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Summary (English)

Although hearing aid users perceive sound in individual ways, current approaches
do not fully exploit the potential for personalization. Providing a comprehen-
sively personalized hearing aid solution is a complex and multidimensional chal-
lenge and requires a deep understanding of patients’ preferences and behavior.
This thesis leverages real-world data collected through smartphone-connected
hearing aids to address two main themes.

First, personalizing hearing aid settings requires learning the audiological pref-
erences of users. We adopted a smartphone-based method to make users explore
three audiological parameters (Noise Reduction, Brightness, and Soft Gain) and
to gather their audiological preferences in real-world listening environments.
The collected data was modeled to investigate the feasibility of a context-aware
system for providing users with a number of relevant hearing aid settings to
choose from. We found that having access to different intervention levels of
two audiological parameters (Brightness and Soft Gain) affected listening sat-
isfaction. Moreover, context significantly impacted the perceived usefulness of
having access to different intervention levels, as well as the intervention level
preferences.

Second, offering a comprehensively personalized solution, as well as transferring
the learned audiological preferences to new or inactive users, requires learning
users’ behavior. Large scale data logged by commercially available products
were analyzed to explore patterns of hearing aid use, as well as the provision
and context of use of listening programs. We found that, on average, users used
the hearing aids 10 hours/day and we identified three clusters of users, each
characterized by a predominant daily pattern of hearing aid use. Moreover, we



ii

identified a default listening program, a primary additional program, and two
secondary additional programs. We also found that users used the additional
listening programs in sound environments different than the sound environment
measured when using the default program.

This thesis contributes to the progress towards a data-driven approach to real-
time hearing aid personalization by learning users’ preferences and behavior
from data. It also demonstrates that smartphone-connected hearing aids can be
useful to both perform experimental studies aimed at exploring novel ways of
personalizing the device, and observational studies aimed at investigating how
users naturally use commercially available devices in real-world settings.



Summary (Danish)

Selvom høreapparatsbrugere opfatter lyde individuelt, har nuværende løsnin-
ger ikke formået at udnytte potentialet for at personalisere lytte oplevelsen. En
udførlig personliggjort høreapparatsløsning er en kompleks og flerdimensionel
udfordring, som kræver en dyb forståelse for patienternes præferencer og ad-
færd. Denne afhandling benytter data, indsamlet i den virkelig verden igennem
høreapparater tilkoblet smartphones, med det formål at adressere to tematikker.

For det første; Personliggjorte høreapparats indstillinger kræver en forståelse af
høreapparatsbrugernes audiologiske præferencer. Vi har brugt en smartphone-
baseret metodik til at få høreapparatsbrugere til at udforske tre audiologiske
præferencer (støjreduktion, klarhed, svage lyde). Denne metodik er ligeledes
brugt for at indsamle disse præferencer i lydmiljøer i den virkelige verden. Den
indsamlede data blev modelleret med det formål at undersøge mulighederne for
et kontekst-bevidst system som kunne foreslå høreapparatsbrugerne et antal
relevante indstillinger at vælge ud fra. Vi fandt at have adgang til interven-
tionsniveauer på to audiologiske parameter (klarhed, svage lyde) har indflydelse
på tilfredsheden med lytteoplevelsen. Ydermere, fandt vi at den kontekst høre-
apparatsbrugeren befinder sig i har en signifikant indflydelse på den opfattede
nytte ved at have adgang til forskellige interventionsniveauer. Ligeledes, har den
kontekst høreapparatsbrugeren befinder sig i indflydelse på dennes præferencer
for disse interventionsniveauer.

Dernæst; For at tilbyde en udførlig personliggjort løsning, samt at oversætte
disse læringer om audiologiske præferencer til nye eller inaktive høreapparats-
brugere, kræves en læring af disse brugers adfærd. For at analysere og udforske
mønstre hos høreapparatsbrugere, samt disses anvendelse af høreapparatspro-
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grammer og i hvilken kontekst disse blev brugt, blev data brugt i stor skala,
tilgængelige via datalogging i kommercielt tilgængelige programmer. Vi fandt
at høreapparatsbrugere, i gennemsnit, bruger deres høreapparater 10 timer om
dagen. Ligeledes, identificerede vi tre grupper af høreapparatsbrugere, som hver
især er karakteriseret ved forskelle i typisk brug af høreapparat i løbet af en dag.
Endvidere identificerede vi at høreapparatsbrugere benytter deres supplerende
høreapparatsprogrammer i andre lydmiljøer end de lydmiljøer målt ved brugen
af deres standard høreapparatsprogram.

Denne afhandling yder et bidrag til udviklingen imod en mere data-dreven til-
gangsvinkel i personliggørelsen af høreapparater i realtid, ved at tilbyde en for-
ståelse af høreapparatsbrugernes preferencer og adfærd igennem brugen af data.
Ligeledes, demonstrerer afhandlingen at høreapparater tilkoblet smartphones
kan være brugbare i udformningen af eksperimenter med det formål at udforske
nye måder at personliggøre høreapparater på. Afhandlingen demonstrerer også
hvordan høreapparater tilkoblet smartphones kan bruges i observationsstudier
med det formål at undersøge hvordan høreapparatsbrugere bruger kommercielt
tilgængelige høreapparater i den virkelige verden.
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Chapter 1

Introduction

This chapter provides an introduction to the hearing loss condition (Section
1.1) and to hearing aids as a way to compensate for hearing loss (Section 1.2).
Moreover, it discusses how a paradigm shift in hearing healthcare might enable
addressing the main challenges with hearing aids (Section 1.3). Finally, Sec-
tion 1.4 states the research objectives and Section 1.5 summarizes the thesis
structure.

1.1 Hearing loss

This section defines the hearing loss condition, the different types of hearing
loss, and its causes. Furthermore, it provides an overview of the prevalence and
the consequences of hearing loss, and it summarizes the available treatments.

1.1.1 Definition, Classification and Etiology

Hearing is the sense that enables us to perceive the sounds around us, to engage
with our environment and to connect to the world [92]. Humans can commonly
hear sounds having frequencies from 20 to 20,000 Hz [112], and intensity from
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0 to 120 dB HL. A person is said to have normal hearing if she is able to
hear sounds softer than 20 dB in both ears (computed as an average of hearing
thresholds at 500, 1000, 2000 and 4000 Hz) [97]. Hearing loss is defined as a
partial or total inability to hear [23]. A person is said to have hearing loss if she
is not able to hear sounds louder than 20 dB in any of the two ears [97].

Depending on the affected part of the ear, three types of hearing loss can be
identified [9]. Conductive hearing loss is caused by a damage or a blockage in the
outer and/or middle ear [5]. Sensorineural hearing loss is the most common type
of hearing loss and occurs when there is a damage or malfunction in the inner ear
or auditory nerve [8]. This type of hearing loss is usually associated to a damage
of the hair cells, which are positioned in the inner ear and are responsible for
transmitting sound information to the auditory nerve [36]. Mixed hearing loss
includes both a conductive and a sensorineural hearing loss [7]. The degree of
hearing loss can widely vary and be mild (20-34 dB HL), moderate (35-49 dB
HL), moderately severe (50-64 dB HL), severe (65-79 dB HL), profound (80-94
dB HL), or complete (>94 dB HL) [97]. While a person with mild hearing
loss has difficulties in hearing soft sounds, a person with profound hearing loss
cannot hear any speech in a noisy environment [97].

Hearing loss can be caused by several factors that may occur at different stages
in life. During the prenatal phase, hearing loss can be caused by genetic factors
or intrauterine infections [133]. In the perinatal period, common causes are birth
asphyxia, hyperbilirubinemia and low-birth weight [133]. During childhood and
adolescence, chronic ear infections, meningitis and collection of fluid in the ear
can lead to hearing loss [133]. During adulthood and older age, chronic diseases,
otosclerosis, age-related sensorineural degeneration can cause hearing loss [133].
Finally, some factors, such as trauma, loud sounds, nutritional deficiencies, and
viral infections, can affect hearing across the life span [133].

1.1.2 Epidemiology

It is estimated that 1.57 billion people (20% of the world population) globally
have some degree of hearing loss [47]. Among those, 430 million people (5% of
the population) suffer from a moderate or higher level of hearing loss [47].

The prevalence of hearing impairment is higher in middle- and low-income coun-
tries than in high-income countries [120]. The largest number of people with
a moderate or higher level of hearing loss resides in the Western Pacific re-
gion (127 million), the South-East Asia region (103 million), and the region of
the Americas (58 million) [47]. The greater prevalence of moderate or higher
levels of hearing loss in middle- and low-income countries are partially due to
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preventable conditions, such as impacted earwax, otitis media, use of ototoxic
drugs and pre-natal or post-natal childhood infections [120, 72, 40]. Further-
more, the prevalence of hearing loss is higher in older adults. Indeed, 62% of
people with hearing loss are older than 50 years old [47]. In 2019, age-related
and other hearing loss was the fourth largest cause of global years lived with
disability (YLDs), and the leading cause of global YLDs for individuals older
than 70 years [53].

Partially due to the aging of the population, the prevalence of hearing loss is
increasing over time. The percentage of people with hearing loss increased from
15.9% in 1990 to 20.3% in 2019 [47]. By 2050, it is estimated that 2.45 billion
people (25% of the world population) will have hearing loss and that 689 million
people (7% of the population) will have a moderate or higher level of hearing
loss [47]. The greatest relative increase of people with a moderate or higher level
of hearing loss is projected in the African region (154.9% increase from 2019),
and in the Eastern Mediterranean region (138.4% increase from 2019) [47].

1.1.3 Consequences of Hearing Loss

Not only does hearing loss have high and increasing prevalence, but it also has
profound consequences on a broad range of dimensions. Hearing loss has several
repercussions at an individual level. First, people with hearing loss were found
to possess lower physical abilities. Hearing loss is associated with lower balance
scores [15], greater risk for falls due to poorer postural control [126, 69], incident
mobility disability [12], greater risk to develop impaired lower extremity function
and frailty syndrome [136], and greater difficulties in performing activities of
daily living (ADL), which include basic tasks necessary for independent living
[129, 12, 30]. Second, people with hearing loss were found to have a poorer
psychological status. Hearing loss is associated with lower self-reported mental
health and major depressive episodes [129], accelerated cognitive decline [43],
and incident cognitive impairment [70]. Moreover, hearing loss is associated with
incident dementia [71, 76] and is identified as the biggest modifiable dementia
risk factor in midlife. If hearing loss is eliminated, a 8% reduction in dementia
prevalence is estimated [73]. Third, people with hearing loss encounter greater
difficulties in performing instrumental activities of daily living (IADL), which
require complex thinking, as well as communication and organizational skills
[136, 30]. Consequently, hearing loss is associated with difficulties in gaining
education, higher unemployment rate, and lower grade of employment [133].
The severity of hearing loss is associated with lower household income [62] and
reduced quality of life [30].

Additionally, hearing loss has repercussions on society. Indeed, people with
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hearing loss have a greater risk of incident hospitalization and greater annual
rate of hospitalization [44]. This is reflected in higher total medical expenditures
[38]. However, the cost of untreated hearing loss goes beyond health sector costs
and also includes costs of educational support, loss of productivity, and societal
costs [133]. The annual global cost of untreated hearing loss is estimated around
US$ 980 billion [133]. The majority of this amount (57%) burdens low- and
middle-income countries [133].

1.1.4 Diagnosis and Treatment of Hearing Loss

Throughout the life course, many of the causes that lead to hearing loss can
be avoided through public health strategies and clinical interventions, such as
immunization, ototoxicity prevention, and noise control [133]. When prevention
is not possible, early identification and diagnosis are crucial. Hearing screenings
are performed by healthcare providers with a variety of tools, depending on the
condition and age of the patient. For instance, transient evoked otoacoustic
emissions (TEOAEs) and automated auditory brainstem response (AABR) are
most commonly used for newborns [56], while audiometric evaluation is usually
performed on school-age children and adults [135].

Once a hearing impairment has been diagnosed, it is important to provide the
patient with the appropriate treatment. While conductive hearing loss can of-
ten be treated with medicine or surgery, the effects of sensorineural hearing
loss can be reduced through hearing technologies [5]. Different types of hear-
ing technologies can be adopted, such as hearing aids and cochlear implants.
Hearing aids are electronic devices that selectively amplify sound and are useful
in treating hearing losses resulting from damage to the small sensory cells in
the inner ear [90]. Cochlear implants are surgically implanted neuroprostheses
that directly stimulate the auditory nerve and are useful when the middle- and
inner-ear structures are damaged [89].

1.2 Hearing Aids

This section focuses on hearing aids, one of the ways to compensate for hearing
loss. It provides a definition of hearing aids and an overview of the types of
hearing aids available, the benefits of hearing aids, and the prevalence of hearing
aid use. Furthermore, the main challenges posed by hearing aids are discussed.
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1.2.1 Definition and Classification

Hearing aids are electronic devices that selectively amplify sound to compensate
for a sensorineural hearing loss. Hearing aids are composed of three basic parts:
a microphone that converts the sound into electrical signals, an amplifier that
modifies and selectively amplifies the signals, and a speaker that reproduces the
amplified signal [90]. By magnifying the acoustic sounds, hearing aids help the
surviving hair cells sense the sound and convert it into electric impulses that
are transmitted, through the hearing nerve, to the brain [36].

Different types of hearing aids exist, which differ on the size and placement
of the main components. A behind-the-ear (BTE) device is worn behind the
ear and transfers the sound to the ear canal via a plastic tube. A mini BTE,
also known as receiver-in-the-ear (RITE) or receiver-in-the-canal (RIC), has a
smaller size and a speaker placed in the ear canal. This hearing aid style offers
reduced occlusion and feedback [39], is produced by all main manufacturers,
and is usually equipped with advanced technology. An in-the-ear (ITE) device
is custom made and fits completely into the outer ear. An in-the-canal (ITC)
device is smaller than the ITE and fits into a smaller portion of the outer ear.
A completely-in-the-canal (CIC) device is even smaller and is placed deeper
into the ear canal. While being less visible, ITC and CIC devices have limited
features and are only suitable for milder hearing losses [90].

1.2.2 Hearing Aid Features

Hearing loss affects several dimensions of hearing. Modern hearing aids do not
simply amplify sound, but are equipped with several features to partly account
for the changes occurred in the environment and in the sound perception of
hearing impaired people. First, hearing impaired people have lower sensitivity
to sounds [36]. To compensate for this, sounds are amplified according to the
hearing threshold measured at different frequencies. Second, hearing impaired
people have a reduced dynamic range, that is a smaller difference between the
softest sound they can hear and the loudest sound they deem comfortable to
listen to [36]. For this reason, non-linear amplification is provided, by amplifying
soft sounds more than loud sounds. Third, hearing impaired people have reduced
ability to locate sounds, since they cannot rely on normal binaural hearing
[36]. Using two hearing aids improves hearing by reconstructing the full sound
information [36].

Additionally, hearing aids have features aimed to adapt the amplification to the
environment and to reduce the disturbance of background noise. These include
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advanced noise reduction algorithms and directional microphones, which sup-
press background noise and sounds coming from the back [90]. Modern hearing
aids also adapt the noise reduction and the amplification to the environment,
by providing more support in the complex situations. Finally, hearing aids
have feedback management features aimed to reduce whistling due to acoustic
feedback, a sound loop which occurs between the microphone and the speaker.

1.2.3 Benefits of Hearing Aids

Hearing aids have proven to be effective in reducing some of the negative con-
sequences of hearing loss and in improving the quality of life of their users on
several dimensions. First, hearing aid use is associated with better cognition
[87] and lower deterioration of cognitive functions [78], either by improving au-
dibility [32] or by reducing social isolation [108]. Second, using hearing aids
appears to reduce the excess risk for dementia deriving from hearing loss [73].
A 25-year prospective study found increased dementia incidence in people with
untreated hearing loss, but not in people using hearing aids [10]. Third, hear-
ing aid use is associated with lower depression scores [87, 10], as well as higher
social, emotional, and communication outcomes [87], greater listening ability
and health-related quality of life [37]. Finally, treated hearing loss is associated
with better performance at work. The difference in income between treated and
untreated hearing impaired people increases at the rate of approximately $1,000
for every 10% increase in hearing loss severity [62].

1.2.4 Prevalence of Hearing Aid Use

Although 20% of the global population has hearing impairment, the prevalence
of hearing aid use is lower and varies extensively from developing to developed
countries. Globally, among the individuals who could benefit from hearing aids,
only 17% use them [135].

In high-income countries, 40 million adults use hearing aids [120]. However,
hearing aids are far from being adopted by all individuals who could benefit
from them. In such countries, hearing aid use prevalence is low (6%) among
individuals with mild hearing loss, and increases with the severity of the hearing
impairment [120]. Among adults with a moderate or higher level of hearing loss,
43% use a hearing aid [120]. Among individuals with profound hearing loss, 89%
use a hearing aid [120]. Moreover, among adults with moderate or higher level
of hearing loss, the prevalence of hearing aid use increases with age [26]. In the
United States, among hearing impaired adults aged 70 and older, 30% have ever
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used hearing aids; among adults aged 20 to 69, 16% have ever used hearing aids
[91].

In developing countries, the prevalence of hearing aid use is even lower [120].
Although two-thirds of the hearing impaired people live in developing countries,
only one in every eight hearing aids is sent to such developing countries [134].

1.2.5 Challenges with Hearing Aids

Barriers to Hearing Aid Use and Satisfaction

Different factors contribute to such a limited prevalence of hearing aid use. A
major barrier to hearing aid uptake is the fear of stigma, which causes hearing
aid owners to feel disrespected [113]. Indeed, hearing aids are often connected
with old age and reduced cognitive abilities [31]. Another factor associated to
hearing aid uptake is the real or perceived severity of hearing loss [54]. Individ-
uals with milder hearing losses are less likely to own hearing aids, due to a lower
sense of need and urgency. A third barrier is represented by the cost of hearing
aids, although the worthiness of hearing aids might play a role in evaluating
their cost [54].

Among the hearing aid owners, a substantial percentage does not wear the
devices. Such percentage ranges from 5% in Germany, 6% in France, 7% in
United Kingdom, to 12% in United States [51], and 24% in Australia [48]. One
of the main reasons for not wearing the hearing aids is related to problems in
perceiving the hearing aid value. Hearing aid owners often mention difficulties
in coping with noisy situations, as well as poor benefit from the hearing aids
[81].

Among the hearing aid owners who use their hearing aids, overall satisfaction
is generally high [107]. Satisfaction with hearing aids is positively correlated
with variables related to the user such as time of use and previous hearing aid
experience, and, to a lower extent, it depends on expectations and personality
[132]. Additionally, satisfaction is correlated with some variables related to the
device. Hearing aids that have better sound quality are associated to higher sat-
isfaction, while problems in hearing aid use have negative effects on satisfaction
[132]. Moreover, satisfaction significantly depends on the listening situation.
Hearing aid users tend to be less satisfied in noisy situations, while hearing aids
that can perform in complex situations yield higher satisfaction [132].

All in all, enhancing the value provided to hearing aid users and increasing the
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hearing aid availability worldwide could improve the prevalence of hearing aid
use, as well as the proportion of hearing aid owners who use their device, and
the hearing aid satisfaction in certain situations. Addressing a major challenge
- the lack of personalization in hearing healthcare - is crucial for progressing
towards such direction.

One Hearing Aid Configuration Does Not Fit All Users

Sensorineural hearing loss is often caused by a damage of the hair cells, causing
a degraded sound information to be transmitted to the auditory nerve [105].
Additionally, in age-related hearing loss this coincides with a natural decline in
cognitive abilities [105]. Therefore, hearing impaired older adults have to process
a degraded signal by using declined cognitive skills [105]. This implicates that
speech processing regions are complemented by additional neural networks, and
that even a mild hearing loss has profound effects on neural activities [105].

Since the auditory and cognitive domains are intertwined, hearing aid users with
similar hearing pure-tone thresholds (PTTs) have been shown to perceive sounds
in highly individual ways. First, individuals with similar hearing thresholds have
different performances in noise. That is, the signal-to-noise ratio required to
understand speech is poorly predicted by the audiometric loss (i.e., audiogram)
[61]. Indeed, while the outer cells are responsible for the sensitivity to sounds,
the inner hair cells convey information to the brain [60]. Depending on whether
the loss interests inner or outer cells, the repercussions on speech understanding
might be different [60]. Second, individuals with similar hearing thresholds
have different loudness perception [96]. That is, the interindividual loudness
perception of binaural broadband signals is poorly predicted by the audiometric
loss [96]. Indeed, the audiometric loss is inferred from monaural narrowband
signals, while real-world signals such as speech or environmental sounds are
typically broadband and binaural [96]. Third, hearing impaired people widely
vary in their perception of sounds close to their hearing threshold [80]. While
some perceive such sounds to be soft, others perceive them to be loud [80].
Additionally, hearing thresholds fail to predict hearing handicap as they cannot
account for several factors, such as motivation, linguistic backgrounds, and age
of hearing loss onset [27].

Lack of Audiological Personalization

In summary, performance in noise, loudness perception, perception of soft sounds
and hearing handicap cannot be predicted by the patient’s pure-tone thresholds.
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Despite that, hearing aids address the lack of sensitivity to sounds by prescribing
amplification at different frequencies based on pure-tone threshold audiometry, a
test that measures the hearing thresholds for pure tones at different frequencies
[128]. The results of such test are usually recorded in graphic form by present-
ing the audible thresholds in an audiogram [6]. Pure-tone threshold audiometry
does not provide specific information on the status of the central auditory ner-
vous, nor the auditory processing of real-world signals [88, 97]. Therefore, it
does not represent real-world hearing abilities [61, 14, 97].

Traditionally, based on the pure-tone audiometric loss of the patient [96], the
amplification is prescribed using a fitting formula, also known as fitting rationale.
Different fitting rationales exist, either developed by hearing aid manufacturers
(e.g., VAC+ [98]) or by independent organizations (e.g., NAL-NL2 [58]). Some
fitting rationales additionally take into account perceptual dimensions such as
the narrowband loudness perception, by considering a measured or predicted
Uncomfortable Loudness Level [114], i.e., the level at which a sound becomes
uncomfortable for the listener. However, such measurements are not always
effective as they rely on narrowband monaural sounds and do not control for
loudness perception of real-world binaural broadband sounds [96]. Some fitting
rationales also take into account the profile of the hearing aid user (e.g., age,
gender, experience) [58]. In general, when a rationale considers dimensions other
than the audiometric loss, it assumes that all patients with the same audiomet-
ric profile share the same perceptual characteristics [114]. Relying on average
corrections does not account for the large individual perceptual variations [96,
114].

The major implication is that the initial prescription should be regarded as
a good starting point, because it is based on average expectations [114, 2].
However, it should not be seen as the optimal solution, as it is not based on in-
dividual needs or preferences [114, 2]. Assuming that the manufacturer defaults
are correct for each patient is regarded as one the key mistakes made by hearing
care professionals [63]. A fine-tuning of the hearing aid is recommended, during
which the hearing care professional modifies the hearing aid settings based on
patient’s input [63]. A successful fine-tuning, as well as patient’s benefit and
satisfaction, depends on the hearing care professional’s ability to use the pro-
gramming software, and to interpret and translate users’ recollections of past
listening experiences [35, 11]. This is a time-consuming procedure, requiring
multiple visits to obtain a satisfactory configuration [2]. Yet, it is not an opti-
mal procedure, since fine-tuning and additional hearing tests performed in the
clinic do not guarantee a significant advantage over a default prescription [29,
115].
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One Hearing Aid Configuration Does Not Fit All Contexts

Furthermore, the satisfaction of hearing aid users significantly depends on con-
text. Users cope with several real-world situations and often report difficulties
in noisy environments [132]. Previous studies have shown that an important
factor for the lack of adoption of hearing aids is their unsatisfactory perfor-
mance in noisy environments [20, 48, 1], in conversations [121], and multi-talker
scenarios [42]. When provided with different hearing aid settings, users have
been found to select contrasting settings, suggesting that context has a crucial
impact on the preference toward specific hearing aid settings [55]. Typically,
to account for context, hearing users can be provided with predefined settings
aimed at improving the listening experience in specific listening environments.
However, these settings are determined by the average user and do not reflect
the individual audiological preferences.

Lack of Comprehensive Personalization

In addition to personalized audiological settings, hearing aid manufacturers face
the challenge of providing a comprehensively personalized solution to patients.
The surge in online interactions has exposed consumers to the personalization
practices of e-commerce companies and has raised expectations for any prod-
uct and service [13]. Nowadays, the great majority of consumers (71%) expects
companies to deliver personalized interactions, and an even greater percentage
of consumers (76%) gets frustrated when that does not happen [13]. Hearing
aid patients can potentially benefit from more personalized interactions in dif-
ferent steps of their journey: recommendations during the hearing aid selection,
fitting, and use; maintenance advice; counseling during the rehabilitation phase.
Developing a deep understanding of the needs of hearing aid users and offering
a personalized solution throughout these phases would create value for hearing
aid users.

1.3 Paradigm Shift in Hearing Healthcare

This section discusses how promoting user-driven personalization and leveraging
real-world data might constitute a paradigm shift in hearing healthcare and
enable addressing the current challenges with hearing aids.
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1.3.1 User-driven Personalization

Traditionally, the hearing care professional has been the main point of contact
for hearing aid users, being responsible for evaluating the patient’s hearing loss,
recommending the appropriate device, personalizing the hearing aid settings,
counselling the patient, and ultimately ensuring a good experience with the
device. While the role of the hearing care professional is crucial for providing
high-quality hearing healthcare, uniquely relying on such role for personalizing
the experience of hearing aid users has several limitations.

First, the health system capacity suffers from a lack of human resources. The
vast majority of low-income countries (93%) and lower-middle-income countries
(76%) have fewer than one audiologist per million inhabitants [135]. While the
availability of audiologists increases in higher income countries, 86% of upper-
middle-income countries and 35% of high-income countries still have fewer than
ten audiologists per million inhabitants [135]. This restricts the access to hearing
health care and poses challenges for hearing impaired people [135]. Second, the
lack of human resources places unreasonable demands on the existing hearing
care professionals providing these services [135]. As a consequence, hearing care
professionals might streamline their workflow and resort to non-personalized
approaches, such as default audiological settings. Third, even when they have
access to a hearing care professional, hearing aid users are often hesitant to
seek help, so the need of a patient might never be reported nor addressed [17].
Fourth, while the hearing care professionals can potentially establish a fruitful
dialogue with the patient and obtain information about her needs and prefer-
ences, it is not always possible to leverage on data obtained in the clinic. Indeed,
the hearing aid user might not be able to provide accurate data. For instance,
reporting real-world listening experiences, audiological preferences and past be-
havior might suffer from recall bias [67]. Moreover, the information reported by
the patient might require some interpretation and translation into an audiologi-
cal language. However, such information might lack a faithful contextualization,
making an effective translation difficult.

For these reasons, in contrast to the current clinical practices, patient empow-
erment and self-management should be promoted [17]. Empowering hearing aid
users would enable gathering more accurate and contextualized data on their
preferences and behavior, thereby developing a deeper understanding of their
needs and ultimately offering them a truly personalized solution.
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1.3.2 Learning User Preferences and Behavior from Data

mHEalth, i.e., the use of mobile devices for health practice, can potentially en-
hance the access to hearing aids and improve their use. This can be achieved
by empowering hearing aid users throughout their journey, while also more
efficiently learning their preferences. Indeed, the introduction of smartphone-
connected hearing aids enables, on one hand, enhancing the experience of hear-
ing aid users by providing them with targeted information and with the oppor-
tunity to adjust their device settings. On the other hand, it enables a better
understanding of users’ preferences and behavior, by gathering accurate real-
world data about their hearing aid use, their interactions with it, and the con-
text. Such data can either be subjective or objective. Subjective data consists
of the patient’s perceived experiences or subjective preferences, shared either
spontaneously or in response to questions. Objective data refers to observable
and measurable data, gauged by the smartphone or by the hearing aids.

Fundamentally, user preferences and behavior can be learned in two ways. First,
experimental studies can be conducted by establishing an intervention, enrolling
some test users, measuring specific variables and analyzing the effects of the in-
tervention [124]. Such studies enable exploring new trajectories and evaluating
novel ways of interaction with the hearing aids. When aiming to learn per-
sonalized settings, these studies allow to investigate new device configurations
and to gather specific data about the listening experience while the patient is
trying the settings. However, such studies can be time-consuming and place a
burden on the user. Indeed, for instance, test users might be asked to use new
hearing models, experiment with new features or settings, and repeatedly re-
port their experience. Second, observational studies can be conducted based on
the commercially available products (e.g., apps and hearing aid models). The
widespread adoption of smartphones among older adults [94] and the introduc-
tion of smartphone-connected hearing aids enables logging data while hearing
aid users autonomously use their devices. Participants in these types of studies
are simply observed in a more natural setting, and independent variables are
allowed to vary naturally, without interfering with the standard clinical practice
[125]. Such studies enable inferring the behavior and preferences of hearing aid
users by observing how they naturally use their hearing aids or interact with
them. By analyzing data coming from commercially available products, these
studies can leverage a larger and more diverse sample of patients. However,
they can only rely on data commonly gathered in the standard clinical practice.
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1.4 Research Objectives

Providing a comprehensively personalized hearing aid solution is a complex and
multidimensional challenge and requires a deep understanding of patients’ pref-
erences and behavior. This thesis leverages real-world data collected through
smartphone-connected hearing aids to address two main themes.

First, personalizing hearing aid settings requires learning the audiological pref-
erences of the users and poses several challenges. To address this theme, three
specific research objectives were formulated:

• Investigate the feasibility of a smartphone-based method to gather the au-
diological preferences of hearing aid users in real-world listening environ-
ments. Indeed, users’ perceptual preferences and environmental context
need to be measured. This requires making users try and evaluate different
settings by navigating a complex audiological space.

• Investigate the feasibility of a context-aware system for providing hearing
aid users with a number of relevant hearing aid settings to choose from.
Indeed, the gathered preferences should be meaningful and the offered set-
tings should improve the listening experience of the patient. By leveraging
contextual data and experience assessments, it might be possible to make
more informed decisions on which settings to provide the user with.

• Explore how a conversational agent could combine real-world user feedback
and context to recommend personalized settings. Indeed, considering the
lack of audiological resources, alternative ways of gathering user prefer-
ences should be evaluated.

Second, offering a comprehensively personalized solution, as well as transferring
the learned audiological preferences to new or inactive users, requires learning
users’ behavior. To address this theme, two specific research objectives were
formulated:

• Explore patterns of hearing aid use throughout the day and assess whether
clusters of users with similar use patterns can be identified. Indeed, ex-
ploring how patients use their hearing aids can help shed light on their
needs and on the similarity and variability among them.

• Investigate the provision and context of use of listening programs currently
available in the market. Indeed, investigating whether users contextually
adapt the device settings in specific listening situations can pave the way
for more personalized solutions.



14 Introduction

1.5 Thesis Structure

The remainder of this thesis is structured as follows. Chapter 2 summarizes the
studies aimed to understand the audiological preferences of hearing aid users.
Chapter 3 summarizes the studies aimed to understand the real-world behavior
of hearing aid users. The research objectives addressed in Chapter 2 and 3,
as well as the respective methods and main findings, are detailed in Table 1.1.
Chapter 4 discusses the main findings, their implications and the perspectives
for future research. Chapter 5 concludes the thesis.
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Table 1.1: Detailed structure of Chapter 2 and Chapter 3

Section Objective Methods Main Findings
Chapter 2: Understanding Users’ Audiological Preferences

2.1
Measuring
Audiological
Preferences

To investigate the
feasibility of a
smartphone-based
method to gather
the audiological
preferences of
hearing aid users in
real-world listening
environments.

During their everyday life,
seven participants were asked
to optimize three audiological
parameters which were
subsequently combined into a
personalized device
configuration. This
configuration was blindly
compared against a
configuration personalized in a
standard clinical workflow.

Six out of seven participants
preferred the device
configuration learned in
real-world listening
environments.

2.2
Modeling
Audiological
Preferences

To investigate the
feasibility of a
context-aware
system for
providing hearing
aid users with a
number of relevant
hearing aid settings
to choose from.

During their everyday life,
seven participants were asked
to optimize three audiological
parameters, by evaluating four
intervention levels for each
parameter.
The listening experience,
audiological preferences, and
contextual data were collected
as both self-reports and
objective data logging.

1. Having access to different
intervention levels of two
audiological parameters
affected listening satisfaction.
2. The perceived usefulness of
having access to different
intervention levels was
significantly modulated by
context.
3. Contextual data improved
the prediction of intervention
level preferences.

2.3
A Future Use
Case

To explore how a
conversational
agent could
combine real-world
user feedback and
context to
recommend
personalized
settings.

A conversational agent model
was outlined and two use cases
were proposed:
troubleshooting and
contextual personalization.

Implementing a conversational
agent potentially allows to
automatically gather user
feedback in real-world
environments, while
monitoring the context, in
order to recommend
personalized settings.

Chapter 3: Understanding Users’ Real-World Behavior

3.1
How Do
Users Use
the Hearing
Aids?

To explore patterns
of hearing aid use
throughout the day
and assess whether
clusters of users
with similar use
patterns can be
identified.

We analyzed 453,612 logged
days of objective hearing aid
use logged from 15,905
real-world users. We explored
the daily amount of hearing
aid use, identified typical days
of hearing aid use based on
hourly patterns, and then
clustered users based on use
patterns. Finally, we validated
the user clustering by training
a supervised ensemble to
predict user clusters.

1. On average, users used the
hearing aids for 10.01 h/day,
exhibiting a substantial
between-user and within-user
variability.
2. Three typical days of
hearing aid use were identified.
3. Three distinct user groups
were found, each characterized
by a predominant typical day
of hearing aid use. The
supervised ensemble achieved
an 86% accuracy.

3.2
How Do
Users
Personalize
the Hearing
Aids?

To investigate the
provision and
context of use of
listening programs
currently available
in the market.

We explored the provision of
listening programs among
32,336 hearing aid users. We
analyzed 396,723 program
selections from 1,312 users to
investigate the sound
environments in which specific
programs are used.

1. 57% of users had additional
listening programs for specific
listening situations. We
identified a default program,
an additional primary
program, two additional
secondary programs, and two
programs related to the use of
external accessories.
2. Users used the listening
programs in sound
environments different than
the sound environment
measured when using the
default program.
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Chapter 2

Understanding Users’
Audiological Preferences

In this chapter, the audiological preferences of hearing aid users are gathered
in real-world environments via a smartphone-based method (Section 2.1). Such
preferences are then modeled to investigate the feasibility of a context-aware
system for providing hearing aid users with a number of relevant hearing aid
settings to choose from (Section 2.2). Finally, the chapter explores how a con-
versational agent could combine user feedback and context to recommend per-
sonalized settings (Section 2.3).

This chapter presents the contribution of the articles entitled "Rethinking Hear-
ing Aids as Recommender Systems" [104] (Appendix A), "Measuring and Mod-
eling Context-Dependent Preferences for Hearing Aid Settings" [103] (Appendix
B), and "Designing Audiologist Bots Fusing Soundscapes and User Feedback"
[101] (Appendix C). All figures reported in this chapter (except Figure 2.1) are
extracted from the aforementioned three articles.
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2.1 Measuring Audiological Preferences

This section discusses the challenges posed by measuring audiological preferences
and investigates the feasibility of a smartphone-based method to gather the
audiological preferences of hearing aid users in real-world environments.

2.1.1 Related Challenges

Previous research conducted under controlled laboratory conditions has shown
that user-driven adjustments of hearing aid settings are feasible and potentially
beneficial [137, 22, 93, 116]. Some studies have also focused on personalizing the
hearing aid settings based on user feedback and contextual information gathered
in the real-world [4, 59]. However, results were mixed and some open challenges
remain.

Since audiological preferences depend on the human perception of sounds and
are highly individual, it is important to repetitively gather subjective percep-
tual preferences by enabling users to evaluate alternative hearing aid settings.
This means that users need to be able to effectively explore a complex audiolog-
ical design space, defined by the possible combinations of hearing aid settings.
Moreover, users need to be able to effectively report on their preferences by
submitting timely and relevant feedback.

When gathering users’ audiological preferences, real-world context should be
taken into consideration. Indeed, users’ audiological preferences might vary de-
pending on the listening environment [55]. Moreover, empowering users to self-
adjust their hearing aid settings in real-world contexts ensures that they evaluate
them in a realistic context, which is highly representative of their present and
future listening challenges. This entails that users might be more engaged in
interacting with the hearing aids, and that the gathered listening preferences
might be more relevant for their listening experience. However, gathering audi-
ological preferences in real-world contexts increases the complexity of the task,
as the user has to personalize the device settings in a sound environment which
is constantly changing, while performing other activities (e.g., conversing), and
without the assistance of a hearing care professional.

Reducing the complexity of the exploration is therefore crucial. Assuming that
the audiological design space is defined by several audiological parameters, dif-
ferent methods could be employed to enable users exploring it. Via parameter
tweaking, users are asked to tune the hearing aid settings by acting on a set
of either continuous or discrete parameters. While this method provides users
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with a predictable set of handles, acting on several parameters at a time might
be overwhelming. Via pairwise comparison, users can choose between two al-
ternative configurations. Although this method provides users with a low and
manageable number of configurations at a time, the alternative configurations
are not predictable and several iterations are required to obtain the preferred
configuration. Via a one-dimensional parameter tweaking, users can act on one
discrete or continuous parameter at a time. This method allows to reduce the
complexity of a multi-parameter configuration, while ensuring that participants
can consciously track the effects of their actions on their listening experience.

2.1.2 An Experimental Study

A study was conducted to investigate the feasibility of a smartphone-based
method to gather the audiological preferences of hearing aid users in real-world
listening environments. Seven experienced hearing aid users were enrolled. They
had a mild to moderately severe hearing loss. The participants received a pair
of Oticon Opn S1 MiniRITE, and installed a custom app on their smartphone
(Figure 2.1).

Figure 2.1: Interface of the app used by the study participants. The app
enabled them to explore different hearing aid settings (left), while
also gathering their feedback and data about the context (right).
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The app was connected to the hearing aids via Bluetooth and had a threefold
function:

• to enable the participants to explore different hearing aid settings. One
audiological parameter was evaluated each week, and the participants were
provided with four intervention levels of the specific parameter of the week.

• to gather data about the listening experience, be it self-reported (listening
satisfaction, from 1 to 5; usefulness of choosing among the four intervention
levels, from 1 to 5; preferred intervention level) or automatically logged
(level selections and usage).

• to gather data about the context, be it self-reported (listening environ-
ment, listening intent, motion state - all from predefined categories) or
automatically logged (sound pressure level (SPL), signal-to-noise ratio
(SNR) - both in dB). The SPL is the most commonly used indicator of
the acoustic wave strength and correlates well with human perception of
loudness [74]. The SNR is the difference between the energy of a signal
and the energy of any present noise and it is key to speech intelligibility
[75].

The study lasted four weeks. Each of the first three weeks was devoted to the
evaluation of an audiological parameter, and the participants were provided with
four intervention levels of that parameter, in ascending order of intensity, from
level 1 to 4 (Figure 2.2).

Figure 2.2: Data collection timeline. Each parameter (NR, BR, SG) was eval-
uated for the duration of one week. Each week, the participants
were provided with four intervention levels of the parameter of the
week (Appendix B).
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The three parameters were: Noise Reduction (NR), providing four levels of
noise reduction and directionality; Brightness (BR), adjusting the amplification
of high frequency sounds; Soft Gain (SG), adjusting the amplification of soft
sounds. These parameters have all been shown to be important for the listening
experience of hearing aid users [95, 55, 131] and to be perceived differently by
individuals [61, 80]. Each week, the participants were asked to evaluate the four
intervention levels of the parameter of the week during their everyday life and
to submit their preferred level, together with an evaluation of their listening
experience and an assessment of the context.

In order to evaluate the feasibility of the employed method, during the fourth
week, participants compared two configurations in a blind test: a configuration
individually personalized based on data gathered in real-world environments,
by combining the preferred levels of the three audiological parameters gathered
during the previous three weeks; a configuration personalized in a standard
clinical workflow based on questions and on pairwise comparisons of prerecorded
sound samples.

2.1.3 Could We Gather Audiological Preferences?

Overall, when looking at the preferences for the different intervention levels of
the three audiological parameters, a substantial between- and within-participant
variability was observed. Indeed, the participants had different audiological
preferences among each other. Moreover, when evaluating the four interven-
tion levels in different situations, the participants were not found to strive for
a single optimum, but rather selected different levels within each parameter.
Consistently with this, after the fourth week, participants wished to keep more
than one configuration after the end of the study. However, when asked to
choose between the configuration based on the feedback gathered in the real-
world and the configuration based on the standard clinical workflow, six out of
seven participants preferred the former. The smartphone-based method gath-
ered more faithful audiological preferences compared to the standard in-clinic
personalization procedure based on asking users to answer questions and eval-
uate prerecorded sounds. These results suggest that, by using the proposed
smartphone-based method, the participants efficiently explored the audiological
design space in real-world environments and successfully communicated their
preferences.
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2.2 Modeling Audiological Preferences

In this section, the gathered audiological preferences are modeled to investigate
the feasibility of a context-aware system for providing hearing aid users with a
number of relevant hearing aid settings to choose from.

2.2.1 The Relevance of Audiological Preferences

As discussed above, audiological preferences need to be gathered in several real-
world contexts by making users explore a vast space of possible hearing aid
settings. For this reason, not only should the complexity of the exploration be
reduced, but it is also important to focus on settings and contexts that cause
a tangible improvement in the listening experience. Indeed, previous work has
assumed that users have one and only one preference in each context. However,
when choosing between two alternative hearing aid settings in a specific sound
environment, some users are not consistent in their reported preferences [130].
This inconsistency might be due to the fact that a selected setting does not
yield a significant improvement in the listening experience and therefore leads
to noisy preference assessments. Thus, understanding when a preferred setting
is perceived to truly improve the listening experience would help focusing on
the relevant audiological parameters and contexts.

In view of the above, in the following sections, the collected subjective evalu-
ations of the listening experience, as well as the audiological preferences, were
analyzed. In doing so, the context could explain part of the variation among
the perceptual evaluations, being informative of whether a parameter affects the
listening satisfaction or of which intervention level of an audiological parameter
is preferred. Although users might have individual perceptions and preferences,
such contextual effect on their individual preferences might be similar across
users.

2.2.2 Relationship Between Choice-Usefulness and Listen-
ing Satisfaction

A user-adaptive system should be able to provide a choice among settings that,
when relevant, leads to higher user satisfaction. When evaluating the four levels
of an audiological parameter, participants rated the usefulness of having four
levels to choose from (i.e., choice-usefulness), as well as their satisfaction with
the listening experience. Thus, we analyzed if listening satisfaction is related
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to the perceived usefulness of an audiological parameter (Figure 2.3). Having
access to useful levels of Noise Reduction did not affect listening satisfaction
(r = 0.064, t = 0.637, df = 96, p = 0.526), while having access to useful
levels of Brightness (r = 0.383, t = 3.908, df = 89, p < 0.001) and Soft Gain
(r = 0.400, t = 3.830, df = 77, p < 0.001) significantly affected listening
satisfaction. Furthermore, the effect of context was analyzed by computing
the correlation between choice-usefulness and satisfaction separately for sound
environments with high and low quality (i.e., SNR levels respectively above and
below the median). For the Brightness parameter, a significant correlation was
only found in low quality sound environments (r = 0.443, t = 3.129, df = 40,
p = 0.003), while for the Soft Gain parameter a higher correlation was found
in high quality sound environments (r = 0.572, t = 3.886, df = 31, p < 0.001)
compared to low quality sound environments (r = 0.366, t = 2.080, df = 28,
p = 0.047).

Figure 2.3: Contingency tables for ratings of choice-usefulness (x-axis) and lis-
tening satisfaction (y-axis), for each audiological parameter. Hav-
ing access to useful levels of Noise Reduction was not associated
with higher listening satisfaction, while having access to useful
levels of Brightness and Soft Gain was associated with higher lis-
tening satisfaction (Appendix B).

2.2.3 Contextual Impact on Choice-Usefulness

A user-adaptive system might leverage contextual information to provide the
hearing aid user with more relevant parameters. Thus, we tested the hypothesis
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that context has a distinct impact on the usefulness of choosing among different
intervention levels of the three parameters. This would make it possible to
reduce the space of possible hearing aid settings by assigning context-aware
usefulness to the audiological parameters.

We applied a model for the cumulative probability of the ith choice-usefulness
rating falling in the jth category or below:

logit(P (Yi ≤ j)) = θj − β1(envi)− β2(intenti)− β3(SPLi)− β4(SNRi)− u(IDi),

i = 1, ..., n, j = 1, ..., J − 1

where i indexes all observations, and j = 1, ..., J indexes the choice-usefulness
categories (J = 5). The continuous SPL and SNR variables were converted into
categorical variables (respectively "Low Intensity", "High Intensity", and "Low
Quality", "High Quality"). The participant effect (ID) was included as random
effect. The self-reported listening environment (env) and intention (intent), and
the objective contextual predictors (SPL, SNR) were included as fixed effects.

Across the three audiological parameters, the contextual predictors significantly
increased the prediction of choice-usefulness ratings (likelihood ratio test, χ2(6) =
21.71, p = 0.002). Subsequently, three separate models were fitted, one per audi-
ological parameter. The model coefficients (Figure 2.4a) indicate that the Noise
Reduction parameter is perceived to be more useful in noisy environments (both
indoor and outdoor); the Brightness parameter is perceived to be more useful
in quieter environments (lower SPL, i.e., lower intensity) and when having a
"Focus" listening intention; the Soft Gain parameter is perceived to be more
useful when having a "Social" listening intention.

2.2.4 Contextual Impact on Audiological Preferences

A user-adaptive system might also benefit from contextual information when
predicting the preferred level of a parameter in a specific situation. Thus, we
tested the hypothesis that context has a distinct impact on the preferred level
of the parameters.

First, we applied a model for the cumulative probability of the ith explicit self-
reported preference falling in the jth level or below:

logit(P (Yi ≤ j)) = θj − β1(envi)− β2(intenti)− β3(SPLi)− β4(SNRi)− u(IDi),

i = 1, ..., n, j = 1, ..., J − 1

where i indexes all observations, and j = 1, ..., J indexes the parameter levels
(J = 4). As in the previous model, the participant effect (ID) was included
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Figure 2.4: In (A) and (B), coefficients and 95% confidence intervals for pre-
dicting choice-usefulness and explicit level preference. In (C) and
(D), the corresponding random offsets due to participant effects.
The baseline conditions for the contextual predictors were: “Only
me” (for listening intention), “Quiet/Indoor” (for listening envi-
ronment), “Low intensity” (for SPL), “Low quality” (for SNR)
(Appendix B).

as random effect, while the self-reported listening environment (env), listening
intention (intent), and the objective contextual predictors (SPL, SNR, previ-
ously converted into categorical variables) were included as fixed effects.

Across the three audiological parameters, the contextual predictors significantly
increased the prediction of explicit level preferences (likelihood ratio test, χ2(6) =
14.418, p = 0.025). Subsequently, three separate models were fitted, one per au-
diological parameter. The model coefficients (Figure 2.4b) indicate that higher
levels of Noise Reduction were preferred in noisy environments (both indoor
and outdoor), while lower levels were preferred when having "Social" listening
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intentions; higher levels of Brightness were preferred when having an "Only me"
listening intention; higher levels of Soft Gain were preferred in quieter environ-
ments and in noisy environments indoor.

Figure 2.5: Observed and predicted implicit preference for intervention level
for the most active participant. In (A), model predictions
are shown together with the observed relative preference for
each intervention level, grouped by all combinations of SPL
and SNR (columns) and separated by audiological parameter
(rows). LI=Low Intensity; HI=High Intensity; LQ=Low Qual-
ity; HQ=High Quality. In (B), the difference between predicted
and observed preference is shown as a scatter plot with the dashed
line indicating a y = x relationship (Appendix B).

In addition to the explicitly self-reported level preferences, implicit preferences
can be inferred from the selections of the intervention levels. Indeed, partici-
pants made ∼ 8 times more active level selections (i.e., level selections that are
set for at least three minutes) than explicit preference submissions. If a system
could rely on implicit preferences, the training phase would be less burdensome
for the user. The same model was fitted for implicit level preferences, with the
only difference that context was only represented by the objective contextual
predictors (SPL, SNR). The model was first fitted to data from all partic-
ipants. As for the explicit preferences, the contextual predictors significantly
increased the prediction of implicit level preferences (χ2(8) = 17.43, p = 0.026).
Subsequently, the model was fitted to data from the most active participant.
Also in this case, the contextual predictors significantly increased the prediction
of implicit level preferences (χ2(8) = 19.97, p = 0.010). Figure 2.5 shows the
predictions of both a null model and a context-aware model for the most active
participant. The latter produced predictions closer to the observed preferences
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(Person’s correlation; null model: r = 0.45, 95%, CI = [0.19, 0.65], df = 46,
p = 0.001; context-aware model: r = 0.67, 95%, CI = [0.48, 0.80], df = 46,
p < 0.001).

2.3 A Future Use Case

The results presented above suggest that offering hearing aid users to personal-
ize the device settings in real-world environments can potentially lead to higher
listening satisfaction. Moreover, context plays an important role in determining
the usefulness of the audiological parameters that should be adjusted, as well as
the preferences for specific levels of the parameters. However, gathering feedback
in real-world environments is time consuming and requires multiple interactions
with the device, which potentially can improve the long term overall experience,
but at the cost of short term user experience. A solution that might accelerate
this phase is the implementation of a conversational agent that autonomously
gathers user feedback in real-world environments and collects information about
the context to learn users’ audiological preferences. Such a conversational agent
could combine natural language understanding with sequential patterns of con-
textual features to predict the most likely preferred hearing aid setting. A
conversational agent could address different user needs by interacting with the
hearing aid user in two ways (Figure 2.6).

First, a conversational agent might help troubleshooting users’ problems and
fine-tune newly acquired hearing aids during the trial phase. In this use case,
the interaction is initiated by the user who expresses a complaint. The com-
plaint is translated into an audiological intent, while contextual information is
collected. Based on the user’s complaint and on contextual features, the agent
proposes a setting adjustments. Second, a conversational agent might monitor
both the current device settings and the context and, in some situations, proac-
tively suggest a comparison between two alternative settings. In both use cases,
the dialogue with the user enables gathering immediate user feedback on the
proposed adjustment and therefore progressively learning the best hearing aid
settings to recommend. The track outlined in this section was not prioritized
internally over other activities and was therefore put on indefinite hold.
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Figure 2.6: Overview of two different conversational agent use cases with dif-
ferent objectives: Troubleshooting (1) and Contextual personal-
ization (2) [101].
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2.4 Chapter Summary

In this chapter, seven participants optimized, via a smartphone-based method,
three audiological parameters in real-world environments and their audiologi-
cal preferences, as well as their context, were gathered. When combining such
preferences into a personalized device configuration and comparing it against a
configuration personalized in a standard clinical workflow, six out of seven par-
ticipants preferred the former configuration. The collected preferences were then
modeled to investigate the feasibility of a context-aware system for providing
hearing aid users with a number of relevant hearing aid settings to choose from.
We found that having access to different intervention levels of two audiological
parameters affected listening satisfaction. Moreover, context significantly mod-
ulated the perceived usefulness of having access to different intervention levels,
as well as the intervention level preferences. Finally, the chapter explored how
implementing a conversational agent potentially allows to automatically gather
user feedback in real-world environments, while monitoring the context, in order
to recommend personalized settings.



Chapter 3

Understanding Users’
Real-World Behavior

In this chapter, the real-world behavior of hearing aid users is investigated based
on objective data logged by commercially available hearing aids. In particular,
Section 3.1 investigates how users use their hearing aids, by exploring patterns
of hearing aid use throughout the day and assessing whether clusters of users
with similar use patterns can be identified. Section 3.2 investigates how users
personalize their hearing aids, by analyzing the provision and context of use of
listening programs currently available in the market.

This chapter presents the contribution of the articles entitled "Clustering Users
Based on Hearing Aid Use: An Exploratory Analysis of Real-World Data" [100]
(Appendix D) and "Investigating the Provision and Context of Use of Hearing
Aid Listening Programs from Real-World Data" [102] (Appendix E). All figures
reported in this chapter are extracted from the aforementioned two articles.

3.1 How Do Users Use the Hearing Aids?

This section investigates how users use their hearing aids in the real-world, by
analyzing the amount of hearing aid use, patterns of hearing aid use throughout
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the day, and assessing whether clusters of users with similar use patterns can
be identified.

3.1.1 Investigating Hearing Aid Use from Real-World Data

The success of hearing aids in mitigating the effects of hearing loss depends on
the intervention provided to the patient, but also on the patient compliance
with the intervention program [106]. Investigating hearing aid use can provide
insight into patient compliance, but also deepen the understanding of patients’
needs and behavior. Most of the existing studies assessing hearing aid use are
based on self-reported measures, such as interviews and questionnaires, while
only a few studies are based on objective measures, such as data logging and
battery consumption [106]. However, self-reported measures have been found
to cause overreport of hearing aid use [41, 67, 117, 79]. Smartphone-connected
hearing aids make it possible to log objective data about hearing aid use. In
addition to avoiding overreport, objective measures enable assessing the hearing
aid use of a large number of users and with a greater temporal resolution [34].

3.1.2 Amount of Hearing Aid Use

When evaluating hearing aid use, the amount of hearing aid use is traditionally
regarded as an indicator of treatment success [66] and often analyzed [122, 20,
79, 117, 123]. We investigated the daily amount of hearing aid use and its
within-user and between-user variability, by analyzing 453,612 days logged from
15,905 real-world users over a 4-month period. The average user had an average
amount of hearing aid use of 10.01 hours, however the between-user standard
deviation was substantial (2.76 hours) and 50% of the users had an average
hearing aid use either below 8.18 (light users) or above 12.04 hours (heavy
users) (Figure 3.1). Furthermore, users had a within-user standard deviation of
3.88 hours, indicating that they did not use the hearing aids uniformly across
the logged days. Compared to the middle 50% of users, the light users (Two-
sample t-test: t = 23.06, p < 0.001; Effect size: d = 0.44) and the heavy users
(Two-sample t-test: t = 41.85, p < 0.001; Effect size: d = 0.81) exhibited a
significantly larger within-user standard deviation, suggesting that they were
more consistent in their low or high hearing aid use.
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Figure 3.1: Distribution of users by their average amount of hearing aid use
and their within-user standard deviation. A second order linear
regression model (line ± 99% confidence interval) was fitted to the
data to model the relationship between average hearing aid use (x)
and within-user standard deviation (y) [100].

3.1.3 Patterns of Hearing Aid Use

Despite being a popular metric, the amount of hearing aid use does not neces-
sarily equate with benefit [52]. Indeed, depending on the degree of hearing loss,
users might be more or less dependent on the hearing aids. Hearing aid users
that exhibit a low amount of hearing aid use are not necessarily dissatisfied [65]
but could only need them in the most challenging situations. Moreover, the
amount of hearing aid use is not informative of how the hearing aids are used
during the day. Objective data logging enables analyzing hourly patterns of
hearing aid use. We investigated how users use the hearing aids during the day
by clustering the 453,612 logged days. The input data consisted of a 453,612 ×
18 matrix

Ar×c = A453612×18 =

a11 · · · a1c
...

. . .
...

ar1 · · · arc

 = (aij) ∈ [0, 60]; i = 1, ..., r; j = 1, ..., c

where each row i represents a day of hearing aid use, each column j represents
an hour of the day (from 6 to 23) and aij is the amount of hearing aid use (from
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0 to 60 minutes) in the day i and hour j. The choice to only analyze usage from
6:00 to 23:59 was justified by the limited data during night time and by the
risk to overrepresent night usage due to users forgetting to turn off the hearing
aids when going to bed. The k-means clustering technique was applied and the

Figure 3.2: In (A), the days of hearing aid use are displayed as scatterplot
against the two main principal components and colored by the
three clusters (i.e., three day types). In (B), the mean (±SD) of
hourly hearing aid use for each cluster is displayed [100].

3-cluster solution was selected, which accounted for almost 50% of the variation
among the days. Based on the hourly mean of hearing aid use for each of the
three clusters (Figure 3.2B), the three types of days of hearing aid use could
be characterized: a full day of hearing aid use (day type 1, containing 44% of
days), a day of afternoon use (day type 2, containing 27% of days), and a day
of sporadic evening use (day type 3, containing 26% of days).

3.1.4 Clustering Users Based on Hearing Aid Use

According to both previous research [79, 118, 123] and the results presented
in Section 3.1.2, the amount of hearing aid use varies among users. Addition-
ally, previous research suggests that the patterns of hearing aid use might also
vary among users [67]. Consistently, Section 3.1.3 has shown that the days of
hearing aid use pooled across all users exhibit widely different patterns. These
differences might be driven both by users behaving differently among each other
(between-user variation) and by the same user behaving differently throughout
the logged days (within-user variation). When comparing users based on their
hearing aid use, the within-user variation is usually disregarded and the av-
erage use per user is usually analyzed [118, 67, 123]. However, Section 3.1.2
suggests that the same user does not always use the hearing aids in the same
way throughout the logged days.
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In view of the above, we investigated the behavior of the 15,905 users by an-
alyzing their patterns of hearing aid use throughout the logged days and we
assessed whether clusters of users with similar use patterns can be identified. In
doing so, we adopted a metric that accounts for the within-user variability. We
clustered the 15,905 users based on the proportion of days belonging to each of
the three typical days of hearing aid use. The input data consisted of a 15,905
× 3 matrix

Br×c = B15905×3 =

b11 · · · b1c
...

. . .
...

br1 · · · brc

 = (bij) ∈ [0, 1]; i = 1, ..., r; j = 1, ..., c

where each row i represents a hearing aid user, each column j represents one of
the three types of days of hearing aid use (from 1 to 3) and bij is the proportion
of days belonging to day type j for user i. Four clustering techniques were eval-
uated: k-means, Hierarchical Agglomerative Clustering (HAC) with Euclidean
distance and Ward’s method, HAC with Pearson correlation and average linkage
method, and HDBSCAN. Based on three internal validation metrics (Silhouette,
Davies-Bouldin, and Caliñski-Harabasz), HDBSCAN was selected. HDBSCAN
identified three user clusters (Figure 3.3), in addition to labelling some users as
noise. The three user groups exhibited widely different hearing aid use patterns:
Group A (49% of users) predominantly had full days of hearing aid use, group B
(15% of users) predominantly had days of afternoon use, group C (20% of users)
predominantly had days of sporadic evening use. However, the users belonging
to all three groups also exhibited a substantial day-to-day variability, with the
predominant type of day only accounting for ∼ 60% of the days.

A good clustering is defined by compact and well separated clusters and enables
a supervised classifier to accurately predict the cluster to which an unseen user
belongs [111]. Thus, we validated the user clustering by training an ensemble
of classifiers to predict the group of each user (group A, B, C, or noisy user)
based on her average day of hearing aid use. The input data for classification
consisted of a 15,905 × 18 matrix

Dr×c = D15905×18 =

d11 · · · d1c
...

. . .
...

dr1 · · · drc

 = (dij) ∈ [0, 60]; i = 1, ..., r; j = 1, ..., c

where each row i represents the average day of a hearing aid user, each column
j represents an hour of the day (from 6 to 23) and aij is the average amount of
hearing aid use (from 0 to 60 minutes) for user i in the hour j. Three classifiers
were defined (multiclass logistic regression, XGBoost and fully connected neural
network). When evaluated individually on two metrics, XGBoost resulted to be
the best performing one (accuracy = 87%, AUC-ROC = 0.98). In order to



34 Understanding Users’ Real-World Behavior

Figure 3.3: In (A), for each of the three user clusters, the days of hearing aid
use are displayed as scatter plot against the two main principal
components. The distinct densities indicate that the three user
groups experienced substantially different days of hearing aid use.
In (B), the average proportion of time spent (±95% confidence
interval) in each day type is displayed for each user cluster [100].

reduce the bias caused by an individual classifier [111], an ensemble was defined
based on the three classifiers and predicted the group of each user by majority
voting between the three classifiers. When no majority could be determined, the
prediction was based on the best performing classifier (XGBoost). The ensemble
reached an accuracy of 86% and an AUC-ROC score of 0.98.

3.2 How Do Users Personalize the Hearing Aids?

This section introduces listening programs as a way to personalize the hear-
ing aids in specific listening situations, investigates the provision of listening
programs, and analyzes the real-world context in which listening programs are
used.
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3.2.1 Investigating Listening Programs from Real-World
Data

Since hearing aid users cope with a wide range of real-world situations, the
devices need to ensure a satisfactory listening experience in different contexts.
Thus, multimemory hearing aids have been introduced, that is, hearing aids
that provide the user with different programs for specific listening environments.
Listening programs set pre-defined rules for contextually adapting different au-
diological parameters such as overall gain, frequency shaping of the gain, noise
reduction, and directionality. In 2019, 41% of hearing aid owners were found
to have a program button or switch to change the hearing aid settings for dif-
ferent listening situations [107]. Previous research has found that programs for
specific listening environments can be beneficial for users, by improving speech
understanding [49, 109]. Moreover, experienced hearing aid users were found to
be able to select the same program in the same situation at a rate exceeding
pure guess [19], suggesting that programs can have a discernible impact on the
listening experience. Nowadays, programs are the most common way for users
to contextually adapt the hearing aid settings and thereby personalize their lis-
tening experience. Despite that, only a few studies investigated, mainly based
on self-reported data, the use of multiple programs for various listening environ-
ments. Previous research suggests that some but not all hearing aid users value
and use the option to switch between listening programs [119, 57, 16, 28, 127,
99, 110]. Smartphone-connected hearing aids enable leveraging objective data
to deepen our understanding of the real-world use of listening programs. Indeed,
objective data logging allows to analyze the program use of a large number of
users in their everyday life contexts. Moreover, it avoids any bias inherent in
self-reports and it allows complementing real-world program use data with ob-
jective data about the context. Compared to questionnaires or diaries, objective
data logging also allows gathering data possessing higher temporal resolution.
Finally, the observational nature of the study allows to observe long-term user
behavior compared to an experimental study. Indeed, users enrolled in an exper-
imental study might either use the programs to be compliant with the received
instructions or might fail to realize the benefit of listening programs due to the
short study duration [64].

3.2.2 Provision of Listening Programs

By leveraging objective data logging, we can deepen our understanding of lis-
tening programs and explore which situations motivate users to seek person-
alization by adjusting their device settings. We investigated the provision of
listening programs by analyzing the programs provided to 32,336 hearing aid
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users. First, we computed how many and which programs were provided to the
users. The majority (57%) of the users was found to have at least a program
for a specific listening situation in addition to the default program, "General".
After some coding of the program names, the most common additional pro-
grams were "Speech in Noise" (provided to 26% of users), "TV" (18%), "Music"
(13%), "Remote Mic" (12%), and "Comfort" (10%). Second, we explored the
relationships among programs by determining association rules. Given a set of
n programs P = p1, p2, . . . , pn, and a set of m users U = u1, u2, . . . , um, where
each user is provided with a subset of the programs in P , a rule is defined as
an implication of the form: X ⇒ Y where X is the antecedent, Y is the conse-
quent, X,Y ⊆ P , and X,Y ∩ ∅ [46]. The rules were evaluated based on several
metrics: support, coverage, confidence, and lift. The association rules with
support≥0.02, confidence>0.5, and lift>1 are presented in Figure 3.4. "Speech
in Noise", the most common additional listening program, is also the consequent
of all rules, indicating that users provided with other additional programs also
receive "Speech in Noise". Conversely, "Music" and/or "Comfort" are always
in the antecedent set. The confidence values indicate that 62%, 71%, 79% of
users who have “Music” (rule 1), “Comfort” (rule 2), or both of them (rule 3)
also have “Speech in Noise”. Instead, "TV" and "Remote Mic" are never in a
single-program antecedent set, suggesting that getting those programs does not
increase the likelihood of receiving other additional programs.

Figure 3.4: Association rules with support≥0.02, confidence>0.5 and lift>1.
The support of each rule is indicated by the area of the circle,
while the confidence is conveyed by the color intensity. “Speech in
Noise” is the consequent of all rules, suggesting that it is frequently
provided to the users that are also provided with other programs
such us “Comfort” and “Music” (Appendix E).
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3.2.3 Context of Use of Listening Programs

Establishing the need and interest for listening programs does not necessarily
imply that users will benefit from them. In order to benefit from listening pro-
grams, users need to be able to correctly classify the environment and select the
appropriate program [64]. Whether users can match the programs to the sound
environments for which they are intended deserves further study [45]. Thus, we
investigated the context of use of three listening programs ("Speech in Noise",
"Comfort", "Music"), by analyzing the sound environment (sound pressure level
(SPL), noise floor(NF), and sound modulation level (SML)) occurring during
396,723 program selections from 1,312 users. The NF is the level of background
noise in a signal, while the SML describes how much the modulated variable
of the signal varies around its unmodulated level. For each logged selection of

Figure 3.5: Analysis of the sound environment (SPL, NF, SML) in which
“Speech in Noise” and “General” were selected. In the upper fig-
ures, distribution of users (using histograms and kernel density
estimation) by their average sound environment when selecting
"General" and "Speech in Noise". In the lower figures, 2d his-
tograms displaying, for each user, the sound environment when
selecting “Speech in Noise” (y-axis) and “General” (x-axis). The
color of the hexagon is determined by the number of users in the
hexagon. The identity line (y = x) is drawn in grey (Appendix
E).
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a specific listening program, the sound environment measured in a 10-minute
time-window centered on the program selection was considered. Firstly, we an-
alyzed the sound environment in which "Speech in Noise" was selected. Figure
3.5 displays the distribution of users by their average sound environment when
selecting "General" and "Speech in Noise". On average, users selected "Speech
in Noise" in significantly louder, noisier and less modulated environments com-
pared to "General", as confirmed by a Wilcoxon Signed-Rank Test (P<.001 for
all three parameters). As shown by the lower graphs in Figure 3.5, the majority
of the users selected "Speech in Noise" in louder (64% of users), noisier (66%),
and less modulated (62%) environments. Subsequently, we explored the sound
environment in which "Comfort" and "Music" were selected. Users selected
both programs in louder, noisier, and less modulated (Wilcoxon Signed-Rank
test, all P<.001) environments compared to "General". No sound environment
difference was found between "Comfort" and "Speech in Noise", as confirmed by
a Mann-Whitney U test (SPL, P=.405; NF, P=.595; SML, P=.344). Instead,
"Music" was selected in less loud (Mann-Whitney U test, P=.009) and less noisy
(Mann-Whitney U test, P<.001) sound environments compared to "Speech in
Noise".

In summary, by analyzing a 10-minute time window centered on program selec-
tion, we found that the three investigated programs were used in sound envi-
ronments different than the default program, “General”. Additionally, exploring
whether the sound environment difference changes before and after program se-
lection enables better understanding users’ behavior and interaction with the
hearing aids. For each of the three programs ("Speech in Noise", "Comfort",
"Music") we computed a 5-minutes rolling average of the sound environment dif-
ference from “General” (Figure 3.6). The difference deviates from zero through-

Figure 3.6: 5-minutes running average (± SE) of the sound environment differ-
ence from “General”, computed in a time-window near the program
selection. The difference deviates from zero throughout the whole
time-window. However, especially for NF and SML, the difference
increased after program selection (Appendix E).
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out the whole time-window. However, especially for NF and SML, the differ-
ence seems to increase after program selection. We quantified such increase by
comparing the sound environment difference from “General” in the 5 minutes
before program selection with the sound environment difference from “General”
in the 5 minutes after program selection. A Wilcoxon Signed-Rank test revealed
that, for all three programs and sound environment features, the difference from
“General” significantly increases after program selection (all P<.05).

3.3 Chapter Summary

In this chapter, large scale data logged by commercially available products were
analyzed to deepen the understanding of users’ behavior. First, we investigated
how users use the hearing aids and we found that, on average, they used the
hearing aids 10 hours/day. We identified three typical days of hearing aid use
and three distinct user groups, each characterized by a predominant typical day
of hearing aid use. Moreover, a supervised ensemble was trained to predict the
group to which an unseen user belongs. Second, we explored how users person-
alize their hearing aids in specific listening situations. We found that 57% of the
sampled users had listening programs beyond the default one, "General". We
identified a primary additional program ("Speech in Noise") and two secondary
additional programs ("Comfort", "Music"). Finally, we analyzed the sound en-
vironment in which such additional programs are used and we found that users
selected them in louder, noisier, and less modulated environments compared
with the environment in which they selected the default program, “General".
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Chapter 4

Discussion and Future Work

This chapter discusses the findings presented in the previous chapters and high-
lights opportunities for future work. Section 4.1 discusses the findings and future
work related to the studies aimed at understanding users’ audiological prefer-
ences. Section 4.2 discusses the findings and future work related to the studies
aimed at understanding users’ real-world behavior.

4.1 Understanding Users’ Audiological Preferences

This section discusses the findings presented in the articles entitled "Rethink-
ing Hearing Aids as Recommender Systems" [104] (Appendix A), "Measuring
and Modeling Context-Dependent Preferences for Hearing Aid Settings" [103]
(Appendix B), and "Designing Audiologist Bots Fusing Soundscapes and User
Feedback" [101] (Appendix C).

Although hearing aid users perceive sound in individual ways, current approaches
do not fully exploit the potential for personalization. However, smartphone-
connected hearing aids potentially enable learning audiological preferences in
real-world contexts by directly involving the user. Learning audiological prefer-
ences requires, first of all, to effectively gather user preferences. A smartphone-
based method was adopted to make users explore a complex audiological space
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and communicate their preferences. Such exploration was simplified by de-
coupling three audiological parameters (Noise Reduction, Brightness, and Soft
Gain), and allowing users to adjust them one at a time. Meanwhile, data about
their experience, preferences and context were gathered.

The three parameters are traditionally deemed important for the listening ex-
perience. In order to investigate whether it is equally advisable to provide users
with the opportunity to adjust such parameters, we analyzed whether higher
perceived usefulness of the parameters was associated with a better listening
experience. We found that the usefulness of the Noise Reduction parameter was
not associated with the listening experience. Previous research shows that noise
reduction in hearing aids enables a more natural speech [24], reduces listening
effort [18, 33] and allows users to tolerate a higher noise level [86, 77]. However,
if the Noise Reduction adjustments are not discernible, the feedback might be
unreliable. Moreover, if the adjustments are not meaningful, the impact on the
perceived listening experience might be negligible, thus enabling users to adjust
the Noise Reduction parameter might not be worth it. Previous research has
shown that, regardless of hearing loss, a change in SNR of 3 dB is necessary for
a reliably discernible difference [83]. Moreover, a change in SNR of 6 to 8 dB is
required for the difference to be meaningful, i.e., not only discernible but also
large enough to induce a behavior change [82]. This might explain why a higher
usefulness of the parameter does not correspond to higher listening satisfaction.
Conversely, we found that, for both the Brightness and Soft Gain parameters, a
higher usefulness was associated with a better listening experience. The signif-
icant role of Brightness confirms the idea that high-frequency information has
an important role in speech localization [21, 84, 25], speech understanding [84],
and perceived naturalness [85]. Previous studies have shown that specifically
hearing-impaired listeners benefit from high-frequency amplification for speech
understanding [50, 3, 84]. Moreover, the extent to which a hearing aid user
benefits from high-frequency amplification is highly individual [84] and, among
listeners with similar high-frequency thresholds, seems to be higher for the ones
with flat hearing losses compared to the ones with sloping losses [50]. Similarly,
hearing impaired listeners widely differ in the loudness perception of sounds
close to the hearing thresholds (i.e., soft sounds), and exhibit loudness-growth
functions ranging from rapid growth to softness imperception [80]. The signifi-
cant correlation between choice-usefulness and listening satisfaction is consistent
with the fact that the benefit of both high-frequency and soft sounds amplifi-
cation are highly individual, and suggests that giving users the opportunity to
personalize such parameters can significantly enhance their listening experience.

Subsequently, the impact of context was analyzed by applying mixed-effects
modeling for predicting choice-usefulness and intervention level preferences. While
gathering user feedback in several real-world contexts is necessary to truly un-
derstand audiological preferences, a user-adaptive system might also leverage
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contextual information to provide the hearing aid user with more relevant pa-
rameters. We found that both logged and self-reported context had a significant
impact on the usefulness of choosing among different intervention levels of the
three parameters. For instance, choosing among four levels of the Brightness
parameter was evaluated to be more useful when having a "Focus" listening in-
tention (i.e., watching TV, having a meal, listening to music) and in low inten-
sity sound environments. In this situations, hearing aid users might personalize
the high-frequency amplification to improve sound localization [21, 84, 25] and
speech understanding [50, 3, 84]. The significant role of context suggests that,
by assigning context-aware usefulness to the audiological parameters, it might
be possible to provide more relevant parameters. This would ensure an improved
short-term listening experience, but also a more meaningful interaction and the
collection of more relevant audiological preferences.

Additionally, context had a significant impact on the explicitely preferred inter-
vention levels of the audiological parameters. Context-aware predictions of the
preferred intervention level can help decide which levels of the parameter should
be offered to the user, depending on the situation. For instance, participants
selected higher Brightness levels (i.e., high-frequency amplification) when being
alone (i.e., "Only me" listening intention compared to "Focus" and "Social").
Previous research have focused on the benefit derived from high-frequency am-
plification in noisy [3] or complex sound environments, and in speech situations
where the target and the masking sounds are spatially separated [68, 84, 3]. The
results of our study suggest that users like to select even higher high-frequency
amplification in situations that do not involve a conversation. Users, when being
alone and in control of the situation, might enjoy increasing high-frequency am-
plification to improve sound localization, without fearing of being disturbed by
sudden noises. Overall, the relevance of both logged and self-reported context
in predicting choice-usefulness suggests that it is important to model context
both by directly observable features (e.g., SPL and SNR), as well as by hid-
den features reflecting the user’s subjective listening intentions (e.g., enhancing
speech or ignoring voices) and environment.

Gathering explicit preferences requires users to actively evaluate the alternative
settings and submit their preference. On the one hand, this makes it easier to
gather preferences that are perceived as meaningful and more likely to impact
the listening experience. On the other hand, this is a time consuming process
that places a burden on the users. Indeed, some users might not be willing to
actively report their preferences. Motivated users might report their preferences
but still miss some challenging situations. Indeed, this task requires engaging in
the submission of audiological preferences in a situation which might already be
effortful for a hearing impaired listener (e.g., conversation in noise). In addition
to explicitly preferred intervention levels, implicit preferences inferred from the
active level selections (i.e. level selections that are set for at least three minutes)
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were analyzed. The impact of logged context (i.e., SPL and SNR) was analyzed
by applying mixed-effects modeling for predicting implicit preferences. Context
had a significant impact on the implicitly preferred intervention levels of the
audiological parameters. A system aimed at learning audiological preferences
could rely on active level selections, combined with contextual data. While
implicit preferences are potentially less reliable, they are less demanding for the
user and might enable preference modeling of less engaged users.

The proposed mixed effect model treated context as fixed effect and assumed
that the preferences of users are impacted by context in the same way across
users. By gathering more repeated measures, future work could expand on such
model to account for the individual sensitivity towards context. This could be
done by introducing participant-specific random slopes. Moreover, the proposed
model treated the individual-level effects as random effects, estimated with par-
tial pooling. The model can make predictions for new users assuming that the
new users exhibit similar traits (e.g., hearing loss, age, perceptual characteris-
tics) as the users used for training the model. By recruiting more participants,
future research could investigate what characteristics cause two users to have
similar audiological preferences. Better understanding which user features ex-
plain the variation in preferences among individuals would enable transferring
the learning from active users to new or inactive users.

Additionally, a conversational agent model was outlined, which could accelerate
the collection of user feedback by autonomously gathering user feedback in real-
world environments and collecting information about the context to learn users’
audiological preferences. The data collected by such conversational agent could,
in the short term, be beneficial to hearing care professionals by facilitating
patient-centered and data-driven decisions in the clinical practice. Indeed, the
process does not rely on further in-clinic tests, so it does not place an additional
burden on the hearing aid professionals, which are currently a scarce resource
in the hearing healthcare field. In the longer term, such data could enable
the autonomous learning of user preferences and thereby alleviate the lack of
audiological resources.

4.2 Understanding Users’ Real-World Behavior

This section discusses the findings presented in the articles entitled "Clustering
Users Based on Hearing Aid Use: An Exploratory Analysis of Real-World Data"
[100] (Appendix D) and "Investigating the Provision and Context of Use of
Hearing Aid Listening Programs from Real-World Data" [102] (Appendix E).
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In addition to learning audiological preferences, smartphone-connected hearing
aids enable learning about the real-world behavior of users. Indeed, observing
the behavior of users in their natural environment offers a new perspective on
how they use the hearing aids. While lacking the control of an experimental
study, it allows to gather data from numerous and diverse users around the
world, with high temporal resolution and for extended periods of time.

To investigate hearing aid use in the real-world, the amount of hearing aid use
was explored by analyzing 453,612 days of HA use logged by 15,905 users. On
average, users used the hearing aids for 10.01 hours per day. This value is
similar [67, 122] or slightly larger [41, 123] than previous studies objectively
measuring hearing aid use. Moreover, among the 15,905 users, 25% used the
hearing aids, on average, for less than 8.18 hours. Previous studies analyzing
hearing aid use based on objective or subjective measures found a similar [67] or
larger [117, 20, 123] percentage. The higher amount of hearing aid use and the
lower percentage of light users in our study might be partly explained by choices
made during the data manipulation process (e.g., including only days with at
least an hour of hearing aid use, selecting the larger value between the right and
left ear). Additionally, the selected participants all used a self-tracking feature
via a smartphone app. When relying on objective data logged via smartphone-
connected hearing aids, it is important to remember that, while the sampled
is large and international, it also has peculiar characteristics in terms of tech-
savyness, openness to experimenting innovative solutions, and engagement.

Not only does data logging potentially improve the accuracy in assessing the
amount of hearing aid use, but it also makes it easier to evaluate how hearing
aids are used by analyzing patterns of hearing aid use. The 453,612 days of
hearing aid use were clustered into three typical days. The most frequent day
(44% of days) was denoted by full hearing aid use. This suggests that, in the
most typical day, hearing aid users use their device uninterruptedly from the
morning (around 7) to the evening (around 22). The second most frequent day
(27%) was characterized by afternoon use, from 11 to 22. The third typical
day (26%) was denoted by sporadic evening use. Such wide difference among
the types of hearing aid use might be driven either by between-user variability
or by within-user variability. Based on the proportion of time spent in each
of the days of hearing aid use, the 15,905 users were clustered in three user
groups. The most common group (49% of users) predominantly had full days of
hearing aid use. Due to the inclusion criteria of the study, this group of heavy
users might be overrepresented. Moreover, 15% of users mainly had days of
afternoon use, and 20% predominantly had days of sporadic evening use. The
latter user group might either be composed by unsatisfied users or by hearing
impaired people that are not dependent on their hearing aids and only use the
device in the most challenging situations. The remaining 15% of users exhibited
uncommon behaviors and did not belong to any cluster. The users belonging to
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the three clusters (85%) tended to have predominant daily patterns of hearing
aid use. However, this does not mean that they used the hearing aids uniformly
from day to day. Indeed, on average only 60% of days were characterized by the
predominant day type. Such day-to-day variation might not emerge in studies
based on self-reports, which suffer from recall bias. Indeed, a previous study
found that 77% of the participants reported in a questionnaire that they use
the hearing aids in the same way every day, while only 23% said that they use
the hearing aids differently from day to day [67]. Finally, a supervised classifier
was successfully trained (accuracy 86%) to predict the cluster a user belongs
to. Training a classifier not only validates the quality of the partition, but it
also potentially enables leveraging the knowledge of existing users to predict the
user group of a new user.

Investigating patterns of hearing aid use enables a deeper understanding of the
needs and behavior of hearing aid users. Future research could complement the
objective data about hearing aid use with subjective evaluations of the listening
experience. For instance, 20% of users predominantly used the hearing aids in
isolated occasions, mainly during the evening. Knowing whether these users are
satisfied with their listening experience would help to verify whether the sporadic
use is due to a malfunctioning hearing aid or a suboptimal fitting. Furthermore,
collecting data describing the hearing aid user (e.g., hearing loss, age) would
enable better characterizing the hearing aid users belonging to each cluster,
as well as transferring the existing knowledge to similar new users. Ultimately,
better understanding the users would help hearing care professionals make data-
driven decisions and thereby enhance the provided hearing treatment.

In addition to investigating the use of hearing aids, smartphone-connected hear-
ing aids enable exploring how users personalize them in specific listening situ-
ations. The provision of listening programs to 32,336 hearing aid users was
analyzed. Fifty-seven percent of hearing aid users had listening programs in
addition to the default one. Such percentage is higher than the 41% of users
which reported, in a previous study, to have a switch to change the hearing
aid settings for different environments [107]. Similarly to previous cases, the
inclusion criteria might explain the higher percentage found in our study. The
association mining analysis revealed that "Speech in Noise" is a primary pro-
gram, provided as first option to users that are interested in personalizing their
listening experience in specific environments. This is consistent with the diffi-
culty encountered by hearing impaired people in background noise [20, 48, 1],
and multi-talker scenarios [42]. However, whether the provision of listening pro-
grams is mostly influenced by hearing aid professionals or by hearing aid users
cannot be determined based on such objective data and would deserve further
study.

The analysis of the context in which the listening programs were selected shew
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that users selected "Speech in Noise", "Comfort", and "Music" in a louder, nois-
ier and less modulated sound environments compared to "General". The sound
environment difference is consistent with a context characterized by a conversa-
tion in noise, or by music. This indicates that users are, to some extent, able to
correctly characterize the listening environment and select the most appropriate
program. Interestingly, there was no difference between the sound environments
in which users selected “Comfort” and “Speech in Noise”. This indicates that two
apparently similar sound environments might in fact require different hearing
aid settings, depending on the listening intent. The analyzed high-level sound
environment features (i.e., SPL, NF, and SML) might not be sufficient to dis-
tinguish among different listening intents. Moreover, we found that the sound
environment difference from "General" increased in the five minutes following
program selection compared to the five minutes preceding it. This suggests that
some users might select additional listening programs in anticipation, rather
than as a reaction, to a change in the sound environment. This would con-
firm that users are aware of what the contextually most appropriate program is
and proactively select it before entering a specific listening situation. Overall,
the significant difference in the context of use of specific additional programs
indicates that hearing aid users could benefit from being empowered to adjust
the device settings in different contexts. However, given that hearing aid users
differ in behavior and preferences, the benefit from such solution might depend
on several factors, such as the hearing loss, age, and experience with hearing
aids. Further research is needed to investigate the role played by these factors
in benefiting from listening programs.
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Chapter 5

Conclusion

Despite the fact that hearing aid users perceive the sounds in individual ways
and can potentially benefit from more personalized interactions in different steps
of their journey, current approaches do not fully exploit the potential for per-
sonalization. Indeed, hearing aid manufacturers face the challenge of providing
personalized hearing aid settings, as well as a comprehensively personalized so-
lution to patients. This thesis contributes to the progress towards a data-driven
approach to hearing aid personalization by learning users’ preferences and be-
havior from real-world data.

First, we adopted a smartphone-based method to empower hearing aid users
to adjust three audiological parameters (Noise Reduction, Brightness, and Soft
Gain) in real-world environments and gather contextualized data on their audio-
logical preferences. By analyzing the collected data, we found that having access
to different intervention levels of two audiological parameters (Brightness and
Soft Gain) affected listening satisfaction. Moreover, the contextual information
had a significant impact on the perceived usefulness of having access to different
intervention levels, as well as the intervention level preferences. Therefore, the
gathered contextual data can help provide the users with more relevant settings
to choose from, thereby improving the listening experience while gathering more
meaningful data.

Second, we observed the behavior of users by analyzing data logged by com-
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mercially available hearing aids. We investigated hearing aid use and identified
three typical daily patterns of hearing aid use. Users were clustered based on
hearing aid use and three groups were identified, each characterized by a pre-
dominant daily pattern of hearing aid use. Moreover, we explored the provision
and context of listening programs. We identified a default program, a primary
additional program, and two secondary additional programs. We also found
that users use the additional listening programs in sound environments different
than the default program.

Our results show that smartphone-connected hearing aids can be useful to both
perform experimental studies aimed at exploring novel ways of personalizing the
device, and observational studies aimed at investigating how users naturally use
commercially available devices. Gathering data in real-world environments and
developing a deeper understanding of the preferences and behavior of hearing
aid users can help hearing care professionals offer better services, manufacturers
develop truly personalized solutions, and researchers progress in the quest for
a more comprehensive understanding of the diverse needs of hearing impaired
people.
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ABSTRACT
The introduction of internet-connected hearing aids constitutes a
paradigm shift in hearing healthcare, as the device can now po-
tentially be complemented with smartphone apps that model the
surrounding environment in order to recommend the optimal set-
tings in a given context and situation. However, rethinking hearing
aids as context-aware recommender systems poses some challenges.
In this paper, we address them by gathering the preferences of seven
participants in real-world listening environments. Exploring an au-
diological design space, the participants sequentially optimize three
audiological parameters which are subsequently combined into a
personalized device configuration. We blindly compare this configu-
ration against settings personalized in a standard clinical workflow
based on questions and pre-recorded sound samples, and we find
that six out of seven participants prefer the device settings learned
in real-world listening environments.

CCS CONCEPTS
• Information systems→Personalization;Recommender sys-
tems; • Human-centered computing → Ambient intelligence;
User centered design.
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1 INTRODUCTION
Despite decades of research and development, hearing aids still fail
to restore normal auditory perception as they mainly address the
lack of amplification due to loss of hair cells in the cochlea [16],
rather than compensating for the resulting distortion of neural
activity patterns in the brain [22]. However, the full potential of
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hearing aids is rarely utilized as devices are frequently dispensed
with a “one size fits all” medium setting, which does not reflect
the varying needs of users in real-world listening scenarios. The
recent introduction of internet-connected hearing aids represents
a paradigm shift in hearing healthcare, as the device might now be
complemented with smartphone apps that model the surrounding
environment in order to recommend the optimal settings in a given
context.

Whereas a traditional recommender system is built based on data
records of the form < user,item,rating > and may apply collaborative
filtering to suggest, for instance, new items based on items pre-
viously purchased and their features, recommending the optimal
hearing aid settings in a given context remains highly complex.
Rethinking hearing aids as recommender systems, different device
configurations could be interpreted as items to be recommended
to the user based on previously expressed preferences as well as
preferences expressed by similar users in similar contexts. In this
framework, information about the sound environment and user
intents in different soundscapes could be treated as contextual in-
formation to be incorporated in the recommendation, building a
context-aware recommender system based on data records of the
form < user,item,context,rating > [1]. However, addressing some
challenges related to the four aforementioned data types is essen-
tial to make it possible to build an effective context-aware recom-
mender system in the near future. In this paper, we discuss the main
challenges posed when rethinking hearing aids as recommender
systems and we address them in an experiment conducted with
seven hearing aid users.

1.1 Rating
In order to be able to precisely and accurately recommend optimal
device settings in every situation, gathering relevant user prefer-
ences (expressed as ratings) is essential. However, learning user
preferences poses some challenges. Firstly, the device settings re-
flect a highly complex audiological design space involving multiple
interacting parameters, such as beamforming, noise reduction, com-
pression and frequency shaping of gain. It is important to explore
the different parameters, in order not to disregard some parameters
that might have relevant implications for the user listening experi-
ence, and to identify which parameters in an audiological design
space [10] define user preferences in a given context. Secondly, the
preferred device settings depend on the human perception of the
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listening experience and it is therefore difficult to represent the per-
ceptual objective using an equation solely calculated by computers
[21]. Having to rely on user feedback, it is important to limit the
complexity of the interface, to make the interaction as effective as
possible. Thirdly, capturing user preferences in multiple real-world
situations not only guarantees that the situations are relevant and
representative of what the user will experience in the future, but
it also allows the user to test the settings with a precise and real
intent in mind. However, this increases the complexity of the task,
since the real-world environment is constantly changing and a user
might explore the design space while performing other actions (e.g.
conversing).

A traditional approach to find the best parameter combination
(i.e. the best device configuration) is parameter tweaking, which
consists in acting on a set of (either continuous or discrete) param-
eters to optimize them. Similarly to enhancing a photograph by
manipulating sliders defining brightness, saturation and contrast
[21], the hearing aid user could control her listening experience
by tweaking the parameters that define the design space and find
the optimal settings in different listening scenarios. However, this
method can be tedious when the user is moving in a complex de-
sign space defined by parameters that interact among each other
[13]. One frequently used method to simplify the task of gather-
ing preferences is pairwise comparison, which consists in making
users select between two contrasting examples. A limitation of
this approach is efficiency, given that a single choice between two
examples provides limited information and many iterations are
required to obtain the preferred configuration. Based on pairwise
comparisons, an active learning algorithm may apply Bayesian
optimization [2] to automatically reduce the number of examples
needed to capture the preferences [3], assuming that the samples
selected for comparison capture all parameters across the domain.
Alternatively, one might decompose the entire problem into a se-
quence of unique one-dimensional slider manipulation tasks. As
exemplified by Koyama et al. [13], the color of photographs can be
enhanced by proposing users a sequence of tasks. At every step, the
method determines the one-dimensional slider that can most effi-
ciently lead to the best parameter set in a multi-dimensional design
space defined by brightness, contrast and saturation. Compared to
pairwise comparison tasks, the single-slider method makes it possi-
ble to obtain richer information at every iteration and accelerates
the convergence of the optimization.

Inspired by the latter approach we likewise formulate the learn-
ing of audiological preferences in a given listening scenario as an
optimization problem:

z = argmax f
x ∈X

(x)

where x defines parameters related to beamforming, attenuation,
noise reduction, compression, and frequency shaping of gain in an
audiological design space X [10] and the global optimum of the
function f : X → ℜ returns values defining the preferred hearing
aid settings in a given listening scenario.

However, while it remains sensible to assume that individual ad-
justments would converge when crowdsourcing (i.e. asking crowd
workers to complete the tasks independently) the task of enhancing
an image [13], it is less likely that hearing impaired users would

have similar preferences due to individual differences in their sen-
sorineural processing [16, 22]. Therefore, at least in the first phase,
we need to ask the same user many times about her preferences,
until her optimal configuration is found. Furthermore, in order to
optimize the device in different listening scenarios, we need to ask
the same user to move in the same design space multiple times.
Altering the one-dimensional slider at every step of the evaluation
procedure might make the task difficult, since the user would not
know the trajectory defined by the new slider. We believe that
decoupling the parameters and allowing users to manipulate one
parameter at a time, moving in a one-dimensional space that is
clearly understood, would allow them to better predict the effects
of their actions and hence more effectively assess their preferences.

1.2 Item
In order to enhance the hearing aid user experience, it is important
to appropriately select the parameters that define the hearing aid
configurations evaluated by users. Indeed, not only should the
parameters have a relevant impact on the user listening experience,
but the different levels of the parameters should also be discernible
by untrained users. Three parameters have been demonstrated to
be particularly important for the experience of hearing impaired
users:

(1) Noise reduction and directionality. Noise reduction reduces
the effort associated with speech recognition, as indicated by
pupil dilation measurements, an index of processing effort
[23]. By allowing speedier word identification, noise reduc-
tion also facilitates cognitive processing and thereby frees
up working memory capacity in the brain [18]. Moreover,
fast-acting noise reduction proved to increase recognition
performances and reduce peak pupil dilation compared to
slow-acting noise reduction [23]. Given that the ability of
users to understand speech in noisy environments may vary
by up to 15 dB [4], it is essential to be able to individualize
the threshold levels for the activation of noise reduction.

(2) Brightness. While a lot of research has been focused on adapt-
ing the frequency-specific amplification which compensates
for a hearing loss based on optimized rationales like VAC+
[5], rationales still reflect average preferences across a popu-
lation rather than individual ones. Several studies indicate
that some users may benefit from increasing high-frequency
gain in order to enhance speech intelligibility [11, 12].

(3) Soft gain. The perception of soft sounds varies largely among
individuals. Hearing aid users with similar hearing losses
can perceive sounds close to the hearing threshold as being
soft or relatively loud. Thus, proposing a medium setting for
amplification of soft sounds may seem right when averag-
ing across a population, but would not be representative of
the large differences in loudness perception found among
individual users [17]. For this reason, modern hearing aids
provide the opportunity to fine-tune the soft gain by acting
on a compression threshold trimmer [14].

Taking a naive approach, treating each parameter independently,
the preferences could subsequently be summed up in a general hear-
ing aid setting, by simply applying the most frequently preferred
values along each audiological parameter.
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1.3 User
Hearing aids are often fitted based on a pure tone audiometry, a
test used to identify the hearing threshold of users. However, as
mentioned above, users perceive the sounds differently and might
benefit from a fully personalized hearing aid configuration. For this
reason, it is essential to fully understand what drives user prefer-
ences and which is the relative importance of users’ characteristics
and context. It is interesting to analyse whether users exhibit similar
preferences when optimizing the hearing aids in several real-world
environments and whether they result into similar configurations.

1.4 Context
Users often prefer to switch between highly contrasting settings de-
pending on the context [11]. It has been shown that a context-aware
hearing aid needs to combine different contextual parameters, such
as location, motion, and soundscape information inferred by audi-
tory measures (e.g. sound pressure level, noise floor, modulation
envelope, modulation index, signal-to-noise ratio) [12]. However,
these contextual parameters might fail to capture the audiological
intent of the user, which depends not only on the characteristics of
the sound environment but also on the situation the user is in. For
this reason, in addition to retrieving the characteristics of the sound
environment and the preferred device settings, it is also important
to capture the contextual intents of users in the varying listening
scenarios. Contextual information, in this exploratory phase, can be
explicitly obtained by directly asking the user to define the situation
she is in. However, in the future, to enable an automatic adaptation
to the needs of users in real-world environments, relevant contex-
tual information will need to be inferred using a predictive model
that classifies the surrounding environment.

2 METHOD
2.1 Participants
Seven participants (6 men and 1 woman), from a screened popula-
tion provided by Eriksholm Research Centre, participated in the
study. Their average age was 58.3 years (std. 12 years). Five of them
were working, while two were retired. They were suffering from a
binaural hearing loss ranging from mild to moderately severe, as
classified by the American Speech-Language-Hearing Association
[6]. The average hearing threshold levels are shown in Figure 1.
They were all experienced hearing aid users, ranging from 5 to 20
years of experience with hearing aids. All test subjects received
information about the study and signed an informed consent before
the beginning of the experiment.

2.2 Apparatus
The participants were fitted according to their individual hearing
loss with a pair of Oticon Opn S 1 miniRITE [8]. All had iPhones
with iOS 12 installed and additionally downloaded a custom smart-
phone app connected to the hearing aids via Bluetooth. The app
enabled collecting data about the audiological preferences and the
corresponding context.
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Figure 1: Average hearing threshold (i.e. the sound level be-
low which a person’s ear is unable to detect any sound [7])
levels for the 7 participants. The participants had a hearing
loss ranging from mild to moderately severe. Error bars in-
dicate ±1 standard deviation of the hearing thresholds.

2.3 Procedure
The experiment was divided into four weeks. As shown in Table 1,
the first three weeks were devoted to optimizing the three audio-
logical parameters, one at a time. Each of the first three weeks, the
participants were fitted with four levels of the respective parameter,
while the other two parameters were kept neutral at a default level.
For instance, in week 1, each participant could select between four
levels of noise reduction and directionality. The participants were
instructed to compare, using a smartphone app, the four levels of
the parameter in different situations during their daily life and to
report their preference. To ensure that the participants would eval-
uate the different levels in relevant listening situations and when
motivated to optimize their device, they were instructed to perform
the task on a voluntary basis. Moreover, every time they reported
their preference, the participants were asked to specify:

• The environment they were in (e.g. office, restaurant, public
space outdoor). Different environments are characterised
by different soundscapes and pose disparate challenges for
hearing aid users.

• Their motion state (e.g. stationary, walking, driving). Mo-
tion tells more about the activity conducted by the person,
but may also mark the transition to a different activity or
environment [9].

• Their audiological intent (e.g. conversation, work meeting,
watching TV, listening to music, ignoring speech). Comple-
menting the contextual information by gathering the intent
of the participants in the specific situation might provide a
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Table 1: Study timeline

Week Activity

W. 1 Optimization of noise reduction and directionality
W. 2 Optimization of brightness (amplification of high-frequency

sounds)
W. 3 Optimization of soft gain (amplification of soft sounds)
W. 4 Final test of preference

deeper insight into how the different audiological parameters
help them in coping with different sounds.

• The usefulness of the parameter in the specific situation (on a
scale ranging from 1 to 5). This evaluation is important not
only to understand the relative importance of each prefer-
ence, but also to assess the perceived benefit of the parameter
in diverse situations.

The fourth week each participant compared two different device
configurations in a blind test:

• An individually personalized configuration combining the
most frequently selected preferences of the three audiologi-
cal parameters gathered in real-world listening environments
during the previous three weeks.

• A configuration personalized in a standard clinical work-
flow based on questions and on pairwise comparisons of
pre-recorded sound samples capturing different listening
scenarios including, for instance, speech with varying levels
of background noise.

The participants were instructed to compare the two personalized
configurations in different listening situations throughout the day
and report their preference, while also labeling the context. At the
end of the week, the participants were asked to select the configu-
ration they preferred.

3 RESULTS
During the four weeks of test, the participants actively interacted
with their devices, changing the hearing aid settings, overall, 4328
times (i.e. the level of the parameter during the first three weeks
or the final configuration during the last week) and submitting 406
preferences. On average, the participants tried the different hearing
aid settings 11 times before submitting a preference. Although one
parameter affects the perception of the others, isolating them al-
lows to analyse their perceived impact on the listening experience.
As illustrated in Figure 2, the brightness parameter was on aver-
age rated higher in perceived usefulness. This result is consistent
among the seven participants. Conversely, the noise reduction and
directionality parameter resulted to have the lowest perceived use-
fulness for five participants out of seven. The soft gain parameter
resulted to have an average perceived usefulness between those of
the other two parameters.

Recording, together with each preference, the perceived use-
fulness of the parameter in the specific situation also allows to
understand how much each parameter contributes to the overall
setting of the hearing aid. Figures 3, 4, 5 display the preferences of
test participants for different levels of noise reduction and direction-
ality, brightness, and soft gain, respectively. Only the preferences
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Figure 2: Average perceived usefulness of three parameters
(noise reduction and directionality, brightness, soft sounds).
Brightness is perceived to be the most useful parameter.
Noise reduction and directionality tends to be perceived as
the least useful parameter.

recorded in situations where the usefulness of the parameter is
rated higher than two out of five are considered.

Firstly, the results indicate that the participants have widely dif-
ferent audiological preferences, rather than converging towards
a shared optimal value. As the participants are ordered by age (A
being the youngest), there seem, nevertheless, to be some com-
mon tendencies among younger or older participants across all
parameters.

Secondly, most participants are not searching for a single op-
timum but select different values within each parameter. When
adjusting the perceived brightness (Figure 4), six participants out
of seven prefer, most of the time, the two highest levels along this
parameter. Thirdly, the participants frequently prefer highly con-
trasting values within each parameter, depending on the context.
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Figure 3: Preferences for the 4 levels of noise reduction and
directionality, which correspond (from level 1 to level 4) to
increasing directionality settings, increasing levels of noise
reduction in simple and complex environments and earlier
activation of noise reduction [15]. The participants exhib-
ited different noise reduction and directionality preferences
and five of them preferred more than one level in different
situations.
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Figure 4: Preferences for the 4 levels of brightness, which
correspond (from level 1 to level 4) to increasing amplifica-
tion of high-frequency sounds. The participants exhibited
different brightness preferences and six of them preferred
more than one level in different situations.
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Figure 5: Preferences for the 4 levels of soft gain, which cor-
respond (from level 1 to level 4) to increasing amplification
of soft sounds, thus increasing dynamic range compression
[14]. The participants exhibited different soft gain prefer-
ences and five of them preferred more than one level in dif-
ferent situations.

In order to combine the sequentially learned preferences, we
summed up the most frequently chosen values along each param-
eter into a single hearing aid configuration. For each participant,
we subsequently compared it against individually personalized set-
tings configured in a standard clinical workflow based on questions
and pre-recorded sound samples. After the fourth week, six out of
seven participants responded they appreciated having more than
one general hearing aid setting, as they used both configurations in
different situations. They also wished to keep both personalized con-
figurations after the end of the test. However, in a blind comparison
of the two configurations, six out of seven participants preferred
the hearing aid settings personalized by sequentially optimizing
parameters in real-world listening scenarios.

4 DISCUSSION
Due to the aging population, the number of people affected by hear-
ing loss will double by 2050 [20] and this will have large implications
for hearing healthcare. Rethinking hearing aids as recommender
systems might enable the implementation of devices that automat-
ically learn the preferred settings by actively involving hearing
impaired users in the loop. Not only would this enhance the expe-
rience of current hearing aid users, but it could also help overcome
the growing lack of clinical resources. Personalizing hearing aids by
integrating audiological domain-specific recommendations might
even make it feasible to provide scalable solutions for the 80% of
hearing impaired users who currently have no access to hearing
healthcare worldwide [19]. The accuracy of the recommendation
primarily depends on the ability of the system to gather user pref-
erences, while the user explores a highly complex design space. In
this study, we proposed an approach to effectively optimize the
device settings by decoupling three audiological parameters and
allowing the participants to manipulate one parameter at a time,
comparing four discrete levels. The fact that the participants pre-
ferred the hearing aid configuration personalized in real-world
environments suggests that the proposed optimization approach
manages to capture the main individual parameter preferences.

Looking into the individual preferences learned when sequen-
tially adjusting the three parameters, several aspects stand out. The
results suggest that the brightness parameter has the highest per-
ceived usefulness. This could be due to the fact that enhancing the
gain of high frequencies may increase the contrasts between conso-
nants and as a result improve speech intelligibility. Likewise, it may
amplify spatial cues reflected from the walls and ceiling, improving
the localization of sounds and thereby facilitating the separation of
voices. The participants seemed to appreciate a brighter soundwhen
listening to speech or when paying attention to specific sources
in a quiet environment. Despite the advances in technology that
reduce the risk of audio feedback and allow the new instruments
to be fitted to target and deliver the optimal gain [8], in some situa-
tions most of the participants seemed to benefit from even more
brightness. Conversely, users might prefer a more round sound in
noisy situations or when they want to detach themselves.

Adjusting the noise reduction and directionality parameter is per-
ceived as having the lowest usefulness. Essentially, this parameter
defines how ambient sounds coming from the sides and from behind
are attenuated, while still amplifying signals with speech character-
istics. Although the benefits of directionality and noise reduction
are proven, our results indicate that users find it more difficult to
differentiate the levels of this parameter if the ambient noise level is
not sufficiently challenging. The four levels of the parameter mainly
affect the threshold for when the device should begin to attenuate
ambient sounds. However, these elements of signal processing are
partly triggered automatically based on how noisy the environment
is. Therefore, in some situations, changing the attenuation thresh-
olds (i.e. the parameter levels) might not make a difference. Thus,
users may feel less empowered to adjust this parameter. On the
other hand, the data also shows that participants actively select the
lowest level of the parameter (level 1), which provides an immersive
omnidirectional experience without attenuation of ambient sounds
in simple listening scenarios. This suggests that, in some contexts,
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users express a need for personalizing the directionality settings
and the activation thresholds of noise reduction. Furthermore, pre-
vious studies have shown that the perception of soft sounds varies
largely among individuals. Our results not only confirm that users
have widely different audiological preferences, but also suggest
they would benefit from a personalized dynamic adaptation of soft
gain dependent on the context.

Focusing on the optimization problem in the audiological de-
sign space, some indications can be inferred. The large differences
among the participants suggest that, in a first phase, users’ inter-
action is essential to gather individual preferences and thereby
reach the optimum configuration for each single user. Simplify-
ing the optimization task and offering a clear explanation of the
one-dimensional slider made the process more transparent and
increased users’ empowerment. Once a recommender system is in
place, this component might also prove useful in enhancing users’
trust in the recommendations provided. Moreover, performing the
optimization task in real-world environments ensured an accurate
assessment and communication of users’ preferences. In the short
term, user preferences collected with this approach could flow into
the standard clinical workflow and help hearing care professionals
to fine-tune the hearing aids. However, a single static configura-
tion, although personalized, might not fully satisfy the user. Our
results indicate that such recommender systems should not simply
model users as a sole set of optimized audiological parameters, be-
cause the preferred configuration varies depending on the context.
It is therefore essential for these models to likewise classify the
sound environment and motion state in order to infer the intents
of the user. Being fully aware of the intent, by automatically la-
beling it, would add further value to the collected preferences and
would allow to ask for user feedback in specific situations. That
would make it feasible to verify hypotheses based on previous data,
and progressively optimize several device configurations for differ-
ent real-world listening scenarios. Once some configurations are
learned, the hearing aids could automatically recommend them in
specific situations and, by monitoring users’ behavior, continuously
calibrate to the preference of the user.

5 CONCLUSION
Internet-connected hearing aids open the opportunity for truly
personalized hearing aids, which adapt to the needs of users in real-
world listening scenarios. This study addressed the main challenges
posed when rethinking hearing aids as recommender systems. It
investigated how to effectively optimize the device settings by
gathering user preferences in real-world environments. A complex
audiological space was simplified by decoupling three audiological
parameters and allowing the participants to manipulate one param-
eter at a time, comparing four discrete levels. The participants se-
quentially optimized the three audiological parameters, which were
subsequently combined into a personalized device configuration.
This configuration was blindly compared against a configuration
personalized in a standard clinical workflow based on questions
and pre-recorded sound samples, and six out of seven participants
preferred the device settings learned in real-world listening en-
vironments. Thus, the approach seemed to effectively gather the
main individual audiological preferences. The parameters resulted

to have a different perceived usefulness, differently contributing to
the listening experience of hearing aid users. The seven participants
exhibited widely different audiological preferences. Furthermore,
our results indicate that hearing aid users do not simply explore the
audiological design space in search of a global optimum. Instead,
most of them select multiple highly contrasting values along each
parameter, depending on the context.
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Abstract Despite having individual perceptual preferences toward sounds, hearing aid 

users often end up with default hearing aid settings that have no contextual awareness. 

However, the introduction of smartphone-connected hearing aids has enabled a 

rethinking of hearing aids as user-adaptive systems considering both individual and 

contextual differences. 

In this study, we aimed to investigate the feasibility of such context-aware system for 

providing hearing aid users with a number of relevant hearing aid settings to choose from. 

During normal real-world hearing aid usage, we applied a smartphone-based method for 

capturing participants' listening experience and audiological preference for different 

intervention levels of three audiological parameters (Noise Reduction, Brightness, Soft 

Gain). Concurrently, we collected contextual data as both self-reports (listening 

environment and listening intention) and continuous data logging of the acoustic 

environment (sound pressure level, signal-to-noise ratio). 

First, we found that having access to different intervention levels of the Brightness and 

Soft Gain parameters affected listening satisfaction. Second, for all three audiological 

parameters, the perceived usefulness of having access to different intervention levels was 

significantly modulated by context. Third, contextual data improved the prediction of both 

explicit and implicit intervention level preferences. Our findings highlight that context has 

a significant impact on hearing aid preferences across participants and that contextual 

data logging can help reduce the space of potential interventions in a user-adaptive 

system so that the most useful and preferred settings can be offered. Moreover, the 

proposed mixed-effects model is suitable for capturing predictions on an individual level 

and could also be expanded to predictions on a group level by including relevant user 

features. 
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Introduction 

Background 
 

Hearing aid users with similar hearing loss perceive sounds in highly individual ways, 

exhibiting differences in the ability to understand speech in noisy environments (Killion 

2002), in the loudness perception (Oetting et al. 2018), and in the perception of sounds 

close to their hearing threshold (Marozeau and Florentine 2007). Despite that, the 

prescription of hearing aid amplification is primarily based on pure-tone audiometry, a 

test that measures the hearing thresholds for tonal stimuli at typically eight different 

frequencies (Walker et al. 2013). Pure-tone audiometry is a threshold test of signal 

detection but does not adequately represent real-world hearing abilities (Killion 2002, 

Baguley et al. 2016), because it does not convey information about central auditory 

processing, nor the auditory processing of real-world signals (Musiek et al. 2017). For 

these reasons, the initial prescription is considered a starting point rather than the 

optimal solution to treat a hearing loss (Abrams et al. 2011). A subsequent fine-tuning of 

the hearing aid might be performed in follow-up visits, during which the hearing care 

professional modifies the hearing aid settings based on users’ recollections of past 

listening experiences (Kochkin et al. 2010). However, the success of fine-tuning depends 

on the hearing care professional’s ability to interpret and translate users’ recollections 

(Elberling and Hansen 1999; Arlinger et al. 2017). Moreover, this is a time-consuming 

procedure, often requiring multiple visits to obtain a satisfactory configuration (Abrams 

et al. 2011), and it does not guarantee a significant advantage over a default initial 

prescription (Cunningham et al. 2001; Shi et al. 2007). Crucially, hearing aid users are 

often hesitant to seek help from their hearing care professional, which highlights the 

importance of promoting user empowerment and self-management through new 

technology (Bennett et al. 2019). All in all, alternative user-driven ways of personalizing 

hearing aids are warranted.  

 

Furthermore, hearing aid users report listening difficulties in different real-life 

situations ranging from face-to-face conversations to social interactions (Galvez et al. 
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2012). To cope with the different situations, hearing aid users seem to prefer switching 

between highly contrasting hearing aid settings depending on contextual variables such 

as sound environment and listening intention (Johansen et al. 2017, Korzepa et al. 2018). 

This emphasizes the importance of everyday context on users’ listening experience and 

on their preferences toward specific hearing aid settings. To address a need for contextual 

adaptation, hearing aid users can currently be provided with different pre-configured 

programs. Such programs are aimed at improving the listening experience in specific 

contexts (e.g., speech in noise, music (Hockley et al. 2010)) by setting predefined levels 

for different audiological parameters. Other hearing aid programs dynamically change 

their level of intervention according to the sensed environment - e.g., the level of noise 

reduction can be adjusted based on the ambient sound intensity levels (Schum 2003) 

within some predefined ranges. However, such programs are based on the average 

hearing aid user and disregard the fact that listening preferences are highly individual 

(Brons et al. 2013). As a consequence, users tend not to use other programs than the 

default one (Nelson et al. 2006). Ultimately, this indicates that it is crucial to account both 

for individual preferences and for the impact of real-world context45 on users’ listening 

experience and preferences when prescribing or fine-tuning hearing aid settings.  

 

Related Work 
 

Several studies have documented that user-driven adjustments of hearing aids are 

feasible and potentially beneficial when investigated under controlled laboratory 

conditions (Yoon et al. 2017; Boothroyd and Mackersie 2017; Nelson et al. 2018; Jensen 

et al. 2019). Some studies have also reported on the benefits of training a personalized 

hearing aid program with a combination of sensor data and subjective preference 

feedback obtained from users in different real-life situations. However, results are mixed. 

Keidser and Alamudi (2013) trained the hearing aid settings using the SoundLearning 

algorithm (Chalupper et al. 2009), which learns and adjusts the amplification gain 

independently in four frequency bands and according to six different sound environments 

classified by the hearing aids (i.e., speech, speech and noise, quiet, noise, music, and car 

noise). They reported that 8 out of 18 participants preferred their trained hearing aid 

prescription in an evaluation phase (8 showed no preference and 2 preferred the un-

trained prescription) and they concluded that training was efficient in those participants 

who initially wanted a change in their prescription. In another study, Aldaz et al. (2016) 

used smartphone-connected hearing aids to train settings with more “contextual 

awareness” by having participants perform A/B comparisons between the general 

program and context-specific programs alternating the microphone directionality or the 
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noise reduction on and off. In the evaluation phase, the authors concluded that 7 out of 15 

participants preferred the trained setting, 1 preferred the untrained setting, and 7 showed 

no preference. Notably, the learned preferences for microphone directionality and noise 

reduction were found to be nearly uniform across the different sound environments, 

which suggests that training did not effectively account for context. Overall, for roughly 

half of the participants in the two studies above (Keidser and Alamudi 2013; Aldaz et al. 

2016), training was not efficient as the trained settings were not preferred outside of the 

training phase. 

 

While training a personalized hearing aid configuration shows promise for specific 

individuals, it poses some challenges. Firstly, it assumes that users have one and only one 

preference in each context. However, when choosing between two alternative hearing aid 

settings in a specific sound environment, some users are consistent in their reported 

preferences, while others are not (Walravens et al. 2020). This inconsistency might be due 

to the fact that a selected setting does not yield a significant improvement in user 

experience and therefore leads to noisy preference assessments. Thus, understanding 

when a preferred setting is perceived to truly improve the listening experience would help 

focusing on the relevant audiological parameters and contexts. Alternatively, the 

inconsistency might be due to an incomplete notion of context, with two situations 

classified under the same context resulting in two different preferences. For example, 

different listening intentions might require different hearing aid settings even though the 

sound environment does not change. Previous studies attempting to adjust hearing aid 

programs to contextualized and individualized preferences did not consider the listening 

intention.  

 

 Furthermore, learning context-dependent listening preferences requires gathering 

preferences on multiple audiological parameters and in several real-world contexts. 

Typically, listening experiences in hearing aid users are measured with experience 

sampling – that is, having users explicitly provide in-situ ratings of their listening 

experience as often as possible e.g., via smartphone apps (Shiffman et al. 2008). This 

method has proven successful in terms of documenting real-world benefits of hearing aid 

settings (Andersson et al. 2021). Despite being more reliable (Amatriain et al. 2009), 

explicit feedback is scarce and places a burden on the user (Jawaheer et al. 2010). 

Moreover, since the hearing aid signal processing acts on several parameters of the sound 

(e.g., frequency compression, gain amplification) with varying strengths (e.g., levels of 

amplification), the space of possible hearing aid settings is vast (Pasta et al. 2019). 
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Therefore, when gathering user preferences in such a vast space and in several contexts, 

it is important to focus on settings and situations that cause a tangible improvement in 

user experience. Incidentally and importantly, data logging from modern hearing aids can 

provide information about implicit preferences toward hearing aid settings as well as 

information about the environmental context  without imposing a burden on the user 

(Christensen et al. 2021). Previous research across different domains has shown that 

implicit and explicit feedback possess different characteristics and can complement each 

other (Jawaheer et al. 2010, 2014; Akehurst et al. 2012). 

 

Research Objective 
 

The above-stated challenges with hearing aid prescription and personalization are 

addressed by investigating the feasibility of a context-aware user-adaptive system, which 

aims  to offer a choice among relevant hearing aid settings based on collected preferences 

and contexts of many other users (Pasta et al. 2019). Specifically, we apply a method for 

capturing users' experiences and (explicit and implicit) audiological preferences for 

different intervention levels of three audiological parameters. The data are collected by 

smartphone-connected hearing aids, which enabled users to evaluate different settings 

during their everyday life. Concurrently, contextual data are acquired both through self-

reporting and through continuous data logging. Importantly, all data collection is 

performed using the typical daily-life setup (i.e., a smartphone and a pair of hearing aids) 

of a hearing aid user. 

 

First, we analyze if listening satisfaction is related to the perceived usefulness of an 

audiological parameter. A user-adaptive system should be able to offer a choice among 

settings that, when relevant, leads to higher user satisfaction. Thus, we gather and 

compare in-situ ratings of listening satisfaction and of usefulness of choosing among 

different intervention levels (henceforth called “choice-usefulness”) of the three 

audiological parameters. 

 

Second, we analyze whether everyday contexts influence the choice-usefulness. 

Indeed, we hypothesized that context has a measurable and distinct impact on the 

explicitly reported usefulness of choosing among different intervention levels of the 

parameters. This would entail that a user-adaptive system can reduce the space of 

possible hearing aid settings by assigning context-aware usefulness to the audiological 

parameters.  
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Third, we apply statistical modeling of user preferences for different intervention 

levels and hypothesize that contextual predictors enable a better account of the observed 

preferences. If so, a user-adaptive system would benefit from contextual information 

when predicting the preferred levels of intervention for a specific audiological parameter. 

The statistical modeling is performed for both explicitly reported level preferences and 

for implicit preferences derived from user interactions. Indeed, if a system could rely only 

on implicit preferences, the training phase would be less burdensome for the user. 

 

Methods 

Participants 

We recruited experienced hearing aid users having a hearing loss compatible with the 

Oticon Opn™ S1 MiniRITE hearing aids and being iOS users. Seven participants (6 men and 

1 woman) with mean age 58 years (SD = 12 years) were recruited. Five of them were 

working, while two were retired. The participants all had more than five years of 

experience with hearing aid usage. All participants had a binaural hearing loss ranging 

from mild to moderately severe, as classified by the American Speech-Language-Hearing 

Association (Clark 1981).  The study was approved by the Research Ethics Committees of 

the Capital Region of Denmark. Before the study began, all participants received written 

information about the study and gave their informed consent. One participant did not 

allow for contextual data collection and was therefore excluded from the analysis. 

Apparatus 

The participants were prescribed a pair of Oticon Opn™ S1 miniRITE (Oticon A/S, 

Smoerum, Denmark) hearing aids and a frequency-specific amplification according to 

their hearing loss profile. All had iPhones with iOS 12 installed and additionally 

downloaded a custom smartphone app connected to the hearing aids via low-energy 

Bluetooth. Via the app, participants could control their hearing aid settings and submit in-

situ reports (see details in the “Procedure” section). Furthermore, the app enabled 

continuous data logging of the active hearing aid settings and of the sound environment. 

The latter consisted of timestamped minute-based logs of the ambient acoustic 

environment sensed by the hearing aid microphones (see section “Contextual data”).  The 

app interface also included an open-ended response form for optional additional 

comments. 
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Audiological parameters 

During the study, three audiological parameters were evaluated: Noise Reduction (NR), 

Brightness (BR), and Soft Gain (SG). Each parameter targeted a specific dimension of the 

sound with four levels of intervention. The Noise Reduction parameter provides varying 

strength of noise reduction and directionality depending on the selected level (in 

ascending order of intensity, from level 1 to level 4). Thus, level 1 provides the lowest level 

of noise reduction and directionality, which amplifies most sound sources coming from 

all directions. In contrast, level 4 suppresses all sounds classified as non-speech and only 

amplifies sounds coming from the frontal direction. The Brightness parameter adjusts the 

amplification gain for high frequencies (i.e., frequencies above 1.5 kHz), while the Soft 

Gain parameter adjusts the amplification gain for soft sounds (i.e., sounds below 50 dB 

SPL). Common to all parameters, levels 1 and 2 provide a lower intervention compared to 

the default prescription (i.e., the level that would be automatically prescribed by the 

fitting software), while levels 3 and 4 provide increased intervention compared to the 

default prescription. The three targeted audiological parameters have been shown to be 

particularly important for the listening experience of hearing aid users (Ng et al. 2013; 

Johansen et al. 2017; Wendt et al. 2017) and to be perceived differently by individuals 

(Killion 2002; Marozeau and Florentine 2007).  

 

Procedure 

The participants were instructed to use their hearing aids “as usual” in their everyday 

lives for three consecutive weeks and to regularly select and compare, via the supplied 

smartphone app, the four contrasting intervention levels. Only one audiological 

parameter was active in each week, while the others were temporarily set at default 

prescription levels. This was a deliberate design choice aimed at simplifying participant 

interactions (i.e., less settings to navigate) and ensuring that participants could 

consciously track the effects of their actions on their listening experience (Pasta et al. 

2019). The order by which the parameters were evaluated was fixed (week 1: NR; week 

2: BR; week 3: SG). A visualization of the study timeline that each participant went through 

is given in Figure 1. 

 

Each time the participants changed level, they had the option to submit an in-situ 

report of their explicit preference (i.e., preferred intervention level from 1 to 4); their 

current listening satisfaction (Likert rating scale from 1 to 5); the usefulness of having a 

choice among the four contrasting levels (Likert rating scale from 1 to 5, henceforth 

referred to as “choice-usefulness”); and the listening intention, listening environment and 
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the state of motion (e.g., stationary, walking) from predefined categories. Moreover, the 

level selections during normal hearing aid usage were logged and used to define implicit 

preferences (see section “Statistical Modeling”). 

 

 

Figure 1. Study Timeline. Each parameter (Noise Reduction, Brightness, Soft Gain) was evaluated for 

the duration of one week. Each week, the participants were provided with 4 intervention levels of the 

parameter of the week. 

Contextual data 

Self-reported context is represented by in-situ reports of listening intention, listening 

environment, and motion state selected from drop-down lists with predefined categories. 

Note that for simplicity and due to sparse data, the motion state is not included in further 

analysis. In addition, due to the fairly low number of assessments received for some 

contexts (e.g., n = 8 for ’Meeting’), categories were collapsed across similar contexts. Table 

1 shows the labels for all possible listening intentions (Table 1a) and listening 

environments (Table 1b) before (‘Original label’) and after (’New label’) collapsing.   

 

Besides the self-reported context, timestamped acoustic data logged from the hearing 

aids measured the ambient sound pressure levels (SPLs) and signal-to-noise ratios (SNRs) 

in decibels across a broad frequency band (0.1 – 10kHz)(Christensen et al. 2019). The SPL 

is the most used indicator of the sound wave strength and correlates well with human 

perception of loudness (Long 2014a). The SNR is the difference between the energy of a 

signal and the energy of any present noise and it is the key to speech intelligibility (Long 

2014b). Each in-situ report and level selection was associated with acoustic data averaged 

across a 3-minute preceding time-window.  
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Table 1. Self-reported context (i.e., listening intention and listening environment) labels. Original 
labels that the participants could select among, and new labels after collapsing across similar 
contexts. 

(a) Listening intention 

 

Original label n New label n 

Ignore speech 12 
Only me 128 

Just me 116 

Meal 42 

Focus 170 Music 42 

TV 86 

Speech 84 

Social 238 Talk 108 

Meeting 8 
 

 (b) Listening environment 

  

Original label n New label n 

Home 240 

Inside/Quiet 282 
Kitchen 12 

Lecture 4 

Office 26 

Meeting 26 

Inside/Noise 114 

Party 8 

Public Indoor 54 

Restaurant 22 

Restroom 4 

Heavy duty 4 

Outside/Noise 140 

Outdoor 16 

Public outdoor 44 

Traffic 4 

Transport 72 
 

 

Statistical Modeling 

Predictions of choice-usefulness and of explicit and implicit intervention level preferences 

were made using cumulative link proportional-odds mixed models. These models are 

ideal for multilevel modeling of longitudinal ordinal data (Hedeker 2008) and they are a 

class of the generalized mixed-effects modeling framework, which is popular among 

recommender systems (Condliff et al. 1999; Hedeker 2005; Chen et al. 2020b). Since the 

number of observations (in-situ reports and level selections) for each participant varied, 

we included data from all participants into global models. The individual-level effects 

were modeled as random effects and estimated with partial pooling. Such random effects 

allow model predictions to differ among participants, while partial pooling entails that, if 

a participant has fewer observations, her effect estimate will be partially based on the 

more abundant data from other participants. This is a good compromise between 

estimating an effect by completely pooling all users, which masks participant-level 

variation, and estimating an effect for all participants completely separately, which could 

give poor estimates for low-sample participants (Gelman and Hill 2006). 
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Prior to modeling, the continuous predictor SPL was converted into “Low intensity” 

and “High intensity”, while the continuous predictor SNR was converted into “Low quality” 

and “High quality”. This was done by using the median values for each participant as the 

cut-off between low and high. General recommendations for mixed-effects modeling were 

followed (Harrison et al. 2018). Fitting and supplementary statistics were performed in R 

using base functions and the ’ordinal’ package (RDocumentation 2019). 

For in-situ reports, two separate models were applied for predicting the choice-

usefulness rating and the explicitly preferred intervention level. The models were 

specified with both subjective and objective contextual predictors on the form:  

 

𝑙𝑜𝑔𝑖𝑡(𝑃(𝑌𝑖 ≤ 𝑗)) = 𝜃𝑗 − 𝛽1(𝑒𝑛𝑣𝑖) − 𝛽2(𝑖𝑛𝑡𝑒𝑛𝑡𝑖) − 𝛽3(𝑆𝑃𝐿𝑖) − 𝛽4(𝑆𝑁𝑅𝑖) − 𝑢(𝐼𝐷𝑖), (1) 

𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝐽 − 1  

 

This is a model for the cumulative probability of the ith choice-usefulness rating (or 

preferred intervention level) falling in the jth category or below, where i indexes all 

observations and 𝑗 = 1, … , 𝐽 indexes the response categories. In the model for choice-

usefulness, J = 5. In the model for preferred intervention level,  J = 4. θj are threshold 

parameters (or cut-points), which are assumed to be equidistant between the response 

categories. We take the participant effects (ID) to be random and assume that the effects 

are IID and normal: 𝑢(𝐼𝐷𝑖) ~ 𝑁(0, 𝜎𝑢
2). The self-reported listening environment (env) 

and listening intention (intent) are added as fixed effects predictors together with the 

categorical SPL and SNR. 

The same model, but without the subjective contextual predictors, was applied to 

predict the implicit preferences (i.e., level selections) during normal hearing aid usage 

from user interaction event-logs. Note that only level selections that were kept for 

minimum three minutes were included as observations to the latter model. This was to 

ensure that random level selections (i.e., playing around) did not confound the outcome. 

Besides inspection of coefficient magnitude and confidence intervals, likelihood ratio-

tests based on the χ2 test statistic were employed to test the significance of contextual 

predictors. 
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Results 

Descriptive statistics: hearing aid usage and auditory ecology 

Prior to assessing the main hypotheses of the study, we describe the main features of the 

collected data. 

 

The number of level selections and the number of submitted assessments varied across 

participants (see Table 1). Overall, 8.8% (SD=3.0%) of all level selections led to an in-situ 

report and a preference submission. This percentage did not differ markedly among the 

three audiological programs (Noise reduction: M = 9.8%; Brightness: M = 10.3%; Soft 

gain: M = 6.8%), indicating a fair comparison of the programs. 

Table 2. Participants’ characteristics and data logs. PTA refers to the average of hearing threshold 

levels at four specified frequencies (0.5, 1, 2, 4 kHz). The median SNR and SPL are computed from all 

data-logs for each level selection. 

Participant Hearing 

loss 

(PTA) 

(dB) 

In-situ 

reports 

(count) 

Level 

selections 

(count) 

Percentage of 

selections leading 

to an in-situ 

report (%) 

Median 

SPL 

(dB) 

Median 

SNR (dB) 

1 67 36 858 4.2 56.40 19.17 

2 47 21 227 9.3 49.54 14.76 

3 44 19 248 7.7 56.28 10.11 

4 36 131 1072 12.2 59.33 17.71 

5 54 35 293 12.0 59.03 13.41 

6 35 26 343 7.6 66.68 23.97 

Mean 47 45 507 8.8 57.88 20.50 

SD 11 43 363 3.0 5.57 6.35 

 

The logged acoustic data documented that the participants had different exposure to 

different sound environments (see Table 2 and Figure 2). However, importantly, there 

was agreement between the sound exposure they experienced during their normal device 

usage (i.e., changing levels throughout the day) and when submitting in-situ self-reports 

(of their listening experience and level preferences). The scatter plots in Figure 2 show 

the distribution of SPL (Figure 2a) and SNR (Figure 2b) as deciles measured either when 
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performing in-situ ratings (y-axis) or when changing levels throughout the day (x-axis). 

Notably, despite participant-specific offsets (e.g., participant n. 1 consistently experiences 

higher SPL during preference submission than during everyday device usage), the 

relationship between SPL deciles for preference submissions and level selections is linear 

with slope β = 0.958 (F = 121.57, p < 0.001).  

On a group level, the relationship between SNR deciles for preference submission and 

level selections is also linear with slope β = 0.729 (F = 37.00, p < 0.001). However, 

participant n. 6 experiences, on average, much higher SNRs during everyday level 

selections than when performing in-situ ratings, which indicates that most of the 

participant’s ratings were performed under noisy or quiet conditions (i.e., low quality of 

the signal). Please note that the discrepancy might also be driven by the participant 

experiencing very high SNRs for some of the logged level selections.  

 

 

Figure 2: Relationship between the distribution of acoustic characteristics for in-situ preference 

submissions (y-axis) and while selecting intervention levels during normal device usage (x-axis). Each 

dot represents the acoustic value at a decile (1st to 9th) for one participant (colors). The dashed line 

indicates a slope of y = x. 

We also assessed whether the self-reported contexts possessed different acoustic 

characteristics. If so, subjective self-reports conveyed more than the individual 

perception of auditory scenes. Figure 3 shows boxplots of each reported listening 

environment (Figure 3a) and listening intention (Figure 3b) against either SPL (top 

panels) or SNR (bottom panels). Please note that the boxplots are based on pooled data 

among all participants.  
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Figure 3: SPL and SNR for self-reported listening environments (a) and listening intentions (b). 

The moderating effects of the self-reported contexts on SNR and SPL were evaluated by 

applying linear mixed-effects models. These models predict either SPL or SNR while 

controlling for time-of-day with random-effects offsets (e.g., SPL might simply be higher 

mid-day compared to end-of-day due to daily life activities).  We observed main effects of 

listening environment on SPL (F(2,221) = 42.844, p < 0.001) and of listening intention on 

SNR (F(2,229) = 3.450, p = 0.033). For SPL, the largest effect was between listening 

environments “Inside/Quiet” and “Outdoor/Noise” (β = 12.457, SE = 2.881, t = 4.324, p < 

0.001). For SNR, the largest effect was between listening intentions “Only me” and “Focus” 

(β = 7.176, SE = 3.288, t = 2.182, p = 0.030).  

 

Relationship between choice-usefulness and listening satisfaction 

Participants were asked to rate the usefulness of having four intervention levels available 

to choose from (i.e., choice-usefulness) and then to rate the current listening satisfaction. 

Thus, high ratings of choice-usefulness followed by high ratings of listening satisfaction 

are assumed to represent situations where audiological needs are met. To investigate 

how strongly a useful choice of intervention levels impacts satisfaction, we computed the 

correlation between the two types of ratings across all participants. Figure 4 shows 

contingency tables for each audiological parameter, which indicate a stronger correlation 
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for the Brightness and Soft gain parameters than for the Noise reduction parameter. 

Indeed, Pearson’s correlation tests revealed that satisfaction and choice-usefulness were 

not related when using the Noise Reduction parameter (r = 0.064, t = 0.637, df = 96, p = 

0.526), but they were for the Brightness (r = 0.383, t = 3.908, df = 89, p < 0.001) and Soft 

Gain (r = 0.400, t = 3.830, df = 77, p < 0.001) parameters. 

 

Figure 4: Contingency tables for rating the listening satisfaction (y-axis) and the choice-usefulness (x-

axis) of each audiological program. Data are pooled among all in-situ assessments from all 

participants. 

Separating the rating data by the contextual SNR revealed a higher correlation between 

satisfaction and choice-usefulness for Brightness in lower quality environments (r = 

0.443, t = 3.129, df = 40, p = 0.003) compared to in higher quality environments (r = 0.071, 

t = 0.423, df = 35, p = 0.675), suggesting that having access to different levels of the 

Brightness parameter is more strongly associated to listening satisfaction when the 

quality of the listening environment is below the median. In contrast, Soft Gain exhibited 

higher correlation in high quality listening environments (r = 0.572, t = 3.886, df = 31, p < 

0.001) compared to lower quality listening environments (r = 0.366, t = 2.080, df = 28, p 

= 0.047). The correlation between satisfaction and choice-usefulness for the Noise 

reduction parameter was again not significant after splitting the data by SNR. In summary, 

the relationship between choice-usefulness and listening satisfaction is distinct among 

the audiological parameters and varies with the context (here, SNR).  

 

Contextual impact on choice-usefulness and explicit level preferences  

One of the main aims of the study is to investigate, for the three audiological parameters, 

the impact of context on the perceived choice-usefulness and on explicit level preferences. 
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Ideally, this can lead to context-aware recommendations of audiological programs 

combining the most relevant parameters and intervention levels for each situation.  

 

Figure 5: In a and b, coefficients (as log odds ratios) and 95% confidence intervals for predicting 

choice-usefulness and explicit level preference from in-situ ratings. In c and d, the corresponding 

random offsets due to participant effects. Note that the models were fitted separately for each 

audiological parameter (NR, BR, and SG). The baseline conditions for the contextual predictors were: 

“Only me” (for listening intention), “Quiet/Indoor” (for listening environment), “Low intensity” (for 

SPL), “Low quality” (for SNR). 

In this section, we investigate the contextual impact by applying mixed-modeling of the 

in-situ ratings using both subjective and objective contextual predictors. Across the three 

audiological parameters, the contextual predictors (self-reported listening environment 

and intention, SPL, SNR) were found to significantly increase the prediction of choice-

usefulness ratings (likelihood ratio test, χ2(6) = 21.71, p = 0.002) and intervention level 

preferences (likelihood ratio test, χ2(6) = 14.418, p = 0.025). Figure 5a-b shows the 

estimated coefficients when modeling data from each parameter separately with random 

effects offsets for participants (i.e., Eq 1). Notably, listening intention, listening 

environment, and SPL modulated both the choice-usefulness and level preference.  

The random effects offsets (Figure 5c-d) indicate that participants had comparable 

ratings and level preferences (i.e., most falling within ±1 SD). Nevertheless, a few outliers 
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were observed. For instance, participant n. 4 consistently rated the Soft Gain choice-

usefulness higher than 1 SD from the group mean and participant n. 6 rated it much lower 

than the group mean, albeit in the latter case, the large error bars indicate that the 

estimated random offset is based on few observations. For Noise Reduction, participant 

n. 5 preferred significantly higher levels than the group mean. 

 

Preference prediction from real-world usage patterns 

The level preferences modeled in Figure 5 represent explicitly preferred levels. That is, 

levels that the participants purposefully reported as preferences. However, during 

normal real-world usage, participants made ~11 times more level selections than 

preference submissions (see Table 2), with automatically logged SPL and SNR associated 

to them. While some of these level selections were made to perform momentary 

comparisons, other level selections were made and used for longer periods of time. 

Participants made on average 377 active level selections (i.e., level selections that are set 

for at least three minutes), which is ~8 times more than preference submissions. Thus, a 

user-adaptive system could potentially leverage on these in case explicit feedback is not 

available. 

 

We first assessed the contextual modulation of the implicit preferences by applying 

the statistical model in Eq. 1 to data from all participants. As was the case with the explicit 

preference data (Figure 5), SPL and SNR significantly improved the model’s ability to 

predict intervention level (χ2(8) = 17.43, p = 0.026). The context-aware model prediction 

is shown in Figure 6a as a red solid line together with both the observed preferences (dots 

with error bars) and the prediction from a NULL model – i.e., an intercept only model 

(blue solid line in Figure 6a). Visually, differences in predictions between the two models 

are subtle.  However, the contextual aware model does capture more variation in the 

observed preferences (Person’s correlation - NULL model: r = 0.48, 95% CI = [0.23 to 

0.67], df = 46, p < 0.001; Context-aware model: r = 0.57, 95% CI = [0.34 to 0.73] df = 46, p 

< 0.001), which is evident in Figure 6b with the context-aware model being able to predict 

a wider range of preference. For example, for the “High intensity” / “High quality” 

condition with the Brightness parameter the context aware model is able to better fit the 

observed data.      
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Figure 6: Observed and predicted implicit preference for intervention level using data from all 

participants. In a, model predictions are shown together with the observed relative preference for each 

intervention grouped by all combinations of SPL and SNR (columns) and separated by audiological 

parameter (rows). LI = “Low intensity”; HI = “High intensity”; LQ = “Low quality”; HQ = “High quality”. 

In b, the difference between predicted and observed preference is shown as a scatter plot with the 

dashed line indicating a y=x relationship.   

In addition, we assessed how well the model performed on a single-user level by fitting 

it only on data gathered from participant n. 4 (the participant with most data logged, see 

Table 2). The predictions are shown in Figure 7, and again SPL and SNR significantly 

improved the model fit (χ2(8) = 19.97, p = 0.010), and produced closer fitting predictions 

(Person’s correlation - NULL model: r = 0.45, 95% CI = [0.19 to 0.65], df = 46, p =0.001; 

Context-aware model: r = 0.67, 95% CI = [0.48 to 0.80] df = 46, p < 0.001).  

 

 

Figure 7: Observed and predicted implicit preference for intervention level for participant n. 4. In a, 

model predictions are shown together with the observed relative preference for each intervention 

grouped by all combinations of SPL and SNR (columns) and separated by audiological parameter 
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(rows). LI = “Low intensity”; HI = “High intensity”; LQ = “Low quality”; HQ = “High quality”. In b, the 

difference between predicted and observed preference is shown as a scatter plot with the dashed line 

indicating a y=x relationship.   

 

Discussion  

This study applied a novel smartphone-based method for capturing real-world in-situ 

experiences and preferences, combined with data of environmental sound logged from 

the hearing aids. By investigating the impact of everyday context on users’ listening 

experience and preferences, this study aimed to shed light on the feasibility of a context-

aware user-adaptive system for providing useful audiological interventions.  

 

 Descriptive analysis of the collected data showed that the sound experienced 

when changing settings throughout the day was, on a group level, equal to that 

experienced when submitting self-reports (Figure 2). However, specific participants (e.g., 

n. 6 in Figure 2) showed a stronger deviation between the sounds experienced in the two 

situations. This may be either because self-reports are cognitively demanding (hence, they 

are completed in quiet environments only) or because reports are only submitted when 

problems are experienced (thus, leading to worse SNR for preference reports than for 

normal level changes). Nevertheless, lack of representativeness of in-situ preference and 

experience reports can, to some extent, be expected (Schinkel-Bielefeld et al. 2020; 

Ziesemer et al. 2020). Comparing the distributions of sound collected during self-report 

submission and everyday level changes (i.e., Figure 2) can help to validate participants’ 

data. Consequently, more trust can be placed in the data collected from those participants 

who exhibit a relationship close to β = 1 between the sounds in the two situations. 

Moreover, we found that self-reported context both supports and differentiates the 

automatically logged contextual sound data (Figure 3). The self-reported listening 

environments were associated with different loudness of the environment (i.e., SPL). The 

self-reported listening intentions were associated with different quality of the 

environment (i.e., SNR). In particular, “focused” listening intentions (e.g., watching TV) 

were associated with higher SNRs, indicating that the sound signals convey clean and 

relevant information. Conversely, “social” listening intentions exhibited low SNR and high 

SPL, suggesting that such sound environments are characterized by poor signals and loud 

noise. This analysis documents that self-reports not only reflect subjective perceptual 

evaluations of the listening scene, but also convey objective information that are relevant 

for a hearing aid adjustment. At the same time, objectively similar acoustic environments 
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might imply different audiological needs according to the self-reported listening 

environments and intentions. This means that a more fine-grained resolution of user 

context can be obtained by combining self-reports with objective data logging.     

 

We also investigated how the perceived usefulness (i.e., rated “choice-usefulness”) of 

being offered a choice between different intervention levels of three independent 

audiological parameters affected the rated listening satisfaction. That is, if the 

intervention levels of an offered audiological parameter solve the listening needs of a user 

(or not), then the rated satisfaction should increase (or decrease). For the Noise Reduction 

parameter there was no correlation between satisfaction and choice-usefulness. This 

might be explained by the limited audibility of the change between the intervention levels 

of the parameter. Indeed, a substantial change (from 3 to 4 decibel) of acceptable noise 

level is required to yield a minimal clinically important and perceptual difference (Wong 

et al. 2018). Conversely, for the Brightness and Soft Gain parameters, significant 

correlations between satisfaction and choice-usefulness were observed and noted to be 

moderated by the quality of the sound environment (i.e., SNR). This implies that the 

listening experience can indeed be influenced by offering the user a choice among 

different intervention levels, and that the outcome depends on the parameter and on the 

context the user is in. 

 

By applying statistical multi-level modeling, we examined the influence of context on 

the perceived usefulness of the offered intervention levels. In summary, self-reported and 

objective contexts have measurable and distinct impacts on the rated choice-usefulness. 

For instance, the Brightness parameter was significantly more useful in “Focus” listening 

intentions and in low intensity sound environments. This is consistent with previous 

studies showing that high-frequency amplification can be useful to improve speech 

understanding (Hornsby et al. 2011; Levy et al. 2015) and sound localization (Best et al. 

2005). These findings suggest that a user-adaptive system can assign context-aware 

usefulness to the three audiological parameters based on previous user feedback. 

Contextual information would help filter the complex space of possible hearing aid 

settings, by providing an indication about which parameter the user should be asked to 

adjust. As applied in this study, the proposed mixed-effects model (Eq. 1) accounts for 

individual differences by including a random term for each user, which enables user-level 

predictions. However, the model could be expanded by simply adding random terms for 

relevant user features, such as hearing loss, age, measures of auditory perception, 

patterns of hearing aid use (Pasta et al. 2021). This would enable group-level predictions 
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for users with similar features. In this way, users with sparse feedback (i.e., new users or 

users that do not supply explicit feedback) that share similar features with other users 

could benefit from the learned context-dependent preferences to alleviate the cold start 

problem (Chen et al. 2020a).  

 

While choice-usefulness can help determine in which contexts a given audiological 

parameter should be adjusted, context-aware predictions of the preferred intervention 

level can help decide which levels of the parameter are the most important. Thus, the 

collected preferences for different intervention levels were modelled with contextual 

predictors. Across all participants, there was clear evidence that contextual data improve 

the prediction of the self-reported explicit level preferences. Coefficients from the 

statistical model (Figure 5) revealed distinct predictors for the three audiological 

parameters: higher levels of Noise Reduction were preferred in noisier environments, but 

not in social situations; higher levels of Brightness were preferred when being alone; 

higher levels of Soft Gain were preferred in quieter environments. These effects provide 

an indication on the direction that should be taken (i.e., increasing or decreasing) when 

adjusting the level of each parameter depending on the context. This may result in more 

relevant levels proposed to the user, ensuring a more effective interaction and a more 

engaging experience. The relevance of both logged and self-reported context suggests that 

it is important to model context both by directly observable features (here, SPL and SNR), 

as well as by hidden features reflecting the user’s specific intentions (e.g., enhancing 

speech or ignoring voices) and situational environment. Similarly, although the 

differences were subtle, we found that contextual information obtained from continuous 

data logging (SPL and SNR) improves predictions of implicit level preferences (i.e., 

preferences derived from usage patterns) both on a group level (Figure 6) and user level 

(i.e., participant n. 4 in Figure 7). Thus, a system aimed at autonomous preference 

prediction will benefit from continuously logging contextual data from the hearing aid 

microphones and from using device interactions (e.g., level selections) to assign a 

preference to the offered choices. In addition, while objective data logging cannot fully 

capture subjective listening intentions (Figure 3) and implicit preferences are potentially 

less reliable (Amatriain et al. 2009), capitalizing on these data would help overcome the 

scarcity of user feedback and enable preference modeling of new or less engaged users. 
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Limitations 

Real-world data has high ecological validity (Verma et al. 2017; Hicks et al. 2019) but also 

lacks control for when, where, and how much data are logged. In that sense, a limitation 

of this study is that some participants collected less data than others. However, in our 

statistical modeling, we specifically adjusted for effects of individual differences among 

participants by partial pooling (see Methods).  

 

Due to specific requirements for the participants to be included in the study (being 

experienced hearing aid users, having a hearing loss compatible with the Oticon Opn™ S1 

MiniRITE hearing aids, being iOS users), the sample size of the study is rather small. 

However, the aim of the study was to evaluate the impact of everyday context on hearing 

aid users with similar features. Thus, the repeated-measures design (i.e., continuous data 

logging and repeated in-situ reports) ensured that a high number of observations were 

acquired for statistical modeling of data representing everyday hearing aid usage. This 

helped compensating for the rather small sample size. A limitation remains in 

disentangling specific user features from the results as this would require a larger 

sample. Moreover, while the statistical modeling (Eq. 1) accounts for individual 

differences among the participants in terms of choice-usefulness and level preference 

random offsets, it does not account for individual effects of context on individual 

preferences. However, the inclusion of more participants with more repeated measures 

could enable an expansion of the statistical model to also account for participant-specific 

random slopes. That would enable modeling participant-specific sensitivity towards 

contextual predictors (Harrison et al. 2018; Gao et al. 2019). 

 

The three audiological parameters were evaluated in chronological order. Thus, 

temporal effects (e.g., hearing aid acclimatization (Wright and Gagné 2021) or study 

fatigue) cannot be disentangled from the main results. Future research could assign 

random order of the parameters to each participant to investigate detailed differences 

among them without confounds from temporal effects. 

 

 

Conclusions 

Rethinking hearing aids as user-adaptive systems can provide a context-aware and 

personalized alternative to hearing aids with predefined settings. Our results show that 

participants’ listening experience can effectively be influenced by providing a choice 
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among different intervention levels of specific audiological parameters. Moreover, 

contextual data significantly improved predictions of how useful the offered choice 

among intervention levels were perceived to be. Additionally, contextual data 

significantly improved the prediction of both explicit and implicit level preferences. 

We conclude that, when rethinking hearing aids as context-aware user-adaptive systems, 

both objective (i.e. SNR and SPL) and subjective (i.e., self-reported listening intention and 

environment) contextual data should be taken into consideration to optimize 

recommendations of the most relevant parameters and intervention levels. We propose 

training a proportional-odds mixed-effects model on preference and level selections data 

from experienced hearing aid users to provide context-aware recommendations to new 

users. 
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Abstract
Despite having different audiological preferences, hearing
aid users are usually provided with default settings. This
lack of personalization is due to a scarcity of audiological
resources and to the difficulty of optimizing hearing aid set-
tings in the clinic. Implementing a conversational agent al-
lows to automatically gather user feedback in real-world
environments, while monitoring the soundscape, in order
to recommend personalized settings. We outline a con-
versational agent model that interprets user utterances as
audiological intents and fuses user feedback and sound-
scape features to predict the most likely preferred hearing
aid setting. Subsequently, we propose two use cases for a
conversational agent, that envisage two different interac-
tions to address distinct user needs: troubleshooting and
contextual personalization.

Author Keywords
conversational agents; recommender systems; personaliza-
tion; hearing healthcare; hearing aids

CCS Concepts
•Human-centered computing → Human computer inter-
action (HCI); Natural language interfaces; User centered
design; Ambient intelligence;



Introduction
Hearing aid users are currently prescribed amplification
solely based on a hearing test, which measures hearing
thresholds at different frequencies but does not capture in-
dividual differences in the ability to understand speech in
noise [2] and in the loudness perception of sounds [13]. De-
spite having different audiological preferences [9], users
are usually provided with default settings. Hearing care
professionals assume that such default settings suffice [5]
and subsequently, during follow-up visits, might modify the
gain or noise reduction settings based on user recollec-
tions of past listening experiences [10]. The resulting lack
of personalization is due to both the scarcity of audiological
resources [14] and the difficulty of optimizing hearing aid
settings based on user descriptions from recollection in the
clinic, rather than dynamically adjusting the settings in the
actual listening scenario. Furthermore, the same hearing
aid user may have very contrasting preferences depending
on the context [8].

(2) Contextual 
personalization

Prediction of 
hearing aid

setting

(1) Troubleshooting

User complaint

Notification from CA
Predict intent

A/B test

Context

Historical 
preferences

Similar users’ 
preferences

User state tracker

Figure 1: Overview of two different
conversational agent use cases
with different objectives:
Troubleshooting (1) and Contextual
personalization (2). If the objective
is troubleshooting (1), the
interaction is initiated by the user
and the complaint is translated into
an audiological intent. If the
objective is contextual
personalization (2), the CA tracks
user’s state and notifies the user
when an alternative setting could
enhance the experience. Based on
the context, the historical
preferences and, potentially, the
audiological intent, the CA
proposes an A/B setting pair. The
user selects the preferred setting
and the memory network is
updated.

Internet-connected hearing aids constitute a paradigm shift
in hearing healthcare, as the devices can now potentially
be complemented with a smartphone app capable of rec-
ommending truly personalized settings [11]. Previous re-
search has shown that gathering user preferences in real-
world environments makes it possible to define a device
configuration which is preferred over a configuration per-
sonalized in a standard clinical workflow [15]. A conversa-
tional agent (CA) might autonomously gather user feedback
in real-world environments and collect information about
the soundscape, to learn the audiological preferences and
eventually personalize the device settings. This requires a
domain-specific mapping of user utterances to audiological
intents [7], as well as the integration of contextual data into
the dialogue management.

In this paper, we outline a CA model, which is trained by
combining natural language understanding with sequential
patterns of soundscape features, to predict the most likely
preferred hearing aid setting. Subsequently, as shown in
Figure 1, we propose two use cases for a CA:

1. Troubleshooting. By eliciting active user participa-
tion, the CA understands user complaints and fine-
tunes the settings prescribed by the audiologist in the
first visit.

2. Contextual personalization. By proactively ask-
ing the user to compare two alternative settings in
specific real-world environments, the CA learns to
contextually personalize the listening experience.

Model design
Recent research in CAs has progressed towards reach-
ing human-level understanding within a general conversa-
tion framework [1]. Social CA evaluation metrics, reflecting
whether responses are logically coherent and sufficiently
specific, are equally relevant for the hearing healthcare
domain. However, designing an audiologist CA entails
domain-specific requirements for customized actions which
go beyond dialogue management. Task-oriented dialogue
systems often need to keep track of the context across mul-
tiple domains and store it as vectors in memory slots [12],
while applying attention mechanisms to select the most rel-
evant parameters in order to predict the next action [18].

Due to the requirement for our CA to interpret user utter-
ances referring to audiological intents, we cannot rely on
generic pretrained word embeddings. Instead, we build



from scratch a natural language understanding (NLU) mod-
ule trained on audiological terms. In order to learn domain-
specific word embeddings, we implement a neural net-
work using frequently occurring user complaints as inputs
and potential CA audiological actions as labels [6]. The
model is trained by maximizing the similarity between user
utterances and associated labels [20]. As shown by Fig-
ure 2, this allows to map utterances (e.g. "the sounds are
too sharp") into audiological intents (e.g. "reduce high-
frequency gain" or, in short, "reduce_brightness"). The
most likely audiological intent is predicted based on the
highest ranked probability (e.g. 0.98).

Figure 2: Interactive learning of a
CA model. Prediction, based on
highest probability, for mapping the
word embeddings of the utterance
"the sounds are too sharp" to a
user intent.

Figure 3: Interactive learning of a
CA model. Prediction, based on
vector similarity, for selecting the
next action in response to the user
utterance "the sounds are too
sharp" and specific soundscape
parameters.

Subsequently, in order to predict the most likely next CA
action, a dialogue management model is implemented in
another neural network, using a transformer architecture
similar to BERT [19]. Both the audiological intent embed-
dings learned by the NLU model, as well as feature vectors
capturing the corresponding auditory environment, are for-
warded to the second neural network. This dialogue man-
agement model compares the cosine similarities of the vec-
tors to predict the most likely next CA action, based on pre-
viously learned contextual dialogue patterns. As shown in
Figure 3, a user complaint (i.e. "the sounds are too sharp"),
merged with the soundscape parameters stored in mem-
ory slots, results in a predicted next CA action (i.e. propos-
ing the user an alternative setting defined by lower high-
frequency amplification or, in short, "utter_reduce_brightness").

In practical terms, we implement both the NLU and the di-
alogue management models by training two TensorFlow
Neural Networks using the Rasa open source framework
[17]. As displayed in Figures 2 and 3, the interactive learn-
ing mode allows to accelerate the CA training, by providing
feedback and fixing any mistakes.

Discussion
The CA model outlined above might be deployed in differ-
ent ways, shaping different conversational experiences to
address different user needs.

1. Troubleshooting
After the user has been prescribed a default amplification
based on the hearing test, she usually tries the hearing aids
for some weeks. Given that the prescriptive formula does
not guarantee user satisfaction, some fine-tuning based on
users’ subjective reactions is usually needed [10]. A suc-
cessful fine-tuning requires the user to be able to commu-
nicate her experiences and the professional to be able to
interpret and translate them into an adjustment of hearing
aid settings [4]. However, this is a time-consuming, yet not
optimal procedure, since fine-tuning and additional hearing
tests (e.g. speech-in-noise test) performed in the clinic en-
vironment do not guarantee a significant advantage over a
default prescription [3, 16].

A CA might address users’ issues and fine-tune newly ac-
quired hearing aids during the trial phase. Since, in this
scenario, the objective is to solve a problem experienced
by the user, the interaction is initiated by the user herself.
The CA maps the complaint expressed by the user into an
audiological intent. In parallel, data describing the context
and the current hearing aid settings are inserted into the
dialogue. These contextual features, together with the user
input, enable the CA to generate a setting adjustment po-
tentially capable of solving the problem experienced by the
user. Furthermore, the dialogue allows to gather immediate
user feedback on the proposed setting adjustment.

As exemplified in Figure 4, a user might perceive that the
sounds are too sharp and initiate a dialogue to report the
complaint to the CA. The CA would translate the complaint
into an audiological intent and would respond by decreas-



ing high-frequency amplification. It would ask the user for
her feedback on the new setting and remember it, gradu-
ally learning the preferred fine-tuning actions in response
to users’ complaints. This solution enables solving audi-
ological issues as soon as they arise, by gathering user
feedback in real-world environments. It, thereby, potentially
provides an effective tool for troubleshooting and reduces
the clinical workload.

2. Contextual Personalization

Hi userID, I’m the audiologist bot. ☺ I’ll try 
to fix it for you. Does B work better than A? 

A B

Yes, B works better.

Great! I have updated your 
hearing aid settings. ☺

utter_reduce_brightness

slot{“environment”: “home”}
slot{“behaviour”: “watching_TV”}
slot{“gain”: “+0+0+0+0+0+0-1-1-2-2”}
slot{“noise_reduction”: “low”}
slot{“beamforming”: “L2”}

action_listen

utter_affirm

action_listen

I’m having an issue with my hearing 
aids. The sounds are too sharp.

reduce_brightness

affirm

action_listen

Figure 4: Troubleshooting dialogue
initiated by a user complaint. The
CA translates the complaint into an
audiological intent, responds by
decreasing high-frequency
amplification and asks the user for
her feedback on the new setting.

Hi userID, I’m the audiologist bot. ☺
It seems that you are in an office meeting 
with several people. Does B improve 
speech understanding compared to A? 

A B

B

Great! I’ll remember you like that setting 
when you are in an office meeting. ☺

utter_enhance_speech

slot{“environment”: “office”}
slot{“behaviour”: “conversation”}
slot{“gain”: “-2-1+0+2+2+2+2+2+2+2”}
slot{“noise_reduction”: “low”}
slot{“beamforming”: “L2”}

action_listen

utter_affirm

action_listen

affirm

Figure 5: Contextual
personalization initiated by the CA,
based on tracked user state. The
CA monitors the context, asks the
user to compare two settings and
learns from user feedback.

After the hearing aid user has completed the fine-tuning
process, there is still potential for improving her listening
experience, as user preferences vary based on the con-
text [8]. Although users potentially benefit from a contextu-
ally personalized hearing aid setting, collecting user pref-
erences in real-world environments is a time-consuming
process.

A CA might autonomously gather user feedback in real-
world environments and learn to contextually recommend
personalized hearing aid settings based on the historical
choices of the user and on the preferences of other users
in similar environments. In this scenario, the interaction is
initiated by the CA, that tracks user’s state, by monitoring
the environment and the current device setting, to suggest
an alternative setting. Since the user might benefit from a
more effective setting, while not having an explicit complaint
in mind, the interaction is simplified.

As shown in Figure 5, the CA might ask the user to com-
pare two alternative settings: the current setting and one
that, according to the algorithm, is the most likely to im-
prove user satisfaction in that sound environment. The user
would compare the two settings and choose the preferred
one. This solution would allow to get an immediate user
feedback on alternative settings tried in real-world environ-
ments. By iteratively gathering user feedback and learning

user preferences in different situations, the CA could, even-
tually, autonomously personalize hearing aid settings based
on the context.

In order for this solution to be successfully implemented, a
challenge posed by possible user fatigue needs to be ad-
dressed. A hearing aid user might be frequently moving
between different contexts and might feel overwhelmed if
the CA continuously prompts her to test different settings.
In order to avoid an excessive number of notifications, the
CA would have to learn when hearing aid personalization is
particularly relevant and only prompt the user in those situ-
ations. The relevance of personalization is potentially deter-
mined by several factors, such as the distance between the
current setting and the alternative one, and the perceived
usefulness of adjusting an audiological parameter in that
situation.
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While the assessment of hearing aid use has traditionally relied on subjective self-reported

measures, smartphone-connected hearing aids enable objective data logging from a

large number of users. Objective data logging allows to overcome the inaccuracy of

self-reported measures. Moreover, data logging enables assessing hearing aid use with

a greater temporal resolution and longitudinally, making it possible to investigate hourly

patterns of use and to account for the day-to-day variability. This study aims to explore

patterns of hearing aid use throughout the day and assess whether clusters of users with

similar use patterns can be identified. We did so by analyzing objective hearing aid use

data logged from 15,905 real-world users over a 4-month period. Firstly, we investigated

the daily amount of hearing aid use and its within-user and between-user variability.

We found that users, on average, used the hearing aids for 10.01 h/day, exhibiting

a substantial between-user (SD = 2.76 h) and within-user (SD = 3.88 h) variability.

Secondly, we examined hearing aid use hourly patterns by clustering 453,612 logged

days into typical days of hearing aid use. We identified three typical days of hearing aid

use: full day (44% of days), afternoon (27%), and sporadic evening (26%) day of hearing

aid use. Thirdly, we explored the usage patterns of the hearing aid users by clustering

the users based on the proportion of time spent in each of the typical days of hearing

aid use. We found three distinct user groups, each characterized by a predominant (i.e.,

experienced ∼60% of the time) typical day of hearing aid use. Notably, the largest user

group (49%) of users predominantly had full days of hearing aid use. Finally, we validated

the user clustering by training a supervised classification ensemble to predict the cluster

to which each user belonged. The high accuracy achieved by the supervised classifier

ensemble (∼86%) indicated valid user clustering and showed that such a classifier can

be successfully used to group new hearing aid users in the future. This study provides a

deeper insight into the adoption of hearing care treatments and paves the way for more

personalized solutions.

Keywords: data logging, user clustering, ensemble classification, hearing aid use amount, hearing aid use

patterns, hearing aids, personalization
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INTRODUCTION

It is estimated that, globally, 430 million people have disabling
hearing loss, i.e., a hearing loss greater than 35 decibels (dB) in
the better hearing ear (1). By 2050 over 700 million people are
expected to have disabling hearing loss (1). Untreated hearing
loss has repercussions at an individual level. It is associated with
poorer cognitive and psychological status, resulting in increased
risk of depression, dementia, falls, and quality of life (2–4).
Hearing loss negatively impacts education, employment, and
household income (1, 5). Additionally, untreated hearing loss has
a negative impact on society and the economy. Older adults with
untreated hearing loss experience higher health care costs and
utilization patterns compared with adults without hearing loss
(4). The World Health Organization (1) estimates that untreated
hearing loss poses an annual global cost of US$ 980 billion,
including health sector costs, costs of educational support, loss
of productivity, and societal costs.

The adoption of hearing aids (HAs) has been shown to have
a positive impact on the quality of life of users (6, 7) and to
mitigate the effect on their household income (5). The success
of HA provision as a treatment for hearing loss depends on
the fact that the patient is provided with a favorable change
in their condition, but also on the patient compliance with the
intervention program (8). Perez and Edmonds (8) conducted
a systematic review to identify and evaluate how studies have
measured and reported the use of HAs in older adults. A limited
number of studies (5 out of 64) were found to assess HA use
based on objective measures, such as data logging and battery
consumption. Most of the studies assessed HA use through
self-reported measures, such as standardized questionnaires,
custom questionnaires, interviews, and diaries. However, self-
reported measures have been shown to diverge from objective
measures, leading to inaccurate and overreported HA use (9–12).
In addition to avoiding such recall bias, objective data logging
enables measuring HA use with a greater temporal resolution and
longitudinally (13). The widespread adoption of smartphones
among older adults (14) and the introduction of smartphone-
connected hearing aids make it possible to objectively assess the
HA use of a larger number of users than ever before (15).

When evaluating HA usage, the amount of HA use time is
commonly regarded as an indicator of treatment success (16) and
frequently investigated (9, 12, 17–19). Although the amount of
HA use time generally correlates with HA satisfaction (20), this
metric might not provide a complete picture. Indeed, frequent
use does not necessarily equate with benefit (21). A previous
study found that some HA users reported low HA use time and
high HA satisfaction, while other users reported high HA use
time and low HA satisfaction (22). Furthermore, HA use time
provides information about how much the HA has been used
during the day, but it is not informative of when and how the
HA has been used. For instance, two users might exhibit the same
amount of use time (e.g., 8 h), but use the HAs at different times
of the day (e.g., from 8:00 to 16:00 and from 15:00 to 23:00) or in
different ways (e.g., on-off usage or continuous usage). For these
reasons, in addition to the amount of HA use time, other patterns
of HA use should be analyzed (11). However, methods possessing

low temporal resolution (e.g., self-reports or accumulated use
time across a day or a week) do not account for the hourly
and daily variability in HA use. Smartphone-connected HAs
enable continuous data logging, thereby making it possible to
assess the hourly HA use and more accurately identify recurrent
use patterns.

Additionally, the HA industry is currently predominantly
accommodating for the average user (23). However, the amount
of HA use varies widely among HA users (9, 19, 24). Similarly,
the pattern of HA use has been reported to vary among HA
users. Laplante-Lévesque et al. (11) clustered 171 HA owners,
showing that 57% had, on average, a continuous HA use during
the day, while 43% had an on-off HA use. A qualitative study (16)
reported that optimal HA use depends on the individual needs of
the HA owners and does not necessarily correspond to wearing
the HAs most of the time. Some HA users reported that they
do not depend on their HAs and that they experience situations
which they can successfully attend without HAs. Therefore, it is
of interest to objectively measure and investigate the HA use of
a large number of HA owners, in order to identify and quantify
different types of users based on their HA use patterns. This
potentially enables gaining deeper insight into the adoption of
hearing care treatments and paves the way for more personalized
solutions (25).

Finally, when comparing users based on their HA use, the
average individual use is usually considered. This means that the
within-user variability in HA use is often disregarded (11, 19, 24).
However, HA users might exhibit different HA use patterns from
one day to another and two HA users with the same average use
might behave differently. For instance, two users might exhibit
the same average amount of use time throughout the logged days
(e.g., 8 h), but one might use the HA constantly (e.g., 8 h each
day) while the othermight exhibit more variation among the days
(e.g., alternating days with 2 and 14 h of use). Therefore, when
comparing users based onHA use, it is desirable to adopt a metric
that goes beyond the average use per user and that considers the
within-user variability.

In this study, we analyze the objective HA use data logged
from 15,905 real-world users over a 4-month period. Firstly, we
investigate the daily amount of HA use and its within-user and
between-user variability. Secondly, we examine HA use hourly
patterns by clustering the 453,612 logged days to identify typical
days of HA use. Thirdly, we explore the usage patterns of the HA
users and investigate whether we can cluster the users based on
how they used the HAs during the logged days.When performing
the user clustering, instead of representing each user by her
average HA use pattern, we consider the proportion of time spent
in each of the typical days of HA use. Finally, we validate the HA
user clustering by training a supervised classifier to predict the
cluster to which each user belongs.

MATERIALS AND METHODS

Participants and Apparatus
This study used data from a large-scale internal database,
which logs the HA use of HA owners who have signed
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up for the HearingFitnessTM feature (25) via the Oticon
ONTM smartphone app. The participants were the users of
Oticon OpnTM hearing aids who used the HearingFitnessTM

feature for at least 10 days in the period between June and
September 2020.

Data and Data Pre-processing
When the HAs are connected to the smartphone, the
HearingFitnessTM feature logs timestamped data about the
HA use every 10min. Based on HA use time (i.e., inferred from
time counters embedded in the HAs) and connection status, an
estimate of hourly HA use (measured in min/h) is computed.
For binaural HA users, if the HA use amount was different
between the right and left ear, this study selected the larger
value, as done by Laplante-Lévesque et al. (11) and Walker et
al. (27). If temporary disconnections occur, replacements for
the missing data are injected by analyzing the time counters
embedded in the HAs. When the disconnected use is full-time
use (e.g., 120min of use during 2 h of disconnection), the HA
use during disconnection is simply assigned to the hours of
disconnection. When the disconnected use is on-off use (i.e.,
not full-time use), the minutes of use are evenly distributed
among the hours of disconnection (e.g., 60min of use during 2 h
of disconnection result in 30 min/h use for 2 h). The raw data
set comprised 1,160,520 days of HA use from 32,216 users. In
order to preserve representative patterns of HA use throughout
the day, days with on-off use during temporary disconnections
longer than 2 h were removed. Additionally, 12,876 days with
more than 60 min/h were removed. This is likely a consequence
of use time estimation when disconnections occur. Moreover,
since this study focuses on analyzing HA use, only days with
at least 60min of HA use were included. Furthermore, only
data related to HA use between 6:00 and 23:59 were included.
Finally, to ensure that users’ behavior was inferred from a
representative sample of days, only users with at least 10 days
of HA use were included. The cleaned data set comprised
453,612 days of HA use from 15,905 users (28.5 days per user
on average).

Data Analysis
Figure 1 provides an overview of the flow of the data analysis we
performed, presenting the main steps undertaken. More details
on each step are provided below.

Exploring the Amount of Hearing Aid Use
We explored the amount of HA use (measured in hours/day),
by computing summary statistics of the 453,612 logged days
(mean, SD) and of the amount of HA use for each user
(mean, between-user SD, quartiles). Furthermore, we analyzed
the within-user daily variability (SD) in HA use amount.
Independent sample t-tests were performed to compare the
within-user SD of medium users (i.e., users with average
HA use amount between Q1 and Q3) with that of light
and heavy users (i.e., users with average HA use amount,
respectively, below Q1 and above Q3). Cohen’s d was computed
to assess the magnitude of the differences (45). A polynomial
linear regression was fitted to model the relationship between

average amount of HA use per user (x) and within-user
SD (y).

Clustering Days of Hearing Aid Use
We examined patterns of HA use by clustering the 453,612 logged
days into typical days of HA use. The input data consisted of a
453, 612 × 18 matrix

Ar×c = A453612×18 =







a11 · · · a1c
...

. . .
...

ar1 · · · arc







=
(

aij
)

∈ [0, 60] i = 1, . . . , r; j = 1, . . . , c

where each row i represents a day of HA use, each column j
represents an hour of the day (from 6 to 23) and aij is the amount
of HA use (from 0 to 60min) in the day i and hour j. The k-means
clustering technique was applied (28), since it is suitable for large
data sets.K-means aims to partition the observations in k clusters
by minimizing the within-cluster variance (i.e., square Euclidean
distances). The k-means++ initialization algorithm (29) was
applied, which seeks to spread out the k initial clusters to avoid
poor approximation. The optimal value of k was determined
using the elbow method (30), which aims to select a number
of clusters so that adding another cluster does not substantially
increase the explained variation. The resulting clusters were
evaluated by conducting a Silhouette analysis (31), which aims to
evaluate the between-clusters dispersion (i.e., separation) and the
within-cluster dispersion (i.e., cohesion). A Silhouette Coefficient
(ranging from −1 to +1) was calculated for each observation
and constitutes a measure of how similar an observation is to its
own cluster compared to the next nearest cluster. Furthermore,
principal component analysis was performed to visualize the
observations in a lower dimensional space. Subsequently, for
each cluster, we identified and removed observations that were
abnormally distant from the other observations (i.e., below
Q1 − 1.5 · IQR and above Q3 + 1.5 · IQR). This was done
in order not to include days of HA use that exhibited atypical
patterns and were not well-represented by the cluster centroids.
The association between the type of day of HA use and
the day of the week was tested by performing a χ

2 test of
independence and computing Cramer’s V. The clustering and
related analyses were performed in Python, using the scikit-learn
library (32).

Clustering Users
We explored the behavior of HA users by clustering the
15,905 users based on the proportion of time spent in each
of the typical days of HA use. The input data consisted of a
15, 905 × cmatrix

Br×c = B15905×c =







b11 · · · b1c
...

. . .
...

br1 · · · brc







=
(

bij
)

∈ [0, 1] i = 1, . . . , r; j = 1, . . . , c
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FIGURE 1 | Flow of data analysis. (A) Exploring the amount of HA use. (B) Clustering users by HA use patterns. (C) Validating user clustering using

supervised classifiers.

where each row i represents a HA user, each column j represents
one of the c typical days of HA use (referring to the clusters found
via section Clustering Days of Hearing Aid Use) and bij is the
proportion of days belonging to day type j for user i. Different
clustering techniques were evaluated: k-means with k-means++

initialization algorithm, Hierarchical Agglomerative Clustering
(HAC) with Ward’s method, HAC with Pearson correlation
and average linkage method, and Hierarchical Density-Based
Spatial Clustering (HDBSCAN). HAC (33) initially treats each
observation as a cluster and then builds nested clusters
by successively merging pairs of the most similar clusters.
HDBSCAN (34) groups observations that are in a dense region
while marking the observations in sparse regions as noise. It
expands on a different density-based technique, DBSCAN (35),
by converting it into a hierarchical clustering technique, followed
by extracting a flat clustering based on cluster stability. For k-
means, the optimal value of clusters was determined using the
elbow method (30). For HAC, the optimal value of clusters
was determined using the dendrogram. HDBSCAN, instead,
infers the optimal number of clusters based on the data. For

each clustering technique, three internal validation metrics were
computed: Silhouette score (31), Caliñski-Harabasz score (36),
and Davies-Bouldin score (37). The Caliñski-Harabasz score is
defined as a ratio of separation and cohesion. The Davies-Bouldin
score measures the average similarity between each cluster and
its most similar one, by comparing the distance between clusters
with the size of the clusters themselves. Based on the three
metrics, the best performing clustering technique was selected.
The clustering was performed in Python, using the scikit-learn
(32) and hdbscan (38) libraries.

Validating User Clustering Using Supervised

Classifiers
We validated the HA user clustering by training an ensemble
of supervised classifiers to predict the cluster label for
individual users based on the average day of HA use for
each user. The input data for classification consisted of a
15, 905 × 18 matrix:
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FIGURE 2 | Count of logged days by the amount of HA use time. Due to the data cleaning criteria (i.e., only days with at least 1 h of HA use were included; only data

related to HA use in the 18 h between 6:00 and 23:59 were included), the amount of HA use (x-axis) ranges from 1 to 18 h.

Dr×c = D15905×18 =







d11 · · · d1c
...

. . .
...

dr1 · · · drc







=
(

dij
)

∈ [0, 60] i = 1, . . . , r; j = 1, . . . , c

where each row i represents the average day of a HA user, each
column j represents the hour of the day (from 6 to 23) and dij
is the average amount of HA use (from 0 to 60min) for user i
in the hour j. This data was further split into separate training
and testing data sets with an 80/20 split. To reduce bias (39),
three classifiers were chosen from different families: multiclass
logistic regression (regression), an XGBoost classifier (decision
trees) (40) and a fully connected (FC) neural network classifier
(41). The following individual parameters were chosen:

• Multiclass logistic regression: L2 penalty and “newton-cg”
solver.

• XGBoost: estimators= 100, max depth= 5, gamma= 0, alpha
= 0.1.

• FC neural network: four-layer network (128-64-32-4), ReLU
activation, cross-entropy loss, Adam optimizer; trained for
25 epochs.

In order to reduce bias (39), a classification ensemble was
defined, which assigns each user to a group by majority voting
between the three classifiers. In cases where no majority could
be defined, the group was decided by the best performing
individual classifier. Twometrics were used to gauge eachmodel’s
performance: accuracy, and Area Under the Receiver Operating
Characteristic (ROC-AUC). Accuracy is obtained by calculating
the ratio of correct test predictions to the total amount of samples
in the testing set. ROC-AUC helps visualize the relationship
between sensitivity (i.e., True Positive Rate) and specificity
(i.e., False Positive Rate) for a binary classification problem.
The ROC-AUC value ranges from 0 to 1 and represents the
ability of a classifier to distinguish between classes at various
thresholds. If the current classification task operates with more
than two classes (i.e., multiclass classification), the individual
classes are first binarized. The score of the individual classes
is calculated, then a micro-average is computed by aggregating
the contributions of all classes to compute the average metric.
Finally, a macro-average is calculated by computing the metric
independently for each class and then calculating the average.
The training and evaluation of the supervised classification
ensemble was performed in Python, using scikit-learn (32),
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FIGURE 3 | Distribution of users by their average amount of HA use and their variability among the logged days (i.e., within-user SD). A second order linear regression

model (line ± 99% confidence interval) was fitted to the data to model the relationship between average HA use (x) and within-user SD (y).

XGBoost (40), PyTorch (42), Yellowbrick (43), and scikit-plot
libraries (44).

RESULTS

Exploring the Amount of Hearing Aid Use
The clean data set comprised 453,612 days of HA use from 15,905
users. The amount of HA use, defined as hours of HA use per
day, was assessed to describe usage. Figure 2 shows the frequency
distribution of HA use amount during the pooled logged days.
The data represents the HA use in days of connected use. On
average, a day of HA use amounted to 10.55 h. However, the days
were not normally distributed around the mean. The amount of
HA use widely varied throughout the logged days (SD = 4.71 h),

with a mode around 14 h of use and a smaller peak around 1 h
of use.

On average, 28 days (SD = 18 days) were logged for each
user. We investigated the extent to which users used the HAs
differently among each other (i.e., between-user variability) and
the extent to which the same user used the HAs consistently
throughout the logged days (i.e., within-user variability). For
each user, the average amount of HA use and the within-
user standard deviation (SD) among the days of HA use were
computed. Figure 3 shows the distribution of the 15,905 HA
users. We firstly investigated the between-user variability in the
amount of HA use (x-axis in Figure 3). Users had an average
amount of HA use of 10.01 h, with a SD of 2.76 h (Coefficient
of variation = 0.276). The middle 50% of users (medium users,
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FIGURE 4 | In (A), the ratio of within sum of squares (WSS) to the total sum of squares (TSS) is displayed as a function of the number of clusters. The elbow plot

suggests selecting three clusters since adding an additional cluster does not substantially increase the explained variation. In (B), the Silhouette coefficient value of

each observation is displayed for the three-cluster solution (i.e., for each cluster, the observations are ordered by their Silhouette coefficient value and displayed in

ascending order as horizontal stacked lines). The average silhouette score is reported (dashed line). The three clusters have predominantly positive scores, suggesting

valid clustering.

between the first and third quartiles) ranged from 8.18 to 12.04 h
(group mean = 10.16) of average HA use. The fact that the
remaining 50% of the users exhibited an average HA use either
below 8.18 (light users; group mean = 6.32) or above 12.04
(heavy users; group mean = 13.37) h indicates a substantial
between-user variability.

Additionally, we investigated the within-user variability in
the amount of HA use (y-axis in Figure 3). The average within-
user SD was 3.88 h, indicating that the same user tended to use
the hearing aids for varying durations throughout the logged
days. A significantly larger within-user SD was observed for the
medium users compared to both the light users (Two-sample
t-test: t = 23.06, p < 0.001; Effect size: d = 0.44) and
the heavy users (Two-sample t-test: t = 41.85, p < 0.001;
Effect size: d = 0.81). This proves that both light users and
heavy users were more consistent than medium users throughout
the logged days (i.e., lower within-user SD) and constitutes an
indication of users consistently displaying diverse behaviors in
terms of HA use. The relationship between average HA use (x)
and within-user SD (y) was modeled by fitting a second order
linear regression model to the data. The line of best fit (R2 = 0.2)
was described by the equation y = 0.91x−0.04x2. The maximum
of the curve is around 10 h of HA use, indicating that the within-
user SD increases with the amount of HA use for users using
the HAs up to 10 h and it decreases for users using the HAs
more than 10 h.

Clustering Days of Hearing Aid Use
The substantial within-user variability in HA use suggests
that a deeper analysis is warranted, which accounts for
the hourly and daily variability in HA use. In addition to
the amount of HA use, we also assessed patterns of HA
use, defined as minutes of HA use per hour throughout

the day. That was done by clustering the 453,612 logged
days into typical days of HA use (see subsection Data
Analysis). Based on the elbow method (Figure 4A), a three-
cluster solution was chosen, which accounts for almost
50% of the variance among days. The Silhouette analysis
(Figure 4B) indicated that the three clusters have predominantly
positive scores, and there are no clusters with below-average
silhouette scores.

Figure 5 displays the 453,612 days of HA use plotted by the
twomain principal components and colored by the three clusters.
The eigenvectors suggest that the first principal component
is negatively correlated with HA use in all hours of the
day, differentiating between days of heavy use (Figure 5A,
left) and days of light use (Figure 5A, right). The second
principal component, instead, is positively correlated with
HA use in the morning hours and negatively correlated
with HA use in afternoon and evening hours, differentiating
between days of morning HA use (Figure 5A, top) and days
of HA use later in the day (Figure 5B, bottom). For each
cluster, outliers were removed, resulting in 440,052 observations
belonging to the three clusters. Looking at the hourly mean
of HA use for each cluster (Figure 5B), it is possible to
qualitatively evaluate the patterns underlying the clusters.
Three distinct types of days of HA use can be identified:
a full day of HA use (cluster 1, containing 204,062 days),
a day of afternoon HA use (cluster 2, containing 120,810
days), and a day of sporadic evening HA use (cluster 3,
containing 115,180 days).

A significant (p < 0.001), but negligible (Cramer’s V = 0.05)
association was found between the type of day of HA use and the
day of the week (i.e., weekend vs. weekday). Full days of HA use
occurred slightly (6%) more often during weekdays than during
the weekend. Conversely, afternoon and sporadic evening days
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FIGURE 5 | In (A), the days of HA use are displayed as scatterplot against the two main principal components and colored by the three clusters (i.e., three day types).

In (B), the mean (±SD) of hourly HA use for each cluster is displayed.

TABLE 1 | Comparison of four different clustering techniques [K-means, HAC (Euclidean distance), HAC (Pearson correlation), and HDBSCAN] based on three internal

validation metrics (Silhouette, Davies-Bouldin, and Caliñski-Harabasz).

K-means HAC

(Euclidean distance and

Ward’s method)

HAC

(Pearson correlation and

average linkage)

HDBSCAN

(Pearson correlation)

Silhouette (Higher is better) 0.4539 0.4264 0.6400 0.7604

Davies-Bouldin (Lower is better) 0.8267 0.7169 0.6001 0.4176

Caliñski-Harabasz (Higher is better) 18,473 13,732 35,802 70,327

HDBSCAN is the best performing technique according to all three metrics.

occurred slightly (4 and 1%)more often during the weekend than
during weekdays.

Clustering Users
Having identified three types of days of HA use enables exploring
HA user behavior, thus generating personalized insights, in a
way that considers the day-to-day variation of each user. We
explored the behavior of HA users by clustering the 15,905
users based on how they used the HAs during the logged days
(see subsection Data Analysis). Each user is represented by the
proportion of time spent in each of the three types of days of
HA use. Four clustering techniques were evaluated. The optimal
number of clusters for k-means and both HAC techniques were
determined to be three. HDBSCAN also identified three clusters,
with the minimum cluster size hyperparameter set to 1,000,
in addition to considering some observations as noise. Based
on three internal validation metrics, HDBSCAN was chosen
(Table 1). The Silhouette analysis (Figure 6) suggested that the
three clusters are of different sizes and have predominantly
positive and large scores.

Figure 7A displays the days of HA use experienced by the
users belonging to each user group. These plots can be directly
compared with Figure 5A, which displays all days of HA use
from all users. Each user group has a distinctive distribution of
days. User group A is the largest cluster (7,862 users) and exhibits
a higher density in the left corner of the figure, corresponding

with day type 1 (i.e., full day of HA use). User group B (2,442
users) exhibits a higher density in the lower part of the figure,
corresponding with day type 2 (i.e., day of afternoon HA use).
User group C (3,148 users) has a higher density in the right corner
of the figure, corresponding with day type 3 (i.e., day of sporadic
evening HA use). Additionally, 2,453 users exhibited atypical
behavior and were labeled as noise. The distinctive behavior of
the three user groups is confirmed by their average time spent
in each of the typical days of HA use (Figure 7B). User group A
is predominantly having full days of HA usage, user group B is
predominantly having days of afternoon HA use, user group C is
predominantly having days of sporadic evening HA use. It should
be noted that the predominant day of HA use is experienced
around 60% of the time by the three user groups.

Validating User Clustering Using
Supervised Classifiers
We validated the HA user clustering by training an ensemble
of three supervised classifiers (multiclass logistic regression,
XGBoost and fully connected neural network) to predict the label
of each user (user group A, B, C, or noisy user). The training
input was the average day of HA use for each user, defined as
minutes of HA use per hour throughout the day (from 6:00
to 23:59).

When evaluating the three individual classifiers based on
accuracy and ROC-AUC score (Table 2), XGBoost results to
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FIGURE 6 | The Silhouette coefficient value of each observation is displayed for the three user clusters (i.e., for each cluster, the observations are ordered by their

Silhouette coefficient value and displayed in ascending order as horizontal stacked lines). The average silhouette score is reported (dashed line). The three clusters

have predominantly positive and large scores, suggesting valid clustering.

be the best performing classifier. In order to reduce bias,
an ensemble of three supervised classifiers was defined. This
simulates three artificial experts coming to a decision (40).
The ensemble assigns each user to a group by majority voting
between the three classifiers. In case where no majority could
be defined, the group was decided by the best performing
individual classifier (XGBoost). The ensemble accuracy was
86.04%, while the ROC-AUC score was 0.98. While the ensemble
has a slightly worse accuracy than XGBoost, relying on classifiers
from different classes mitigates the effect of bias that each
classifier has. The ROC curves for the ensemble of classifiers
(Figure 8) show that noisy users exhibiting atypical behavior
are the most difficult to classify (i.e., lowest AUC). Conversely,
the ensemble of classifiers successfully distinguishes between the
three user groups.

It is interesting to inspect the importance attributed by
XGBoost to each of the 18 hours considered (Table 3). XGBoost
values h9 and h15, indicating that these two hours are the
ones that mostly differentiate the three user groups. This is
consistent with the fact that each user group is characterized by a
predominant day of HA use (Figure 7), and that h9 and h15 are
the most effective hours in differentiating between the three day
types (Figure 5B).

DISCUSSION

While HA use has been traditionally assessed through subjective
self-reports, smartphone-connected HAs enable objective data
logging of HA use. This study investigates the objective HA use
of a large cohort of HA users. 453,612 days of HA use logged by
15,905 users were analyzed.

The amount of HA use time is informative of how long
the HA has been used during a day. On average, the users
used the HAs for 10.01 h/day. This value is similar (11, 17)
or slightly larger (10, 19) than previous studies objectively
measuring HA use. When investigating the variability between
users, this study found that 25% of users used the HAs for
<8.18 h. This percentage is similar to a study by Laplante-
Lévesque et al. (11), but smaller than other studies (12, 18, 19)
objectively or subjectively assessing the amount of HA use of
several users. The inclusion criteria of this study (i.e., users of
the HearingFitnessTM feature via a smartphone app) and the data
cleaning criteria (i.e., days with at least 60min of HA use) could
explain the greater average HA use and the lower percentage
of light users. Moreover, a greater average HA use could be
explained by the fact that, for binaural HA users this study
selected the larger value between the right and left ear. While
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FIGURE 7 | In (A), for each of the three user clusters (i.e., user group A, B, and C), the days of HA use are displayed as scatter plot against the two main principal

components. The distinct densities indicate that the three user groups experienced substantially different days of HA use. In (B), the average proportion of time spent

(±95% confidence interval) in each day type is displayed for each user cluster.

TABLE 2 | Comparison of three individual classifiers (multiclass logistic regression,

XGBoost, and fully connected neural network) and of the classification ensemble

based on two performance metrics (accuracy and ROC-AUC score).

Classifier type Accuracy

(0-100 %)

ROC-AUC Score

(micro-average)

Logistic regression 81.51 0.97

XGBoost 87.08 0.98

FC neural network 85.56 0.98

Ensemble 86.04 0.98

XGBoost is the best performing individual classifier according to both metrics.

HA users can either exhibit a low or high average amount of
daily HA use, their day-to-day fluctuations in HA use provide
a deeper understanding of HA use. The fluctuations in day-to-
day HA use (i.e., within-user SD) were lower for light and heavy
users compared to medium users, proving that a substantial
number of users consistently displayed diverse behaviors in
terms of HA use.

In addition to the amount of HA use, continuous data logging
enables assessing how and when HAs were used during the

day. Based on patterns of hourly use, the 453,612 days of HA
use were clustered into three typical days. Forty-four percent
of days were characterized by full HA use. This indicates that
generally, when worn, HAs tend to be turned on in the morning
(around 7), used uninterruptedly throughout the day, and turned
off in the evening (around 22). Twenty-seven percent of days
were characterized by afternoon use. This indicates that HAs are
occasionally turned on in the late morning (around 11) and used
uninterruptedly until the evening (around 22). This behavior
might be due to a different individual daily rhythm or to a day
encompassing different activities (e.g., weekend had a significant,
but negligible effect on the day type). Twenty-six percent of days
were characterized by sporadic evening HA use. This suggests
that HAs are sometimes used in isolated occasions and for a
limited number of hours. The remaining days (3%) were atypical
days of HA use and exhibited infrequent behavior.

Based on the proportion of time spent in each of the typical
days of HA use, the 15,905 users were clustered in three user
groups. This method allowed to investigate users’ behavior
while preserving the individual day-to-day variability in HA use.
Almost half of the users (group A, 49% of users) predominantly
had full days of HA use. This group might include users that
have an active life and engage in social interactions starting in the
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FIGURE 8 | ROC-AUC plot for the ensemble of classifiers, illustrating the tradeoff between sensitivity (True Positive Rate) and specificity (False Positive Rate). The ideal

point is the top-left corner, higher AUC is better. In this multiclass scenario, the individual classes are first binarized, the individual scores are computed for each user

group, then micro-averages and macro-averages are calculated for each classifier.

morning and throughout the entire day. Because of the inclusion
criteria of this study (i.e., users of a smartphone app that tracks
HA use), this group might be overrepresented. A smaller portion
of users (group B, 15%) predominantly had days of afternoon
use. This group might include users that engage in activities and
social interactions later in the day. Group A and B, together,
indicate that 64% of users tended to use the HAs uninterruptedly,
a percentage similar to the 57% found by Laplante-Lévesque et al.,
(11). Twenty percent of users (Group C) predominantly had days
of sporadic evening use. This group might either contain users
that are not acclimatized to their HAs or users that do not depend
on their HAs and only need them in specific situations (16). The
remaining 15% of users were classified as noise, suggesting that
some users have an uncommon behavior, more evenly alternating
among the typical days of HA use. This percentage is in line
with a study by Laplante-Lévesque et al., (11), according to which
23% of the subjects described their HA use to be different from
day to day. Interestingly, in all three user groups, we found
that the predominant day of HA use accounted for ∼60% of
the time, suggesting that users exhibited a substantial within-
user variability in terms of day type experienced throughout the
logged days. This aspect might not emerge from self-reported
assessments that suffer from recall bias, as indicated by a previous

study in which most participants (77%) reported their HA use to
be the same every day (11).

The user clustering was validated by training a supervised
classification ensemble to predict the cluster to which each user
belongs. The high accuracy achieved by the supervised classifier
ensemble (∼86%) indicates valid user clustering. Indeed, this
approach is based on the idea that good clustering should also
support good classification, where the better the classification
performance the higher the quality of the partition. As such, a
high-quality partition is defined by compact clusters separated
from each other to the extent that an artificial expert (i.e.,
a supervised classifier) can distinguish the cluster to which
a new user belongs (39). This evaluation was performed to
complement internal validation methods (i.e., using information
of the clustering process). Internal validation methods attempt
to evaluate cluster structure quality, the appropriate clustering
algorithm, and the number of clusters without additional
information but depend on assumptions such as the presence
of underlying structure for each cluster, resulting in weaker
results when they do not hold. Alternatively, cluster quality
could theoretically be evaluated using external validation, which
requires additional, “true” cluster labels to compare against. In
real-world scenarios, finding “true” labels is often difficult as
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TABLE 3 | Input feature importance returned by XGBoost.

H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23

0.013 0.014 0.028 0.326 0.017 0.019 0.021 0.039 0.064 0.256 0.042 0.037 0.021 0.025 0.024 0.014 0.017 0.015

The values indicate how valuable each of the 18 features (from H6 in the morning to H23 at night) are in the construction of the boosted decision trees (internal to the model). The values

greater than 0.2 are marked in bold. The model values divergence points between the three day types (H9, H15) (see Figure 5B). Total value is 1.

raw data may not have reference labels, thus making external
validation methods unusable.

Clustering users based on their HA use patterns provides a
deeper insight into the adoption of hearing care treatments and
paves the way formore personalized solutions. For instance, users
that predominantly have days of sporadic evening HA use might
have specific needs compared to the users that uninterruptedly
use the HA for the entire day. They might only need the HAs
in specific situations and thus benefit from targeted HA settings
or features. Additionally, training a supervised classifier based on
data labeled by a clustering technique enables future predictions
for new users. Based on the average day of HA use of a new
user, the classifier can predict her user group, thereby identifying
users with similar behaviors and potentially leveraging on the
accumulated knowledge of existing users. This can improve the
clinical flow by helping audiologists make data-driven decisions.

Looking into the future, a more advanced level of
personalization could improve the quality of hearing care
solutions and help alleviate major challenges concerning new
users, such as the cold start problem. This can be defined as
the delay between starting to use the HAs and the moment
when enough data was generated locally for meaningful results.
Furthermore, an individual’s dynamic sound environment, or
soundscape, may also be an important factor for personalization.
Considering the large number of soundscapes a user may be
exposed to throughout the day (public transport, social events,
work environments, etc.), additional features can potentially
account for both the within-user and the between-user
variability. An effective clustering technique for grouping similar
users may serve to balance this increase in complexity, especially
if advanced privacy-preserving techniques such as federated

learning and differential privacy are considered. Federated
learning is a machine learning framework where models are
trained locally, and afterwards aggregated between participating
users. This type of model development could provide access to
unrivaled amounts of quality user data, as privacy concerns can
only be alleviated if users never have to give away their data.
Real-world implementation of such a technique could provide
tangible benefits to both existing users, as well as improve the
experience of new users, thus enabling next-generation privacy
focused personalization systems.
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Investigating the Provision and Context of Use of Hearing Aid 
Listening Programs from Real-world Data 

Abstract  
Background: Listening programs enable hearing aid users to change device settings 
for specific listening situations and thereby personalize their listening experience. 
However, investigations into real-world use of such listening programs to support 
clinical decisions and evaluate the success of hearing aid treatment are lacking. 
Objective: To investigate the distribution of provided listening programs among a 
large group of in-market hearing aid users and the context by which the programs 
are typically used. 
Methods: First, we analyzed how many and which programs were provided to 
32,336 in-market hearing aid users. Second, we explored 396,723 program 
selections from 1,312 selected users to investigate the sound environments in which 
specific programs are used and whether such environments reflect the listening 
intent conveyed by the name of the used program. Our analysis is based on real-
world longitudinal data logged by smartphone-connected hearing aids. 
Results: 57% of hearing aid users in our sample had programs for specific listening 
situations, which is a higher proportion than previously reported, most likely due to 
the inclusion criteria. Based on association rule mining, we identified a primary 
additional listening program, “Speech in Noise”, usually provided when also getting 
other programs. We also identified two secondary additional programs (“Comfort”, 
“Music”), usually provided to users that also have “Speech in Noise”. Two programs 
(“TV”, “Remote Mic”) were instead related to the use of external accessories and not 
associated with other programs. On average users selected “Speech in Noise”, 
“Comfort” and “Music” in louder, noisier, and less modulated (all P<.001) 
environments compared with the environment in which they selected the default 
“General". The difference from the sound environment in which they selected 
“General” was significantly higher in the minutes following program selection 
compared to the minutes preceding it. 
Conclusions: This study provides a deeper insight into the provision of listening 
programs on a large scale and demonstrates that additional listening programs are 
used as intended and according to the sound environment conveyed by the program 
name. 
 
Keywords: listening programs; sound environment; personalization; data logging; 
multimemory hearing aids 
 



 

Introduction 

Background 
Untreated hearing loss is a widespread condition [1] that has repercussions at an 
individual [2–4] and societal level [1,5,6]. Globally, 72 million people could 
potentially benefit from the use of a hearing device [1]. The adoption of hearing aids 
(HAs) has been shown to have a positive impact on the quality of life of users [7,8] 
and to mitigate the effect of hearing loss on household income [4]. However, one of 
the requisites for the widespread adoption and usage of HAs is user satisfaction [9].  
HA users use the HAs and report listening difficulties in different real-life situations 
ranging from face-to-face conversations to coping with environmental sounds [10]. 
Therefore, to achieve high user satisfaction, HAs need to be able to cater for a wide 
range of situations. This is confirmed by previous research that found that one of the 
main reasons for not owning or not using HAs is that the HAs are not working well 
in specific situations, for instance when there is background noise [9,11,12], when 
listening to speech [13], or when being in a large group of people [14]. 
 
For these reasons, programmable multimemory HAs have been introduced, which 
enable providing the user with multiple listening programs for specific listening 
situations. Nowadays, 41% of HA owners have such programs [15]. Listening 
programs set pre-defined rules for contextually adapting different audiological 
parameters such as overall gain, frequency shaping of the gain, noise reduction, and 
directionality. Programs can be manually selected via the HA buttons, a remote 
control, or a smartphone app. Users are usually advised to use a program in a 
specific listening situation [16]. This is reflected by the name of the program, which 
often conveys the situation where it is meant to be used (e.g., "speech in noise", 
"music") [16]. Thus, programs are a way for users to contextually adapt the device 
settings in specific listening situations and thereby personalize their listening 
experience. Therefore, investigating the use of listening programs potentially 
enables a deeper understanding of users’ behavior and needs. 

Related work 
Previous research has shown that HA users can benefit from certain listening 
programs in specific listening environments. For instance, having specific listening 
programs for listening in quiet and in noise has been found to improve speech 
recognition [17,18]. However, to benefit from programs, HA users need to be able to 
characterize the listening environment adequately and actively select the 
appropriate program [16]. Previous research conducted on eleven experienced HA 
users has shown that the percentage of users who selected identical programs in the 
same situation (repeatability) surpassed the level corresponding to pure guess 
under almost all listening conditions [19]. Higher repeatability has been found in 
demanding listening situations [19]. These results suggest that listening programs 
can discernibly impact the listening experience. 
 



Although different listening programs can potentially be beneficial and discernible 
for HA users, little is known about their real-world use. De Graaff et al. [16] 
performed a scoping review on the use of multimemory devices containing several 
listening programs and investigated if HA users appreciate and adequately use the 
option to switch between programs. Remarkably few studies were found about the 
use of multiple programs for various listening environments. Stelmachowicz, Lewis 
and Carney [20] found that HA users did not tend to select different settings (in 
terms of frequency shaping of the gain) across simulated sound environments, 
although differences in the preferred overall gain were sometimes observed. 
Conversely, Keidser et al. [21] found that 5 out of 27 HA users preferred different 
frequency response characteristics in different listening conditions, mainly in noisy 
environments. Similarly, Banerjee [22] found that HA users preferred the default 
setting most often and nondefault settings mainly in difficult listening situations. 
Additionally, several studies found that most HA users switched between 
omnidirectional and directional microphone settings and that microphone 
preferences depend on the characteristics of the listening environment [23–26].  
 
These studies suggest that some HA users value and use the option to switch 
between listening programs. However, the existing literature is sparse and dated.  
While listening programs investigated in older studies used to set a constant level 
for an audiological parameter (e.g., higher constant amount of noise reduction), 
nowadays listening programs set dynamic rules for contextually adapting the 
parameters (e.g., rule that provides earlier and higher noise reduction as the user 
transitions to a complex environment). Moreover, some questions remain 
unanswered. First, it is not clear what motivates a HA user to get a multimemory HA 
and manually switch between programs, and in which listening situations users 
particularly seek device personalization. Second, as highlighted in the 
aforementioned systematic review, little is known about the correct use of programs 
designated for a specific listening environment [16]. Indeed, establishing the need 
for a multimemory device does not guarantee that the user will immediately notice 
the benefits of multiple programs. The failure to match the multimemory HA 
settings to the communication and environmental needs of the individual may lead 
to delays in fully realizing its benefits [27]. None of the studies included in the 
systematic review examined whether a certain program was used in the correct 
listening environment (e.g., whether users selected a “Speech in noise” program in 
noisy environments)[16] during everyday life. 
 
Furthermore, most of the aforementioned studies relied on self-reported measures 
collected over a short period of time. Indeed, they used diaries or questionnaires in 
which HA users reported use, preferences, and details of the listening environments. 
Whether the appropriate program is used in each listening environment cannot be 
derived from these data [16]. Moreover, most studies pay little attention to the 
continuation of use of listening programs after the completion of the study. On the 
one hand, subjects might use programs during the study period but stop using them 
once the study finishes. On the other hand, they might need to acclimatize to the use 
of programs and their preferences may only be evident after extended use [28]. In 



contrast to self-reported measures, data logging enables investigating the real-
world behavior of a larger number of users [29]. It allows gathering objective 
program usage, as well as objective contextual data. Moreover, it enables assessing 
program use with a greater temporal resolution and longitudinally, making it 
possible to investigate detailed patterns of use, explore the long-term user behavior, 
and account for the acclimatization phase [30]. Investigating the use of listening 
programs by using objective data logging could unveil insights on how users select 
between multiple listening programs under natural conditions and thereby pave the 
way for more personalized hearing care solutions. 

Research objective 
This study aims to investigate the provision and context of use of multimemory HAs 
by leveraging objective data logged by smartphone-connected HAs from in-market 
users across several countries. First, we investigate the provision of multiple 
listening programs for various listening environments. Namely, we examine how 
many and which programs HA users have, and whether some programs are 
commonly provided together. Second, we explore whether HA users use specific 
programs in distinct listening situations and whether such situations reflect the 
listening intent conveyed by the name of the program. We do so by focusing on 
users that repeatedly use specific programs and investigating the sound 
environment in which such programs are selected.  
 

Methods 

Participants and Apparatus 
This study used data from a large-scale internal (Oticon A/S, Smoerum) database, 
which stores logs of the HA use of HA owners who have signed up for the 
HearingFitness™ feature [31] via the Oticon ON™ smartphone app. The participants 
were the owners of Oticon Opn™ HAs who used the HearingFitness™ feature in the 
period between June and September 2020. In the sign-up process, the participants 
actively gave their consent for data to be collected, stored, and used for research 
purposes on aggregated levels. No personal identifier was collected. No ethical 
approval is necessary for this study according to Danish National Scientific Ethical 
Committee [32]. 

Data and Data Analysis  
When the HAs are connected to the smartphone, the HearingFitness™ feature logs 
timestamped data about the interactions with the HAs, such as the selection of 
specific listening programs. To account for different phrasing or different languages 
adopted by hearing care professionals when naming the programs, similar program 
names were coded in fewer categories. Moreover, when the HAs are connected to 
the smartphone, timestamped data about the sound environment is collected every 
10 minutes and every time a listening program is selected by the user. Namely, the 
sound pressure level (SPL), the noise floor (NF), and the sound modulation level 
(SML) in decibels are measured across a broad frequency band (0.1 – 10kHz) [33]. 



The SPL is the most used indicator of the sound wave strength and correlates well 
with human perception of loudness [34]. The NF is the level of background noise in 
a signal. The SML describes how much the modulated variable (e.g., speech) of the 
signal varies around its unmodulated level. 

Provision of Listening Programs 
The provision of listening programs was investigated by including users that have 
usage information for at least 20 hours and analyzing, for each user, the programs 
that have been selected at least once in the 4-month period. This resulted in a total 
of 32,336 users and 67,996 programs provided. 
We explored the provision of listening programs by computing the number of 
programs available per user and the most frequently provided programs across 
users. Furthermore, we investigated the relationships between programs by 
determining association rules [35] via the Apriori algorithm [36]. Given a set of n 
programs 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑛 }, and a set of users 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑚}, where each user 
is provided with a subset of the programs in P, a rule is defined as an implication of 
the form: 𝑋 ⇒ 𝑌, where X is the antecedent, Y is the consequent, 𝑋, 𝑌 ⊆ 𝑃, and 𝑋, 𝑌 ∩
Ø [36]. In determining the association rules, the default program (i.e., “General”) 
was excluded and only users having at least one additional listening program were 
considered (i.e., 18,153 users). Indeed, the default program is available for nearly all 
users and including it in the association rules would not be of any interest. Instead, 
the association rules related to the five most frequent additional listening programs 
were inspected. The rules were evaluated based on several metrics: support, 
coverage, confidence, coverage, and lift [36]. The support of a rule defines how often 
the rule appears in the data set. The coverage refers to how often the antecedent of a 
rule appears in the data set and measures how often the rule can be applied [37].  
The confidence of a rule is defined as conf(X ⇒ Y) = support(X ∪ Y)/support(X) 
and can be interpreted as an estimate of the probability P(Y|X) [36], measuring how 
often a rule is correct out of the applicable cases. A potential issue with confidence is 
that an association rule having a very frequent consequent will always have high 
confidence. The lift addresses this concern by taking into account how frequent the 
items are in the data set. The lift of a rule is defined as lift(X ⇒ Y) = support(X ∪
Y)/(support(X)support(Y)), and can be interpreted as the deviation of the support 
of the whole rule from the support expected if the antecedent and the consequent 
were independent [36]. Finally, the likelihood of a program being provided to users 
with respectively one, two, three or four programs was investigated. The data 
manipulation was performed in Python. The association rule mining was performed 
in R by using the arules package [38]. 

Use of Listening Programs vs Sound Environment 
Contextual program use was evaluated by analyzing the sound environment (SPL, 
NF, SML) during program change selection. For each logged selection of a specific 
listening program, the sound environment measured in a 10-minute time-window 
centered on the program selection was considered (i.e., 5 minutes preceding and 5 
minutes following the selection). The sound environment occurring during different 
selections of a specific program by the same user was averaged. For each program, 



only users with at least 5 selections were included. Such threshold was chosen to 
ensure that users’ behavior was inferred from a representative sample of program 
selections, while, at the same time, not dropping too many users. Moreover, based 
on the analysis described in the previous section, only a relevant subset of listening 
programs was included. The resulting data set comprised 396,723 program 
selections from 1,312 users. The data manipulation was performed in Python. 
The aforementioned computations resulted, for each program, in a distribution of 
users by their average sound environment when selecting the program. We visually 
compared the sound environment occurring when selecting a specific listening 
program with the sound environment occurring, for the same users, when selecting 
the default program (i.e., “General”). Subsequently, we tested whether the 
differences between the two sound environments were normally distributed. Based 
on the result of the normality test, we tested the significance of the differences by 
performing either a paired t-test or a Wilcoxon signed-rank test [39]. The latter is a 
non-parametric version of the paired t-test which is robust to outliers and tests 
whether the distribution of the differences is symmetric around zero. Additionally, 
the difference between the sound environment occurring when selecting “Speech in 
Noise” and the sound environment occurring when selecting respectively “Comfort” 
and “Music” was tested by performing a Mann-Whitney U test [40], a nonparametric 
test of the difference between the distributions underlying two samples. 
Furthermore, we investigated whether the sound environment changed before or 
after the program selection by computing, for each program, a 5-minutes running 
average of the sound environment throughout the 10-minute time window (i.e., for 
each minute, we looked for sound environment logs occurred in the previous 5 
minutes for the same user and averaged them). 
Additionally, by means of a Wilcoxon signed-rank test [39], the average sound 
environment occurring in the 5 minutes before program selection was compared 
with the sound environment occurring, for the same users, in the 5 minutes after 
program selection.  
The analysis was performed in Python using the NumPy [41], Pandas [42], Seaborn 
[43], Scipy [44] libraries. 



Results 

Provision of Listening Programs 
 

 

Figure 1 Number of programs available for each user and names of programs most frequently 

provided 

Among the HA users, 57% have more than one listening program (Figure 1). Almost 
every user (99%) has the default program, “General” (Figure 1). This means that 
more than half of the users have at least one program for specific listening situations 
in addition to the default one. Respectively 26%, 13%, and 10% of users have a 
“Speech in Noise”, “Music”, and “Comfort” program. The names of these programs 
convey a specific listening intent.  Compared to “General”, “Speech in Noise” 
provides more noise reduction, less directionality and more sound details. “Music” 
provides an omnidirectional sound and no noise reduction. “Comfort” provides 
more noise reduction in complex environments, more directionality, less 
amplification, and less sound details.  
 
Additionally, respectively 18% and 12% have a “TV” and “Remote Mic” program. 
These programs are related to the use of an accessory, such as a TV adapter and a 
remote microphone. 
 



Figure 2 Association rules with support≥0.02, confidence>0.5 and lift>1. The support of each 

rule is indicated by the area of the circle, while the confidence is conveyed by the color intensity.  

“Speech in Noise” is the consequent of all rules, suggesting that it is a primary program, 

frequently provided when also providing secondary programs such as “Comfort” and “Music”. 

 

Table 1 Association rules with support≥0.02, confidence>0.5 and lift>1 

Rule Antecedent Consequent Support Coverage Confidence Lift Count 

1 Music Speech in Noise 0.14 0.23 0.62 1.35 2612 

2 Comfort Speech in Noise 0.13 0.18 0.71 1.54 2357  

3 Comfort, Music Speech in Noise 0.04 0.06 0.79 1.71 801  
4 Music, TV Speech in Noise 0.03 0.05 0.56 1.21 476 

5 Music, Remote Mic Speech in Noise 0.02 0.03 0.66 1.43 401 

6 Comfort, TV Speech in Noise 0.02 0.03 0.67 1.45 377  

 

Investigating the association rules with support≥0.02 and confidence>0.5 (Figure 2) 
enables exploring the relationships between programs. In this analysis, “General” 
was not considered as it is uniformly provided and is not an additional listening 
program. The detailed metrics of the selected rules are presented in Table 1. Not 
only is “Speech in Noise” the most common additional listening program, but it is 
also a primary program that users get when also getting secondary programs. 
Indeed, “Speech in Noise” is the consequent of all selected rules, while either 
“Comfort” or “Music” are always in the antecedent set. As shown by Table 1, 
respectively 62% and 71% of users who have either “Music” (rule 1) or “Comfort” 
(rule 2) also have “Speech in Noise”. Similarly, 79% of users who have both “Music” 
and “Comfort” (rule 3) also have “Speech in Noise”. For these rules, the lift is greater 
than 1, indicating that users are more likely to have “Speech in Noise” when they 
also have “Music” and/or “Comfort”. Conversely, although “TV” is a frequently 
provided program, users that have such program are not more likely to have other 
listening programs. 
 



 

Figure 3 Likelihood of specific programs being provided to users with respectively one, two, 

three or four programs. 

Figure 3 confirms some of the previous findings. Almost all users have the “General” 
program regardless of the number of additional programs. Among the users that 
have two programs, “Speech in Noise”, “TV”, and, to a lesser extent, “Remote Mic” 
are more likely to be available than “Music” and “Comfort”. For users with three or 
four programs, the likelihood of having the primary program “Speech in Noise” 
grows linearly, while the likelihood of having “TV” or “Remote Mic” remains 
relatively constant and secondary programs “Music” and “Comfort” increase in 
likelihood. 

Use of Listening Programs vs Sound Environment 
Based on the findings in the previous section, we investigated the sound 
environment in which a relevant subset of the listening programs was used. We 
focused on programs that convey a specific listening intent, whether they are 
primary (“Speech in Noise”) or secondary (“Comfort”, “Music”). These three 
programs are meant to be used in specific listening situations and are not related to 
the use of an accessory.  
 
First, we analyzed whether the primary program (“Speech in Noise”) was selected in 
different listening situations compared to the default program (“General”). The 
upper graphs in Figure 4 display the distribution of users by their average sound 
environment respectively when selecting “Speech in Noise” and “General”. Users 
selected “Speech in Noise” in louder (higher SPL), noisier (higher NF), and less 
modulated (lower SML) sound environments. Indeed, on average, users selected 
“Speech in Noise” at 55.1 dB SPL (SD=7.4), 46.9 dB NF (SD=7.0), 17.1 dB SML 
(SD=4.9), while they selected “General” at 53.0 dB SPL (SD=5.6), 44.5 dB NF 
(SD=5.2), 18.2 dB SML (SD=3.5). The distributions of users by their average sound 
environment resulted not to be normally distributed (P>.1), therefore a Wilcoxon 
Signed-Rank Test was performed to test their difference. Based on such test, the 
difference between the two distributions (“Speech in Noise” and “General”) was 
statistically significant (P<.001) for all three parameters, as shown by Table 2. 
Focusing on individual users, the lower graphs in Figure 4 show that most of the 



users (respectively 64%, 66%, 62%) selected “Speech in Noise” in environments 
characterized by higher SPL, higher NF, and lower SML. 
 

 

Figure 4 Analysis of the sound environment (SPL, NF, SML) in which “Speech in Noise” and 

“General” are selected. Compared to “General”, users select “Speech in Noise” in louder, noisier, 

and less modulated environments. In the upper figures, distribution of users (using histograms 

and kernel density estimation) by their average sound environment when selecting "General" and 

"Speech in Noise". In the lower figures, 2d histograms displaying, for each user, the sound 

environment when selecting “Speech in Noise” (y-axis) and “General” (x-axis). The color of the 

hexagon is determined by the number of users in the hexagon. The identity line (y=x) is drawn in 

grey. If a user experiences the same sound environment when selecting “Speech in Noise” and 

“General”, the corresponding hexagon falls exactly on the identity line. 

 

Second, we analyzed whether the secondary programs (“Comfort” and “Music”) 
were selected in specific listening situations. As shown in Table 2, users selected 
both programs in louder, noisier, and less modulated (Wilcoxon Signed-Rank test, all 

P<.001) sound environments compared with the sound environment in which they 
selected “General”. Compared with “Speech in Noise”, “Music” was selected in less 
loud (Mann-Whitney U test, P=.009) and less noisy (Mann-Whitney U test, P<.001) 
environments. There was no difference in SML between selection of “Speech in 
Noise” and “Music” (P=.152). Furthermore, no difference was found between the 
sound environment in which “Speech in Noise” and “Comfort” were selected (SPL, 
P=.405; NF, P=.595; SML, P=.344). 
 
 
 



Table 2 Average difference between the sound environment when selecting a program (i.e., 

“Speech in Noise”, “Comfort”, “Music”) and the sound environment when selecting the 

“General” program, computed in a 10-minute interval around program selection. 

Program N 
Mean difference from General  

SPL NF SML 

Speech in Noise 963 +2.06* 

(SD=6.05) 

+2.35* 

(SD=5.83) 

-1.11* 

(SD=4.65) 

Comfort 300 +1.93* 

(SD=6.50) 

+2.50* 

(SD=5.97) 

-1.28* 

(SD=4.74) 

Music 366 +1.67* 

(SD=6.23) 

+1.59* 

(SD=5.77) 

-1.04* 

(SD=4.69) 

* Statistically significant at P<.001 based on the Wilcoxon Signed-Rank test. 

 
Finally, we investigated to what extent the sound environment changes before and 
after the program selection. Figure 5 displays, for a time-window near the program 
selection, the 5-minutes running average of the difference between the sound 
environment when selecting a program and when selecting “General”. For all three 
programs (“Speech in Noise”, “Comfort”, “Music”) and all three sound environment 
features (SPL, NF, SML), a sound environment difference from “General” was 
observed throughout the whole 10-minute time window. Moreover, as shown by 
Table 3, for all three programs and sound environment features, the sound 
environment difference from “General” was significantly higher in the 5 minutes 
following program selection, compared to the 5 minutes preceding program 
selection (Wilcoxon Signed-Rank test, all P<.05). By observing the magnitude of the 
differences (Table 3), it can be noticed that this was particularly the case for the 
“Speech in Noise” and “Comfort” programs and the NF and SML features.  
 

 

Figure 5 5-minutes running average (± SE) of the sound environment difference from 

“General”, computed in a time-window near the program selection. The difference 

deviates from zero throughout the whole time-window. However, especially for NF and 

SML, the difference increases after program selection. 

 
 



Table 3 Average difference between the sound environment when selecting a program 

(i.e., “Speech in Noise”, “Comfort”, “Music”) and the sound environment when selecting 

the “General” program, computed for the 5 minutes before program selection (“Before”) 

and for the 5 minutes after program selection (“After”). A Wilcoxon Signed-Rank test 

was conducted to test whether the sound environment differences before and after the 

selection are statistically different from each other. 

Program N 

Mean difference from General  

SPL NF SML 

Before After Before After Before After 

Speech 

in Noise 

583 +1.81 

(SD=5.89) 

+2.73 

(SD=5.58) 

+2.12 

(SD=5.44) 

+3.36 

(SD=5.71) 

-0.85 

(SD=4.74) 

-2.25 

(SD=4.70) 

Diff=0.92 (P<.001) Diff=1.24 (P<.001) Diff=1.4 (P<.001) 

Comfort 179 +1.60 

(SD=5.60) 

+2.25 

(SD=5.42) 

+2.14 

(SD=4.99) 

+3.51 

(SD=5.57) 

-1.45 

(SD=4.93) 

-2.75 

(SD=4.80) 

Diff=0.65 (P=.031) Diff=1.37 (P=.002) Diff=1.3 (P<.001) 

Music 206 +1.21 

(SD=6.31) 

+2.13 

(SD=6.12) 

+1.45 

(SD=5.81) 

+2.31 

(SD=5.81) 

-0.86 

(SD=4.89) 

-1.51 

(SD=4.85) 

Diff=0.92 (P=.016) Diff=0.86 (P=.001) Diff=0.65 (P=.002) 

 

Discussion 
This study investigates the provision and context of use of HA listening programs by 
leveraging on real-world data logged through smartphone-connected HAs. 
The majority of HA users in our sample (57%) were found to have listening 
programs for specific listening situations in addition to the default program. 
According to a previous study analyzing self-reported data, 41% of HA owners have 
a program button or switch to change the HA response for different listening 
environments [15]. The inclusion criteria (i.e., users of the HearingFitness™ feature 
via a smartphone app) and the data collection method (i.e., objective data logging) of 
our study could explain the higher prevalence of listening programs. “Speech in 
Noise” was the most commonly provided program besides the “General” default 
program. By association rule mining, “Speech in Noise” was also found to be a 
primary program that users tend to get when also getting other secondary 
programs, such as “Comfort” and “Music”. This indicates that users either request or 
are recommended a “Speech in Noise” program as initial step when being interested 
in personalizing their listening experience in specific listening situations. This 
finding is consistent with previous studies reporting that HA users most frequently 
struggle when there is background noise [9,11,12], or when being in a large group of 
people [14] and, consequently, they are least likely to be satisfied with their hearing 
when following conversations in noise and in large groups [15]. “Comfort” and 
“Music” resulted to be secondary programs, frequently provided to users that also 
have “Speech in Noise” and more likely to be provided to users having three or four 
programs. As with “Speech in Noise”, these programs signal the interest in 
personalizing the listening experience in a specific listening situation, i.e., when it is 



noisy but there is no need to communicate and when listening to music. Although 
these situations are not as prevalent as communicating in noise, users highly 
motivated to personalize their experience can still benefit from adopting specific 
listening programs for these situations [45]. Despite being common programs, “TV” 
and “Remote Mic” were provided differently than the other programs. They were 
frequently provided to users having only two programs (including “General”), but 
they were not frequently provided in connection with other programs and their 
prevalence did not increase among users having more than two programs. This 
might be explained by the fact that such programs are frequently provided to users 
that own a TV adapter (i.e., a device that enables streaming the TV sound via the 
HAs) or a remote microphone. Therefore, such programs show an interest in using 
the accessory more than in contextually adapting the HA settings through a listening 
program. Moreover, selecting the “TV” program might actively modify the sound 
environment by silencing the TV while reproducing the sound directly into the HAs. 
Therefore, “TV” and “Remote Mic” are not included in the following sections. 
 
Subsequently, we analyzed the sound environment in which “Speech in Noise”, 
“Comfort” and “Music” were selected. First, we found that, on average, users selected 
“Speech in Noise” in louder, noisier, and less modulated environments compared 
with the environment in which they selected “General”. This proves that HA users 
select the “Speech in Noise” program in environments that possess distinct 
characteristics and that better resembles a conversation in noise.  
Second, “Comfort” was also selected in louder, noisier, and less modulated listening 
environments compared with “General”, suggesting that HA users select it when 
they want to get relief in noisy environments. Interestingly, HA users selected 
“Comfort” and “Speech in Noise” in the same sound environments (i.e., no significant 
difference was found), indicating that similar sound environments might require 
different HA settings because of differing listening intents, or that users fail to 
recognize what program is best suited for the environment. In the former case, the 
high-level sound environment features SPL, NF, and SML might not be sufficient to 
reveal different listening intents from the ambient sound. Third, “Music” was 
selected in louder, noisier, and less modulated listening environments compared 
with “General”, but in less loud and less noisy environments compared with “Speech 
in Noise”. The music playing in the environment might explain the higher loudness 
and noise, although not as extreme as “Speech in Noise” scenarios. Overall, 
considering that HA users are typically counselled to use a program in a specific 
listening situation [16], our findings suggest that they tend to follow such 
recommendations in the real-world usage of their HAs. Empowering users to 
personalize their listening experience by contextually adapting the HA settings can 
therefore result in more appropriate settings for some relevant listening situations. 
Finally, we analyzed the temporal progression of the sound environment 
throughout a time-window close to the program selection. In the minutes following 
the program selection, especially for “Speech in Noise” and “Comfort”, a significant 
increase was observed in the difference to the sound environment occurring when 
selecting “General”. This suggests that a number of users tends to select additional 
listening programs in anticipation, rather than as a reaction, to a change in the 



sound environment. This could indicate that users are aware of what the 
contextually most appropriate program is and proactively select it before entering a 
specific listening situation. 
 
In terms of future work, it would be interesting to investigate to what extent the 
provision of listening programs depends on HA owners requesting a program or on 
the hearing care professional recommending it. Indeed, hearing care professionals 
traditionally have a great influence on the prescribed hearing solution, and data 
about the provision of listening programs might not only reflect the needs and 
preferences of HA users, but also the beliefs and knowledge of the professionals. 
Moreover, the role of individual predictors for the provision and use of listening 
programs deserves further study. Indeed, the benefit from a personalized and 
contextualized solution might depend on the degree of hearing loss or additional 
data characterizing the individuals such as age, prior experience with hearing aids, 
auditory cognitive capabilities, or supra-threshold hearing characteristics. Finally, 
the significant differences found in the sound environment occurring when using 
specific listening programs indicate that the analyzed sound environment features 
(SPL, NF, SML) are promising candidate for predicting the selection of an additional 
listening program over the default program. Complementing such objective sound 
environment features with more subjective contextual features and with an 
evaluation of the listening experience might also enable a deeper understanding of 
the provision and use of HA listening programs. 
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