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Summary
In Europe, significant efforts have been made to transition the energy sector from fossil-fuel-based to a
model based on renewable energy sources. The energy transition comes with multiple challenges, with
smart grids initiatives being created in response.

Recent advancements made in information and communication technologies, electricity storage systems,
renewable electricity generation and smart appliances have been made at a residential level as part
of smart grid initiatives. This growing trend provides the technical foundation and infrastructure for
houses with smart Home Energy Management Systems (HEMSs). Smart HEMSs can be defined as
systems providing energy management services to efficiently monitor and manage electricity generation,
storage, and consumption in households. The main objective of this research project is to study and
develop a set of decision support tools for the deployment of HEMSs in Denmark that can bring the
maximum value to home owners. This includes tools for the prediction of renewable energy sources
generation and users’ consumption, as well as control strategies for the different household components.
Moreover, this project intends to contribute with the building blocks needed for functional HEMSs that
support the energy transition in Europe.
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This Ph.D. thesis was prepared at the department of Applied Mathematics and Computer Science at
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CHAPTER1
Introduction

1.1 Context and motivation
In Europe, significant efforts have been made to transition the energy sector from fossil-fuel-based to a
model based on renewable energy sources (RESs) in order to address climate change [38]. The energy
transition comes with multiple challenges, one associated to the relation between intermittent power
generation coming from RESs and a traditionally inflexible demand. Smart grid initiatives were born in
response to these challenges, with smart grids being defined as “energy networks that can automatically
monitor energy flows and adjust to changes in energy supply and demand accordingly” [19]. Moreover,
when coupled with smart metering systems, smart grids reach consumers and suppliers by providing
information on real-time consumption. In this regard, electricity market operators and policy makers
are currently pushing for a wider adoption of real-time tariffs that reflect the true conditions of the
power system and provide cost-savings to residential consumers [92].

Home Energy Management Systems (HEMSs) can be defined as a set of computer-aided tools used to
monitor, control, and optimize the use of energy at a residential level. This type of systems rely on
a combination of elements such as smart meters, sensing devices, communication hardware and pro-
tocols, smart appliances, and control and optimization techniques [12]. Moreover, additional systems
and elements such as energy storage systems (ESSs), home RESs, and electric vehicles (EVs) could
also be integrated. HEMSs are expected to be a major component of smart grids. Furthermore, high
expectations have been placed on home energy management systems (HEMSs) by many industry and
governmental stakeholders given the systems’ potential to provide a dynamic combination of produc-
tion, storage, and flexible demand [77, 42, 49], especially, if they are coupled with real-time tariffs
and other signals. Therefore, studies on this topic have emerged from a variety of disciplines over the
last decade, focusing on different components of the HEMSs. Although research on HEMSs has been
an active research topic, there are doubts regarding the impact, as most studies are made using simu-
lations with assumptions that might not hold in real applications and/or use laboratory conditions [112].

One of the main activities of HEMSs is the control and optimization of the different household com-
ponents. In order to do so, HEMSs rely on decision support tools such as user interfaces, prediction
methods (forecast), and control strategies. Typically, information gathered via user interfaces, sensing
devices, and external sources is used by prediction models. These models have as main goal to provide
information about the household future needs. At the same time, the output of the prediction models
works as inputs for the control strategies. Here, different techniques such as optimization-based ap-
proaches, heuristic methods and/or rule-based methods, are used to define how to operate the different
household components in a predefined time horizon. The control strategies can follow different objec-
tives such as consumers’ comfort, security parameters, and cost or/and CO2 emissions minimization.
When new information is available or when a new event triggers the system, the whole control loop
starts again ensuring correct use of the household assets.

The smart meters roll out and the implementation of the Danish DataHub have opened the door to



1.1 Context and motivation

service providers to consumers’ data [35]. This has motivated companies to research and develop inno-
vative approaches to differentiate themselves from the competition by providing additional insights and
information to electricity consumers, which was the main idea behind the creation of Watts A/S. Watts
was born as an energy assistant, where consumer were able to consult and visualize historic electricity
consumption. As part of the company’s efforts, in 2016 the company co-sponsored a industrial PhD
project titled “Data-driven models for energy advising leading to behavioural changes in residences”.
The PhD project was centered around the creation of models able to forecast long-term consumer
behavior and disaggregated feedback [74]. The research and posterior implementation of the project
became the foundation of the Watts smart phone App, which currently has more than 190,000 users.
Today, Watts is an electricity retailer which provides its users a portfolio of services such as consump-
tion overview and alerts, budget (consumption forecast), hourly prices, CO2 emission information, and
smart appliances control [124].

Watts has a strategy to be one of the strongest players the in decentralize and digital space, providing
premium services for consumers. These services are expected to span the vertical value chain including
a combination of local energy hardware (photovoltaic (PV), heat pumps, batteries and EVs), smart
inverters which can provide the necessary link between the physical/digital, and digital services which
provide the consumer with an easy interface to controlling energy usage, trade, and engagement with
the community. This strategy is clearly aligned with HEMSs and the development of smart grids and,
therefore, it was how the project was born. Moreover, the company was interested to explore the follow-
ing questions: how big is the potential for HEMSs?, how can the results be transformed into engaging
user experiences and new business models?, what type of technological infrastructure is needed?. Thus,
the project sits at a converging point in Watts strategic development, the energy transition, and the
advancement of smart grid technologies.

3



1.2 Thesis objectives

1.2 Thesis objectives
The present thesis attempts to combine the current Watts infrastructure and data access with research
on HEMSs in order to develop a setup suitable for a commercial application. The main objective of
this thesis is to study and develop a set of decision support tools for the deployment of HEMSs in
Denmark that can bring the maximum value to consumers. Specifically, the thesis has the following
specific objectives:

• Understand the possible role that HEMSs can play in the Danish energy system and characterize
the different data sources that HEMSs have potential access to.

• Define a HEMS architecture aligned with current market rules and conditions. The architecture
should use technologies currently available to consumers.

• Develop models for the different HEMSs architecture elements.

• Integrate data access and the developed models into control strategies for the operation of HEMSs.

• Evaluate the economic and environmental impacts of HEMS architecture on residential users.

4



1.3 Outline of the thesis

1.3 Outline of the thesis
This thesis is structured in two parts. Part I is a summary report outlining the main contributions
and results of the thesis. In detail, Chapter 2 describes the expected role of HEMSs within the Dan-
ish energy system, defines the HEMS architecture considered in the other chapters, and presents the
data accessible to the systems. Chapter 3 presents a multivariate probabilistic forecasting method-
ology developed in response to the HEMSs needs. It presents an application example together with
possible extensions to the methodology and a critique of the work. Chapter 4 is dedicated to control
strategies suitable for our HEMS architecture. It shows how to integrate the multivariate probabilis-
tic forecast methodology and the data accessible to the system for the decision-making process. An
evaluation of the control strategies considering cost and CO2 emissions involving several users is pre-
sented as application examples. Finally, conclusions and future perspectives are presented in Chapter 5.

Part II consists of the publications that contributed to this thesis. Three journal articles are included.
Paper A presents a methodology for multivariate probabilistic forecasting, with an application to the
prediction of households’ electrical load. It is a journal article published in Applied Energy. In Paper B,
an economic evaluation of stochastic home energy management systems in a realistic rolling horizon is
presented. This is a journal article currently under review in Applied Energy. Finally, Paper C presents
a stochastic bi-objective home energy management model which considers electricity costs and CO2
emissions in the optimization process. The manuscript is being prepared as a journal article and it is
currently under internal review. The paper will be submitted to IEEE transactions on smart grids.

5



CHAPTER2
Energy markets and home

energy management
systems

In this chapter, a brief argumentation of the role of HEMSs in energy systems is presented in Section
2.1. Given that our HEMS setup operates in a Danish context, an overview of the energy market in
Denmark is presented in Section 2.2. Finally, the different elements of a HEMS architecture tailored to
the Danish market are presented in Section 2.3.

2.1 The role of HEMSs in energy systems
As one of the major smart grid technologies, HEMSs are expected to play a key role managing energy
consumption at the residential level by reacting to real-time prices and/or CO2-based signals. This
coincides with efforts made by electricity market operators and policy makers to push for a wider adop-
tion or real-time tariffs for residential consumers that reflect the true condition of the power system and
provide cost-savings for consumers in Denmark [33]. High expectations have been placed on HEMSs
by many industry stakeholders given their potential to provide a dynamic combination of generation,
storage, and flexible demand. In this reward, current data sources and available hardware allow the
possibility to explore the potential that automatic HEMSs could bring the consumers and the energy
system.

Several studies exploring the possible role of HEMSs in the power system have been made as it is
demonstrated by review articles on the subject [77, 12]. While the study of HEMSs has emerged across
a variety of disciplines, results reveal a bias towards technical perspectives with a need to investigate
more holistic solutions that allow to assess the impacts of this type of technology [79]. Furthermore,
in the context of this thesis, this implies to find a balance between the research on technical tools for
HEMSs under realistic assumptions about the energy market, the power system, users capabilities, and
access to technology.

Thus, prior to the research and development of the decision support tools for HEMS, understanding
current market conditions, the rules that consumers may obey, current data sources, among other fac-
tors, are key to focus the main body of work. This is done to focus the efforts on topics relevant to a
HEMSs implementation accessible in the near future to the majority of Danish residential consumers.
With this in mind, the rest of the present chapter continues with an overview of the energy market in
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Denmark and an introduction to the different HEMSs elements that must be considered.

2.2 Energy market overview
The energy market in Denmark can be characterized by three main elements: making electricity through
generation, transporting the electricity, and selling it to the final consumer. Energy companies can work
in almost any of these areas because the energy market in Denmark is privatized. This means that pri-
vate companies make sure the final consumer has the energy they need. It also means that consumers
can choose which companies supply their energy. Figure 2.1 presents a graphical representation of the
energy market structure in Denmark. Furthermore, a brief description of the elements that compose
the energy market is presented next.

Nuclear Thermo-Electric

Imports Renewables Hydro

Transmission 
substation

Transmission 
network

Distribution 
substation

Distribution 
network Final 

customers

Electricity generation

Transmission and distribution networks

SuppliersWholesales market

Figure 2.1: Illustration of the energy market elements in Denmark.

• Electricity generation

Most electricity is generated at large power stations connected to the national transmission net-
work. However, electricity can also be generated in smaller scale power stations which are con-
nected to the regional distribution networks. The number and type of power stations built is the
decision of each individual company based on market signals and government policy on issues
such as the environment.

• Transmission and distribution networks

Two main networks categories are part of the electricity system, that is transmission and dis-
tributions networks. While transmission networks deal with the mission of carrying electricity
long distances around the country, distribution networks run at lower voltages and take electric-
ity from the transmission system into homes and businesses. Moreover, the company in charge
of the transmission and security of the power system in real time is the transmission system
operator (TSO). The TSO also coordinates supply and demand of electricity in order to avoid
fluctuations in frequency or interruptions of supply. In the Danish case, the TSO is named
Energinet.

• Energy supply

Suppliers (also known as retailers or utility companies) buy energy in the wholesale market and
sell it to consumers. Suppliers work in a competitive market where consumers are free to choose
any supplier to provide them with gas and electricity.

7



2.3 HEMSs architecture

• Energy regulation

The energy market in Denmark is regulated by the Danish Energy Agency, which is part of
the Ministry of Climate, Energy and Utilities. The agency is responsible for tasks linked to en-
ergy production, supply and consumption, as well as Danish efforts to reduce carbon emissions.
The agency is also responsible for supporting the economic optimization of utilities that includes
(in addition to energy) water, waste, and telecommunications [23].

• Wholesale market

The wholesale market refers to the place where suppliers buy the electricity they sell to the
end-user. The price is influenced by a number of factors; the price of the input fuel used to
produce electricity, as well as demand spikes and supply changes. Companies are allowed to buy
wholesale energy weeks, months and years in advance as well as on the day of use. Although
different platforms are used for trading electricity, most of the electricity in Denmark is traded
in the Nord Pool power market. This power market is Europe’s leading power market and of-
fers trading, clearing, settlement and associated services in both day-ahead and intraday markets
across 16 countries [89].

In the context of HEMSs, current regulation allows residential users to interact with the energy mar-
kets solely through electricity retailers for procurement or selling electricity. Recent studies are pushing
new business models in the energy markets that would take advantage of the consumers capabilities,
specifically, the figure of aggregators is nowadays commonly used [65]. In the Danish case, the TSO
defines aggregators as “a person, business or technology which brings together (or aggregates) a set
of related products, in this case upward or downward regulation capacity in the electricity market”
[31]. Furthermore, the aggregator initiatives are still in early stages with pilot and market projects
in current development by third parties with support from the Danish TSO [32]. Although there is
limited information about commercial implementation of aggregators, the current rules and regulations
indicate that a group of technologies are needed for the prosumer side.

Energy markets are complex systems composed by different elements which themselves are complex as
well. It is out of the scope of this thesis to provide an in depth description of such elements. For a
complete description see [95, 81, 84].

2.3 HEMSs architecture
A HEMS can be defined as a set of computer-aided tools used to monitor, control, and optimize the use
of energy at a residential level. A typical HEMS relies on a combination of minimal elements such as
smart meters, sensing devices, communication hardware and protocols, smart appliances, control and
optimization techniques [12]. Moreover, additional systems and elements such as home size RES, ESS,
and EVs could also be integrated, which increases the scale and complexity of the HEMS. Figure 2.2
presents an illustration of a complete HEMS architecture.

Depending on the architecture, HEMSs provide a unidirectional or bidirectional communication between
homes and the electricity utility (or provider of the HEMS platform) to monitor, control and analyze
the data that involves the consumption of electricity in the smart home [114]. The energy management
controller interacts via local communication to different elements such as smart appliances, electric car
chargers, ESSs, and home RESs in order to get the latest status of the different systems components.
Furthermore, through an internet connection, relevant information such as electricity prices, CO2 emis-
sions, numerical weather predictions (NWPs), and manual user preferences are inputed to the controller
for the decision-making process. Posteriorly and depending on the HEMS capabilities, different decision

8
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Figure 2.2: Illustration of a HEMS arquitecture.

support tools are triggered. Algorithms for different purposes are triggered for tasks such as forecast
of future RES generation, demand, and prices, together with optimization and control routines that
schedule smart appliances and charge/discharge of ESS and EVs. Several key elements are needed for
the HEMS to work, a brief introduction of these elements is presented next:

• Data access

Several data signals are needed for the HEMS functioning: historical data of the home’s non-
controllable load, smart appliances, charge/discharge EV sessions, and RES production. This
data is combined with exogenous historical and future information such as NWPs, electricity
prices, CO2 emissions, and users’ preferences to form coherent datasets needed for different pur-
poses.

• Mathematical and statistical models

Different mathematical and statistical models are needed in a HEMS. The HEMS elements rely on
models to describe their behavior. Thus, different techniques are used to model elements e.g., RES
production, electricity consumption, batteries behavior, user preferences, electricity prices, CO2
emission, physical system conditions, to name a few. These models are closely interconnected and
depended on datasets for their optimal parameter estimation. Finally, proper calibrated models
are used for forecasting future behavior, as part of other HEMS components, and/or to provide
insights on system performance.

9



2.3 HEMSs architecture

• Optimization and control

Data and models are combined and used for control of the different HEMS elements. In this
regard, different optimization techniques are used in combination with other control strategies
to provide set-points that the different HEMS components should follow. These elements try to
optimize a given success criteria defined by the end-user, such as minimize costs or CO2 emissions.

Please note the previous HEMS overview and key elements are presented within the scope of this thesis.
This means that important elements such as electrical phases, voltage control, communication software
and hardware details, internet of things (IoT) devices, electronic specifications, user interfaces among
others are not included, however, they play a critical roll for the system functioning. The rest of this
section will be focused on the description of the different data elements available for the project. Some
of the data sources are tightly connected to the electricity market. This means that data availability
plays a role in shaping the other key elements of the HEMS. Given that the mathematical and statisti-
cal models, and the control strategies compose an extensive part of the research, complete chapters are
dedicated to these elements.

2.3.1 Data access
The HEMS elements require reliable access to different data coming from multiple sources. This section
presents details of the different data elements together with an introductory characterization of the data.

2.3.1.1 Smart meter data

Energinet is an independent public enterprise owned by the Danish Ministry of Climate and Energy.
The company owns, operates, and develops transmission systems for electricity and natural gas in Den-
mark. Energinet is the TSO and part of its responsibilities is to provide access to CO2 signals, data from
the electricity market and consumption and production data [30]. Moreover, consumers grant secure
access to their data through Energinet’s third party access-solution. The solution applies to electricity
agents, energy consultants or other market participants authorized by Energinet to collect data. Once
the authorization is granted, the third party has access to consumption data at an hourly resolution
in kWh units. Furthermore, Watts A/S, as an authorized third party, collects electrical load (EL)
(consumption data) data from its users. Figure 2.3 presents an example of the data collected for the
year 2020 for one particular user.

From the figure it can be seen that the EL time series presents distinctive features such as non-
stationarity and stochasticity. Although the plot’s time resolution does not allowed, multi-seasonality
features are expected to be found given the daily, weekly, and yearly patterns inherent to the electric-
ity consumption. The EL data is a central element for the HEMS decision making process and it is
therefore, presented and modeled in detail in Chapter 3.

10
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Figure 2.3: EL from a residential household. The data comes from a smart meter at an hourly
resolution for the year 2020.

2.3.1.2 Weather information

It is common knowledge that weather has a significant influence on energy systems as energy production,
demand, and therefore prices are affected by it. At a residential level, weather also has a direct impact
on electricity consumption and production, as weather influences RES and consumers’ electricity use.
Thus, weather information is typically used as input signals in several of the mathematical models
describing different HEMS elements. Moreover, weather information is available from different sources
(free access or by paid subscriptions) in the form of NWPs. In our particular case, NWPs are provided
by the OpenWeatherMap service at an hourly time resolution. The main variables included in their
forecast are:

• Precipitation

• Wind direction

• Wind speed

• Wind gust

• Ambient temperature

• Pressure

• Humidity

• Cloud coverage

• Visibility

The data is accessible via an API, details of the NWPs data can be consulted in [90].

2.3.1.3 Electricity prices

Although traditional fixed tariffs are still the main way consumers are charged for their electricity
consumption, the high penetration of smart meters in Denmark has opened the door for electricity
retailers to offer hourly prices to residential consumers. Typically, this type of tariff is derived from the
day-ahead wholesale electricity market prices, also known as ELSPOT [44]. In the ELSPOT market,
different zones/regions have their unique day-ahead prices. In Denmark, two zones exist: Western
Denmark (DK1) and Eastern Denmark (DK2). To obtain electricity prices for the residential consumer,
retailers add taxes, levies, and fees to the day-ahead prices. In our particular case, access to the final
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prices for consumers is provided through Watts A/S platform. Furthermore, the current Danish regu-
lation allows residential consumers to sell their surplus electricity back to the grid. The feed-in-tariff is
decided by retailers, with most of them offering the ELSPOT price minus associated operational fees
as a feed-in-tariff to consumers. For illustrative purposes, the day-ahead and retail prices as sale and
purchase prices respectively for DK2 are presented in Figure 2.4.
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Figure 2.4: DK2 retailer and day-ahead prices for period 01-01-2020 to 20-12-2021.

Given that consumers interact with electricity markets through suppliers, it is the responsibility of the
supplier to transmit price information to their clients. Thus, access to price data is expected to change
according to the supplier, in our particular case, prices are accessible through the Watts A/S platform
at a hourly resolution. Furthermore, electricity prices are the main signal driving the optimization and
control strategies and elements such as volatility, non-stationarity, and seasonality of the prices play a
main role in the HEMS decision making process. The impact of prices on HEMSs control strategies is
explored in detail in Chapter 4.

2.3.1.4 CO2 emissions

As part of the Watts A/S initiatives to address climate change, CO2 emissions associated to the elec-
tricity generation are estimated, forecast, and shared with the consumers. This data is calculated
based on information provided by the European network of transmission system operators for electric-
ity (ENTSO-E). ENTSO-E is the association for the cooperation of the European transmission system
operators, it includes 39 TSOs representing 35 countries [36]. Their transparency platform host different
power generation data needed for the estimation of the CO2 emissions (for details see [37]). For illustra-
tion purposes, Figure 2.5 presents the estimated CO2 emissions for the period 01-01-2019 to 15-03-2021.

Although it might be difficult to see in the plot, seasonal behavior similar to the one seen in electricity
prices is expected for CO2 emissions, with higher emissions during colder months in comparison to
warmer months.
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Figure 2.5: CO2 equivalent emissions associated with electricity generation.

2.3.1.5 Local devices

Although sensing devices and smart appliances are available to residential users, platforms that collect
and produce coherent datasets are not easily available. In our particular case, consumers data was
mainly accessible through smart meters. This implies that all behavior happening behind the meter
was not accessible. Having detailed information about PV generation, smart appliances consumption,
and EVs charging sessions was not available at the beginning of the project. However, the efforts made
by Watts A/S to build a HEMS-ready platform provided integration to EVs charge sessions towards
the end of the project.

2.3.2 Simplification of the HEMS architecture
It is evident that managing every single element present in a complete HEMS architecture is a complex
task. Furthermore, even if time would allow it, a possible real-time implementation is limited by current
market rules, technologies, and data access. For this reason, and considering that this is a project with
an industrial application in mind, a substantial amount of time was dedicated to study and select the
HEMS elements to be part of the research.

In the first instance, it was decided that a minimal control approach was desired. This meant that
HEMSs elements which require manual intervention with the end user, such as smart appliances were
avoided. This was motivated by two main reasons. First, although smart appliances are being adapted
more in households, at the moment, there are not widely adapted communication protocols. This can
be problematic if we consider the software development of HEMS. Supporting different smart appli-
ances protocols may be complicated and prone to errors. The second reason is associated with the
actual potential these technologies may bring. Several studies and pilot projects have questioned the
real benefits that consumers will be able to perceive, with results showing that electricity savings are
minimal and in some cases these technologies cause energy intensification [50, 86, 85].

On the other hand, elements such as PV systems, batteries and heat pumps have been proven to bring
significant savings for users [77, 42, 49]. EVs are also a key element that must be considered given that
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Figure 2.6: Illustration of a simplified HEMS architecture.

it implies significant electricity consumption for households, although their adoption continues to be low
in Denmark [68]. Thus, originally presented HEMS architecture was reduced to the above mentioned
elements and is presented in Figure 2.6.
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CHAPTER3
Multivariate probabilistic

forecasting

This chapter focuses on the development of a multivariate probabilistic forecast methodology suitable
for HEMSs. In particular, a brief argumentation for the development of this methodology is presented
in Section 3.1. A generic description of the modelling methodology is presented in Section 3.2. The
methodology is applied to the prediction of residential electrical loads, with the results being presented
in Section 3.3. Possible applications to different domains and extensions of the modelling methodology
are presented in Section 3.4, with a discussion of this research being introduced in Section 3.5.

3.1 Motivation
The implementation of HEMSs has several technical challenges such as the prediction of the home elec-
tricity demand, i.e., electrical load forecasting (LF). Forecasting is essential for the optimal planning
and procurement of electricity in homes, in order to maximize the economic and/or environmental ben-
efit without compromising users’ comfort [54]. At a home level, LF presents several challenges given its
multi-seasonality, non-stationarity, and stochastic characteristics. Additionally, multi-step predictions
are often needed for the HEMS decision making process, which implies that a multivariate setup is
needed.

A literature study included in Appendix A.1 showed that there is extensive literature on LF, specially
point forecasting methods, i.e. estimate the expected value of the process and make a general assump-
tion about the process distribution. Given the complexity of the EL, having a point forecast is often
sub-optimal and more information about the multivariate distribution is needed. Thus, recent studies
have applied probabilistic forecasting models. These studies have proven to yield accurate results for
individual forecast horizons. However, most of the studies do not address the temporal correlation
between the forecast horizons.

With the above in mind and considering our HEMS setup, the hourly data resolution of the EL, and
that no details about the physical system are provided, a modeling methodology for probabilistic load
forecasting (PLF) suitable to our needs was developed. The modeling methodology is introduced in the
following section.



3.2 Modelling methodology

3.2 Modelling methodology
The following model description is based on the methodology presented in Appendix A.2. Let us start
by introducing the notation to be used throughout this chapter. Let Xt = (Xt,1, Xt,2, . . . , Xt,K)⊺ de-
note a K-dimensional random variable at time t for future values t+1, t+2, . . . , t+k. Upper case letters
are used for random variables while lowercase letters denote the corresponding observations. Moreover,
vectors and matrices are emphasized using bold font. Thus, xt = (xt,1, xt,2, . . . , xt,K)⊺ is used for the
realizations of the random vector Xt.

Let Yt be a univariate time series (TS). The forecast of Yt can be expressed as a multivariate variable
at each time t for future lead times t + k until the maximum future horizon K as

Y t = (Yt,1, Yt,2, . . . , Yt,K)⊺ (3.1)

where we use the previously introduced notation s.t.

Yt,k = Yt+k ∀ k ∈ {1, 2, . . . , K} (3.2)

Our interest is to forecast the probability density function (PDF) for Y t denoted by ft(y). Proposing
a functional form for ft implies a simultaneous description of both the marginal densities (for each hori-
zon k) as well as the temporal dependency [111]. Two approaches have been proposed to estimate ft.
The first approach uses recursive least squares (RLS) models for the estimation of the expected value
Ŷ t and then analyses the models’ residuals in order to obtain an estimation of the marginal densities
as well as the temporal correlation of Y t. The second approach uses quantile regression models for
the prediction of the marginal distributions of Y t, and a Gaussian copula normalizes the process. In
both approaches, two methods were considered to model the correlation structure. The first method
estimates the correlation structure from the data with a full covariance matrix model, while the second
method uses an auto-regressive (AR) model – in which the covariance matrix is parameterized with
only a few parameters (order of the AR process + 1). Figure 3.1 presents a graphical summary of the
modelling methodology process. A complete mathematical description of all of the elements presented
in the modelling methodology can be seen in Appendix A.2.
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Figure 3.1: Process graph summarizing the modelling methodology.

3.3 Application on residential probabilistic load forecasting

3.3.1 Data description
As a proof of concept, the presented modeling methodology was applied to forecast the EL of a residen-
tial home. The data available for the test corresponds to the period 2017-06-01 to 2018-05-31 in hourly
resolution. Little is known about the home besides the number of inhabitants, and that the home uses
a heat pump during winter and it is not cooled during summer. The TS plot and data distribution
over the mentioned time period can be seen in Figure 3.2. The EL distribution shows a natural lower
bound of zero with some high values, which clearly makes the distribution right skewed. Additionally,
given the data comes from a real inhabited residential home, time periods of near-zero load are seen.
These low consumption periods can be attributed to absence of the house inhabitant due to holidays or
similar events.

Independent variables are defined from NWPs from the provider mentioned in Section 2.3.1.2. Further-
more, as described in Appendix A.3.1, ambient temperature and solar radiation are proven to have a
significant influence on the EL, so they were included as independent variables. Moreover, the solar
irradiation signal was derived as a combination of the global horizontal irradiation (GHI) and the per-
centage of cloud cover provided by the NWPs. A selected short period of the TS is presented in Figure
3.3. A closer look at the EL plot allow us to identify the presence of intra-day patterns. This is due
to normal inhabitants’ activities such as cooking for breakfast and dinner, and evening activities. The
patterns are typically different during workdays and weekends.

In order to account for the intra-day patterns seen in the data, Fourier series with n harmonics were
included as independent variables. The procedure describing how to calculate Fourier series based on
the time of day for week and weekend is fully described in A.3.1. The resulted Fourier signals are
referenced as
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Figure 3.2: Electrical load Pt time series (a) and empirical distribution (b). The data corresponds to
the period 2017-06-01 to 2018-05-31.
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(3.3)

Moreover, it is natural for the EL to present a significant auto-correlation. Thus, with Yt,k as our
dependent variable of interest, we can include the lag value yt as an independent variable to account
for this effect. An entry in the design matrix will contain ambient temperature, solar irradiation, a lag
value, and 2n pair harmonics as independent variables for a future time t + k given t, s.t.

xt,k = (T (a)
t,k , Gt,k, yt, F

(sin, week)
t,k , F

(cos, week)
t,k ,

F
(sin, weekend)
t,k , F

(cos, weekend)
t,k )⊺

(3.4)

3.3.2 Simulation setup and performance metrics
A simulation study was designed to resemble a real-time application. The aim was to produce a
probability forecast of the EL at time t that would cover the following 24 hours in an hourly resolution.
Considering the description presented in Section 3.3.1, a logarithmic transformation was done in order
to ensure the zero-bound feature of the EL. Thus, the dependent variable of interest Yt was defined as

Yt = ln(Pt) (3.5)
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t,k . Solar irradiation Gt,k. The data

corresponds to the period 2018-04-05 - 2018-04-20.

The forecast is expected to be updated every hour, considering the independent variables’ latest avail-
able information Xt = [xt,1, . . . , xt,K ]. The online setting implies updating the models’ parameters at
each time t. While this is inherent to the RLS, the quantile-copula and the models used for covariance
estimation assume a time-invariant framework. Thus, a sliding time window approach was considered
in order to deal with the time dependency. This approach will re-estimate the models’ parameters at
time t using the latest N values. In this way, the non-stationarity characteristics of the EL are modeled.
Figure B.5 summarizes the simulation setting.
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Figure 3.4: Graphical representation of the simulation setting for time t.

The simulation setting described previously was used to validate the performance of the proposed mod-
els. The period 2018-01-17 to 2018-02-16 was considered as test period. The selection aims to validate
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the results during winter time, where the volatility of the EL is higher. The time period 2017-06-01
to 2018-01-16 was used for the RLS calibration. Moreover, five models were implemented. The first
model is called “RLS-free”, which indicates the use of the RLS method with the correlation structure
being estimated directly from the empirical covariance matrix. The second model is called “RLS-AR”,
which indicates the use of the RLS method with the correlation structure estimated using the maximum
likelihood procedure presented in Section A.2.2.3. The third and fourth models are called “Copula-free”
and “Copula-AR”, which indicates the use of the quantile-Copula method with the same correlation
structure connotations. The fifth model is called “RLS”, indicating the use of the RLS method without
correlation structure, it is used as a reference model. Furthermore, the density function is estimated
numerically by using 500 scenarios of Y t at each time t for all models.

Different performance metrics are used to evaluate the reliability, sharpness, log-score, and the represen-
tation of the temporal correlation structure of the predicted values. These score metrics are: prediction
interval coverage probability (PICP), prediction interval normalized average (PINAW), pinball score,
continuous ranked probability score (CRPS), and the variogram score (VarS). The mathematical details
of the different scores can be seen the Appendix A.2.

3.3.3 Results
The results presented in this section intend to present a summary of the complete results presented in
Appendix A.4. Details related to the validation of the forecast models and estimation of the temporal
correlation structures are omitted here but can be seen in the previously referenced appendix.

Simulations using the different models were carried out. In Figure 3.5 the probabilistic forecast, the
EL measurements, and 5 random scenarios using the different models are shown. The forecast period
starting at t = 2018-02-14 18:00 was selected as an illustrative example. Note that the results are
presented in the EL original domain, which implies the use of the exponential function on the different
models’ results. From the RLS models we see an almost symmetric distribution around the mean, which
is expected due to the normality assumption made for the residuals. This naturally differs from the
distributions coming from copula models, where we forecast the whole distribution without assuming
symmetry at all. Furthermore, the effect of the temporal correlation models can be seen in the smooth-
ness of the scenarios in comparison with the “RLS” model, which presents a more erratic behavior.
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Figure 3.5: Probabilistic forecast, EL realisation and 5 scenarios using the RLS (a), the RLS-free (b),
the RLS-AR (c), the Copula-free (d), and the Copula-AR (e) models. The forecast period
corresponds to 2018/02/14 18:00 - 2018/02/15 18:00.

In order to properly score the performance of the models, a quantitative analysis must be applied. Thus,
the different metrics presented in Section 3.3.2 were calculated for the different scenarios generated with
each model. The mean CRPS, total pinball loss sum, PICP, and PINAW per horizon k are presented
in Figure 3.6. The plots show a similar performance between RLS models and a similar performance
between copula models. When comparing the performance between the different methods, it can be
seen that the quantile-copula presents better performance than the RLS for the metrics that evaluate
the probability distribution as a whole (CRPS and pinball loss). However, we can see that for k = 1
the RLS presents better performance. This is explained by the effect of the lag value included as input
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in the models, with the lag value effect degrading with longer prediction horizons.

The PICP and PINAW scores were used to evaluate the reliability and sharpness of the forecast. From
the PICP results, we can see that both methods present a good reliability based on a 90% nominal
coverage interval, with the RLS outperforming the quantile-copula. However, the higher reliability of
the RLS models comes at the expense of a considerable bigger prediction interval, as can be seen in the
PINAW results. Furthermore, from the PINAW results one might argue that prediction intervals are
on average large (up to 50% of the test period data range for the RLS for longer horizons). However,
one should consider the level of random variation of the process at hand. Predicting with a high degree
of sharpness the consumption of a single house is a complex task if we consider the data characteristics
presented in Section 3.3.1 and the longer time horizons.
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Figure 3.6: Mean CRPS (a), pinball loss sum (b), mean PICP (c), and mean PINAW (d) per horizon
k for the test period 2018-01-17 - 2018-02-17. Note that the PICP and PINAW are based
on a 90% prediction interval.

The VarS was also calculated for the test period, Table 3.1 presents a summary with the mean score
and the percentage of change in comparison to the reference model “RLS”. As expected, the reference
model presents the worst performance given the lack of a description of the temporal correlation in the
model. The proposed methods present a significant performance improvement in comparison with the
reference – with the quantile-copula models presenting the best results.
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Mean VarS (kWh)2 VarS % of change
RLS 9.52 -

RLS-free 7.74 -18.68%
RLS-AR 7.79 -18.13%

Copula-free 6.79 -28.76%
Copula-AR 6.82 -28.35%

Table 3.1: VarS result for the proposed methods and percentage of change relative to the reference
model (RLS). Calculations were made for the test period 2018-01-17 - 2018-02-17.

VarS results were also discriminated by difference j − i of the vector entries (see Appendix A.4.3). Re-
sults show that the quantile-copula-based method presents a better performance for all j − i differences
compared to the RLS-based method. This supports the aggregated results introduced previously.

3.4 Extension to multivariate temporal forecasting
Although this chapter is entirely dedicated to the prediction of residential EL, the modelling method-
ology is presented in a general form which allows its application in other areas. In fact, the research
work presented in Appendix A was done simultaneously with the development of a software package
called onlineforecast in the programming language R. The package is based on the experience and
knowledge from the team at DTU Compute: Dynamical Systems (DYNSYS) [7]. The development of
the package was led by associate professor Peder Bacher, who is also one of the supervisors of this PhD
project.

As it is presented in the package documentation, a similar modelling approach to the one presented in
Section 3.2 has been applied for short-term heat load forecasting for single family houses [10], short-term
solar power forecasting [8], and load forecasting of supermarket refrigeration [101]. The main difference
between the package and the research presented in Appendix A is the probabilistic framework where
the temporal dependency is addressed. This is something that is not present in the package at the
moment. Moreover, the presented methodology addresses the temporal correlation once the data is
Gaussian (Gaussian residuals in the case of the point forecast approach or Gaussian transformation
under the quantile-copula). This opens the possibility to address the cross-correlation present when
forecasting several multivariate TS. This idea is easy to explain and generalized and it is introduced
next.

Let Y
(1)
t and Y

(2)
t two different multivariate variables as described in Section 3.2. Let us assume that

these TS besides having inner temporal dependency, they also present dependency between each other.
The presented modelling methodology could be expanded such that both TS are considered simultane-
ously. Thus, addressing the temporal and cross correlation properties of Y

(1)
t and Y

(2)
t at the same

time. Mathematically that is

Y t = (Y (1)
t , Y

(2)
t ) (3.6)

then, the process continues as described in 3.1. Please note that given that in this particular case
two different multivariate TSs are treated as a whole vector, only the full covariance method is ap-
plicable. The AR approach as described in Appendix A.2.2.3 is designed for one multivariate variable
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at a time. Modelling a covariance structure from a multivariate AR process is a topic of future research.

3.5 Discussion
Two different forecasting methods based on RLS and quantile-copula modelling techniques were fully
analyzed. Furthermore, two different ways of modelling the temporal correlation structure were investi-
gated as part of the implemented models. The results indicate that modelling the temporal correlation
has a significant impact on the performance of the forecasting models. Moreover, additional results pre-
sented in Appendix A.4 show robust behavior when checking the different assumptions of the models.
While the results shown in this methodology rely on RLS and quantile-copula models, other modelling
techniques could be used. Moreover, modelling the temporal correlation by the dynamics seen in the
residuals opens the possibility to use a wide range of modelling techniques for the marginal distributions
knowing that the time dynamics can be addressed in a different modelling stage.

Although overall results indicate a good performance of the modelling methodology, there are critique
points that need to be considered such as:

• While the presented methodology is designed to adapt by the use of a recursive method or a sliding
window, sudden regime changes in the household behavior, e.g., inhabitants going on holidays,
may present a challenge. Thus, research on expanding the current methodology to a multi regime
framework should be explored.

• The modelling methodology presented relies on behind the meter readings, which implies that the
EL measured is the sum of controllable and uncontrollable loads. These loads could be modeled
separately e.g., specific models for elements such as heat pumps and hot water storage units.

• Disaggregated load models will increase the complexity of the HEMS. Thus, modelling complexity
should be evaluated not only in a traditional way (validating the model’s assumption) but consid-
ering the end goal in mind (in light of the objective of the control strategy) as it is presented in
Sections 4.3 and 4.4.

• The presented modelling methodology provides a good picture of the EL dynamics at a given
discrete time t + k, however, the dynamics between the time steps is continuous and is not
modeled. Knowing the dynamics between time steps could be critical for the close to real-time
controllers that would run as part of HEMSs.
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CHAPTER4
Control strategies for home

energy management
systems

This chapter focuses on the implementation and results analysis of different control strategies for HEMSs.
The motivation behind the selection of a specific control framework is presented in Section 4.1. A generic
description of the modelling methodology is presented in Section 4.2. An initial application where the
economic potential of HEMSs is simulated is presented in Section 4.3. This work is extended to a bi-
objective case, where electricity costs and CO2 emissions are considered together as outlined in Section
4.4. Application on EV charging is presented in Section 4.5. Finally, a discussion of this body of
research is presented in Section 4.6.

4.1 Motivation
A central element of HEMSs is the control decision support tool. This control element is expected to
be in charge of the operation of the components part of the HEMS presented in Section 2.3. In this
regard, several studies have proposed sophisticated technical solutions. These solutions have typically
assumed direct control of components such as heating systems, smart appliances, RESs, ESS, and EVs,
with some parameters being defined by the consumer [103, 127]. Furthermore, it is important for the
control strategy to consider complex system features such as the multi-seasonality, non-stationarity, and
stochasticity of RESs and consumers’ EL [26]. As highlighted in Appendix B.1, different studies have
included several of these features by using different control techniques such as model predictive control,
heuristics, and optimization-based control strategies. Furthermore, the reviewed literature also showed
that there is a limited number of studies that comprehensively assess the potential of HEMSs for the
end user under real market conditions and which take account of consumers’ current capabilities. Not
considering consumers’ current capabilities could lead to misleading results as the assumptions would
not hold in real applications, but only in controlled laboratory conditions and/or simulations.

In this regard, the simplified HEMS architecture presented in Section 2.3.2 was considered when re-
searching possible control strategies. Let us recall that in our HEMS setup we focus on the control of
a PV and battery system. Although a simpler HEMS setup may lead to a simpler control problem,
market rules, price structure, and hardware capabilities make it a challenging problem. As it was intro-
duced in Section 2.3.1.3, consumers have access to different prices for selling and buying electricity from
the grid, which implies a need to differentiate between in/out power flows. Moreover, the generated
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PV electricity can be used for charging the battery, to be returned to the grid, and/or directly for the
home consumption. This implies that the battery could be charged from different sources e.g., the PV
and/or the grid, and also it could discharged to the grid or to the household. At the same time, all
of the power flows are subject to the type of electrical connection (AC or DC connection) typical on
residential consumers, which implies that electricity losses must be considering in the control problem
(see Figure 2.6 for a graphical representation).

Moreover, given that prices come in an hourly resolution, the control schedule is expected to operate
accordingly. This means that a decision related to charge of discharge of the battery must be made.
This decision should also be made considering not only current system information but also future
information (future prices, expected EL, PV, and NWPs). Thus, the decision-making process carries
hidden complexity given the different power flows in the system and the fact that charge and discharge
events are mutually exclusive processes. In other words, given the characteristics of our system, the
prices, and data resolution, binary decisions are involved.

Another key element to be considered is CO2 emissions inherent to electricity generation. Typically the
HEMS decision-making process focuses on cost minimization, however, analyzing the relation between
prices and expected CO2 emissions indicated that these signals are not aligned. Figure 4.1 shows the
correlation between emissions and prices, the plot shows that in general the two signals present a weak
correlation. This may imply that optimizing for cost minimization will yield a solution that may be far
from being environmentally friendly. Thus, consumers could be interested in optimizing their electricity
use according to their expected CO2 footprint.
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Figure 4.1: Price and CO2 emission correlation. The correlation is calculated on using a rolling
window with three month of data at a hourly resolution.

All of the above elements were considered when formulating the mathematical models of the HEMS
and the corresponding details are presented in the following subsections.
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4.2 Modelling methodology
The previously introduced arguments where considered when researching possible control strategies for
the HEMS. Our simplified HEMS setup reduced the complexity of our problem to such degree that
optimization-based control strategies were considered. If we recall, our HEMS setup relies only on
the control of the battery with the dynamics of the household consumption and PV generation being
independent of the control variables. This implies that this information could enter linearly into the
optimization-based control strategy. Although battery dynamics are known to have a nonlinear behav-
ior [61], linearity was assumed when modelling charge and discharge processes and the battery state of
charge (SoC). This was found to be a common practice in the literature when working at an hourly
time resolution [93, 28].

With the HEMS components entering linearly to the optimization-based control and binary decisions
being involved in the decision-making process, a mixed-integer linear program (MILP) framework was se-
lected as modelling technique. Moreover, MILP frameworks couple nicely with the ϵ-constraint method.
This method was considered to address the multi-objective characteristic of our problem. A brief intro-
duction to MILP problems and the ϵ-constraint method are presented next.

4.2.1 Mixed-integer linear programming (MILP)
Optimization problems in which some or all of the decision variables are restricted to integer values are
known as mixed integer problems. For illustration purposes, the mathematical description of a MILP
problem presented in [20] is introduced next.

max
x,y

c⊺x + h⊺y

subject to Ax + Gy ≤ b

x ≥ 0
y ≥ 0

(4.1)

Where the data are row vectors c, h, an m × n matrix A, an m × p matrix G and a column vector
b. Moreover, it is assumed that all entries c, h, A, G, b are rational and the column vectors x and y
contain the variables to be optimized. The set of feasible solutions to the problem described in Equation
(4.1) is given by

S := {(x, y) ∈ Zn
+ × Rp

+ : Ax + Gy ≤ b} (4.2)

A mixed 0, 1 set is a set of the form presented in Equation (4.2) in which the integer variables are
restricted to take the value 0 or 1 s.t.

S := {(x, y) ∈ {0, 1} × Rp
+ : Ax + Gy ≤ b} (4.3)

Solving integer programs is a difficult task in general but well studied topic in the literature with multi-
ple advanced software implementations available for use. In our particular case, it was out of the scope
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to dig into MILP solution strategies, interested readers can find details in [20].

4.2.2 Stochastic programming
In real applications, many decision making problems are subject to uncertainty. Stochastic program-
ming provides a framework in which the uncertainty of the parameter values and outcomes can be
considered within an optimization.

In stochastic programming, each uncertain parameter is modeled as a random variable. Each uncertain
parameter follows a probability distribution, which can be represented by a finite set of realizations
or scenarios. Each scenario represents a possible outcome of the uncertain parameter. Moreover, we
typically have a set of decisions to be taken without full information on some random events. These
decisions are called first-stage decisions. Later, information is received on the realization of some ran-
dom vector ξ. Then, second-stage or corrective actions are taken. A general mathematical formulation
of a two-stage MILP is (the description is based on [13])

min
x,y

c⊺x + h⊺y+ℓ(x, y)

subject to Ax + Gy ≤ b

x ≥ 0
y ≥ 0

(4.4)

where ℓ(x, y) = Eξ Q(x, y, ξ) is the value function or recourse function, ξ is a random vector, and Eξ

denotes the mathematical expectation with respect to ξ. Please note that in the above notation bold-
face denote random vectors.

4.2.3 Bi-objective optimization and the ϵ-constraint method
In single-objective optimization problems, as described in Equation (4.4), the aim is the minimization
of a scalar objective function over decision variables x and y. If we denote the objective function f ,
in a multi-objective optimization, the assumption of f being one-dimensional is dropped, such that it
is a vector of objectives f ∈ RM with M being the cardinality |M | of the set of objectives m ∈ M .
Moreover, the optimization problem consists of finding solutions x∗ and y∗ that are Pareto-optimal. A
solution is considered Pareto-optimal if it is not dominated by any other solution that yields a lower
objective value [25]. Furthermore, important terminology in multi-objective optimization includes the
Pareto-front (the set of all Pareto-optimal solutions [18]), Nadir point (the vector of upper bounds on
each objective in the set of Pareto-optimal objective space) and the utopian point (the vector of lower
bounds on each objective in the set of Pareto-optimal objective space) [25]. In our particular application,
only two objectives were considered (minimizing operational costs and carbon emissions).

There exits an extensive literature on methods to determine a set of Pareto-optimal solutions [82].
However, the ϵ-constraint method was considered because it is easy to implement. This method is
an iterative approach where in each iteration i, one objective is optimized while the other objective is
bound by a parameter. A general formulation of the problem can be written as
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min
x,y

f1(x, y) · α + f2(x, y) · (1 − α)

subject to Ax + Gy ≤ b

f2 ≤ 1
1 − i

f−
2

x ≥ 0
y ≥ 0

(4.5)

where α ∈ {0, 1} is a binary parameter used by the ϵ-constraint algorithm. The application of the
ϵ-constraint method proceeds as follows: Iteratively, the MILP formulated is solved with decreasing
upper bounds on the objective f2. These bounds represent the ϵ-constraints and are linearly decreasing
within a predefined interval. This interval ranges from the highest (f+

2 ) and lowest (f−
2 ) objective values.

For a number of partitions I, a set of Pareto-front solutions will be given by x = {x1, x2, . . . , xI} and
y = {y1, y2, . . . , yI}. A pseudo-code description of the ϵ-constraint algorithm is presented Algorithm 1.

Algorithm 1 ϵ-constraint implementation
1: Solve (4.5) for α = 1 and save objective values f+

1 and f−
2

2: Solve (4.5) for α = 0 and save objective values f−
1 and f+

2
3: for i = 0, ..., I-1 do
4: Solve (4.5) with upper-bound secondary objective f2 ≤ 1

1−i
f−

2
5: end for

4.3 Application on economic evaluation of HEMSs
This section presents the simulation results of the HEMS setup described in Section B.2. It combines
the data elements presented in Section 2.3.1, the EL forecast methods presented in Section 3, and the
optimization framework introduced in Section 4.2. Moreover, all of the elements presented in the fol-
lowing subsections are included with further detail in Appendix B.

4.3.1 Data and simulation setup
Different data sources have to be combined for the HEMS decision making process. In this application,
NWPs and historical data collected from smart meters are used as inputs for the PLF methods as it
was described in Section 3.3. Furthermore, a simulation approach was used to approximate the PV
generation. Given that the consumers have the possibility to sell their electricity back to the grid,
different prices for selling and buying electricity were used. A detail description of all the data needed
for the simulation can be found in Appendix B.3.

The simulation study was designed to resemble a real-time application. The aim of the simulation is to
optimize the battery operational setpoints for the next hour when considering a 24-hour horizon. Given
that new information is received every hour, a rolling horizon approach is used. This means that the
PLF, PV simulation, and HEMS optimization will be updated in order to determine the new operation
schedule. A graphical representation of the rolling horizon simulation setting at time t is presented in
Figure 4.2.
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Figure 4.2: Graphical representation of the simulation setting for time t.

The PLF methods presented in Section 3.2 allow different combinations of forecasting and optimization
methods. This was considered when simulating the results. The analyzed combinations are presented
next for future reference:

• PI-RH: perfect information (PI) in a rolling horizon, i.e., using the proposed HEMS optimization,
assuming that the consumer’s load is known. This method is not applicable in practice, since the
PI-RH method assumes a perfect knowledge of the future demand. But it can be used to give
performance bounds on the optimization in the other settings.

• RLS-SP: the proposed HEMS optimization using 100 scenarios generated by the RLS forecasting
method.

• RLS-E: the proposed HEMS optimization using the expected value of the 100 scenarios generated
by the RLS forecasting method.

• Copula-SP: the proposed HEMS optimization using 100 scenarios generated by the Copula
forecasting method.

• Copula-E: the proposed HEMS optimization using the expected value of the 100 scenarios made
by the Copula forecasting method.

Please note that given that the results in Section A.4 indicated that there is no significant difference
between modeling the covariance structure using a full covariance model or an AR process, the full
covariance model was used because of its implementation simplicity. Finally, January, April, July,
and March were selected as the months to be simulated in order to have a comprehensive view of the
possible HEMS impact across seasons.

4.3.2 Results
The results section was designed to compare consumers’ cost savings when using different control strate-
gies. Two main strategies were considered: a naive controller and an optimization-based controller. A
naive controller refers to a consumer with a PV and battery system without a HEMS. This controller
maximizes self-consumption by only selling electricity to the grid when the battery is fully charged.
The naive controller uses neither forecasting nor optimization methods and it is usually the default
controller in the considered HEMS setup. The optimization-based controllers refer to a consumer using
a HEMS as described in Appendix B.2.
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4.3.2.1 Comparison of different optimization-based control strategies

Simulation was carried out for the optimization-based methods previously introduced. The total cost
for all simulated months for all consumers is presented in Table 4.1. The results indicate that for all
users the methods which consider the stochasticity of the EL present better performance presenting a
smaller difference to the reference method (the perfect information case PI-RH). Furthermore, results
on a monthly level were also implemented, showing a similar behavior for each simulated month. Details
of the monthly results can be seen in Section B.4.

Consumer PI-RH Copula-E Copula-SP RLS-E RLS-SP
no. DKK % DKK % DKK % DKK % DKK %

1 5798.61 - 6220.66 7.28 5976.54 3.07 6143.84 5.95 5895.99 1.68
2 12142.80 - 12887.78 6.14 12553.15 3.38 12745.82 4.97 12438.41 2.43
3 6689.17 - 7259.67 8.53 6977.89 4.32 7398.95 10.61 6984.19 4.41
4 2071.31 - 2438.35 17.72 2210.56 6.72 2514.62 21.40 2183.16 5.40
5 1247.45 - 1638.04 31.31 1445.67 15.89 1695.82 35.94 1402.20 12.41
6 7435.47 - 8322.06 11.92 7887.49 6.08 8254.65 11.02 7824.03 5.23
7 9294.46 - 9945.68 7.01 9610.14 3.40 9903.44 6.55 9557.67 2.83
8 3157.25 - 3547.44 12.36 3312.33 4.91 3639.82 15.28 3316.83 5.05
9 6616.65 - 6970.68 5.35 6752.09 2.05 6954.68 5.11 6715.13 1.49

Table 4.1: Total cost of the optimization and forecasting methods. All percentages are calculated
relative to the PI-RH method. Please note that smaller the difference to the PI-RH the
better the performance of the control strategy.

4.3.2.2 Comparison of naive and optimal control strategies

The results presented in Section 4.3.2.1 indicated the RLS-SP was the best out the optimization-based
methods analyzed. This is explained given that RLS methods are more precise on one-step predictions
(see Section 3.3.3), which are the predictions that influence the optimization routine the most. The
RLS-SP method was selected and compared in detail with a simple naive control strategy. Figure 4.3
shows the RLS-SP cost saving with the cost of the naive strategy as a baseline. Results indicate that in
colder months (January and October), the optimization-based controller presents additional savings in
comparison with naive controller. However, in warmer months (April and July) the RLS-SP controller
performs worst than the simpler naive controller. This indicates that the seasonality of the consumers
consumption and prices presents a very significant impact on the performance of the control strategies.

In particular, in winter months higher electricity prices are seen in combination with low PV generation
and high EL. Thus, optimization pursues profit mainly by load shifting. While in summer the high
PV generation and low EL makes self-consumption a better strategy. A comprehensive analysis of this
phenomena is part of the results presented in Appendix B.4.
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Figure 4.3: Monthly cost saving of the naive controller and RLS-SP. The cost savings results are
presented with the naive cost as a baseline. Please note that a positive value indicates
that the RLS-SP performs better than the naive strategy.

It was concluded that a combination of a naive and optimization-based (naive+RLS-SP) controller was
an overall optimal strategy. Thus, a cost comparison between a consumer without any home hardware,
a user using a naive controller, and a combined controller (naive+RLS-SP) was made. The intention is
to see the potential economic benefits that consumers may achieve by installing hardware with default
behavior, and using a more sophisticated control strategy. Table 4.2 shows the total cost of the sim-
ulated months, where the results show that significant cost savings can be achieved in the naive and
the proposed control strategy in comparison with a passive consumer. In particular, the results show
that consumers with higher EL benefit most from installing the hardware and controllers. Moreover,
the differences between the two control strategies show that the combined controller (naive+RLS-SP)
provides on average 8.05% additional savings for consumers with higher load (excluding consumers 4
and 5 with the lowest load of all consumers) in comparison with the naive controller, as can be seen
in detail in Table 4.3. Please note that although the presented results obey particular conditions (2021
prices and particular users behavior), similar results are expected in the presence of a HEMS setup and
similar price structures.

32



4.4 Application on bi-objective optimization of HEMSs

Consumer Passive Naive Naive+RLS-SP
No. DKK % DKK % DKK %

1 9219.20 - 6015.12 34.75 5825.17 36.81
2 16734.67 - 12715.96 24.01 12248.38 26.81
3 10799.02 - 6972.54 35.43 6735.15 37.63
4 5353.58 - 2140.78 60.01 2094.73 60.87
5 3901.01 - 1281.02 67.16 1332.69 65.84
6 11208.06 - 7827.33 30.16 7544.91 32.68
7 13370.53 - 9695.89 27.48 9333.01 30.20
8 6455.34 - 3331.51 48.39 3184.64 50.67
9 10806.51 - 6935.86 35.82 6563.42 39.26

Table 4.2: Total cost savings of the four simulated months for passive consumers, naive, and optimal
(naive+RLS-SP) control strategies. All percentage values are calculated relative to passive
consumers’ costs. Note that the higher the cost savings the better the control strategy.

Consumer No. Naive Naive+RLS-SP Difference %

1 3204.09 3394.03 189.95 5.93
2 4018.70 4486.29 467.59 11.64
3 3826.48 4063.87 237.39 6.20
4 3212.80 3258.85 46.05 1.43
5 2619.99 2568.32 -51.67 -1.97
6 3380.73 3663.15 282.42 8.35
7 3674.64 4037.51 362.87 9.88
8 3123.83 3270.70 146.88 4.70
9 3870.65 4243.09 372.44 9.62

Table 4.3: Naive and optimal control strategies (naive+RLS-SP) total cost savings, and their difference
in value and percentage. Note that the higher the cost savings, the better the control
strategy.

4.4 Application on bi-objective optimization of HEMSs
In this section, the HEMS single objective problem presented in Section 4.3 is extended to a bi-objective
problem, where not only the electricity cost is considered but also the associated CO2 emissions. The
bi-objective formulation follows the general description presented in Section 4.2. Although the explicit
formulation was omitted as part of this section, details can be found in Appendix C.3. Furthermore,
as described in Section 4.2.3, using the ϵ-constraint method implies having a set of Pareto-front solu-
tions. In real-word applications, one solution out of the Pareto-front set of solutions must be selected
to be used as setpoints for the control strategy. One way to select a compromise solution among
the Pareto-front set of solutions is the linear programming technique for multidimensional analysis of
preference (LINMAP). This method selects the solution from the Pareto-front that yields the lowest
normalized distance to the Utopian point, which can be written as

√√√√ ∑
n=1,...,M

(
fn(xi, yi) − fn(xU , yU )

fn(xU , yU )

)2

≤

√√√√ ∑
n=1,...,M

(
fn(xj , yi) − fn(xU , yU )

fn(xU , yU )

)2

∀j = 1, ..., I (4.6)
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where xU and yU are the utopian point solutions. The LINMAP metric can be extended to stochastic
programming such that the selected solution minimizes the distance between the set of objective values
corresponding to the selected solution (xi, yi) in scenario s ∈ S and the discrete distribution of objective
values in the Utopian point, i.e. select that solution (xi, yi) for which

√√√√ ∑
n=1,...,M, s∈S

(
fn,s(xi, yi) − fn,s(xU , yU )

fn(xU )

)2

≤

√√√√ ∑
n=1,...,M, s∈S

(
fn,s(xj , yj) − fn,s(xU , yU )

fn,s(xU )

)2

∀j = 1, ..., I (4.7)

The stochastic solution selection based on Equation C.5 is referenced as stochastic linear programming
technique for multidimensional analysis of preference (S-LINMAP) in the results.

4.4.1 Results
Simulations was carried out for four control configurations: cost minimization, emissions minimization,
and the LINMAP and S-LINMAP methods. In order to ease comparability across users and objectives,
both levelized costs of electricity (LCOE) and CO2 emissions have been computed per MWh. We com-
pare the results to cost/emission minimization under perfect information (PI), meaning perfect foresight
of the entire optimization horizon. These are theoretical lower bounds on the respective objectives and
we refer to them as PI cost and PI emissions.

On average, in Table 4.4 we can see that the PI cost amounts to 165.7 EUR/MWh. The cost minimizing
controller exceeds this value on average by 10.9 EUR/MWh ranging from 121.9 EUR/MWh for User 5
to 198.3 EUR/MWh for User 2. When minimizing emissions, the difference to the PI costs increases
to 19.6 EUR/MWh on average. As expected, the costs under the bi-objective optimization models are
in between the single objective results at 179.1 EUR/MWh with no significant difference between the
two solution selection methods LINMAP and S-LINMAP.
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PI Bi-objective Single-objective
User Cost min. LINMAP S-LINMAP Cost min. CO2 min.

[EUR/MWh] [EUR/MWh]

1 170.3 181.9 181.8 179.2 188.4
2 190.9 200.6 200.6 198.3 206.0
3 163.0 176.7 176.8 174.3 182.0
4 108.1 127.6 127.5 124.8 134.3
5 96.2 125.0 124.9 121.9 134.4
6 177.2 192.3 192.3 190.4 198.4
7 184.8 196.2 196.1 193.8 201.4
8 135.6 153.8 153.7 150.0 161.4
9 161.2 171.7 171.6 168.7 178.1

Mean 165.7 179.1 179.1 176.6 185.3

Table 4.4: Average LCOE in EUR/MWh across users under perfect (Cost min) and across controller
setups (total cost divided by total demand across the four simulated months).

Total emissions results are shown in Table 4.5. While average emissions are highest under a cost-
minimizing setup (112.5 kg CO2-eq/MWh), CO2 levels are lowest when optimizing for emissions at
107.3 kg CO2-eq/MWh. Under either of the bi-objective controllers, emissions are slightly higher at
108.0 kg CO2-eq/MWh. In general, the results show that optimizing solely towards CO2 minimization
implies on average 8.7 EUR/MWh additional cost for a reduction in emissions of 5.2 kg CO2-eq/MWh,
while the bi-objective strategies can reduce emissions by 4.5 kg CO2-eq/MWh with only an increase in
cost of 2.5 EUR/MWh.

PI Bi-objective Single-objective
User CO2 min. LINMAP S-LINMAP Cost min. CO2 min.

[kg CO2-eq/MWh] [kg CO2-eq/MWh]

1 107.5 114.7 114.7 119.5 114.3
2 111.8 118.4 118.3 123.1 117.5
3 95.5 105.1 105.1 109.3 104.3
4 66.2 79.7 79.7 83.6 79.3
5 64.5 83.7 83.6 87.1 84.2
6 105.5 116.0 116.1 120.0 115.3
7 110.3 118.1 118.0 122.7 117.2
8 80.4 93.3 93.3 97.5 92.7
9 92.8 100.0 99.9 105.5 99.0

Mean 98.8 108.0 108.0 112.5 107.3

Table 4.5: Average emissions in kg CO2-eq/MWh across users under perfect information (CO2 min)
and across controllers setups (total emissions divided by total demand across the four
simulated months).

4.5 Application on EV charging
In practical terms, EVs can be characterized as an additional battery in the HEMS setup presented in
Section 4.1. Depending on the charger and EV capabilities, the EV can be integrated in such a way
that power can flow from the house to the vehicle (grid-2-vehicle) or from the EV to the house grid
(vehicle-2-grid).

If we consider that in most residential houses vehicle-2-grid capabilities are not available, and that
current market rules do not incentivize actively participation of residential consumers (see Section B.5),
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the problem can be reduced to decide when to charge the EV in order to minimize cost or CO2 emissions.
This can be easily done by adding two additional considerations to our HEMS setup i.e., disallow the
vehicle-2-grid flow and ensure a specific SoC value within the planning horizon.

While adding an EV can be done in an easy way, the source of complexity may arise from the uncer-
tainty associated to the behavior of the EV user. This can be tackled by using forecast models aiming
to predict the EV availability and SoC of the vehicle or by using an interactive approach. In the latter,
the use of an app solution such that the user can register his/her availability is required. Unfortunately,
EV charge/discharge sessions data was not available during most of the project time span, so this was
not part of the simulation results presented in Sections 4.3 and 4.4. Nevertheless, studies have shown
the potential that EV may bring [1, 80].

Although the integration of EVs into HEMS was not studied, a way to tackle the problem was explored.
A stand-alone prototype was developed to help EV users charge their cars in an optimal way. The
prototype will get as inputs from the user the SoC of the vehicle (in a manual or automatic way),
the time range where the car will be available to be charged, and a decision parameter that priorities
between cost or CO2 emissions. Subsequently, the algorithm defines the charge schedule for the vehicle
relaying on the EV charger to follow it. The algorithm pseudo-code can be seen in Algorithm 2.

Algorithm 2 EV bi-objective charge schedule
1: Define SoC target
2: Define time index t ∈ {1, 2, . . . , T }
3: Rescale electricity cost ct ∈ [0, 1] and CO2 emissions et ∈ [0, 1]
4: Create combined cost value xt = αet + (1 − α)ct

5: Sort the xt vector in ascending order and get time stamps t in a new time index ordered set I
6: Initialize yt = 0 ∀ t ∈ T
7: while i ∈ I or

∑
yi < SoC do

8: if SoC −
∑

yi ≤ max charge then
9: yi = SoC −

∑
yi

10: end if
11: if SoC −

∑
yi > max charge then

12: yi = max charge
13: end if
14: end while

where α ∈ [0, 1] is a priority parameter defined by the user and “max charge” is the charger’s physical
limit. Please note that although the above algorithm is not framed in a classical optimization format,
the solution is expected to be optimal. Moreover, the presented algorithm can also be easily integrated
into the HEMS setup as an additional known load that has to be satisfied (yt values). In this way, the
EV schedule is considered without increasing the HEMS complexity.

4.5.1 Results
As a proof of concept, an EV charge session from a Watts A/S user is presented in detail in Table
4.6. The table shows a charging session set by the user where his/her availability to charge the car was
defined from 2021-12-02 16:00 - 2021-12-03 08:00 (typical office worker availability in Denmark). In this
particular case, the user has an EV charger with a physical limit of 11 kWh. Moreover, the electricity
price, emissions intensity, and four different charge schedules are presented. The schedules description
is:

• Cost optimal
Schedule found using the optimization algorithm with α = 0.
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• CO2 optimal
Schedule found using the optimization algorithm with α = 1.

• Balance
Schedule found using the optimization algorithm with α = 0.5

• Naive
Corresponds to the user connecting the EV when he/she arrives home. This schedule is assumed
as the default behavior users have and is implemented for comparison purposes.

As expected, the schedules shown in 4.6 differ significantly between the cost and CO2 optimal schedules,
with the balance schedule presenting a similar solution than the CO2 optimal one.

Time Price Emissions Naive Cost opt (α = 0) CO2 opt (α = 1) Balance (α = 0.5)
[DKK/kWh] [g CO2 eq/kWh] Shcedule [kWh] Shcedule [kWh] Shcedule [kWh] Shcedule [kWh]

16.00 – 17.00 5.182 280.630 11 0 0 0
17.00 – 18.00 4.736 240.421 11 0 0 0
18.00 – 19.00 3.996 235.437 8 0 0 0
19.00 – 20.00 3.164 209.344 0 0 11 11
20.00 – 21.00 3.016 233.309 0 0 8 0
21.00 – 22.00 2.925 226.590 0 0 11 11
22.00 – 23.00 2.745 246.609 0 0 0 8
23.00 – 00.00 2.877 255.076 0 0 0 0
00.00 – 01.00 2.726 311.290 0 0 0 0
01.00 – 02.00 2.661 342.607 0 8 0 0
02.00 – 03.00 2.599 328.785 0 11 0 0
03.00 – 04.00 2.633 288.928 0 11 0 0
04.00 – 05.00 2.779 271.554 0 0 0 0
05.00 – 06.00 3.144 276.295 0 0 0 0
06.00 – 07.00 3.871 257.056 0 0 0 0
07.00 – 08.00 3.949 281.581 0 0 0 0

Table 4.6: EV charge schedules found using Algorithm 2 for three different α values.

Moreover, the total cost and CO2 emissions given the different schedules are presented in Table 4.7.
We can clearly see that the cost-optimal schedule presents significant differences in comparison with all
other schedules. Optimization for cost comes with a higher CO2 cost, with the cost-optimal polluting
43.14% more than the emissions optimal. Moreover, the CO2 optimal schedule is 15.55% more expensive
than the cost optimal, with the balance schedule presenting a good compromise. The balance schedule
is 12.81% more expensive than the cost optimal but with only 1.60% more emissions. Finally, the naive
schedule presents poor performance in both objectives, polluting 14.31% more and being 78.93% more
expensive than its optimal counterparts.

Schedule Total cost ∆ Cost opt ∆ Cost opt Emissions ∆ CO2 opt ∆ CO2 opt
type [DKK] [DKK] [%] [g CO2 eq] [g CO2 eq] [%]

Naive 141.07 62.23 78.93 7615.06 953.31 14.31
Cost opt 78.84 0.00 0.00 9535.70 2873.95 43.14
CO2 opt 91.10 12.26 15.55 6661.75 0.00 0.00
Balance 88.94 10.10 12.81 6768.15 106.40 1.60

Table 4.7: Total cost and CO2 emissions for the different strategies.
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4.6 Discussion
All the data elements and forecast methods introduced in previous chapters were successfully combined
and integrated into the HEMS control strategy and simulations presented in the application sections of
this chapter. Key findings in the results are summarized as:

• The economic evaluation presented in Section 4.3 validates the performance of the probabilistic
forecasting modelling methodology. In detail, cost savings depend on the quality of the forecast,
with results showing a small gap between the perfect information cases and the optimization-based
strategies using the forecast framework for all users.

• Considering the stochasticity of the EL has a significant impact on the control strategies per-
formance. This is clear from the results where in all cases the stochastic optimization models
outperform the expected value ones.

• Price and market rules shape the possibilities of control strategies. Results indicate that in the
presence of high PV generation and low EL, there is no need for sophisticated control strategies,
with self-consumption strategies being effective. This is a consequence of the gap between sale
and purchase prices that residential users have access to given current market conditions. More-
over, one could argue that research oriented to new business models, and regulatory and price
frameworks is needed in a higher degree than technical solutions.

• Under current market rules and HEMS setup, consumers can find value in each step of the way.
Results indicated that there is significant economic incentive for the user to install a PV and
battery system. Furthermore, adding the decision support tools presented increases the benefits
for the consumers, with more benefits expected in energy systems with higher share of wind and
solar.

• There are significant differences between cost and CO2 emission optimization. This implies that
full information about emissions is not completely contained in the electricity price signal, which
opens the door for bi-objective frameworks or highlights a need for regulatory change if climate
change goals are expected to be made.

Although overall results validate the developed technical tools and support their future implementation
as part of HEMSs, there are critique points that we must consider:

• Other control frameworks need to be explored. There are control frameworks such as Model
Predictive Control and dynamic programming, used in the literature that could be implemented.

• The stochasticity associated with PV generation must be included in the optimization-based
control strategy. As seen with the EL, it is vital for the decision-making process to consider
uncertainty source. In this case, access to data limited the possibility to build adequate PV
forecast models, which allows to have more insights on the PV probability distribution. This
could be tackled by applying the modelling methodology presented in Chapter 3. PV scenarios
can be generated and included in MILP formulations in a similar fashion to the EL ones.

• While it is expected that including EVs under the HEMS will improve consumers’ economic and
environmental benefits, realistic simulation results were not made. This is a clear step in future
research.

• Extensions to the control strategies are needed for real-time implementations. The presented
control strategies yield, as results, target set points at hourly time resolution. In a physical
implementation, deviations from these set points might occur at an intra-hour time resolution,
which would require real-time actions. This is something not included in the current research.
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4.6 Discussion

• Given that the research was based on simulation setups, there is a need for field test implementa-
tions that validate the results. Additionally, scaling up the studies to many consumers is needed
to be able to generalize the effect.

• Clustering methods in combination with the presented simulation framework in order to identify
which consumer could benefit the most and other insights.
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CHAPTER5
Conclusion

5.1 Contributions
In the course of the research described in this thesis, the expected role of HEMSs in the Danish energy
system was described. The description allows us to have a clear context for future implementations.
Key elements such as data access, time resolution, price structure, and market rules, shaped the HEMS
architecture followed during the research. Although the followed HEMS setup was simplified in com-
parison to a full architecture, important technical challenges were identified. These challenges were
then used as an initial point for technical research. While this part of the research may look trivial,
it is key to ensure that developed algorithms respond to real needs, thus, by contributing to a good
contextualization of the system, the probability of a future implementation increases.

The need for reliable information about consumers future needs sparked forecast research. The research
was designed for the prediction of the EL needs at a residential level, which was proven to be a complex
task given the EL characteristics. The presented multivariate probabilistic forecasting methodology
allows to combine the information present in exogenous variables and the TS itself to produce a good
estimation of the marginal distributions that compose a multivariate forecast. Furthermore, by mod-
elling the temporal dependency in a different modelling stage, we gain in modularity. This means that
different modules could be improved separately, which could help future development. Moreover, re-
sults (see Section 3.3.3) validated the performance of the modelling technique, indicating that modelling
the temporal dependency had a significant impact on the out-of-sample performance metrics. Finally,
although the results come from a particular application, this research contributes with a generic formu-
lation that facilitates its application in other domains.

The knowledge gained by the contextualization of HEMSs in the Danish market and the forecast method-
ology was combined and used in the research of control strategies suitable for HEMSs. Results indicated
that there are significant incentives for users to install a HEMS setup and the presented control strate-
gies. In particular, including the stochasticity inherent to the EL has a significant impact on the
performance of the control strategies, with the stochastic optimization methods outperforming their
deterministic counterparts for every simulated user. Moreover, it was found that seasonality and the
prices available to residential consumers have a profound impact on the performance of the control
strategies, with self-consumption strategies outperforming the optimization-based controllers in high
PV generation and low price volatility conditions. Although the simulation study presents a small
sample size, the research contributes insights on how this type of systems might perform on a real
implementation and that more sophisticated control strategies might be limited by the current market
rules. This also means that more complex HEMS architectures should be evaluated in light of the
more simple approaches, as higher complexity is not a warranty of higher benefits for the consumers.
However, in a future scenario with a high share of RESs, prices are foreseen to be much more volatile
and, therefore, the proposed advanced forecasting and optimization are likely to be more important
than in the studied current conditions.



5.2 Perspectives and opportunities for further research

An analysis made on the relation of electricity prices and CO2 emissions showed that electricity prices
do not contain complete information on CO2 emissions. This means that consuming electricity when
it is cheaper does not necessarily imply lower CO2 emissions. The fact that this behavior was present
in the data, opened the door to bi-objective stochastic control strategies. The research on this topic
showed that considering both objectives yielded solutions that have a significant impact on the CO2
footprint at a relatively small increase in costs. Thus, this research contributes by highlighting a poten-
tial deficiency in how electricity prices are created (at least from an environmental perspective) while
presenting a possible way to address the problem.

It is common knowledge the potential that EVs can bring to the energy system as well to the final users.
And although data access was a limiting factor in this project, the proof of concept presented in Section
4.5 shows the potential of these types of assets. Moreover, while it can be considered easy to add an
EV to the presented HEMS setup, given that it is battery, a stand alone solution for the vehicle charge
process was needed. The results show that significant cost savings could be achieve just by controlling
the charge schedule, with very significant CO2 reductions when emissions are also considered. Thus,
this research contributes with a prototype solution suitable for users without the full HEMS technology
stack, which is important if we considered that not all consumers have the means and/or the motivation
to invest in HEMSs and EVs at the same time.

5.2 Perspectives and opportunities for further research
Many future research possibilities can be derived from the current work. One important aspect is the
user interface and the impact that additional information might have on consumers. As it was shown
in [74], there is a positive response from the consumer side when they are exposed to information
feedback via the Watts App or, in that particular case, a game. User interfaces are expected to play
a very significant role as more elements such as smart appliances continue their roll-out. Specially, if
we consider that their inclusion in the HEMS decision-making process increases the system’s complexity.

In terms of the forecast capabilities of the system, access to sensing devices at the home side will bring
additional information about the EL. This might imply the disaggregation of the load data. Disaggre-
gated loads open the possibility to tailor individual models for elements such as heat pumps, heaters,
controllable loads as well as the uncontrollable loads. In this regard, a balance between a higher tech-
nical approach (more models) and their benefits must be kept. Regime changes are also a key element
which was not tackled in this research. Additional sensing devices and user interfaces should bring
enough information to detect anomalies in the household behavior such as poor heat insulation, energy
leaks or the absence of the household inhabitants. This should trigger changes in the forecast algorithms
in order to rapidly adapt to such changes and alert customers.

Although the results of the stochastic control strategies indicate a good performance of the algorithms,
a large scale test covering a wider range of users it still needed, and a clear path for future research.
In this regard, clustering techniques could be applied to identify users whom a HEMS will bring more
value along with additional insights that could be useful for Watts. An interesting application of such
insights is aggregation. Watts could harvest data coming from a large simulation setting to experiment
with new business models including aggregators, as the individual behavior could be governed by the
independent HEMSs at the users’ side.

The research presented in this thesis is mainly derived from historic data hence conditions in the
historic period. Results must be updated as the energy system changes. This is expected to support
the arguments made in favor of HEMSs and similar technologies. However, the full development of
a real-world application is currently underway at Watts. The research made has helped to define the
design of the back end and data services that are expected to be accessible to customers in late 2022.
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5.2 Perspectives and opportunities for further research

Moreover, the presented tools are currently being developed as software libraries and partnerships with
hardware providers are also underway in order to develop custom products able to articulate with the
software solutions. It is clear that field tests and extensive trials are needed before the roll out of a final
product. However, this research provides the basic building blocks of a smart HEMS product able to
help with European energy transition as well as reducing CO2 emissions.
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A.1 Introduction

Probabilistic load forecasting considering temporal correlation:
online models for the prediction of households’ electrical load

Julian Lemos-Vinasco1 2, Peder Bacher1, Jan K. Møller1

Abstract

HEMSs are expected to become an inevitable part of the future smart grid technologies. To work
effectively, HEMSs require reliable and accurate load forecasts. In this paper, two new modelling
methods are presented. They are both suited for producing multivariate probabilistic forecasts,
which consider the temporal correlation between forecast horizons. The first method employs point
forecasts generated with RLS models and subsequently analyses the forecasts’ residuals to estimate
the marginal distributions and temporal correlation. The second method is based on quantile
regression to estimate marginal distributions, and a Gaussian copula for linking them together.
Furthermore, the application of two modelling approaches for the temporal correlation estimation
are investigated for each of the two modelling methods. As a case study, a numerical experiment
is designed to emulate an online HEMS operation using data from an inhabited home located in
Denmark. Simulation results show a robust performance for the proposed models, with the quantile-
copula ensemble outperforming the RLS-based models in predicting the marginal distributions and
capturing the temporal correlation.

A.1 Introduction
With the aim of helping the integration of RESs, improving energy markets, and allowing consumers
to better regulate their energy consumption, smart grids are being developed especially in Europe [19].
As part of the smart grid technologies, HEMSs are expected to play a key role activating price and/or
CO2 demand response. The implementation of smart HEMSs has several technical challenges such
as the prediction of the home electricity demand, i.e. electrical LF. Forecasting is essential for the
optimal planning and procurement of electricity in homes, in order to maximize the economical and/or
environmental benefit without compromising users’ comfort [54].

At a home level, LF presents several challenges given its multi-seasonality, non-stationarity, and stochas-
tic characteristics, which makes it an interesting research topic [27]. Additionally, HEMSs require load
forecast values for several future time points, ranging from hours to days ahead in rather high time
resolution. Many different statistical and artificial intelligence techniques have been applied for LF in
recent times. Modelling techniques such as multiple linear regression [11, 102, 117], TS [39, 17], artifi-
cial neural networks (ANNs) [100, 4], and stochastic differential equations (SDEs) [132, 87] are suitable
for the task. These modelling techniques are often applied to an aggregated load level, use exogenous
variables, e.g. NWPs, estimate the expected value of the process i.e point forecast, and make a general
assumption about the process distribution.

Given the complexity of the EL, having a point forecast is often not optimal and more details about
the multivariate distribution are needed for the optimal HEMS decision making process – especially, at
an individual residential level. Recent studies have therefore applied probabilistic forecasting models.
Modelling techniques such as quantile regression [63, 75], kernel density estimation [126, 130], long

1Technical University of Denmark, Department of Applied Mathematics and Computer Science, Lyngby, Denmark
2Watts S/A, Section of Research and Development, 36 Main Street, Svinninge, Denmark
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short-term memory artificial neural networks (LSTM-ANNs) [120], density-estimating ANNs [118], and
quantile regression neural networks (QRNNs) [51, 130] have been used. The above-mentioned studies
are proven to yield accurate results for individual forecast horizons. However, they do not address the
temporal correlation between the forecast horizons.

From the above studies, the need for PLF models, which consider the correlation in a multivariate
setting for individual households, was identified. Moreover, while the idea of modelling the temporal
correlation in PLF for individual households seems to be rarely explored, it does not mean that this prob-
lem has not been studied in other fields, e.g. wind forecasting and weather forecasting. In these fields,
different techniques have been used to produce multivariate probabilistic models considering temporal
correlation. Copula-based modelling techniques such as ensemble Bayesian Model Averaging (BMA)
and copula [83], quantile regression and copula [97, 111], and kernel-based support vector quantile re-
gression and copula [52] have been applied. Other techniques suitable for the task such as maximum
likelihood estimation for conditional AR models [67], and multivariate conditional parametric models
[110] have also shown positive results. Among the existing techniques, the copula-based methods stand
out due to their modularity. In these approaches, the probabilistic forecast for individual time horizons
is separated from the modelling of the temporal correlation between distributions. This allows the use
of robust modelling techniques for the estimation of marginal distributions which are then linked, using
a copula, to a posterior modelling stage where the temporal correlation is addressed.

This paper contributes by introducing and analysing different approaches to temporal forecasting, i.e.
forecasting where the temporal correlation is taken into account. Thus, these approaches allow the
generation of reliable scenarios forecasts (ensembles), which are needed for implementing stochastic
control algorithms; in the present case, applied to forecasting of electricity load of a single residential
household. The suggested approaches are formed by two stages: in the first stage, a multivariate PLF
model is applied, and in a second stage, the temporal correlation is modelled. Two different multi-
variate methods are applied for the first stage: the RLS and the quantile-copula. The RLS is inspired
by the load forecast methods by [11, 102, 117] and adapted in the present work to model electricity
load instead of heat load. The quantile-copula approach is a combination of methods presented for
wind power forecasting in [16] and [110]. In the second, stage the temporal correlation is modelled
using the two different methods: the “free” where the correlations are modelled by calculating the full
cross-correlation matrix between all horizons (it is free of a model specification). And the “AR” where
the correlations are modelled by the multivariate k-step ahead predictive covariance of auto-regressive
(AR) models derived for the particular cases at hand. All four combinations of the two methods in each
stage are applied and compared to a simple reference model.

Thus, a total of five complete models are presented. The first model is referenced as “RLS-free” and
uses RLS models for the prediction of the load expected value with the temporal correlation being
estimated directly from a full covariance matrix model. The second model is referenced as “RLS-AR”
indicating the use of RLS models with an AR model for the temporal correlation. The third and fourth
models are referenced as “Copula-free” and “Copula-AR” and indicate the use of quantile regression, a
Gaussian copula. The reference model is without any correlation structure method and is named “RLS”
was implemented for comparison purposes. The different models are tested by forecasting the EL of
an individual household located in Denmark in an online simulation setting i.e. rolling forecast. In
order to evaluate the performance of the different models, the PICP, PINAW, pinball loss and CRPS
were used as adequate metrics to evaluate the performance of the individual PLF horizons. Moreover,
the VarS was used as the metric to evaluate the performance of temporal correlation modelling. The
results indicate a significant performance improvement in comparison to the reference model using the
models which consider temporal correlation. Furthermore, the results also indicate that the models
from quantile-copula method produce superior results.

The suggested approaches can be applied in a wide range of forecast settings, where temporal correla-
tion must be taken into account and a quite generic description is included in the text – we hope this
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will make it rather easy for others to implement and use for other forecasting applications.

The paper starts by presenting the mathematical details of the implemented models in Section A.2.
Next, a description of the data and the simulation setting used for testing the models is presented in
Section A.3. The Results are presented in Section A.4, which include a verification of the models’ as-
sumptions, details on the temporal correlation structures, and metric comparisons. Finally, a discussion
of the findings and perspectives for future work is outlined in Section A.5 with the paper’s conclusion
being presented in Section A.6.

A.2 Methods and models

A.2.1 Notation
First, the general notation to be used throughout the text is introduced. Notation follows [76] with the
following modifications. Let Xt = (Xt,1, Xt,2, . . . , Xt,K)⊺ denote a k-dimensional random variable at
time t for future values t + 1, t + 2, . . . , t + k. Moreover, upper case letters are used for random vari-
ables while lowercase letters denote the corresponding observations. Furthermore, vectors and matrices
are emphasised using bold font. Thus, xt = (xt,1, xt,2, . . . , xt,K)⊺ is used for the realisations of the
random vector Xt. Random variables are assigned to letters from the last part of the alphabet, while
deterministic terms are assigned to letters from the first part of the alphabet.

A.2.2 Methods and Models
Let Yt be a univariate TS. The forecast of Yt can be expressed as multivariate random variable at each
time t for future lead times t + k as

Y t = (Yt,1, Yt,2, . . . , Yt,K)⊺ (A.1)

where we use the previously introduced notation s.t.

Yt,k = Yt+k ∀ k ∈ {1, 2, . . . , K} (A.2)

Our interest is to forecast the PDF for Y t denoted by ft(y). Proposing a functional form for ft implies
a simultaneous description of both the marginal densities (for each horizon k) as well as the temporal
correlation [111]. In this study, two approaches are proposed to estimate ft. The first approach uses
RLS models for the estimation of the expected value Ŷ t and then analyses the models’ residuals in
order to obtain an estimation of the marginal densities as well as the temporal correlation of Y t. The
second approach uses quantile regression models for the prediction of the marginal distributions of Y t,
and a Gaussian copula to address the temporal correlation. In both approaches, two methods were
considered to model the correlation structure. The first method estimates the correlation structure
from the data with a full covariance matrix model, while the second method uses an AR model – in
which the covariance matrix is parametrised with only a few parameters (order of the AR process + 1).
Figure A.1 presents a graphical summary of the modelling methodology process.

Different score metrics were considered to evaluate the performance of the proposed models. While the
PICP, PINAW, pinball loss, and CRPS evaluate the accuracy of the estimated marginal distributions,
the VarS measures the accuracy of the temporal correlation. The mathematical details of all of the
implemented methods and models are presented in the following subsections.
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Figure A.1: Process graph summarising the modelling methodology.

A.2.2.1 Recursive Least Squares (RLS)

Let us assume that the elements of Y t are independent, i.e. independence between the forecast horizons.
We can then use the following parametric models to describe each of them individually

Yt,k = x⊺
t,kθt,k + εt,k (A.3)

Ŷt,k = E
{

Yt,k|xt,k

}
= x⊺

t,kθt,k (A.4)

where xt,k is a known vector of independent variables. In order to consider possible non-stationary
characteristics of the TS, the RLS model with a forgetting factor can be used for the estimation of the
parameters θ̂t,k. For further details on the RLS method see [76]. For the errors εt = (εt,1, . . . , εt,k)⊺,
we may assume that εt ∼ N (0, Σ) if the errors are well-behaved. Thus, the PDF of Y t will be given
by

Y t ∼ N (Ŷ t, Σ) (A.5)

The problem is then reduced to the estimation of the covariance matrix Σ. This can be done empirically
from data (using previous realisations of the errors) or exploiting the fact that εt is a TS itself by using
models suitable for the task. Section A.2.2.3 presents the estimation of Σ using an AR model for εt.
Although in the above formulation the temporal correlation is given by the time-invariant matrix Σ, a
sliding window approach is considered in the implementation as presented in Section A.3.2.

A.2.2.2 Quantile regression with a Gaussian copula (quantile-copula)

Let Ft,k(y) = P (Yt,k ≤ y) be the cumulative density function (CDF) of the random variable Yt,k. When
conditioned on xt,k it can be described by a quantile regression model

Q
(τ)
t,k = F −1

t,k (τ) = inf{yk : Ft,k(y) ≥ τ} (A.6)

{Q
(τ)
t,k |xt,k} = x⊺

t,kβ
(τ)
k (A.7)

where τ ∈ (0, 1). Now let ρτ (r) be the loss function
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ρτ (r) = r(τ − 1r<0(r)) (A.8)

such that the estimation of the parameters β̂
(τ)
k can be achieved by solving the minimisation problem

β̂
(τ)
k = arg min

β
(τ)
k

N∑
n=1

ρτ (yt−n,k − x⊺
t−n,kβ

(τ)
k ) (A.9)

A quantile forecast Q̂
(τ)
t,k with nominal proportion τ is an estimate of Q

(τ)
t,k calculated at time t for a

future time t + k. More details on quantile regression may be found in [66]. Finally, a forecast of the
PDF of the variable of interest can be produced by gathering a set of m quantile forecasts [97]

f̂ t,k = {Q̂
(τi)
t,k |xt,k, 0 ≤ τ1 < · · · < τi < · · · < τm ≤ 1} (A.10)

The above approach allows to have a model for the CDF of each random variable Yt,k. Now let Ft be
a multivariate CDF describing the distribution of the random vector Y t given by

Ft(y) = P (Yt,1 ≤ y1, Yt,2 ≤ y2, . . . , Yt,K ≤ yK) (A.11)

In most cases there is not an obvious distribution Ft, so instead a copula approach is applied. The
copula allows to decompose the problem of estimating Ft into two parts. First, marginal predictive
cumulated densities Ft,k = P (Yt,k ≤ y) for each horizon are obtained using quantile regression, thus
describing the random variables Yt,k. Then, the marginal distributions are linked together to obtain Ft

using a copula function. The mathematical foundation of copulas is given by Sklar’s [109] theorem

Ft(y) = C (Ft,1(y1), Ft,2(y2), . . . , Ft,K(yK)) (A.12)

Now let C be a function that maps y into a multivariate Gaussian distribution with zero mean, unit
marginal variances and covariance matrix Σ, and let Φ−1 be the inverse of a univariate standard normal
CDF. A Gaussian copula is given by

Zt =
[
Φ−1(Ft,1(yt,1)), Φ−1(Ft,2(yt,2)), . . . , Φ−1(Ft,K(yt,K))

]⊺ (A.13)
Zt ∼ N (0, Σ) (A.14)

Note that if the marginal distributions are properly calibrated, then the random variable Φ−1(Ft,k(y))
∼ N (0, 12). The above formulation implies that the joint multivariate predictive density for Y t can be
represented by a latent multivariate Gaussian process. Furthermore, note that even though Ft,k as well
as Ft are time-dependent, the underlying dependence structure is characterised by the time-invariant
correlation matrix Σ. It is out of the scope of this article to study time-dependent correlation structures.
At this point, the problem is reduced to the estimation of the covariance matrix Σ. This can be done
empirically using previous realisations of Zt or using the method described in Section A.2.2.3. Finally,
possible realisations of the random vector Y t = yt can be drawn easily by calculating the inverse of
Equation (A.13) given a realisation of the latent Gaussian process Zt thus

yt =
[
F −1

t,1 (Φ(z1)), F −1
t,2 (Φ(z2)), . . . , F −1

t,K(Φ(zK))
]⊺

(A.15)
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A.2.2.3 Covariance matrix from an Autoregressive AR(p) process

Let Zt ∼ N (0, Σ) be a multivariate random variable with its elements given by an AR(p) process of
the form

Zt,k =
p∑

i=1
zt,k−iαi + λt,k (A.16)

λt,k ∼ N (0, σ2) i.i.d (A.17)
The above formulation allows us to express entries of Σ as a function of σ2 and αi parameters of the
AR process. Equations (A.18) to (A.21) show how to calculate the variance and covariance elements of
Σ

Var{Zt,k+l|Zt,k} = σ2 +
l−1∑
i=1

α2
i Var{Zt,k+l−i}+

2
l−2∑
i=1

l−1∑
j=i+1

αiαj Cov{Zt,k+l−i, Zt,k+l−j} ∀l ≤ p + 1

(A.18)

Var{Zt,k+l|Zt,k} = σ2 +
p∑

i=1
α2

i Var{Zt,k+p+1−i}+

2
p−1∑
i=1

p∑
j=i+1

αiαj Cov{Zt,k+p+1−i, Zt,k+p+1−j} ∀l > p + 1
(A.19)

Cov{Zt,k+j , Zt,k} =
j∑

i=1
αi Cov{Zt,k+j−i, Zt,k} ∀j ≤ p (A.20)

Cov{Zt,k+j , Zt,k} =
p∑

i=1
αi Cov{Zt,k+j−i, Zt,k} ∀j > p (A.21)

With the above framework in place, σ and αi can be estimated by maximising the log-likelihood function
of Zt given by

arg max
σ, αi

N∑
n=1

−1
2

[
ln(|Σ|) + z⊺

t−nΣ−1zt−n + k ln(2π)
]

(A.22)

A.2.3 Performance metrics
A.2.3.1 Prediction Interval Coverage Probability score (PICP)

The reliability of a probabilistic forecast can be measured using the PICP score [107] given by

PICP(yt,k, P I
(α)
t,k ) = 1

N

N∑
t=1

ct,k (A.23)

where

ct,k =

{
1, yt,k ∈ PI

(α)
t,k

0, yt,k /∈ PI
(α)
t,k

(A.24)

and PI
(α)
t,k is a confidence interval with significance level α. The outcome of the score indicates the

probability of a realisation yt,k to fall in a predicted interval.
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A.2.3.2 Prediction Interval Normalized Average Width score (PINAW)

A useful score to evaluate the sharpness of a probabilistic forecast is the PINAW score given by

PINAW(PI
(α)
t,k , A) = 1

NA

N∑
t=1

PI
(α)
t,k (A.25)

where Pt,kI(α) is a prediction interval with α probability and A is the range of the target Yt,k. The score
indicates the average proportion of the prediction interval width with respect to the target variable’s
range.

A.2.3.3 Pinball score

A very common way of evaluating a probabilistic forecast is using the pinball loss function given by

L(yt,k, Q̂
(τ)
t,k , τ) =

{
(yt,k − Q̂

(τ)
t,k )τ yt,k ≥ Q̂

(τ)
t,k

(Q̂(τ)
t,k − yt,k)(1 − τ) yt,k < Q̂

(τ)
t,k

(A.26)

where Q̂
(τ)
t,k is the quantile value associated to a level τ ∈ (0, 1).

A.2.3.4 Continuous Ranked Probability Score (CRPS)

Given a probabilistic forecast taking the form of the CDF Ft,k, we can apply the CRPS [78] given by

CRPS(Ft,k, yt,k) =
∫ ∞

−∞
(Ft,k(u) − 1u≥yt,k

(yt,k))2du (A.27)

This score measures the likelihood of an observation yt,k belonging to Ft,k. A drawback of all the
previous presented scores, see [104], is that the CRPS does not include any dependencies between
horizons k, hence it cannot be used to measure the temporal correlation structure.

A.2.3.5 Variogram score (VarS)

To effectively measure the representation of the temporal correlation structure in the predicted values,
we can use VarS of order p

VarSp(ft, yt) =
K−1∑
i=1

K∑
j=i+1

wi,j(|yt,i − yt,j |p − E{|Yt,i − Yt,j |p})2 (A.28)

with

wi,j = 1
j − i

(A.29)

The selection of the order p = 0.5, and the weight term wi,j was done as recommended in [104].
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A.3 Data and simulation study

A.3.1 Data description
The dependent variable of interest is the average EL (kWh) of a residential home from the period of
2017-06-01 to 2018-05-31 in hourly time resolution. The data comes from a smart meter and there was
no access to further details besides the home’s heating type and number of inhabitants. Moreover, only
one year of data was considered due to the inhabitants moving out of the home from 2018-06-15 and
the use of a non-electrical heating type previous to 2017-06-01. The TS plot and data distribution over
the mentioned time period can be seen in Figure A.2. From the plot we can identify characteristics of
a non-stationary TS. It is known that the home is heated up during winter with a heat pump, which
explains higher EL during the winter season in comparison with the summer season. Moreover, it is
also known that the home is not cooled during summer. The EL distribution shows a natural lower
bound of zero with some high values, which clearly makes the distribution right skewed. Additionally,
given that the data comes from a real inhabited residential home, time periods of near-zero load are
seen. These low consumption periods can be attributed to absence of the house’s inhabitants due to
holidays or similar events.
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Figure A.2: Electricity Load Pt time series (a) and empirical distribution (b). The data corresponds
to the period 2017-06-01 to 2018-05-31.

Note that EL empirical distribution may indicate the presence of a bimodal distribution, however, this
is not the case. The EL follows a unimodal distribution with the mean value changing during the
year because of the seasonality. Furthermore, independent variables are defined from NWPs available
at time t. In this case, the weather forecast provider is the OpenWeatherMap service (details of the
weather forecast information can be seen in [90]). Previous studies have shown that ambient tempera-
ture and solar radiation have a significant influence on the EL[11], so they were included as independent
variables. It is important to mention that the solar radiation signal was derived as a combination of the
global radiation (solar radiation on a horizontal plane) [96] and the percentage of cloud cover provided
by the weather forecast. The objective of using this independent variable is to have a more accurate
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approximation of the energy gained by the home that could affect the EL needs, especially during win-
ter. Figure A.3 shows the TS plots for the ambient temperature and solar radiation for two different
forecast horizons (k = 1 and k = 18). The TS plots present the expected seasonal behaviour.
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Figure A.3: (a) Ambient temperature T
(a)
t,k . (b) Solar radiation Gt,k for horizons k = 1 and k = 18.

The data corresponds to the period 2017-06-01 - 2018-05-31.

Figure A.4 presents a selected short period of the TS. Note that the weather forecast seems to be
quite consistent with minor changes between the one-step information k = 1 and the eighteen-step
information k = 18.

From the EL plot in Figure A.4, intra-day patterns can be identified. This is due to normal inhabitants’
activities such as breakfast, dinner, and evening TV sessions. The patterns are typically different
during workdays and weekends. Thus, in order to include signals related to this intra-day EL patterns
for workdays and weekends, Fourier series with 4n harmonics were included as independent variables

F
(sin, week)
t,k,i = sin

(
2πi

tday
24

)
1A(day) ∀i ∈ [1, 2, . . . , n]

F
(cos, week)
t,k,i = cos

(
2πi

tday
24

)
1A(day) ∀i ∈ [1, 2, . . . , n]

F
(sin, weekend)
t,k,i = sin

(
2πi

tday
24

)
1B(day) ∀i ∈ [1, 2, . . . , n]

F
(cos, weekend)
t,k,i = cos

(
2πi

tday
24

)
1B(day) ∀i ∈ [1, 2, . . . , n]

(A.30)

where tday ∈ [0, 1, . . . , 23] indicates the time of the day for the t, k period, and 1A and 1B are given by
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Figure A.4: (a) Electricity Load Pt. (b) Ambient temperature T
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t,k . (c) Solar radiation Gt,k. The

data corresponds to the period 2018-04-05 - 2018-04-20.

1A(day) :=

{
1 if day ∈ A

0 if day /∈ A
1B(day) :=

{
1 if day ∈ B

0 if day /∈ B

A = {Monday, Tuesday, Wednesday, Thursday, Friday}
B = {Saturday, Sunday}

(A.31)

The harmonics can be expressed in vector form as follows

F
(sin, week)
t,k = (F (sin, week)

t,k,1 , . . . , F
(sin, week)
t,k,n )

F
(cos, week)
t,k = (F (cos, week)

t,k,1 , . . . , F
(cos, week)
t,k,n )

F
(sin, weekend)
t,k = (F (sin, weekend)

t,k,1 , . . . , F
(sin, weekend)
t,k,n )

F
(cos, weekend)
t,k = (F (cos, weekend)

t,k,1 , . . . , F
(cos, weekend)
t,k,n )

(A.32)

Moreover, [27] have shown that the EL presents a significant auto-correlation. Thus, with Yt,k as our
dependent variable of interest, we can include the lag value yt as independent variable to account for
the auto-correlation. Hence, an entry in the design matrix will contain ambient temperature, solar
radiation, a lag value, and 2n pair harmonics as independent variables for a future time t + k given t,
s.t.

xt,k = (T (a)
t,k , Gt,k, yt, F

(sin, week)
t,k , F

(cos, week)
t,k ,

F
(sin, weekend)
t,k , F

(cos, weekend)
t,k )⊺

(A.33)
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A.3.2 Simulation study
The simulation study was designed to resemble an online application. The aim was to produce a
probability forecast of the EL at time t that would cover the following 24 hours in an hourly resolution.
Considering the description presented in Section A.3.1, a logarithmic transformation was done in order
to ensure the zero bound property of the EL. Thus, the dependent variable of interest Yt was defined
as

Yt = ln(Pt) (A.34)

Yt can be expressed as a multivariate random variable as described in Equation (A.1) with k ∈
{1, 2, . . . , 24}. Furthermore, the forecast is expected to be updated every hour, considering the in-
dependent variables’ latest information available Xt = [xt,1, . . . , xt,K ]. The online setting implies
updating the models’ parameters at each time t. While this is inherent to the RLS, the quantile-copula
and the models used for the covariance estimation assume a time-invariant framework. Thus, a sliding
time window (sliding window) approach was considered in order to deal with the time dependency. This
approach will re-estimate the models’ parameters at time t using the latest N values. In this way, the
non-stationarity characteristic of the EL are modelled. Figure A.5 summarizes the simulation setting.

t − N . . . t − 2 t − 1 t . . . t + K

Xt

yt

Xt−1

yt−1

Xt−2

yt−2

. . .

. . .

Xt−N

yt−N

sliding window Forecast period

Values used for parameters estimation

Figure A.5: Graphical representation of the simulation setting for time t.

The simulation setting described previously was used to validate the performance of the proposed
models. The period starting from 2018-01-17 to 2018-02-16 was considered as test period. The selection
aims to validate the results during a winter time, where the volatility of the EL is higher. The time
period starting from the 2017-06-01 to 2018-01-16 was used for the RLS calibration. Moreover, as
described in the introduction, five models were implemented. The first model is called “RLS-free”,
which indicates the use of the RLS method with the correlation structure being estimated directly
from the empirical covariance matrix. The second model is called “RLS-AR”, which indicates the use
of the RLS method with the correlation structure estimated using the maximum likelihood procedure
presented in Section A.2.2.3. The third and fourth models are called “Copula-free” and “Copula-AR”,
which indicates the use of the quantile-Copula method with the same correlation structure connotations.
The fifth model is called “RLS”, indicating the use of the RLS method without correlation structure, it
is used as a reference model. Furthermore, the density function is estimated numerically by using 500
scenarios of Y t at each time t for all models.

A.4 Results
The results section is divided into three parts. The first part validates the underlying assumptions
made for the RLS and quantile-copula. The second part explores the temporal correlation estimation.
Finally, a comparison of the different probability forecasts and their performance is made in the third
part.
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A.4.1 Assumptions check
A.4.1.1 RLS

Figure A.6.a shows ELt, and the expected values exp(Ŷt,1) and exp(Ŷt,12) for the test period in order to
evaluate the goodness of the fit. From the plot, we can observe good model fits, however, Figure A.6.b
shows that the accuracy of the RLS models degrades with the longer prediction horizons. This is ex-
pected due to the less significant effect of the lagged value, the increasing uncertainty in the EL and the
weather forecast for longer lead times. Finally, Figure A.6.c presents the histograms of the residuals ε̂t,1,
ε̂t,12, and ε̂t,24. While one could argue that the residuals are heavy-tailed, they were considered to be
well-behaved. Note that the information presented in Figure A.6 does not show results for all horizons.
However, the results for the remaining ks are similar. Please note that the above analysis is made in
order to validate the RLS residuals behaviour, a comprehensive analysis of the models’ performance is
presented in Section A.4.3.
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Figure A.6: (a) ELt, expected values exp(Ŷt,1) and exp(Ŷt,12). (b) Mean Square Errors (MSE) per k
horizon in the EL domain. (c) Distribution of the ε̂t,1, ε̂t,12, and ε̂t,24 residuals under the
logarithmic transformation.

A.4.1.2 Quantile-copula

The quantile regression was made using a uniform partition of the interval [0.025, 0.975] with steps
h = 0.025 for the τi values s.t.
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0.025 = τ1 < · · · < τi < · · · < τm = 0.975 with τi = ih (A.35)

One strong assumption in the quantile-copula method is that Y t temporal correlation can be captured
by a latent multivariate Gaussian process Zt. In order to do this, previous realisations of the process
have to be mapped into standard Gaussian distributions as described in Equation (A.13). Thus, Fig-
ure A.7 shows QQ-plots of EL realisations under the Gaussian mapping for different time horizons k.
The realisations shown in the plots correspond to the sliding window 2017-11-16 - 2018-02-15. The plots
do not show enough evidence to reject the normality assumption.
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Figure A.7: Normality check of the zt,1, zt,8, zt,16, and zt,24 realisations via QQ-plots for the sliding
window 2017-11-16 - 2018-02-15.

Please note that since the implemented quantile regression is a function of discrete τ values, an ap-
proximation method was needed. A linear interpolation was done in order to obtain the corresponding
realisations under the Gaussian mapping for the nominal values not contained in the definition of τ
given in Equation (A.35).

A.4.2 Estimation of the temporal correlation structure
A.4.2.1 RLS

Let us start with the estimation of the temporal correlation associated with the RLS method. Fig-
ure A.8 shows the εt correlation structure estimated from the full covariance matrix model, and using
an AR model for the sliding window period 2017-11-17 - 2018-01-17. At this particular time t the
optimal AR process corresponds to an AR(3) with α = (0.64, −0.05, 0.05)⊺ and λt,k ∼ N (0, 0.242).
The correlation structures present similar characteristics using the two different models – as seen by
the similar around-diagonal patterns and slightly different off-diagonal values.

A.4.2.2 Quantile-copula

The temporal correlation structure estimated with the quantile-copula, for the sliding window period
2017-11-17 - 2018-01-17, is presented in Figure A.9. The correlation structures of the latent Gaussian
process Zt estimated from the full covariance matrix model and using an AR process are presented
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Figure A.8: Residuals ε̂t correlation estimated a full covariance matrix model (a) and using an AR(3)
process (b). Estimations were made using the sliding window period 2017-11-17 - 2018-
01-17.

in the plots. Results indicate a similar estimated correlation structure under the Gaussian domain for
both models. The estimated correlation structures seem to catch the around-diagonal elements with
smaller correlation present in the off-diagonal elements.
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Figure A.9: Zt correlation estimated using a full covariance matrix model (a) and using realisations
of an AR(3) process (b). Estimations were made using the sliding window 2017-11-17 -
2018-02-17.

A.4.3 Forecast performance comparison
Simulations using the different models were carried out. In Figure A.10 the probabilistic forecast, the
EL measurements, and 5 random scenarios using the different models are shown. The forecast period
starting at t = 2018-02-14 18:00 was selected as an illustrative example. Note that the results are
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presented in the EL original domain, which implies the use of the exponential function on the differ-
ent models’ results. From the RLS models we see an almost symmetric distribution around the mean,
which is expected due the normality assumption made for the residuals. This naturally differs from the
distributions coming from copula models, where we forecast the whole distribution without assuming
symmetry at all. Furthermore, the effect of the temporal correlation models can be seen in the smooth-
ness of the scenarios in comparison with the “RLS” model which presents a more erratic behaviour.
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Figure A.10: Probabilistic forecast, EL realisation and 5 scenarios using the RLS (a), the RLS-free
(b), the RLS-AR (c), the Copula-free (d), and the Copula-AR (e) models. The forecast
period corresponds to 2018/02/14 18:00 - 2018/02/15 18:00.

In order to properly score the performance of the models, a quantitative analysis must be applied. Thus,
the different metrics presented in Section A.2.3 were calculated for the different scenarios generated with
each model. The mean CRPS, total pinball loss sum, PICP, and PINAW per horizon k are presented
in Figure A.11. The plots show a similar performance between RLS models and a similar performance
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between copula models. When comparing the performance between the different methods, it can be
seen that the quantile-copula presents better performance than the RLS for the metrics that evaluate
the probability distribution as a whole (CRPS and pinball loss). However, we can see that for k = 1 the
RLS presents better performance. This is explained by the effect of the lag value included as input in
the models, with the lag value effect degrading with longer prediction horizons. The PICP and PINAW
scores were used to evaluate the reliability and sharpness of the forecast. From the PICP results, we can
see that both methods present a good reliability based on a 90% significance level prediction interval
with the RLS outperforming the quantile-copula. However, the higher reliability of the RLS models
comes at the expense of a considerable bigger prediction interval as can be seen in the PINAW results.
Furthermore, from the PINAW results one might argue that prediction intervals are in average large
(up to 50 of the test period data range for the RLS for longer horizons). However, one should consider
the level of random variation of the process at hand. Predicting with a high degree of sharpness the
consumption of a single house is a complex task if we consider the data characteristics presented in
Section A.3.1 and the longer time horizons.
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Figure A.11: Mean CRPS (a), pinball loss sum (b), mean PICP (c), and mean PINAW (d) per horizon
k for the test period 2018-01-17 - 2018-02-17. Note that the PICP and PINAW are based
on a 90% prediction interval.
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The VarS was also calculated for the test period, Tab. A.1 presents a summary with the mean score
and the percentage of change in comparison to the reference model “RLS”. As expected, the reference
model presents the worst performance given the lack of a description of the temporal correlation in the
model. The proposed methods present a significant performance improvement in comparison with the
reference – with the quantile-copula models presenting the best results.

Mean VarS (kWh)2 VarS % of change
RLS 9.52 -

RLS-free 7.74 -18.68%
RLS-AR 7.79 -18.13%

Copula-free 6.79 -28.76%
Copula-AR 6.82 -28.35%

Table A.1: VarS result for the proposed methods and percentage of change relative to the reference
model (RLS). Calculations were made for the test period 2018-01-17 - 2018-02-17.

With the intention of having a better results interpretation, the VarS was discriminated by the difference
j − i of the vector entries. Figure A.12 presents the VarS results as relative improvement with respect
to the reference model (RLS). Results show that the quantile-copula based method present a better
performance for all j − i differences compared to the RLS based methods. Furthermore, little difference
is seen between models using a similar modelling technique with different correlation models in addition
to the number of parameters used. While in the “free” approach 576 parameters were estimated, in the
“AR” approach only 4 parameters were needed.
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Figure A.12: VarS percentage of change relative to the reference model (RLS) discriminated by dif-
ference j − i of the vector entries. Calculations were made for the test period 2018-01-17
- 2018-02-17.

A.5 Discussion
While multivariate probabilistic forecasting considering temporal correlation is a well-studied subject
in different domains, we identified a lack of studies applying this type of forecast to households’ PLF
problem. In the presented study, two different forecasting methods based on RLS and quantile-copula
modelling techniques were fully analyzed. Furthermore, two different ways of modelling the temporal
correlation structure were investigated as part of the implemented models. The results indicate that
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modelling the temporal correlation has a significant impact on the performance of the forecasting models.

In detail, from Section A.4.1, we see that although in this case the RLS residuals were considered
well-behaved, one could argue that εt,k=1 seems to have more density around the mean than in the
shoulders of the distribution. This may indicate that the RLS is quite precise, but it may be considered
to violate the normality assumption. When analysing the quantile-copula assumptions, the mapping of
the nominal values into standard Gaussian distributions presents a robust behaviour. Thus, it is found
that it is a superior approach for modelling the particular single household EL case presented, and it
is likely that this result generalises to most similar cases – however that should be further studied in
order to reach a conclusion.

Checking the marginal distributions of the different models, we can see that the quantile-copula has
a significant impact as indicated by the different metric results. The quantile regression has a linear
model for each τ value (in this case 39) of each marginal distribution, which allows for a better descrip-
tion of the obviously non-Gaussian distribution of the EL. This is seen in the copula results presented
in Figure A.10, where the distribution adapts according to the input data. In contrast, the RLS models
use one model per marginal distribution and assumes symmetry around the mean. Furthermore, the
results of the performance metrics presented in Figure A.11 indicate a robust behaviour of the presented
methodology. However, the interpretation of the PINAW results could be open to a debate. Although
one could argue that better sharpness could be expected, one have to considered the data characteristics
and the result of other techniques applied to the same and/or similar data. We expect the presented
improvements to carry over to examples with better predictive performance. Eg. data sets with less
randomness as the aggregated EL of several households. Thus, future studies could focus on the appli-
cability and performance of the presented methodology on different phenomena as well as comparing
the methodology to other state-of-the-art modelling techniques on the same and/or similar data sets.

When addressing the estimation of the temporal correlation, the VarS results indicate a significant
impact of modelling the correlation structure, even though the estimation of the correlation was per-
formed using a sliding window approach. Furthermore, the results indicate that there is no significant
difference between modelling the correlation using an AR(p) process and estimating it from the full
covariance matrix model. However, one may argue that the models using the AR(p) process are more
robust given the use of significantly less parameters. Finally, it is noted, creating models that consider
time-dependent correlation structures may represent a significant improvement – an obvious subject for
future studies.

Considering the results, possible future research could also focus on different modelling techniques for
the marginal distributions. Please note that the presented modelling methodology is expected to remain
the same regardless of the modelling techniques used for the marginal distributions. Along with better
models for the marginal distributions, time-dependent models for the temporal correlation are worth
studying. Given that the main focus of this study was to present the modelling methodology and the
temporal correlation modelling impact, a more comprehensive input model selection and an analysis of
the uncertainty produced by the home inhabitants is needed. Future research could involve the impact
of changing the sliding window size, adapting the Fourier series, e.g. to public and non-public holidays.
Moreover, large-scale tests (a test involving data from hundreds of users) of the presented methods will
be needed to confirm the robustness of the models. The large-scale tests should include a more detailed
analysis of the independent variables’ impact especially during different seasons. Even though the need
for a large-scale test is latent, the modelling method presents a significant step towards models ready
for a production setting where the generated ensemble forecasts are used as input for optimising the
EL household needs.
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A.6 Conclusion
In this paper, it was shown how to build multivariate probabilistic models, which consider temporal
correlation to accurately generate ensemble forecasts of the EL of single households. The models use as
inputs a combination of NWPs, and Fourier series harmonics to describe intra-day patterns. Two main
modelling methods were applied: A method based on RLS models for the estimation of the EL expected
value in combination with models for the RLS’s errors to have a full picture of the process’ multivariate
distribution. A second method based on linear quantile regression models and a Gaussian copula to
link the different marginal distribution, thus estimating the process’ multivariate distribution. Results
show that the quantile-copula models present better performance describing the individual marginal
distributions and the temporal correlation compared to the RLS based models.

As part of the developed models, two different models for the estimation of the temporal correlation
were presented. In the first model, the temporal correlation is estimated using a full covariance matrix
model. The other uses a likelihood method to estimate an AR(p) process which describes the temporal
correlation. Results show that there is not a significant difference between the two modelling approaches.
This implies that the estimation of the temporal correlation could be done using a full covariance model,
avoiding the extra computational time inherent to the likelihood calculation. However, in cases where
the robustness of the results is a greater concern, the approach using a AR model would be more suit-
able. Finally, the simulation study showed that all of the models present a good performance and could
be developed to be production ready in smart HEMS.
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B.1 Introduction

Economic evaluation of stochastic home energy management
systems in a realistic rolling horizon

Julian Lemos-Vinasco1 2, Amos Schledorn 1, S. Ali Pourmousavi3, Daniel Guericke1

Abstract

Home energy management systems (HEMSs) are expected to become a crucial part of future smart
grids. However, there is a limited number of studies that comprehensively assess the potential
economic benefits of HEMSs for consumers under real market conditions and which take account of
consumers’ capabilities. In this study, a new optimization-based HEMS controller is presented to
operate a photovoltaic and battery system. The HEMS controller considers the consumers’ electrical
load uncertainty by integrating multivariate probabilistic forecasting methods and a stochastic
optimization in a rolling horizon. As a case study, a comprehensive simulation study is designed to
emulate the operation of a real HEMS using real data from nine Danish homes over different seasons
under real-time retail prices. The optimization-based control strategies are compared with a default
(naive) control strategy that encourages self consumption. Simulation results show that seasonality
in the consumers’ load and electricity prices have a significant impact on the performance of the
control strategies. A combination of optimization-based and naive control strategy presentskk the
best overall results.

B.1 Introduction
As one of the major smart grid technologies, home energy management systems (HEMSs) are expected
to play a key role managing energy consumption at the residential level by reacting to real-time prices
and/or CO2-based signals. In Europe, this coincides with efforts of electricity market operators and
policy makers to push for a wider adoption of real-time tariffs for residential consumers that reflect the
true condition of the power system and provide cost-savings for consumers [92, 34].

High expectations have been placed on HEMSs by many industry stakeholders given the systems’ po-
tential to provide a dynamic combination of production, storage, and flexible demand [77, 42, 49].
Therefore, studies on this topic have emerged from a variety of disciplines over the last decade, focusing
on different components of the HEMSs. Typically, HEMSs rely on a combination of smart home tech-
nologies (SHT) such as smart meters, sensing devices, communication hardware and protocols, smart
appliances, controllers, and optimization techniques [12]. The operation and coordination of these com-
ponents entails technical difficulties, especially for SHT that depend on manual intervention from end
users. This has led to a literature bias towards SHT solutions that require minimal consumer interven-
tion [79].

In this regard, several studies have proposed sophisticated technical solutions by assuming a direct con-
trol of several SHT. These solutions have been used for direct control of the heating systems of homes
and buildings, smart appliances, RESs, batteries, and electrical vehicle chargers (in both grid-2-vehicle
and vehicle-2-grid modes), with some parameters being defined by the consumer [127, 103]. Further-
more, it is important for HEMSs to consider complex system features such as the multi-seasonality,

1Technical University of Denmark, Department of Applied Mathematics and Computer Science, Lyngby, Denmark
2Watts S/A, Section of Research and Development, Svinninge, Denmark
3The University of Adelaide, School of Electrical and Electronic Engineering, Adelaide, Australia
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non-stationarity, and stochasticity of RESs and consumers’ EL [72, 26]. Therefore, recent studies have
included several of these features. In [108], a stochastic HEMS was proposed that considered consumers’
satisfaction cost and fatigue towards demand-response signals. The authors of [129] proposed a two-
stage stochastic model with scenarios for wind power and electric vehicles’ availability. In [21], a similar
approach is used with additional considerations for the battery degradation cost. Other studies apply
rolling horizon approaches. Such approaches provide an opportunity to re-optimize the problem when
new information about stochastic elements are available, for example, PV forecast [93, 28].

The studies in the literature on control strategies for HEMSs display several similarities. First, the
studies assume direct control over different SHT (controlled laboratory conditions and/or simulations).
Second, most studies are mainly oriented towards demand-response programs by assuming access to
the wholesale market electricity prices (day-ahead and/or intra-day prices). Third, they present a cost-
benefit comparison for a limited time period (ranging from days to weeks), typically in cold seasons
with a passive consumer (consumer without SHT) as the baseline. In contrast to these publications,
the results of field studies and trial projects have questioned the real benefits that consumers will be
able to perceive. Results from a nine-month field trial with ten households in the UK concluded that
“there is little evidence that SHT will generate substantial energy saving and, indeed, there is a risk
that they may generate a form of energy intensification” [50]. These observations are aligned with the
findings in [86], where in a trial with 40 households with basic SHT, minimum economic benefits were
reported, with some households reporting energy intensification. However, the setups of these studies
used smart appliances requiring manual consumer interventions. Moreover, [85] suggest that very lim-
ited economic benefits can be expected from these types of setups because of the inherent inflexibility
of some consumers.

Although the above studies indicate a need for more research on SHT that require manual intervention
from consumers, the main body of literature assumes direct access and control of most SHT elements.
This is a strong assumption that may distort the studies’ results [112]. Furthermore, the results mainly
describe technical aspects with assumptions that may not work under current market rules. For in-
stance, in [21, 93, 127], it is not clear if the electricity prices used correspond to prices accessible to
consumers, or they assumed that consumers have access to the wholesale electricity markets, which is
not possible due to the small size of individual consumers’ load and RESs in the European markets [45].
Assuming access to wholesale market prices disregards the fact that consumers are subject to taxes,
levies, and fees, which may have a significant impact on the results. Additionally, the cost comparisons
are made with a passive consumer as baseline, disregarding the fact that simple self-consumption con-
trol strategies have proved to bring significant cost reductions [6].

On the basis of the above discussion, one can argue that there is a need for studies that assess the
economic potential of HEMSs under system conditions and market rules accessible to the residential
consumers. These conditions must include a realistic HEMS setup, end-consumer prices, cover a sub-
stantial period of time consisting of different seasons, and compare the results to self-consumption
control strategies.

We offer a comprehensive economic assessment of a HEMS under realistic consumer and electricity
market conditions. We propose a HEMS control strategy that uses a stochastic optimization framework
in a rolling horizon approach and probabilistic forecasts. In particular, the HEMS setup is modeled
as a stochastic MILP where the uncertainty of the consumers’ EL is considered using two different
multivariate probabilistic forecast methods. Moreover, the rolling horizon approach is used to allow the
possibility of re-optimizing according to the latest information available to the system. The data used
in the case study corresponds to nine households located in Copenhagen, Denmark, together with real
hourly electricity retail prices offered by a utility company. Furthermore, a HEMS setup with only a PV
and battery system is considered to emulate the possibilities that most residential consumers have at
present. Although electric vehicles are a key element of the HEMSs of the future, the adaption electric
vehicles is still low in Denmark [68] and therefore they were not included in the analysis. Operational
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and cost results of the proposed optimization-based strategies are compared with a passive consumer
as well as a self-consumption (naive) control strategy.

Overall, the results indicate that a combination of an optimization-based and a naive control strategy
presents a higher economic benefit for residential consumers throughout the year. Key research findings
are summarized below:

1. The stochasticity of the consumers’ EL has a significant impact on the performance of the
optimization-based control strategies.

2. Strong seasonality in consumption patterns shows a significant effect on the assessment and selec-
tion of the control strategies, with a self-consumption strategy (naive control) outperforming the
optimization-based controllers in spring and summer.

3. Under current market rules, residential consumers are not sufficiently incentivized to actively
participate in the electricity market besides covering their electricity demand.

This paper starts by presenting the HEMS setup and the mathematical details of the implemented
models in Section B.2. Next, the data and the case study are explained in Section B.3. The simulation
results are presented in Section B.4, which includes a comparison between different control strategies,
and a comprehensive cost analysis. Finally, a discussion of the findings and perspectives for future work
are outlined in Section B.5. The paper is concluded in Section B.6.

Nomenclature
Sets

T Set of time steps t
S Set of scenarios s

Parameters

Ds,t Electricity load in scenario s ∈ S and period t ∈ T [kWh]
λ+

t Electricity purchase cost in period t ∈ T [DKK/kWh]
λ−

t Electricity sale price in period t ∈ T [DKK/kWh]
P Vt PV production in period t ∈ T [kWh]
P V peak PV system peak production [Wh]
Sini Initial battery SoC [Kwh]
Smax Battery maximum storage capacity [kWh]
Smin Battery minimum storage capacity [kWh]
Bin Battery charge limit per period [kW]
Bout Battery discharge limit period [kW]
πs Probability of scenario s ∈ S
ϕDC/AC Efficiency factor when inverting power flows from direct current (DC) to alternate current

(AC)
ϕAC/DC Efficiency factor when converting power flows from AC to DC
η+ Battery charge efficiency factor
η− Battery discharge efficiency factor
M Big M value define as M = max (P Vt) + max (Ds,t) + Bin

Variables

x+
s,t ∈ R+ Electricity bought from the electricity retailer in scenario s ∈ S and period t ∈ T [kWh]

x−
s,t ∈ R+ Electricity sold to the electricity retailer in scenario s ∈ S and period t ∈ T [kWh]

gD
s,t ∈ R+ Power from the grid used to satisfy the demand in scenario s ∈ S and period t ∈ T [kW]

gb
s,t ∈ R+ Power sent from the grid to the battery in scenario s ∈ S and period t ∈ T [kW]

b+
s,t ∈ R+ Battery charge power flow in scenario s ∈ S and period t ∈ T [kW]

b−
s,t ∈ R+ Battery discharge power flow in scenario s ∈ S and period t ∈ T [kW]

bg
t,s ∈ R+ Power delivered from the battery to the grid in scenario s ∈ S and period t ∈ T [kW]

bD
t,s ∈ R+ Power from the battery used to satisfy the demand in scenario s ∈ S and period t ∈ T [kW]
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pvg
t ∈ R+ Power delivered directly from the PV system to the grid in period t ∈ T [kW]

pvD
t ∈ R+ Power from the PV system used to satisfy the demand in period t ∈ T [kW]

pvb
t ∈ R+ Power from the PV system to the battery in period t ∈ T [kW]

ss,t ∈ R+ Battery SoC in scenario s ∈ S and period t ∈ T [kWh]
zs,t ∈ {0, 1} Binary variable, indicating if electricity was purchased or sold to the grid for scenario s ∈ S

and period t ∈ T
ys,t ∈ {0, 1} Binary variable, indicating if the battery is charging or discharging for scenario s ∈ S and

period t ∈ T

Table B.1: MILP mathematical nomenclature

B.2 Modeling and optimization of HEMSs

B.2.1 HEMS setup
The HEMS setup considered in this paper reflects the current network conditions in Denmark that
residential electricity consumers with access to a PV and a home battery system face. Moreover, a
minimal control approach is considered for the HEMS model. This means that the HEMS has direct
control of the home battery, but it does not have direct control over the home appliances. A graphical
overview of the setup is given in Figure B.1.

Household 

Load

Grid 𝑔𝐷 + 𝑝𝑣𝐷 + 𝑏𝐷 𝜙𝐷𝐶/𝐴𝐶

(𝑏𝑔+𝑝𝑣𝑔)𝜙𝐷𝐶/𝐴𝐶

𝑔𝐷 + 𝑔𝑏

(𝑔𝑏𝜙𝐴𝐶/𝐷𝐶 + 𝑝𝑣𝑏)𝜂+ (𝑏𝑔+𝑏𝐷)/𝜂− 𝑝𝑣𝐷 + 𝑝𝑣𝑔 + 𝑝𝑣𝑏

DC connections AC connections

Battery PV system

Inverter

HEMS

Figure B.1: Schematic diagram of the home’s setup showing the AC and DC connections. The differ-
ent average power flow terms, which are used in the mathematical representation of the
system (Section B.2.2), are also included.

The electricity generation from the PV system can be used to charge the home battery, to meet the EL
demand, or can be exported to the grid. The electricity losses due to AC/DC and DC/AC conversions
are included in the formulation. We assume that the electricity retailer communicates price information
to the HEMS and that the HEMS has access to NWPs. Furthermore, NWPs are input to PLF models
used for the creation of EL scenarios. The data of real consumers in Denmark is used, however, these
consumers did not have PV installations. Thus, a simulation model for PV production is implemented
and presented in Section B.2.4. The remainder of this section introduces the mathematical model
formulation for the above setup.

B.2.2 HEMS optimization model
The HEMS controller is formulated as a stochastic MILP [13], where the EL is the only uncertain
parameter, i.e. having varying realizations across scenarios. The MILP in (B.1) minimizes the expected
cost for fulfilling the EL in all scenarios S and periods T . The main decision variables are the flows
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between the PV, grid, and battery components. The model considers several time periods due to the
temporal interdependence imposed by the battery SoC in a rolling horizon manner. This means that,
when applying the solution to the HEMS, only the optimal solution for the first time period is applied
in practice. Decisions in subsequent periods are only considered to find optimal decisions for the first
time step. This allows for re-optimization and taking relevant decisions with updated forecasts.

min
x−

s,t
,x+

s,t

∑
s∈S

∑
t∈T

πs(λ+
t x+

s,t − λ−
t x−

s,t) (B.1a)

subject to

Ds,t = (gD
s,t + (pvD

t + bD
s,t)ϕDC/AC)∆t ∀ t ∈ T , s ∈ S (B.1b)

x+
s,t = (gD

s,t + gb
s,t)∆t ∀ t ∈ T , s ∈ S (B.1c)

x−
s,t = (bg

s,t + pvg
t )ϕDC/AC∆t ∀ t ∈ T , s ∈ S (B.1d)

x−
s,t ≤ Mzs,t ∀ t ∈ T , s ∈ S (B.1e)

x+
s,t ≤ M(1 − zs,t) ∀ t ∈ T , s ∈ S (B.1f)

P Vt = (pvg
t + pvD

t + pvb
t )∆t ∀ t ∈ T (B.1g)

b+
s,t = (gb

s,tϕ
AC/DC + pvb

t )η+ ∀ t ∈ T , s ∈ S (B.1h)
b−

s,t = (bg
s,t + bD

s,t)/η− ∀ t ∈ T , s ∈ S (B.1i)
b+

s,t ≤ Bin ∀ t ∈ T , s ∈ S (B.1j)
b−

s,t ≤ Bout ∀ t ∈ T , s ∈ S (B.1k)
b+

s,t ≤ Mys,t ∀ t ∈ T , s ∈ S (B.1l)
b−

s,t ≤ M(1 − ys,t) ∀ t ∈ T , s ∈ S (B.1m)
ss,t = Sini + (b+

s,t − b−
s,t)∆t ∀ s ∈ S, t = 1 (B.1n)

ss,t = ss,t−1 + (b+
s,t − b−

s,t)∆t ∀ t ∈ T , s ∈ S, t > 1 (B.1o)
Smin ≤ ss,t ≤ Smax ∀ t ∈ T , s ∈ S (B.1p)
b+

s,t = b+
j,t , b−

s,t = b−
j,t ∀s, j ∈ S, s ̸= j, t = 1 (B.1q)

ss,t = sj,t ∀s, j ∈ S, s ̸= j, t = 1 (B.1r)

The objective function (B.1a) minimizes the expected cost of electricity. Furthermore, constraint (C.1d)
ensures that the consumer’s demand is satisfied in all scenarios. Electricity purchase and sale quantities
are set in constraints (B.1c) and (B.1d). Constraints (B.1e) and (B.1f) ensure that electricity sale and
purchase are mutually exclusive. The PV power balance is set in constraint (B.1g) such that the total
generation meets the sum of PV production to grid, demand and battery. Constraints (B.1h), (B.1i),
(B.1j), and (B.1k) model the physical battery behaviour in terms of power flow. Simultaneous charging
and discharging of the battery is disallowed in constraints (B.1l) and (B.1m). The evolving SoC is mod-
elled by constraints (B.1n) and (B.1o), while constraint (B.1p) limits the SoC to the battery capacity.

Since it is possible to re-optimize the solution after one time period, and the energy exchange with the
grid is unrestricted, we can frame the problem as a two-stage stochastic problem. The first stage of
the problem defines the operational schedules of the battery in the first period, as given by constraints
(B.1q) and (B.1r). Thus, the battery charging and discharging in the first time period needs to be the
same for all scenarios.

B.2.3 Electrical load forecast
The HEMS optimization model presented in Section B.2.2 uses EL scenarios as input. The scenarios
must consider the temporal correlation inherent to the EL. Thus, the multivariate PLF methods
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presented in [72] are used in this paper to generate the required scenarios. The methods use either
RLS with a full covariance model for the residuals or the quantile-copula with a full covariance model
of the temporal correlation under the Gaussian domain and are referenced in [72] as RLS-Free and
Copula-Free.

B.2.4 PV simulation
Another key element of the HEMS is the PV system. In this study, PV generation data were not
available. Thus, a simulation approach is used to estimate a rooftop PV production. The simulation
model is based on the guidelines provided in the energy data catalogue by the Danish Energy Agency
[24]. The report suggests that electricity produced by a PV system should be estimated as

P Vt = P V peak · GHIt

1000 · P V tf · P V pr (B.2)

where PV peakcorresponds to the PV production under laboratory standard test conditions (1000 W/m2

irradiation with a cell temperature of 25°C), PV tf is the PV transposition factor and PV pr is the PV
performance ratio. Moreover, the GHIt (global horizontal irradiation) values are calculated using the
deterministic cloud cover to GHI model described in [69] and given by

GHIt = GHICS
t · [0.35 + 0.65 · (1 − CC)] (B.3)

where cc is the normalized cloud coverage (0 = clear, 1 = overcast) that is obtained from a NWP model,
and the GHICS

t is the clear sky GHI that is estimated by the clear sky methods provided by the pvlib
Python package [53].

B.3 Case study
In this section, we describe the input data used by the HEMS models presented in Section B.2.1, and
the technical details of the simulation setup used to calculate the results.

B.3.1 Electrical load
The EL demand profiles of nine residential consumers are shown in Figure B.2. The consumption
data results from smart meters sampled at an hourly resolution for the year 2020. Information given
about these consumers includes the number of inhabitants, the approximate house location given by
its longitude and latitude coordinates, and the fact that they use heat pumps as heating technology.
The use of heat pumps explains the seasonality of the EL, i.e., a significantly higher consumption
during winter in comparison to summer (see Figure B.2). Although not visible in yearly plots, intra-day
patterns can be found on a closer inspection of the data (see Figure B.3). These patterns may be
explained by the daily routine activities of the tenants, e.g., having breakfast and dinner at regular
times. These factors together with the data presented in Section B.3.2 were considered when building
the PLF used for the scenario generation of each consumer load demand. While it is out of the scope
of this paper to describe and analyze the PLF methods, they are described in detail in [72].

B.3.2 Numerical weather prediction
Both the PV simulation model (Section B.2.4) and the PLF methods (Section B.2.3) rely on the NWP
values as their primary input parameters. Here, the weather forecast provided by the OpenWeatherMap
service at an hourly resolution was used. The NWP data are described in [90]. In particular, the am-
bient temperature and solar irradiation were used for the PLF and PV models. Please note that the
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Figure B.2: Consumers’ electricity consumption for the time period 2020-01-01 to 2020-12-31.

solar irradiation signal was derived using the expected cloud coverage from the NWPs in combination
with the Global Horizontal Irradiation (GHI), as described in Section B.2.4.

The EL and NWP data are combined to produce a coherent dataset used for the HEMS. An example
week for one user is shown in Figure B.3. Please note that the NWP is updated every hour with the
forecast values covering several hours ahead (k horizons). The NWP for one hour ahead k = 1 and
eighteen hours ahead k = 18 are presented in Figure B.3 (b) and (c).
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Figure B.3: Consumer 1’s electricity consumption (a), ambient temperature (b), and solar irradiation
(c) for the time period 2020-04-05 to 2020-04-13.
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B.3.3 Electricity prices
Given the high penetration of smart meters in Denmark, it is common for electricity retailers to offer
hourly prices to residential consumers. Typically, this type of tariff is derived from the day-ahead (DA)
wholesale electricity market prices, also known as ELSPOT [44]. In the ELSPOT market, different
zones/regions have their unique DA prices. In Denmark, two price zones zones exist: Western Denmark
(DK1) and Eastern Denmark (DK2) [43]. To obtain the electricity prices for the residential consumers,
retailers add taxes, levies, and fees to the DA prices. In this study, actual retail electricity prices pro-
vided by the Danish electricity retailer Watts are used [123]. All consumers are located in the greater
Copenhagen area, which is a part of DK2 region. Figure B.4 shows the retailer prices and DA electric-
ity prices for the period of 2020-01-01 to 2021-12-03. The current Danish regulations allow residential
consumers to sell their surplus electricity back to the grid. The feed-in-tariff is decided by the retailers.
Most of them offer the ELSPOT price adjusted for associated operational fees as feed-in-tariff to resi-
dential consumers, as described by [116].

In our case study, Watts electricity prices are used as real-time price paid by the consumers to purchase
electricity, while DA prices are used as feed-in-tariff for selling. This corresponds to the parameters λ+

t

and λ−
t , respectively (see Section B.2.2).
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Figure B.4: Retailer prices and DA electricity prices for the time period 2020-01-01 to 2021-12-03 for
DK2.

Please note the differences in prices in 2020 and 2021. On the one hand, a tariff regulation change
was introduced in 2021 that stipulates a low (between 00.00 to 17.00 and 20.00 to 00.00) and a peak
(between 17.00 to 20.00) electricity distribution fee from October to March [98]. On the other hand,
2021 was a year with unusual electricity prices, i.e., high prices and high volatility [19], as can be seen
in the final quarter of 2021 in Figure B.4.

The HEMS setup and formulation allows cost reduction by selling excess electricity (excess electricity
from PV), trading (buy at low-price hours to sell at high-price ones), and load shifting. This can be
done by exploiting price volatility. Thus, for further reference, the mean and standard deviation of
the prices are presented in Table B.2. Note that the statistics are only presented for January, April,
July, and October of 2021. These are the months that are included in the simulation setup described
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in Section B.3.4. Please note that at present, consumers are mainly passive users of electricity, which
has no significant effect on prices as they are price-takers [55].

Time Purchase price Selling price
Period Mean SD Mean SD

January 2020 1.943 0.164 0.206 0.074
January 2021 2.085 0.230 0.379 0.126

April 2020 1.797 0.107 0.129 0.086
April 2021 2.008 0.120 0.357 0.160
July 2020 1.858 0.144 0.191 0.115
July 2021 2.330 0.198 0.615 0.159

October 2020 1.921 0.193 0.202 0.118
October 2021 2.624 0.780 0.810 0.591

Table B.2: Purchase and selling prices mean and standard deviation (SD) for January, April, July
and October.

B.3.4 Simulation setup
The simulation study is designed to resemble a real-time application. The aim of the simulation is
to optimize the battery’s operational setpoints for the next hour when considering a 24-hour horizon.
Therefore, a rolling horizon approach is used, which means that the PLF, PV simulation, and HEMS
optimization will be updated every hour to determine the new operation schedules. A graphical rep-
resentation of the rolling horizon simulation setting at time t is presented in Figure B.5. Please note
the PLF models are re-fitted using t − N historical values at each time step t. Thus, more accurate
prediction can be expected by using the latest available information from the forecasting models.

t − N . . . t − 2 t − 1 t t + 1 . . . t + 24

Electrical load

Numerical weather predictions
Electricity prices

PLF, PV, and

Operational
set pointsSliding window for forecast

Values for PLF estimation Rolling horizon for optimization

Figure B.5: Graphical representation of the simulation setting for time t.

Four months of data (January, April, July and October) are selected as representative for seasonal
variations in order to analyse one year of operation. Moreover, the prices used in the simulation are the
prices in DK2 from 2021. This is motivated by the regulation changes introduced in that year. Please
note that the consumers’ EL data were only available for 2020. Therefore, we used consumers’ data
from 2020 with prices from 2021 in our simulations, assuming that the EL in the selected months of
2020 is likely to be similar to the EL in the same months in 2021 and the fact that residential consumers
are price-takers.

B.4 Simulation results
In this section, we compare consumers’ cost savings when using different control strategies. Two such
strategies are considered: a naive controller and an optimization-based controller. A naive controller
refers to a consumer with PV and battery system without a HEMS. This controller maximizes self
consumption by only selling electricity to the grid when the battery is fully charged. The naive controller
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uses neither forecasting nor optimization methods and it is usually the default controller in the HEMS
setup presented in Section B.2.1 [6]. The optimization-based controller refers to a consumer using a
HEMS with optimization and forecast capabilities as presented in this paper. With this in mind, the rest
of the results section is organized as follows. In Subsection B.4.1, we determine the most suitable PLF
method for the optimization-based controller by comparing the performance of the proposed HEMS
optimization model using different forecasting methods. A comparison between the best optimization-
based controller and a naive controller is presented in Subsection B.4.2. Results indicate the optimal
strategy is a combination of a naive and a optimal controller. This is presented in detail in Subsection
B.4.3.

B.4.1 Comparison of different optimization-based controllers
The PLF methods presented in [72] allow different combinations of forecasting and optimization methods.
This section discusses the performance of such combinations in order to select the best method. The
analyzed combinations are the following:

• RLS-SP: the proposed HEMS optimization using 100 scenarios generated by the RLS forecasting
method.

• RLS-EV: the proposed HEMS optimization using the expected value of the 100 scenarios gener-
ated by the RLS forecasting method.

• Copula-SP: the proposed HEMS optimization using 100 scenarios generated by the Copula
forecasting method.

• Copula-EV: the proposed HEMS optimization using the expected value of the 100 scenarios
made by the Copula forecasting method.

• PI-RH: perfect information (PI) in a rolling horizon, i.e, using the proposed HEMS optimization
assuming that the consumer’s load is known. This method is not applicable in practice, since the
PI-RH method assumes a perfect knowledge of the future demand. But it can be used to give
performance bounds on the optimization in the other settings.

Please note that “EV” methods correspond to a deterministic version of the HEMS stochastic model
presented in Section B.2.2. This allows us to assess the impact of modeling the EL uncertainty by com-
paring with “SP” methods. Table B.3 presents the total electricity cost for the simulated months for the
different combinations of forecasting and optimization methods. Moreover, the table reports the cost
relative to the theoretical approach PI-RH expressed as percentages. The simulation results indicate
that the optimization using scenarios-based stochastic programming outperforms the other solutions for
all consumers, with the RLS-SP being the best method. It presents the smallest difference to the PI-RH.
Considering that we re-optimize the solution after one time period, these results are aligned with the
results in [72]. In [72], although the Copula-based forecast presented an overall better performance,
the RLS-based forecast showed higher accuracy for the initial time period. This may indicate that the
performance of the optimization depends to a high degree on the precision of the forecast in the initial
time step.

A cost comparison between the different methods on a monthly level is shown in Figure B.6. The figure
shows the additional cost incurred in each method in comparison to the PI-RH case as our baseline.
Similar results as the aggregated results presented in Table B.3 are seen, where the RLS-SP and Copula-
SP methods outperform the deterministic methods in every season. Moreover, the simulation results
indicate that in some cases, the solutions found through SP methods tend to be more robust than those
determined assuming perfect information. This can be seen in the RLS-SP results for consumer 1 in
July, where RLS-SP solutions outperform those of PI-RH. This may seem counterintuitive considering
that PI-RH assumes perfect knowledge of uncertain EL, however, the PI is limited by the 24 hours
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Consumer PI-RH Copula-EV Copula-SP RLS-EV RLS-SP
no. DKK % DKK % DKK % DKK % DKK %

1 5798.61 - 6220.66 7.28 5976.54 3.07 6143.84 5.95 5895.99 1.68
2 12142.80 - 12887.78 6.14 12553.15 3.38 12745.82 4.97 12438.41 2.43
3 6689.17 - 7259.67 8.53 6977.89 4.32 7398.95 10.61 6984.19 4.41
4 2071.31 - 2438.35 17.72 2210.56 6.72 2514.62 21.40 2183.16 5.40
5 1247.45 - 1638.04 31.31 1445.67 15.89 1695.82 35.94 1402.20 12.41
6 7435.47 - 8322.06 11.92 7887.49 6.08 8254.65 11.02 7824.03 5.23
7 9294.46 - 9945.68 7.01 9610.14 3.40 9903.44 6.55 9557.67 2.83
8 3157.25 - 3547.44 12.36 3312.33 4.91 3639.82 15.28 3316.83 5.05
9 6616.65 - 6970.68 5.35 6752.09 2.05 6954.68 5.11 6715.13 1.49

Table B.3: Total cost of the optimization and forecasting methods. All percentages are calculated
relative to the PI-RH method.

in the rolling horizon. This behavior may indicate that considering the EL stochasticity may lead to
more robust solutions towards the unpredicted EL and/or the optimization may benefit from a longer
forecasting horizon.

0

30

60

90

1 2 3 4 5 6 7 8 9

Ja
n 

(D
K

K
)

0

100

200

1 2 3 4 5 6 7 8 9

A
pr

 (
D

K
K

)

0

100

200

1 2 3 4 5 6 7 8 9
Consumer

Ju
l (

D
K

K
)

0

100

200

300

1 2 3 4 5 6 7 8 9
Consumer

O
ct

 (
D

K
K

)

method copula_EV copula_SP RLS_EV RLS_SP

Figure B.6: Additional cost by forecast and optimization framework in comparison with the PI-RH
as baseline.

B.4.2 Comparison of naive and optimal control
In this section, we present the operational results for the optimization-based control method (RLS-SP)
and the naive controller. Figure B.7 shows the total load, total PV production, cost savings relative to
the naive controller, total amount of electricity imported from the grid to the battery, the total power
exported from the battery to the grid, and the average battery SOC for each consumer.

From the cost saving plots, we can observe significant differences between seasons. The RLS-SP outper-
forms the naive controller in winter (Jan) and autumn (Oct). In January, the additional cost savings
can be explained by more load shifting. Here, the lower PV production available for self-consumption
incentivizes more transactions with the grid, which can be seen by the higher grid-to-battery energy
flow. Note that the battery-to-grid energy flow is non-significant. This indicates the optimization is
taking advantage of the price volatility (see Table B.2) by charging during low-price hours in order
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Figure B.7: Monthly cost and operation results for the naive controller and RLS-SP.

to use the stored electricity during high-price hours. October yields the highest cost savings of the
simulated months. This is achieved by exploiting the high price volatility (the highest price volatility
among the simulated months) in a similar fashion to January.

In contrast, spring (Apr) and summer (Jul) show the lowest cost savings. In these months, the RLS-
SP controller is outperformed by the naive strategy. In particular, April presents a considerable EL
with high PV production but low price volatility (see Table B.2). This implies that the optimization
minimizes cost by selling excess PV generation, which could be a sub-optimal strategy in the long-
term given the gap between purchase and sale electricity prices (see Figure B.4). In this case, the
daily rolling optimization horizon might not be able to capture the longer-term effects and saving PV
generation for posterior use will benefit the consumer the most. Furthermore, this argument matches
the behavior seen in July, where the low EL, high PV production, and low price volatility leave almost
no space for additional cost savings relative to the naive approach. Therefore, under these conditions,
a naive approach is able to minimize consumers’ costs in the long-term, and the application of more
sophisticated optimization-based methods could have a negative impact on cost minimization.
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B.4.3 Combination of naive controller and optimization
As we have seen previously, the naive controller (which maximizes self consumption) performs better
than the optimization-based methods in the presence of high PV production and low EL. This behavior
could be explained as a result of the price structure and volatility, and the implications of the finite opti-
mization horizon. The optimization minimizes short-term cost by selling excess electricity, since it plans
no more than 24 hours ahead. However, sale prices are very unfavorable in comparison with purchase
prices, which makes self-consumption a better long-term strategy. Thus, one option could be to have a
HEMS switching between a naive controller in the spring and summer and to use an optimization-based
control strategy in the autumn and winter seasons. Hence, a full cost comparison between a passive
consumer (without PV and battery), a naive controller, and the proposed strategy (Naive+RLS-SP) is
presented in Table B.4. The results show that significant cost savings can be achieved in the naive and
the proposed strategy in comparison with a passive consumer. In particular, the simulation results show
that consumers with higher EL benefit most from installing the hardware and controllers. Moreover,
the differences between the two control strategies show that the combined controller (Naive+RLS-SP)
provides on average 8.05% additional savings for consumers with higher load (excluding consumers 4
and 5 with the lowest load of all consumers) in comparison with the naive controller, as can be seen in
detail in Table B.5.

Consumer Passive Naive Naive+RLS-SP
no. DKK % DKK % DKK %

1 9219.20 - 6015.12 34.75 5825.17 36.81
2 16734.67 - 12715.96 24.01 12248.38 26.81
3 10799.02 - 6972.54 35.43 6735.15 37.63
4 5353.58 - 2140.78 60.01 2094.73 60.87
5 3901.01 - 1281.02 67.16 1332.69 65.84
6 11208.06 - 7827.33 30.16 7544.91 32.68
7 13370.53 - 9695.89 27.48 9333.01 30.20
8 6455.34 - 3331.51 48.39 3184.64 50.67
9 10806.51 - 6935.86 35.82 6563.42 39.26

Table B.4: Total cost of the simulated months for passive consumers, and naive and optimal
(naive+RLS-SP) control strategies. All percentage values are calculated relative to the
passive consumers’ cost.

Consumer No. Naive Naive+RLS-SP Difference %

1 3204.09 3394.03 189.95 5.93
2 4018.70 4486.29 467.59 11.64
3 3826.48 4063.87 237.39 6.20
4 3212.80 3258.85 46.05 1.43
5 2619.99 2568.32 -51.67 -1.97
6 3380.73 3663.15 282.42 8.35
7 3674.64 4037.51 362.87 9.88
8 3123.83 3270.70 146.88 4.70
9 3870.65 4243.09 372.44 9.62

Table B.5: Naive and optimal control strategies (naive+RLS-SP) total cost savings and their difference
in value and percentage.

B.5 Dicussion
The simulation results from Section B.4.1 show that EL uncertainty has a significant impact on the
economic performance of the optimization-based strategies, with the stochastic methods outperforming
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the deterministic methods. While it appears clear that including EL uncertainty increases the con-
sumers’ economic benefits, the lack of access to real PV data limits the ability to study the impact of
modeling the uncertainty inherent to the PV generation on the system operation. To consider the PV
uncertainty, one needs to account for the correlation between the PV and EL time series, which could
be technically challenging in a multivariate setting. This could be a topic for future research.

A comparison between naive and optimal control strategies, presented in Section B.4.2, shows that the
seasonal variations and the electricity price structure have a significant impact on the performance of
the control strategies. During cold seasons with low PV production and higher EL, an optimization-
based strategy is preferable in order to exploit price volatility by load shifting, charging the battery at
low-price hours and discharging it during high-price hours. In warmer seasons with low price volatil-
ity, lower EL and PV make the naive strategy a better option. This could be explained by the fact
that under these conditions, a long-term self-consumption strategy might be more profitable, which the
optimization-based controller fails to capture due to its finite optimization horizon. Please note that
this dynamic is tied to the price structure, where high differences between purchase and sale prices do
not incentivize consumers to trade electricity. This may have a direct impact on the consumers in stud-
ies where market entities such as aggregators are present. Under current market conditions, aggregators
will have to offer prices that surpass the retail prices. Otherwise, the consumers will not participate
in the aggregation programs. Thus, studying different business models for aggregators under realistic
price structures could be a line of future research.

The simulation results presented in Section B.4.3 indicate that the overall best control among the stud-
ied strategies is a combination of a naive and optimization-based controllers. This is shown by the
proposed Naive+RLS strategy that outperforms the naive controller by 8.05% on average (excluding
users 4 and 5). Please note that these extra savings result from a software update on the default system
controller, which does not incur additional cost to the consumers. Additionally, the results obtained
for customers 4 and 5 suggest a self-consumption strategy benefits the consumer the most when the EL
is low, making more elaborated control strategies unnecessary in practice.

As smart grids continue to develop and price schemes evolve into a real-time structure, the proposed
setup and control strategy shows that there is an incentive for consumers to adopt setups such as the one
presented in this paper. Moreover, if we consider that a higher energy demand and a higher penetration
of RES is expected in the residential sector, we could argue that these types of automation system
might become a much needed tool for consumers to protect themselves against higher price volatility.
Furthermore, although the proposed HEMS omits elements such as direct control of smart appliances
and electric vehicles, we would expect their inclusion to bring higher savings for the consumer, which
is a further element that could be explored in future research. While the economic results presented
here show potential economical advantages of HEMS, the calculations were made for 2021 only. Future
scenarios of electricity prices could be included and analyzed in future research in this area.

B.6 Conclusion
In this paper, a HEMS setup tailored for residential consumers under current electricity market rules in
Denmark was presented. The HEMS was formulated as a MILP using stochastic programming, where
the EL is treated as an uncertain parameter, which is modelled by multivariate probabilistic forecast
models. Moreover, the HEMS formulation allows selling surplus electricity back to the grid depending
on the price incentives and the re-optimization of the solution in a rolling horizon fashion.

The simulation results suggest that the optimization-based controllers, which consider the EL uncer-
tainty, outperform their counterparts that consider only the expected value of the EL for all users and
seasons investigated. Specifically, by comparing the RLS-SP controller with the naive one, we found
that the seasonality of the data and prices have a profound impact on the cost-savings of all users. One
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possible explanation could be that the finite optimization horizon and the gap between purchase and
sale prices lead to sub-optimal solutions of the optimization-based controller in spring and summer,
which are seasons with high PV production and low EL. In these seasons, a naive controller performs
better. On the other hand, in autumn and winter with low PV production and high EL, optimization-
based controllers exploit price volatility by shifting load to minimize electricity cost. Thus, the proposed
combination of a naive and optimization-based strategy was shown to reduce the annual consumers’
electricity cost in comparison with the naive method as a year-around controller. These savings are
specifically significant considering that the proposed change of strategies in different seasons may come
as a software update with small cost for the consumers. Finally, the case study showed that the pro-
posed setup and control strategy offer a significant step towards a comprehensive assessment of the
potential of HEMSs, indicating that the setup and control strategy could be developed in real-world
applications of HEMSs.
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C.1 Introduction

Stochastic bi-objective home energy management without
articulation of user preferences

Amos Schledorn 1, Julian Lemos-Vinasco1 2, Daniel Guericke1 S. Ali Pourmousavi3, Jon A. R.
Liisberg2, Henrik Madsen1

Abstract

Smart buildings are a source of energy flexibility and will play an important role in the decarbonis-
ing of energy systems. Home energy management systems are often formulated as cost-minimising
controllers. However, control that is entirely based on cost minimisation might fall short of emis-
sion reductions achievable when operating under an emission-minimising regime, while emission-
minimising control might not be economically desirable for consumers. This motivates bi-objective
setups. At the same time, such optimisation problems are subject to uncertainty in forecast data.
In this paper, we propose a bi-objective extension to a stochastic cost-minimising home energy
management system. The control problem is formulated as a stochastic program under uncertain
demand which is forecast probabilistically. Non-dominated solutions to the bi-objective problem
are generated through the ϵ-constraint method. We propose a method for selecting a compromise
solution from the set of non-dominated solutions that explicitly takes uncertainty into account and
is tailored towards stochastic programming. In a simulation study, both bi-objective and single-
objective and single-objective controllers are evaluated in a rolling-horizon fashion under realistic
market conditions using actual retail prices and measured demand. Our results suggest significant
differences between optimising for either costs or emissions or bi-objectively, while we do not observe
a significant impact of our proposed compromise solution selection method compared to traditional
methods.

C.1 Introduction
The International Energy Agency estimates that COP26 pledges could lead to a 1.8 degree path, if im-
plemented [14]. In order to meet these pledges, signatory governments face the challenge of integrating
a large amount of renewable electricity into today’s energy systems. Home energy management systems
(HEMS) can play an important role in tackling this challenge: Buildings are responsible for 30 % of
final energy consumption world-wide [56] and digital technologies will play a key role in integrating as
much as 240 million PV systems and 1.6 billion electric cars by 2050 in a Net Zero Emissions scenario
[56]. Here, smart buildings are an essential source of flexibility in energy systems [62].

In order for flexible demand to contribute to transitioning to low-carbon energy systems, appropriate
incentives through market signals are essential [105]. In Denmark specifically, the weakness of correla-
tion between price levels and carbon intensity can lead to different outcomes when controlling smart
buildings with the aim of CO2 versus cost minimisation [22]. Hence, if a smart home owner wishes
to not only operate based on monetary, but also environmental objectives, a purely cost-minimising
HEMS would not be sufficient. This raises the question of bi-objective HEMS optimising for low-cost
and low-emissions simultaneously. On top of that, the nature of HEMS problems suggests an optimi-
sation in a rolling horizon fashion, where forecasts and operational control are updated sequentially,

1Technical University of Denmark, Department of Applied Mathematics and Computer Science, Lyngby, Denmark
2Watts S/A, Section of Research and Development, Svinninge, Denmark
3The University of Adelaide, School of Electrical and Electronic Engineering, Adelaide, Australia
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and uncertainty is modelled explicitly [REF single-obj paper]. In a bi-objective context, this requires a
HEMS to not only take a set of possible solutions into account, but also select a solution that provides
an acceptable trade-off between cost and emission minimisation. In this paper, we propose a solution
approach for bi-objective stochastic HEMS in a rolling horizon.

The remainder of this paper is structured as follows: In Section C.2, we review related work and
summarise our contributions. The proposed problem formulation and solution approach are described
in Section C.3 and applied in a case study presented in Section C.4. Section C.5 concludes the paper
and gives an outlook on future work.

Nomenclature
Sets

T Set of time steps t
S Set of scenarios s
M Set of objectives m

Parameters

Ds,t Electricity load in scenario s ∈ S and time step t ∈ T [kWh]
λ+

t Electricity purchase price in time step t ∈ T [EUR/kWh]
λ−

t Electricity sale price in time step t ∈ T [EUR/kWh]
πs Probability of scenario s ∈ S

Variables

x+
s,t ∈ R+ Electricity purchased from the retailer in scenario s ∈ S and time step t ∈ T [kWh]

x−
s,t ∈ R+ Electricity sold to the retailer in scenario s ∈ S and time step t ∈ T [kWh]

bs,t ∈ R Battery discharge quantity in scenario s ∈ S and time step t ∈ T [kWh]
pt ∈ R+ Power output from the PV system in time step t ∈ T [kWh]
c Total system costs [EUR]
e Total system emissions [kg CO2-eq]

Misc.

f vector of generic objective functions f1, f2, ...f|M|
X feasible space for generic decision variables x

C.2 Related Work
We propose a HEMS optimisation model, which 1) is stochastic; 2) is multi-objective; 3) operates
in a rolling horizon fashion; and 4) is formulated as a MIP or LP. While research on models that
meet all four of these requirements seems to be limited, there exist papers which fulfil one or more of
them. In the following, we briefly review a selection of them and refer the reader to reference [71] for
an extensive review on HEMS literature, touching uncertainty handling and multi-objective approaches.

C.2.1 Single-objective HEMS
Single-objective HEMS planning problems are solved through a wide range of optimisation approaches
and heuristic methods. For instance, the authors of [94] use time series analysis to forecast PV pro-
duction and a deterministic single-objective HEMS is applied in a rolling horizon fashion. In [29], a
convex optimisation model is used to solve a deterministic HEMS problem and an autoregressive model
to forecast photovoltaic generation and electric load in a rolling horizon. The authors of [128] propose
an online queuing algorithm to solve a HEMS problem. Besides exact solution methods to HEMS prob-
lems, there exists research on heuristic methods: For instance, the authors of [47] compare different
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meta-heuristic approaches to solving a model-predictive control problem for a Canadian HEMS and
conclude particle swarm optimisation to be the most suitable.

Applications of stochastic programming to HEMS include reference [108], where costs are minimised in
a single-objective stochastic HEMS while setting an upper bound on user dissatisfaction, and reference
[21], where costs are minimised under uncertain electric load and photovoltaic generation.

C.2.2 Multi-objective HEMS
We give a brief introduction to multi-objective optimisation in Appendix C.3. In this section, we focus
on solution methods applied in HEMS with multiple objectives.

C.2.2.1 Scalarising approaches

One way to accommodate a vector of multiple objective functions is to combine them in a scalar func-
tion. For instance, a scalarised objective function combining costs and user comfort in a deterministic
optimisation model is minimised in reference [5]. The authors of reference [60] propose a HEMS frame-
work where a single-objective model-predictive control problem is solved based on weightings of user
preferences of different objectives. In reference [131], a stochastic HEMS problem optimising for the
weighted sum of costs and user comfort is solved using particle swarm optimisation. The authors of
reference [99] compare different heuristic approaches to solving a multi-objective HEMS problem min-
imising the weighted sum of their objectives. An example of risk modelling in HEMS is the work in
reference [58], where a stochastic program with a conditional value-at-risk is applied to minimise the
weighted sum of costs and discomfort.

C.2.2.2 Genetic algorithms

Applications of genetic algorithms include the work of Veras et al. [115], where a multi-objective
non-linear deterministic HEMS problem through NSGA-II and reference [41], where a stochastic multi-
objective micro-grid management problem is solved. On the other hand, Zupančič et al. [133] find that
a decision-tree-based approach outperforms a genetic algorithm in solving a deterministic bi-objective
HEMS problem (cost/self-sufficiency). Other meta-heuristics are used in references [119] and [3], the
approach in the latter article also proposing an analytical hierarchy process to select a solution from
the Pareto-optimal front.

C.2.2.3 Epsilon-constraint programming and lexicographic methods

ϵ-constraint programming, which is used in our study and described in detail in Appendix C.3, is used
by Javadi et al. [57] to construct the Pareto-optimal front of a bi-objective HEMS problem comprising
cost and user discomfort minimisation and applying a fuzzy decision making approach to select a trade-
off solution. The authors apply a similar approach in reference [59]. Nikkhah et al. [88] meet some of
the requirements outlined in the introduction of this section by applying information gap theory and
ϵ-constraint programming to optimise building flexibility for system costs and user comfort in a rolling
horizon-based approach. Another solution method to multi-objective HEMS problems are lexicographic
methods (e.g. [113]).
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C.2.3 Selection of Compromise Solution from the Pareto Front
We simulate the real-world application of our proposed HEMS controller in a rolling horizon fashion.
This requires a technique to select a compromise solution from the front of Pareto-optimal solutions.
Oprivic and Tzeng [91] define the compromise solution as ”[...] a feasible solution, which is the closest
to the ideal [...]”, where the ideal is the Utopian point. Wang and Rangaiah [121] give an overview on
methods for selecting such compromise solutions including Linear Programming Technique for Multi-
dimensional Analysis of Preference (LINMAP), which we apply in this study based on [2] with slight
adjustments (c.f. Appendix C.3). While several methods exist for selecting compromise solutions, re-
search on approaches tailored towards stochastic programming seems to be limited. 1 We also propose
an extension of the method that takes stochasticity into account tailored to stochastic programming.

We refer the reader to [121] for an extensive methodological overview for solution selection in multi-
objective optimisation.

C.2.4 Contribution
Based on this research gap, the following contributions are made:

• We propose a bi-objective extension of a stochastic HEMS model that minimises costs and emis-
sions, but could be applied to other objectives.

• We propose a solution approach based on stochastic ϵ-constraint programming that selects and
applies a compromise solution in a rolling horizon fashion.

• We apply the aforementioned contributions in a realistic case study on eight users in Denmark
using probabilistic load forecasting and measured consumption data.

C.3 Methodology
The methodology in this paper is based on the work in reference [73], where a cost-minimising HEMS
controller based on stochastic programming and probabilistic forecasting is proposed and analysed ex-
tensively. Here, we only give a brief overview of this controller (Section C.3.2.1) and refer to [73] for a
detailed formulation.

In this study, the controller is extended by a bi-objective component minimising for both costs and
carbon emissions (Section C.3.2.2). Since bi-objective programming produces a set of non-dominated
solutions rather than a single optimum, implementation in practice requires the selection of one solution
from this set. Hence, we propose a compromise solution selection method that is tailored to stochastic
programming (Section C.3.3). Consumer demand scenarios are generated via probabilistic forecasting
[72] and reduced via partitioning around medoids (Section C.3.4).

C.3.1 Overview
We assume a HEMS problem of optimally controlling household battery operation under uncertain
electric load. This control takes electricity generation from a rooftop PV system as well as electricity
trading into account. Trading comprises both electricity purchases and sales at time-varying prices,
whereas price levels can be different when selling or purchasing (in our study, sale price levels are
substantially lower since they do not include a set of tariffs and fees purchase prices do). These prices

1A review of related work is out of the scope of this paper. Notably, a Scopus search query for "LINMAP" AND
"STOCHASTIC PROGRAM, "TOPSIS" AND "STOCHASTIC PROGRAM" or "VIKOR" AND "STOCHASTIC PROGRAM" in article title, ab-
stract or keywords did not yield any results. VIKOR and TOPSIS are methods similar to LINMAP.
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are supplied by an electricity retailer. Hence, the controller faces no uncertainty in this regard.

The controller operates at limited foresight, i.e. optimising only for a rolling time window T . In a given
time step t0, electric load scenarios are generated |T | time steps ahead and electricity prices are sent by
the retailer for the same time frame. For the window T , photo-voltaic generation levels and emission
intensity in the electricity mix are assumed fully known. After an optimal solution is determined, only
the solution for the initial time step is implemented, as all subsequent decisions can still be adapted
when the most recent information is available. That means that all decision variables but battery oper-
ation in the current time step only serve as a means of optimising battery operation in that time step.
After the implementation of these decisions, the optimisation window is shifted by one time step.

C.3.2 Optimisation models
C.3.2.1 Simplified single-objective problem

In this study, the HEMS planning program formulated in reference [73] is applied and extended by
emission minimisation. In a condensed version, the single-objective problem of minimising either opera-
tional costs c or emissions e can be formulated as (C.1). In relation to the formulation in reference [73],
we introduce e alongside a binary parameter α. This parameter allows us to write both single-objective
problems in one program, where α = 1 leads to cost minimisation and α = 0 minimises emissions
((C.1a)). An important notion is that α is not so much a weighting factor to scalarise a vector of
objectives but rather a switch between cost and emission minimisation.

The problem is formulated as a stochastic mixed-integer program minimising the expected value of
either objective over a horizon T . Electricity demand Ds,t in scenario s and time step t is the only
uncertain parameter in the two-stage stochastic program. The probability of scenario s ∈ S is denoted
by πs. The system consists of a battery storage system and a rooftop photo-voltaic unit.

min αc + (1 − α)e (C.1a)

s.t. c =
∑
s∈S

∑
t∈T

πs(λ+
t x+

s,t − x−
s,tλ

−
t ) (C.1b)

e =
∑
s∈S

∑
t∈T

πsetx
+
s,t (C.1c)

x+
s,t − x+

s,t + pt + bs,t = Ds,t ∀t ∈ T , s ∈ S (C.1d)
bs,t = bs′,t t = 1, ∀s ∈ S, s′ ∈ S \ s (C.1e)

Operational costs c are the difference between costs for power purchase x+
s,t at price λ+

s,t and electricity
sales x−

s,t at price λ−
s,t ((C.1b)). Total emissions e are the expected value of hourly emissions, i.e. the

product of scenario emission intensity et and power purchase x+
t,s ((C.1c)). The energy balance is mod-

elled by (C.1d), which ensures that demand Ds,t is covered by the sum net electricity purchases, PV
power output pt and battery discharge bs,t. Battery operation in the initial time step constitutes the
first-stage decision, which must be equal across scenarios ((C.1e)).

In addition to the formulation in (C.1), the model updates the battery state of charge, disallows simul-
taneous charging and discharging as well as simultaneous power purchase and sale. It also accounts for
inversion and conversion losses. The model is described in detail in reference [73]. In the reminder of the
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paper, we refer to the full model including the above mentioned parts, when referring to (C.1b) to (C.1e).

C.3.2.2 Bi-objective problem

In single-objective optimisation problems, the aim is the minimisation of a scalar objective function
f ∈ R over decision variables x ∈ X . In multi-objective optimisation, the assumption of f being
one-dimensional is dropped, such that it is a vector of objective functions f ∈ RM with M being the
cardinality |M| of the set of objectives m ∈ M. This problem can be written in a generic form as [82]:

min f(x) (C.2a)
s.t. x ∈ X (C.2b)

Here, optimisation refers to finding solutions x∗ ∈ X that are Pareto-optimal. A solution x∗ ∈ X is con-
sidered Pareto-optimal if it is not dominated by any other solution x′ ∈ X in the sense that f(x′) ∈ X
yields a lower objective value (for minimization) than f(x∗) ∈ X for at least one m ∈ M and is not
worse for all other n ∈ M \ {m} [25]. Important terminology in multi-objective optimisation includes
the Pareto-front (the set of all Pareto-optimal solutions [18]), Nadir point (the vector of upper bounds
on each objective in the set of Pareto-optimal objective space) and the Utopian point (the vector of
lower bounds on each objective in the set of Pareto-optimal objective space) [25].

In this study, the bi-objective problem of minimising operational costs and carbon emissions can be
formulated as (C.3). As described in ??, the model features constraints in addition to (C.1b) to (C.1e),
which are formulated in reference [73].

min [c, e] (C.3a)
s.t. (C.1b)to (C.1e) (C.3b)

C.3.2.3 Solution approach

There exists a plethora of methods to determine a set of Pareto-optimal solutions (c.f. [82] for an
overview). The ϵ-Constraint method [48] is an iterative approach, where in each iteration i, one objec-
tive n ∈ M is optimised while all other objectives m ∈ M \ {n} are bound by a parameter ϵm.

In this paper, the ϵ-Constraint method is applied to solve the problem formulated in (C.3) to explore
the solution space of a bi-objective minimisation of total costs c ∈ R and carbon emissions e ∈ R+.
In our solution approach (Algorithm 3), the application of the ϵ-constraint method proceeds as fol-
lows: Iteratively, the mixed-integer linear program formulated in (C.1) is solved with decreasing upper
bounds on the emissions e. These bounds represent the ϵ-constraints and are linearly decreasing within
a pre-defined interval. This interval ranges from the highest reasonable emission value (the emission
level when optimising for costs only) to the lowest possible emission value (the emission level when
optimising for emissions only).

As this sets the range of reasonable values for e, the approach allows to determine an adequate represen-
tation of the Pareto-front. Here, I = 20 iterations are chosen leading to I solutions on the Pareto-front
X = {x1, ..., xi, ..., xI}.
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Algorithm 3 ϵ-constraint implementation
1: Solve (C.1) for α = 1 and save objective values c+ and e-

2: Solve (C.1) for α = 0 and save objective values c- and e+

3: for i = 1, ..., I do
4: Solve (C.1) with bound on emissions: e ≤ e- − i

I
(e- − e+)

5: end for

C.3.3 Solution selection from Pareto-front
After the optimisation problem is solved, one first-stage solution (here battery operation in the initial
time step) must be chosen from the Pareto front to be implemented. This raises the question of
how to determine an appropriate compromise solution between the two objectives. An overview of such
compromise solution selection methods is given in reference [121]. We propose an extension of LINMAP
to stochastic programming. LINMAP selects that solution from the Pareto-front that yields the lowest
normalised distance to the Utopian point. Here, we follow the formulation of Ahmadi et al. [2] with the
exception that objective values are minimised by the Utopian point. That means that we apply that
solution xi among all solutions on the Pareto-front X, for which:

√√√√ ∑
n=1,...,M

(fn(xi) − fn(xU))
fn(xU)

)2

≤

√√√√ ∑
n=1,...,M

(fn(xj) − fn(xU))
fn(xU)

)2

∀j = 1, ..., I (C.4)

We extend that metric to stochastic programming, such that the selected solution minimises the distance
between the set of objective values corresponding to the selected solution xi in scenario s ∈ S and the
discrete distribution of objective values in the Utopian point, i.e. select that solution xi, for which:

√√√√ ∑
n=1,...,M,s∈S

(fn,s(xi) − fn,s(xU))
fn(xU)

)2

≤

√√√√ ∑
n=1,...,M,s∈S

(fn,s(xj) − fn,s(xU))
fn,s(xU)

)2

∀j = 1, ..., I (C.5)

Hence, the bi-objective controller applied in a given time step can be formulated as Algorithm 4.

Algorithm 4 Bi-objective controller
1: Apply Algorithm 3, save Utopian point [c+, e+] & Nadir point [c-, e-]
2: Determine compromise solution x∗ based on (C.4) or (C.5)
3: Implement battery operation corresponding to x∗

4: Move optimisation window by one time step and apply controller

In the reminder of this paper, we refer to the deterministic solution selection based on (C.4) as LINMAP
and to the stochastic solution selection based on (C.5) as S-LINMAP. Notably, the extension from (C.4)
to (C.5) is applicable to other techniques for selecting a compromise solution aside from LINMAP.
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C.3.4 Scenario Generation and Reduction
Electric load is the only uncertain parameter in this study. Scenarios are generated by a probabilistic
forecasting model which considers the temporal correlation between forecast values, as introduced in
reference [72]. In particular, the model applies recursive least squares estimation (RLS), which allows
to update model parameters when new observations become available [76]. Results in reference [72]
show that considering the temporal correlation can significantly improve of multivariate distribution
forecasts. This is supported by the results in reference [73], where the RLS method outperformed other
forecast methods when it was applied to a HEMS.

To ease the computational burden imposed by multiple iterations in the ϵ-constraint method, we first
generate representative scenarios using partitioning around medoids [64] following the approach in ref-
erence [15].

C.4 Case Study

C.4.1 Case Study Setup
The setup of our case study follows a similar structure as the experiments in [73]. Hence, only a con-
densed overview is given here and we refer to [73] for a detailed description.

C.4.1.1 General Setup

Based on electricity load measurements for nine customers of the Danish Power retailer Watts A/S [124],
the proposed modelling framework is tested for four months from different seasons (January, April, July,
October) in the year 2020. We simulate the application of four different controllers, namely cost min-
imisation, CO2 minimisation and a bi-objective model applying both a deterministic and stochastic
solution selection from the Pareto front. The simulations follow a rolling horizon approach, where in
each hour, the optimisation problem is solved looking 24 hours ahead and the state of charge of the
home’s battery system is set by the operation in the hour before, i.e. the only first-stage decision in the
stochastic program.

C.4.1.2 PV Generation Data

We assume all home systems in this study to be equipped with a rooftop PV system with a capacity of
6.3 kWp [24]. As no data on PV power output is available, simulated data is used following the same
approach as in [72]: Solar irradiance is simulated based on the location of the respective smart homes
using the implementation in pvlib [53]. Then, based on the relationship between solar irradiance and
power output given in [24], generation profiles are computed. The impact of cloud cover is modelled
based on [70].

C.4.1.3 Power Prices

We apply the same power purchase prices as Watts A/S, which follow Danish day-ahead prices [44]
adjusted by taxes, tariffs and fees. Sale prices are assumed equal to spot market prices [44].
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C.4.1.4 Emissions

Similarly to power prices, emissions are assumed to be supplied by the retailer and fully known to the
HEMS. Here, they are supplied by Watts A/S, who makes estimates based on the power generation
mix in Denmark [125].

C.4.1.5 Implementation

While electric load forecasts were implemented in R using the onlineforecast package [9], scenario
reduction and optimisation were implemented in Python 3.8.2. For scenario reduction by means of
partitioning around medoids, we used the implementation of K-medoids clustering in scikit-learn-extra
[106]. The optimisation was implemented using the package MIP [40] and solved with Gurobi 9.1.0
[46] and standard settings on DTU’s high-performance cluster computer using 2 Intel Xeon 2660v3
processors with 2.6 GHz and 32 GB of RAM.

C.4.2 Numerical Results
We first present aggregated results to compare the four different controller setups (cost minimisation,
emission minimisation and bi-objective optimisation using both LINMAP and S-LINMAP). This is fol-
lowed by a illustrations of the bi-objective models for an exemplary user and time step.

C.4.2.1 Aggregated Comparison of Controller Setups

The four controller configurations have been applied for all users and months and first-stage decisions
were saved. Then, the solutions were evaluated on the same optimisation model with fixed first-stage
decisions and electricity load observations instead of forecast scenarios. Both levelised costs of elec-
tricity (LCOE) and per-MWh CO2 emissions have been computed per MWh alongside cost/emission
minimisation under perfect information (PI), meaning perfect foresight of the entire optimisation hori-
zon (744h) without a rolling horizon approach. These are theoretical lower bounds on the respective
objectives and we refer to them as PI costs and PI emissions in the following.

On average, PI costs amount to 165.7 EUR/MWh (Table C.1). The cost minimising controller exceeds
this value by 10.9 EUR/MWh ranging from 121.9 EUR/MWh for user 5 to 198.3 EUR/MWh for user
2 (Table C.1). When minimising emissions the difference to the PI costs increases to 19.6 EUR/MWh
on average with a similar pattern across users. Unsurprisingly, electricity bills under the bi-objective
optimisation models are in-between the single-objective results at 179.1 EUR/MWh with no significant
difference between the two solution selection methods.
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Table C.1: Average LCOE in EUR/MWh across users under perfect information (cost minimising)
and across controller setups (total costs across all months divided by total demand across
all months).

PI Bi-objective Single-objective
User Cost min. LINMAP S-LINMAP Cost min. CO2 min.

1 170.3 181.9 181.8 179.2 188.4
2 190.9 200.6 200.6 198.3 206.0
3 163.0 176.7 176.8 174.3 182.0
4 108.1 127.6 127.5 124.8 134.3
5 96.2 125.0 124.9 121.9 134.4
6 177.2 192.3 192.3 190.4 198.4
7 184.8 196.2 196.1 193.8 201.4
8 135.6 153.8 153.7 150.0 161.4
9 161.2 171.7 171.6 168.7 178.1

Mean 165.7 179.1 179.1 176.6 185.3

Total emissions (Table C.2) follow the same structure as total costs (Table C.1): While average emissions
are highest under a cost minimising setup (112.7 kg CO2-eq/MWh), CO2 levels are lowest when opti-
mising for emissions at 107.6 kg CO2-eq/MWh. Under either of the bi-objective controllers, emissions
are slightly higher at 108.1 kg CO2-eq/MWh. On average, minimising emissions in a single-objective
program exceeds PI emissions by 9.3%.

Table C.2: Average carbon emissions in kg CO2-eq/MWh across users under perfect information (cost
minimising) and across controller setups (total emissions across all months divided by total
demand across all months).

PI Bi-objective Single-objective
User CO2 min. LINMAP S-LINMAP Cost min. CO2 min.

1 107.5 115.0 114.9 119.6 114.5
2 111.8 118.4 118.4 123.2 117.7
3 95.5 105.2 105.2 109.4 104.4
4 66.2 79.8 79.8 83.9 79.8
5 64.5 83.9 83.9 87.6 84.8
6 105.5 116.1 116.0 120.2 115.8
7 110.3 118.1 118.0 122.7 117.3
8 80.4 93.5 93.4 97.6 93.1
9 92.8 100.0 100.0 105.7 99.1

Mean 98.8 108.1 108.1 112.7 107.6

Aggregating savings monthly instead of user-wise yields similar observations (Tables C.3 and C.4). No-
tably, in April and July, Total emissions under the emission-minimising controller are higher than those
under either bi-objective controller (Table C.4). These are the months with the highest electricity gen-
eration from PV (and consequently a lower, but volatile residual demand to be covered by grid imports).
Hence, a possible explanation could be that volatile carbon intensity in the electricity mix (Figure C.1)
in the light of uncertain and volatile residual demand triggers higher import volumes (Table C.5).
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Table C.3: Average LCOE in EUR/MWh across months under perfect information (cost minimising)
and across controller setups (total costs across all users divided by total demand across all
users).

PI Bi-objective Single-objective
Month Cost min. LINMAP S-LINMAP Cost min. CO2 min.

Jan. 242.7 248.2 248.2 244.7 255.1
Apr. 98.1 115.1 115.0 111.9 120.5
Jul. -11.3 25.0 24.9 24.7 30.3
Oct. 189.6 202.2 202.1 200.7 208.1

Mean 165.7 179.1 179.1 176.6 185.3

Table C.4: Average carbon emissions in t CO2-eq/MWh across months under perfect information (cost
minimising) and across controller setups (total emissions across all users divided by total
demand across all users).

PI Bi-objective Single-objective
Month CO2 min. LINMAP S-LINMAP Cost min. CO2 min.

Jan. 156.3 160.2 160.2 167.1 158.6
Apr. 64.2 79.0 78.9 81.0 80.2
Jul. 3.9 19.2 19.2 19.9 19.9
Oct. 82.7 92.6 92.6 97.7 91.4

Mean 98.8 108.1 108.1 112.7 107.6

Table C.5: Average purchase intensity in percentage across users under perfect information and across
controller setups (total purchase volume across all users divided by total demand across
all users).

PI Bi-objective Single-objective
Month Cost min. CO2 min. LINMAP S-LINMAP Cost min. CO2 min.

Jan. 95.9 96.7 96.5 96.5 95.9 97.2
Apr. 43.2 44.0 49.6 49.5 48.4 51.3
Jul. 6.3 6.4 19.7 19.7 20.1 21.1
Oct. 76.3 76.8 78.2 78.2 78.3 79.4
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Figure C.1: Purchase prices and carbon intensity in April 2020.

91



C.4 Case Study

C.4.2.2 Exemplary control trajectory

Operational decisions under the different control regimes are shown in Figure C.2 alongside purchase
prices and carbon intensity in the electricity mix of electricity purchases. The bottom plot shows (for this
example) different shapes for electricity prices and carbon intensity, underlining the potential for a bi-
objective control. While the two bi-objective controllers do not show a significantly different behaviour,
it clearly showcases differences between the two single-objective models: Decisions are roughly similar
until ca. the beginning of the third day, a rise in carbon intensity during that day triggers electricity
purchases of the emission minimising controller charging the battery and discharging it ca. 12 hours
later. The cost-minimising controller, on the other hand, makes suggest to purchase electricity during
the following price valley, when emissions are peaking. Even though not being entirely evident from
this figure, one could argue that the behaviour of either bi-objective controller falls in-between these
two extremes.
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Figure C.2: Controller decisions in the first 96 hours for user 9 in October.
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C.4.2.3 Exemplary Deterministic and Probabilistic Pareto-Fronts

In the following, we illustrate a probabilistic and deterministic Pareto-fronts exemplarily for user 3 in
October, time step 151. The objective values of Pareto-optimal solutions in a bi-objective problem
are traditionally plotted as a convex front. In the case of stochastic programming, we can extend
this to a probabilistic Pareto-front. This is illustrated in Figure C.3. The solid black line indicates
the deterministic front, i.e. the expected value of costs and emissions for each solution found via the
ϵ-constraint method. A scatter plot of costs and emissions for each scenario and solution is added.
Here, the color denotes the respective solution and the point size indicates the scenario probability. We
can clearly see that both the scenario and iteration counter give shape to the plot, as the shape of
the deterministic front is roughly repeated for each scenario, though shifted. At the same time, the
objective values of individual solutions appear to rank similarly across scenarios.
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Figure C.3: Exemplary deterministic and probabilistic Pareto-front for user 3, October, time step 151.
Point sizes indicate scenario probabilities. The black line shows the deterministic front.
For illustration purposes, only 25 scenarios are displayed.

While Figure C.3 illustrates the shape of the probabilistic Pareto-fronts in each scenario, it lacks a
representation of the individual solution across scenarios - which would be of interest for a decision
maker. This is illustrated in Figure C.4 where the distributions of the objective values of three solutions
(instead of twenty, to enhance readability) have been approximated via Kernel Density Estimation with
scenario probabilities as weights [122].
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Figure C.4: Exemplary deterministic and probabilistic Pareto-front for user 3, October, time step 151.
The black line indicates the deterministic front.

C.5 Conclusion
In this study, we have proposed a solution approach for HEMS using a bi-objective two-stage stochastic
program under uncertain electric load and applied it in a rolling horizon.

We solved the above mentioned program using ϵ-constraint programming [48] and proposed a method
for selecting a compromise solution from the set of Pareto-optimal solutions that is tailored towards
stochastic HEMS optimisation problems. We extend the implementation of LINMAP in [2] by a stochas-
tic component, which we refer to as S-LINMAP.

An application was simulated under real-world data for nine Danish households for one month across
four seasons each. Our results suggest a significant difference in carbon emissions and system costs if op-
timising solely for either objective or selecting a compromise solution. This means that consumers face
the decision between a low-cost or low-emission approach in their HEMS. This observation contradicts
the conception of Danish electricity prices providing a sufficient indirect control signal to incentivise
shifting consumption to low-emission periods.

While advocating for a probabilistic representation of the Pareto front, i.e. considering the entire dis-
tribution of the vector of objective values, we cannot observe significant difference in either cost or
emission levels in the application of LINMAP or S-LINMAP.

With regard to this analysis, our study has the clear shortcoming of being both problem- and domain-
specific. Hence, we suggest the application of S-LINMAP, or stochastic extensions to other compromise
solution selection methods, to further HEMS problems and problems in different domains as a future
line of research.
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