halved, and at the end of the
experiment, the distribution of dye reveals the initial frequency of
the T cell precursor. Kinetic assays estimate binding affinity of
the TCR-pMHC, which previously was thought to determine T cell
signalling strength [109–114]. Still, binding affinity provides rich
information regarding the specificity, especially when the affinity
is relative to multiple different peptides, thus demonstrating how
a single TCR binds a range of targets, known as TCR fingerprint-
ing [69]. The technique dissects TCR specificity by sequentially
substituting each position of the original TCR target with either a
small amino acid (alanine or glycine) or each of the remaining 19
amino acids, for a more extensive analysis [68, 69, 115]. The bind-
ing affinity or functional response to each substitution is measured
to produce a hierarchy of peptide preferences which essentially re-
veals cross-reactivity. This interrogation of a TCR by effectively
masking out individual positions helps identifying “hot-spots” of
interaction [116].

Common to the above listed methods is they depend on the TCRs
of the responding cell culture being monoclonal. Monoclonal pop-
ulations can be obtained from hybrids of T cells, cloned T cell
lines, and limiting-dilution culture [117–119]. Although feasible,
cell culturing is time consuming. Further the relevant assays only
yield specificity indirectly and typically, only few antigens can be
assayed at a time. Essentially, unveiling T cell specificity requires
high-throughput qualitative binding assays.

The most detailed qualitative binding assay is via X-ray crystal-
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lography. Not only does the method provide the sequence of both
α- and β-chain, but it also provides the three-dimensional struc-
ture of the TCR-pMHC interaction. Despite great contribution
to the field, the number of solved unique structures is still less
than 100 due to the high cost and low throughput [120]. The key
advancement for assaying specificity is the invention of synthetic
conjugates of pMHC molecules which enable in vitro screening of T
cells [121]. The conjugates consist of a multimer backbone carrying
four to eight pMHC molecules and a label such as a fluorochrome,
a metal tag, and/or a DNA barcode [121–125]. The label en-
ables quantification of responding T cells, similar to cytokine pro-
duction assays, and facilitates sorting of polyclonal cultures into
antigen-specific T cell sub-populations ideal for sequencing of T
cell receptors, as shown in figure 2.1.

Combinatorics with fluorescent labels or metal tags enables a li-
brary of 28-109 pMHCs [122, 124], whereas DNA barcoding al-
lows high-throughput screening of >1000 pMHCs [125]. However,
with such a large-scale specificity screening, the assay limitations
are simply redefined from low-throughput to potentially capturing
unspecific interactions [125]. The advantage is that the screening
will resemble the in vivo scenario much closer, where each T cell
will be presented to a plethora of pMHCs of which only few will
qualify for binding. Hence, the scale of multimer staining has in-
creased the scope of known interactions from a few model antigens
to rare personal disease-associated antigens.

The assay is limited by only providing specificity distributions of
the sampled repertoire. We do not know how big the complete
repertoire is, if there is a dominant clone, nor whether certain
clones exhibit cross-reactivity. This can be mitigated by sequenc-
ing the T cell receptor. Unfortunately, the genes encoding the
α-chain and the β-chain reside on different chromosomes and can
therefore not be sequenced in tandem using bulk sequencing. Since
the CDR3β holds the greatest potential for variability due to the
joining of both D-J and V-DJ it has been hypothesized that the
β-chain conveys the most information of TCR specificity. There-
fore, the majority of catalogued data only contains the β-chain.
Pairing α- and β-chains has been approached from the assump-
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Figure 2.1: Cell sorting adapted from 10x Genomics, Immudex, and Zhang
et al., 2021 [126, 127]. (a) Schematic overview of the DNA barcode-labeled
pMHC multimers which are excellent for detection of antigen-specific T cells
in complex cellular suspensions. The multimer scaffold is a dextran backbone
carrying biotinylated pMHC molecules, a fluorochrome such as PE (phycoery-
thrin), and a DNA barcode. The DNA barcode serves as a tag for the corre-
sponding pMHC. In ex vivo screening of TCR specificity the TCR-pMHC in-
teraction is stabilized by multimerization of pMHC complexes on the scaffolds
[121, 128–130]. The DNA barcodes are sequenced to determine the composi-
tion of antigen-responsive T cells in the sample. (b) Based on the fluorescent
label, multimer bound T cells can be sorted using FACS (fluorescence activated
cell sorting) [131] and visualized by flow cytometry [132]. When screening sam-
ples from buffy coat a set of gating-strategies are used to capture CD8+ T cells
only.
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tion that naturally occurring pairs derived from the same cell will
be observed with same relative frequency of transcriptomic reads
[133, 134]. However, this indirect method of pairing chains be-
comes unreliable when sequencing highly diverse populations of T
cells. Therefore, the next step for improved resolution is single-cell
sequencing which captures the T cell receptor in direct association
with a bound pMHC.

2.2 Single-cell sequencing elucidating TCR specifici-
ties

Single-cell sequencing is the frontier of next-generation sequencing
(NGS) because it enables the study of complex and rare cell pop-
ulations [135, 136], regulatory relationships between genes [137,
138], and trajectories of cell lineages during development [139–
141]. Specifically, single-cell RNA sequencing (scRNA-seq) is paramount
for truly understanding the link between genotype and phenotype.
In the context of this thesis, scRNA-seq holds the promise of high-
throughput screening of several thousand T cells against libraries
of >1000 individual peptide-MHC complexes, thus connecting the
specificity directly to the amino acid sequence of the TCRαβ. Be-
yond analysing specificity, the technology also enables screening
of surface markers and sample hashing via a library of antibodies.
In other words, any analyte with a conjugated DNA barcode can
be included in an assay and if the analyte is associated with a cell
the relation will show in the data.

Different platforms utilize different technologies to isolate individ-
ual cells either by droplet-based microfluidics [142, 143], micro-
wells [144], or by in situ barcoding [135, 145]. Initially, the proto-
cols did not provide 5’ sequencing nor full-length coverage of tran-
scripts, which excludes the CDR3 of the TCR transcripts. The
commercial droplet-based platform, 10x Genomics, was the first
to provide barcoded 5’end sequencing and hence became widely
deployed especially for immune profiling.
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2.2.1 The immune profiling platform by 10x Genomics
Figure 2.2 is a schematic overview of how the 10x Genomics droplet-
based single-cell sequencing works. Cells in limiting dilution and
gel beads in emulsion (GEMs) are pulsed into an aqueous stream
and are captured in a droplet of emulsion when the stream is
flushed with oil. By systematically pulsing cells with a lower rate
than gel beads most droplets will contain only gel beads, while
many droplets will contain a gel bead and a cell, and some will
contain a gel bead and two or more cells. The doublet/multiplet
rate is a trade-off for the capture rate, i.e. the fraction of cells
introduced to the system which are recovered [142].

Sub-optimal capture is problematic when working with low fre-
quency cell populations especially when searching for rare neoepi-
tope specificities. Therefore, some cases might call for an increased
capture rate at the expense of increased multiplet rate. Another
challenge is that ambient transcripts in the cell suspension from
apototic cells or from analyte barcodes may be randomly captured
along a cell or even captured in an otherwise empty droplet, only
containing the gel bead. The result is that unrelated sequences
will, erroneously, be associated with the cell-of-origin.

In the droplets, the cells are lysed and the gel beads are dissolved,
releasing reverse transcription (RT) reagents and poly(dT) primers
(fig. 2.2b). The mRNA is reverse transcribed into full-length
cDNA via priming of the poly(A)-tail and elongated with a tem-
plate switch oligo (TSO). The TSO enables priming of another
set of gel bead primers which contain a GEM barcode, a unique
molecular identifier (UMI) [146], and a sequencing primer. The
GEM barcode is identical for all the primers in the GEM, and
unique for each gel bead, thus labeling all transcripts within the
GEM such that the downstream sequencing reads can be traced
back to the cell-of-origin. The UMI is a unique set of random nu-
cleotides which identifies each transcript. The concept removes the
count bias generated from nonuniform PCR amplification. Hence,
downstream analyses can directly count the number of captured
transcripts of a certain gene as a proxy for the expression profile.
Any analyte DNA barcode must contain a capture-sequence which
matches the TSO of the gel bead primer. The analyte barcodes

22



2.2. SINGLE-CELL SEQUENCING

Figure 2.2: 10x Genomics Chromium Single Cell Immune Profiling Solution
with Feature Barcode technology, adopted from 10x Genomics [126]. (a) T
cells from donors are labeled with pMHC multimers and may also be labeled
with DNA-barcoded antibodies for cell hashing or surface marker analysis.
The CD8+ T cells are sorted and introduced to the aqueous stream along with
gel-beads in emulsion (GEMs). (b) During sequencing the cellular transcripts
and DNA barcodes are captured by GEM primers such that all downstream
reads are prefixed with a GEM barcode and a unique molecular identifier
(UMI).
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will then also be preceded by the GEM barcode to trace the cell-
of-origin. In the next phase GEMs are broken and the contents
are pooled for bulk DNA amplification and then separated into
cDNA from poly(A) mRNA and DNA from barcoded analyte by
size. To ensure that TCR transcripts are sufficiently sequenced
they are amplified in an additional step with primers specific to
the TCR constant regions. Next the amplified cDNA is enzymati-
cally fragmented and sequencing primers as well as sample indexes
are added for batch multiplexing. The final sequence output can
be processed with standard NGS techniques and then converted
into count matrices of genes or other features per GEM. Software
for mapping and annotating GEMs is provided by 10x Genomics.

2.2.2 Challenges in single-cell data pertaining to T cell speci-
ficity

To ensure that scRNA-seq data is fully exploited and interpreted
correctly, it is important to apply appropriate computational and
statistical approaches. Some methods originating from bulk RNA
sequencing can be reused, however, scRNA-seq poses several novel
confounding factors that require adapted analytical strategies. Com-
putational methods must account for biological confounders such
as cell cycle variations, apoptosis, and stochastic gene expres-
sion, as well as technical artifacts such as cell multiplets, cross-
contamination, dropout, and batch effects when compiling differ-
ent experiments.

Both artificial dropout and stochastic gene expression result in
zero-inflated gene counts. Genes are expressed transiently, even
when accounting for cell cycle variations [147, 148]. Hence, tran-
scripts for all genes are not present at all times which falsely render
some genes with a count of zero. An artificial dropout can refer
to multiple steps during scRNA-seq which cause genes to be un-
derrepresented in the final output data. Causes may be inefficient
initial priming of the poly(A) mRNA, PCR amplification bias, or
insufficient sequencing depth [149–151]. Generally, counts of genes
with low expression magnitude are more likely to be zero-inflated
[152]. Thus, dropout of an otherwise highly expressed gene is more
indicative of true expression differences than of stochastic variabil-
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ity, which had been the conclusion if the gene had been generally
lowly expressed.

Random capture of ambient mRNA or DNA barcode can affect
all GEMs as illustrated in figure 2.3c+d. In case of random cap-
ture in a cell-void GEM, the GEM will naively appear to contain
a cell with sparse gene expression. In case of random capture
in a GEM that actually contains a cell, the GEM will be ob-
served with a high expression profile. In both cases the expression
profile would be inconsistent with the expected expression pro-
file [153]. For example, ambient mRNA contamination is likely
when highly expressed genes are observed at low levels in a few
cells within a homogeneous population. Similarly, contamination
of analyte DNA barcodes may also be an issue when concentra-
tions are high. Advanced methods exist to eliminate contaminated
GEMs by modelling the expected expression profiles and filtering
out GEMs that deviate. A more simple approach is to filter away
GEMs where expression across all genes is generally too low or too
high, thus excluding abnormal expression profiles. It is a bit more
problematic to rule out analyte contamination because the same
extend of background observations does not exist.

A similar confounder is multiplet capture, i.e. capture of multiple
cells in one GEM as in 2.3b. Depending on the protocol, multiplets
may constitute up to 40% of GEMs [154]. Again, the GEM will
appear with abnormally high expression values because transcripts
from two cells are captured in the GEM. As before, such GEMs
may simply be removed by filtering on a maximum threshold for
expression values. However, it is probable that the captured cells
are completely orthogonal in their expression profiles which would
not result in extreme outliers to filter on. Fortunately, more ad-
vanced methods have been developed to discern a single cell from
a multiplet. DoubletFinder [155] and Scrublet [156] filters data
based on a similarity score of artificially constructed doublets to
the dimensionality-reduced data. Demuxlet [157], scds [158], and
scSplit [159] identifies doublets based on expression of genes that
are likely to not occur simultaneously, e.g. transcripts associated
with mutually exclusive sets of single-nucleotide polymorphisms
(SNPs). DecontX [153] specifically identifies contaminated cells
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Figure 2.3: Challenges in single-cell data, adopted from Immudex and 10x
Genomics [126]. (a) The expected capture of a single cell in a droplet. (b)
The calculated risk of capturing cell multiplets. (c) The event of capturing
ambient DNA and/or pMHC multimer in an otherwise empty droplet. (d) The
event of capturing ambient DNA and/or pMHC multimer together with a cell.
In examples (c) and (d), both native mRNA from the cell and contaminating
ambient mRNA/DNA will be barcoded and counted within a droplet.

using a Bayesian mixture model from the assumption that tran-
scripts from the native cell are distributed differently than the
contaminating transcripts. Several experimental techniques have
also been developed to assist detection of doublets. Example tech-
niques include species mixture [142, 143], lipid-tagged indexing
[160], and cell hashing [161, 162]. The two latter introducing ben-
efits such as hashing by origin-of-donor which is highly desirable
in patient studies.

The methods developed to filter scRNA-seq data each have their
own advantages and disadvantages, however, common to them
all is that this field of research lacks a ground truth dataset. A
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comprehensive benchmarking of these methods on high quality of
data would be desirable. The major concerns when screening for
TCR specificity are nonspecific binding, incomplete TCR anno-
tation, and T cell multiplets. These issues arise from the above
stated caveats of single-cell sequencing. Incomplete TCR anno-
tation and T cell multiplets may be mitigated applying some of
the above mentioned methods, however, unspecific binding is a
relatively unresolved issue. Unspecific binding may completely di-
lute the signal from actual interactions and impede the assay and
applicability of the data.

2.3 Currently available data
In order to collect the data produced by individual groups, several
databases have been established. Each aim to collect and curate
published TCR specificities to propel research forward for clinical
use. The majority, with some overlap, of the publicly available
TCR specificity data resides in the Immune Epitope Database
(IEDB) [163], VDJdb [164], the manually curated catalogue of
pathology associated TCRs (McPAS-TCR) [165], TCR3d [166],
and ImmuneCODE [167]. The latter, ImmuneCODE, was created
in the wake of the covid-19 pandemic to catalogue disease relevant
specificities and repertoires [167].

The most commonly described antigens are derived from viral in-
fections of cytomegalovirus (CMV), Epstein-Barr virus (EBV),
and influenza viruses (CEF). Virus-responsive T cells are easily
detected because they are often present at high frequencies in in-
fected individuals. Moreover, virus-derived peptides are likely to
be dissimilar to self-peptides, which may yield high affinity TCRs
which are good candidates for multimer staining [168, 169]. Un-
fortunately, the opposite can be said about neoantigens. They
are likely to be highly similar to self, towards which, T cells have
been selected to have low affinity, resulting in only transient bind-
ing [170]. Further, cancer cells are typically heterogeneous across
patients and even within tumors, thus minimizing the chance of
shared neoepitopes that would elicit a broad T cell response, also
observable in a cohort. Instead, T cells specific for a given neoepi-
tope are rare and difficult to detect. To top it off, T cells recogniz-
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ing neoantigens may be difficult to culture and stimulate ex vivo
due to the suppression mechanisms of immunoediting [171, 172].

Before the covid-19 pandemic the majority of bulk-sequenced data
was centered on a few hundred peptides, some of the most abun-
dant being YVL, GLC, NLV, GIL, extracted from table 2.1. These
four peptides are also the most thoroughly investigated when re-
quiring both TCR chains. The top 5 most abundant peptide speci-
ficities are all restricted by the same HLA allele, HLA-A*02:01,
which limits the potential for understanding how TCRs might dif-
ferentiate between HLA molecules. During the covid-19 pandemic
the interest for pathogen specific TCRs spiked which of course
expanded the databases drastically, however, these investigations
have primarily resulted in sequencing of the TCRβ-chain only.
Recently, several TCR-pMHC interaction prediction models have
been published, unanimously stating that including both chains of
the TCR improved performance [127, 173–178]. Montemurro et.
al further demonstrated how peptide-wise performance was par-
ticularly dependent on the number of unique TCRs [173]. It was
estimated that a minimum of 150 specificity observations were a
requirement for robust predictions on independent test datasets.
From the table below, it is evident that only 3 peptides meet that
requirement. In order to fully understand TCR specificity, we
must be able to study it from many more different types of in-
teractions, consisting of more peptides across more HLA alleles.
The need for both TCR chains as well as high amounts of dif-
ferent TCRs per peptide specificity, highlight the importance of
assays that enable screening of large peptide libraries against many
thousand T cells from which both TCR chains can be obtained.
In 2019, the commercial single-cell RNA sequencing platform 10x
Genomics published such a dataset containing 50 library peptides
[126, 179]. The assay yielded 55,221 uniquely paired TCR se-
quences. The drawback of this rich source of information is again
the many unspecific interactions which are not trivial to discern
from true binding events. Investigating solutions to this challenge
is one of the focus points of this thesis.
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Organism Peptide Length MHC Allele # CDR3b # CDR3ab
Human herpesvirus 4 (EBV) RAKFKQLL 8 HLA-B*08:01 187 1
Human herpesvirus 5 (CMV) VTEHDTLLY 9 HLA-A*01:01 274 1
Human herpesvirus 5 (CMV) TPRVTGGGAM 10 HLA-B*07:02 2292 1
Homo sapiens EAAGIGILTV 10 HLA-A*02:01 214 16
Hepatitis C virus CINGVCWTV 9 HLA-A*02:01 114 28
Homo sapiens ELAGIGILTV 10 HLA-A*02:01 558 79
Human herpesvirus 4 (EBV) YVLDHLIVV 9 HLA-A*02:01 8488 115
Human herpesvirus 4 (EBV) GLCTLVAML 9 HLA-A*02:01 7032 128
Human herpesvirus 5 (CMV) NLVPMVATV 9 HLA-A*02:01 4886 210
Yellow fever virus LLWNGPMAV 9 HLA-A*02:01 2173 410
Influenza A virus (CEF) GILGFVFTL 9 HLA-A*02:01 4539 438
Human herpesvirus 5 (CMV) NEGVKAAW 8 HLA-B*44:03 117
Hepatitis C virus ATDALMTGY 9 HLA-A*01:01 131
Hepatitis B virus KTAYSHLSTSK 11 HLA-A*11:01 476
Hepatitis B virus STLPETAVVRR 11 HLA-A*11:01 925
Hepatitis B virus LVVDFSQFSR 10 HLA-A*11:01 1875
Influenza A virus (CEF) LPRRSGAAGA 10 HLA-B*07:02 2142

Table 2.1: Counts of unique CDR3β and CDR3αβ per epitope from IEDB
[163]. The table contains the 17 epitopes catalogued with at least 100 unique
CDR3β sequences. The first column describes the source organism of the
epitope. The epitope is given in column 2, and the length of the epitope is
registered in column 3. The restricting HLA allele of the pMHC complex is
found in column 4. In column 5 and 6 are listed the counts of unique CDR3β
and CDR3αβ chains, respectively.
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CHAPTER3
Immunoinformatic approaches for char-
acterizing T cell specificity

The field of immunoinformatics has long been dominated by pre-
dictions of MHC I and II ligands which has now progressed into
a plateau at very high performance [180–183]. Given the growing
availability of T cell specificity data, attention has shifted towards
modeling TCR-pMHC interaction [127, 173–178, 184–192], which
holds great clinical potential. A substantial amount of data is re-
quired in order to produce robust models that can generalize be-
yond the scope of the currently available observations. Hence, the
publication of the large 10x Genomics specificity data has further
paved the way for many new models in recent years [127, 173,
174, 177]. Many different types of models have been proposed,
suggesting that the quest of identifying the best suited method is
still ongoing. In order to evaluate and compare these models, the
field makes use of several performance metrics, which can also be
applied when assessing the quality of a data processing or other
types of analyses. In this chapter, the most common performance
metrics will be introduced, followed by presentation of some of the
most prominent models of TCR-pMHC specificity.
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3.1 Performance metrics
A vital element in developing data-driven models is fair and un-
biased evaluation of performance. Many different metrics exist,
however, not all metrics are suited for any problem. Most met-
rics rely on quantification of observations defined as true positives
(TP), true negatives (TN), false positive (FP) and false negatives
(FN). This definition is straight forward when the evaluation vari-
able is binary. In the situation where the evaluation variable is
continuous, the scale can be divided into ”true” and ”false” bins
by setting a discrimination threshold or by testing the impact of
continuously increasing the threshold. The positive values binned
above the discrimination threshold will be quantified as true pos-
itives, while the positive values binned below the threshold will
be quantified as false negative. Vice versa for the negative values
which are quantified as truly negative below the threshold and
falsely positive above the threshold. The further apart the dis-
tributions of the two categories are, the easier it is to set a good
threshold and the fewer false calls made. The decision of where to
place the threshold may be affected by what types of mistakes we
can and cannot accept. The trade-off is specificity versus sensi-
tivity. Sensitivity refers to the probability of correctly classifying
a positive observation as positive, also known as the true positive
rate (TPR):

TPR =
TP

TP + FN
(3.1)

Specificity is the complementary metric which refers to the prob-
ability of correctly classifying a negative observation as negative,
known as the true negative rate (TNR):

TNR =
TN

TN + FP
(3.2)

Choosing high sensitivity over specificity allows the detection of
most true positive values at the expense of including many false
positive values. This is optimal if it is important that the method
does not miss any true positive instances. An example could be a
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medical screening of a patient where the medical staff would rather
detect a benign tumor than miss a malignant cancer. Choosing
high specificity over sensitivity allows the method to be highly se-
lective at the expense of excluding many positive instances. This
prioritization is relevant when including a false negative is too
costly. In the context of screening TCR specificities, high sensi-
tivity would enable detection of rare and low affinity interactions
while falsely including transient unspecific pMHC probing as a
binder. Alternatively, high specificity would aid elimination of un-
specific binding and instead only present credible binding events.

3.1.1 The receiver operating characteristic and area under the
curve

A popular performance metric that incorporates the trade-off be-
tween specificity and sensitivity is the receiver operating charac-
teristic (ROC). A ROC curve is created by plotting TPR against
1− TNR, also known as the false positive rate (FPR) or fall-out,
as the discrimination threshold changes from ∞ : −∞. The area
under the ROC curve (rocAUC or AUC) is a single metric that
summarizes the balance between sensitivity and 1-specificity. An
AUC value of 1 indicates complete separation of the positive and
negative instances, while a value of 0.5 or below shows no separa-
tion. The AUC metric can be modified to highlight methods that
favor specificity over sensitivity by only taking the integral of the
ROC curve up until FPR of 0.1, coined AUC 0.1.

3.1.2 Matthews correlation coefficient
When the data that must be evaluated is strictly binary or if
the discrimination threshold is pre-determined a ROC curve is
undue. Conveniently, Matthews’ Correlation Coefficient (MCC)
measures the association between two binary variables [193], which
is a special case of Pearson’s Correlation Coefficient (PCC) [194].
The correlation is given by:

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(3.3)
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The MCC is robust to class imbalance as it takes all classes (TP,
FP, TN, FN) into consideration. A perfect correlation results in
a value of 1, while 0 reflects random association, and -1 indicates
an inverse correlation.

3.1.3 Accuracy
Another commonly used metric is accuracy (ACC). In the situ-
ation where the evaluation variable is continuous, accuracy is a
measure of observational error. In a binary classification problem
accuracy is the ratio of true labels (TP & TN), given by:

ACC =
TP + TN

TP + TN + FP + FN
ACC =

TP + TN

TP + TN + FP + FN
(3.4)

Accuracy is widely popular as it is applicable for evaluation of
both regression and classification models. However, the metric
is unable to account for sensitivity and specificity and it is eas-
ily affected by class imbalance, falsely favoring the largest class.
Despite its caveats accuracy is sometimes the only option because
real-life cases do not always hold a clear definition of what is a false
positive and what is a false negative, and perhaps true negatives
do not even exist in the problem at hand. An example is investi-
gating specificity of many clones of a T cell. Ideally they would all
bind the same pMHC (TP), but as described earlier, TCRs are ex-
pected to display some promiscuity which would result in multiple
observed binding events (TPs). Similarly, screening via single-
cell platforms are prone to artifacts which would introduce false
binding events (FPs). The remaining pMHCs from the screening
library that did not elicit a binding may all be truly negative (TN),
however, some might also just be missed observations (FN) due
to dropout for example. Since the labels are not clearly defined
all metrics that rely on FPs and FNs are unfit for use, whereas
accuracy is unaffected.
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3.2 Similarity of TCRs
Based on the assumption that T cells responding to the same epi-
tope share more similar TCRs than compared to T cells of other
specificities, many have attempted to cluster TCRs to investigate
the patterns of specificity [178, 184, 190, 191]. Clustering requires
a numerical representation of the sequences or a distance/simi-
larity metric between all pairs of TCRs. There is no universal
consensus of which metric is preferred, since we have yet to learn
the rules of TCR similarity, both in regards to sequence as well as
specificity. Moreover, simple models can be implemented to make
predictions of TCR specificity based on the distance metrics.

Figure 3.1 represents a sketch of how similarly color-coded TCRs
are clustered together and appear to bind the same epitope.

Figure 3.1: TCR similarity within and across epitopes, adapted from Im-
mudex. The figure illustrates the concept that TCRs (in some dimensionality-
reduced space) cluster based on their α- and/or β-chains. Given that a TCR
often will be more similar to other TCRs of same specificity than to TCRs of
different specificities, the clusters will each correspond to an epitope.

3.2.1 Hamming and Levenshtein distances
Naively, one may compute distance between sequences using the
Hamming distance. This metric measures the edit distance as the
number of substitutions required to transform one string into the
other. However, this metric requires that the compared strings
are of equal length. The Levenshtein distance metric accounts for
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this shortcoming by measuring the number of required insertions
and/or deletions in addition to substitutions [195].

This similarity score has been used for unsupervised clustering of
TCRs from repertoire sequencing [165, 196, 197]. Despite enabling
sequence comparison of unequal length, Levenshtein is still biased
by length. If the distance between a sequence pair is normalized by
the longest sequence, the normalization will render two short se-
quences with very few mismatches as similar as two long sequences
with many more mismatches.

3.2.2 BLOSUM scoring
Counting a uniform edit penalty may be sub-optimal, as substitu-
tions of different amino acids confer various types of alternation
to a sequence. A distance measure that accounts for that can be
based on BLOSUM. BLOSUM (blocks substitution matrix) scores
alignments based on relative frequencies of amino acids and their
substitution probabilities within highly conserved sequences [198].
The score reflects the evolutionary pressure to preserve the folding
and, thereby, function of proteins, and hence, serves as a similarity
metric.

This scheme is deployed by TCRdist which is defined as a similarity-
weighted mismatch distance between αβ-pairs of the CDR2, CDR2.5,
and CDR3 sequences [178]. The distance is calculated as an align-
ment score, however with inverted BLOSUM62 scores. In the
TCRdist publication, the scores of all-against-all TCRs were uti-
lized for a k-nearest neighbor (kNN) prediction based on the near-
est 10 percent of the repertoire with a weight that linearly de-
creases from nearest to farthest neighbors.

3.2.3 Physico-chemical profiling
Since CDR3 sequences are not a product of evolution, but arise
from random insertion and deletion of nucleotides (see section 1.3),
one can argue that BLOSUM scoring is not optimal. Instead,
amino acids can be represented via their physico-chemical prop-
erties such as basicity, helicity and hydrophobicity to construct a
sequence profile.
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Physico-chemical profiling has been used both for unsupervised
clustering of CD4+ TCRs from repertoire sequencing [199], for
sequence encoding [188, 189], and for a benchmark of distance
scoring schemes [200]. In the benchmark, the distance between
two sequences is calculated by the sum of position-weighted Eu-
clidean distances for each of the normalized physico-chemical pro-
files. Weights are highest for central residues and linearly de-
creases toward the edges of the sequence. In this case, insertion-
s/deletions were accounted for by truncating the longest sequence
on either end, which skews the distance to favor sequences of com-
parable lengths.

3.2.4 K-mer scoring and kernel similarity
An alternative to sequence alignment is comparing pairs of se-
quences by k-mer subsets. The distance measure in GLIPH cal-
culates the motif frequency of k-mers (k = 2, 3, 4, 5) relative to
a distribution of expected frequencies [184]. This approach can
be combined with BLOSUM scoring to account for residue sim-
ilarity. Such a method was presented by Shen et. al [201], and
is the underlying method in both MAIT Match [190] and TCR-
Match [191]. The algorithm takes two sequences as input: s1 and
s2. Both sequences are split into sets of k-mers, where k takes on
values from 1 up to the length of the shortest of the sequences,
s1 and s2. For each value of k, all possible combinations of k-mer
pairs between s1 and s2 are aligned to compute a score based on
an amino acid substitution matrix such as BLOSUM62. For each
k-mer, the scores for each of the aligned amino acids are multi-
plied. All k-mer products are then summed and normalized to
yield a value between 0 and 1, where 1 is a perfect match:

K̂(s1, s2) =
K(s1, s2)√

K(s1, s1)K(s2, s2)
(3.5)

The kernel method utilized in TCRmatch [191] was evaluated by
precision and recall, defining a true positive when K̂ is above a set
threshold and the epitopes of s1 and s2 are identical. A mismatch
between the epitopes would be considered a false positive.
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3.2.5 Predictions
These similarity or distance scoring schemes of sequences have in
few cases been used to predict binding of novel TCRs. TCRmatch
and TCRdist relied on adapted implementations of k-nearest neigh-
bors [178, 191], while other distance schemes have been bench-
marked using the DBSCAN clustering algorithm [200]. The few
publications conclude that none of the tested distance schemes is
superior to the others and that the models in general are limited
by the scope of the available data [191, 200]. Further, clustering
demonstrated the complexity of TCR specificity, by accentuating
how TCRs sharing specificity exist in a wide spectrum and may
internally be as dissimilar as TCRs targeting widely different epi-
topes. Thus, the hypothetical clustering of figure 3.1 is extremely
idealized. This observations clearly exemplifies the intricate task
of modeling TCR specificity. Finally, these types of models can-
not generalize to novel epitopes beyond the training set, which
reduces their prospects and applicability. The ability to general-
ize arises from learning the underlying mechanisms that define a
match between a TCR and a pMHC.

3.3 Modeling T cell specificity
Investigations of TCR similarity suggests that TCR specificity is
a complex problem, which might require complex solutions. Se-
lected machine learning (ML) frameworks facilitate detection of
hidden features of paired TCR-pMHCs. Learning the underlying
mechanisms of binding provides the ability of models to general-
ize beyond the experimentally obtained measurements. Thus in
theory, models trained on specificities towards one set of peptides
may still be able to predict specificity of an orthogonal set of pep-
tides. Pan-specific models elevated the performance of peptide-
MHC prediction models [202, 203], and might do the same for
TCR-pMHC models.

Machine learning refers to an array of models, however, in this
context, the scope is limited to methods that capture non-linearity
and higher order correlations of data, including convolutional neu-
ral networks (CNNs) [127, 173, 174, 177, 187, 192], variational
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autoencoders (VAEs) [176, 177, 204], and recurrent neural net-
works (RNNs) [174, 176, 204]. These architecture were utilized
for TCR-pMHC modeling in a range of recent publications: Tcell-
Match [174], ERGO [176], ERGO-II [204], NetTCR-2.0 [173], Im-
Rex [187], DeepTCR [177], TCRAI [127], and TITAN [192].

3.3.1 The neural network
Conceptually, the input to neural networks is propagated via the
model parameters, or weights, through layers of hidden neurons
until the output neuron(s), as illustrated in figure 3.2. Neural
networks are constrained to only accept inputs of a pre-specified
shape, hence sequences of varying length must be padded to fill
out the required dimensions. Each layer may have its own set of
rules for how to propagate the signal forward. Here a range of ac-
tivation functions, such as rectified linear unit (ReLU), hyperbolic
tangent (tanh), and the sigmoid function can be implemented to
enforce non-linear modelling [205]. The weights are tuned over
multiple rounds (epochs) of training to minimize the prediction
error in a process known as back-propagation. Again different er-
ror functions and optimization algorithms may be used depending
on the type of data and the type of network. The CNN, VAE,
and RNN are all variations of the simple network architecture,
specially designed to capture different kinds of hidden features.

3.3.2 Neural network architectures for specificity modeling
A common architecture for modelling sequence data is the CNN
[206], which was originally designed for image classification [207].
In a CNN the neurons are connected by sliding multiple unique
kernels across the input, known as convolutions. Each kernel has
its own set of weights that are tuned to detect a specific feature.
By the concert of multiple kernels a CNN is able to capture the
spacial and temporal dependencies in an image (or a peptide en-
coding). The RNN is an umbrella term of including the popular
long-short term memory (LSTM) architecture. These networks
were built for inputs of sequential character, like time-series, sen-
tences or proteins, which are tokenized and fed to the network
consecutively. The LSTM incorporates the hidden state of the
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Figure 3.2: Artificial neural network adapted from Montemurro et al., 2021
[173]. The illustration represents a small feed forward neural network. The
nodes represent neurons and the edges represent weights. The top layer of
orange neurons is denoted the input layer. The second layer of red neurons is
a hidden layer, while the last purple node is the output neuron. Each neuron
is connected to every neuron of the previous layer by trainable weights, which
is how information is propagated through the network.

previous token with the current token continuously until the fi-
nal token. This process guides the network to capture sequence
patterns, which may reflect interaction between residues of the
CDR3 loop. Since protein sequences have no reading frame, bi-
directional LSTMs have been developed to capture interactions
propagated from both ends. The VAE is designed to capture the
most important features of data in a latent space, which is a core
layer in the network. The architecture consist of an encoder and
a decoder. The data is compressed by the encoder into a latent
space followed by a decompression by the decoder to reconstruct
the input. Information may be lost during the encoding, however
this also serves to de-noise data. Typically, the encoder can be
used to embed sequences in a dimensionality reduced space and
the latent state may be used for unsupervised clustering.

3.3.3 Encoding and embedding
In ML the data must be encoded to comply with a strict format
chosen for the model. The type of encoding can impact the model
and should be considered with care [208, 209]. Categorical data
is often one-hot encoded, assuming that all categories are equally
similar. The models including V(D)Jαβ-genes and HLA alleles
have utilized one-hot encoding for these features [174, 177, 204].
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Figure 3.3: Convolutional neural network adapted from Moris et al., 2021
[187]. An image is essentially a 3 dimensional tensor of colored pixels. This
concept is mimicked in immunoinformatics by various encoding schemes for se-
quences into numerical representation. Kernels are used to detect patterns by
sliding across the image. Different types of pooling can downsize the network.
The last couple of layers consist of fully connected neurons by flattening the
CNN tensor. The model in this example solves a binary classification problem
where the output may be interpreted as the probability of binding between
the given CDR3 and epitope.

Typically CDR3 and epitope sequences are encoded using the
evolution-driven BLOSUM score [173, 174, 185, 188, 192], while
only ImRex attempts physico-chemical encoding as an interaction
map between peptide and CDR3β[187], illustrated in figure 3.4.
This forces the model to focus on the features of interaction instead
of identifying internal representations of the peptide and CDR3,
individually. However ideally, even when peptide and CDR3 se-
quences are fed separately, a complex network should eventually
capture the interaction as a hidden feature.

Yet another alternative of encoding is defining each amino acid
as a category and feed the vectorized sequence to an embedding
layer as the first layer of the network [127, 176, 177, 192, 204]. The
embedding layer consist of trainable weights and therefore learns
the optimal projection into an X dimensional space defined by the
user.

Other methods, which are actually individual networks themselves,
can also be trained to embed a sequence [210, 211]. An example
is the VAE modeling of CDR3 sequences, of which the pre-trained
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Figure 3.4: The ImRex interaction map adapted fromMoris et al., 2021 [187].
The interaction map consist of absolute differences in physico-chemical prop-
erties between a CDR3βand an epitope. The rightmost image is a combined
representation of the individual physico-chemical interaction maps, resulting
in a three-dimensional tensor, here represented with CMYK colour encoding.

encoder may be used as an input embedding [176, 177, 204]. In
the non-bioinformatic field of machine learning transformers are
praised as the new standard for natural language processing [212–
215], and within immunoinformatics few have attempted peptide
encoding for MHC ligand predictions [216, 217]. Within TCR-
pMHC modeling, no exhaustive benchmark has been carried out
to establish the best practise for encoding, however the few tests
being reported for individual models did not provide a decisive
conclusion [174, 177, 192].

3.3.4 Implications of the data
TCR specificity is really a triad of interactions between TCR, pep-
tide, and MHC. Only NetTCR-2.0 and ERGO-II seem to address
this issue, either by exclusively selecting peptides restricted by
one HLA allele or by including the allele as input [173, 204]. Most
methods do not consider the implications of including peptides
across different HLA restrictions, and probably regard the pMHC
as an indivisible unit [127, 174, 176, 177, 187, 192].

Another cause of variation is the length of the sequences, or more
precisely the amount of padding [218]. If the data incidentally con-
tains a biologically irrelevant bias of for example a CDR3 sequence
length within a peptide or within the group of binders, then the
model will quickly learn the padding pattern instead of the un-
derlying pattern within the actual sequence. To mitigate this,
peptide and CDR3 lengths were restricted to 9mers & 8-18mers
in NetTCR and 8-11mers & 10-20mers in ImREX [173, 187]. Al-
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though the strict criteria set by the authors of NetTCR-2.0 may
have guided the model to learn proper features determining bind-
ing, only three peptides were left with sufficient data for robust
modeling [173].

Finally, performance may vary per peptide as reliable predictions
require at least 150 TCR chains per peptide and probably improve
with increasing numbers [173]

3.3.5 Classification or regression?
In the majority of TCR-pMHC models, the epitope is part of the
input data, such that the model is tasked with predicting the prob-
ability of binding between the given epitope and TCR [173, 176,
187, 192]. Few methods do not provide the epitope, but instead
either train several individual epitope-specific models [174, 177] or
train a single model with a confined set of epitopes as a multino-
mial classification problem [127]. The latter two types are more
common in models not based on neural networks such as decision
trees and random forests [186, 188, 189].

Submitting the TCR together with the cognate epitope target en-
ables capture of hidden features which potentially reflect univer-
sal rules of binding essential for developing pan-specific models.
However, with the current composition of TCR-pMHC specifici-
ties there is not enough information to produce pan-specific models
[173, 174, 176, 187, 192, 204]. The authors of TcellMatch specif-
ically investigated how different designs of classification models
would affect performance, and their conclusion was that until more
data has surfaced, the multinomial classification models appear to
provide the best performance [174].

The majority of models are classifiers due to the the binary char-
acter of most TCR screening methods (see section 2.3). However,
with the publication of the 10x single-cell specificity data, a new
type of measurement became available: the pMHC UMI, i.e. the
count of pMHC molecules associated with a single T cell. The
UMI can be regarded as a proxy for binding affinity, although the
measurement may for example be biased by the cellular expres-
sion of TCRs [177]. So far, only DeepTCR [177] and TcellMatch
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[174] have experimented with a regression model, even though the
related field of pMHC predictions has shown great leverage from
combining affinity measurements and eluded ligands as respec-
tively continuous and discrete outputs [219].

3.3.6 Performance and overfitting
Since all the network-based models were published almost simul-
taneously in 2021, an exhaustive benchmark does not exist, and
only few of the publications were able to include a single bench-
mark [127, 173]. Although each of the models report high perfor-
mances, it is worth noting that the authors of ImREX state that
their generalization performance is likely overestimated, because
the current data contains a high degree of similarity which does
not require true generalization [187]. The authors of NetTCR-2.0
anticipated this and ensured a maximum of 94% Levenshtein sim-
ilarity across partitions of training sets and external evaluation
sets [173]. There is no mentioning of similarity reduction in any of
the other publications, and their high performances are therefore
also likely to be overestimated [127, 174, 176, 177, 192, 204].

Models built on any kind of neural network consist of large pa-
rameter spaces which are tuned to detect the patterns of the data.
The more parameters a model contains the more variation it will
capture. The prevailing risk is that the model is overfitted to
the training data, i.e. adapts even to the inevitable noise, and
thereby looses its ability to properly generalize. Overfitting can
be avoided using early-stopping which does not allow the model
to become better at predicting its training data than a left-out
set, or by regularizing the parameters after completed training.
In order for early-stopping to properly work, the data must be
partitioned to contain as little similarity as possible, to effectively
test the generalization capability. This is typically done using k-
fold cross-validation, where k is the number of data partitions and
k − 1 is the number of networks in the ensemble. Bias in a model
can also be averaged out by combining multiple networks in an
ensemble.
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3.3.7 Hidden features
Although neural networks are coined ”black box” models, there
is still information in the parameters that may elucidate the de-
tected hidden features. This has been exemplified by Montemurro
et al. where t-SNE [220] dimensionality reduction of a hidden layer
showed improved clustering of TCRs specific to GIL HLA-A*02:01
than when clustering on physico-chemically encoded CDR3 se-
quences [173], see figure 3.5a+b. Likewise, Zhang et al. showed by
UMAP [221] projection how hidden ”fingerprint” layers revealed
two distinct clusters of TCRs specific for GIL HLA-A*0201 [127]
(figure 3.5c). These clusters were consistent with experimental
findings by Song et al. of two major classes with distinct binding
modality toward the GIL peptide [64].

Figure 3.5: Clustering of CDR3 hidden features from NetTCR-2.0 and
TCRAI adapted from Monterurro et al., 2021 and Zhang et al., 2021 [127, 173].
(a) t-SNE representation of the CDR3 max-pooled CNN layer of NetTCR-
2.0. TCRs positive to GILGFVFTL HLA*A-02:01 are shown in green, and
negative TCRs in pink. (b) Same TCRs as in (a) are now instead encoded
encoded using a 5-feature physico-chemical scheme. (c) UMAP representation
of the fingerprint hidden layer of TCRAI. Two clusters of TCRs positive to
GILGFVFTL HLA*A-02:01 are shown, one in orange and the other in green,
while negative TCRs are grey.

The investigation of hidden features may guide the field to iden-
tify architectures best suited to extract the salient information of
TCR-pMHC recognition. As the field is still in its infancy many
more types of architectures will be tested moving forward, how-
ever, the general conclusion reverberates throughout the field: in
reality the missing link to optimal performance is still lack of data
- and data diversity.
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CHAPTER4
SARS-CoV-2 genome-wide T cell epi-
tope mapping reveals immunodominance
and substantial CD8+ T cell activation
in COVID-19 patients

One of the first steps in understanding T cell mediated immunity
is the characterization of T cell responses toward selected pep-
tides. The distribution of distinct responses and the sizes thereof
are excellent metrics for monitoring disease progression, evaluating
response to therapy, or guide rational design of vaccines. The work
presented in this chapter maps T cell recognition throughout the
proteome of SARS-CoV-2, identifies immunodominant epitopes
and investigates the potential of cross-reactive T cells primed for
similar common cold corona-viruses.

This project was carried out in a collaboration with Sine Reker
Hadrup’s group at DTU and Anne Ortved Gang’s group at Copen-
hagen University Hospital Herlev. The experiment was conceived
by Anne Ortved Gang, Sine Reker Hadrup, and Sunil Kumar
Saini. My primary contribution was development of bioinformatic
analyses in close collaboration with Sunil Kumar Saini and Morten
Nielsen.
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SARS-CoV-2 genome-wide T cell epitope mapping 
reveals immunodominance and substantial CD8+ T cell 
activation in COVID-19 patients
Sunil Kumar Saini1*, Ditte Stampe Hersby2†, Tripti Tamhane1†, Helle Rus Povlsen3, 
Susana Patricia Amaya Hernandez1, Morten Nielsen3, Anne Ortved Gang2, Sine Reker Hadrup1*

T cells are important for effective viral clearance, elimination of virus-infected cells, and long-term disease protec-
tion. To examine the full spectrum of CD8+ T cell immunity in COVID-19, we experimentally evaluated 3141 major 
histocompatibility complex (MHC) class I–binding peptides covering the complete SARS-CoV-2 genome. Using 
DNA-barcoded peptide-MHC complex multimers combined with a T cell phenotype panel, we report a compre-
hensive list of 122 immunogenic and a subset of immunodominant SARS-CoV-2 T cell epitopes. Substantial CD8+ 
T cell recognition was observed in patients with COVID-19, with up to 27% of all CD8+ lymphocytes interacting 
with SARS-CoV-2–derived epitopes. Most immunogenic regions were derived from open reading frame 1 (ORF1) 
and ORF3, with ORF1 containing most of the immunodominant epitopes. CD8+ T cell recognition of lower affinity 
was also observed in healthy donors toward SARS-CoV-2–derived epitopes. This preexisting T cell recognition 
signature was partially overlapping with the epitope landscape observed in patients with COVID-19 and may drive 
the further expansion of T cell responses to SARS-CoV-2 infection. The phenotype of the SARS-CoV-2–specific 
CD8+ T cells revealed a strong T cell activation in patients with COVID-19, whereas minimal T cell activation was 
seen in healthy individuals. We found that patients with severe disease displayed significantly larger SARS-CoV-2–
specific T cell populations compared with patients with mild diseases, and these T cells displayed a robust activa-
tion profile. These results further our understanding of T cell immunity to SARS-CoV-2 infection and hypothesize 
that strong antigen-specific T cell responses are associated with different disease outcomes.

INTRODUCTION
The COVID-19 (coronavirus disease 2019) pandemic caused by the 
highly infectious SARS-CoV-2 (severe acute respiratory syndrome 
coronavirus 2) has challenged public health at an unprecedented scale, 
causing the death of more than 2 million people worldwide so far 
(1). T cells perform essential functions in the control and elimination 
of viral infections; CD8+ T cells are critical for efficient clearance of 
virus-infected cells, whereas CD4+ T cells are important for support-
ing both the CD8+ T cell response and B cell–mediated production 
of specific antibodies. Characteristics from the ongoing pandemic 
suggest that T cell recognition will be critical to mediate long-term 
protection against SARS-CoV-2 (2), because the antibody-mediated 
response seems to decline in a follow-up evaluation of convalescent 
patients, although it is not yet understood how this affects the risk 
of reinfection and what antibody levels are required for disease pro-
tection (3–5). Furthermore, studies of the closely related SARS-CoV 
infection show persistent memory CD8+ T cell responses even after 
11 years in SARS recovered patients without B cell responses (6, 7), 
emphasizing the potential role of CD8+ memory T cells in long-term 
protection from coronaviruses.

Several recent studies have reported robust T cell immunity in 
SARS-CoV-2–infected patients (8–10), and unexposed healthy in-
dividuals also showed functional T cell reactivity restricted to SARS- 
CoV-2 (9, 11–15). The observed T cell cross-reactivity is hypothesized 

to derive from routine exposure to common cold coronaviruses [human 
coronavirus (HCoV)] (HCoV-OC43, HCoV-HKU1, HCoV-NL63, 
and HCoV-229E) that widely circulate, with 90% of the human popu-
lation being seropositive for these viruses (16, 17) and substantial 
sequence homology to the SARS-CoV-2 genome (18, 19). However, 
the influence of such preexisting immunity to the T cell recognition 
associated with COVID-19 disease is poorly understood.

SARS-CoV-2 infection can result in mild to severe disease (in-
cluding death), but a large number of asymptomatic infections are 
also described (20–22). The presence of preexisting T cell immunity, 
represented by cross-reactive T cells, could have strong implications 
for how individuals respond to SARS-CoV-2 infection. However, 
their biological role upon encounter with SARS-CoV-2 infection re-
mains unclear, and their contribution to disease protection needs to 
be determined. Furthermore, in severe clinical disease, cytokine re-
lease syndrome is reported and might, in some cases, be dampened 
by immunosuppressive medication or anti–interleukin-6 (IL-6) anti-
body therapy (23, 24). Such clinical characteristics point to a poten-
tial uncontrolled immune response with the involvement of strong 
T cell activation.

CD8+ T cells are activated by a specific interaction between the 
T cell receptor (TCR) and the peptide antigen presented by major 
histocompatibility complex class I (MHC-I) molecules on the sur-
face of virus-infected cells. Although SARS-CoV-2–specific immunity 
has been reported both in the context of COVID-19 and preexisting 
T cells, the full spectrum of exact antigens (minimal peptide epitope) 
within the viral genome, associated with this immunity and their 
immunodominance in SARS-CoV-2–infected patients, is not fully 
described. Using our large-scale T cell detection technology based 
on DNA-barcoded peptide-MHC (pMHC) multimers (25), we have 
mapped T cell recognition throughout the complete SARS-CoV-2 

1Department of Health Technology, Section of Experimental and Translational Im-
munology, Technical University of Denmark, Kongens Lyngby, Denmark. 2Depart-
ment of Haematology, Herlev Hospital, Copenhagen University Hospital, Herlev, 
Denmark. 3Department of Health Technology, Section of Bioinformatics, Technical 
University of Denmark, Kongens Lyngby, Denmark.
*Corresponding author. Email: sirha@dtu.dk (S.R.H.); sukusa@dtu.dk (S.K.S.)
†These authors contributed equally to this work.

Copyright © 2021 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
License 4.0 (CC BY).

D
ow

nloaded from
 https://w

w
w

.science.org at T
echnical U

niversity of D
enm

ark on July 07, 2022



Saini et al., Sci. Immunol. 6, eabf7550 (2021)     14 April 2021

S C I E N C E  I M M U N O L O G Y  |  R E S E A R C H  A R T I C L E

2 of 15

genome, identified the exact epitopes recognized by SARS-CoV-2–
specific CD8+ T cells, and characterized immunodominance of these 
epitopes in COVID-19 disease. Broad T cell recognition toward SARS-
CoV-2–derived peptides was also identified in SARS-CoV-2–unexposed 
healthy individuals, with a large overlap in the pMHC complexes 
recognized in the two groups. However, T cell recognition was sub-
stantially enhanced in the patient group, with SARS-CoV-2–reactive 
T cells accounting for up to 27% of all CD8+ T cells. Furthermore, 
we have evaluated the phenotypic characteristics of SARS-CoV-2–
specific T cells and correlated their activation signatures with dis-
ease severity.

RESULTS
SARS-CoV-2–specific CD8+ T cells recognize a broad range 
of epitopes
To reveal the full spectrum of T cell immunity in COVID-19 disease, 
we used a complete SARS-CoV-2 genome sequence (26) to identify 
immunogenic minimal epitopes recognized by CD8+ T cells. Using 
NetMHCpan 4.1 (27), we selected 2204 potential human leukocyte 
antigen (HLA)–binding peptides (9 to 11 amino acids) for experi-
mental evaluation. These peptides were predicted to bind one or 
more of 10 prevalent MHC-I molecules, including HLA-A (A01:01, 
A02:01, A03:01, and A24:02), HLA-B (B07:02, B08:01, and B15:01), 
and HLA-C (C06:02, C07:01, and C07:02) loci, leading to a total 3141 
pMHC specificities for experimental evaluation (Fig. 1A and table 
S1). Epitope predictions are covering the full viral genome, with open 
reading frame 1 (ORF1) being the largest gene region and hence 
including the highest number of predicted peptides (Fig. 1B). T cell 
reactivity toward these peptides was analyzed for 18 patients with 
COVID-19. In this cohort, 11 patients had severe disease requiring 
hospital care, and 7 patients had mild disease not requiring hospi-
talization. Blood samples were collected during the active phase of 
the infection, as close as possible after the first positive SARS-CoV-2 test 
(table S2). The mean HLA coverage that could be obtained using the 
10 selected MHC-I molecules was 3.1 HLA per patient, and patients 
were evaluated using on average 972 DNA-barcoded pMHC multimers 
per patient (fig. S1A) (25). Briefly, each pMHC complex is multim-
erized on a PE (phycoerythrin)–labeled or APC (allophycocyanin)–
labeled dextran backbone and tagged with a unique DNA barcode. 
DNA-barcoded pMHC multimers are then pooled to generate an 
HLA-matching patient-tailored pMHC multimer panel, which is in-
cubated with patient-derived PBMCs (peripheral blood mononuclear 
cells), and multimers bound to CD8+ T cells are sorted and sequenced 
to identify T cell recognition toward the probed pMHC complexes. 
For comparative evaluation, we also included 39 T cell epitopes 
from common viruses: cytomegalovirus (CMV), Epstein-Barr virus 
(EBV), and influenza (flu) virus (CEF) (Fig. 1C and table S3).

We found broad and strong SARS-CoV-2–specific CD8+ T cell 
responses in patients with COVID-19, contributing up to 27% of the 
total CD8+ T cells (Fig. 1D). A substantial selection of T cells specific to 
individual immunogenic epitopes measuring up to 14% of the total 
T cells was detected in several patients (Fig. 1D, fig. S2, and table S4). 
In total, we identified T cell responses to 142 pMHC complexes cor-
responding to 122 unique SARS-CoV-2 T cell epitopes across the 10 
analyzed HLAs (Fig. 1E) dominated by peptides with high-affinity 
binding to their corresponding HLA molecule (fig. S1B). We also de-
tected 25 T cell responses to CEF-derived peptides across the 18 pa-
tients with COVID-19 (Fig. 1E and table S5). For the SARS-CoV-2–derived 

peptides, HLA-A01:01, HLA-A02:01, and HLA-B15:01 presentation 
dominated in terms of the total number of identified epitopes as 
well as the “immunogenicity score” (i.e., the number of T cell re-
sponses normalized to the number of probing pMHC multimers and the 
number of patients analyzed) (Fig. 1F). HLA-A03:01– and C07:01-specific 
peptides showed the least T cell reactivity (three epitopes each) de-
spite being analyzed in nine and six patients, respectively (Fig. 1E). 
Most of the immunogenic epitopes were mapped to the ORF1 pro-
tein, followed by S and ORF3 proteins (Fig. 1, G and H, and table S4). 
Given the size difference of the viral proteins, the immuno-
genicity score was used to evaluate their relative contribution to 
T cell recognition. On the basis of such evaluation, we observe that 
peptides derived from ORF3 displayed the highest relative immuno-
genicity (in terms of T cell recognition), followed by ORF1 protein 
(Fig. 1H). The overall frequency of SARS-CoV-2–reactive T cells (the 
sum of estimated frequencies for all SARS-CoV-2–specific T cells) 
in individual patients with COVID-19 showed a broad range of 
T cell involvement and variation in terms of T cell recognition to 
individual SARS-CoV-2 proteins (Fig. 1I).

In summary, we report SARS-CoV-2–specific CD8+ T cell im-
munity toward several epitopes and a substantially high presence of 
SARS-CoV-2–specific T cells in several patients with COVID-19. 
The ORF1 protein not only contributes the most to T cell recogni-
tion of SARS-CoV-2 but is also by far the largest group of proteins. 
When protein size is considered, ORF3 and ORF1 are the viral re-
gions most frequently recognized by CD8+ T cells.

Strong immunodominance of SARS-CoV-2–derived peptides 
in patients with COVID-19
Of the 122 epitopes recognized by T cells in the patient cohort, 5 were 
determined as “immunodominant” based on the presence of T cell 
recognition in >50% of the tested samples with the given HLA mol-
ecule and T cell detection identified in at least two or more patients 
(Fig. 2A). Unexpectedly, in our patient cohort, none of the immuno-
dominant epitopes were derived from the S protein, despite this 
being the second largest protein (Fig. 2B). Among the immuno-
dominant epitopes, a very robust HLA-associated immunodominance 
was observed for two of the epitopes: HLA-A01:01-TTDPSFLGRY–
specific (and its variant peptides TTDPSFLGRYM and HLA-A01:01- 
TDPSFLGRY), with specific T cells detected in all five analyzed 
patients (estimated frequency reaching up to 25% of total CD8+ 
T cells), and HLA-B07:02-SPRWYFYYL, with specific T cells ob-
served in four of the five patients evaluated (estimated frequency up 
to 10%) (Fig. 2A and table S4). To validate the T cell responses iden-
tified for the two most immunodominant epitopes (TTDPSFLGRY 
and SPRWYFYYL), we determined the presence of these T cells 
using conventional fluorophore-labeled pMHC tetramers in seven 
patients with COVID-19. For both immunodominant epitopes, 
the frequency of T cells determined by the individually labeled pMHC 
tetramers correlated to the frequencies determined based on the 
DNA barcode–labeled MHC multimer reagents (at a range from 
0.01 to 11% of the total CD8+ T cells) (Fig. 2, C and D). Next, we 
evaluated the cytokine secretion capacity of the SARS-CoV-2–specific 
T cells by stimulating PBMCs (same time point as used for T cell 
identification) with respective epitopes. SARS-CoV-2 peptide–induced 
secretion of interferon- (IFN-) and tumor necrosis factor– 
(TNF-) was detected in all seven patients, confirming functional 
activation of T cells raised against dominant and nondominant epi-
topes (Fig. 2E and table S6).
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Fig. 1. CD8+ T cell epitope mapping in 
SARS-CoV-2. (A) Schematic representa-
tion of the complete SARS-CoV-2 genome 
used for the identification of 3141 peptides 
with predicted binding rank (NetMHCpan 
4.1) of ≤0.5 (ORF1 protein) and ≤1 (all 
remaining proteins) for 10 prevalent 
HLA-A, HLA-B, and HLA-C molecules. 
(B) Bar plot showing the distribution of 
SARS-CoV-2 peptides related to their 
HLA-restriction (3141 peptide-HLA pairs) 
across the viral genome. Total pMHC 
specificities analyzed for each protein are 
shown in parentheses next to the respec-
tive SARS-CoV-2 protein. (C) Experimental 
pipeline to analyze T cell recognition 
toward the SARS-CoV-2–derived HLA- 
binding peptides in PBMCs using pMHC 
multimers. A 13-antibody panel was used 
for phenotype analysis of pMHC multi-
mer+ CD8+ T cells. pMHC multimers 
binding CD8+ T cells were sorted on the 
basis of PE (SARS-CoV-2–specific) or APC 
(CEF-specific) signal and sequenced to 
identify antigen-specific CD8+ T cells. 
(D) Representative analyses for SARS-
CoV-2–restricted T cell populations in a 
patient with COVID-19. Left: Flow cytom-
etry plot of pMHC multimer staining of 
CD8+ T cells from a patient with COVID-19 
stained with pMHC multimer panel show-
ing SARS-CoV-2 (PE) and CEF (APC) mul-
timer+ T cells that were sorted for DNA 
barcode analysis to identify epitope 
recognition. Right: CD8+ T cell recogni-
tion to individual epitopes was identi-
fied on the basis of the enrichment of 
DNA barcodes associated with each of 
the tested peptide specificities (LogFc > 
2 and P < 0.001, using Barracoda). Sig-
nificant T cell recognition of individual 
peptide sequences is colored on the 
basis of their protein of origin and seg-
regated on the basis of their HLA spec-
ificity. The black dot shows CD8+ T cells 
reactive to one of the CEF peptides (here, 
CMV pp65; YSEHPTFTSQY-HLA-A01:01). 
All peptides with no significant enrich-
ments are shown as gray dots. (E) Summary 
of all T cell recognition to SARS-CoV-2–
derived peptides identified in the 18 
analyzed patients with COVID-19. In pa-
rentheses, number of peptides tested 
for each HLA (top row) and the number 
of patients analyzed for each HLA pool 
(bottom row). Each dot represents one 
peptide-HLA combination per patient and is colored according to their origin of protein, similar to that shown in (A). The black dots show CD8+ T cells reactive to the CEF 
peptides in all analyzed patients. (F) Bar plots summarize the number of HLA-specific SARS-CoV-2 epitopes identified and the HLA-restricted immunogenicity (% immu-
nogenic peptides) in the analyzed patient cohort. Immunogenicity represents the fraction of T cell–recognized peptides out of the total number of peptides analyzed for 
a given HLA restriction across the HLA-matching donors (% normalized). (G) Similar to (E), a summary of SARS-CoV-2–specific T cell responses separated based on the 
protein of origin. (H) Bar plots show the number of epitopes derived from each of the SARS-CoV-2 protein and their immunogenicity score (% immunogenic peptides). 
(I) Estimated frequencies (% of total CD8+ T cells) as the sum of all SARS-CoV-2 epitope–reactive T cells identified in individual patients with COVID-19. Bars are colored 
according to the protein origin of the recognized epitopes.
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Low-avidity recognition toward SARS-CoV-2–derived 
peptides in healthy individuals
To examine the potential for preexisting SARS-CoV-2–reactive T cells, 
we next analyzed healthy individuals for T cell recognition against 

all 3141 SARS-CoV-2–derived peptides. We selected two healthy 
donor cohorts: The first cohort included SARS-CoV-2–unexposed 
healthy individuals (HD-1; n = 18 individuals, PBMCs collected be-
fore the COVID-19 pandemic), and the second cohort included 
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Fig. 2. Strong immunodominance 
of SARS-CoV-2–derived peptides 
in patients with COVID-19. (A) The 
prevalence of T cell recognition 
toward the individual epitopes de-
tected in patients with COVID-19. 
Dotted line indicates the epitopes 
determined as immunodominant, 
based on the presence of T cell 
recognition in more than 50% an-
alyzed patients (marked in red 
throughout this figure). Bars are 
colored according to their protein 
of origin, similar to that shown 
in Fig. 1. (B) Pie chart of immuno-
dominant epitopes distributed 
according to their protein of origin. 
(C) APC-labeled pMHC tetramer–
based analyses of CD8+ T cells in 
PBMCs of seven patients with 
COVID-19 recognizing A01:01/
TTDPSFLGRY or B07:02/SPRWYFYYL 
immunodominant epitopes. Gated 
population shows the percentage 
of T cells recognizing pMHC te-
tramers out of total CD8+ T cells. 
(D) Correlation of estimated T cell 
frequencies determined using DNA- 
barcoded multimer estimation 
(table S4) and using conventional 
tetramer analysis (C) for the two 
most immunodominant epitopes 
in seven patients with COVID-19. 
Spearman correlation (P = 0.002, 
r = 0.92). (E) Functional validation 
of SARS-CoV-2–specific T cell re-
sponses identified in COVID-19 
patient samples. Flow cytometry 
plots showing intracellular cyto-
kine staining of PBMCs from pa-
tients with COVID-19 pulsed with 
selected SARS-CoV-2–derived 
peptides, selected based on the 
CD8+ T cell responses identified 
from the DNA-barcoded multimer 
analysis (table S4). PBMCs from 
seven patients with COVID-19 were 
analyzed for functional activation 
after stimulation with the indi-
cated peptides or with an HLA- 
matching irrelevant peptide 
(negative control). The numbers 

on the plot indicate the frequency (%) of CD8+ T cells positive for the analyzed cytokines IFN- and TNF-. The 
gating strategy of the flow cytometry analysis is shown in fig. S5A.
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health care staff at high risk of SARS-CoV-2 exposure but who did 
not test positive (HD-2; n = 20 individuals, PBMCs collected during 
COVID-19 pandemic). CD8+ T cells from SARS-CoV-2–unexposed 
healthy individuals showed broad-scale T cell recognition toward 
SARS-CoV-2–derived peptides across the whole viral genome (Fig. 3A, 

fig. S3, and table S7). Cumulatively, 214 SARS-CoV-2–derived pep-
tides were recognized by T cells in 16 of the 18 analyzed samples. 
The high-risk COVID-19 healthy cohort showed similar T cell rec-
ognition toward 178 SARS-CoV-2 epitopes (Fig. 3B and table S7) in 
15 of the 20 donors. T cell recognition in healthy donors was directed 

Healthy donors, healthcare staff (HD-2)

D
A02:01-LLLLDRLNQLA01:01-TTDPSFLGRY

BUV395

A
PC

BV605

PE
-C

F5
94

103 104 1050

103 104 1050 104 1050

103

0

−103

104

105

103

0

104

103

0

104

HD-100

HD-336

HD-10

0.01

0.03

A24:02-FYAYLRKHF

BUV395

B
V4

21

103 104 1050

103 104 1050

103

0

104

105

103

0

104

105

HD-84

HD-336

0.24

0.06
A02:01-KLKDCVMYA

PE-CF594

A
PC

103 104 1050−103

103 104 1050−103

103

0

104

103

0

104

HD-335

HD-327

0.16

0.07
B07:02-SPRWYFYYL

BV421

A
PC

103 104 1050

103

0

104

HD-84

0.01

Healthy donors, pre–COVID-19 (HD-1)

0

10

20

30

40

COVID
-19

pati
en

tsHD-1
HD-2

C

St
ai

ni
ng

 in
de

x
(m

ul
tim

er
+  

C
D

8 
T 

ce
lls

)

E

COVID-19 
patients

HD-2

HD-1

****
****

T cell recognition overlap
0.02

B

A

Fig. 3. Broad reactivity toward SARS-CoV-2–derived peptides in healthy individuals. (A) CD8+ T cell recognition to individual SARS-CoV-2–derived peptides (table 
S7) and CEF peptides (table S5) in the pre–COVID-19 healthy donor cohort (n = 18 individuals) identified based on the enrichment of DNA barcodes associated with each 
of the tested peptide specificities (LogFc > 2 and P < 0.001, Barracoda). Significant SARS-CoV-2–specific T cell recognition of individual peptide sequences is colored and 
segregated based on their protein of origin. The black dots show CD8+ T cells reactive to the CEF peptides in all analyzed donors. (B) T cell recognition in the high-exposure 
risk healthy donor cohort (tables S5 and S7) (n = 20 individuals). (C) Staining index of CD8+ T cells binding SARS-CoV-2–specific pMHC multimers in the three evaluated 
cohorts. One-way ANOVA (Kruskal-Wallis test) ****P < 0.0001 (patient versus HD-1 < 0.0001 and patient versus HD-2 < 0.0001); n = 18 (patient), n = 18 (HD-1), and n = 20 
(HD-2). (D) Flow cytometry dot plots showing in vitro expanded T cells from healthy donors recognizing SARS-CoV-2–derived epitopes, detected by combinatorial tetramer 
staining. T cell binding to each pMHC specificity is detected using pMHC tetramers prepared in a two-color combination (blue dots), with gray dots showing tetramer- 
negative T cells, and the number on the plots shows the frequency (%) of tetramer+ of the CD8+ T cells. Gating strategy used for the flow cytometry analysis is shown in 
fig. S11A. (E) Venn diagram illustrating the overlap of T cell recognition toward SARS-CoV-2–derived peptides in the COVID-19 patient and healthy donor cohorts.
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equally toward ORF1 and S proteins, whereas ORF3-derived pep-
tides were recognized less in the healthy donor cohort compared with 
the COVID-19 patient cohort (fig. S3B). The immunodominant 
T cell epitopes from ORF1 identified in the patient cohort were not 
among the most prevalent responses in the healthy donors (fig. S3C).

Despite such broad T cell recognition in both healthy donor co-
horts, the presence of SARS-CoV-2–recognizing T cells seems to be 
of low frequency with limited separation of the CD8+ T cells bind-
ing to the pool of DNA-barcoded pMHC multimers (fig. S4A) and 
measured by a significantly lower staining index of the pMHC mul-
timer binding in healthy donors compared with patients (Fig. 3C). 
Consequently, a direct estimate of the frequency of the SARS-
CoV-2–reactive T cell populations in the individual healthy donors 
was not feasible. The low frequency and limited separation of these 
T cells were confirmed by independent analysis using conventional 
pMHC tetramers for several individual epitopes in healthy donor 
PBMCs (fig. S4B). Together, these data suggest a lower TCR avidity 
to the probed pMHC in healthy individuals compared with patients 
with COVID-19, which could represent potential cross-reactivity 
from existing T cell populations potentially raised against other 
coronaviruses (such as common cold viruses HCoV-HKU1, HCoV-
229E, HCoV-NL63, and HCoV-OC43) that share some level of sequence 
homology with SARS-CoV-2, as suggested in recent reports (13, 17, 19).

To further validate the presence of low-frequency T cells in healthy 
donors, we expanded T cells in vitro from several COVID-19–
unexposed healthy donors and measured T cell binding using con-
ventional pMHC tetramers. On the basis of in vitro peptide-driven 
expansion, pMHC tetramer binding T cell populations were veri-
fied in multiple donors, recognizing SARS-CoV-2–derived peptides, 
including immunodominant epitopes across four HLAs (A01:01- 
TTDPSFLRGY, A02:01-LLLLDRLNQL, A02:01-KLKDCVMYA, 
A24:02-FYAYLRKHF, and B07:02-SPRWYFYYL) (Fig. 3D). Al-
though these T cell responses were of low frequency, a functional 
cytokine response (measured by IFN- and TNF- production) was 
observed in in vitro expanded T cell cultures when restimulated with 
individual peptide epitopes or epitope pools (fig. S5). Forty-one of 
the COVID-19 immunogenic peptides, including the immuno-
dominant peptides, identified in the patient cohort were also recog-
nized by T cells of healthy donors; this includes the two most frequently 
observed epitopes of SARS-CoV-2: HLA-A01:01-TTDPSFLRGY and 
HLA-B07:02-SPRWYFYYL (Fig.  3E and table S7). Together, we 
show a full spectrum of T cell recognition toward SARS-CoV-2–
derived peptides in healthy donors; this is detected at low frequency 
and shows characteristics of low-avidity interaction based on the 
staining index of the pMHC multimer interaction.

Enhanced activation profile of SARS-CoV-2–specific T cells 
associated with COVID-19 disease severity
For phenotypic characterization of SARS-CoV-2–specific CD8+ T cells, 
we combined pMHC multimer analysis with a 13-parameter anti-
body panel (table S8) and evaluated the phenotype of the SARS-
CoV-2–reactive T cell populations in patients with COVID-19 and 
healthy donors. This furthermore allowed us to evaluate whether 
the multimer-specific T cell profile of the high-risk COVID-19 healthy 
cohort (HD-2) has any distinct features compared with the unexposed 
cohort (HD-1), despite both cohorts containing presumably unex-
posed individuals. Dimensional reduction using Uniform Manifold 
Approximation and Projection (UMAP) showed distinct clustering 
of SARS-CoV-2 multimer-reactive T cells of the COVID-19 patient 

cohort compared with the two healthy donor cohorts with higher ex-
pression of activation markers CD38, CD69, CD39, HLA-DR, and 
CD57 and reduced expression of CD8 and CD27 (fig. S6). Compared 
with both healthy donor cohorts, we observed that more SARS-
CoV-2–reactive T cells from patients with COVID-19 expressed the 
activation markers CD38, CD39, CD69, and HLA-DR and showed 
a late-differentiated effector memory (EM) profile of reduced CD27 
(Fig. 4A). We did not observe activation of SARS-CoV-2–specific 
multimer+ T cells in the high-risk COVID-19 healthy cohort, except 
for nonsignificant trends for reduced CD27 and increased CD57 
expression (Fig. 4A). SARS-CoV-2–reactive T cells in patients and 
healthy donor cohorts showed a similar distribution of memory 
subsets (determined by CCR7 and CD45RA expression); however, 
higher expression of T cell activation markers (fig. S7) was observed 
in EM and TEMRA (terminally differentiated EM) subsets in patients. 
Furthermore, the highly activated and differentiated T cell pheno-
type in patients with COVID-19 was distinct to SARS-CoV-2–specific 
T cells and not observed for CEF-specific T cells detected in the same 
cohort (Fig. 4B). We also observed no difference in CEF-specific 
multimer+ T cells between the three cohorts in a similar analysis 
(fig. S8A). In addition, we compared the expression of T cell activa-
tion markers in combination with the inflammatory response marker 
CD38 on multimer+ CD8+ T cells across the three cohorts, which 
showed significantly enhanced expression of activation molecules 
(CD39, CD69, and HLA-DR) and PD-1 inhibitory receptor on 
CD38+ T cells only in the patient cohort (fig. S8, B and C).

We next evaluated the association of SARS-CoV-2–specific CD8+ 
T cell presence in the patient cohort related to their requirement for 
hospital care. No overall difference in the total number of recognized 
SARS-CoV-2–derived epitopes was observed between severely dis-
eased patients requiring hospitalization (n = 11 individuals) and 
patients with mild symptoms not requiring hospital care (outpatient; 
n = 7 individuals) (Fig. 4C). For phenotype characterization, 23 ad-
ditional patient samples (total, n = 41 patients; hospitalized, n = 21; 
outpatients, n = 20) were analyzed using a patient HLA-matching 
pMHC multimer library combined with the 13-parameter antibody 
panel, similar to the initial 18 patients but without resolving indi-
vidual epitope specificities. On the basis of this extended cohort, a 
significantly higher frequency of SARS-CoV-2–specific CD8+ T cells 
was observed in the hospitalized patients compared with outpatient 
samples (Fig. 4D). Furthermore, a significant increase in the frac-
tion of such cells expressing CD38, CD39, HLA-DR, and PD-1 was 
observed in the hospitalized patients (Fig.  4E). By measuring the 
coexpression of immune activation markers—CD38 together with 
CD39, PD-1, and HLA-DR—a strong elevation in T cells expressing 
these combinations of activation markers was observed among the 
hospitalized patients (Fig.  4F). Together, the increased frequency 
and activation signature suggest a role for SARS-CoV-2–specific 
CD8+ T cells in severe COVID-19 disease.

We also examined the phenotype of CD8+ T cells specific to the two 
most immunodominant epitopes TTDPSFLRGY and SPRWYFYYL 
with respect to disease severity (in eight patients; four hospitalized 
and four outpatients) using conventional pMHC tetramer–based 
evaluation of individual T cell specificities. Hospitalized patients 
displayed increased PD-1 expression compared with the same T cell 
populations in the outpatients (fig. S9A). Furthermore, a higher fre-
quency of T cells reactive to these two SARS-CoV-2 immunodominant 
epitopes was observed in the hospitalized patients, but the functional 
evaluation upon peptide stimulation revealed that only a subfraction 
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Fig. 4. Enhanced activation profile of SARS-CoV-2–specific T cells correlates with COVID-19 disease severity. (A) Box plots comparing percentages of SARS-CoV-2 
pMHC multimer binding CD8+ T cells expressing the indicated phenotype surface markers in the COVID-19 patient and the two healthy donor cohorts (n = 18 individuals 
for each cohort). Each dot represents one sample. Frequencies were quantified from flow cytometry data processed using the gating strategy applied in fig. S11. P values 
for one-way ANOVA (Kruskal-Wallis test): CD38 < 0.0001 (HD-1 versus patient < 0.0001 and HD-2 versus patient < 0.0001), CD39 < 0.0001 (HD-1 versus patient = 0.006 and 
HD-2 versus patient < 0.0001), CD69 < 0.0001 (HD-1 versus patient < 0.0001 and HD-2 versus patient < 0.0001), HLA-DR = 0.002 (HD-1 versus patient = 0.02 and HD-2 
versus patient < 0.004), and CD27 = 0.03 (HD-1 versus patient = 0.03). (B) Box plots comparing the percentage of SARS-CoV-2 pMHC multimer+ (n = 18 patients) and CEF 
pMHC multimer+ (n = 14 patients) CD8+ T cells expressing the indicated surface markers in the COVID-19 patient cohort. Each dot represents one sample. P values for 
hypothesis (Mann-Whitney) test: P = 0.0002 (CD38), P < 0.0001 (CD39), P = 0.0001 (CD69), P = 0.009 (HLA-DR), and P = 0.04 (CD27). (C) Number of SARS-CoV-2 epitopes 
recognized by T cells in outpatient (n = 7) and hospitalized (n = 11) patient samples. (D) Box plots show frequencies of SARS-CoV-2 multimer+ CD8+ T cells in outpatient 
(n = 20) and hospitalized patients (n = 21). P value (Mann-Whitney test) of ≤0.0001. (E) Box plots showing the percentage of SARS-CoV-2 pMHC multimer+ CD8+ T cells 
expressing the indicated surface markers in outpatients (n = 20) and hospitalized patients (n = 21). Each dot represents one sample. P values for hypothesis (Mann-Whitney) 
test: P = 0.001 (CD38), P = 0.036 (CD39), P < 0.0001 (PD-1), and P = 0.027 (HLA-DR). (F) Comparison of the frequency of SARS-CoV-2 pMHC multimer+ CD8+ T cells express-
ing activation markers (CD39 and HLA-DR) and PD-1 in combination with CD38 [as shown in the representative plots (fig. S8), in hospitalized and outpatient samples]. 
P values for hypothesis (Mann-Whitney) testing: P = 0.04 (CD38+ CD39+), P = 0.005 (CD38+ HLA-DR+), and P < 0.0001 (CD38+ PD-1+). (G) Comparison of tetramer binding 
(conventional single-color tetramers) and functional (cytokine-secreting) T cells recognizing the two immunodominant epitopes in 10 patients, grouped according to 
COVID-19 disease severity. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, and ****P ≤ 0.0001.
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of these high-frequency T cells were responsive to antigen exposure 
(Fig. 4G and fig. S9B). These data, together with increased PD-1 
expression, suggest a functional impairment or selective inhibition 
of these high-frequency T cell populations, as observed by a recent 
study (5).

A fraction of SARS-CoV-2 epitopes share sequence homology 
with widely circulating common cold coronaviruses
Preexisting T cell immunity, in the context of SARS-CoV-2–reactive 
T cells in unexposed healthy individuals, has been reported by several 
studies (13–15, 17, 19), and it has been hypothesized that this is due 
to the shared sequence homology between the SARS-CoV-2 genome 
and other common cold coronaviruses (HCoV-OC43, HCoV-HKU1, 
HCoV-NL63, and HCoV-229E). Having evaluated the full spec-
trum of minimal epitopes for T cell recognition, we sought to eval-
uate the sequence homology at the peptide level and its association 
with the SARS-CoV-2 T cell reactivity that we observed in healthy 
donors. First, we searched for immunogenic hotspots across the full 
SARS-CoV-2 proteome by comparing the number of identified epi-
topes (in the patient cohort) with the total number of predicted 
peptides in any given region of the proteins. In general, the epitopes 
were spread over the full length of the protein sequences while clus-
tering in minor groups throughout all regions of the viral proteome 
(Fig. 5A). Regions indicated by an asterisk demonstrate significant 
enrichment of T cell recognition relative to the number of MHC-I–
binding peptides in a given region. Both the C- and N-terminal re-
gions of the ORF1 seem to hold fewer T cell epitopes compared with 
the rest of this protein. When similarly mapping the T cell recogni-
tion of SARS-CoV-2–derived peptides observed in healthy donors, 
we detected a comparable spread of T cell recognition in the healthy 
donor cohort. Most T cell epitope clusters in the patient cohort co-
incide with T cell recognition in the healthy donor cohort. The few 
regions that distinguish the T cell recognition observed in healthy 
donors from that observed in patients include the C- and N-terminal 
regions of ORF1, parts of the N, and, in general, a higher level of 
T cell recognition to S. In these regions, T cell recognition in healthy 
donors exceeded the observation from patients with COVID-19 
(Fig. 5A). When evaluating the prevalence of T cell recognition for 
the epitopes identified in >25% of the patient (Fig. 2A and table S9) 
or the healthy donor cohort (fig. S3C and table S9), we observed 
that most of these T cell responses frequently observed in patients 
with COVID-19 are also detected in healthy donors, whereas a large 
fraction of epitopes dominating in healthy individuals were not de-
tected in our patient cohort (Fig. 5B). However, several SARS-CoV-2 
reactivities that were identified only in the healthy donors in our 
study were shown to be present in patients with COVID-19 analyzed 
by other studies (table S9), which strongly points to a substantial 
degree of cross-recognition to SARS-CoV-2 from preexisting T cell 
populations and that such populations might drive the further ex-
pansion of T cell responses to SARS-CoV-2 infection.

To further elucidate the potential origin of such a cross-reactive 
T cell population in the healthy donor cohort, we next evaluated the 
sequence homology of SARS-CoV-2 MHC-I–binding peptides with 
the four common cold coronaviruses: HCoV-HKU1, HCoV-NL63, 
HCoV-OC43, and HCoV-229E. With a variation limit of up to two 
amino acids in each peptide sequence, 15% of the total predicted peptides 
showed sequence similarity with one or more HCoV peptide sequence 
(Fig. 5C, gray pie). Among the T cell–recognized peptides, in both 
the patient and healthy donor cohorts, this fraction was comparable 

with 19 and 16%, respectively, of T cell–recognized peptides sharing 
sequence homology with one or more HCoV (Fig. 5C). As an alter-
native approach, the similarities were calculated by kernel method 
for amino acid sequences using BLOSUM62, indicating comparable 
sequence similarity of the peptides recognized by T cells and those 
not recognized in reference to HCoV. However, peptides with the 
lowest similarity to HCoV were not recognized by T cells in the 
patient cohort (fig. S10).

Because T cell cross-recognition can often be driven by a few key 
interaction points, predominantly in the “core” of the peptide se-
quence (i.e., positions 3 to 8) (28, 29), we restricted the sequence 
similarity to the core of the peptide that would be most likely to in-
teract with the TCR (30). On the basis of the protein core only, up 
to 74% of all the identified epitopes showed sequence homology to 
HCoV (one or more) (Fig. 5C), suggesting these common cold vi-
ruses as a potential source of the observed low-avidity interactions 
in healthy donors. Furthermore, when evaluating peptides frequently 
recognized by T cells in both patients with COVID-19 and healthy 
individuals, we find evidence of substantial homology, as exempli-
fied with the peptide sequences listed in Fig. 5D. However, similar 
sequence homology is observed for the peptide sequences that are 
recognized only in the patient cohort (Fig. 5D). Thus, at present, 
our data point to substantial T cell cross-recognition being involved 
in shaping the T cell response to SARS-CoV-2  in patients with 
COVID-19; however, we find no specific enrichment of T cell rec-
ognition to peptide sequences with large sequence homology compared 
with the total peptide library being evaluated, and the responses 
identified exclusively in the patient samples are not more specific to 
SARS-CoV-2 compared with those recognized in both cohorts. 
ORF1 displayed the highest T cell recognition immunogenicity and 
also the highest sequence identity to HCoV (40%, as opposed to 22 
to 34% for all other SARS-CoV-2 proteins, calculated using direct 
sequence alignment). Future studies seeking to fully understand the 
role and origin of the underlying T cell cross-recognition will likely 
require an in-depth evaluation of pre- and postinfection samples.

DISCUSSION
Several studies using overlapping peptide pools spanning different re-
gions of SARS-CoV-2 viral proteins have shown a broad range of T cell 
activation in convalescent COVID-19 patients (8, 9, 11, 14, 15, 31–35). 
Our work now provides a detailed characterization of minimal 
epitopes derived from the complete SARS-CoV-2 genome for their 
CD8+ T cell immunogenicity, immunodominance, and functional 
and phenotypical characteristics in patients with COVID-19 and healthy 
donors. We identified CD8+ T cell responses to 122 epitopes in 
18 patients with COVID-19 after screening for T cell recognition 
based on 3141 peptides derived from the full SARS-CoV-2 genome 
and selected based on their predicted HLA-binding capacity. Of these, 
a few immunodominant T cell epitopes were recognized in most of 
the patients. Both dominant and subdominant T cell epitopes were 
cross-recognized by low-level preexisting T cell populations in 
SARS-CoV-2–unexposed healthy individuals. We have observed that 
the SARS-CoV-2 dominant epitopes mount very strong T cell re-
sponses, with up to 27% of all CD8+ lymphocytes recognizing a sin-
gle epitope (two overlapping peptides with the same peptide core).

Initial analysis of SARS-CoV-2–unexposed individuals revealed 
substantial presence of CD4+ and CD8+ T cells cross-reactive to 
SARS-CoV-2 peptides (11, 13, 15, 17, 19, 36, 37). Longitudinal analysis 
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of cross-reactive and induced CD8+ T cells before and after SARS-
CoV-2 infection has been followed in individual cases (37), but the 
role of preexisting T cells in overall immune response and disease 
outcome is not yet established. Using a genome-wide screen of ex-
panded T cells, a recent study reported cross-reactivity to SARS-CoV 
epitopes in patients with COVID-19 but not to other commonly 
circulating coronaviruses (38). Our ex vivo evaluation of all 3141 SARS-
CoV-2–derived minimal epitopes in two healthy cohorts (COVID-19–
unexposed and high risk) shows extensive but low-frequency and 
low-avidity interaction with CD8+ T cells. Preexisting immunity based 

on cross-reactive T cells can influence how the immune system re-
acts upon viral exposure, including through faster expansion of pre-
existing memory cells upon initial exposure to viral infection. A similar 
outcome and benefit of preexisting T cell immunity have been shown 
in the case of the flu pandemic virus H1N1 (39, 40). However, active 
stimulation of cross-reactive T cells could also lead to exhaustion of 
rapidly expanded T cells, similar to the higher PD-1 expression and 
reduced cytokine secretion of the SARS-CoV-2 immunodominant 
T cells observed by us and others (5, 41, 42). In addition, hyperactivation 
of preexisting T cells could contribute to short- and long-term disease 
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Fig. 5. A fraction of SARS-CoV-2 epitopes share sequence homology with widely circulating common cold coronaviruses. (A) SARS-CoV-2 T cell immunogenicity 
map across the viral proteome comparing the distribution of identified SARS-CoV-2 epitopes (patient cohort, orange line; n = 16 patients) with the total analyzed peptides 
(gray line). The height of a peak indicates the number of ligands (right y axis) analyzed in a particular region and the number of identified epitopes (left y axis). The bottom 
panel similarly maps epitopes and ligands from healthy donors (green line, n = 31 individuals). Positions significantly enriched (P < 0.05) with epitopes compared with the 
number of tested ligands are marked with an asterisk. (B) T cell epitopes selected on the basis of their immunodominant characteristics either in the patient (orange) or 
healthy donor (green) cohort or represented in both (red) are evaluated for their T cell recognition prevalence in both cohorts. (C) Sequence similarity of SARS-CoV-2 
peptides with the other four common cold coronaviruses (HCoV) HCoV-HKU1, HCoV-NL63, and HCoV-229E. The gray pie chart indicates the sequence similarity of the 
total predicted peptides from SARS-CoV-2 with any one (+1), two (+2), three (+3), or all four (+4) HCoV peptides with a variation limit of up to two amino acids within the 
full-length peptide. The colored pie chart shows a similar analysis for epitopes detected in the patient (n = 16) or healthy donor cohort (combined analysis of HD-1 and 
HD-2, n = 31) for full-length peptide and peptide core. (D) Examples of sequence homology for shared (between patient and healthy donors) and patient-specific T cell 
epitopes with one or more HCoV peptide sequence. Nonmatching amino acids are shown in gray.
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severity via inflammation and autoimmunity, because increased pro-
duction of IFN- by CD4+ and CD8+ T cells has been observed in 
patients with severe COVID-19 (43). Furthermore, it has been re-
ported (44) that SARS-CoV-2 infection can be a triggering factor for 
autoimmune reactions and severe pneumonia with sepsis leading to 
acute respiratory distress syndrome, bone marrow infection with 
pancytopenia, and organ-specific autoimmunity (45–47). Preexisting 
T cell immunity can influence vaccination outcomes, because they 
may induce a faster but possibly selective immune response. The ORF1 
protein regions are highly conserved within coronaviruses (48) and 
show the highest HCoV identity among SARS-CoV-2 proteins, and 
most of the immunodominant epitopes that we have identified be-
long to the ORF1 region. Thus, a detailed evaluation of these T cell 
epitopes could be of value in vaccine design.

Most vaccine development efforts are currently focusing on mount-
ing antibody responses to the spike protein, with limited focus on 
T cell immunity. This is due to the receptor binding domain being 
the main target for neutralizing antibodies produced by B cells (49). 
However, several studies have pointed out relatively low antibody 
titers in COVID-19 recovered patients (3,  50–52). In conditions 
where antibody titers cannot sufficiently protect against infections, 
T cell immunity may sustain the antibody responses and provide a 
direct source of T cells for clearing virus-infected cells. For the in-
volvement of T cell immunity in vaccine development, our data 
suggest that the inclusion of other virus proteins, such as ORF1 or 
ORF3, might be highly relevant. For now, the role of antibody- and 
T cell–mediated immune response after natural infection or after 
vaccination is not yet resolved and requires extensive longitudinal 
analysis comparing antibody and T cell kinetics to determine a syn-
ergistic or specific effect in long-term disease protection.

T cell recognition of SARS-CoV-2–derived peptides in both pa-
tients with COVID-19 and healthy donors has prompted us to un-
derstand the role of T cell cross-reactivity in controlling infections. 
In recent years, technology improvements in TCR characterization 
have allowed us to interrogate the TCR-pMHC interaction from a 
structural approach while obtaining experimental information re-
lated to the peptide amino acids that are crucial to T cell recognition 
(53–58). Such efforts have taught us that T cell cross-recognition is 
very difficult to predict, without knowing the precise interaction re-
quired for the given TCR, because even T cell epitopes with as low 
as 40% sequence homology can be recognized by a given TCR (30). 
Therefore, the underlining source of T cell cross-reactivity might 
arise from a larger set of epitopes within the HCoV viruses, includ-
ing sequences with larger variation than those evaluated here (i.e., 
maximum of two amino acid variants per peptide sequence/
peptide core).

Although T cell recognition itself was largely overlapping in iden-
tity between patients and healthy donors, the magnitude of T cell 
responses and particularly the phenotype of SARS-CoV-2–specific 
T cells were substantially different. We detected a strong activation 
profile of SARS-CoV-2–specific T cells only in patients with COVID-19, 
and this strong “activation signature” (high expression of CD38, CD39, 
PD-1, and HLA-DR) was further enhanced in patients requiring 
hospitalization. Such highly activated T cell responses should facili-
tate viral clearance, and hence, our data further support the notion 
that some severely affected patients might suffer from hyperactivation 
of their T cell compartment as a consequence of their primary viral 
infection, which may even be cleared. Additional signs of functional 
impairment were observed, and cytokine secretion upon antigen 

stimulation was incomplete for the high-frequency populations of 
SARS-CoV-2–specific T cells.

A limitation of the current study relates to the lack of informa-
tion related to the precise date of infection. This may differ by up to 
1 week, because symptoms and hence diagnosis can be delayed. 
Consequently, differences in T cell mobilization and/or activation 
may be observed as a function of time, which is not controlled in the 
present study. However, a measurement of symptoms before the first 
positive SARS-CoV-2 test indicates that samples were collected at 
about the same time relative to symptom onset in the two groups of 
patients, except for three patients from the intensive care unit included 
later after infection. In addition, although our T cell screening strat-
egy allows for high-throughput epitope mapping, determination of 
individual responses can only be estimated following the barcode 
deconvolution strategy, in relation to the pool of pMHC multimer+ 
T cells upon sorting. For the healthy donor population, the separa-
tion was insufficient to precisely determine the frequency of this 
T cell population, whereas for the patient cohort, both measure-
ments demonstrated strong correlation with measurements of the 
individual responses using conventional pMHC tetramers.

Together, COVID-19 disease drives substantial T cell activation, 
with T cell recognition of a large number of SARS-CoV-2–derived 
peptides. There is also considerable T cell recognition of such pep-
tides in healthy donors, arguing for cross-recognition, potentially 
from T cells raised against other coronaviruses. The activation pro-
file clearly distinguishes patients from healthy individuals. Patients 
who required hospitalization for COVID-19 demonstrated a signifi-
cantly higher frequency of SARS-CoV-2–specific T cells and a more 
activated phenotype compared with patients with milder disease. 
The data presented here support a role for T cell recognition in 
COVID-19 and hypothesize that such T cells are associated with 
COVID-19 disease severity. Preexisting T cell immunity likely in-
fluences the immune response to SARS-CoV-2, which could be lev-
eraged to fight novel infections.

MATERIALS AND METHODS
Study design
This study aimed to identify a full repertoire of CD8+ T cell–mediated 
immune response to SARS-CoV-2 infection. For a comprehensive 
evaluation, we determined potential T cell epitopes within the com-
plete SARS-CoV-2 genome and analyzed the resulting 3141 peptides 
for their T cell recognition, immunodominance, breadth of the T cell 
response, functional and phenotype of reactive T cells, and contri-
bution in COVID-19 disease severity. We used a DNA barcode–
based MHC multimer T cell detection technology in combination 
with a 13-parameter flow cytometry phenotyping panel for T cell 
identification in PBMCs in a cohort of 18 patients with COVID-19 
(composed of severe and mild disease) and compared with T cell 
recognition in two healthy donor cohorts (18 COVID-19–unexposed 
individuals and 20 high-risk health care staff). To understand the 
association of SARS-CoV-2–specific T cells in disease severity, we 
included an additional 23 patients for T cell phenotype analysis.

Clinical samples
Approval for the study design and sample collection was obtained 
from the Committee on Health Research Ethics in the Capital Re-
gion of Denmark. All included patients and health care employees 
gave their informed written consent for inclusion. PBMC samples 
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from 18 SARS-CoV-2–infected patients were used in this study. Blood 
samples were collected as close as possible to the first COVID-19–
positive test. The patient cohort included samples from individuals 
with severe symptoms who required hospital care (hospitalized; n = 11) 
and patients with mild symptoms not requiring hospital care (out-
patient; n = 7). For hospitalized patients, we collected full data from 
the medical record regarding disease course, age, gender, travel his-
tory, performance status, symptoms, comorbidity, medications, 
laboratory findings, diagnostic imaging, treatment, need of oxygen, 
need for intensive care, and an overall estimate of disease severity 
(table S2). For outpatients, we used a questionnaire to collect data 
on comorbidity, travel history, medications, and performance status.

SARS-CoV-2 infection was diagnosed by one of four platforms 
as follows: BGI (BGI COVID-19 RT-PCR kit), Panther Fusion 
(Hologic), Roche Flow (Roche MagNA Pure 96 and Roche LightCycler 
480 II real-time PCR), and Qiaflow (QIAsymphony or RotorGene, 
Qiagen). In the last three platforms, LightMix Modular SARS-CoV 
(COVID-19) E-gene (#53-0776-96) has been used. The diversity of 
platforms used was due to supply issues. All platforms were validated 
using validation kits and panels from the Statens Serum Institute, 
Denmark. Most patients had more than one positive test for COVID-19. 
Swabs, sputum, and tracheal secretion were used depending on the 
setting.

Patients were attempted for inclusion soon after diagnosis. The 
samples were collected within 2 weeks from COVID-19 diagnosis 
(except for three patients who were at intensive care after diagno-
sis). The average number of days with symptoms before sample col-
lection matches closely in the two patient cohorts (10.85 days for the 
hospitalized group and 10.45 days for the outpatient group) (table 
S2); however, it was not possible to determine the exact date of 
infection.

For the pre–COVID-19 healthy donor cohort (n = 18), we used 
samples collected before October 2019 and obtained from the cen-
tral blood bank, Rigshospitalet, Copenhagen, in an anonymized form. 
In addition, we included 20 health care employees from Herlev 
Hospital during the COVID-19 pandemic, who were at high risk of 
SARS-CoV-2 infection but not detected to be positive, as a cohort to 
follow immune responses in a potentially exposed population. PBMCs 
from all three cohorts were isolated immediately after sampling us-
ing Ficoll-Paque PLUS (GE Healthcare) density gradient centrifu-
gation and were cryopreserved thereafter at a density of 2 × 106 to 
20 × 106 cells/ml.

SARS-CoV-2 peptide selection
Potential HLA class I–binding peptides were predicted from the 
complete set of 8- to 11-mer peptides contained within the Wuhan 
seafood market pneumonia virus isolate Wuhan-Hu-1 (GenBank 
ID: MN908947.3) to a set of 10 prevalent and functionally diverse 
HLA molecules (HLA-A01:01, HLA-A02:01, HLA-A03:01, HLA-A24:02, 
HLA-B07:02, HLA-B08:01, HLA-B15:01, HLA-C06:02, HLA-C07:01, 
and HLA-C07:02) using a preliminary version of NetMHCpan 4.1 
(www.cbs.dtu.dk/services/NetMHCpan/index_v0.php) (PMID: 
32406916). For peptides predicted from ORF1 protein, a percentile 
rank binding threshold of 0.5% was used, and for peptides derived 
from all other proteins, a threshold of 1% was used. Together, 2203 
peptides were selected, binding to one or more HLA molecules, 
generating 3141 peptide-HLA pairs for experimental evaluation 
(table S1). All peptides were custom-synthesized by Pepscan Presto 
BV, Lelystad, The Netherlands. Peptide synthesis was done at a 

2-mol scale with ultraviolet (UV) and mass spectrometry quality 
control analysis for 5% random peptides with an estimated purity of 
70 to 92% by the supplier.

MHC-I monomer production
All 10 MHC-I monomer types were produced using methods previ-
ously described (59). Briefly, MHC-I heavy chain and human 
2- microglobulin (h2m) were expressed in Escherichia coli using pET 
series expression plasmids. Soluble denatured proteins of the heavy 
chain and h2m were harvested using inclusion body preparation. 
The folding of these molecules was initiated in the presence of UV-labile 
HLA-specific peptide ligands (60). HLA-A02:01 and A24:02 mole-
cules were folded and purified empty, as described previously (61). 
Folded MHC-I molecules were biotinylated using the BirA biotin- 
protein ligase standard reaction kit (Avidity LLC, Aurora, CO), and 
MHC-I monomers were purified using size exclusion chromatography 
(HPLC, Waters Corporation, USA). All MHC-I folded monomers 
were quality-controlled for their concentration, UV degradation, 
and biotinylation efficiency and stored at −80°C until further use.

DNA-barcoded multimer library preparation
The DNA-barcoded multimer library was prepared using the meth-
od developed by Bentzen et al. (25). Unique barcodes were generated 
by combining different A and B oligos, with each barcode repre-
senting a 5′ biotinylated unique DNA sequence. These barcodes 
were attached to PE or APC and streptavidin-conjugated dextran 
(Fina Biosolutions, Rockville, MD, USA) by incubating them at 4°C 
for 30 min to generate a DNA barcode dextran library of 1325 unique 
barcode specificities. SARS-CoV-2 pMHC libraries were generated 
by incubating 200 M peptide of each peptide with 100 g/ml of the 
respective MHC molecules for 1 hour using UV-mediated peptide 
exchange (HLA-A01:01, A03:01, B07:02, B08:01, B15:01, C06:02, 
C07:01, and C07:02) or direct binding to empty MHC molecules 
(HLA-A02:01 and A24:02). HLA-specific DNA-barcoded multimer 
libraries were then generated by incubating pMHC monomers to 
their corresponding DNA barcode–labeled dextrans at 4°C for 30 min, 
thus providing a DNA barcode–labeled pMHC multimer specifically 
to probe the respective T cell population. A similar process was fol-
lowed to generate DNA-barcoded pMHC multimers for CEF epitopes 
(HLA-A and HLA-B) using APC- and streptavidin-conjugated dex-
tran attached with unique barcodes.

T cell staining with DNA-barcoded pMHC multimers 
and phenotype panel
All COVID-19 patient and healthy donor samples were HLA-genotyped 
for HLA-A, HLA-B, and HLA-C loci (next-generation sequencing; 
IMGM Laboratories GmbH, Germany) (table S10). Patient and 
healthy donor HLA-matching SARS-CoV-2 and CEF pMHC mul-
timer libraries were pooled [as described previously (25)] and incu-
bated with 5 × 106 to 10 × 106 PBMCs [thawed and washed twice in 
RPMI and 10% fetal calf serum (FCS) and washed once in barcode 
cytometry buffer] for 15 min at 37°C at a final volume of 60 l. Cells 
were then mixed with 40 l of phenotype panel containing surface 
marker antibodies (table S8) and a dead cell marker (LIVE/DEAD 
Fixable Near-IR; Invitrogen, L10119) (final dilution 1/1000) and in-
cubated at 4°C for 30 min. Cells were washed twice with barcode 
cytometry buffer and fixed in 1% paraformaldehyde.

Cells fixed after staining with pMHC multimers were acquired 
on a FACSAria flow cytometer instrument (AriaFusion, Becton 
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Dickinson) and gated by the FACSDiva acquisition program (Becton 
Dickinson), and all the PE-positive (SARS-CoV-2 multimer bind-
ing) and APC-positive (CEF multimer binding) cells of CD8+ gate 
were sorted into presaturated tubes (2% bovine serum albumin and 
100 l of barcode cytometry buffer) (fig. S11A). Sorted cells belong-
ing to each sample were then subjected to polymerase chain re-
action (PCR) amplification of its associated DNA barcode(s). Cells 
were centrifuged for 10 min at 5000g, and the supernatant was dis-
carded with minimal residual volume. The remaining pellet was 
used as the PCR template for each of the sorted samples and am-
plified using the Taq PCR Master Mix Kit (Qiagen, 201443) and the 
sample-specific forward primer (serving as sample identifier) 
A-key36. PCR- amplified DNA barcodes were purified using the 
QIAquick PCR Purification kit (Qiagen, 28104) and sequenced at 
PrimBio (USA) using the Ion Torrent PGM 314 or 316 chip (Life 
Technologies).

DNA barcode sequence analysis and identification of  
pMHC specificities
To process the sequencing data and automatically identify the bar-
code sequences, we designed a specific software package, “Barracoda” 
(https://services.healthtech.dtu.dk/service.php?Barracoda-1.8). 
This software tool identifies the barcodes used in a given experi-
ment, assigns sample ID and pMHC specificity to each barcode, and 
calculates the total number of reads and clonally reduced reads for 
each pMHC-associated DNA barcode. Furthermore, it includes sta-
tistical processing of the data. Details are given in (25). The analysis 
of barcode enrichment was based on methods designed for the anal-
ysis of RNA sequencing data and was implemented in the R package 
edgeR. Fold changes in read counts mapped to a given sample rela-
tive to mean read counts mapped to triplicate baseline samples were 
estimated using normalization factors determined by the trimmed 
mean of M values. P values were calculated by comparing each ex-
periment individually to the mean baseline sample reads using a 
negative binomial distribution with a fixed dispersion parameter set 
to 0.1 (25). False discovery rates (FDRs) were estimated using the 
Benjamini-Hochberg method. Specific barcodes with FDR < 0.1% 
were defined as significant, determining T cell recognition in the 
given sample. At least 1 per 1000 reads associated with a given DNA 
barcode relative to the total number of DNA barcode reads in that 
given sample was set as the threshold to avoid false-positive detec-
tion of T cell populations due to the low number of reads in the 
baseline samples. T cell frequency associated with each significantly 
enriched barcode was measured on the basis of the percentage read 
count of the associated barcode out of the total percentage multimer+ 
CD8+ T cell population in patient samples. In healthy donors, T cell 
recognition was identified on the basis of barcode enrichment anal-
ysis, the same as in patient samples; however, a frequency estimate 
of the corresponding T cell populations was not determined for sig-
nificant responses identified in healthy donors because of insufficient 
separation of multimer+ cells. To exclude potential pMHC elements 
binding to T cells in a nonspecific fashion, non–HLA-matching 
healthy donor material was included as a negative control. Any T cell 
recognition determined in these samples was subtracted from the 
full dataset.

T cell expansion and combinatorial tetramer staining
PBMCs from healthy donors were expanded in vitro using pMHC- 
dextran complexes conjugated with SARS-CoV-2–derived peptides 

and cytokines (IL-2 and IL-21) for 2 weeks either with single pMHC 
specificity or with a pool of up to 10 pMHC specificities. PBMCs 
were expanded for 2 weeks in X-VIVO Media (Lonza, BE02-060Q) 
supplemented with 5% human serum (Gibco, 1027-106). Expanded 
cells were used to measure peptide-specific T cell activation or 
stained using pMHC tetramers to detect T cells recognizing SARS-
CoV-2 epitopes.

In vitro expanded healthy donor PBMCs were examined for SARS- 
CoV-2–reactive T cells using combinatorial tetramer staining (62). 
Individual HLA-restricted pMHC complexes were generated using 
direct peptide loading (HLA-A02:01 and A24:02) or UV-mediated 
peptide exchange (all other HLAs) as described above and conjugated 
with fluorophore-labeled streptavidin molecules. For 100 l of pMHC 
monomers, 9.02 l [0.2 mg/ml of stock; SA-PE-CF594 (streptavidin-PE/
CF594; BD Biosciences, 562318) and SA-APC (BioLegend, 405207)] 
or 18.04 l [0.1 mg/ml of stock; SA-BUV395 (Brilliant Ultraviolet 
395; BD Biosciences, 564176), SA-BV421 (Brilliant Violet 421; BD 
Biosciences, 563259), and SA-BV605 (Brilliant Violet 605; BD Biosciences, 
563260)] of streptavidin conjugates was added and incubated for 
30 min at 4°C, followed by the addition of d-biotin (Sigma-Aldrich) 
at 25 M final concentration to block any free binding site. pMHC 
tetramers for each specificity were generated in two colors by incu-
bating pMHC monomers and mixed in a 1:1 ratio before staining 
the cells. Expanded cells were stained with 1 l of pooled pMHC 
multimers per specificity (in combinatorial encoding) by incubating 
1 × 106 to 5 × 106 cells for 15 min at 37°C in 80 l of total volume. 
Cells were then mixed with 20 l of antibody staining solution CD8-
BV480 (BD Biosciences, B566121) (final dilution 1/50), dump 
channel antibodies [CD4-FITC (BD Biosciences, 345768) (final di-
lution 1/80), CD14-FITC (BD Biosciences, 345784) (final dilution 1/32), 
CD19-FITC (BD Biosciences, 345776) (final dilution 1/16), CD40-
FITC (Serotech, MCA1590F) (final dilution 1/40), and CD16-FITC 
(BD Biosciences, 335035) (final dilution 1/64)], and a dead cell 
marker (LIVE/DEAD Fixable Near-IR; Invitrogen, L10119) (final 
dilution 1/1000) and incubated for 30 min at 4°C. Cells were then 
washed twice in fluorescence-activated cell sorting buffer (phosphate- 
buffered saline  and 2% FCS) and acquired on a flow cytometer 
(Fortessa, Becton Dickinson). Data were analyzed using FlowJo 
analysis software.

T cell functional analysis
For functional evaluation of T cells from PBMCs of patients with 
COVID-19 or PBMCs expanded from healthy donors, 1 × 106 to 
2 × 106 cells were incubated with 1 M SARS-CoV-2 minimal epi-
tope or pool of up to 10 epitopes (1 M per peptide) for 9 hours at 
37°C in the presence of protein transport inhibitor (final dilution 
1/1000; GolgiPlug; BD Biosciences, 555029). Functional activation 
of T cells was measured using intracellular cytokines IFN- (final 
dilution 1/20; BD Biosciences, 341117) and TNF- (final dilution 
1/20; BioLegend, 502930). Cells incubated with Leukocyte Activa-
tion Cocktail (final dilution 1/500; BD Biosciences, 550583) were 
used as a positive control, and HLA-specific irrelevant peptides were 
used as negative controls. Surface marker antibodies CD3-FITC (final 
dilution 1/20; BD Biosciences, 345764), CD4-BUV395 (final dilu-
tion 1/300; BD Biosciences, 742738), and CD8-BV480 (final dilu-
tion 1/50; BD Biosciences, B566121) and dead cell marker (final 
dilution 1/1000; LIVE/DEAD Fixable Near-IR; Invitrogen, L10119) 
were used to identify CD8+ T cells producing intracellular cytokines 
(gating strategy; fig. S5A).
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Flow cytometry analysis
For phenotype analysis, all samples were analyzed using FlowJo data 
analysis software (FlowJo LLC). Frequencies of specific cell popula-
tions were calculated according to the gating strategy shown in fig. 
S11B. For combinatorial tetramer staining, T cell binding to specific 
pMHC tetramers was identified using the gating plan described in 
the original study (63). For UMAP analysis (64), FCS (Flow Cytometry 
Standard) files of samples from the patient and healthy cohorts were 
concatenated (160,000 total cells), downsampled (FlowJo plugin), and 
visualized using UMAP (version 2.2, FlowJo plugin) analysis based 
on the following selected markers: CD3, CD4, CD8, CD38, CD39, 
CD69, CD137, HLA-DR, PD-1, CCR7, CD45RA, CD27, and CD57.

Sequence homology analyses
To evaluate the homology between SARS-CoV-2 and HCoV, both 
epitopes (peptides recognized by T cells) and ligands (peptide not 
recognized by T cells) were mapped to their respective source pro-
tein from the SARS-CoV-2 proteome. Enrichment analysis of the 
epitopes in the given region of the proteins was based on testing 
whether the count of observed epitopes exceeded what we expected 
from the number of ligands tested at each position. Epitopes were 
considered successes, and the count of ligands was regarded as the 
number of trials in a binomial test. The probability of success was 
derived from the average ratio of epitope to ligand per position 
across each protein. The test was “one-sided” with a significance 
level at 0.05.

The similarity of SARS-CoV-2 ligands and epitopes from both 
patient and healthy donor cohorts to a set of human common cold 
corona viruses (HCoV-HKU1, HCoV-229E, HCoV-NL63, and HCoV-
OC43) was tested using two methods. The first approach used a kernel 
method for amino acid sequences using BLOSUM62 (65). The sec-
ond approach was a simple string search allowing up to two mismatches. 
On the basis of the second approach, each epitope was categorized 
by how many, if any, of the common cold viruses it would match 
with. Both methods were applied to the full peptide length and to 
the peptide core.

Data processing and statistics
T cell recognition was determined on the basis of the DNA-barcoded 
pMHC multimer analysis and evaluated through Barracoda (see 
above). The data were plotted using Python 3.7.4. For all plots, pep-
tide sequences with no significant enrichments are shown as gray 
dots, and all peptides with a negative enrichment are set to LogFc 
equal zero (Figs. 1, D, E, and G, and 3, A and B, and fig. S2). Box 
plots for data quantification and visualization were generated, and 
their related statistical analyses were performed using GraphPad 
Prism (GraphPad Software Inc.) (Figs. 3C and 4, A to F, and figs. S1, 
A and B, S7B, S8, B and C, and S9A) or R studio (fig. S10). For un-
paired comparisons, Mann-Whitney test was applied, and to com-
pare more than two groups, one-way analysis of variance (ANOVA) 
(Kruskal-Wallis) test was performed using GraphPad Prism. All 
P values are indicated in the figure legends. Flow cytometry data were 
analyzed using FlowJo (version 10). Immunogenicity scores (Fig. 1, 
F and H, and fig. S3) were calculated (as percentage) by dividing the 
total identified T cell reactivity associated with an HLA or protein 
with the total number of specificities analyzed in a given cohort 
(number of peptides multiplied by the number of patient with a given 
HLA). Staining index (Fig. 3C) was calculated as follows: [mean flu-
orescence intensity (MFI) of multimer+ cells − MFI of multimer− cells]/

(2 × SD of multimer− cells). MFI of multimer+ and multimer− CD8+ 
T cells and the SD of the multimer− CD8+ T cells are from FlowJo 
analysis for patient and healthy donor samples.

SUPPLEMENTARY MATERIALS
immunology.sciencemag.org/cgi/content/full/6/58/eabf7550/DC1 
Figs. S1 to S11
Tables S1 to S11

View/request a protocol for this paper from Bio-protocol.
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Mapping SARS-CoV-2 T cell recognition
Cellular immunity mediated by cytotoxic CD8

+

 T cells contributes to protection against viral infection, but the full
spectrum of SARS-CoV-2 T cell recognition and role of preexisting T cell immunity remain incompletely understood.
Saini et al. used DNA-barcoded peptide–MHC-I multimers to scan the SARS-CoV-2 genome for CD8
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 T cell recognition
in patients with COVID-19. Across 10 analyzed HLA molecules, 122 unique SARS-CoV-2 CD8
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 T cell epitopes were
detected, including 5 immunodominant epitopes primarily concentrated within ORF1. Healthy donors displayed broad
T cell recognition of lower affinity and shared epitopes could be partially attributed to homology with seasonal human
coronaviruses. The frequency and activation of SARS-CoV-2–specific CD8
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 T cells were increased during severe
compared with mild disease, highlighting differences in T cell responses associated with disease progression.

View the article online
https://www.science.org/doi/10.1126/sciimmunol.abf7550
Permissions
https://www.science.org/help/reprints-and-permissions

D
ow

nloaded from
 https://w

w
w

.science.org at T
echnical U

niversity of D
enm

ark on July 07, 2022





CHAPTER5
ATRAP - Accurate T cell Receptor Anti-
gen Pairing through data-driven filter-
ing of sequencing information from single-
cells

The key advancement in interrogating T cell specificity is the de-
velopment of immune profiling platforms for single cell sequencing.
Although the platform has been available since 2019 no TCR-
pMHC specificity data sets have surfaced beyond the showcase
example from 10x Genomics. Even this flagship data contains a
high degree of ambiguous specificity annotations which has likely
limited its application. We set out to define a process for clean-
ing such data to retrieve reliable large-scale TCR-pMHC pairs.
We developed ATRAP, which is a data-driven filtering approach
based on our own generation of data. Since no golden standard ex-
ist we evaluate our method internally, on metrics designed for the
purpose, and externally, by comparing single-cell specificities to
responses detected by fluorescent-labeled pMHC multimer stain-
ing. This paper provides a detailed protocol for the filtering steps
of ATRAP, illustrations of its application, and a description of the
advantages and disadvantages of applying the single cell immune
profiling framework.
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 7 

Abstract 8 

Novel single-cell based technologies hold the promise of matching T cell receptor 9 

(TCR) sequences with their cognate peptide-MHC recognition motif in a high-10 

throughput manner. Parallel capture of TCR transcripts and peptide-MHC is enabled 11 

through the use of reagents labeled with DNA barcodes. However, analysis and 12 

annotation of such single-cell sequencing (SCseq) data is challenged by dropout, 13 

random noise, and other technical artifacts that must be carefully handled in the 14 

downstream processing steps. 15 

 16 

We here propose a rational, data-driven method termed ATRAP (Accurate T cell 17 

Receptor Antigen Paring) to deal with these challenges, filtering away likely artifacts, 18 

and enable the generation of large sets of TCR-pMHC sequence data with a high 19 

degree of specificity and sensitivity, thus outputting the most likely pMHC target per 20 

T cell. We have validated this approach across 10 different virus-specific T cell 21 

responses in 16 healthy donors. Across these samples we have identified up to 1494 22 

high-confident TCR-pMHC pairs derived from 4135 single-cells. 23 

Introduction 24 

T cells are essential for immune protection and play a critical role in the immune 25 

response to pathogens or cancer, where they directly kill infected or malignant host 26 

cells or orchestrate the response of other immune cells. Recognition is mediated 27 

through the heterodimeric T-cell receptor (TCR) expressed on the surface of T cells, 28 

which engages specifically with a peptide antigen (p) displayed in the MHC. Accurate 29 

specificity and broad coverage of antigen recognition is obtained through somatic 30 

recombination of the genetic loci, V(D)J, that encodes the α (VJ) and β (VDJ) chains 31 

of TCR. The process creates an extensively variable and dynamic repertoire, with an 32 
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estimated 107 distinct αβTCRs in an individual (Arstila et al., 1999; Davis & 33 

Bjorkman, 1988).  34 

 35 

Due to this diversity, the individual TCR transcripts can be used as endogenous 36 

cellular barcodes inherited by the T cell progeny. This has been utilized for providing 37 

quantitative insight into TCR diversity (Robins et al., 2009), to trace lineage decisions 38 

of T cells (Gerlach et al., 2013) and to monitor the dynamics of T cells across 39 

immune-related diseases, such as infectious disease (Dziubianau et al., 2013; Hou 40 

et al., 2016), cancer (Kirsch et al., 2015; Sherwood, 2013; S. Q. Zhang et al., 2018) 41 

and autoimmunity (Acha-Orbea et al., 1988; Madi et al., 2014). Most of such TCR 42 

repertoire studies have been confined to bulk experiments, tracing the TCR β chain 43 

because of its greater diversity (compared to the alpha chain) and because it is less 44 

ambiguous due to allelic exclusion (Bergman, 1999). However, accurate pairing of 45 

the variable TCR α and β regions is valuable for uncovering the biological function of 46 

a T cell and is generally lost in bulk experiments since the transcripts are separately 47 

encoded. Moreover, we and others have earlier demonstrated such approaches are 48 

suboptimal for the characterization of TCR specificity, and that this characterization 49 

is dependent on both the a and b chains (Montemurro et al., 2021). 50 

 51 

To accurately obtain TCR αβ-sequence-pair single-cell sequencing platforms can be 52 

applied to simultaneously capture both TCR chains, while retaining cell origin 53 

information. To further assign specificity information to such TCRs, T cells can be 54 

stained with barcode-labeled pMHC multimers to simultaneous identify pMHC 55 

specificity and TCR sequence of individual cells (Bentzen et al., 2016; S. Q. Zhang 56 

et al., 2018). Moreover, via DNA barcoded antibodies, the platform facilitates 57 

screening of surface proteins to distinguish cellular subtypes and enables cell 58 

hashing to trace origin of a given cell to e.g., a given donor, sample, or time-point, 59 

which is highly valuable in patient-studies. 60 

 61 

We deployed the droplet-based single-cell platform from 10x Genomics. Ideally a 62 

droplet contains a single cell with all its analytes and a gel-bead in emulsion (GEM). 63 

The gel-bead contains barcoded primers which ensures tracing of transcripts back to 64 

the cell-of-origin, referred to as GEMs. While the platform is highly promising, the 65 

sequence deconvolution is associated with substantial noise, and challenging to 66 

discriminate true from false signals. Common confounding factors include stochastic 67 

gene expression, cell cycle variations, apoptosis, and technical artifacts such as 68 

multiplet capture, contamination, dropout, and batch effects. Dropout and stochastic 69 

gene expression both result in zero-inflated gene counts and are typically insensitive 70 

to low expression levels (Buettner et al., 2015; Kharchenko, Silberstein, & Scadden, 71 

2014; Yamawaki et al., 2021). Multiplet capture is the event of capturing two or more 72 

cells in a single GEM and it is proportional to the capture rate of cells introduced to 73 

the system (Bloom, 2018; Zheng et al., 2017). The capture rate is determined by the 74 

rate of pulsing cells relative to the rate of gel-beads. Thus, to include even low 75 

frequency cell populations, the capture rate must be high at the expense of 76 
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introducing more multiplets. Contamination is particularly an issue when including 77 

analytes such as pMHC multimers which may be dissolved in cell suspension 78 

(Gaublomme et al., 2019). The platform has no means of controlling how ambient 79 

analytes and their barcodes are partitioned with gel-beads in emulsion (GEMs) which 80 

leads to GEMs that appear like multiplets or consist of ambiguous annotations from 81 

multiple analyte barcodes. The reverse issue arises from the risk that analytes may 82 

dissociate from the cell before capture. The listed confounders may result in both 83 

false positive and false negative discoveries 84 

 85 

The main concerns when screening for TCR specificity are nonspecific binding of 86 

pMHC and/or cell hashing analytes, incomplete TCR annotation, and T cell 87 

multiplets. Nonspecific binding and T cell multiplets may completely dilute the signal 88 

from actual interactions, while incomplete TCRs which are missing the annotation for 89 

either α- or β-chain render the single-cell setup superfluous. To ensure that a 90 

screening is fully exploited and interpreted correctly, we set out to develop a data 91 

driven algorithm that facilitates a consistent and reproducible TCR categorization 92 

(clonotyping), peptide-MHC (pMHC) annotation, and antibody-based cell hashing 93 

referencing of the donors and their HLA profile. 94 

 95 

We applied this algorithm to two datasets, each derived from screening PBMCs from 96 

16 healthy donors for T cell recognition against common viruses. In total, we 97 

evaluated TCR recognition against 10 different pMHC multimers, each labeled with 98 

their unique barcode. We demonstrate that following the filtering steps described 99 

here we can obtain a confident pairing of pMHC specificity and TCR sequence. This 100 

strategy will open novel opportunities to evaluate the structural interplay and the 101 

sequence-driven signatures of pMHC recognition at large scale. 102 

Results 103 

Parallel capture of TCRɑβ sequences, peptide-MHC specificity 104 

and sample origin from single-cells 105 

To obtain single-cell-derived triad information on TCR sequence, pMHC specificity, 106 

and sample origin; we stained peripheral blood mononuclear cells (PBMC) from a 107 

total of 16 different healthy donors (Table 1). All samples were stained with the same 108 

panel composed of 10 different viral-derived peptide-MHC (pMHC) multimers, each 109 

labeled with a unique barcode for that specificity and a common fluorescent label 110 

(allophycocyanin (APC)) (Fig. 1) (Table 2). To serve as an experimental control for 111 

the purity of the isolated T cells, we moreover stained the cells with three additional 112 

viral-derived pMHC multimers bearing a different fluorochrome (phycoerythrin (PE)) 113 

and labeled with their own unique DNA barcode (Supplementary Table 2). We sorted 114 
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only the APC-labeled pMHC multimer binding T cells (and hence deselected the PE-115 

labeled T cells) and included these in the down-stream single-cell processing. 116 

 117 

Prior to sorting, each sample was stained with a distinct hashing antibody to provide 118 

a sample identification barcode associated with the GEMs of the resultant single-cell 119 

data set. This is done to enable mixing of cells from different samples, while retaining 120 

the information of sample origin, and utilizing the capacity of capturing 6,000-10,000 121 

cells per lane in the 10xGenomics workflow. This is essential when capturing T cells 122 

based on their specificity since the MHC multimer positive population is generally of 123 

low frequency (<1% of CD8 T cells). When several samples are mixed in the process 124 

of running the single-cell analysis, all mRNA and DNA barcodes (derived from 125 

hashing antibodies or the MHC multimers) associated with a given cell will be 126 

encoded with the same 10x-barcode, proving the GEM association (Fig 1) 127 

(Supplementary Table 1). 128 

 129 

 130 
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 131 

 132 

Figure 1. a) Schematic of the experimental strategy. All samples are incubated with the 133 

same library of barcode-labeled pMHC multimers and subsequently with a sample-specific 134 

barcode-labeled hashing antibody to individually label cells derived from a given sample. 135 

Multimer-binding cells from all samples are sorted in bulk and processed through the 10x 136 

Chromium workflow. The sequencing output simultaneously captures the sample barcode, 137 

the pMHC barcode and the TCR sequences, which are all matched to a single cell based on 138 

the 10x-barcode. This also provides the means of retrospectively assigning each cell to their 139 

sample of origin, via the sample specific hashing barcode. b) Example showing how the APC 140 

labeled pMHC multimers are sorted collectively from all samples into one tube that is further 141 

carried into the 10x workflow. The PE labeled pMHC multimers are not sorted and hence 142 

deselected. A total of 1800 APC labeled cells are sorted from each donor. Here showing 143 

BC126 (large dotplot) and BC341 (small dotplot). 144 

 145 
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Total data from simultaneous capture of cell, TCR, pMHC 146 

and SampleID 147 

The single-cell data is annotated using 10x Chromium Cellranger multi v6.1. This 148 

results in each GEM being quantified by a count of unique molecular identifiers 149 

(UMIs) (Kivioja et al., 2011) for the three components (TCR, pMHC and sample 150 

hashing) based on transcripts of TCR α- and β-chains, barcodes co-attached to 151 

pMHC multimers and barcodes co-attached to cell hashing antibodies 152 

(Supplementary Table 2). 153 

 154 

To obtain the data presented here, a total of 1800 pMHC multimer positive cells were 155 

sorted per donor irrespective of the frequency or the number of different antigen-156 

specific T cell responses in a given sample, accumulating to a total of 28,800 cells 157 

sorted. An estimated 45% of the sorted cells are lost in the process of loading on the 158 

Chromium, hence approximately 15,700 pMHC multimer labeled cells were included 159 

in the 10x experimental workflow. Initially, each GEM was annotated based on the 160 

most abundant transcripts from TCRαβ, pMHC, and cell hashing. However, this can 161 

lead to erroneous annotations, as the noise level can differ substantially for the 162 

different reagents, resulting in different levels of UMIs. 163 

 164 

Based on raw, unfiltered data, we found 6,073 GEMs which contained all three 165 

components i.e., TCR, pMHC and sample hashing, corresponding to 40% of the 166 

loaded cells (Fig. 2a). 716,069 GEMs only contained one or two of the components, 167 

with the majority containing only the cell hashing barcode (n=677,502) and the 168 

second largest share containing cell hashing as well as pMHC barcodes (n=37,277). 169 

This number vastly exceeds the number of cells in the assay (15,700 cells loaded) 170 

and indicates contamination from ambient barcodes in suspension. This is further 171 

supported by the observation that the sample hashing UMI count was significantly 172 

higher (p < 0.0005, Mann-Whitney U) in the 6,073 GEMs containing a TCR 173 

compared to the GEMs void of TCR (Fig. 2b). 43,455 GEMs captured a DNA 174 

barcode associated with the pMHC library and only 14% of these were completed 175 

with TCR transcripts and sample hashing barcodes. In the GEMs containing a TCR, 176 

84% were completed with all three components i.e., included hashing and pMHC 177 

barcodes, while less than 0.05% of these GEMs were void of both sample hashing 178 

and pMHC barcodes. In the following, we will only consider the 6,073 GEMs 179 

containing all three components, while taking into account that the high degree of 180 

noise also affects these seemingly completely mapped GEMs. 181 

 182 

The GEMs are distributed across three categories of TCR and two categories of 183 

pMHC observations: GEMs either missing a TCR chain, contain multiple TCR 184 

chains, or contain a unique TCRαβ-pair and GEMs containing either a single or 185 

multiple pMHC barcodes (Fig. 2c). Sample hashing multiplets constitue 100% of 186 

GEMs containing sample hashing barcodes, and there is both a large proportion of 187 

pMHC multiplets (65%) and GEMs missing either α- or β TCR-chain (39%), hence, 188 
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multiplets of pMHC and sample hashing is the predominant issue. Few GEMs were 189 

detected with multiple TCR α- or β-chains (6%). This may be caused partly by 190 

naturally occurring multiplets of α-chain (4%), due to the incomplete gene restriction 191 

of the thymocyte during negative selection (Elliott & Altmann, 1995; Petrie et al., 192 

1993), or due to experimental features of the 10x platform causing an expected 6.9% 193 

of multiplets based on the number of cells loaded in our experiment. 194 

 195 

Without further filtering, the pMHC-TCR pairing is subjected to extensive noise 196 

(Fig.2d) and we capture all the 10 DNA barcodes associated with the APC-labeled 197 

pMHCs in a varying number of GEMs. Importantly, the three negative control 198 

responses (GIL A0201, GLC A0201, and NLV A0201), which were present in the 199 

donors but not sorted, are only captured in a few GEMs. This indicates that the cell 200 

isolation via sorting is effective in terms of capturing only the desired cells and 201 

relevant pMHC-associated barcode-labels. The most frequently detected pMHC 202 

across all GEMs is RVR A0301, which is present with high UMI counts across all 203 

GEMs. Only RPH(10-mer) B0702-associated UMIs was consistently detected at low 204 

numbers per GEM. It was also evaluated whether the HLA allele of the pMHC 205 

matches the HLA haplotype of the donor(s) given via cell hashing (Fig. 2d). Typically, 206 

the mismatches are found in GEMs where the most abundant pMHC is detected at 207 

low UMI counts while the matches consist of GEMs with higher pMHC UMI counts. 208 

Of the 65% GEMs containing pMHC multiplets (Fig. 2c), 13% contained two or more 209 

pMHCs at the exact same UMI level (Supplementary Table 3), which may either 210 

represent noise or true cross-binding events.  211 

 212 

The detected specificities in our data have been cross-referenced with the IEDB 213 

(Vita et al., 2019) and VDJ (Bagaev et al., 2020) databases (Fig. 2d). Based on the 214 

unfiltered data we found five TCR-pMHC matches (across 9 GEMs) and one TCR (1 215 

GEM), which was annotated with a different pMHC (Fig. 2d). This latter is a case of a 216 

GEM with multiple pMHCs present with almost equal number of UMIs, where the 217 

most abundant pMHC is RVR A0301 (11 UMIs) and the second most abundant 218 

pMHC is GLC A0201 (9 UMIs), which is the peptide registered as target in IEDB and 219 

VDJdb.  220 

 221 
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 222 
Figure 2: a) Venn-diagram of the content of all GEMs from 10x Chromium drop-seq. Each 223 

GEM is expected to contain three components: transcripts of TCR and DNA barcodes from 224 

the target pMHC multimer as well as the sample hashing antibody. The Venn-diagram 225 

illustrates the extent of GEMs with complete capture (capture of all three components) in 226 

contrast to the GEMs with incomplete capture (capture of a subset of components). b) 227 

Comparison of distributions of UMI counts of sample hashing barcode between GEMs that 228 

contain TCR transcripts (TCR-occupied GEMs) and GEMs that do not contain TCR 229 

transcripts (TCR-void GEMs) (p < 0.0005, Mann-Whitney U). c) Matrix of the distribution of 230 

pMHC singlets and multiplets across GEMs with TCRs either missing a chain, detected with 231 

multiple chains, or with a single, unique αβ-pair. The counts are given for each field and 232 

illustrated by a color. The lighter color represents higher counts. d) Scatterplot of all detected 233 

pMHC barcodes (y-axis) within each of the 6073 GEMs (x-axis) that contain all three 234 

components: TCR, pMHC and sample hashing. In each GEM the most abundant pMHC is 235 

marked by a color, while the remaining pMHCs in the GEM are gray. The marker size 236 

reports the UMI count of the given pMHC and the shape recounts whether the HLA allele of 237 

the pMHC matches the HLA haplotype of the donor, which is deduced from sample hashing. 238 

The fraction of HLA matches within the GEMs displaying a given specificity is annotated to 239 

the right of the plot. The first colorbar indicates the type of TCR chain annotation; whether 240 

the TCR has a unique αβ-pair, is missing a chain or consists of multiple chains. The second 241 

colorbar is a specificity check against the specificity databases IEDB and VDjdb. Colors 242 

highlight the GEMs where the CDR3αβ sequences are contained in the databases. The 243 

green color represents a match between the database pMHC and the detected pMHC, while 244 

red indicates a mismatch. 245 

 246 

The data in Fig. 2d suggests that most of the captured T cells interact with several of 247 

the screened pMHCs to a degree that exceeds the level expected from natural 248 
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cross-recognition. Therefore, it is reasonable to assume that a large proportion of 249 

these multiplets are formed as a result of ambient pMHC leaking into GEMs. 250 

A data-driven filtering approach 251 

From these observations, it is clear that a substantial part of the data consists of 252 

noise i.e., GEMs with multiplets of pMHC and sample hashing, and that the data 253 

must be filtered for proper interpretation.  254 

Clonotype annotation 255 

The definition of T-cell clones (clonotypes) is fundamental for pairing a given TCR 256 

clonotype to its respective pMHC recognition. Initial clonotypes were called using 257 

10x Genomics Cellranger which defines a clonotype as a set of cells that share 258 

identical receptor sequences at the nucleotide level, spanning the entirety of the 259 

V(D)J-C genes as well as the junction segments. Assuming reliable gene and CDR3 260 

sequence calls by 10x Cellranger, we redefine clonotypes based on TCR annotation. 261 

Subsequently, GEMs with no clonotype annotation from 10x were annotated to 262 

existing clonotypes conditioned on matching VJαβ-genes and CDR3αβ sequences or 263 

as novel clonotypes. Similarly, clonotypes with identical VJ-CDR3αβ were merged to 264 

form larger groups of theoretically identical TCRs (Supplementary. fig 1). Merging 265 

GEMs of the same TCR is essential to make statistical inference based on those 266 

groupings e.g., determine expected pMHC target per clonotype. The outcome was a 267 

set of 2,441 TCR clonotypes across the 6,073 GEMs containing both TCR and 268 

pMHC. For the 337 GEMs containing TCR chain multiplets, the most abundant chain 269 

was for the subsequent analyses selected to represent the true TCR.   270 

Defining pMHC recognition for selected TCR clonotypes 271 

As we have seen earlier, not all GEMs within a given clonotype support the same 272 

pMHC target, and defining the pMHC target of a TCR based on individual GEMs 273 

thus results in contradicting annotations. The key to identify the expected target for a 274 

clonotype is therefore to determine which pMHC identity represents the majority of 275 

UMIs across all GEMs within a given clonotype. Fig. 3 illustrates an example from a 276 

pilot study which accentuates the importance of studying GEMs in ensemble rather 277 

than individually. Most GEMs are annotated with multiplets of pMHCs and across all 278 

GEMs the most abundant pMHC varies. While all pMHCs are found most abundant 279 

in at least one GEM, three pMHCs (TPR B0702, VTE A0101, and RAK B0801) are 280 

more often found most abundant (Fig. 3a). Although TPR B0702 is detected in fewer 281 

GEMs (136) than VTE A0101 (260) and RAK B0801 (186), TPR B0702 is present at 282 

generally higher UMI counts (Fig. 3b). It is evident that there is a difference in UMI 283 

distributions between the different pMHC within the GEMs of a given clonotype, and 284 

that TPR B0701 is the significantly most abundant pMHC across the ensemble of 285 

GEMs even though this pMHC is only present in a minority proportion of the GEM 286 

(Fig. 3b). Based on these observations, we argue that the significantly most 287 
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abundant pMHC should be annotated as the expected binder for the given clonotype 288 

rather than annotating based on the majority. 289 

 290 

Having annotated the “true” pMHC of a given clonotype, one can next go back to the 291 

individual GEMs, and label GEMs where the most abundant pMHC corresponds to 292 

the expected binder, as “true”, and all others as “false”, and use these annotations to 293 

quantify the accuracy of the GEM annotations. Within each clonotype, one can 294 

compute a specificity concordance i.e., the fraction of GEMs detected with a certain 295 

specificity (defined by most abundant pMHC i.e., highest pMHC UMI per GEM) (Fig. 296 

3c). In many cases across the full data set, the expected specificity for a clonotype 297 

coincides with the specificity, defined on a per-GEM level, resulting in high 298 

concordance. However, for some clonotypes e.g., clonotype 1, GEMs have diverging 299 

annotations and therefore lower concordance dispersed across multiple specificities 300 

(Fig 3). The clonotype visualized in Fig. 3 is specifically chosen to exemplify how this 301 

lower concordance can affect the analysis. For clonotype 1 the fraction of GEMs that 302 

support VTE A0101 (0.33) is higher than the fraction of GEMs that supports TPR 303 

B0702 (0.26). This results in an overall low concordance, and only by considering 304 

the complete ensemble of clonotype 1 GEMs, can the correct pMHC target be 305 

identified (Fig. 3b).  306 

 307 

 308 

 309 
Figure 3: An example of pMHC concordance in clonotype 1 (example from pilot study). a) All 310 

detected pMHC (y-axis) in each GEM (x-axis, n=467) of clonotype 1. The marker size shows 311 

the UMI count for the particular pMHC in a given GEM, and the color indicates the pMHC 312 

with the highest UMI count, similar to what is shown in Fig. 1d. If two pMHCs are equally 313 

abundant in a GEM they are both colored. No marker means no detection of that pMHC in 314 

that given GEM. b) The compiled distribution of UMI counts for each peptide (assigning 0 315 

UMI when the pMHC is not detected in a GEM). The asterisk marks that a Wilcoxon test 316 

showed that the UMI counts of TPR B0702 were on average higher than for VTE A0101 UMI 317 

counts. c) The specificity concordance across the GEMs of clonotype 1. Concordance is 318 

shown by a color gradient i.e., the larger the fraction of GEMs supporting a given specificity 319 

the darker the color. 320 
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Improving concordance between GEM and clonotype annotation based 321 

on grid search on UMI features  322 

To rationally filter data, an accuracy metric was defined, and optimized through the 323 

filtering process. For all specificities belonging to clonotypes with an assigned 324 

expected target, we calculated the overall accuracy as the proportion of GEMs 325 

where highest abundance pMHC annotation corresponds to the expected target of 326 

the clonotype. The raw unfiltered data yielded accuracy and average concordance 327 

scores of 69.6% and 83.8%, respectively. Next, we set out to investigate how 328 

different data driven UMI filters could improve these performance values, removing 329 

noise and artifacts from the data. This removal would also reduce the number of 330 

included observations, hence the performance of different thresholds for filtering the 331 

data was evaluated based on a tradeoff between increased accuracy and discarded 332 

number of GEMs.  333 

 334 

We tested various thresholds on UMI count and UMI ratios i.e., the ratio between the 335 

most abundant and second most abundant UMI feature, for pMHC and TCRαβ 336 

respectively. The optimal thresholds were chosen to maximize the weighted average 337 

between accuracy and fraction of retained GEMs to favor increase in accuracy 338 

above losing some GEMs. This filtering analysis resulted in optimal thresholds of 2 339 

pMHC UMI counts and a ratio pMHC UMI counts between top one and two >1.The 340 

latter results in removal of GEMs where two pMHC were equally abundant for low 341 

UMI counts. The search did not result in thresholds imposing restrictions on neither 342 

TCR UMI counts nor TCR UMI ratio, which underpins that the TCRs with a missing 343 

chain as well as multiple chains also contribute to good performance. Imposing this 344 

filter yielded 5,061 GEMs (83% of total), 2,233 clonotypes (91% of total), and 345 

resulted in 96.4% accuracy, and a mean concordance of 93.6%.  346 

Additional filters 347 

Additional filters can be added to further clean the data. We compared how two 348 

filters, integrated in the 10x Genomics software, Cellranger, performed in removing 349 

potential noise from our data set (Supplementary Fig 2). The purpose of these filters 350 

is to evaluate, with high confidence, whether a GEM has captured a cell: 351 

“is cell” is defined based on the TCR transcript level in a given GEM and “is cell 352 

(GEX)” is defined based on the full transcript level (10xGenomics, n.d. a). 353 

Alternatively, viable cells are identified from the transcript data, independently of 354 

Cellranger, based on mitochondrial load and a minimum and maximum gene count 355 

per GEM. All three filterings are comparable (Supplementary Fig 2), and taken into 356 

account in the further evaluations. It is worth noting that, while the filterings based on 357 

the full transcript data might remove slightly more noise, the economic costs 358 

associated could propose that this should only be applied when the transcript data is 359 

required for additional purposes. 360 

 361 
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Cell hashing enables filtering based on sample demultiplexing methods such as 362 

Seurat hashtag oligo (HTO) demultiplexing to identify hashing singlets (Stoeckius et 363 

al., 2018) (Supplementary Fig 3 and Supplementary note). In this setup, cell hashing 364 

also enables filtering based on matching HLA between the donor haplotypes and the 365 

HLA of the detected pMHC. Additionally, depending on the subsequent use of the 366 

data, retaining only complete TCRs containing both α and β may be desirable. 367 

Including only GEMs where the TCR-pMHC pair is observed more than once i.e., 368 

specificity multiplets, reduces the uncertainty described above. Below we investigate 369 

the impact of imposing such filters. 370 

Impacts of filtering 371 

Evaluating filters by comparing TCR similarity across specificity 372 

To objectively evaluate the performance impact of the presented filters, we define a 373 

quantitative evaluation based on the hypothesis that T cells binding the same pMHC 374 

(intra specificity) will share a higher sequence similarity compared to TCRs of 375 

different specificities (inter specificity) (Fig. 4). Thus, filtering away artifacts should 376 

increase intra-similarity while decreasing the inter-similarity. Here, the similarity 377 

score between two TCRs was calculated from the summed score of the pairwise α- 378 

and β-chain similarities calculated using a kernel method described in (Shen, Wong, 379 

Xiao, Guo, & Smale, 2012) and applied in (Chronister et al., 2021). 380 

 381 

Based on this kernel similarity metric, the filters were tested individually and 382 

cumulatively i.e., each filter was added to the previous set of filters. The general 383 

trend is that TCRs with the same specificity are more similar to each other than to 384 

TCRs of different specificities, when computing the intra and inter similarities per 385 

pMHC before and after filtering on the optimized UMI thresholds (Fig. 4a-b). Before 386 

filtering, nine out of 13 pMHCs displayed a higher mean intra-similarity than inter-387 

similarity scores, whereas this number was 11 out 13 pMHCs when applying the UMI 388 

thresholds. The outliers before filtering were GIL A0201, VLE A0201, CLG A0201, 389 

and RPP B0702, while the outliers were reduced to VLE and RPP after filtering. 390 

Generally, the similarity scores often have a wide, overlapping range between the 391 

intra and inter categories. The three pMHCs that were deselected during sorting, GIL 392 

A0201, GLC A0201, and NLV A0201, are only detected in a few TCR binding events. 393 

To enhance the power of comparison, the intra and inter scores were pooled 394 

respectively across the individual pMHCs (Fig. 4c-d). The results demonstrate that 395 

intra-similarity is significantly higher than inter-similarity at each filtering step, both 396 

individually and combined. Moreover, we observe that the differences between intra- 397 

and inter-similarity appear to increase as filters are cumulatively added and fewer 398 

observations are left (Fig. 4d). Particularly, the median inter-similarity score is 399 

lowered, suggesting that the filtering steps predominantly removes false-positives. 400 

 401 
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 402 
Figure 4: Intra- and inter TCR-similarity scores per peptide of the a) total (unfiltered) dataset,  403 

b) the data filtered by the optimized threshold. The similarity per peptide plots a) and b) 404 

illustrate the distribution of paired similarity scores for each clonotype (containing both α- 405 

and β-chain). For each pMHC each clonotype is compared to the remaining clonotypes of 406 

the same specificity (intra) and across specificities (inter). The count of compared clonotypes 407 

is listed just to the right of the y-axis in both a) and b). c) Displays the pooled intra- and inter-408 

scores across all peptides for each of the filtering methods: total (no filtering), optimal 409 

threshold, matching HLA, hashing singlets, complete TCRs, specificity multiplets, “is cell” by 410 

cell-flagging, “is cell” by cell-flagging when including GEX data, and viable cell from 411 

analyzing GEX data. An asterisk marks filters where intra-similarity is significantly larger than 412 

inter-similarity (Wilcoxon, α=0.05). d) Displays the pooled intra- and inter-scores across all 413 

peptides for each of the filtering methods where each filtering is added cumulatively to the 414 

previously listed above it. An asterisk marks filters where intra-similarity is significantly larger 415 

than inter-similarity (Wilcoxon, α=0.05). The count of compared clonotypes is listed just to 416 

the right of the y-axis in both c) and d). 417 

 418 

Evaluating filters across selected performance metrics 419 

To compare the effect of the filters, the similarity scores were converted to the 420 

performance metric: AUC (area under the receiver operating characteristic (ROC) 421 
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curve). Here, intra specificity comparisons are regarded as true positive observations 422 

and inter specificity comparisons as true negatives. Based on these performance 423 

metric definitions, we quantify the effect of each filtering step (Fig. 5), and find that 424 

the highest accuracy and highest average concordance is obtained by filtering on the 425 

optimal threshold (95.3% and 90.6%), while the highest AUC is obtained from 426 

filtering on specificity singlets (70.5%) (Fig. 5a). Expectantly, the accuracy and 427 

average concordance increases when the filters are imposed cumulatively (Fig. 5b). 428 

The accumulation of filters also results in drastic reduction of the GEMs, and it is 429 

evident that one must carefully weigh out the need for specificity over sensitivity 430 

when selecting the desired set of filters.  431 

 432 

We conclude that the minimal filtering must include optimal threshold and matching 433 

HLA between pMHC and donor haplotype. Filtering on specificity multiplets would 434 

inherently result in more reliable observations, risking the removal of rare, low-avidity 435 

binding events. Generally, we did not find that including GEX data improved 436 

performance considerably. Finally, filtering on incomplete TCRs yields the second 437 

highest accuracy and average concordance. Unfortunately, the filter almost halves 438 

the number of GEMs. Hence, this filtering should be considered depending on future 439 

use of the data.  440 

 441 

 442 
Figure 5: Performance metrics for evaluating the filtering steps. Performance is measured by 443 

number and ratio of retained GEMs (GEMs), accuracy defined by proportion of GEMs where 444 

most abundant pMHC matches the expected binder (accuracy), average binding 445 

concordance (avg. conc.) and AUC of similarity scores (AUC). The filtering steps consist of 446 

total (raw, unfiltered data), optimal threshold obtained from grid search, matching HLA, 447 
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hashing singlets identified from Seurat HTO demultiplexing, complete TCRs with a unique 448 

set of α- and β-chain, specificity multiplets such that each TCR-pMHC pair must be observed 449 

in two or more GEMs, is cell defined by 10x Genomics Cellranger, is cell (GEX) defined by 450 

Cellranger where GEX data is included, and is viable cell defined by mitochondrial load and 451 

gene counts. a) Presentation of the individual effect of each filter. b) Presentation of the 452 

accumulated effects of the listed filters. 453 

Inspecting the filtered data 454 

To determine the impact of the filtering steps, we have compiled the binding 455 

concordance for all clonotypes and applied three selected filtering steps: a) the raw, 456 

unfiltered data, b) filtering on optimal UMI thresholds and matching HLA, and c) 457 

additionally filtering on complete TCRs (Fig. 6). The raw, unfiltered data displays 458 

many clonotypes where the most abundant pMHC in GEMs of a given clonotype are 459 

dispersed across multiple of the screened pMHCs (Fig. 6a). When imposing the 460 

recommended set of filters, optimal threshold and HLA match, the outliers are greatly 461 

reduced, although not all low-concordance GEMs are removed (Fig. 6b). By 462 

additionally filtering on complete TCRs even fewer outliers are left (Fig. 6c). Note 463 

again that we have purposely deselected T cells specific for GIL A0201, GLC A0201, 464 

and NLV A0201, explaining the few observations for these otherwise frequently 465 

recognized epitopes. 466 

 467 

Many of the remaining low concordance GEMs still suggest the improbable event of 468 

cross-binding across HLA restriction. We suspect that these are artifacts that we 469 

have not successfully removed. When the most strict filtering is imposed (Fig. 6c) 470 

there are 56 GEMs (out of 2833) with a binding concordance of 0.5 or lower, which 471 

will be referred to as outliers. 50 of those GEMs contain pMHC multiplets. 94% of the 472 

multiplet outliers actually do contain the pMHC which defines the high-concordance 473 

GEMs, however, at a lower UMI count. In the GEMs with multiple pMHC annotations, 474 

the HLA is conserved across the pMHCs in 14% of the cases. In 68% of the cases 475 

the HLAs are different, but still match the HLA haplotype of the donor given by the 476 

cell hashing. Of the 56 outliers, the most dominant pMHCs are RVR A0301 (41%) 477 

and TPR B0702 (27%). Prior to filtering the data, six clonotypes were identified 478 

which were already registered in IEDB and VDJdb, five with matching pMHC and 479 

one with a different annotation than in our observation (Fig. 2d). The five matching 480 

clonotypes (9 GEMs) were successfully retained, while the mismatching clonotype (1 481 

GEM) was filtered away. 482 

 483 
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 484 
Figure 6: Specificity per clonotype. The library peptides are listed on the y-axis and each 485 

clonotype is represented on the x-axis. Below the x-axis is annotated the total number of 486 

clonotypes and GEMs in the presented data. The marker size shows the number of GEMs 487 

supporting a given specificity. The color indicates the binding concordance which is 488 

calculated as the fraction of GEMs within a clonotype that support a given pMHC. The higher 489 

the concordance, the larger the fraction of supporting GEMs. The three plots illustrate the 490 

impact of three filtering criteria. a) Presents raw data with no filtering applied. b) Presents 491 

data filtered on optimal threshold and HLA matches. c) Presents data filtered as in b) with 492 

the additionional requirement of only complete TCRs. 493 

Comparing single-cell data with fluorescent-based pMHC 494 

multimer screening 495 

Investigating dominant clones 496 

Beyond mapping the landscape of known TCR-pMHC interactions, single-cell 497 

screening enables investigation of T cell repertoire diversity. The high resolution both 498 

reveals the specificity and the TCR clonality within the individual T cell populations, 499 
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which is not possible to recover in classical stainings using fluorescent labeled 500 

pMHC multimers (fluorescent multimers). The T cell diversity in the nine donors 501 

towards the set of analyzed pMHCs reveals a clear hierarchy with dominant 502 

responses in fluorescent multimer staining (Fig. 7a), however the clonality of each 503 

specificity is only available via single-cell data (Fig. 7b). Here ATRAP represents 504 

data filtered by optimal UMI thresholds and matching HLA between pMHC and donor 505 

haplotype (given via cell hashing). Single-cell screening further enables comparison 506 

of the clonal distribution and the total clonal size per specificity. In this respect, the 507 

samples BC328 and BC62 are strikingly similar in their distribution of expanded 508 

clones. They both display a large and broad response towards RVR A0301 and two 509 

smaller responses towards RPP B0702 and TPS B0702 which are both dominated 510 

by a single clonotype. Further, most peptides elicit diverse relative responses 511 

between samples. For example, RPP B0702 is the dominant response in samples 512 

BC328 and BC62, but the minority response in sample BC314. Sample BC300 513 

contains primarily small clones i.e., fewer cells in each clonotype, however, this 514 

sample is generally represented with low amounts of total data (46 GEMs). Of note, 515 

small clones might be a result of suboptimal single-cell capture, or because high-516 

frequency responses can potentially mask any lower frequency responses present in 517 

a given donor (Supplementary Table 4) when only 1800 cells are sorted from each 518 

sample. Samples represented with many GEMs are expected to be fully covered and 519 

therefore may contain more different expanded clonotypes, as sample BC360.  520 

Evaluating ATRAP by “ground truth” of fluorescent-based pMHC 521 

multimer screening 522 

The net-overlap of identified T cell responses between the two screenings (Fig.7a+b) 523 

is estimated to 0.63 by Matthew’s Correlation Coefficient (MCC). Most of the T cell 524 

populations detected by fluorescent multimers are also captured in the single-cell 525 

screening, reflected by a recall of 0.95. However, the single-cell capture of small T 526 

cell clones (Fig 7b) that were not detected using fluorescent multimers (Fig 7a), 527 

negatively impacts the precision, yielding a score of 0.71. These “false positives” 528 

could result from low affinity T cell clones where the fluorescent signal would not be 529 

distinguishable from the background. Importantly, most of these responses were only 530 

represented by 1 GEM per clonotype, (demonstrated by a light gray outer circle in 531 

Fig 7b). In only two cases T cell populations were detected with fluorescent 532 

multimers but not captured in single cells: BC316/CLG A0201 and BC62/ 533 

RPH(10mer) B0702 (Fig. 7a). The large T cell population of BC316/CLG A0201 was 534 

likely a technical artifact related to the barcode-labeled pMHC multimers. 535 

 536 

We calculated the number of antigen specific T cells sorted per donor, based on the 537 

total number of sorted cells/donor (n=1800) and the frequency of each T cell 538 

population (Fig 7c and Supplementary Table 4). This number of sorted cells for a 539 

given specificity was strongly correlated with the numbers of single-cell GEMs 540 

assigned to the same specificity (Pearson correlation coefficient, PCC=0.73, 541 
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p<0.0005). We also fitted a linear regression for T cell populations sorted and 542 

assigned with at least one adjusted cell count or GEM in the log-log space 543 

(R2=0.56). The regression indicates that ~10% of sorted cells will be captured in a 544 

single-cell screening with TCR-pMHC information yielded by ATRAP. 545 

 546 

 547 

 548 
Figure 7: T cell diversity per peptide across the individual samples. The nine samples, 549 

PBMCs from nine individual donors are represented on the x-axis. The marker size defines 550 

the distribution of T cells recognizing a given peptide, normalized per sample. a) The T cell 551 

frequencies are visualized as the proportion of a given multimer positive response within a 552 

donor. The black markers represent responses detected above the threshold i.e., ≥10 cells 553 

and ≥ 0.002% of total CD8 T cells, or ≤10 cells but ≥0.01% of total CD8 T cells. The gray 554 

dots represent detected specificities below threshold but represented by ≥2 cells. Summed 555 

frequencies of detected responses within a donor are given as % of total CD8 T cells and 556 

listed just above the x-axis. b) The T cell frequencies are based on GEM counts normalized 557 

per sample from the single-cell data. Absolute GEM counts per sample are listed above the 558 

x-axis. The marker is colored by the fraction of GEMs within a specificity that originate from a 559 



19 

given sample. Absolute GEM counts per peptide are listed to the right of the plot. The 560 

marker contains a donut diagram illustrating the distribution of clonotypes specific for the 561 

given peptide in the given sample. The wedge that represents the dominant clone is colored 562 

according to the center of the donut. Remaining clones (>1 GEM) are anthracite gray and all 563 

clonotypes only supported by one GEM only are pooled and represented by a single light 564 

gray wedge. Comparing the sizes of the T cell populations for each specificity per donor 565 

between the two screening methods in a) and b) yielded the following Spearman 566 

correlations: BC126 (1.00, p<0.0005), BC328 (0.90, p=0.006), BC355 (0.74, p=0.02), BC360 567 

(0.89, p=0.04), BC314 (0.90, p=0.04), and BC353 (1.00, p<0.0005). c) Representative 568 

example showing the four different responses detected with fluorescent-labeled pMHC 569 

multimers in donor BC126. d) Correlation between T cell responses detected by fluorescent 570 

labeled MHC multimers (y-axis) and single-cell capturing (x-axis). Correlation is given by 571 

Pearson correlation coefficient 0.73 (p<0.0005). The responses from fluorescent-based 572 

screening is given as an adjusted number of cells based on the detected response 573 

frequency out of 1800 cells (see calculations in supplementary table 4). The hollow markers 574 

represent responses below detection threshold as described in a). The responses are 575 

colored by the donor-of-origin. BC mix corresponds to BC311, BC11, BC83, BC88, BC341, 576 

BC342, and BC76. 577 

Discussion 578 

Here, we have described and validated, ATRAP; a data-driven approach for 579 

Accurate Pairing of T cell Receptor and Antigen. We have successfully filtered 580 

single-cell 10x Genomics data to identify reliable TCR-pMHC interactions of up to 581 

1494 clonotypes. The method can be adapted to any single-cell immune profiling 582 

data set and is highly transparent in the steps taken, allowing the user to choose 583 

appropriate stringency of filtering.  584 

 585 

Our recommended approach of cleaning data with minimal elimination of GEMs is 586 

obtained by two sets of filters: 1) the optimized data-driven UMI thresholds combined 587 

with 2) information on matching HLA specificity (as obtained from donor-specific 588 

hashing). Increasing filtering is naturally at the expense of the number of GEMs 589 

which might reflect the trade-off between specificity and sensitivity of the assay. 590 

However, any benchmarking or validation is made difficult without a golden standard. 591 

Our best attempt at quantifying the impact of filtering is based on three metrics: 592 

annotation accuracy, binding concordance, and AUC of clonotype similarity for which 593 

ATRAP yielded the scores 96.2, 92.3, and 66.7, respectively. Evaluation of ATRAP 594 

with responses from fluorescent pMHC multimer staining revealed strong correlation 595 

(PCC=0.73, MCC=0.63) between the number of sorted T cells and the number of 596 

detected GEMs across all specificities.  597 

 598 

Accuracy of pMHC annotation was based on selected clonotypes where the 599 

expected target was statistically distinct and UMI thresholds were set to optimize the 600 

annotation accuracy. Rare clonotypes are not considered in this metric and clones 601 

are not expected to display cross-reactivity amongst the included pMHC multimers. 602 
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The optimal UMI thresholds are intended to remove observations deviating from the 603 

expected target. The identified UMI thresholds are data specific and cannot be 604 

universally applied, but must be fitted for individual experiments. The thresholds are 605 

based on the assumption that contamination will predominantly exist at lower UMI 606 

counts than actual binding events. This limits the sensitivity of the method in cases of  607 

low-affinity low-frequency interactions which otherwise might be of great scientific 608 

and clinical interest.  609 

 610 

The binding concordance is a metric that highlights cross-reactive clonotypes. In 611 

assays where cross-reactivity is not an expected outcome, binding concordance can 612 

be useful to evaluate the clonotypes where an expected target could not be 613 

identified. On the contrary, for data where T cell cross-recognition is of particular 614 

interest, the binding concordance can be used to establish the relative TCR binding 615 

contribution of each of the attributed pMHC targets. Growing evidence point to the 616 

relevance of T cell cross-recognition in both infectious disease (Dowell et al., 2021) 617 

and cancer (Fluckiger et al., 2020). Hence, novel tools to interrogate this phenomena 618 

on a single T cell level is highly warranted. 619 

 620 

The last evaluation metric, AUC of clonotype similarity, is based on the assumption 621 

that T cells sharing specificity have more similar TCR sequences than T cells of 622 

different specificities (Chronister et al., 2021). This approach showed increasing 623 

separation of intra specificities and inter specificities as filters were cumulatively 624 

added, indicating that non-specific binders were effectively removed. To further 625 

increase the AUC, discarding clonotype singlets (i.e. TCR clonotypes represented by 626 

only 1 GEM) was the best single filtering step to improve the AUC of similarity scores 627 

(AUC=70.5, Fig 5a). This likely reflects that a fraction of such clonotype singlets 628 

represents non-specific binding events. However, removing these as a standard 629 

procedure of ATRAP, results in a substantial loss of TCR capture, represented by all 630 

T cell specificities with a light gray outer circle in Fig 7b. Thus, when aiming for 631 

capture of very low-frequency T cell specificities, a balance should be made between 632 

including this more stringent filtering step, or including such events, as demonstrated 633 

here. 634 

 635 

To the best of our knowledge only one other method (ICON) has been proposed to 636 

clean TCR-pMHC single-cell data (W. Zhang et al., 2021). ICON was developed 637 

based on the public 10x Genomics data which includes six negative control pMHCs 638 

(Boutet et al., 2019), and 44 pMHC for positive selection of T cell populations. 639 

Comparing our method with ICON suggests that we present a more flexible and 640 

customizable approach. Where ICON retained ~30% of their original data (W. Zhang 641 

et al., 2021), the ATRAP method presented here allows varying yields, depending on 642 

the level of filtering applied. The optimal filtering combination of UMI thresholds and 643 

HLA matching retained ~70% of the data, while the combination of all presented 644 

filters retained ~26%. As ICON does not consider the donor haplotype information, 645 

~15% of their specificities contained HLA mismatches, and a number of the T cell 646 
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annotations includes TCR chains of diverting clonotype definitions given by 10x 647 

Genomics. For both methods, a particular awareness should be assigned to properly 648 

handle the range of avidity displayed by different clonotypes. One clonotype may 649 

display natural low avidity towards its cognate target which might appear like noise in 650 

the comparison to other high avidity clonotypes. This diversity in signals is 651 

challenging to handle in a one-fit-all filtering process, and for projects with specific 652 

interest in low-avidity cell interactions, a specific focus should be addressed not to 653 

lose such information. 654 

 655 

Effective pairing of TCR and pMHC will open new avenues to interrogate T cell 656 

recognition and the role of different T cell populations in pathogenic processes. 657 

Intensive efforts have been made to identify antigen specificity based on the TCR 658 

sequence (Gielis et al., 2019; Montemurro et al., 2021; Moris et al., 2021; Sidhom, 659 

Larman, Pardoll, & Baras, 2021; Weber, Born, & Rodriguez Martínez, 2021; W. 660 

Zhang et al., 2021), and access to both TCR α- and β-chain is important to improve 661 

such prediction strategies (Montemurro et al., 2021). 662 

The coveted data is ensured via the ATRAP framework for single-cell data of TCRs 663 

and associated barcodes. The perspectives of further exploiting the transcriptomic 664 

information, allowing in-depth tracking of specific T cell subsets based on the 665 

clonotypes, suggests that we are on the verge of achieving substantial novel insight 666 

to T cell involvement and behavior in health and disease. 667 
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Methods 684 

Ethical approval 685 

All healthy donor material was collected under approval by the Scientific Ethics 686 

Committee of the Capital Region, Denmark, and written informed consent was 687 

obtained according to the Declaration of Helsinki. 688 

Cell samples 689 

Peripheral blood mononuclear cells (PBMCs) from healthy donors were isolated from 690 

whole blood by density centrifugation on Lymphoprep (Axis-Shield PoC) and 691 

cryopreserved at −150 °C in FCS (Gibco) + 10% DMSO. 692 

DNA barcodes and dextran conjugation 693 

Oligonucleotides modified with a 5′ biotin tag were purchased from LCG Biosearch 694 

Technologies (Denmark). Read from 5’ to 3’, the oligonucleotides were designed 695 

with the 10x equivalent Read2N sequence, a 10 nt unique molecular identifier (UMI), 696 

a distinct 15mer nucleotide sequences (extracted from (Xu et al., 2009), a 9 nt UMI 697 

and ending in a 13 nt capture sequence complementary to the TSO of the 10x 5’ 698 

capture oligo (sequences are listed in Supplementary Table 1). Barcodes were 699 

dissolved to 100 μM in RNAse free water and stored at −20 °C. For a working 700 

solution the DNA barcodes were further diluted in PBS + 0.5% BSA + 1 mg/mL 701 

herring DNA + 2 mM EDTA to 2.17 μM and attached to PE- or APC- and 702 

streptavidin-conjugated dextran from FINA Biosolutions LCC (USA). The amount of 703 

DNA barcode attached to each new lot of dextran was titrated as described in 704 

Bentzen et al., 2016. DNA barcodes were attached by mixing with dextran-705 

conjugate, followed by incubation, 30 min at 4 °C. DNA barcode-assembled dextran-706 

conjugates were stored for up to 24 hours at 4 °C. 707 

Peptides and MHC monomer production 708 

Peptides were purchased from Pepscan (Pepscan Presto) and dissolved to 10 mM 709 

in DMSO. UV-sensitive ligands were synthesized as previously described (Bakker et 710 

al., 2008; Rodenko et al., 2006; Toebes et al., 2006). Recombinant HLA-A*0201, 711 

HLA-A*0301 and HLA-B*0702, heavy chains and human β2 microglobulin light chain 712 

were produced in Escherichia coli. HLA heavy and light chains were refolded with 713 

UV-sensitive ligands and purified as described in (Hadrup et al., 2009). Specific 714 

peptide-MHC complexes were generated by UV-mediated peptide MHC exchange 715 

(Chang et al., 2013; Frøsig et al., 2015; Rodenko et al., 2006; Toebes et al., 2006). 716 

Generation of DNA barcode-labeled MHC multimer libraries 717 

Unoccupied SA-binding sites on the DNA barcode-assembled dextran conjugates 718 

were used for the co-attachment of biotinylated pMHC molecules. 0.8 pmol pMHC 719 
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monomer was mixed with 160 × 10−15 mol DNA-barcoded dextran-conjugate and 720 

incubated 30 min at RT. MHC multimers were diluted in PBS with 5.2 μM d-biotin 721 

(Avidity, Bio200) to 909 nM and incubated 20 min on ice. DNA-barcoded MHC 722 

multimers were stored for up 1 week at −20 °C (PBS supplemented with glycerol and 723 

BSA, final concentrations 5% and 0.5%, respectively). Immediately before staining 724 

barcode-labeled MHC multimers were thawed at 4 °C, centrifuged (5 min at 3,300g), 725 

and pooled (0.8 pmol of each pMHC/sample) to enable the detection of multiple T-726 

cell responses in parallel. The pooled MHC multimers were centrifuged once more; 5 727 

min at 3,300g, to sediment aggregates before the volume of the reagent pool was 728 

reduced by ultrafiltration to obtain a final volume of ~80 μL of MHC multimers as 729 

described in Bentzen et al., 2016. Any aggregates in the MHC multimer reagent pool 730 

were sedimented by centrifugation, 5 min at 3,300g before addition to the cell 731 

sample.  732 

MHC multimer staining 733 

Cryopreserved PBMCs were thawed and washed by sedimentation, 5 min, 390g, 4 734 

°C, in RPMI + 10% FCS. Cells were further washed in a barcode-cytometry buffer 735 

(PBS + 0.5% BSA). 5 × 106 cells were incubated, 60 min, 4 °C, with pooled DNA-736 

barcoded multimers in a total volume of 100 μL (final concentration of each distinct 737 

pMHC, 8 nM), and washed three times by sedimentation, 5 min, 390g, 4 °C. 5 µl of 738 

Human TruStain FcX™ Fc Blocking reagent was added to a total of 50 µl cell 739 

suspension, and incubated 10 min, 4 °C. Hashing antibodies (Biolegend, 740 

TotalSeq™-C0251 anti-human Hashtag 1-10 Antibodies) were centrifuged 10 min, 741 

14,000 x g, 4 °C,  and 0.5 µl were added to each a distinct sample (Supplementary 742 

table 2), and incubated 15 min, 4 °C. Next a 5× antibody mix composed of CD8-743 

BV480 (BD 566121, clone RPA-T8) (final dilution 1/50), dump channel antibodies: 744 

CD4-FITC (BD 345768) (final dilution 1/80), CD14-FITC (BD 345784) (final dilution 745 

1/32), CD19-FITC (BD 345776) (final dilution 1/16), CD40-FITC (Serotech 746 

MCA1590F) (final dilution 1/40), CD16-FITC (BD 335035) (final dilution 1/64) and a 747 

dead cell marker (LIVE/DEAD Fixable Near-IR; Invitrogen L10119) (final dilution 748 

1/1000) was mixed for each sample. The antibody mix was added to cell samples 749 

and incubated 30 min, 4 °C. Cells were washed three times in barcode-cytometry 750 

buffer and kept on ice until acquisition. 751 

Cell sorting 752 

Cells were sorted on a FACS Melody (BD) into tubes containing 100 μL of PBS + 753 

0.5% BSA (tubes were saturated with PBS + 2% BSA in advance). Using FACS 754 

Chorus software, we gated on single, live, CD8-positive and ‘dump’ (CD4, 14, 16, 19 755 

and 40)-negative lymphocytes and sorted only APC-positive (PE-negative) cells 756 

within this population (Supplementary Fig 4 for gating strategy). Cells sorted from 757 

individual samples were collected into the same tube (Fig 1b). The sorted cells were 758 

centrifuged for 10 min at 390g and the buffer was removed. 759 
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DNA barcode-labeled MHC multimer stained cells on 10x platform 760 

We utilize the 10x 5’ v2 chemistry that allows the cell barcode to be appended at the 761 

5’-end of transcripts, which is essential for capturing the CDR3 region of the V(D)J 762 

transcripts. In the 5’ chemistry, the template switch oligo (TSO) is encoded with a cell 763 

barcode i.e., one unique 10x barcode for every Gel Bead-in-emulsion (GEM). The 764 

TSO thus comprises the capture oligo, whereas the poly-dT primer is added in free 765 

suspension. Reverse transcription is initiated from binding of the poly-dT primer at 766 

the 3’-end, and mRNA is captured when the reverse transcriptase enzyme switches 767 

at the 5’-end of the transcript to the TSO. All DNA barcodes, partially complementary 768 

to the 10x Genomics 5’ TSO, are captured directly onto the GEMs. Annealing and 769 

extension during the reverse-transcription reaction associates the cell barcode and 770 

unique molecular identifier (UMI) from the gel bead oligo with the pMHC and hashing 771 

antibody tags in parallel with the mRNAs in the same droplet.  772 

Downstream processing of mRNA and DNA barcodes are performed according to 773 

manufacturer's instructions (Chromium Next GEM Single Cell 5' Reagent Kits v2 774 

(Dual Index), with the Feature Barcode technology for Cell Surface Protein & 775 

Immune Receptor Mapping) (10x Genomics, USA). ~15,700 cells were loaded 776 

(based on 55% recovery from 28,800 sorted cells) to yield a maximum of 9,000 cells 777 

with an intermediate/high doublet rate (6,9%). Targeted amplification was performed 778 

for 13 cycles and the products were separated according to size into <400 bp (DNA 779 

barcode-tags) and >400 bp (the TCR sequences) using 0.6x SPRIselect beads 780 

(Beckman Coulter, B23318). Separate processing of the >400 bp bead-bound TCR 781 

sequences and the <400 bp in solution DNA barcodes was conducted according to 782 

manufacturer's instruction and the TCR amplification products were sequenced on a 783 

NovaSeq running a 150 paired-end program. DNA barcodes, TCR sequences and 784 

mRNA was sequenced to a depth of 13,332, 12,503, and 18,398 mean reads per 785 

cell, respectively. 786 

 787 

Bioinformatics 788 

Processing of 10x single-cell data 789 

Hashing barcode reads, peptide-MHC barcode reads, and T cell gene expression 790 

reads, were provided in fastq format and were processed using 10x Genomics 791 

Cellranger multi v6.1.0 (10xGenomics, n.d. b). The relevant outputs were the 792 

unfiltered count matrices of DNA barcodes and gene expression as well as clonotype 793 

annotations of each sequencing contig containing CDR3α/β sequences, V(D)J-C 794 

genes and unique molecular identifier (UMI) counts. 795 

Postprocessing 10x Cellranger clonotyping 796 

The raw contig annotations from Cellranger were selected for downstream analysis 797 

with filtering on incomplete and unproductive receptor transcripts. Incomplete contigs 798 
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are not full length i.e., do not span the V-gene start codon until the J-gene stop 799 

codon. Unproductive contigs contain a frameshift which either induces an early stop 800 

codon or completely removes the stop codon.  801 

 802 

Clonotypes defined by 10x were merged when consisting of identical VJ-CDR3αβ, 803 

thus reducing functional duplicates.  804 

 805 

Cellranger flags rare nucleotide transcripts as likely artifacts, meaning the GEMs are 806 

flagged as unlikely to contain a cell and are therefore not assigned a clonotype 807 

(10xGenomics, n.d. a). Therefore, GEMs that were not annotated with a clonotype 808 

were imputed by searching the duplicate-reduced clonotype set. If no match, a new 809 

clonotype ID was annotated to the GEM. 810 

Filtering based on gene expression 811 

Filtering on gene expression data was performed as described in (W. Zhang et al., 812 

2021). Low-quality GEMs such as doublets may be removed by excluding GEMs 813 

with more than 2500 genes. Dead cells may be removed by excluding GEMs with 814 

fewer than 200 genes and a ratio of mitochondrial gene expression to the total gene 815 

expression above 0.2. 816 

Demultiplexing samples via cell hashing 817 

Cell Hashing uses oligo-tagged antibodies against ubiquitously expressed surface 818 

proteins to place a sample barcode on each single cell, enabling different samples to 819 

be multiplexed together and run in a single experiment. To demultiplex the samples 820 

the method presented by Stoeckius et. al was implemented (Stoeckius et al., 2018). 821 

The method clusters the normalized count matrix using k-medoid clustering into k 822 

clusters, 𝑘 = 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 + 1. For each barcode a negative binomial distribution is fitted 823 

to the pool of all clusters except the cluster with the highest average expression for 824 

the given barcode. Each GEM is classified as positive if the barcode value exceeds a 825 

0.99 quantile threshold for the negative distribution, and otherwise classified as 826 

negative. If GEMs contain multiple barcodes which pass the threshold, the GEM is 827 

annotated as a doublet (Stoeckius et al., 2018). 828 

Defining the expected binder 829 

The pMHC and cell hashing barcode annotations were merged with the T cell 830 

annotations on the GEMs which contained both TCR and pMHC attributes. Each 831 

clonotype is expected to have a preferred target within the pMHC library, thus each 832 

clonotype is evaluated to find the pMHC which is most likely to be that target.  833 

Each clonotype is evaluated to identify the expected target within the pMHC library. 834 

The pMHCs that are detected within the GEMs annotated to a given clonotype are 835 

compared by their UMI count distribution. The two pMHCs that have the highest 836 

mean UMI count are compared, testing the hypothesis that the expected binder will 837 

have a significantly higher mean UMI count than the other pMHC (Wilcoxon, 838 



26 

α=0.05). Clonotypes of less than 10 GEMs were not tested. The clonotypes where 839 

the mean UMI of the top two pMHCs was significantly different were collected as a 840 

training set. The pMHC which had significantly higher mean UMI was annotated as 841 

the expected target and specificity annotations of the GEMs were individually 842 

evaluated. The GEMs in the training set where the most abundant pMHC matched 843 

the expected target were labeled as true interactions, and the rest were labeled as 844 

false interactions.  845 

Defining specificity concordance 846 

Concordance is an indirect measure of how cross-reactive a certain clonotype is. 847 

Specificity concordance is defined as the ratio of GEMs of a single clonotype which 848 

are annotated to bind a particular pMHC. The more GEMs in a clonotype annotated 849 

to the same pMHC the larger concordance. If a clonotype is only detected with one 850 

pMHC the specificity concordance is 1. 851 

Grid search on UMI features 852 

Based on the labels of the training set a performance metric, o, was defined to 853 

evaluate the accuracy at increasing thresholds for UMI count and UMI ratio of 854 

pMHC, α-chain, and β-chain. The UMI ratio measures multiplets and is defined as 855 

the ratio between the highest UMI count and the second highest UMI count in a 856 

GEM: 857 

 858 

𝑈𝑀𝐼𝑟𝑎𝑡𝑖𝑜 =
𝑈𝑀𝐼𝑚𝑎𝑥

𝑈𝑀𝐼𝑠𝑒𝑐 + 0.25
 859 

 860 

A small number (0.25) was added in the denominator to avoid division by zero.  861 

 862 

The performance metric, o, is a weighted average of accuracy and fraction of 863 

retained GEMs, given by the following equation: 864 

 865 

𝑜 =  
2 ⋅ 𝑎𝑐𝑐 +  𝑓𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑 𝐺𝐸𝑀𝑠

3
 866 

The accuracy metric is defined by the ratio of training set GEMs that were labeled as 867 

true interactions over the total number of GEMs in the training set. The performance 868 

metric, o, was maximized by finding the set of filters that increase the accuracy 869 

without excluding too much data.  870 

The thresholds for filtering were selected from a complete grid search. Each feature 871 

was tested in the range of 0 to the median value, determined ad hoc from the 872 

experience that thresholds never approached the median value. 873 
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Comparing TCR similarity 874 

Effects of filtering were also evaluated through a comparison of TCR similarity. The 875 

similarity score is based on the kernel similarity score underlying the TCRmatch 876 

method between CDR3 sequences (Chronister et al., 2021). This score can be 877 

calculated for CDR3s of variable length, and takes a value between 0-1, with the 878 

value of 1 representing identical pairs. As both the α- and β-chain partake in the 879 

pMHC interaction, TCRs will be compared based on the summed similarity between 880 

the α- and β-chains, and GEMs missing a chain will be excluded to avoid bias. Two 881 

similarity scores are computed for each clonotype: an intra score and an inter score. 882 

The intra score is based on the maximum similarity of the given clonotype to all other 883 

clonotypes sharing its pMHC target (intra specificity). The inter score is based on the 884 

maximum similarity of the given clonotype to an equal sized set of clonotypes 885 

specific to other pMHC targets (inter specificity). The computation is done peptide-886 

wise, such that clonotypes with maximum concordance for a given peptide will, for 887 

that peptide, be included in an intra similarity score, but for another peptide be 888 

included in an inter similarity score. Clonotypes consisting of GEMs causing 889 

diverging specificities were limited to the expected target pMHC or, if non-existing, to 890 

the specificity of highest concordance to avoid potential overlaps from “cross-891 

reactive” clonotypes in the computation. 892 

 893 

The similarity difference between intra and inter specificity clonotypes was tested for 894 

the hypothesis that intra similarity is greater than inter similarity (Wilcoxon, α=0.05). 895 

The similarity test was performed on all filtering methods described in the paper. 896 

 897 

Validating single-cell capture against fluorescent multimer staining 898 

responses 899 

The 16 donors were known to respond to the panel of peptides used in the 900 

screening. Response proportions of sorted CD8+ T cells were detected by 901 

fluorescent multimer staining, as described previously. 1800 cells were selected from 902 

each donor and, based on the detected response proportions, an adjusted count of 903 

cells could be computed. Cells were selected based on two criteria: ≥10 cells and ≥ 904 

0.002% of total CD8 T cells, or ≤10 cells but ≥0.01% of total CD8 T cells. The 905 

multimer responses were compared to GEMs filtered on UMI thresholds and 906 

matching HLA. To visually compare the two screening methods, the responses were 907 

normalized within each sample and plotted side-by-side. The methods were also 908 

quantitatively compared, both in absolute counts of responses and as binary classes 909 

with multimer responses as true labels and single-cell responses as query labels. 910 

The following evaluation metrics were computed based on binary classification of 911 

responses: 912 

 913 

Matthew’s correlation coefficient (MCC) 914 
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𝑀𝐶𝐶 =  
𝑇𝑃 ⋅ 𝑇𝑁 − 𝐹𝑃 ⋅ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 915 

 916 

Recall (sensitivity or true positive rate) 917 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 918 

 919 

Precision (positive predictive value) 920 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 921 

 922 

The following metrics were computed based on numerical values of responses, i.e. 923 

the adjusted number of cells and the count of GEMs.  924 

 925 

Pearson correlation coefficient (PCC), where n is the number of screened peptides 926 

times the number of samples which have been screened. x and y represent the size 927 

of responses in single-cell screening and multimer staining, respectively. 928 

 929 

𝑃𝐶𝐶 =
∑ (𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)𝑛

𝑖=1

√∑ (𝑥𝑖 − 𝑥)2𝑛
𝑖=1 √∑ (𝑦𝑖 − 𝑦)2𝑛

𝑖=1

 930 

 931 

The correlation was also fitted via linear regression on log10 transformed data, 932 

resulting in the following equation. 933 

 934 

𝑙𝑜𝑔10(𝑦) = 0.86 ⋅ 𝑙𝑜𝑔10(𝑥) + 1.18, 𝑅2 = 0.56 935 

 936 

The equation was used to estimate the yield of single-cell captured cells relative to 937 

multimer screening. Three examples were computed to estimate an approximate 938 

10% yield. 939 

𝑙𝑜𝑔10(10) = 0.86 ⋅ 𝑙𝑜𝑔10(0.6) + 1.18 940 

𝑙𝑜𝑔10(100) = 0.86 ⋅ 𝑙𝑜𝑔10(9.0) + 1.18 941 

𝑙𝑜𝑔10(1000) = 0.86 ⋅ 𝑙𝑜𝑔10(131.2) + 1.18 942 

 943 

  944 



29 

References 945 

10xGenomics. (n.d.-a). Cell Ranger Installation -Software -Single Cell Immune Profiling -946 
Official 10x Genomics Support. Retrieved July 12, 2022, from 947 
https://support.10xgenomics.com/single-cell-vdj/software/pipelines/latest/installation 948 

10xGenomics. (n.d.-b). V(D)J Cell Calling Algorithm -Software -Single Cell Immune Profiling 949 
-Official 10x Genomics Support. Retrieved July 12, 2022, from 950 
https://support.10xgenomics.com/single-cell-951 
vdj/software/pipelines/latest/algorithms/cell-calling 952 

Acha-Orbea, H., Mitchell, D. J., Timmermann, L., Wraith, D. C., Tausch, G. S., Waldor, M. 953 
K., … Steinman, L. (1988). Limited heterogeneity of T cell receptors from lymphocytes 954 
mediating autoimmune encephalomyelitis allows specific immune intervention. Cell, 955 
54(2), 263–273. https://doi.org/10.1016/0092-8674(88)90558-2 956 

Arstila, T. P., Casrouge, A., Baron, V., Even, J., Kanellopoulos, J., & Kourilsky, P. (1999). A 957 
direct estimate of the human alphabeta T cell receptor diversity. Science (New York, 958 
N.Y.), 286(5441), 958–961. https://doi.org/10.1126/SCIENCE.286.5441.958 959 

Bagaev, D. V., Vroomans, R. M. A., Samir, J., Stervbo, U., Rius, C., Dolton, G., … Shugay, 960 
M. (2020). VDJdb in 2019: database extension, new analysis infrastructure and a T-cell 961 
receptor motif compendium. Nucleic Acids Research, 48(D1), D1057–D1062. 962 
https://doi.org/10.1093/NAR/GKZ874 963 

Bakker, A. H., Hoppes, R., Linnemann, C., Toebes, M., Rodenko, B., Berkers, C. R., … 964 
Schumacher, T. N. M. (2008). Conditional MHC class I ligands and peptide exchange 965 
technology for the human MHC gene products HLA-A1, -A3, -A11, and -B7. 966 
Proceedings of the National Academy of Sciences of the United States of America, 967 
105(10), 3825–3830. 968 
https://doi.org/10.1073/PNAS.0709717105/SUPPL_FILE/09717FIG7.JPG 969 

Bentzen, A. K., Marquard, A. M., Lyngaa, R., Saini, S. K., Ramskov, S., Donia, M., … 970 
Hadrup, S. R. (2016). Large-scale detection of antigen-specific T cells using peptide-971 
MHC-I multimers labeled with DNA barcodes. Nature Biotechnology 2016 34:10, 972 
34(10), 1037–1045. https://doi.org/10.1038/NBT.3662 973 

Bergman, R. (1999). How useful are T-cell receptor gene rearrangement studies as an 974 
adjunct to the histopathologic diagnosis of mycosis fungoides? The American Journal of 975 
Dermatopathology, 21(5), 498–502. https://doi.org/10.1097/00000372-199910000-976 
00019 977 

Bloom, J. D. (2018). Estimating the frequency of multiplets in single-cell RNA sequencing 978 
from cell-mixing experiments. PeerJ, 2018(9). 979 
https://doi.org/10.7717/PEERJ.5578/SUPP-4 980 

Boutet, S. C., Walter, D., Stubbington, M. J. T., Pfeiffer, K. A., Lee, J. Y., Taylor, S. E. B., … 981 
Mikkelsen, T. S. (2019). Scalable and comprehensive characterization of antigen-982 
specific CD8 T cells using multi-omics single cell analysis. The Journal of Immunology, 983 
202(1 Supplement). 984 

Buettner, F., Natarajan, K. N., Casale, F. P., Proserpio, V., Scialdone, A., Theis, F. J., … 985 
Stegle, O. (2015). Computational analysis of cell-to-cell heterogeneity in single-cell 986 
RNA-sequencing data reveals hidden subpopulations of cells. Nature Biotechnology 987 
2014 33:2, 33(2), 155–160. https://doi.org/10.1038/nbt.3102 988 

Chang, C. X. L., Tan, A. T., Or, M. Y., Toh, K. Y., Lim, P. Y., Chia, A. S. E., … Grotenbreg, 989 
G. M. (2013). Conditional ligands for Asian HLA variants facilitate the definition of CD8+ 990 
T-cell responses in acute and chronic viral diseases. European Journal of Immunology, 991 
43(4), 1109–1120. https://doi.org/10.1002/EJI.201243088 992 

Chronister, W. D., Crinklaw, A., Mahajan, S., Vita, R., Koşaloğlu-Yalçın, Z., Yan, Z., … 993 
Peters, B. (2021). TCRMatch: Predicting T-Cell Receptor Specificity Based on 994 
Sequence Similarity to Previously Characterized Receptors. Frontiers in Immunology, 995 
12, 673. https://doi.org/10.3389/FIMMU.2021.640725/BIBTEX 996 

Davis, M. M., & Bjorkman, P. J. (1988). T-cell antigen receptor genes and T-cell recognition. 997 



30 

Nature, 334(6181), 395–402. https://doi.org/10.1038/334395A0 998 
Dowell, A. C., Butler, M. S., Jinks, E., Tut, G., Lancaster, T., Sylla, P., … Ladhani, S. (2021). 999 

Children develop robust and sustained cross-reactive spike-specific immune responses 1000 
to SARS-CoV-2 infection. Nature Immunology 2021 23:1, 23(1), 40–49. 1001 
https://doi.org/10.1038/s41590-021-01089-8 1002 

Dziubianau, M., Hecht, J., Kuchenbecker, L., Sattler, A., Stervbo, U., Rödelsperger, C., … 1003 
Babel, N. (2013). TCR Repertoire Analysis by Next Generation Sequencing Allows 1004 
Complex Differential Diagnosis of T Cell–Related Pathology. American Journal of 1005 
Transplantation, 13(11), 2842–2854. https://doi.org/10.1111/AJT.12431 1006 

Elliott, J. I., & Altmann, D. M. (1995). Dual T cell receptor alpha chain T cells in 1007 
autoimmunity. The Journal of Experimental Medicine, 182(4), 953. 1008 
https://doi.org/10.1084/JEM.182.4.953 1009 

Fluckiger, A., Daillère, R., Sassi, M., Sixt, B. S., Liu, P., Loos, F., … Zitvogel, L. (2020). 1010 
Cross-reactivity between tumor MHC class I–restricted antigens and an enterococcal 1011 
bacteriophage. Science, 369(6506), 936–942. 1012 
https://doi.org/10.1126/SCIENCE.AAX0701/SUPPL_FILE/AAX0701_FLUCKIGER_SM.1013 
PDF 1014 

Frøsig, T. M., Yap, J., Seremet, T., Lyngaa, R., Svane, I. M., Thor Straten, P., … Hadrup, S. 1015 
R. (2015). Design and validation of conditional ligands for HLA-B*08:01, HLA-B*15:01, 1016 
HLA-B*35:01, and HLA-B*44:05. Cytometry Part A, 87(10), 967–975. 1017 
https://doi.org/10.1002/CYTO.A.22689 1018 

Gaublomme, J. T., Li, B., McCabe, C., Knecht, A., Yang, Y., Drokhlyansky, E., … Regev, A. 1019 
(2019). Nuclei multiplexing with barcoded antibodies for single-nucleus genomics. 1020 
Nature Communications 2019 10:1, 10(1), 1–8. https://doi.org/10.1038/s41467-019-1021 
10756-2 1022 

Gerlach, C., Rohr, J. C., Perié, L., Van Rooij, N., Van Heijst, J. W. J., Velds, A., … 1023 
Schumacher, T. N. M. (2013). Heterogeneous differentiation patterns of individual 1024 
CD8+ T cells. Science (New York, N.Y.), 340(6132), 635–639. 1025 
https://doi.org/10.1126/SCIENCE.1235487 1026 

Gielis, S., Moris, P., Bittremieux, W., De Neuter, N., Ogunjimi, B., Laukens, K., & Meysman, 1027 
P. (2019). Detection of Enriched T Cell Epitope Specificity in Full T Cell Receptor 1028 
Sequence Repertoires. Frontiers in Immunology, 10, 2820. 1029 
https://doi.org/10.3389/FIMMU.2019.02820/BIBTEX 1030 

Hadrup, S. R., Toebes, M., Rodenko, B., Bakker, A. H., Egan, D. A., Ovaa, H., & 1031 
Schumacher, T. N. M. (2009). High-throughput T-cell epitope discovery through MHC 1032 
peptide exchange. Methods in Molecular Biology (Clifton, N.J.), 524, 383–405. 1033 
https://doi.org/10.1007/978-1-59745-450-6_28 1034 

Hou, X., Wang, M., Lu, C., Xie, Q., Cui, G., Chen, J., … Diao, H. (2016). Analysis of the 1035 
Repertoire Features of TCR Beta Chain CDR3 in Human by High-Throughput 1036 
Sequencing. Cellular Physiology and Biochemistry : International Journal of 1037 
Experimental Cellular Physiology, Biochemistry, and Pharmacology, 39(2), 651–667. 1038 
https://doi.org/10.1159/000445656 1039 

Kharchenko, P. V., Silberstein, L., & Scadden, D. T. (2014). Bayesian approach to single-cell 1040 
differential expression analysis. Nature Methods 2014 11:7, 11(7), 740–742. 1041 
https://doi.org/10.1038/nmeth.2967 1042 

Kirsch, I. R., Watanabe, R., O’Malley, J. T., Williamson, D. W., Scott, L. L., Elco, C. P., … 1043 
Clark, R. A. (2015). TCR sequencing facilitates diagnosis and identifies mature T cells 1044 
as the cell of origin in CTCL. Science Translational Medicine, 7(308). 1045 
https://doi.org/10.1126/SCITRANSLMED.AAA9122 1046 

Kivioja, T., Vähärautio, A., Karlsson, K., Bonke, M., Enge, M., Linnarsson, S., & Taipale, J. 1047 
(2011). Counting absolute numbers of molecules using unique molecular identifiers. 1048 
Nature Methods, 9(1), 72–74. https://doi.org/10.1038/NMETH.1778 1049 

Madi, A., Shifrut, E., Reich-Zeliger, S., Gal, H., Best, K., Ndifon, W., … Friedman, N. (2014). 1050 
T-cell receptor repertoires share a restricted set of public and abundant CDR3 1051 
sequences that are associated with self-related immunity. Genome Research, 24(10), 1052 



31 

1603–1612. https://doi.org/10.1101/GR.170753.113 1053 
Montemurro, A., Schuster, V., Povlsen, H. R., Bentzen, A. K., Jurtz, V., Chronister, W. D., … 1054 

Nielsen, M. (2021). NetTCR-2.0 enables accurate prediction of TCR-peptide binding by 1055 
using paired TCRα and β sequence data. Communications Biology, 4(1), 1–13. 1056 
https://doi.org/10.1038/s42003-021-02610-3 1057 

Moris, P., De Pauw, J., Postovskaya, A., Gielis, S., De Neuter, N., Bittremieux, W., … 1058 
Meysman, P. (2021). Current challenges for unseen-epitope TCR interaction prediction 1059 
and a new perspective derived from image classification. Briefings in Bioinformatics, 1060 
22(4). https://doi.org/10.1093/BIB/BBAA318 1061 

Petrie, H. T., Livak, F., Schatz, D. G., Strasser, A., Crispe, I. N., & Shortman, K. (1993). 1062 
Multiple rearrangements in T cell receptor alpha chain genes maximize the production 1063 
of useful thymocytes. The Journal of Experimental Medicine, 178(2), 615. 1064 
https://doi.org/10.1084/JEM.178.2.615 1065 

Robins, H. S., Campregher, P. V., Srivastava, S. K., Wacher, A., Turtle, C. J., Kahsai, O., … 1066 
Carlson, C. S. (2009). Comprehensive assessment of T-cell receptor beta-chain 1067 
diversity in alphabeta T cells. Blood, 114(19), 4099–4107. 1068 
https://doi.org/10.1182/BLOOD-2009-04-217604 1069 

Rodenko, B., Toebes, M., Hadrup, S. R., van Esch, W. J. E., Molenaar, A. M., Schumacher, 1070 
T. N. M., & Ovaa, H. (2006). Generation of peptide–MHC class I complexes through 1071 
UV-mediated ligand exchange. Nature Protocols 2006 1:3, 1(3), 1120–1132. 1072 
https://doi.org/10.1038/nprot.2006.121 1073 

Shen, W.-J., Wong, H.-S., Xiao, Q.-W., Guo, X., & Smale, S. (2012). Towards a 1074 
Mathematical Foundation of Immunology and Amino Acid Chains. 1075 
https://doi.org/10.48550/arxiv.1205.6031 1076 

Sherwood, J. (2013). Colonisation - it’s bad for your health: the context of Aboriginal health. 1077 
Contemporary Nurse, 46(1), 28–40. https://doi.org/10.5172/CONU.2013.46.1.28 1078 

Sidhom, J. W., Larman, H. B., Pardoll, D. M., & Baras, A. S. (2021). DeepTCR is a deep 1079 
learning framework for revealing sequence concepts within T-cell repertoires. Nature 1080 
Communications 2021 12:1, 12(1), 1–12. https://doi.org/10.1038/s41467-021-21879-w 1081 

Stoeckius, M., Zheng, S., Houck-Loomis, B., Hao, S., Yeung, B. Z., Mauck, W. M., … Satija, 1082 
R. (2018). Cell Hashing with barcoded antibodies enables multiplexing and doublet 1083 
detection for single cell genomics. Genome Biology, 19(1), 1–12. 1084 
https://doi.org/10.1186/S13059-018-1603-1/FIGURES/3 1085 

Toebes, M., Coccoris, M., Bins, A., Rodenko, B., Gomez, R., Nieuwkoop, N. J., … 1086 
Schumacher, T. N. M. (2006). Design and use of conditional MHC class I ligands. 1087 
Nature Medicine, 12(2), 246–251. https://doi.org/10.1038/NM1360 1088 

Vita, R., Mahajan, S., Overton, J. A., Dhanda, S. K., Martini, S., Cantrell, J. R., … Peters, B. 1089 
(2019). The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Research, 1090 
47(D1), D339–D343. https://doi.org/10.1093/NAR/GKY1006 1091 

Weber, A., Born, J., & Rodriguez Martínez, M. (2021). TITAN: T-cell receptor specificity 1092 
prediction with bimodal attention networks. Bioinformatics, 37(Suppl 1), i237. 1093 
https://doi.org/10.1093/BIOINFORMATICS/BTAB294 1094 

Yamawaki, T. M., Lu, D. R., Ellwanger, D. C., Bhatt, D., Manzanillo, P., Arias, V., … Li, C. M. 1095 
(2021). Systematic comparison of high-throughput single-cell RNA-seq methods for 1096 
immune cell profiling. BMC Genomics, 22(1), 1–18. https://doi.org/10.1186/S12864-1097 
020-07358-4/FIGURES/8 1098 

Zhang, S. Q., Ma, K. Y., Schonnesen, A. A., Zhang, M., He, C., Sun, E., … Jiang, N. (2018). 1099 
High-throughput determination of the antigen specificities of T cell receptors in single 1100 
cells. Nature Biotechnology 2018 36:12, 36(12), 1156–1159. 1101 
https://doi.org/10.1038/nbt.4282 1102 

Zhang, W., Hawkins, P. G., He, J., Gupta, N. T., Liu, J., Choonoo, G., … Atwal, G. S. (2021). 1103 
A framework for highly multiplexed dextramer mapping and prediction of T cell receptor 1104 
sequences to antigen specificity. Science Advances, 7(20). 1105 
https://doi.org/10.1126/SCIADV.ABF5835 1106 

Zheng, G. X. Y., Terry, J. M., Belgrader, P., Ryvkin, P., Bent, Z. W., Wilson, R., … Bielas, J. 1107 



32 

H. (2017). Massively parallel digital transcriptional profiling of single cells. Nature 1108 
Communications 2017 8:1, 8(1), 1–12. https://doi.org/10.1038/ncomms14049 1109 

 1110 

  1111 





CHAPTER6
Benchmarking data-driven filtering ap-
proaches for single-cell screening of T
cell specificity

To truly benefit from the costly singe-cell assay immunoinformatic
methods are crucial to balance a satisfying ratio of signal-to-noise
with proper yield. The field of de-noising single-cell data composed
of T cell specificities is new and inexperienced. Currently, only
two frameworks have been developed. Both methods are data-
driven, but rely on different aspects of the data to filter away
presumed techical artifacts. This chapter presents a benchmark of
the two methods and highlights advantages and disadvantages of
each approach.
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Abstract
Pairing of T cell receptor (TCR) with its cognate peptide-MHC (pMHC)
is a cornerstone in T cell mediated immunity. Recently, single-cell
sequencing coupled with DNA-barcoded multimer staining has made
high-throughput study of T cell specificity available. However, the
immense variability of the TCR-pMHC interaction combined with the
technology’s low ratio of signal-to-noise is complicating the study.
Here we present a benchmark of two computational frameworks,
ICON and ATRAP, for de-noising single-cell specificity data. As
no golden standard exist, the methods are evaluated on the pub-
licly available immune profiling data provided by 10x Genomics by
metrics developed for the purpose. The key difference between the
two frameworks is the balance of specificity and sensitivity.

Introduction
The specificity of T cells form the hallmark of cellular immunity.
T cell specificity is determined by a triad of interactions between
the T cell receptor (TCR), a peptide (p), and its restricting major
histocompatibility complex (MHC). The TCR is a heterodimeric
protein, typically composed of an α- and β-chain, which are formed
during T cell development as a result of stochastic V(D)J gene re-
combination [222–226]. As a result of the somatic recombination,
highly variable joining segments are introduced, facilitating a di-
verse TCR repertoire which ensures protection from a broad and
ever-changing range of pathogens or cancerous mutations [3, 227,
228]. The joining segments are contained in a region known as
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the complementarity determining region 3 (CDR3). CDR1 and
CDR2 reside in highly polymorphic regions of the V-gene. The
three CDRs form flexible loops of the TCR which engage with
the peptide-MHC (pMHC) complex and thereby determine the
specificity of the T cell [229–232].

Recent studies have elucidated common TCR sequence features of
T cells that share specificity, and for selected pMHCs it has been
possible to predict the binding probability to TCRs novel to the
trained model [127, 173, 177, 178, 184, 187, 191, 192, 204]. The
current primary limitation is lack of both quantity and diversity
of training data generated by traditional specificity assays such as
multimer sorting and reexposure assays, followed by bulk sequenc-
ing of typically the TCRβ-chain. However, the advent of single-cell
sequencing platforms promises high-throughput data which in ad-
dition intrinsically provides information of false binding pairs as
well as true pairs [179]. This type of data is expected accelerate
the understanding of TCR specificity.

10x Genomics has specifically developed an immune profiling plat-
form that couples TCR sequencing of both α- and β-chains with
DNA barcoded peptide-MHC (pMHC) multimers, DNA barcoded
surface marker antibodies, and DNA barcoded cell hashing anti-
bodies. The platform is designed to capture a single cell together
with a gel-bead in emulsion (GEM) [142, 143]. Each GEM con-
tains GEM-specific barcoded primers which ensures back-tracing
of transcripts to the cell-of-origin. As the platform promises single-
cell capture, the contents of a GEM should reflect a single cell and
its associated barcoded analytes, hence GEM and cell may be used
interchangeably. The GEM primers also contain a unique molec-
ular identifier (UMI) which ensures quantification of transcripts
unbiased by PCR amplification [146]. Thus, single-cell screening
of TCR-pMHC interactions yield the TCRαβ sequence and the ex-
pression level of both chains as well as count of each unique pMHC
binding which might be interpreted as T cell avidity [179].

In 2019, 10x Genomics released a large, state-of-the-art data set
[179] which spurred activity within the TCR-pMHCmodeling com-
munity [127, 173, 174, 177, 187, 192]. However, the new data
presented new challenges. The single-cell platform is generally as-
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sociated with a poor signal-to-noise ratio, which also affects this
specificity data. The challenge was handled in various ways. In
NetTCR-2.0, the data was utilized to define negative TCR-pMHC
pairs, i.e. pairs that were not detected to bind any of the in-
vestigated pMHC complexes and thereby avoided handling the
noise within the detected binders [173]. Since the true TCR-
pMHC pairs are a point of contention, the authors of ImRex pur-
posefully omitted the 10x data [187], while the authors of Tcell-
Match and DeepTCR relied on the network to extract the salient
pMHC specific features of the TCRs [174, 177]. The authors of
TCRAI were the first to develop a computational method, named
ICON (Integrative COntext-specific Normalization), to discrimi-
nate true TCR-pMHC binding signal from nonspecific background
noise [127]. Recently, we have proposed an alternative framework
ATRAP (Accurate T cell and Antigen Pairing) [233]. These meth-
ods might pave the way for improved specificity models.

ICON was developed based on the public 10x Genomics data which
contains T cell specificities from four healthy donors screened
against a panel of 50 pMHCs which includes 44 pMHCs for pos-
itive selection and six negative control pMHCs [179]. ICON uti-
lizes the negative controls to empirically estimate the background
binding noise per donor. The UMI counts of pMHCs were then
corrected by subtracting the donor-specific estimated background
noise. UMI counts were further corrected by penalizing pMHCs
multiplets i.e., GEMs containing multiple DNA barcodes corre-
sponding to two or more different pMHCs. The final step of ICON
is normalization of UMI counts across pMHCs and GEMs to make
them directly comparable. As a result, ICON identified a total of
53,062 T cells belonging to to 5,722 unique clonotypes.

ATRAP takes a different approach. The framework was developed
and tested on in-house single-cell data generated using the 10x
Genomics platform similar to the public 10x Genomics data. The
ATRAP framework consists of a series of filtering approaches to
obtain increasingly accurate TCR-pMHC pairing. The first filter-
ing step was based on identifying expected targets by comparing
the UMI distributions of all pMHCs detected within a clonotype
consisting of 10 or more GEMs. The key is to study GEMs in en-
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semble rather than individually, because deviations are averaged
out. If a pMHC was distributed with a significantly higher mean
UMI in the ensemble, we expected this pMHC to reflect the true
target of the clonotype, collectively providing a golden standard.
Based on the labeling of true and false targets, we could compute
an accuracy score. Thresholds were set on UMI counts to max-
imize the accuracy. By globally applying the optimal threshold,
the remaining clonotypes should ideally represent the same level of
accuracy in their pMHC annotations. Another key step of ATRAP
filtering is ensuring HLA correspondence between pMHC and the
HLA haplotype of the T cell donor. In immune profiling assays the
option to hash cells by donor-of-origin enables assignment of HLA
haplotype restriction to each cell. Correspondence between allele
of pMHC and donor haplotype can be used to verify assignment of
the pMHC, assuming that a T cell is absolutely restricted to the
allele for which it was selected during the thymocyte maturation
process. In the public 10x data, the cells are not hashed, how-
ever, the experiment was run in parallel for each donor, enabling
in silico hashing of the individual single-cell runs.

In this study, we will report a benchmark of the two frameworks to
recommend future application of single-cell specificity data. Both
methods will be evaluated on the 10x Genomics data since this
is the only data set containing negative controls as is required by
ICON. As no external golden-standard exist, the methods will be
evaluated on metrics presented by Povlsen et al., [233]: GEM re-
tention, accuracy, average binding concordance, and AUC of sim-
ilarity scores. The fraction of retained GEMs simply quantifies
how many observations are removed by a filter. Accuracy mea-
sures the proportion of GEMs where highest abundance pMHC
annotation corresponds to the expected target of large clonotypes
(>10 GEMs). Average binding concordance is a measure of target
dispersal within a clonotype, the more different pMHCs detected
as highest abundance pMHC per clonotype, the smaller average
concordance. In this metric clonotype singlets are omitted since
they inherently have a binding concordance of 1, but with low
certainty of whether the specificity is reliable. These clonotype
singlets may however be included in the AUC of similarity scores
if they contain both α- and β-chain. The AUC metric discloses how
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well intra-specificity TCRs can be discerned from inter-specificity
TCRs by similarity scores.

Results
Summary of the public 10x data
In the public data set made available by 10x Genomics, a total of
181,913 GEMs were detected containing at least one TCR-pMHC
pair. The data set is the result of screening CD8+ T cells from
four healthy donors against a panel of 50 pMHC DNA barcode
labeled multimers. Donors were selected by HLA haplotype to
ensure overlap with the HLA alleles of the pMHC panel. 44 of the
multimers contain antigenic peptides derived from CMV, EBV,
influenza, HTLV, HPV, HIV and known cancer antigens. Note,
that the donors were all seronegative for HIV, HBV, and HBC.
The remaining six multimers contained negative control peptides
restricted by five HLAs, selected without further elaboration or
reasoning. The specificities from each of the four donors were
screened in parallel i.e., of four different experimental runs. There-
fore, unique GEM-specific 10x barcodes (GEM barcode) were in
some cases observed in replicas across runs. In order to distinguish
these evidently distinct GEMs, an extra suffix was added denoting
the donor (sample ID). The unfiltered output is portrayed in figure
6.1, which clearly demonstrates the issue of noise, as very GEM
contains multiple pMHCs. Most GEMs contain TCRs annotated
with a unique α- and β-chain, however, 10% are annotated with
multiple α- or β-chains, which further challenges the investigation
of specificity.

Alignment of ICON- and 10x-assigned GEMs revealing inconsis-
tent annotations
In order to compare the two filtering frameworks, the outputs
from each were aligned based on the GEM barcode, consisting
on 16 nucleotides, a suffix pertaining to the sequencing well, and
a sample ID suffix. ICON report retention of 53,062 GEMs out
of the total set of 181,913 GEMs. However, ICON only contains
5031 GEMs that matches the original data based on the full GEM
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Figure 6.1: Scatterplot of all detected pMHC barcodes (y-axis) within each of
the 181,913 GEMs (x-axis). In each GEM the most abundant pMHC is marked
by a color, while the remaining pMHCs in the GEM are gray. The marker size
reports the UMI count of the given pMHC and the shape recounts whether the
HLA allele of the pMHC matches the HLA haplotype of the donor, which is
provided in the experimental report [126]. The fraction of HLA matches within
the GEMs displaying a given specificity is annotated to the right of the plot.
The first colorbar indicates the type of TCR chain annotation; whether the
TCR has a unique αβ-pair, is missing a chain or consists of multiple chains.
The second colorbar is a specificity check against the specificity databases
IEDB and VDJdb. Colors highlight the GEMs where the CDR3αβ sequences
are contained in the databases. The green color represents a match between
the database pMHC and the detected pMHC, while red indicates a mismatch.
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barcode, due to inconsistencies in the suffix annotation. When
stripping the barcode down to only the 16 nucleotides, we were
able to align 39,806 GEM barcodes, as exemplified in figure 6.2a.
We also observed inconsistencies of TCRαβ annotations in 3391
GEMs, as illustrated in figure 6.2b+c. 1854 GEMs were missing
either an α- or a β-chain in the 10x data, but not in the ICON
set, while 1537 GEMs were fully annotated, but had inconsistent
TCR annotations between ICON and the 10x data. The inconsis-
tencies in TCRαβ annotations may have arisen from imputations
based on the 10x-provided clonotype summary. However, impu-
tation is risky because the same CDR3 may form part of several
different clonotypes. The example given in 6.2b represents an im-
putation likely based on the CDR3β sequence. In this example the
CDR3β sequence is part of 42 distinct 10x clonotypes, all carry-
ing the same CDR3β sequence, but paired with different CDR3α
sequences. The same case is made for 6.2c and all the other in-
consistent GEMs. Imputation by 10x clonotypes is further made
difficult as their clonotype definition actually allows multiple α-
or β-chains in one clonotype, perhaps a reflection of incomplete
allelic exclusion. Thus, 116 of the fully annotated GEMs with
mismatching TCRαβ annotations between ICON and 10x can be
explained by a switch from one chain to the other, still within the
same clonotype definition. This non-conformity has challenged the
benchmark, however, we have proceeded assuming that there is a
reasonable, however undocumented, explanation for their GEM
assignments.

ATRAP - Revisiting clonotype assignment
For efficient utilisation of ATRAP, the 10x assigned clonotypes
were redefined. The original annotations of clonotypes were based
on unique nucleotide sequences of the T cell receptor to identify
expansions of clonally related T cells. However, the somatic pedi-
gree is not relevant to understand the biochemical properties of the
TCR. In stead, we are interested in grouping T cells of TCRs with
identical amino acid sequence including identical CDR3 sequences.
This regrouping of GEMs results in larger clonotypes beneficial
for statistical power. Thus, in ATRAP a clonotype is defined by a
unique set of Vαβ- and Jαβ-genes as wells as CDR3αβ. Note, that
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Figure 6.2: Illustrations of annotation inconsistencies. The figure shows ex-
amples of GEMs and their TCR annotations from 10x and ICON, respectively.
The observed inconsistencies are grouped into three major groups. The incon-
sistencies are highlighted with a red star in each group. (a) 33,342 GEMs were
mapped from the ICON set with inconsistent GEM barcode suffix. Mapping
was based on the GEM barcode nucleotide sequence and TCR annotations.
(b) 1854 GEMs were missing either an α- or a β-chain in the 10x data, but
not in the ICON set. (c) 1537 GEMs were fully annotated, but the TCR
annotations were inconsistent between ICON and the 10x data.
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redefining clonotypes does not affect the individual GEM anno-
tations of VαβJαβ-genes or CDR3αβ sequences. The redefinition
only pertains to how GEMs are grouped and labeled.

The optimized ATRAP threshold on UMI counts
Of the complete data provided by 10x Genomics, we initially re-
duced the set to only include IUPAC encoded amino acids within
CDR3 sequences and further only considered GEMs which con-
tained both TCR and pMHC annotations, resulting in 181,913
GEMs. Redefining 10x clonotypes resulted in 76,627 unique VαβJαβ-
CDR3αβpairs. Of those clonotypes, 1151 were represented with 10
or more GEMs, and for 1107 of them we were able to annotate
an expected binder. The derived optimized UMI thresholds set
a cutoff at minimum 5 UMI for any pMHC. For pMHC multi-
plets the most abundant pMHC must be 1.2 times greater in UMI
counts than the second most abundant pMHC. A minimum of 1
UMI is required for TCR α- and β-chains. By this filter, the data
set is reduced to 91,652 GEMs and 27,925 unique clonotypes. Ad-
ditionally, filtering on matching HLA serves as the recommended
minimum of filters for ATRAP.

Benchmark of ICON and ATRAP
The two filtering frameworks were benchmarked on four metrics,
as described by Povlsen et al. [233]: Fraction of retained GEMs,
accuracy of specificity, average binding concordance across all
clonotypes, and AUC of CDR3αβ similarities. Accuracy is com-
puted as the fraction of GEMs where the most abundant pMHC
(by UMI counts) corresponds to the expected binder of a clono-
type. An expected binder is defined for each clonotype as the
pMHC which is distributed with a mean UMI count significantly
higher (Wilcoxon, α = 0.05) than the other pMHCs detected as
binders for the given clonotype. Binding concordance is computed
as the fraction of GEMs within a clonotype than binds a given
pMHC and describes the dispersion of pMHC annotations within
the clonotype. In a data set where no cross-reactivity is expected,
the average binding concordance should be 100%. Finally, the
similarity between two TCRs is defined as the summed score of
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the pairwise CDR3α and CDR3β similarities each calculated using
the kernel similarity method described in Shen et al., 2012 [201]
and applied in Chronister et al., 2021 [191]. The AUC metric is
computed based on the hypothesis that different TCRs binding the
same pMHC (intra-specificity) are more similar to each other than
to TCRs of other specificities (inter-specificity). The performance
metrics are presented in figure 6.3.

The metrics presented in figure 6.3 reveal good performance from
both frameworks. Figure 6.3a+b show the distribution of sim-
ilarity scores between intra- and inter-specificity TCRs for each
filtering step. Figure 6.3a show the individual effects of each fil-
ter, revealing that filtering specificity singlets away to only retain
specificity multiplets, yields the greatest separation between intra-
and inter-specificity distributions of all filtering steps. We define
a specificity singlet as a TCR-pMHC pair only detected with a
single GEM, which makes the pairing more susceptible to arti-
facts. The combined effect of each filter is visualized in figure
6.3b, which clearly shows how the separation of inter- and inter-
specificity improves with more filters. To quantify the separation
of distributions, we compute an AUC score from the principles
that perfect intra-specificity scores are close to maximum value of
2, while inter-specificity resembles completely different TCRs of
similarity close to 0. The exact numerical values of the individual
specificities are not of interest and they do not affect the AUC.
Note, that AUC here does not translate into a predictive perfor-
mance, but rather reflects the extend to which intra-similarity can
be distinguished from inter-similarity values.

The summary of both filtering frameworks across our selected per-
formance metrics is presented by figure 6.3c. Both ICON and
the combined ATRAP filters discard a large number of GEMs.
The recommended filtering steps for ATRAP consist of filtering
on UMI thresholds and matching HLA between annotated pMHC
and HLA haplotype of donor, which yields 40,584 GEMs, which
is slightly more than ICON (39,806). Filtering away specificity
singlets only removes 5624 GEMs extra, but yields a gain in AUC,
as we also saw in 6.3a+b. However, many of those GEMs repre-
sent unique clonotypes, so this filter also vastly reduces the total
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Figure 6.3: Performance metrics for evaluating the filtering steps of ATRAP
with ICON. The ATRAP filtering steps consist of total (raw, unfiltered data),
optimal threshold obtained from grid search, matching HLA, complete TCRs
with a unique set of α- and β-chain, specificity multiplets i.e., TCR-pMHC
pairs observed in two or more GEMs, and ”is cell” defined by 10x Genomics
Cellranger. ICON yields a single output, however, an addendum has been
made to also filter ICON output on HLA match between pMHC and HLA
haplotype of donor. (a) The boxplots show kernel similarity scores between
CDR3β sequences of intra- (white) and inter- (dark) specificity for each of the
filtering steps. A significant difference (Wilcoxon, α = 0.05) of mean between
inter- and intra-specificity is marked with an asterisk to the right (b) Here
the boxplots show cumulative effect of ATRAP filters on similarity scores. (c)
Performance is measured and summarized by a number of metrics: ratio of
retained GEMs (GEMs), accuracy defined by proportion of GEMs where most
abundant pMHC matches the expected binder (accuracy), average binding
concordance (avg. conc.) and AUC of similarity scores (AUC). The ATRAP
filters are also here cumulatively added to show increasing improvement in
performance.

number of clonotypes.

As mentioned, ICON does not discard GEMs based on HLA match
between pMHC and donor haplotype. However, we have tested
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the impact of adding that filter to ICON, which reduces the yield
to 33,531 GEMs. The performance measured by accuracy and
average concordance is generally very high. ICON scores almost
perfect binding concordance at every clonotype, which it essen-
tially was designed to do, hence, we assume that the corrections
of pMHC UMI counts and imputations of CDR3 sequences play
a major role in this result. However, the slightly lower AUC of
similarity scores of ICON suggest that some imputations might
have been incorrect. Based on the AUC of similarity scores, the
ATRAP-filters yield a slightly better performance, however, ICON
yields specificity annotations of very little ambiguity, where each
clonotype is assigned to only one pMHC

Visual inspection of ICON and ATRAP outputs
The differences in binding concordance between ATRAP and ICON
are clearly visualized in figure 6.4 and figure 6.5. Figure 6.4
presents the ATRAP-filters of UMI threshold, HLA matching, and
complete TCRs i.e., unique pairing of α- and β-chain.

With an average binding concordance of 98.7, we observe 407
GEMs with a binding concordance <50%, which we will refer to
as outliers. A substantial proportion of these cross-binding events
are across different HLA alleles. This contradicts the prevailing
belief that T cells are restricted to the HLA for which they were
positively selected during maturation. We thus suspect that some
of these events are a result of random capture of ambient multimer
barcode.

In 65 GEMs of the 407 outliers, an expected pMHC target had
not been identified, due to the small sizes of the clones. Of the
remaining 320 outliers, 76 GEMs exhibit a pattern which aligns
with potential cross-reactivity.

Typically a TCR will have a single, preferred target, while allow-
ing binding of other pMHCs to a lesser extend, i.e. clones of a
clonotype may display a single dominant pMHC response of high
binding concordance with few smaller responses of low binding
concordance. For the clonotypes of these 76 GEMs, the domi-
nant high-concordance pMHC coincides with the expected target
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of the individual clonotypes. In 18 of these GEMs, the correspond-
ing clonotypes showed divergent HLA restriction between the an-
notated low-concordance pMHC and the expected target for the
given clonotype. In all of the 76 GEMs, the expected target was
detected albeit at a lower UMI count than the annotated pMHC.

The remaining set of 266 GEMs consist of 80 clonotypes exhibiting
highly dispersed binding to many different pMHCs, all with low
binding concordance. All of these GEMs also contains multiplets
of pMHCs. Based on these observations, we conclude that the
majority of the 407 outliers are likely artifacts that have escaped
the ATRAP filtering steps and thus not true cross-binding events.

Figure 6.5 presents the ICON retrieved specificities. With an av-
erage binding concordance of 99.9% most clonotypes are paired
with a single specificity, and only 24 GEMs are categorized as
outliers. 13 of the outliers are annotated with a pMHC that do
not match the allele of the donor. 4 of the outliers contains CDR3
sequences that differ from the 10x annotation and may be a result
of imputation.

Finally, a key difference between the two methods is that ATRAP
retains 45 pMHCs from the staining whereas ICON retains 34
pMHCs. The 11 peptides retained by ATRAP and not ICON elicit
small and few responses, but are primarily not involved in cross-
binding events. With both filtering frameworks, the largest re-
sponses are toward KLG HLA*A-03:01, RKA HLA*B-08:01, and
GIL HLA*A-02:01. ICON retains more GEMs and more clono-
types within these peptides, at the expense of other specificities,
than ATRAP does.

Discussion
Single-cell screening assays may pave the way for better under-
standing of T cell specificity. The technology enables the study
of binders, decisive non-binders and even cross-binding. How-
ever, de-noising single-cell specificity data is a critical bottleneck
in studying T cell specificity. Here, we evaluate two methods,
ATRAP and ICON, both aiming to resolve this bottleneck, filter-
ing noise and putative artifacts from true binding events. Since
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Figure 6.4: ATRAP derived specificity per clonotype. ATRAP-filters consist
of UMI threshold, HLA matching, and complete TCRs i.e., unique pairing
of α- and β-chain. The library peptides are listed on the y-axis and each
clonotype is represented on the x-axis. Below the x-axis is annotated the total
number of clonotypes and GEMs in the presented data. The marker size shows
the number of GEMs supporting a given specificity. The color indicates the
binding concordance which is calculated as the fraction of GEMs within a
clonotype that support a given pMHC. The higher the concordance, the larger
the fraction of supporting GEMs.

no golden-standard exist, the methods are evaluated via metrics
designed for the purpose.

The two filtering frameworks both show very good performance,
but with substantially different advantages and disadvantages.
ICON excels at reducing ambiguous specificity annotations, such
that the majority of clonotypes is annotated with exactly one
pMHC target. The efficient reduction of outliers may, however,
also become a hindrance for detecting cross-reactivity. The ATRAP
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Figure 6.5: ICON derived specificity per clonotype. The library peptides are
listed on the y-axis and each clonotype is represented on the x-axis. Below
the x-axis is annotated the total number of clonotypes and GEMs in the pre-
sented data. The marker size shows the number of GEMs supporting a given
specificity. The color indicates the binding concordance which is calculated
as the fraction of GEMs within a clonotype that support a given pMHC. The
higher the concordance, the larger the fraction of supporting GEMs.

method includes more GEMs across more pMHCs. A larger pro-
portion of GEMs represent binding-events which resemble cross-
reactivity, although after careful scrutiny, the majority of these
are noisy observations having escaped filtering.

The filtering frameworks were evaluated on four metrics: reten-
tion of GEMs, binding accuracy guided by expected targets, av-
erage binding concordance, and AUC of kernel similarity scores.
ATRAP scores the highest accuracy, however, binding accuracy
may be a biased metric in this context as ATRAP was specifically
designed to maximize this score. Similarly, we see ICON showing
superior average binding concordance, favoring low dispersion of
specificity within a clonotype, which ICON was purposefully de-
signed to reduce. The AUC of kernel similarity scores is the only
method-independent metric, which however does not account for
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outliers, in favor of ATRAP.

Each framework has a set of requirements for the method to work
optimally. ATRAP heavily relies on cell hashing, where HLA typ-
ing of donors is known, to validate specificities. In contrast, ICON
relies on gene expression data to remove duplicates and nega-
tive control pMHC multimers to correct binding signal of posi-
tive pMHCs. The impact of gene expression data was previously
tested for ATRAP, which showed only minute added performance
[233]. Due to the low impact and the high expense of running
gene expression sequencing, this filtering step was deprioritized.
Cell hashing, of course, also confers an additional cost, however
it further enables the study of immunodominant epitopes and in-
dividual T cell repertoires. The use of negative control pMHCs
allows ICON to set a cutoff for pMHC UMI counts, similar to the
accuracy optimizing threshold in ATRAP. The weakness of neg-
ative control pMHCs is that no one can yet define true negative
targets. To circumvent this, utilizing empty multimer scaffolds
containing only the DNA barcode as negative controls would re-
veal the level of ambient barcodes polluting the assay without
risking rare but true binding.

Both frameworks assume that the pMHC UMI count reflects the
likelihood of a TCR-pMHC pair, and use the count either di-
rectly (ATRAP or corrected and normalized (ICON) to filter away
GEMs. However, it is important to note, that the UMI count ac-
tually refers to the number of pMHC multimers captured together
with a T cell in a GEM. The count may be affected by the extent
of ambient multimers, T cell expression of TCRs, and binding
affinity. Thus to improve the filtering strategies of ATRAP or
ICON future methods may implement adjusted TCR-pMHC pair-
ing scores.

Pairing of TCR and pMHC is further made difficult in the cases
where a presumed single cell expresses two different α- or β-chains.
The dual expression cannot simply be written off as capture of
multiple cells, as multiple GEMs exhibit the same dual TCR pro-
file, and is a known phenomenon [86–88]. Neither ICON nor
ATRAP seeks to investigate the impact on specificities, but sim-
ply annotate the most abundantly expressed chain. To improve
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specificity detection, this aspect should be investigated further.
Moreover, CDR3 sequences are not unique, but exist in various
combinations, despite the stochastic process under which they are
produced. Therefore, imputing CDR3 chains for GEMs with ei-
ther multiple chains or GEMs missing a chain, will often not result
in unique pairing. We speculate that ICON has attempted this,
since we have observed discrepancies in CDR3 annotations be-
tween 10x and ICON. The comparison was further complicated
by inconsistent GEM barcodes between ICON and the 10x data.
The altercation of barcodes is unaccounted for by the authors of
ICON.

In conclusion, the two frameworks perform on par. ICON provides
high specificity at the expense of sensitivity, whereas ATRAP pro-
vides high sensitivity to allow detection of cross-binding events,
but at the expense of specificity.

Materials and Methods
Data retrieval
10x Genomics data used for this study were downloaded from:
https://support.10xgenomics.com/single-cell-vdj/datasets.

Benchmark data was created by Zhang et al. employing their
method, ICON (Integrative COntext-specific Normalization), for
identifying reliable TCR-pMHC interactions. Data was down-
loaded from http://advances.sciencemag.org/cgi/content/full/7/20/
eabf5835/DC1. This set contains 53,062 cells (here referred to as
GEMs) which pass the ICON filtering with ICON-corrected pMHC
and TCR annotations. The ICON output provided with the pub-
lication contains a fifth donor, donor V, which was removed from
the set (14,052 GEMs).

Data curation
The data consists of four sets of single-cell RNA sequencing and
immune profiling from four healthy donors. The HLA haplo-
type of each donor was manually added to each set. The sets
were concatenated for one combined analysis. Few GEM-specific
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10x barcodes (GEM barcodes) were duplicates across the donor
sets, therefore the barcodes were additionally suffixed by donor,
i.e. AAACCTGTCTAACTTC-6-s2. Cells (referred to as GEMs)
were removed if the annotated CDR3αβsequences were not pro-
ductive, full length, or contained non-IUPAC characters, resulting
in 181,913 GEMs. Differently annotated clonotypes sharing VJ-
CDR3αβannotations were aggregated, as described in [233]. GEMs
will be included in a clonotype even if a chain is missing based on
unique matches of the existing chain to only one fully defined
clonotype. Clonotypes will be defined by only the α- or the β-
chain if no GEMs contained an αβ-pair with a matching chain.
Finally, some clonotypes contain multiplets of α- or the β-chain,
however, only the most abundant chain is selected to represent the
clonotype.

Data filtering
As described in [233], different types of filters can be applied single-
cell immune profiling data to reliably identify TCR-pMHC inter-
actions. The method handles multi-omics single-cell sequencing
data generated from a multiplexed multimer binding platform such
as 10x Genomics immune profiling. The accepted inputs include
single-cell RNA sequencing, targeted T cell receptor sequencing,
dCODE-Dextramer sequencing for DNA barcoded pMHC multi-
mers, as well as CITE-seq sequencing of DNA barcoded cell hash-
ing antibodies. The method includes the following major steps:

Step 1: Correction of 10x annotated clonotypes as described in
[233]. Instead of limiting clonotypes to groups of GEMs with ex-
act nucleotide sequence identity, clonotypes were defined based
on VJαβ-gene annotation and the CDR3αβamino acid sequences.
Clonotypes for GEMs containing only one TCR chain were im-
puted if the chain matched only one preestablished clonotype.
GEMs containing multiple chains were annotated by the most
abundant chain by UMI count.

Step 2: Filtering based on data-driven thresholds as described in
[233]. For each clonotype consisting of more than 10 GEMs the
expected target is identified if a pMHC has significantly higher
UMI distribution than other pMHCs also captured in GEMs of the
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given clonotype. Significance is tested by Wilcoxon, α = 0.05. The
pMHCs not declared as target are considered as background noise.
An accuracy score based on the fraction of target pMHCs over
background pMHCs guides the search for the optimal threshold
to filter all data on.

Step 3: Match pMHC HLA allele with donor haplotype. The
HLA-A, -B, and -C haplotypes were provided by an application
note following the release of the single-cell sequencing of the four
healthy individuals. Since the samples were sequenced individ-
ually the haplotypes were easily added to the data sets. GEMs
consisting of mismatch between donor haplotype and pMHC were
discarded.

Step 4: Selecting GEMs with paired αβ-chains. GEMs with only
a single chain were removed. For GEMs with multiple α- and/or
β-chains, the ones with highest UMI counts were assigned to each
GEM.

Step 5: Filtering specificity singlets. If a TCR-pMHC pair is only
observed once it is discarded as to increase confidence in matches.

Step 6: Selecting 10x annotated cells. Application of the 10x
provided filter ”is_cell”.

Benchmark
The impact of above mentioned filters were compared to the ICON
framework. ICON was applied on the public 10x data sets and the
the result thereof was provided by the authors via the publication
[127]. The annotation for each GEM between the two approaches
was traced per donor via the 10x barcode, omitting the well suffix
of the barcode. The two approaches were compared based on
number of retained GEMS, average binding concordance across
clonotypes, and AUC of kernel similarity scores.

Binding concordance
Binding concordance is defined per clonotype as the distribution
of GEMs annotated with varying pMHCs, as described in [233].
In a clonotype, the more GEMs annotated with the same pMHC,
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the larger the concordance for that specificity. The average con-
cordance is a single measure of how much cross-binding the full
data contains.

AUC of kernel similarity scores
Kernel similarity was implemented from work by Shen et al. [201]
and applied by [191]. The method was adapted to handle αβpairs
as described in [233]. Similarity scores were computed for sets
of TCRs binding the same pMHC (intra-specificity) and sets of
TCRs binding different pMHCs (inter-specificity). The similarity
scores were converted to AUC from the assumption that intra-
similarity would approach maximum score of 2, whereas inter-
similarity would approach minimum score of 0. Only high-concordant
specificities were included in the analysis.
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CHAPTER7
Epilogue

The research projects presented in this thesis are centered around
T cell specificity. New frameworks were developed and tested to
aid our ability to interrogate T cell recognition more accurately.
The prospect of these frameworks is an unveiling of the rules gov-
erning T cell interaction with cognate pMHCs, which will advance
the development of T cell based immunotherapeis and rational
vaccines.

Identification of immunogenic targets.
DNA barcoded pMHCmultimers has paved the way for large panel
screening of T cell responses, enabling the study of immunogenic
antigens across an entire viral genome. In paper I, we applied this
method to screen the SARS-CoV-2 genome and map regions of in-
dividual epitopes and immunodominant epitopes. These findings
are the first steps toward a vaccine design eliciting T cell medi-
ated immunity for stronger and longer immunity [234]. Probing T
cell repertoires of both healthy and infected individuals provided
insight into pre-exposure responses, which may reflect the cross-
reactive aspect of TCRs. We hypothesized that cross-reactivity
could be conferred by T cells selected for common cold corona-
viruses and showed short Hamming distance between SARS-CoV-2
epitopes and common cold peptides. Adding common cold corona-
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viruses in the panel could have shown, if the responses were cor-
related with SARS-CoV-2. The knowledge acquired from paper
I is limited to evaluations of the targets and distributions T cell
responses within the sampled repertoire. At single-cell resolution,
the repertoires of healthy donors responding to SARS-CoV-2 epi-
topes could further elucidate to what extent pre-exposure T cells
exist and whether these are public clonotypes, commonly shared
in populations. In hindsight, longitudinal studies of cohorts with
mild diseases and severe diseases could shed light on the impact
of initial repertoire composition as a measure of heterologous im-
munity [235].

The important aspects of cross-reactivity.
In order for our immune system to broadly protect us from any
given pathogen, T cell cross-reactivity is pivotal. Cross-reactivity
enhances the chance that a suitable TCR is represented in a T cell
repertoire, ensuring timely and appropriate response to a given
antigen. Moreover, the risk of escape-variants is reduced due to
partially overlapping specificities of a repertoire [64, 74]. How-
ever, the downside of cross-reactivity is the risk of allergy or auto-
immunity [71], which has been inflicted by a number of infections
[236–239]. This feature of the immune system has been exploited
in immune therapy of cancer, where neo-antigens are only slight
variations of self [240]. To initiate proper response without undue
consequential auto-reactivity, it is paramount to understand the
scope of T cell specificity and cross-reactivity. The ideal scenario
is a comprehensive model foreseeing potential cross-reactivity to
avoid off-target toxicity. Inadvertent auto-immunity was a tragic
result of a cancer treatment by affinity-enhanced T cells which
were cross-reactive to titin, a self-peptide presented on cardiomy-
ocytes causing cardiogenic shock [241]. Moreover, evidence sug-
gest that vaccines do not act independently of other vaccines, and
that vaccines influence infections caused by other pathogens than
the target disease, which might also result in adverse events [242].
Thus, a deep understanding of the mechanisms guiding T cells
specificity, which determine cross-reactivity is essential for thera-
peutic development.
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Improved detection of cross-reactive events.
Deep insight into T cell specificity may come with single-cell data
and appropriate de-noising methods as presented in paper II
and paper III. However, the study of cross-reactivity is partic-
ularly challenging when the experiments are highly affected by a
range of confounding factors which are difficult to discern from
true biological signal. Dedicated efforts must be set to improve
sensitivity to cross-reactivity without loosing general specificity,
by studying scenarios where cross-reactivity is expected. A great
technique for high resolution measurement of cross-reactivity is
TCR-fingerprinting assays, which provides a hierarchy of binding
preferences for each individual T cell [68, 69]. The technique can
be used to design a peptide panel of known cross-binders to in-
clude in a single-cell sequencing setup for proper evaluation of the
cross-reactive detection capabilities. Importantly, the fingerprint-
reference would also aid in identifying false cross-reactive events.
Selecting clones of orthogonal HLA-restriction is imperative for
a broad control pool. Particularly HLA-restriction was a great
source of confusion and frustration during development of the
method presented in paper II. In order to limit the degrees of free-
dom, we decided to assume complete restriction of self-MHC, how-
ever, the potential of allo-reactivity impairs this approach. Thus,
extending fingerprinting assays to investigate allo-reactivity would
provide a great asset for improved distinction between cross/allo-
reactivity and technical noise.

Another aspect of cross-reactivity may be reflected by dual TCRs.
Dual TCR T cells are expected exceptions of TCR gene rear-
rangement during thymocyte development [86–88]. However, the
role, or side effect, of dual TCRs is still unknown. If dual TCRs
confers dual specificity, it may improve protective immunity by
enabling T cell multitasking or cause inappropriate responses as
auto-immunity. The first step, is to infer whether dual TCRs affect
specificity. This aspect was barely recognized in paper II, how-
ever, with reliable single-cell data of TCR repertoires, the dual
TCR specificities can be evaluated against clonotypes of unique
αβ-pairing as a subset of the dual pairing.
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Design of a golden standard.
The major challenge in developing de-noising frameworks for single-
cell sequencing is the lack of a golden-standard benchmark set, as
discussed in paper II and paper III. By combining a range of
the current techniques, the individual sources of uncertainty may
be averaged out, to obtain a high quality benchmark set. As-
says that compliment each other and particularly high-throughput
single-cell sequencing include multimer staining [123, 125], T cell
repertoire sequencing [243], T cell fingerprinting [68, 69], and per-
haps also sequencing of a subset of manually sorted single cells
[244]. As shown in paper II, validating single-cell sequencing via
multimer staining provides detailed insight into the precision and
recall of T cell response distributions. Clonotype annotations and
their relative frequencies within distinct targets may be evaluated
from bulk repertoire sequencing of strictly sorted cells, striving
for absolute specificity. Since bulk sequencing only provides a sin-
gle chain, a small subset of manually sorted single cells may pro-
vide confidence in accurate pairing of α- and β-chains. To further
strengthen the golden standard, the set should include a number
of T cell clones with known cross-reactive targets from fingerprint-
ing analysis, as described above. This component would serve as a
sort of spike-in control when evaluating de-noising strategies and
their retention of cross-reactivity. Based on this golden-standard
set, a universal model or framework can be developed to use for
future data sets.

Advancing de-noising frameworks
Single-cell data is loaded with information to capitalize from, which
perhaps also clouds the vision of how to properly harness the fea-
tures. The two frameworks for de-noising single-cell specificity
data presented in paper III both incorporate pMHC UMI count
as a feature for optimal threshold setting. An obvious, and also
tested, feature to remove noisy observations, is gene expression
data. Although widely employed to remove dying cells and dupli-
cates, the implementation suffers from ad hoc thresholding guide-
lines, which can cause large variations in downstream data [245–
247]. Without exhaustive analysis of thresholds, we concluded
in paper II that the effect of filtering based on gene expression
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was not sufficient to justify the high cost of full transcriptome se-
quencing. Instead, we recommend implementation of cell hashing
combined with donor HLA haplotyping as a powerful tool to vali-
date annotations. Even though cell hashing, as pMHC staining, is
also affected by the inherent confounding factors of single-cell se-
quencing, the uncertainty of both components is independent and
therefore assumed to reduce the overall uncertainty when com-
bined. Several approaches to reduce noise in cell hashing have
been proposed [161, 162, 248], and a benchmark to implement the
optimal method could enhance the performance of specificity de-
tection. A possibly untapped source of information is the UMI
count of TCRs, although the method presented in paper II does
search for TCR UMI cutoffs, but no influence was detected. As-
suming efficient capture of TCR genes during sequencing, the ex-
pression level of TCRs may also quantitatively impact the cellular
association with pMHC multimers, i.e. the pMHC UMI count.

To advance de-noising frameworks, we may learn from similar
fields. Several de-noising and imputations approaches within single-
cell gene expression data involves neural networks, leveraging the
ability to capture higher-order correlations [154, 249–259]. Par-
ticularly unsupervised methods, such as variational autoencoders,
are popular because labeled data is superfluous [154, 250, 251,
253]. However, T cell specificity screening is challenged by a vastly
larger biological variability than observed in single-cell gene ex-
pression, which sets higher requirements for careful procedures
and evaluation.

Future prospects of accurate pairing of TCR-pMHC
The method developed in paper II and benchmarked in paper
III is paving the way for further studies scrutinizing the intricate
interaction between TCR and pMHC. The type of data made avail-
able by the methods presented in paper III are particularly well
suited for modelling TCR-pMHC interaction. Each screening, fol-
lowed by adequate de-noising strategies, may provide >1000 speci-
ficities across a panel of pMHCs. The sheer number of specificities
from a single experiment holds a promise of progress in the field, as
more well-defined patterns of binding can be detected. Moreover,
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the design of the assay provides additional pivotal improvements
to the currently available data. Previously, assays have only fo-
cused on detecting interactions to describe the mechanism of bind-
ing, but equally as much information can be extracted from study-
ing the examples of incompatibility between TCR and pMHC. As
single-cell screening is initiated with a “one-pot” staining, the as-
say allow us to assume that every TCR-pMHC pair not detected
is truly incompatible, and thus in modeling lingo, negative. An-
other key asset, as discussed above, is the potential for detecting
cross-reactivity. In order for a model to learn the promiscuity
of TCRs and what restricts this promiscuity, training data must
encompass cross-reactivity. The first steps have been taken with
the methods presented in paper III, and likely more will follow.
With improved methods for de-noising single-cell data and reliable
identification of cross-reactivity, we can push the boundaries for
T cell specificity predictions even further. Hence, I hope the work
presented here will serve as inspiration for further research.
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Supplementary tables 1113 

Supplementary Table 1. Samples 1114 

 1115 

Hashing-ID Donor HLA-A HLA-B 

1 BC-300 0201 0702 

2 BC-326 0201  

3 BC-126 0201  

4 BC-328 0301 0702 

5 BC-62 0301 0702 

6 BC-355 0201 0702 

7 BC-360  0702 

8 BC-314 0301 0702 

9 BC-353 0301 0702 

10 BC-311, BC-11, BC-
83, BC-88, BC-341, 

BC-342, BC-76 0201, 0301 0702 

Supplementary Table 1: Overview of which samples contain cells from which donors and the 1116 

relevant donor haplotypes. 1117 

 1118 

Supplementary table 2. Peptide-MHC multimers 1119 

 1120 

 1121 

Peptide HLA Origin Barcode sequence Fluorochrome 

CLGGLLTMV A0201 EBV LMP2 TATGAGGACGAATCT APC 

FLYALALLL A0201 EBV LMP2 CCGATGTTGACGGAC APC 

YVLDHLIVV A0201 EBV BRLF1 TAGTAGTTCAGACGC APC 

VLEETSVML A0201 CMV IE-1 CCGTACCTAGATACA APC 

RVRAYTYSK A0301 EBV BRLF1 GGTATGGCACGCCTA APC 

RPHERNGFTVL B0702 CMV pp65 GGATGCATGATCTAG APC 

TPSVSSSISSL B0702 EBV BFRF3 GATTCAATATGTGTC APC 

RPPIFIRRL B0702 EBV EBNA3A GGTAACTGCGCATAG APC 
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TPRVTGGGAM B0702 CMV pp65 GGTACAGTAAGTGAG APC 

RPHERNGFTV B0702 CMV pp65 GCCACCTTAACACGC APC 

GILGFVFTL A0201 Flu M1 TTCTATTCTAAGCCG PE 

GLCTLVAML A0201 EBV BMFL1 TCCAAGTTAGCTTAC PE 

NLVPMVATV A0201 CMV pp65 CTGTTAATTAGGCTC PE 

 1122 

Supplementary Table 2. Information on the applied pMHC multimers. The full oligonucleotide 1123 

tag are designed as follows: Biotin-C6-1124 

CGGAGATGTGTATAAGAGACAGNNNNNNNNNNXXXXXXXXXXXXXXXNNNNNNNNNCC1125 

CATATAAGAAA, with the barcode sequence indicated by 15 purple X’s. C6 indicates a six 1126 

carbon spacer with a hydroxyl to the 5’ end of an oligonucleotide. Read2N is indicated by the 1127 

black sequence, UMI’s are indicated in grey, and the capture oligo is indicated in turquoise. 1128 

Supplementary Table 3. Database cross-referencing specificities 1129 

ct 
CDR3 

TRA 

genes 

TRA 

CDR3 

TRB 

genes 

TRB 

peptide 

MHC 

# 

GEMs 

DB 

Match 

76 
CATEGDSGYSTL

TF 

TRAV17; 

TRAJ11; 

TRAC 

CASSYQGGNYGYTF 

TRBV6-

5;;TRBJ1-

2; 

TRBC1 

FLYALALLL 

A0201 
4 T 

278 CALYNTDKLIF 

TRAV9-

2;TRAJ34

; 

TRAC 

CASSPTSGSVYEQY

F 

TRBV3-

1;;TRBJ2-

7; 

TRBC2 

GLCTLVAML 

A0201 
1 T 

478 CAEDNNARLMF 

TRAV5; 

TRAJ31; 

TRAC 

CSARDGTGNGYTF 

TRBV20-

1;TRBD1; 

TRBJ1-2; 

TRBC1 

GLCTLVAML 

A0201 
1 T 

574 CAESIGKLIF 

TRAV5; 

TRAJ37; 

TRAC 

CSVGAGGTNEKLFF 

TRBV29-

1;;TRBJ1-

4;TRBC1 

RVRAYTYSK 

A0301 
1 F 

1140 
CATEGDSGYSTL

TF 

TRAV17; 

TRAJ11; 

TRAC 

CASSLQGGNYGYTF 

TRBV6-

5;;TRBJ1-

2; 

TRBC1 

FLYALALLL 

A0201 
1 T 

1984 CIRDNNNDMRF 

TRAV26-

2;TRAJ43

; 

TRAC 

CASSLAPGATNEKLF

F 

TRBV7-

6;;TRBJ1-

4; 

TRBC1 

NLVPMVATV 

A0201 
1 T 

1985 CILDNNNDMRF 

TRAV26-

2;TRAJ43

; 

TRAC 

CASSLAPGATNEKLF

F 

TRBV7-

6;;TRBJ1-

4; 

TRBC1 

NLVPMVATV 

A0201 
1 T 

 1130 

Supplementary Table 3. Information on the CDR3 sequences which matched the CDR3 1131 

sequences of the IEDB and VDJ databases presented in fig. 2d. Six different clonotypes (ct) 1132 
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had CDR3 sequence matches. Five of the clonotypes also matched (T:True) the database 1133 

on the annotated pMHC (DB Match), while one clonotype (ct 573) had conflicting 1134 

annotations.  1135 

Supplementary table 4. Multimer staining responses 1136 

All responses reported in Fig. 7. See table enclosed  1137 
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Supplementary figures 1138 

Supplementary figure 1 1139 

 1140 

Supplementary Figure 1: Clonotype replicas sharing VJ-CDR3ab. Arc diagram revealing 1141 

shared VJab-genes and CDR3ab sequences across clonotypes defined by 10x Cellranger. 1142 

Each node is a clonotype and the size reflects the magnitude GEMs in that clonotype 1143 

sharing VJab-genes with GEMs of other clonotypes. The first node (c0, green) consists of 1144 

the GEMs with no 10x clonotype annotation, while the remaining (c>0) are annotations by 1145 

10x Cellranger. The diagram reveals clonotype duplets (single arc connections), triplets (2 1146 

arcs), quadruplets, quintuplets, and even a single sextuplet. Since node c0 is a mixture of 1147 

GEMs that were not annotated, the GEMs in this group will match many different clonotypes. 1148 

Once a c0 VJ-CDR3 matches a clonotype which already is a replicate, the GEM will of 1149 

course match all of them. 1150 

Supplementary figure 2 1151 

 1152 

Supplementary figure 2: Distribution of the three categories of TCR chains across different 1153 

methods of filtering. GEMs are categorized in one of three categories based on the detection 1154 

of α- and β-chains: TCRs missing any chain, TCRs with multiple α- and/or β-chains, and 1155 

TCRs with a unique set of one α- and one β-chain. The colors each represent a filtering step. 1156 

The grey bars present the raw, total data with no filtering. The light blue bars present filtering 1157 

on 10x Genomic’s Cellranger “is cell” call based on transcript level of TCR sequences only. 1158 
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The dark blue bars present filtering on 10x Genomic’s Cellranger “is cell” call based on 1159 

transcript level of gene expression (GEX) sequencing. The black bars present filtering of 1160 

GEX data on mitochondrial load and gene counts. For each step of filtering the counts within 1161 

each category are normalized and the total value is  listed above the bar. The raw data has a 1162 

larger proportion of missing chain TCRs than the filtered sets. Filtering on “is cell” based on 1163 

GEX data yields the largest proportion of unique chains. None of the filters completely nor 1164 

substantially reduces the proportion of TCRs missing a chain or with multiple chains. See 1165 

also supplementary note. 1166 

Supplementary figure 3 1167 

 1168 
Supplementary figure 3: Demultiplexing cell hashing using Seurat. The GEMs (x-axis) are 1169 

evaluated by the abundance of each sample barcode of 10 possible hashings (y-axis). The 1170 

first section of the heatmap contains GEMs with unambiguous annotation to one sample. 1171 

The second section illustrates how some GEMs contain barcodes for two samples, which 1172 

might indicate a doublet, i.e. a capture of two T cells in one GEM. The last section reveals 1173 

GEMs where no barcodes above a certain threshold were detected, and hence must be a 1174 

result of leakage and can be discarded as noise. 1175 

Supplementary figure 4. 1176 

 1177 
Supplementary figure 4: Gating strategy employed for sorting out pMHC binding MHC 1178 

multimers isolated for single-cell processing. 1179 

  1180 
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Supplementary note 1181 

Additional filters to confidently assign the GEMs containing a cell 1182 

Removal of potential multiplets, leakage events, and dead cells 1183 

We set out to investigate how filters designed to remove potential multiplets, leakage 1184 

events and dead cells would affect the distribution of GEMs between the three TCR 1185 

categories: missing chain, multiple chains, and unique chains (Fig. 3). The 10x 1186 

Genomics Software has a built-in method for flagging GEMs that are unlikely to 1187 

contain a cell based on the transcript level of that GEM. Applying this filter based on 1188 

the VDJ transcripts would reduce the set from 6073 to 4833. According to the 1189 

software provider, the cell flagging method is more robust when including gene 1190 

expression (GEX) data (10x Genomics 2022), which instead would reduce the set to 1191 

4725. Alternatively, the GEMs were filtered independently of Cellranger and directly 1192 

on GEX data based on mitochondrial load and a minimum and maximum gene count 1193 

per GEM, resulting in 5176 GEMs. The persisting GEMs should then be more likely 1194 

to each contain a single viable T cell. Fig. 3 presents how filtering by the cell flag (‘is 1195 

cell’) and viable cells affects the distribution of GEMs between the three TCR 1196 

categories: missing chain, multiple chains, and unique chains. The filtered GEMs 1197 

particularly contained TCRs which are missing an α- or a β-chain, however, the 1198 

increased stringency of filtering did not substantially change the distribution of TCRs 1199 

with unique chains relative to TCRs with missing or multiple chains. However, the 1200 

filters substantially reduced the number of included GEMs (from 6073 without filters 1201 

to 4725 when applying the most stringent filter).  1202 

 1203 

such that the y-value of all three categories sum to 1. The distributions are shown for 1204 

the unfiltered total GEMs (total), GEMs annotated as true cells by 10x Genomics 1205 

Cellranger based on VDJ transcripts only (is cell), GEMs annotated as true cells 1206 

when including GEX data (is cell (GEX)), and GEMs identified as viable cells from 1207 

mitochondrial load and gene counts (is viable cell). 1208 

 1209 

Applying hashing 1210 

The sample hashing component was predominantly observed as multiplets. In fact 1211 

all, but one GEM, contained multiple sample hashing barcodes. An acknowledged 1212 

method for demultiplexing SCseq data via sample hashing barcodes is the Seurat 1213 

package: hashtag oligo (HTO) demultiplexing (Stoeckius et al. 2018). In short the 1214 

method infers a threshold per sample barcode and thereby annotates GEMs as 1215 

negative of any barcode, as singlets or doublets if multiple barcodes exceed their 1216 

threshold.  1217 

 1218 
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Demultiplexing yielded 4,315 singlets, 1,580 doublets/multiplets, and 287 negatives 1219 

(S.Fig. 9). Based on the large degree of ambient cell hashing barcode capture (Fig. 1220 

1a+b), we suspect that many of the 1,580 labeled doublets might be due to high 1221 

contamination levels. Since demultiplexing was performed on the 6,073 GEMs 1222 

containing both TCR and pMHC it is not surprising that only few GEMs are labeled 1223 

negative. 1224 

 1225 

In 320 GEMs, the demultiplexing method suggested another sample annotation than 1226 

obtained from annotating by the most abundant barcode. Of the 320 GEMs, 283 1227 

were categorized as doublets and 37 singlets. The majority (227 & 35 GEMs) were 1228 

originally annotated with sample 10. Since all three HLA alleles are contained in 1229 

sample 10, any pMHC will inadvertently appear as having an HLA match. In only 8 1230 

GEMs the demultiplexing resulted in a different HLA profile, which corrected 7 GEMs 1231 

from mismatches to matches between pMHC and sample HLA. 1232 

 1233 

 1234 

 1235 

  1236 
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