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“I was a victim of a series of accidents,
as are we all.”

– Kurt Vonnegut, The Sirens of Titan
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Summary
X-ray computed tomography (CT) is a powerful metrology that allows for non-
destructive imaging of the internal structure of objects. Improvements in X-ray
sources, X-ray detectors and increasing computation power have paved the way for
dynamic tomography, which enables a new range of experiments.

Dynamic experiments are ubiquitous in research fields such as carbon storage,
geothermal energy, multiphase flow, rock deformation and research related to the oil
and gas industry. The dynamic nature of the experiments constrains the imaging
process in that the imaging has to be sufficiently fast to capture it. This constraint
can drastically compromise the image quality of tomographic reconstructions if either
exposure time or the number of projections is reduced to accommodate the pace of
the dynamic experiment.

In this thesis, we have developed novel reconstruction algorithms for dynamic
experiments to provide high-quality reconstructions despite substandard data. We
designed the algorithms for experiments that allow for a high-quality scan of the
experiment before any dynamics take place. All algorithms we developed are based
on the Simultaneous Iterative Reconstruction Technique, and the best performing
of these algorithms had two additions, which improved it. The first addition is we
initialise a reconstruction for a given time step with a reconstruction of the previous
time step. The first time step is initialised with a high-quality reconstruction of the
static system. The second addition is that each pixel in the dynamic reconstructions
is constrained such they can only take a single value or a range of values. This con-
straint is derived from a segmentation of the high-quality reconstruction. We tested
the algorithms with simulated data of differing quality to gauge their performance
under different conditions. We showed that this algorithm performs far better than
conventional methods and allows for a substantial reduction in imaging time.

We also examined multiple stopping rules for reconstruction algorithms that esti-
mate the optimal point to terminate a reconstruction. Terminating a reconstruction
before or after the optimal point will either result in a blurry or noisy reconstruc-
tion. All tested methods provided accurate estimates of the optimal stopping point
for data with a moderate or small signal to noise ratio (SNR). Two of the methods
do not require any knowledge of the noise level in the data, which makes them very
practical.

Finally, we performed a dynamic CT experiment to study the scaling formation
process. We injected a carbon steel flow cell with water supersaturated with BaSO4
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for over 150 hours while imaging it with a CT scanner. We used a modified version of
one of the reconstructions algorithms we developed to reconstruct the dynamic data to
improve the SNR of the reconstructions. Quantitative analysis of the reconstruction
allowed us to gain new insights into the scaling formation process. From this analysis,
we show that scaling formation has three distinct growth phases.

This thesis and the contributions within it shows the applicability of dynamic
tomography for a wide range of fields and how it provides novel insight within these
fields.



Resumé
Røntgen computer-tomografi (CT) er en kraftfuld målemetode, der gør det muligt at
tage billeder af objekters indre struktur ude at skade dem. Forbedringer af røntgen
kilder, røntgen detektorer og forøgelser af regnekraft har gjort det muligt at lave
dynamisk tomografi, hvilket muliggør en række nye eksperimenter.

Dynamiske eksperimenter er udbredt i forskning af kulstoflagring, geotermisk en-
ergi, flerfasestrømning, klippedeformation og forskning relateret til olie- og gasin-
dustrien. Dynamiske eksperimenter sætter krav til varigheden af et CT-skan i den
forstand, at den skal være tilstrækkeligt kort til at optage det dynamiske fænomen.
For at mindske skanningstiden kan det være nødvendigt at reducere antallet af projek-
tioner eller eksponeringstiden per røntgenbillede, hvilket kan reducere billedkvaliteten
af en CT-skanning.

I denne afhandling har vi udviklet nye rekonstruktionsalgoritmer for dynamiske
eksperimenter, der kan bevare billedkvalitet på trods af mangelfulde data. Vi har de-
signet algoritmerne til eksperimenter, hvor det er muligt at fortage et højkvalitetsskan,
før det dynamiske eksperiment begynder. Disse algoritmer er baseret på Simultaneous
Iterative Reconstruction Technique og den bedste af vores algoritmer har to tilføjelser,
som forbedrer den. Den første af vores tilføjelser er, at vi benytter rekonstruktionen af
højkvalitetsskannet til at initialisere det første tidsskridt i den dynamiske rekonstruk-
tion. De næste tidsskridt bliver initialiseret med rekonstruktionen af forrige tidsskridt.
Den anden tilføjelse er, at pixels i den dynamiske rekonstruktion er begrænset således,
at de kun kan antage bestemte værdier. Begrænsningen er baseret på en segmentering
af højkvalitetsrekonstruktionen. Vi testede algoritmerne ved at rekonstruere kunstige
data af forskellig kvalitet. Disse test viste at vores algoritmer fungerer langt bedre
end traditionelle algoritmer, hvilket tillader en betydelig reduktion i skanningstid.

Vi testede også forskellige metoder til at estimere det optimale punkt til at stoppe
en rekonstruktions algoritmer. Hvis en rekonstruktionsalgoritme bliver afsluttet for
tidligt eller sent vil det hhv. resultere i en uskarp eller en støj fyldt rekonstruktion.
Alle metoder vi testede, gav akkurate skøn af det optimale stoppunkt for data med
et moderat eller højt støj indhold. To af metoder kræver ingen information om
støjniveauet i data, hvilket gør dem nemme at anvende i praksis.

Til sidst udførte vi et dynamisk CT-eksperiment for at studere scale-afsætning.
Scale er en fællesbetegnelse for salte og mineraler, som aflejrer sig på rør. Vi injicerede
en strømingscelle i kulstofjern med vand, der var overmættet med BaSO4 i over
150 timer imens vi fortog røntgen CT. Vi brugte en modificeret udgave af en af
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de algoritmer vi udviklede for at forøge signal støj forholdet af rekonstruktionerne.
Kvantitativ analyse af rekonstruktionerne gjorde det muligt for os at få ny indsigt
i, hvordan scale-afsætning foregår. Ud fra vores analyse observerede vi at scale-
afsætning gror i tre forskellige faser.

Denne afhandling og bidragene i den viser at dynamisk tomografi er brugbart i
mange forskellige forskningsområder og at det giver ny viden inden for disse områder.



vi



Preface
This PhD thesis was prepared in the Section for Visual Computing at the Department
of Applied Mathematics and Computer Science (DTU Compute) at the Technical Uni-
versity of Denmark in fulfillment of the requirements for acquiring a PhD degree in
computer science. The project was a part of the µ-Cracks: Flow & Deformation
project and was funded by DTU Offshore – Danish Offshore Technology Centre.

During the project I developed tomographic reconstruction algorithms in order to
improve the image quality obtained in dynamic computed tomography experiments
at DTU Offshore. The project was initially focused on multiphase flow in porous
media, but the scope of the project changed as it progressed. Three research papers
have been prepared over the course of this project. Two of these papers have been
peer reviewed while the third is still in preparation.

The project was supervised by Associate Professor Anders Nymark Christensen and
co-supervised by Senior Researcher Henning Osholm Sørensen and Professor MSO An-
ders Bjorholm Dahl. The research was carried out almost exclusively at the Section
for Visual Computing as unforeseen circumstances prevented me from collaborating
with external researchers. I did, however, collaborate with Professor, dr.techn. Per
Christian Hansen from the Scientific Computing Section at DTU Compute during
the spring of 2021.

Kongens Lyngby, February 28, 2022

Peter Winkel Rasmussen
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CHAPTER1
Introduction

1.1 Oil Production in the North Sea
Denmark started recovering oil and gas from the North Sea in 1972 when the first oil
field in the Danish part of the North Sea started production. What followed was a
rapid exploration of the area in the late 1970s and early ’80s, along with the construc-
tion of offshore platforms to exploit the newfound resources. A map of the Danish
North Sea can be seen in  Figure 1.1 where the producing fields are marked. In total
19 fields that produce either oil or gas have been developed since the exploration of
the North Sea started in the 1960s (Danish Energy Agency,  2021a ; TotalEnergies,

 2021 ).

Figure 1.1: Danish oil and gas fields in the North Sea. The figure is obtained from the
Danish Energy Agency ( 2021a ) with permission.
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The development of the fields has been of significant importance for the Danish econ-
omy (Nordsøfonden,  2021 ). Oil and gas are valuable natural resources as they provide
energy, heat and electricity. Additionally, they are also processed to create the chem-
ical feedstock used in many commonplace products such as most plastics, artificial
fertilisers and pharmaceuticals (International Energy Agency,  2018 ). In the mid-90s
the production of oil surpassed consumption making Denmark a net exporter of oil
until the mid-10s which can be seen in  Figure 1.2  . This decline since 2005 is simply
a result of ageing oil fields and increased downtime during production due to mainte-
nance (Danish Energy Agency,  2017 ).
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Figure 1.2: Oil production and consumption in Denmark since 1972. Data are acquired
from Danish Energy Agency ( 2021b ) and BP ( 2020 ).

The decline in oil production prompted the Danish Parliament and a consortium of
companies in the oil industry to create the Danish Hydrocarbon Research and Tech-
nology Centre (DHRTC) in 2014, which has the overall goal of supporting the Danish
oil industry through research. Initially, the centre was focused on enhancing recovery
of oil and gas, reducing costs of operation and reducing the environmental impact of
production.

However, the political landscape has changed since its inception due to the increas-
ingly overwhelming evidence for the harmful effects of anthropogenic global warming
(Masson-Delmotte et al.,  2021 ). In 2020 it was decided that further exploration of
North Sea should be cancelled and in 2021 it was decided by The Danish Parliment
that extractions of hydrocarbons from the North Sea is finished by the year 2050 (The
Danish Parliament,  2021 ).

These changes has caused a shift in the reasearch activities of the DHRTC, which
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now seeks to support the transition from fossil fuels to sustainable energy sources
thereby limiting the impact of Danish offshore activities as much as possible (The
Danish Hydrocarbon Research and Technology Centre,  2022 ). The research scope
of the centre have broadened and now include research into the abandonment of oil
and gas fields, CO2 storage, eliminating byproducts from oil production and improve
materials used for oil production. The DHRTC has now also been renamed to DTU
Offshore – Danish Offshore Technology Centre (DTU Offshore) to reflect this change
in research.

1.2 This Research Project
This PhD project was initially started to support research into enhanced oil recovery
from the Lower Cretaceous reservoirs by developing the tools needed for in situ mea-
surements of samples from these reservoirs. The composition of Lower Cretaceous
chalk poses unique challenges to the production of oil, and imaging samples of this
particular kind of chalk is necessary to improve the understanding of it.

My role was specifically to create algorithms for tomographic reconstruction suited
for dynamic imaging of multiphase flow in porous media. However, the scope of my
project broadened, and the focus shifted to more general applications of dynamic
X-ray tomography for the types of research that DTU Offshore performs. There are
three contributions included in this thesis which are:

1.  Contribution A  : Improved dynamic imaging of multiphase flow by constrained
tomographic reconstruction.

2.  Contribution B  : Stopping Rules for Algebraic Iterative Reconstruction Methods
in Computed Tomography.

3.  Contribution C : Crystal formation from high resolution 4D X-ray µCT: Initia-
tion, expansion and densification.

The first contribution presents tomographic reconstruction algorithms suited for in
situ core flooding experiments. The algorithm maintains image quality despite high
noise and few projections. The robustness of the algorithm means that imaging time
can be reduced, which improves temporal resolution.  Section 1.3  and  Chapters 2  

and  5 are meant to provide the of the background for this contribution.
The second contribution is also related to tomographic reconstruction algorithms.

In this contribution, we examine different heuristics for when to stop reconstruction
algorithms. Stopping too early results in a blurry reconstruction, while stopping too
late yields a noisy one, which makes it desirable to estimate this ideal stopping point.

 Chapter 5 provides the background for this contribution.
The third and final contribution presents a study of scale formation by using dy-

namic X-ray tomography. A flow cell in carbon steel was continuously injected with
water supersaturated with BaSO4 for over 150 hours. Imaging the cell during the
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injection and using a modified reconstruction method from  Contribution A  made it
possible to perform a detailed study of the scaling process.  Chapter 4  covers the prac-
tical aspects of going from raw data to the final reconstruction. These steps are not
described in  Contribution C as they are not relevant for the research topic; however,
it is still necessary to account for them to obtain a high-quality reconstruction.

1.3 X-ray Imaging of Dynamic Processes
X-ray imaging has seen increasingly more use in petrophysics in the last ten years as it
provides a reliable way to image an opaque sample in 3D. These gradual improvements
in spatial and temporal resolution partially account for this growth but increasing
computer power has been even more important as it has allowed much larger samples
to be imaged (Wildenschild and A. P. Sheppard,  2013 ). A detailed explanation of X-
ray radiation and the theory behind tomography is given in  Chapters 2 and  3 . At this
point, it is sufficient to know that X-ray computed tomography (CT) is an imaging
technique based on X-ray radiation that makes non-destructive imaging of objects
possible in 3D. There is a plethora of uses for tomography in geosciences, pore-scale
imaging and porous media of which many are described in the reviews Wildenschild
and A. P. Sheppard (  2013 ), Blunt et al. ( 2013 ), Cnudde and M. Boone (  2013 ), and
Bultreys, De Boever, and Cnudde ( 2016 ).

1.3.1 Enhanced Oil Recovery and Core Flooding
As previously mentioned, research in enhanced oil and gas recovery was one of the
early main goals of DTU Offshore. Oil recovery is, broadly speaking, separated into
three different phases, which are the primary, secondary and tertiary phases.

During primary recovery, oil flows freely to the oil well due to the high pressure in
the reservoir. The pressure of the oil field drops continuously during recovery, and it
will eventually be too low for primary recovery. Reservoir pressure can be sustained
artificially by injecting either fluid or gas. Secondary recovery refers to maintaining
reservoir pressure in this way. Seawater is commonly used in the North Sea during
secondary recovery due to its availability and ability to recover oil from chalk (Zhang,
Tweheyo, and Austad,  2007 ).

While secondary recovery seeks to sustain pressure in the reservoir, tertiary recov-
ery attempts to modify the conditions in the reservoir to increase the recovery. The
tertiary phase is, therefore, also known as Enhanced Oil Recovery (EOR). There are
multiple types of EOR, each of them using different approaches to improving recov-
ery (Manrique et al.,  2010 ). Many of these methods are researched at DTU Offshore,
such as injections with carbonated water, foams, smart water, which is water with a
modified ionic composition, etc. (Nielsen, Nesterov, and Shapiro,  2016 ; Mohammad-
khani, Shahverdi, and Esfahany,  2018 ; Seyyedi, Sohrabi, et al.,  2018 ; Eftekhari and
Farajzadeh,  2017 ; Seyyedi and Sohrabi,  2017 ).
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A typical experiment when researching EOR is the core flooding experiment. A
core flooding experiment seeks to measure how much of a given quantity of oil is
produced from a sample of sedimentary rock known as a core plug. The core plug is
kept under pressures and temperatures similar to the conditions found in reservoirs to
mimic real-world conditions, and water is injected as it would be during secondary or
tertiary recovery. The quantity of oil in a core plug can be measured precisely before
injection and is usually referred to as original oil in place (OOIP). The OOIP makes
it possible to calculate the recovery factor i.e. how much oil is recovered during the
injection. The recovery factor (RF) is often given as a function of the pore volumes
injected (PVI) in the sample.

An example of the results of a core flooding experiment, as reported in Seyyedi,
Tagliaferri, et al. ( 2018 ), can be seen in  Figure 1.3  . In this experiment, the effect
of the salinity and temperature of the flooding fluid was tested. The horizontal axis
displays the number of PVI, and the vertical axis shows the RF as a percentage of
the OOIP. During the first 5 PVI, seawater (SW) is injected, and the RF is steadily
climbing until it reaches an equilibrium. Secondary recovery is initiated by injecting
low salinity seawater (LSSW), which increases the RF. The final injection consists of
heated seawater, and we see that this does not increase the RF for this experiment.

Figure 1.3: The recovery factor (RF) expressend as a percentage of the original oil in place
(OOIP) as a function of pore volumes injected (PVI) during a core flooding experiment. SW
denotes that seawater is injected while LSSW denotes low salinity seawater is injected. The
figure obtained from Seyyedi, Tagliaferri, et al. ( 2018 ) with permission.

Core flooding experiments such as the previously mentioned one provide a clear an-
swer to whether an EOR technique increases the RF, but they do not necessarily
provide an answer to the underlying mechanism behind the techniques. Instead,
other modalities have to be used, which is the case in Mohammadkhani, Shahverdi,
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and Esfahany (  2018 ) where the ionic composition of the injection fluid was examined
before and after injection to understand the mechanism behind low salinity water
flooding.

Another way of examining the underlying methods of smart water would be per-
forming X-ray computed tomography (CT) on the sample. X-ray CT can be used
to image the sample before and after injection, and this can illuminate how the oil
is displaced. However, it would be far more useful if the sample was imaged during
flooding i.e. in situ. Dynamic tomography is used in a plethora of research besides
EOR, such as the physics of fluid flow, carbon storage and deformation of porous
media. The following section will detail different applications of tomography in the
oil and gas industry and related research fields.

1.3.2 Core Flooding with In Situ Measurements
Core flooding experiments are kept under ambient pressure and temperature, as men-
tioned in the previous section. Real-world conditions allow for accurate studies of
fluid and or gas interactions with the sample. To replicate the conditions of the
North Sea samples have to be heated to approximately 60 °C and kept at pressures
hundreds of timers larger than atmospheric pressures. Ensuring that these conditions
are maintained while also having the capability of fluid flow results in fairly complex
experimental setups. This can be difficult to integrate with a CT scanner and it is,
therefore, often necessary to design a flow cell specifically for in situ measurements.

An example of such a flow cell can be seen in  Figure 1.4 . This cell was designed
during my project specifically with in situ measurements in mind. The cell is designed
to hold 30 MPa of pressure and has been tested at 23 MPa and 90 °C. The cell has
the possibility of applying axial pressure on the samples which makes it possible to
study deformation of porous media. We have only been able to perform preliminary
in situ experiments at room temperature and ambient pressures but the cell seem to
perform as expected. An example of a piece of chalk imaged in the cell can be seen in

 Figure 1.4b  . Core flooding is not only used for EOR experiments but whenever it is
necessary to replicate real-world conditions. In recent years core flooding experiments
that explore the potential of different kinds of rock sediments to store CO2 has been
performed with CT capabilities (Y. Yang, Y. Li, et al.,  2020 ; Y. Yang, Bruns, et al.,

 2018 ; Y. Yang, Hakim, et al.,  2018 ; Menke, Bijeljic, Andrew, et al.,  2015 ; Menke,
Andrew, et al.,  2016 ; Menke, Bijeljic, and Blunt,  2017 ; Menke, Reynolds, et al.,  2018 ;
Scanziani et al.,  2020 ; Øren et al.,  2019 ).

Y. Yang, Y. Li, et al. ( 2020 ) performed in situ measurement of a core flooding
experiment where carbonates were injected with carbonated brine to examine their
storage potential. The injected brine is acidic due to the CO2 dissolved in it, which
causes it to dissolve the carbonate when injected. The authors examined the dissolu-
tion pattern for different pore structures, which is needed for accurate carbon storage
capacity predictions. The imaging was not dynamic but was instead done at discrete
points during the experiment, a trait that is common for many experiments that use
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Sample

Confining
pressure

Axial
pressure

Fluid
injection

(a) A vertical cross section of a schematic
of the tri-axial flow cell developed during my
project. The three inlets at the bottom are
used to create the confining and axial pres-
sure and fluid injection. The grainy dark grey
indicates stainless steel, while the grainy ligh
grey indicates steel.

(b) A vertical cross section of a piece of chalk
imaged while in a tri-axial flow cell.

Figure 1.4: A schematic of a flow cell designed for in situ measurements along with a CT
scan of a peice of chalk imaged in this flow cell.
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laboratory X-ray sources. Genuine dynamic experiments require much faster imaging
which is only available at synchrotron facilities. An example of a similar experiment
performed at the Diamond Lightsource synchrotron is found in Menke, Andrew, et al.
( 2016 ), which also tested reactive flow. The fast imaging made it possible to scan the
tested samples between 51 and 94 times over a 2 hour period, which is approximately
100-200 times faster than conventional imaging.

The fast imaging of synchrotrons, along with improvements in spatial resolutions,
have made it possible to resolve the pore structure of many types of sedimentary
rock. Pore-scale resolution has made it possible to examine the physics of flow at the
fundamental level. In Berg et al. (  2013 ), Singh, Scholl, et al. ( 2017 ), Singh, Menke,
et al. (  2017 ), Gao et al. (  2020 ), Spurin et al. (  2019 ), and Armstrong et al. (  2016 ), the
authors use synchrotrons to study Haines jumps and snap-off. Haines jumps occur
during drainage where a fluid such as oil is injected into a porous medium. As the oil
is injected, it will occasionally suddenly jump forward at the interface of the oil. The
pressure inside the medium will drop briefly during a Haines jump, and the fluid will
redistribute afterwards (Sun and Santamarina,  2019 ).

Snap-off occurs when a wetting fluid replaces a non-wetting fluid in a medium. An
example of this is when water is injected into an oil-filled porous medium. Water will
displace the oil gradually in a piston-like way; however, it will occasionally rapidly
move forward and, in the process, it will surround some of the oil, which is now
trapped in the porous medium.

Both Haines jumps and snap-off are very fast events and can therefore only be
imaged at synchrotrons. The phenomena are, however, important to understand.
Efficient recovery of oil requires that snap-off is minimised while carbon storage seeks
to maximise snap-off.

1.3.3 Deformation
Tri-axial cells, such as the one shown in  Figure 1.4  , can also be used to study the
compaction and faulting of porous media (Renard, Cordonnier, Dysthe, et al.,  2016 ;
Renard, Cordonnier, Kobchenko, et al.,  2017 ; Renard, Weiss, et al.,  2018 ; Renard,
McBeck, et al.,  2019 ; Chen et al.,  2020 ). Compaction bands in porous media are
regions where material have been compressed, which lowers porosity and fluid per-
meability (Sternlof et al.,  2006 ). This is relevant for both managing aquifers and oil
reservoirs as the presence of compaction bands drastically inhibit fluid flow. In Chen
et al. (  2020 ) carbonates were imaged in a tri-axial cell at increasing axial pressures.
The authors were able to identify the nucleation and dynamics of compaction bands
by linking the reconstructions from the CT scans to the stress-strain curves.

Tri-axials cells are used to study faults in rocks sample, which is one of the main
approaches to understand larger faults such as earthquakes (Ben-Zion,  2008 ). Re-
nard, Cordonnier, Dysthe, et al. (  2016 ) describes a tri-axial cell developed for X-ray
imaging that can replicate conditions 10 km underground. The cell was used in Re-
nard, Cordonnier, Kobchenko, et al. (  2017 ), Renard, Weiss, et al. (  2018 ), and Renard,
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McBeck, et al. (  2019 ) where samples were imaged at The European Synchrotron. The
fast imaging made it possible to image microfractures as they arise, join and finally
result in macroscopic faults. Experiments such as these provide insights into the con-
ditions present before faults occur and can improve the ability to predict events such
as earthquakes.

1.3.4 Scaling and Corrosion
In situ X-ray CT has also been used to study scaling and corrosion processes, where
scaling refers to the build-up of salts and minerals on pipes. (Connolly et al.,  2006 ;
Barker et al.,  2018 ; Godinho and P. Withers,  2018 ; Oliveira et al.,  2019 ; Haaksman et
al.,  2017 ). Crude oil and natural gas often contain corrosive chemicals that damage
the pipes they are extracted via and salts that deposit them, which inhibits fluid
flow causing economic loss (J. Li et al.,  2017 ). Understanding the scaling process is
key to preventing downtime of oil wells (J. Li et al.,  2017 ). Connolly et al. (  2006 )
demonstrates that synchrotron in situ X-ray CT makes it possible to study localised
corrosion behaviour in an aluminium aerospace alloy. The study examines whether
friction stir welding enhances the susceptibility to local corrosion and how localised
corrosion develops. This is not easily measured using traditional methods, which is
why X-ray CT was used.

Scaling and corrosion is a concern in many fields and affects heat exchangers,
geothermal plants and water treatment, and tomography is just as useful within
these fields as the previously mentioned ones (Touir et al.,  2009 ; Mundhenk et al.,

 2013 ; Sassi and Mujtaba,  2011 ). In Godinho and P. Withers (  2018 ), the authors
sought to study how precipitation occurs in porous media. The precipitation process
occurs naturally in geological formations, but it can also happen in geothermal energy
recovery. The build-up of precipitates can inhibit fluid transport, which would be
problematic for a geothermal plant.

The authors injected a piece of quartz with a solution that was supersaturated
with calcite to study the precipitation process. The precipitation and crystallisation
of the mineral were imaged at discrete points in the experiment with a CT scanner.
Based on their findings, they show that the overall growth rate of precipitates cannot
be estimated from the bulk fluid composition as it is modified by fluid transport. It
is, therefore, necessary to image the sample as the precipitation occurs to see how the
fluid transport changes.

1.3.5 Our Contribution to this Field
The previous sections show that X-ray CT is a valuable technique that has a high
level of applicability in a wide range of fields. Many of the examples given use
either synchrotrons for fast imaging of dynamic processes or laboratory CT scanners
for static or time-lapse imaging. Based on the literature, we saw a need to enable
laboratory CT scanners to perform dynamic in situ experiments.
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We achieved this by developing new algorithms to reconstruct data from CT scan-
ners, which is presented in  Contribution A  , and demonstrated the practical value of
these algorithms in  Contribution C  , where they were used to reconstruct data from
a dynamic in situ experiment where the scaling formation process of BaSO4 was ex-
amined. By using dynamic X-ray CT, we were able to study the scale morphology,
rate of growth and deposition of material during the scaling formation process.



CHAPTER2
X-ray Radiation

Wilhelm Röngten discovered X-ray radiation, quite by accident, on November 8th,
1895, where he quickly noticed their penetrating nature (American Physical Society,

 2001 ). Röntgen started investigated with the newfound ray to understand its prop-
erties and submitted his first work by the end of the year (Röntgen,  1896 ). In this
period he famously imaged the hand of his wife where her wedding ring noticeable
attenuated by the radiation, see  Figure 2.1 .

Figure 2.1: An X-ray image of the hand of Anna Bertha Ludwig imaged by Wilhelm
Röntgen (Röntgen,  1895 ) (CC BY-NC 4.0).

The penetrating nature of X-ray radiation is related to its short wavelength, between
0.1 and 10 nanometers or conversely, its high energies, approximately between 1 keV
and 100 keV. The ability of X-ray radiation to penetrate matter is also highly depen-
dent on the material it interacts with. Denser materials or materials with a higher
atomic number will attenuate more than lighter, less dense elements. This can readily
be seen in  Figure 2.1 , where the tissue of the hand is transparent while the bones and
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wedding band are more opaque.

2.1 Generation of X-ray Radiation
All generation of X-ray radiation is done via acceleration of electrons (Holbrow et al.,

 2009b ). From classical electromagnetism, it is known that acceleration or deceleration
of a charged particle creates an electric dipole which makes the charged particle
emit electromagnetic radiation (Bilderback, Elleaume, and Weckert,  2005 ). X-ray
radiation used for tomography is generated with an X-ray tube or from a synchrotron
light source. The principles behind these are given in the following sections.

2.1.1 X-ray tube
The most common way of producing X-ray photons is with an X-ray tube. An X-ray
tube consists of a cathode and an anode cased in a vacuum tube. A drawing of an
X-ray tube can be seen in  Figure 2.2 , where the cathode and anode are displayed in
bright red.

The cathode usually consists of a tungsten filament which provides the electrons
through thermionic emission used to create the X-ray radiation. The filament is
heated with an electric current such that electrons in the metal overcome their binding
energy. The binding energy Ev that holds the free electrons in the metal in place has
two main components.

The first component consists of electrostatic forces that prevent the free electrons
from escaping as they move towards the surface. A net positive charge is created
below electrons that are sufficiently energetic to move past the outer ion layer of
the metal. The combination of a negatively charged electron and surplus of positive
charge below it creates a dipole layer which further slows down the electron trying to
escape (Buzug,  2008 ).

The second component of the binding energy is caused by the mirror charge left
behind when an electron is removed from the metal. The mirror charge creates an
electric field between it and the escaping electron, which requires additional energy
to overcome (Buzug,  2008 ). Overcoming Ev requires that the filament is heated to
approximately 2400 K, which is why tungsten is commonly used as it has a high
melting point. The emission current density of the filament is a function of the
temperature of the filament, and it can be described by the Richardson-Dushman
equation that states

je = CRDT
2 exp

(
− φ

kT

)
, with CRD = 4πmek

2e

h3 , (2.1.1)

where je is the emission current density, CRD is the Richardson-Dushman constant, T
is the filament temperature, φ is the work function of the metal, k is the Boltzmann
constant, me is the mass of the electron, e is the charge of the electron and h is
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Figure 2.2: A drawing of a water cooled X-ray tube (Coolth,  2010 ). C and A indicate the
cathode and anode, Win and Wout are the inlet and outlet for the water cooling and Uh and
Ua are voltage across the coil and between the cathode and anode. The green X indicate
the generated radiation.

Planck’s constant. A cloud of electrons forms around the filament as it heats, which
start to accelerate toward the positively charged anode.  Figure 2.2 shows this, where
electrons move from the coiled cathode toward the anode. The size of the electron
beam spot i.e. the point of impact on the anode can be controlled with an electrode.
A small beam spot results in a tighter focus, which increases the photon flux at the
expense of having a smaller field of view. The actual generation of X-ray radiation is a
result of electrons interacting with the atoms of the anode. Electrons are decelerated
by the atomic nucleus and orbital electrons in the anode. The decelerating electrons
form electric dipoles that radiate electromagnetic waves. The filament electrons can
interact with the nucleus and orbital electrons in multiple ways, which determines
the energy of the electromagnetic waves that are radiated (Buzug,  2008 ).

The efficiency of X-ray tubes is extremely poor. Only 1% of the energy of the
electrons is converted into X-ray radiation while the remaining energy is lost to heat
(Hemberg,  2004 ). The heat generated by the electron beam represents a major prob-
lem as it can easily melt or damage the anode. It is, therefore, necessary to cool the
anode, which can be done in multiple ways. The schematic of the tube in  Figure 2.2 

has active water cooling. The anode can also be designed in a way that allows for a
more intense electron beam. For example, the anode can consist of a rotating piece
of metal or, in more advanced anodes, consist of a stream of liquid metal. Both of
these designs make it possible to increase the emission current density of the cathode
without damaging the anode.
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Figure 2.3: The radiation spectrum of a tungsten anode with different tube voltages, which
are shown in the legend. The horizontal axis displays the photon energy, and the vertical
axis displays the normalised count. The spectrum is based on the results in J. Boone and
Seibert ( 1997 ).

An example of the output spectrum of an X-ray tube at different voltages can be seen
in  Figure 2.3  . The smooth part is attributed to bremsstrahlung that has several un-
derlying mechanisms (Ebel,  1999 ). The photoelectric effect is responsible for the two
characteristic peaks in the spectrum. It occurs when an electron is absorbed by the
anode and a photon is emitted instead. This photon will have an energy equivalent
to the orbital energy of the electron. We also see that the normalised count is zero for
energies above the tube voltage as an electron cannot produce a photon with more
energy than itself.

2.1.2 Synchrotron Light Sources
Synchrotrons are the second commonly used method of obtaining X-ray photons for
tomography. These machines are highly specialised and only exist at large research
facilities. The interest in these facilities have gradually increased, and today there
are more than 50 synchrotrons worldwide (Bilderback, Elleaume, and Weckert,  2005 ).
However, beam time is still valuable at these sites and obtaining it is not a given.

A synchrotron is a circular particle accelerator that accelerates charged particles
with radio waves emitted in radiofrequency cavities and controls their movement using
magnets. The magnets bend the electron beam such that the electrons remain in orbit.
Bending the charged particles require that they are accelerated towards the centre of
the storage ring. This acceleration causes the charged particles to emit synchrotron
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radiation. The power emitted by a charged particle that performs a uniform circular
motion in a constant magnetic field B is given by the relativistic Larmor formula
(Tsang,  1998 )

W = q4

6πm2 v
2B2γ2, with γ = 1√

1− v2

c2

, (2.1.2)

where q is the particle charge, m is the particle mass, v is the speed of the particle,
B is the size of the magnetic field and c is the speed of light. We see from this
formula the power emitted is proportional to B2γ2 and inversely proportional to m2.
The dependence of the mass of the particle means that electrons are always used
in synchrotron light sources as they are approximately 2000 times lighter than the
proton.

Relativistic effects force the radiation into a narrow cone in front of the electron
beam, which makes the brilliance much larger in synchrotrons than in X-ray tubes
(Tsang,  1998 ). This effect also means that the beam is highly collimated, which
increases the spatial resolution of measurements. Additionally, the light emitted
is polarised, a characteristic that enables spectroscopy and diffraction experiments.
The energy emitted has a broad spectrum, but it is possible to tune it by using
monochromators (Bilderback, Elleaume, and Weckert,  2005 ).

Modern synchrotrons do not solely rely on bending magnets to produce X-ray
radiation, instead, they use more advanced magnets such as undulators to produce
it. Undulators have a sinusoidal magnetic field rather than the uniform magnetic
field used by bending magnets. The size and spatial period of the magnetic field of
undulators make it possible to control the wavelength of X-ray radiation produced by
relativistic electrons in an undulator (Bilderback, Elleaume, and Weckert,  2005 ).

The monochromaticity, polarisation and brilliance of synchrotron light allows for
experiments which is simply not possible with laboratory sources.

2.2 The Attenuation of Light
The attenuation of light is a complicated phenomenon that depends on multiple physi-
cal processes. The processes are dependent on the energy of the light and the material
in question. The material dependence can readily be seen in  Figure 2.1  . Fortunately,
most of the processes are only relevant at small or large energies, which makes it
possible to make a simple approximation of the attenuation of light. However, before
approximation is described, a brief explanation will be given of the processes that
attenuate light.

2.2.1 The Interaction of Light With Matter
Light can be attenuated via either scattering or absorption. The dominant source
of attenuation depends on the energy of the incident X-ray photons.  Figure 2.4  
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shows the attenuation coefficient of light for iron. The total attenuation coefficient
is shown in orange from 1 keV to 1 MeV where the filled blue area between 5 keV
and 140 keV denotes the energies associated with X-ray radiation. Below this area,
we have “tender” X-ray radiation and UV light and above it, we have gamma rays,
although there is no clear cut-off between X-ray radiation and gamma rays. The
following sections will briefly describe the different contributions to the attenuation
coefficient.
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Figure 2.4: An example of the attenuation coefficient of light in iron between 1 keV and
1 MeV. The total attenuation coefficient is shown in orange and its contributions are shown
as the remaining graphs defined in the legend. The light blue band between 5 keV and 140 keV
displays the energies attributed to X-ray radiation while the dark blue band between 80 keV
and 110 keV display the energies relevant for this project. The attenuation coeffcients are
obtained with the NIST XCOM: Photon Cross Sections Database (Berger et al.,  2022 ).

2.2.1.1 Coherent Scattering

Coherent scattering refers to scattering processes where the path of the incoming
photon is changed when it scatters, while the energy remains unchanged (elastic
scattering). There are two contributions to this process, Rayleigh and Thompson
scattering. Rayleigh scattering occurs when light scatters a bound particle, while
Thompson scattering happens when light scatters off a single free or quasi-free charged
particle. The incident light wave induces a dipole in the charged particle it hits during
the scattering. This dipole then reemits the light without altering its wavelength.
Both of these processes predominantly happen at low energies. Rayleigh scattering
occurs in the limit where the wavelength of the incident light is much larger than
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the size of the particle it scatters off, and Thompson scattering occurs when the
energy of the light is much smaller than the mass-energy of the particle it scatters off
(Pierrehumbert,  2015 ). The sum of these effects is shown as the blue line in  Figure 2.4 ,
where we see it decreases steadily as the photon energy increases.

2.2.1.2 Compton Scattering

Compton scattering is the high energy limit of Thompson scattering where the inci-
dent photon has sufficient energy to make the electron scatters off recoil. This recoil
reduces the energy of the photon (inelastic scattering), however, unlike photoelec-
tric absorption (which is described below), the photon continues to travel through
the medium, and it might have sufficient energy to interact again (Holbrow et al.,

 2009b ). Besides being a function of the photon energy, Compton scattering depends
on the electron density of the material, which means most biological tissue have an
equivalent level of Compton scattering.

2.2.1.3 Photoelectric Absorption

Photoelectric absorption (also known as the the photoelectric effect) occurs when a
photon removes an orbital electron bound to an atom while being absorbed in the
process. This cannot occur if the energy of the incident photon is smaller than the
binding energy of the electron. The binding energy is determined by which atomic
orbital the electron inhabits, where electrons further away from the nucleus are bound
less tightly. The binding energy of each orbital is quantised, which means that a small
increase in photon energy can result in a large increase in attenuation (Holbrow et al.,

 2009a ). The quantisation can readily be seen in  Figure 2.4  where the photoelectric
absorption is indicated in magenta. There is a noticeable increase in attenuation at
approximately 7 keV, which corresponds to the binding energy of an inner orbital
electron in iron.

2.2.2 Lambert-Beer’s Law
It is apparent from  Figure 2.4  that the attenuation of light is a complex process with
multiple components. However, Compton scattering and the photoelectric effect are
the main contributions to the attenuation coefficient for the energies we are concerned
with, in this project, which means the attenuation coefficient µ can be modelled as
independent of the photon energy. The intensity of the light source is a function of
the distance it has traversed I (s). After passing through a homogeneous object of
width ∆s with an attenuation coefficient µ the intensity will be given by

I (s+ ∆s) = I (s)− µ∆sI (s) . (2.2.1)
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Rearranging the equation and going to the infinitesimal limit of s we obtain:

lim
∆s→0

I (s+ ∆s)− I (s)
∆s

= dI
ds

= −µI (s) . (2.2.2)

We seperate the variables and integrate to solve the equation∫
dI
I (s)

= −
∫
µds (2.2.3)

− log
(
I (s)

)
= −µs+ C (2.2.4)

I (s) = e−µs+C (2.2.5)

If we solve this for the special case where I (0) = I0 we get

I(s) = I0e
−µs. (2.2.6)

This equation is known as the Lambert-Beer law and it provides a simple way to
recover the attenuation of a homogenous object. However, in most cases, objects will
be composed of multiple materials all of which with a unique attenuation value. In
this case Lambert-Beer’s law will read

I(s) = I0 exp
[
−
∫ s

0
µ (x) dx

]
. (2.2.7)

Noticeably, we see that we cannot recover µ (s) by measuring I (s) as we cannot tell
how the light was attenuated along the path from 0 to s since this information is lost
in the line integral. It is possible to recover the lost information with a full set of line
integrals which means multiple measurements are required. The details of this will
be explained in  Section 3.1  .



CHAPTER3
X-ray Computed

Tomography
The following chapter provides the mathematical background of tomography. The
background includes a description of the Radon transform, analytical reconstruction
algorithms and algebraic reconstruction algorithms. The chapter is concluded with a
description of recently developed reconstruction algorithms and how  Contribution A 

relates to these.

3.1 The Radon Transform
In 1917 Johann Radon published the paper “On the Determination of Functions From
Their Integral Values Along Certain Manifolds” in which he, unknowingly, formed the
basis of tomography (Radon,  1986 ). In this paper, he examined a function f (x) =
f (x, y) ∈ R2 integrated along each straight line in the space of straight lines L ⊂ R2,
which results in the function F (L). He discovered that f (x) can be recovered from
F (L). Immediately, this seems reminicent of what we learned about Lambert-Beer’s
Law in  Section 2.2.2 , where the attenuation coefficients of an object can be described
as µ(x) and the passing of an X-ray through an object can be viewed as a line integral.
The function f (x, y) ∈ R2 is subject to three regularity conditions:

1. f (x, y) is continous.

2. The integral ∫∫ ∣∣f(x, y)
∣∣√

x2 + y2
dxdy

must converge.

3. For an arbitary point on the plane p =
(
x′, y′) we have

lim
r→∞

1
2π

∫ 2π

0
f
(
x′ + r cosϕ, y′ + r sinϕ

)
dϕ = 0
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with this, the Radon transform of f(x, y) is defined as

F (L) = Rf (L) =
∫

L

f (x, y) dℓ, (3.1.1)

where dℓ is an infinitesimal piece the straight lines in L. It is more convenient to
represent L with its distance from the origin s and the angle θ between the x-axis
and the normal vector of L, which is the rotation between the x-axis the unit normal
vector to L. The coordinates of these lines will be given by

Lθ,s =
{

(x, y) | x cos θ + y sin θ = s
}

(3.1.2)

with this the Radon transform is given by (Feeman,  2015c )

[Rf ] (θ, s) =
∫

Lθ,s

f(s cos θ − ℓ sin θ, s sin θ + ℓ cos θ) dℓ (3.1.3)

f (x)

y

x

s

θ

s
[Rf ]

(s)

Figure 3.1: A depiction of the Radon transform of a disk for a specific angle θ.

An example of the Radon transform of a disk that is offset from the origin is shown
in  Figure 3.1  for a specific angle θ. Line integrals are performed along the blue lines,
which are perpendicular to the axis labelled s. We see that the Radon transform
equals zero for most values of s as the value of f (x) is equal to zero for most of
the plane. Between the edge of the disk and the centre of it, we see an increase in
the value of Rf (s) since the line integrals pass over more of the disk. Note that
the Radon transform is almost symmetric around the axis of rotation, which means
[Rf ] (θ, s) = [Rf ] (θ + π,−s). We, therefore, get the full Radon transform from



22 3 X-ray Computed Tomography

0 π/2 π

θ

s

Figure 3.2: The Radon transform of an off-center disk in  Figure 3.1 for θ ∈ [0, π[. The
horizontal axis indicates the angle θ of the straight line Lθ,s, while the vertical axis shows
the position on the line s. The value of the Radon transform corresponds to the colour of
the image, with black being equal to zero and white being equal to the maximal value in
the sinogram.

θ ∈ [0, π[. A Radon transform of the disk shown in  Figure 3.1  for all values of θ
results in what is colloquially known as a sinogram, the name stemming from the fact
the Radon transform of off-centre points are sinusoids. The sinogram of the disk is
shown in  Figure 3.2 , where the sinusoidal behaviour can be seen.

3.2 Inverse Radon Transform & Fourier Reconstruction
While Radon did provide a method of inversion in his paper, it will not be presented in
the following. Instead, a method that utilises the Fourier transform will be explained
as this method is a prerequisite to the commonly used filtered backprojection. Fourier
reconstruction is based on the Fourier slice theorem, also known as the projection-slice
theorem. The basic steps of this reconstruction method are:

1. Project a function f(x, y) to a line using the Radon transform [Rf ] (θ, s).
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2. Perform a one-dimensional Fourier transforms on Radon transformed function
F1 (Rf).

3. These one-dimensional Fourier transforms can be collected to form a two-dimensional
function F

(
kx, ky

)
.

4. The inverse two-dimensional Fourier transform is used on this function to re-
cover f(x, y).

The steps outlined above are shown in  Figure 3.3 . A sketch of the proof for the
Fourier slice theorem is shown in the following (Feeman,  2015d ). We start with the
two-dimensional Fourier transform of our object f (x, y)

F
(
kx, ky

)
=
∫ ∞

−∞

∫ ∞

−∞
f (x, y) e−2πi(xkx+yky) dx dy (3.2.1)

and the Radon transform of it

pθ (s) = [Rf ]θ (s) =
∫

Lθ,s

f(x, y) dℓ (3.2.2)

We apply the one-dimensional Fourier transform on [Rf ]θ (s) which yields

P (ks) =
∫ ∞

−∞
pθ (s) e−2πisψ ds =

∫ ∞

−∞

∫
Lθ,s

f(x, y)e−2πisψ dℓds (3.2.3)

We now insert the definition of s from (  3.1.2 ) and get

P (ks) =
∫ ∞

−∞

∫
Lθ,s

f(x, y)e−2πiψ(x cos θ+y sin θ) dℓ ds (3.2.4)

We can substitute the variable we integrate with respect to, to obtain

P (ks) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−2πiψ(x cos θ+y sin θ) dxdy (3.2.5)

This expression is very reminiscent of the two-dimensional Fourier transform shown
in ( 3.2.1 ). In fact they are equal in the case where

P (ks) = F (ψ cos θ, ψ sin θ) (3.2.6)

This means that a straight line through the two-dimensional Fourier transforms ro-
tated at an angle θ is equivalent to the one-dimensional Fourier transform of the
Radon transform of f (x, y) at an angle θ.

Fourier reconstruction provides a method to reconstruct projection data obtained
during X-ray tomography; however, there are some practical problems with using
this method. In practice, it is not possible to sample the two-dimensional Fourier
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Figure 3.3: A schematic of the Fourier Reconstruction method. It starts with the same
disk shown in  Figure 3.1  in the top left corner, which is Radon transformed to the line in the
top right corner. A one-dimensional Fourier transform is applied to this line to produce the
spectrum seen below. The one-dimensional Fourier transforms is performed for all values of
θ. Each Fourier transform corresponds to a line in the two-dimensional Fourier transform
of f (x, y) shown in the bottom left figure. The inverse two-dimensional Fourier transform
can be applied to recover f (x, y).
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domain fully as X-ray detectors have a finite number of detector elements, and step
size between angles will also be finite. Additionally, the Radon transform is done
radially, which means the centre of the Fourier space is sampled more densely. The
inverse two-dimensional Fourier transform requires that sample points are equidistant
and it is, therefore, necessary to regrid the sample points. Regridding points in the
Fourier space is difficult to do accurately; however, it was achived by the gridrec
algorithm (Marone and Stampanoni,  2012 ).

3.3 Analytical Reconstruction
The previous section detailed the Radon transform and provided a method to invert
this transform by using Fourier reconstruction. The following section will describe
the most commonly used reconstruction algorithm, which is the filtered backprojec-
tion (FBP) algorithm. However, before that, an explanation of the backprojection
operation will be provided.

3.3.1 Backprojection
A naive way to approach the reconstruction of f (x, y) from the projection function
pθ (s) would be to simply backproject the profiles obtained from the Radon transform
back along the path the integral is performed along. The backprojection operation is
mathematically equal to

g (x, y) =
∫ π

0
pθ (x cos θ + y sin θ) dθ = B [pθ] (x, y) (3.3.1)

However, this operation will result in a function where all points in the plane xy are
positive since g (x, y) cannot receive negative values from pθ (x cos θ + y sin θ) as it
is either 0 or positive. The backprojection operation when used on the sinogram in

 Figure 3.2  is shown in  Figure 3.4  . Nθ shows number of angles between 0 and π that
are backprojected.

(a) Nθ = 1 (b) Nθ = 4 (c) Nθ = 16 (d) Nθ = 64 (e) Nθ = 256

Figure 3.4: Example of the backprojection operation when applied to the sinogram of a
disk. Nθ denotes the amount of equally spaced values of θ in the interval [0, π].

Initially, the backprojection does not resemble a disk, but as more and more angles are
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added we start to recover something akin to the original disk. However, it seems blurry
compared to the original. The blurring stems from the fact that the backprojection
operation smears pθ (s) over the plane (Feeman,  2015a ), or alternatively it could
be interpreted as smoothing the function f(x, y) with the kernel 1

π
√
x2+y2

(Feeman,
 2015b ). We will see in the following section how this problem can be solved by filtering
pθ (s) before backprojecting it.

3.3.2 Filtered Backprojection
To derive the filtered backprojection we turn to the inverse two-dimensional Fourier
transform

f (x, y) =
∫ ∞

−∞

∫ ∞

−∞
F
(
kx, ky

)
e2πi(kxx+kyy) dkx dky (3.3.2)

which is transformed into polar coordinates

f (x, y) =
∫ 2π

0

∫ ∞

0
F (ψ cos θ, ψ sin θ) e2πiψ(x cos θ+y sin θ)ψ dψ dθ (3.3.3)

When the coordinate system changes from Cartesian to polar, the surface elements
dkx dky used in the integral change from squares to wedges. The shape of these wedges
depends on the distance to the origin, which is why obtain the surface element ψ dψ dθ.
The symmetry of the Fourier transform can be used to reformulate the limits of the
integral (Feeman,  2015d ). We now get

f (x, y) =
∫ π

0

∫ ∞

−∞
F (ψ cos θ, ψ sin θ) e2πiψ(x cos θ+y sin θ)|ψ|dψ dθ (3.3.4)

We can use the Fourier slice theorem now, which gives us

f (x, y) =
∫ π

0

∫ ∞

−∞
Pθ (ψ) e2πiψs|ψ|dψ dθ

f (x, y) =
∫ π

0
hθ (s) dθ where hθ =

∫ ∞

−∞
Pθ (ψ) e2πiψs|ψ|dψ (3.3.5)

We recognise the outer integral as the backprojection operator from (  3.3.1 ). Inside
the integral, we have hθ, which is the inverse Fourier transform of Pθ (s) filtered with
|ψ|. The filter |ψ| is called the ramp filter and acts as a high-pass filter on the Fourier
transform of pθ (s).

f (x, y) = BF−1
1 |ψ|F1

[
pθ (s)

]
(3.3.6)

 Figure 3.5 shows the same example as in  Figure 3.4  this time reconstructed with the
filtered backprojection rather than the backprojection algorithm.
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(a) Nθ = 1 (b) Nθ = 4 (c) Nθ = 16 (d) Nθ = 64 (e) Nθ = 256

Figure 3.5: Example of the filtered backprojection operation when applied to the sinogram
of a disk. Nθ denotes the amount of equally spaced values of θ in the interval [0, π].

Unlike the backprojection operator, this method correctly reconstructs the sharp
edges of the disk. However, the number of projections Nθ drastically affects the
appearance of the reconstruction. The disk becomes visible at relatively few projec-
tions, but there is a very noticeable pattern (streak artefacts) in the area surrounding
the disk, which is a result of the few projections used for the reconstruction.

Another problem with the filtered backprojection algorithm is that the filtering
with ψ amplifies noise in the projection data as noise is usually high frequency in
the Fourier space. It is, therefore, necessary to use other filters than the ramp filter
(Feeman,  2015b ). An example of an alternative to the ramp filter is the Ram-lak
filter, where frequencies above a threshold is set to zero.

3.4 Algebraic Reconstruction
This section will describe another approach used for tomographic reconstruction,
namely, the algebraic reconstruction algorithms. These methods approach the prob-
lem of reconstruction as a linear system of equations that have to be solved. Because
of this, linear algebra is the natural way to formulate the problem. This also means
all operations are explicitly discretised compared to the continuous formulation we
saw in the previous section.

3.4.1 Tomography as an Inverse Problem
The problem of recovering an imaged object x based on a set of projections b is viewed
as solving the system of equations

b = Ax (3.4.1)

where b ∈ Rm is the projections or Radon transforms of x ∈ Rn, which is the
descritised version of f (x, y). The Radon transform R is now represented with A ∈
Rm×n and is referred to as the system matrix or forward projection operator. An
element aij represents how much an element xj in x contribute to an element bi in b.
Based on  Figure 3.6 we see that many if not most of the elements of A are equal to
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zero as most values in x are empty and do not contribute to b which means that A
is usually very sparse. However, increases in the number of pixels of modern X-ray
detectors and the number of projections that are gathered means that both n and m
are large, which means that A is a very large matrix. The size of A means that the
entire matrix cannot be stored in the memory of a computer (Aarle, Palenstijn, Cant,
et al.,  2016 ).

Figure 3.6: The discretised version of the previosuly shown disk.

3.4.2 Algebraic Reconstruction Algorithms
There is a wide range of algebraic reconstruction algorithms and a subset of these
will be described in the following sections.

3.4.2.1 Kaczmarz’s Method

Kaczmarz’s method was first put forth by Stefan Kaczmarz in 1937 but it was redis-
covered by Gordon, Bender & Herman in 1970 in the context of tomography, where
it was named Algebraic Reconstruction Technique (ART) (Kaczmarz,  1937 ; Gordon,
Bender, and Herman,  1970 ). ART is historically significant in that it was the very
first reconstruction algorithm used for a CT scan (Ambrose,  1973 ). This method
consists of solving one of the equations in (  3.4.1 ) per iterations of the algorithm by
projecting the current estimate of x onto it. A single equation of ( 3.4.1 ) is given by

bi = aix (3.4.2)
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where bi is the ith value in the projection data and ai is the ith row in the projection
data. Projecting a point z onto the affine hyperplane defined by ( 3.4.2 ) is done using

P (z) = z + bi − ai · z
∥ai∥2

2
ai. (3.4.3)

The solution to (  3.4.1 ) i.e A−1b is where all hyperplanes intersect. This point can
eventually be reached (given that it exists) by continuously projecting z onto a new
hyperplane. With this we arrive at Kaczmarz’ Method shown in  Algorithm 1  .

Algorithm 1: Pseudo-code of Kaczmarz’s method.
Input: xinitial, Nitr

1 x0 ← xinitial
2 for k from 1 to Nitr do
3 i← k mod m

4 x(k+1) = x(k) + bi − ai · x(k)

∥ai∥2
2

ai

5 end
6 return x

We see that only one row is used at a time to update the solution, and that NItr
controls how many rows in b that are used in the reconstruction. The modulo oper-
ation in line 2 ensures that we return to the first row after the mth row is reached.
Kaczmarz’s Method has the benefit that it converges quickly and the convergence
speed can be improved by updating with rows randomly instead of going through
them sequentially (Herman and Meyer,  1993 ). The second term in the projection
operation is often multiplied with a relaxation parameter λ(k), which can also aid in
faster convergence.

(a) NItr = 0.25m (b) NItr = 0.5m (c) NItr = 4m (d) NItr = 8m (e) NItr = 32m

Figure 3.7: Example of Kaczmarz’s method when applied to the sinogram of a disk. m in
the figure text refers to the total number of rows in the system matrix A.

In  Figure 3.7  we see an example of the convergence of Kaczmarz’s method when at-
tempting to reconstruct the disk. Noticeably, we see that the outline of the disk is
not visible in  Figure 3.7a and  Figure 3.7b . We have not iterated through all acqui-
sition angles for these reconstructions, which means we have no information about
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this region in the reconstruction. The outline of the disk is complete in  Figure 3.7c  

where we have iterated through all the rows of the system matrix 4 times, however,
the algorithm has not converged yet at this point. It is still not quite converged after
32 iterations through the rows of the system matrix in  Figure 3.7e which shows just
how slow the algebraic reconstruction methods are compared to FBP where only a
single backprojection operation is required.

Kaczmarz’s method is rarely used in practice for tomographic reconstruction as it
is not robust against noise. Adding noise to the projection data effectively means that
the system of equations in ( 3.4.1 ) is inconsistent. The hyperplanes of these equations
do not intersect, which means the system of equations does not have a solution. This
lack of robustness can be addressed by using all the projection data simultaneously,
which will be discussed in the next section.

3.4.2.2 Simultaneous Algorithms

Besides the “row action” methods such as Kaczmarz’s method, there exists a range
of reconstruction algorithms that use all the rows of the system matrix A to update
the solution to the inverse problem. The simplest of these methods is Cimmino’s
method, and it is very similar to Kaczmarz’s method except that the update step
uses an average of P (z) for i = 1 to i = m (Cimmino,  1938 ).

x(k+1) = 1
m

m∑
i=1
P
(

x(k)
)

(3.4.4)

Expanding this expression we get

x(k+1) = x(k) + 1
m

m∑
i=1

bi − ai · x(k)

∥ai∥2
2

ai (3.4.5)

The sum can be expressed as a multiplication of vectors and matrices

x(k+1) = x(k) + 1
m

m∑
i=1

ai
∥ai∥2

2

(
bi − ai · x(k)

)
(3.4.6)

= x(k) + ATM−1 (b−Ax) where M = diag
(
m∥ai∥2

2

)
(3.4.7)

Cimmino’s method is a part of a large varitety of simultaneous algorithms which have
the general form

x(k+1) = x(k) + λ(k)D−1ATM−1 (b−Ax) (3.4.8)

which differ in their definitions of D and M , both of which are diagonal matrices.
We have used the Simultaneous Iterative Reconstruction Technique (SIRT) through-

out this project, which is specific version of the reconstruction algorithms shown in
( 3.4.8 ). SIRT is characterised by having D and M equal to the column and row
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sums of A i.e. D = diag
(
∥aj∥1

)
and M = diag

(
∥ai∥1

)
(Gilbert,  1972 ; Gregor and

Benson,  2008 ). Note that SIRT refers to any reconstruction algorithm with the form
seen in (  3.4.8 ) in some research fields, but in our case, it refers to a specific algorithm.

(a) NItr = 1 (b) NItr = 4 (c) NItr = 16 (d) NItr = 32 (e) NItr = 64

Figure 3.8: Example of SIRT when applied to the sinogram of a disk.

 Figure 3.8  shows how SIRT performs when it is used to reconstruct the disk phantom.
The convergence of the algorithm is quick compared to ART, based on a comparison
between  Figures 3.7e and  3.8d . All projections are used 32 times to produce these
reconstructions, which makes them comparable. This also means that the forward
and backward projection operator has been used 32 times, which is much more com-
putationally demanding than the FBP reconstruction in  Figure 3.5e  that is performed
with only one backprojection. However, the major benefit of algebraic reconstruction
algorithms is that prior knowledge can be incorporated, which can regularise and
constrain the solution.

3.4.2.3 Prior Knowledge

Prior knowledge is commonly used with algebraic reconstruction algorithms to obtain
a higher quality reconstruction. Note that the word “prior” is not as strictly defined
as in Bayesian statistics but refers to any knowledge known in advance that can be
implemented into the reconstruction algorithm to improve it.
An example of prior knowledge is the non-negativity constraint. The image obtained
in X-ray tomography is a measure of the attenuation coefficients of the sample. These
values can never be negative; however, noise in the projection data can sometimes give
rise to negative values in the reconstruction. These can be removed by introducing a
projection operator, that projects the solution onto a set that only contains positive
numbers. Including the projection operator in ( 3.4.8 ) gives us

x(k+1) = PC

(
x(k) + λ(k)D−1ATM−1 (b−Ax)

)
(3.4.9)

where PC is the projection operator that, in the case of non-negativty, projects the
solution onto the set C = Rn+ i.e. the set that contains all real positive numbers.
Another way to show this is with

0 ≤ xi with i = 1, 2, . . . , n (3.4.10)



32 3 X-ray Computed Tomography

An upper limit can be introduced if the maximum attenuation coefficient is known in
the sample, which gives us the constraint

0 ≤ xi ≤ µi,max with i = 1, 2, . . . , n (3.4.11)

where µi,max is the largest possible attenuation coefficent for that voxel in the recon-
struction. This type of constraint was used extensively in  Contribution A  . If the
largest attenuation coefficient in the entire sample is used µmax rather than the max-
imum value in each voxel we would have the constraint known as box-constraints in
the CT community.

Modern algebraic reconstruction algorithms generally use some form of prior
knowledge to improve image quality. The next section will describe the principles
behind modern reconstruction algorithms and their use cases.

3.5 Recent Developments in Reconstruction
Algorithms

Algebraic reconstruction methods are, as previously mentioned, computationally very
demanding and are therefore less frequently used than analytical reconstruction meth-
ods (Beister, Kolditz, and Kalender,  2012 ). However, interest in these methods has
risen as computation power has increased several orders of magnitude since the first
CT scan. This section highlights some of the more recent developments within the
field.

3.5.1 Variational Regularisation
In Lin et al. (  2018 ) multiple methods are combined to create an algorithm that can
reconstruct undersampled and noisy projection data. The authors regularise the
algorithm with a penalty term that discourages non-smooth solutions. The penalty
term consists of the sum of the Huber function applied to the sum of the difference
between a voxel and its first order neighbours. The differences of the voxels are
weighed with the distance between them. This is fairly similar to total variation
regularisation; however, the Huber function is better at preserving edges than the
2-norm. The elements of the weighing matrix M−1 (see (  3.4.8 )) are given by mi =
exp(−bi) where bi is the value of the ith ray. This means rays are weighed according to
the strength of the signal, which reduces noise in the reconstruction. Both Nesterov’s
momentum and ordered subsets are used to speed up the convergence of the algorithm.

3.5.2 Discretitation of the Reconstruction
Regularising such that reconstructions appear smooth is commonly used and can be
very effective if the sample being imaged has clearly defined borders. In the case
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of Lin et al. (  2018 ) the algorithm was developed to image multiphase flow in porous
media where all phases can be distinguished, which makes the algorithm perform very
well.

Tailoring the reconstruction algorithm with the sample constituents in mind is a
powerful way to constrain and it can provide nearly noise-free reconstructions. This
is done in Batenburg and Sijbers (  2011 ), Zhuge, Palenstijn, and Batenburg (  2016 ),
and Six, De Beenhouwer, and Sijbers (  2019 ). The discrete algebraic reconstruction
technique (DART) was developed in Batenburg and Sijbers ( 2011 ). As the name
suggests it makes use of discretisation to drastically lower the number of equations in
( 3.4.1 ). The algorithm is initialised with a reconstruction performed with a continuous
algebraic reconstruction algorithm. This reconstruction is discretised via thresholding.
The borders in the thresholded image are identified and a reconstruction is done
where only border pixels are updated. The border reconstruction is merged with the
previous reconstruction and a new threshold is performed.

DART was modified in Zhuge, Palenstijn, and Batenburg (  2016 ) where the total
variation regularized discrete algebraic reconstruction technique (TVR-DART) is pre-
sented. The method was developed to increase the robustness of DART and reduce
user input. The reconstruction is regularised similarly to Lin et al. (  2018 ) except that
a soft thresholding function is applied to the reconstruction before the difference is
calculated. The use of a soft threshold and the Huber norm ensures that the function
is differentiable and nearly twice differentiable, which makes optimisation possible.
This, along with an automatic estimation of the thresholds and discrete values in
the reconstruction makes it much simpler from a user perspective as few parameters
require user input.

Another modification of DART is found in Six, De Beenhouwer, and Sijbers ( 2019 )
where the authors have created the polychromatic-DART (poly-DART) algorithm.
Poly-DART is very similar to the original DART algorithm except that the forward
projection operator is replaced such that it accounts for the poly-chromaticity of most
X-ray sources. Accounting for the full X-ray spectrum of the source reduces beam
hardening artefacts, which increases the robustness of the DART algorithm.

Discretisation has also been used to improve reconstructions of dynamic tomogra-
phy, which can be seen in Van Eyndhoven, Batenburg, and Sijbers (  2014 ) and Van
Eyndhoven, Batenburg, Kazantsev, et al. (  2015 ). The region-based SIRT algorithm
with intermediate piecewise constant function estimation (rSIRT-PWC) is presented
in Van Eyndhoven, Batenburg, Kazantsev, et al. (  2015 ) and is designed with flow
experiments in mind. The algorithm identifies stationary regions based on a segmen-
tation done on the object before fluid flow and fixes these voxels. The remaining
pixels are characterised as either fully or partially dynamic and are treated as PWC
functions that change value according to time i.e. a dynamic voxel might initially be
empty and later be filled with fluid and this change can be characterised by a PWC
function. The algorithm provides excellent results even with a very low amount of
projections.

Reconstruction algorithms designed with fluid flow in mind is fairly common and
Myers, Kingston, et al. (  2011 ) and Myers, Geleta, et al. (  2015 ) are examples of this.
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Myers, Kingston, et al. (  2011 ) is based on SIRT but it uses prior information in mul-
tiple ways to regularise it. The static projection data is subtracted from the dynamic
projection data, a soft thresholding function is used to ensure that changes between
timeframes only occur at the fluid front, the static parts of the reconstruction are
forced to remain unchanged and finally, a segmentation operation is used to binarise
the reconstruction. Myers, Geleta, et al. (  2015 ) is an extension of this method, how-
ever, it is expressed as a statistical model where everything is modelled as conditional
probabilities.

3.5.3 Temporal Regularisation
Designing reconstruction algorithms specifically for dynamic phenomena has become
increasingly common and Kazantsev, Thompson, et al. (  2015 ), Kazantsev, Van Eyn-
dhoven, et al. (  2015 ), Kazantsev, Guo, et al. (  2016 ), and Nikitin et al. ( 2019 ) are
examples of this. In Kazantsev, Thompson, et al. (  2015 ), Kazantsev, Van Eyndhoven,
et al. (  2015 ), and Kazantsev, Guo, et al. (  2016 ) a spatio-temporal regularisation term
is introduced, which substantially increases image quality. Nonlocal means is used
instead of the finite difference seen in Zhuge, Palenstijn, and Batenburg (  2016 ) and
Lin et al. ( 2018 ) as it avoids the piecewise constant appearence of total variation reg-
ularisation. The method uses all temporal information available to regularise instead
of only using adjacent time frames. Using all temporal could lead to motion artefacts
in the dynamic regions of a reconstruction and the authors, therefore, calculate the
similarity of regions to avoid smoothing dynamic regions.

Nikitin et al. (  2019 ) also utilises all temporal information to regularise the solution,
however, unlike most dynamic reconstruction algorithms they do not assume that the
data is quasi-static. Instead, it is assumed that the reconstruction can be described
as a linear combination of basis functions. The algorithm is regularised with the 1-
norm of the derivative of the reconstruction. This derivate also includes the temporal
dimension and a parameter is introduced to control the weight of this term. The
method performs much better than the traditional FBP and is especially improved
by the spatio-temporal regularisation.

3.5.4 Deep Learning for Computed Tomography
Deep learning has become a major area of research within computer science in the
last 10 years and it has recently been introduced to tomography. It has seen use both
as reconstruction algorithms (X. Yang et al.,  2020 ; Huang et al.,  2020 ; Würfl et al.,

 2016 ) and as a means to improve algorithms obtained with more traditional methods
(Zhi et al.,  2021 ; Hendriksen, Pelt, and Batenburg,  2020 ; Hendriksen, Bührer, et al.,

 2021 ; Kang, Min, and Ye,  2017 ; Bührer et al.,  2021 ). Both X. Yang et al. (  2020 ) and
Huang et al. ( 2020 ) provide algorithms designed to work for limited angle tomography,
where the movement of the rotation stage is restricted. In general, neural networks
require many examples during their training, which often consist of comparing good
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and bad examples. Obtaining both high- and low-quality reconstructions of the same
data, especially if the experiment is dynamic or performed on a synchrotron, where
beamtime is scarce. X. Yang et al. (  2020 ) therefore create a self-supervised network
that trains on the data it is reconstructing. Huang et al. (  2020 ) take another approach
in that they use the U-net neural network, which trains quickly and performs the
training with synthetic data.

In Hendriksen, Pelt, and Batenburg ( 2020 ) and Hendriksen, Bührer, et al. (  2021 )
the authors developed the neural network Noise2Inverse, which denoises the recon-
structions of noisy data. The network is self-supervised, which means it can train on
the data it is attempting to denoise, eliminating the need for special training data.
The network performs very well at a variety of tasks compared to other denoisers.
The performance of these early efforts begs the question is denoising a subpar recon-
struction is better than reconstructing with a regularised reconstruction algorithm.

3.5.5 Our Contribution to this Field
This chapter provided the mathematical background for X-ray computed tomography
and showed some recent examples of modern tomographic reconstruction algorithms.
Many of these algorithms are designed to improve robustness against noise and to pre-
vent streak artefacts despite using a small number of projections and does so by using
prior knowledge. The algorithms described in  Section 3.5.2 achieves this robustness
by using knowledge about the sample that is imaged to improve the reconstruction
of it.

We used the same approach in  Contribution A . Here we exploited that some dy-
namic experiments allow for a high-quality scan of the experiment. A segmentation
of the high-quality scan is used to constrain the reconstruction. For instance, if we
are performing a core flooding experiment, we know that the rock sample should re-
main unchanged, which means the attenuation values of the rock can be fixed. Myers,
Kingston, et al. ( 2011 ) is similar in this regard, where only the dynamic part of the
projection data is reconstructed and the static part of the reconstruction is fixed. A
novel aspect of  Contribution A is the use of initialisation to improve image quality.
The reconstruction of the high-quality scan makes for an excellent starting point for a
reconstruction algorithm (xk in (  3.4.8 )) and subsequent time steps can be initialised
with the previous time step. Using box constraints and initialisation alone can signif-
icantly improve the quality of a reconstruction and does not require any modification
of the reconstruction algorithm, which makes it very simple to implement.



CHAPTER4
Practical Aspects of

CT Experiments
The following section is meant to describe the practical aspects of working with a CT
scanner. While Lambert-Beer’s Law, the Radon transformation and the analytical
and algebraic reconstruction algorithms provide the cornerstones to understanding a
CT scanner there are still several experimental aspects of working with a CT scanner
that has to be accounted for in practice. These are effects such as normalisation
of projections, accounting for noise, dealing with ring artefacts etc. However, this
section will start with a brief review of the development of the CT scanner.

4.1 X-ray Tomography Instruments
The first commercial CT scanner was developed for medical use by Sir Godfrey
Hounsfield between 1967 and 1971, where it culminated in the first scan of a pa-
tient (Richmond,  2004 ). He was awarded the Nobel prize in medicine in 1979 that he
shared with Allan Cormack, who had worked on developing a similar setup.

Hounsfield’s first commercial machine, the EMI Mark I, consisted of only two
detector elements that were translated and rotated to record two slices simultaneously
(Hounsfield,  1973 ). The scanner proved to be an immediate success, with the first
scan providing the location of a brain cyst (Richmond,  2004 ).

The fact that the detector had to be translated meant that the scanning procedure
was slow, with a slice taking approximately five minutes to image. However, the value
of the CT scanner as a diagnostic tool was immediately recognised by physicians,
and the technology was rapidly improved. The number of detector elements was
increased such that an entire slice could be acquired at once. This eliminated the
need to translate detector elements which drastically improved scanning time. This
was followed by a rapid push towards multi-slice scanners to increase axial coverage,
which has several benefits in a clinical setting (Panetta,  2016 ).

Both clinical and industrial scanners moved to digital detector systems in the
middle of the 1990s, replacing the previously used photographic plates. In industrial
scanners, the flat-panel detector was adopted that gave rise to cone-beam CT scanners.
Cone-beam CT scanners are by far the most common type of scanner when it comes
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to research and material science, and the setup will be described in greater detail in
 Section 4.6 .

Clinical scanners have generally moved towards very short acquisition times, with
a full-body scan only taking a few seconds. The quick scan time also makes it possible
to scan the heart of a patient without motion artefacts, and additionally, it improves
the patient experience by eliminating their need to hold their breath.

This is in contrast to industrial scanners that have pushed for increasingly smaller
spatial resolutions at the expense of scan time. A typical laboratory CT scanner with
a resolution of approximately one µm will require a few hours to complete a scan
(Maire and P. J. Withers,  2014 ).

4.2 Detection of X-ray Radiation
There are multiple ways of constructing an X-ray detector, and the choice of tech-
nology depends on the context of the experiment. We have used two CT scanners
throughout this project; one with a flat-panel detector and one with a charge-coupled
device (CCD) based detector. The first of these CT scanners is housed at DTU Off-
shore and is referred to as the “nanoCT”, see  Appendix A  for a description of its
components. The second scanner is a  ZEISS XRadia 410 Versa located at the 3D
Imaging Center of DTU.

The light collected by both of these CT scanners is first converted from X-ray
radiation to visible light with a scintillator, which is then read out by either an array
of pixels or the CCDs. The pixels of the nanoCT are made of amorphous silicon
(a-Si) photodiodes that convert the visible light to a digital signal, which is read out
thin-film transistors (TFT) which is common for most flat-panel detectors (Kump
et al.,  1998 ). The pixels of CCD detectors are much smaller than those seen in flat-
panel detectors, which means they offer a far better spatial resolution; however, the
sensitive area is also much smaller than flat-panel detectors (Hoheisel,  2006 ; Gruner,
Tate, and Eikenberry,  2002 ).
A drawing of a flat-panel detector can be seen in  Figure 4.1  . A scintillator works
by absorbing the X-ray radiation and then re-emitting the light in the visible range
that can then be imaged. The re-emitted light is not necessarily emitted in the same
direction as the incident X-ray that effectively smears the position of the incoming
radiation. This is indicated in  Figure 4.1 by the line spread function.

There are two key features that dictate the performance of a scintillator which
is the detective quantum efficiency (DQE) and the time shape of its response. The
DQE is defined as the squared ratio of the SNR of an actual detector and an ideal
detector (Jone,  1959 )

DQE = (S/N)2
real

(S/N)2
ideal

, (4.2.1)

where S is the signal, N is the noise. Noise will still be present in an ideal detector
due to the finite photon count. A large DQE is, in general, a very desirable feature for
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Figure 4.1: A drawing of a typical flat-panel detector. The figure is obtained from Beevil
( 2017 ) and has been cropped.

an X-ray detector. However, it cannot come at the expense of a slow time response.
The time shape of the luminescence of a scintillator can be modelled as a double
exponential decay (Leo,  1994 ):

N(t) = A exp

(
−t
τf

)
+B exp

(
−t
τs

)
. (4.2.2)

N(t) is the number of photons emitted as a function of the time t, τf and τs are the
two decay constants. τf is much smaller than τs. The primary or fast decay time for
CsI (caesium iodide) use is three orders of magnitude faster than its secondary decay
time. CsI is a commonly used material for industrial scanners; however, the afterglow
is too long to be used in modern clinical scanners. These scanners are often equipped
with scintillators that have a fast response time and a small afterglow (Panetta,  2016 ).

As previously mentioned, a-Si photodiodes digitise the signal that is read out
by TFTs or CCDs. This type of detector is an energy integrating detector which
means the spectrum of the incident X-ray radiation is lost. This is not the case for
photon-counting detectors, which are currently being developed. Photon-counting
detectors measure X-ray radiation directly instead of using the conversion step with
the scintillator, which makes it possible to measure the X-ray spectrum. This is
of great interest in medicine as this increases soft-tissue contrast, improve spatial
resolution and allows for a reduction in exposure (Willemink et al.,  2018 ).

An example of two different detectors is shown in  Figure 4.2  . In  Figure 4.2a , we
see a bright field (also known as a clear field or flat field) collected from the nanoCT
scanner at DTU Offshore. This scanner has a detector with a CsI scintillator, and it
uses a-Si photodiodes to detect the signal from the scintillator. One can easily see the
structure of the detector due to variations in the efficiency of the detector elements.
This detector also has several faulty pixels that require correction before radiographs
collected with this scanner can be reconstructed.
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(a) Bright field from the nanoCT at
DTU Offshore.
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(b) Bright field from the ZEISS XRadia 410
Versa at the 3D Imaging Center.

Figure 4.2: Bright fields collected with different scanners at DTU.

In  Figure 4.2b , there is an example of a bright field from the ZEISS XRadia 410
Versa at the 3D Imaging Center at DTU. The readout is done using CCDs rather
than a-Si photodiodes in this detector, and its response is noticeable more uniform
compared to the nanoCT.

X-ray detectors often have a background signal in the absence of an X-ray source.
This background signal is called a dark field, and it is collected to ensure proper
normalisation of the projection data gathered on the scanner. The dark field of the
nanoCT at DTU Offshore is shown in  Figure 4.3 . Here we also see that this particular
detector has a fairly inhomogeneous response. The ZEISS XRadia 410 Versa has a
negligible dark field, and it is therefore not recorded during normal operation.

3,200

3,400

3,600

Figure 4.3: Dark field from the nanoCT at DTU Offshore.
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4.3 From Raw Data to Sinograms
The projection data gathered from a CT scanner has to be converted from the raw
output of the detector to something reminiscent of the Radon transform of the object
as this is the basis for tomographic reconstruction. The Radon transform seen in
( 3.1.3 ) expressed with cartesian coordinates is given by

[Rf ] (θ, s) =
∫

Lθ,s

f(x, y) dℓ

Lambert-Beer’s law seen in (  2.2.7 ) can also be expressed in two dimensions in the
same way the Radon transform is expressed

I (θ, s) = I0 exp

[
−
∫

Lθ,s

µ(x, y) dℓ

]

− log
(
I (θ, s)
I0

)
=
∫

Lθ,s

µ(x, y) dℓ. (4.3.1)

From this we can identify that the function f(x, y) which describes the object being
imaged is equivalent to the 2D function of its attenuation values µ(x, y) with this we
see the following

[Rf ] (θ, s) = − log
(
I (θ, s)
I0

)
. (4.3.2)

A CT scanner records I (θ, s) when operating, which should be divided with I0, which
is the bright field described in the previous section. We also know that this is not the
true initial intensity as the detector might have a non-zero dark field which should be
subtracted from both the projection data and the bright field. With this, we arrive
at

[Rf ] (θ, s) = − log
(
I (θ, s)−D
I0 −D

)
, (4.3.3)

where D is the previously mentioned dark field. The term inside the outer parentheses
is the transmission and can take on values between zero and one. An example of the
normalisation process is shown in  Figure 4.4 . Here a piece of chalk imaged at the
NanoCT at DTU Offshore can be seen in its corrected and uncorrected state. After
the correction, values in the radiograph have to be non-negative as the negative
logarithm to a number between zero and one is between zero and infinity. However,
noise in the radiographs, bright fields or dark fields can result in negative values in
the transmission image. The logarithm of negative numbers is not defined, and faulty
pixels, therefore, require correction before taking the negative logarithm.
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(b) Data after equation ( 4.3.3 ) has been applied.

Figure 4.4: A raw radiograph and corrected radiograph of a piece of chalk from the Kraka
oil field.

4.4 Noise
Noise in the projection data can be detrimental to the quality of a tomographic
reconstruction. Noise in the projection data primarily stems from photon noise (also
known as shot noise or quantum noise) and electrical noise from the detector (Whiting
et al.,  2006 ).

Photon noise is due to the finite number of photons that are detected, which
results in Poissonian noise. However, an X-ray tube produces a spectrum of X-ray
photons rather than a single wavelength as explained in  Section 2.1  . Additionally, X-
ray detectors in CT scanners do not have a uniform detection efficiency as a function
of energy (at least for energy integrating detectors). The combination of these effects
means each energy level will give rise to a different Poissonian distribution which
means the probability distribution function that best describes the photon noise in a
CT scanner is a Compound Poisson distribution (Whiting et al.,  2006 ). While photon
noise cannot be described as a pure Poisson distribution, it will still be proportional to
the total number of photons that are detected. This means larger samples and samples
with large attenuation values will, in general, be noisier. This can be mitigated to
some extent by increasing the source voltage. Am increase in the source voltage will
increase the mean energy of the emitted X-ray radiation, which will improve their
ability to penetrate as we saw in  Figure 2.4  (Rodríguez-Sánchez et al.,  2020 ). The
dependency on sample depth also means that the centre of a sample has more noise
than the edge. This is usually not a problem, however, the difference between the
noise level at the edge of the sample and the centre can be noticeable during dynamic
imaging where the exposure time is usually decreased.

Electrical noise arises right before the electric signal from the TFTs or CCDs
is digitised. The analogue signal is susceptible to noise and it usually stems from
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the connections between the CCD (for instance), electrical amplifier and the digital
to analogue converter (Duan et al.,  2013 ). Electrical noise is usually constant and
independent of the settings on the CT scanner. It only becomes a concern when the
photon count is small and the signal detected by the X-ray detector is comparable to
the electronic noise level.

4.5 Ring Artefacts
Ring artefacts is a type of error that is fairly frequent in tomographic reconstructions.
It is caused by defects in either the detector pixels or the scintillator material in
front of them. They appear as concentric circles in reconstruction centred around
the axis of rotation. The normalisation done in equation (  4.3.3 ) corrects most of
the variation in the detector response as seen in  Figure 4.4b  . Here the structure of
the detector is divided out, leaving a uniform background. However, the detector
response is nonlinear, which means it is not possible to use (  4.3.3 ) to account for
large differences.

Figure 4.5: The central slice of a piece of chalk imaged with the nanoCT at DTU Offshore.
Notice the ring artefacts centred in the lower middle part of the figure.

An example of the appearance of ring artefacts can be seen in  Figure 4.5 which shows
the central cross-sectional slice of a piece of chalk. The centre of rotation is located
approximately in the lower middle part of the image, where the concentric rings get
increasingly smaller.

Multiple methods have been proposed in the literature to mitigate ring artefacts
with fairly different approaches. Most methods either focus on pre-processing the pro-
jection data (Boin and Haibel,  2006 ; Vo, Atwood, and Drakopoulos,  2018 ) or post-
processing the reconstruction (Sijbers and Postnov,  2004 ; Jha et al.,  2014 ). Both
approaches attempt to eliminate the ring artefacts by identifying problematic regions
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and smoothing them out. Other methods attempt to account for the detector re-
sponse either directly or indirectly. In Croton et al. (  2019 ) the detector response is
mapped and incorporated into the normalisation of the radiographs. The method
requires that the source is easily moved relative to the detector, which is not the case
for the nanoCT used for most of this project. The ZEISS XRadia 410 Versa used
for  Contribution C  attempts to prevent ring artefacts during the acquisition of pro-
jection data by translating the position of the sample between each projection. This
effectively averages out the response of each pixel preventing ring artefacts.

We have elected to use pre-processing of the projection data to mitigate ring
artefacts in the reconstruction throughout this project. First, problematic pixels are
identified in histograms of the bright fields and dark fields, which provide a library of
pixels that requires correction before reconstruction.

Examples of histograms of the dark and bright fields can be seen in  Figure 4.6  .
Pixels within the 0.01% and 99.999% quantile are part of the blue area and the outliers
are shown in yellow. The bins are very thin which makes them appear black. The
pixels in the yellow area are the ones that cause ring artefacts. The ZEISS XRadia
410 Versa has a very uniform response which means it is not necessary to pre-process
data gathered from this scanner based on  Figure 4.6c  . This is not the case for the
nanoCT which has several outliers that can be seen in both bright and dark fields

 Figures 4.6a and  4.6b .

We find the position of the pixels in the yellow area with a threshold based on
the histogram. After this, we replace the value of problematic pixels with the median
value of their neighbours. This has to be done on each projection separately. Using
the same value for multiple projections would result in ring artefacts, and it should
therefore be avoided.
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(a) Histogram of a bright field
from DTU Offshore nanoCT.
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(b) Histogram of a dark field
from DTU Offshore nanoCT.
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(c) Histogram of a bright field
from the ZEISS XRadia 410
Versa.

Figure 4.6: Histograms of the bright and dark fields from scanners used in this project.
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4.6 Cone Beam Geometry
As previously mentioned, cone-beam geometry is the most commonly used geometry
for laboratory CT scanners (Maire and P. J. Withers,  2014 ), and both the ZEISS
XRadia 410 Versa and the nanoCT at DTU Offshore use this geometry.

The geometry consists of an X-ray source that emits a cone of X-ray radiation,
hence the name, through the object towards a flat-panel detector. The sample is
placed on a rotating gantry while the position of the X-ray source and the detector
is fixed. A schematic of a cone-beam geometry can be seen in  Figure 4.7 .
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Figure 4.7: A schematic of the geometric of a cone-beam CT scanner. Here S indicates
the source position, D indicates the detector centre, and AoR is an abbreviation for the axis
of rotation. A sample would be placed in the middle of this axis and rotated along the angle
theta. The vectors u⃗ and v⃗ describe the detector plane. The angles ϕ, ψ and θ indicate the
possible rotations of the detector plane.

The X-ray source position is defined by the point S, the axis of rotation (AoR), the
object position O and the centre of the detector D with the distance between the
source and detector |SD| = Cl being referred to as the camera length. The spread of
the cone-beam gives rise to geometric magnification, which can be calculated using

M = |SD|
|SO|

. (4.6.1)

The detector can be described as a plane with the vectors u⃗ and v⃗ and it can be
rotated in three different ways indicated by the angles ϕ, ψ and θ. Note the axis
of rotation can also be rotated along ψ and ϕ, and this would be indistinguishable
from a rotation of the detector. Similarly, a positive shift along the z-axis of the
source position S is indistinguishable from a negative shift of the detector D along
the z-axis.
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The cone-beam geometry differs from the parallel beam geometry, which is equiv-
alent to the Radon transform described in  Section 3.1 . Rays emitted from the source
in the xy-plane will still behave as if it was a parallel beam geometry, however, ob-
taining a “complete” set of projection makes it necessary to collect radiographs in
the domain θ ∈ [0, 2π[. The FBP algorithm cannot provide a stable solution for rays
outside of the central plane, and a constrained algorithm should be used instead (Tuy,

 1983 ).
The de-facto industry standard which approximates the FBP algorithm for a

cone-beam geometry is the Feldkamp-Davis-Kress algorithm (Feldkamp, Davis, and
Kress,  1984 ; Cnudde and M. Boone,  2013 ; Maire and P. J. Withers,  2014 ). The
FDK algorithm is not perfect, and reconstruction artefacts in the form of blurring
will appear when moving away from the xy-plane, see  Figure 4.7  , and this effect gets
increasingly pronounced with larger cone angles i.e. a less parallel beam (Maire and
P. J. Withers,  2014 ). Even with these problems, cone-beam geometry has several
benefits that make it attractive for most cases. It is far more efficient to use a
conical beam since fewer X-ray photons have to be collimated, and the geometric
magnification from the conical beam increases the spatial resolution of the CT scanner
without having to modify the detector. Additionally, the FDK algorithm is, like the
FBP algorithm, computationally very efficient and easy to use.

4.7 Misalignment of Geometry and Artefacts
The geometry shown in  Figure 4.7  represents an ideal setup where the line between in
the source position S and detector centre D is in the xy-plane and is perpendicular to
the detector plane. In practice, such a geometry is rarely realised, especially when non-
commercial scanners are used, such as the nanoCT at DTU Offshore. This scanner
does not record enough geometrical information to ensure the reconstruction of the
projection data is satisfactory. A misaligned CT scanner will cause the elements in
the system matrix A to have incorrect values resulting in faulty forward and backward
projection operators. These operators will result in different artefacts depending on
which geometry parameter that is misaligned.

An overview of the different misalignment parameters and an approximate de-
scription of the artefacts they give rise to can be found in  Table 4.1  . Examples of
the appearance of reconstruction artefacts due to an incorrect geometry can be seen
in  Figure 4.8 and  Figure 4.9 . These figures show the artefacts in a chalk sample and
artefacts in a carbon steel flow cell where the inside is covered is partially covered
with BaSO4.

In practice, multiple parameters usually require tuning, so the initial appearance
of reconstruction might contain a mix of the artefacts shown. Parameters such as
the camera length Cl and the horizontal source position Su give rise to very similar
artefacts, which can make it cumbersome to tune these parameters by hand, and an
automatic method is therefore desirable.
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Table 4.1: A table of the different misalignment parameters in a cone-beam CT scanner.
 Figures 4.8  and  4.9 provides examples of the appearance of reconstruction artefacts caused
my different geometrical parameters.

Misalignment Misalignment
parameter

Equivalent
parameter

Artefact
Appearence

Horizontal shift of D Du — Uniform defocusing.

Vertical shift of D Dv −Sv
Artefacts without
blurring.

Horizontal shift of S Su —
Blurring away from the
rotation centre. Doubles
edges.

Vertical shift of S Sv −Dv
Artefacts without
blurring.

|SD| or camera length Cl — —
Blurring that increases
with distance to rotation
centre. Doubles edges.

Rotation of AoR in ϕ Rϕ Dϕ —

Rotation of AoR in ψ Rψ Dψ

Blurring away from the
rotation centre. Doubles
edges.

Rotation of detector in ϕ Dϕ Rϕ —

Rotation of detector in ψ Dψ Rψ

Blurring away from the
rotation centre. Doubles
edges.

Rotation of detector in θ Dθ —
Unifrom defocusing.
Doubles edges. Points
become stars.
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(a) Detector centre shifted by 5
pixels in the xy-plane.

(b) Detector centre shifted by 25
pixels along the AoR.

(c) Source centre shifted by 144
pixels in the xy-plane.

(d) Camera length reduced by
10%.

(e) Detector rotated by 1.5° in θ. (f) Detector rotated by 1.5° in ϕ.

(g) Detector rotated by 1.5° in
ψ.

(h) The reconstruction with op-
timal parameters.

Figure 4.8: Examples of reconstruction artefacts for different geometrical parameters in a
piece of chalk. The chalk was imaged at DTU Offshore using the nanoCT.
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(a) Detector centre shifted by 5
pixels in the xy-plane.

(b) Detector centre shifted by 25
pixels along the AoR.

(c) Source centre shifted by 144
pixels in the xy-plane.

(d) Camera length reduced by
10%.

(e) Detector rotated by 1.5° in θ. (f) Detector rotated by 1.5° in ϕ.

(g) Detector rotated by 1.5° in
ψ.

(h) The reconstruction with op-
timal parameters.

Figure 4.9: Examples of reconstruction artefacts for different geometrical parameters in a
carbon steel flow cell covered with BaSO4. The cell was imaged at DTU Offshore using the
nanoCT.
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4.8 Auto-focus
The previous section revealed that an incorrect geometry greatly diminishes the qual-
ity of reconstructions. It is, therefore, desirable to know the scanner geometry accu-
rately. Automatically obtaining the scanner geometry has been well researched, and
in general, there are two approaches to the problem.

The first approach involves imaging a specially made phantom with known dimen-
sions. Based on either the projection data or reconstruction of it, it is possible to
determine the geometry parameters of the scanner (Ferrucci et al.,  2018 ; G. Li et al.,

 2018 ; Xu et al.,  2017 ; K. Yang et al.,  2006 ; Jacobson, M. D. Ketcha, et al.,  2018 ;
Xiang, Wang, and Cai,  2016 ; Noo et al.,  2000 ; Jacobson, M. Ketcha, et al.,  2017 ).

The second approach is to maximise the sharpness of the reconstruction. The
logic behind this method is that a reconstruction that maximises image sharpness
is performed with the correct geometry. There is no objective measure of image
sharpness, so proxies of image sharpness are used instead (Kingston, Sakellariou, A.
Sheppard, et al.,  2010 ; Kingston, Sakellariou, Varslot, et al.,  2011 ; Meng, Gong, and
X. Yang,  2013 ; Panetta, Belcari, Del Guerra, Bartolomei, et al.,  2012 ; Wicklein et al.,

 2012 ; Lesaint et al.,  2017 ; Patel et al.,  2008 ; Herbst et al.,  2019 ; Panetta, Belcari, Del
Guerra, and Moehrs,  2008 ; Muders and Hesser,  2014 ; Ouadah et al.,  2016 ).

The phantom based methods are ideal when the geometry rarely changes, which
could be in a clinical setting where the position of the source and detector is fixed.
This is not the case in a research setting where the camera length is adjusted to obtain
the desired geometrical magnification for the sample. Having to image a phantom
each time the setup of the scanner changes before performing the actual imaging is
not feasible in a research environment. We have therefore focused on developing an
automatic method to obtain the correct geometrical parameters. Our approach is in-
spired by Kingston, Sakellariou, A. Sheppard, et al. ( 2010 ) and Kingston, Sakellariou,
Varslot, et al. (  2011 ), where image sharpness is defined as the norm of the gradient
of the image

S
(
I(x, y)

)
= ∥∇I(x, y)∥2

This is the sharpness of a single slice in a reconstruction; however, using the sum of
multiple slices provides a more robust measure of the sharpness of the reconstruction.
Additionally, some artefacts are more pronounced further away from the detector
centre, such as the rotation in ψ. The total sharpness of a reconstruction is given by

Stot
(
I(x, y)

)
=
∑
z

∥∇I(x, y)∥2. (4.8.1)

I have not examined in detail how many slices is sufficient to ensure a stable measure
of sharpness; however, every 10th slice seems to provide a robust measure of sharpness.
To find the optimal geometry, we use the minimiser iminuit (Dembinski et al.,  2022 ;
James and Roos,  1975 ). The negative sharpness −Stot

(
I(x, y)

)
is used as a cost

function and all parameters are included in the minimisation. Each function call
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requires a full reconstruction which can be time-consuming even when performed
on GPUs, so it is usually desirable to downscale the projection data to speed up
computation time.

We have not performed a systematic test of the auto-focus procedure yet, but
preliminary results seem promising. An example of the performance of the method is
presented in  Figure 4.10  . In the figure, there are two reconstructions of the same sam-
ple with different geometry parameters. The sample consists of a piece of aluminium
interspersed with specks of tungsten. The tungsten attenuates X-ray radiation far
more than the aluminium, which results in a large contrast between them. The sam-
ple was imaged with the nanoCT at DTU Offshore at the beginning of this project to
test the performance of the scanner. The camera length was not measured precisely
during the acquisition, which results in the artefacts seen in  Figure 4.10a  .

(a) Reconstruction performed with the initial
parameters measured by hand.

(b) Reconstruction performed with the parame-
ters obtained with our auto-focus method.

Figure 4.10: Examples of reconstructions of a piece of aluminium with dots of tungsten.

The projection data was initially downsampled by a factor of four, after which the
auto-focus code was run to obtain a rough estimate of the scanner geometry. The
auto-focus algorithm was then used on the full data set with this rough geometry
to get the final geometry. The final geometry results in the reconstruction seen in

 Figure 4.10b , which is much sharper and without artefacts.

4.9 Consistency of Projection Data
Performing dynamic tomographic experiments usually requires fairly elaborate exper-
imental setups. Complicated experiments potentially have more error sources which
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we learned during the project. This was especially apparent in the flow experiments
we performed in this project.

In  Contribution C , we wanted to examine the crystallisation fouling process or
scale formation inside pipes. We performed in situ measurements to study the scale
buildup by imaging the process with a CT scanner. Our experimental setup consisted
of a carbon steel flow cell that was injected with water supersaturated with BaSO4.
The injection and collection of the water were done by connecting both ends of the
flow cell with plastic tubing. The tubing we used was fairly stiff, which resulted
in unwanted movement of the sample as it rotated on the stage during acquisition.
The movement was especially pronounced for the initial and final projections in a
revolution where the tube was stretched the most. It was, therefore, necessary to
develop multiple tools to quantify the movement of the sample, which also made it
possible to correct this unwanted movement during the reconstruction.

A simple way of getting a qualitative overview of the projection data is “doubling”
the sinogram and examining its appearance. Since the acquisition angles for cone-
beam tomography are typically spread out equally between zero and 2π, one would
expect a smooth transition from the final projection to the initial projection because
zero and 2π should correspond to the same position.

An example of a “double”-sinogram can be seen in  Figure 4.11  . There is a sharp
transition from the final projection to the first projection seen in the middle of the
figure at the blue line. This shift means that the sample has moved relative to the
detector during the acquisition. Additionally, it appears that the change is fairly
smooth as there are no sharp transitions in the sinogram.
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Figure 4.11: An example of a “double”-sinogram. The sinogram of a carbon steel flow cell
is repeated such that the final projection is followed by the sinogram again. A line is drawn
to show the point where the sinogram is repeated.

The transition region in  Figure 4.11 can be examined further by looking at the
differences between the first, next to last and last projections. In  Figure 4.12a  the dif-
ference between the last and the second to last projection is displayed. The difference
is almost uniform, but there are faint vertical lines from the edge of the flow cell. The
angular shift between the last and second to last projection should be identical to the
angular shift between the last and the first projection. The difference between these
projections should therefore be equivalent to what is seen in  Figure 4.12a  ; however,
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this is not the case as shown in  Figure 4.12b  . The difference is far greater, and it
appears that the first projection is shifted to the left.
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(a) The difference between the last and second
to last projection.
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(b) The difference between the first and the last
projection.

Figure 4.12: Projection differences for the carbon steel flow cell examined in  Contribution
C .

The shift observed in  Figure 4.12b can be quantified by examining the contour of the
sinogram. The contour of any sinogram should behave exactly like a sine wave if the
sample is moving as expected. By fitting the edge of a sinogram with a sine wave, it
is possible to quantify the horizontal movement of the sample during acquisition.

An example of this for the previously mentioned cell can be seen in  Figure 4.13  .
The plot in the top box shows one of the edges of the sinogram fitted with the function

f(x) = A sin(x+ b) +B. (4.9.1)

The fit error, defined as the difference between the actual edge and the fit, is displayed
in the lower box. The edge of the sinogram appears approximately sinusoidal between
±100°, but it deviates a lot from a sine wave beyond this which can also be seen in the
fit error plot. A 5-pixel shift in the horizontal direction is a significant deviation from
the nominal geometry as seen in  Figures 4.8a and  4.9a , where the detector position
is shifted with 5-pixels in horizontal direction. The artefacts we saw in the flow cell
data were much less significant than what we see in  Figures 4.8a  and  4.9a because
only a subset of the projections are shifted.

The deviation of the sample in the horizontal plane is given by the error shown in
 Figure 4.13  , and it was used to mitigate the artefacts that arose from the movement
of the sample. The correction was performed by shifting the position of the detector
to cancel the deviation from zero given by the fit error. The effect of the correction
can be seen in  Appendix B .
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Figure 4.13: The upper plot shows the edge of a sinogram from  Contribution C  fitted with
a sine wave (see (  4.9.1 )). The fit error is displayed below. The fit error has also been fitted.

4.10 Implementation Details
The choice of software is significant in tomographic reconstruction as it drastically
affects computation time. The ASTRA toolbox has been used throught this project
as the forward and backward projection operators are implemented in CUDA which
makes it possible to perform calculations on GPUs which substantially speeds up
reconstruction speed (Palenstijn, Batenburg, and Sijbers,  2011 ; Aarle, Palenstijn,
Beenhouwer, et al.,  2015 ; Aarle, Palenstijn, Cant, et al.,  2016 ). ASTRA also con-
tains implementations of the most common reconstruction algorithms and scanner
geometries. The software is called via a Python wrapper, which increases ease of use.

ASTRA is strictly designed for reconstruction and does not provide any tools to
assist with the I/O of projection data or the preprocessing of it. It is therefore up
to the users of ASTRA prepare the projection data before reconstruction. CT scan-
ners often save a separate file for each projection and there is a significant overhead
associated with reading multiple small files compared to reading a single large one.
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I have, therefore, chosen to use the HDF5 data format as reading and writing to it
is very fast and it supports very large files (The HDF Group,  1997 ; Collette et al.,

 2021 ). Additionally, it is possible to store metadata such as scanner parameters that
are relevant to the reconstruction of the data.

The primary programming language during the project has been been Python
where NumPy and SciPy has used for most tasks (Harris et al.,  2020 ; Virtanen et al.,

 2020 ). Computationally demanding tasks have performed on GPU using the Python
package CuPy, which makes it possible to perform calculations on GPU (Okuta et al.,

 2017 ).
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CHAPTER5
Contribution A:

Improved dynamic imaging of multiphase
flow by constrained tomographic

reconstruction
 Contribution A  represents my co-author and I’s attempt to develop a reconstruction
algorithm suited for dynamic tomography experiments that allow for a high-quality
static scan of the experiment. The algorithm was designed such that it could be used
in conjunction with the flow cell mentioned in  Section 1.3.2 to enable a wide range of
dynamic experiments. We did not want a complicated regulariser but instead sought
to leverage that most core flooding experiments are already constrained.

The original idea for the paper came from a poster I presented at American Geo-
physical Union’s Fall Meeting in December 2019 in San Francisco, and the majority
of the work was done in 2020.

The paper is included as published in its entirety below, and it can also be found
online at  https://doi.org/10.1038/s41598-021-91776-1 .
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Improved dynamic imaging 
of multiphase flow by constrained 
tomographic reconstruction
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Dynamic tomography has become an important technique to study fluid flow processes in porous 
media. The use of laboratory X-ray tomography instruments is, however, limited by their low 
X-ray brilliance. The prolonged exposure times, in turn, greatly limit temporal resolution. We have 
developed a tomographic reconstruction algorithm that maintains high image quality, despite 
reducing the exposure time and the number of projections significantly. Our approach, based on 
the Simultaneous Iterative Reconstruction Technique, mitigates the problem of few and noisy 
exposures by utilising a high-quality scan of the system before the dynamic process is started. We 
use the high-quality scan to initialise the first time step of the dynamic reconstruction. We further 
constrain regions of the dynamic reconstruction with a segmentation of the static system. We test 
the performance of the algorithm by reconstructing the dynamics of fluid separation in a multiphase 
system. The algorithm is compared quantitatively and qualitatively with several other reconstruction 
algorithms and we show that it can maintain high image quality using only a fraction of the normally 
required number of projections and with a substantially larger noise level. By robustly allowing fewer 
projections and shorter exposure, our algorithm enables the study of faster flow processes using 
laboratory tomography instrumentation but it can also be used to improve the reconstruction quality 
of dynamic synchrotron experiments.

For many years the primary technique to determine fluid flow properties of rocks was to perform classical core 
plug scale tests, where fluids, e.g. gases or liquids, were injected into natural porous media. The absolute perme-
ability could then be established from Darcy’s  law1. During the last 15 years, methods have been developed that 
estimate rock permeability by conducting computational fluid dynamics simulations of single or multiphase 
 flow2–6. These simulations are typically based on three-dimensional pore-scale models of the rocks obtained by 
X-ray tomography. In recent years in situ X-ray tomography has become one of the most popular methods to 
directly study dynamic processes in  rocks7–9 such as fluid flow  properties10–15 and reactive transport in  rocks16–20. 
To capture these phenomena in situ, X-ray tomography has to be performed at high spatial and temporal resolu-
tion. Therefore, most studies have been performed using synchrotron sources, which provide an extremely high 
X-ray beam brilliance, many magnitudes above laboratory X-ray  sources21. Unfortunately, beamtime at synchro-
tron facilities is scarce and performing dynamic experiments require extensive preparation and a substantial 
amount of auxiliary equipment. Therefore, it is desirable to be able to perform some of the dynamic experiments 
using laboratory CT instrumentation.

The low photon flux of laboratory instruments leads to a compromise between image quality and the temporal 
resolution. Temporal resolution can be increased at the expense of image quality by decreasing scanning time. 
Scanning time is decreased by either reducing the exposure time of each projection, which decreases the signal-
to-noise ratio or by reducing the number of projections gathered resulting in artefacts in the  reconstruction9,22. 
Bultreys et al.9 have built a laboratory instrument for in situ microtomography, where they managed to have an 
impressive time scale of just 12 seconds, by using a very short exposure time combined with a reduced number 
of  projections9,23.
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Figure 1 shows how three different data-deficiencies: limited exposure (high noise); a limited number of 
projections; and limited temporal resolution, affect the resulting reconstruction of a dynamic data set. The model 
system shown in Fig. 1 consists of a rock matrix (white) and two immiscible fluid phases, oil (dark grey) and 
water (light grey), that spontaneously separate over time. From this, we see that short exposures lead to a noisy 
reconstruction, few projections to line artefacts and long exposures to smeared fluid boundaries.

The most commonly used reconstruction techniques, filtered back projection (FBP) and its cone beam coun-
terpart the Feldkamp, Davis, and Kress algorithm (FDK) are unsuited for data with the previously mentioned 
 deficiencies24–26.

This is because a good reconstruction using this type of algorithm requires a rather large number of projec-
tions Nproj , preferably Nproj � Npixπ/2 where Npix is the number of detector  pixels26. This means that thousands 
of low noise radiographs are needed to provide high-quality 3D reconstructions, eventually leading to high scan 
times – often in the order of  hours27.

It has previously been shown that iterative reconstruction techniques perform substantially better than FBP 
methods when the Nproj is limited—especially when prior knowledge about the object is  leveraged26.

Prior knowledge can be used to constrain the solution of the reconstruction algorithm to behave in a certain 
way. For instance, a solution can be encouraged to have a noise-free appearance by penalising the norm of the 
derivative of the reconstruction, which is the case in e.g. total variation  regularisation28.

Some simple examples of using prior knowledge are non-negativity constraints and box constraints. Non-
negativity stems from the fact that attenuation coefficients are theoretically always positive. This can be extended 
to also include an upper limit to the values allowed in the reconstruction, i.e. box constraints. Setting the upper 
limit requires that the largest attenuation coefficient in the sample is known.

There have been several different attempts to leverage prior knowledge to improve the quality of reconstruc-
tions through iterative methods. Lin et al.27 introduced a regularisation term during their minimisation similar 
to that of total variation regularisation. The Huber function is applied instead of the seminorm used in total 
variation, which preserves boundaries between different phases in the  reconstruction28. Lin et al.27 tested their 
algorithm on a microCT data set of a Bentheimer sandstone, saturated with a mixture of brine and oil. They 
reported that their suggested algorithm provided a much-enhanced contrast between the reconstructed phases. 
Another approach was suggested by Myers et al.29, who limited the number of unknowns in the equation by sub-
tracting projections recorded on the initial static system from the projections of the dynamic system. This means 
that only the dynamic component is reconstructed. They used Simultaneous Iterative Reconstruction Technique 

Figure 1.  The reconstructions resulting from a tomographic experiment is highly affected by the experimental 
parameters. To visualise the potential effects that might occur in dynamic tomography, we have performed 
reconstructions of three data sets that are each limited in one experimental parameter. (a) The “ideal” 
reconstruction of the system, which is carbonate rock (white) filled with a fluid mixture of oil (dark grey) 
and water (light grey). (b) A reconstruction performed on data limited in the signal-to-noise ratio, i.e. short 
exposure or low X-ray brilliance. (c) A reconstruction from a data set with a low number of projections. (d) A 
reconstruction performed on data with high signal-to-noise (long exposure) and high number of radiographs, 
i.e. long data collection leading to low temporal resolution.
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(SIRT) to reconstruct the difference projection data. Additionally, they encourage spatial localisation of changes 
between time steps, voxels within the static region are set to a fixed value and voxel values in the reconstruction 
are binarised, i.e. voxels are set equal to one of two values. In their case, this corresponds to either be empty or 
filled. Hence the reconstruction will also be automatically segmented.

That method was further developed into a Bayesian framework by Myers et al.30. The Bayesian framework 
iteratively updates a solution such that the maximum a posteriori estimate of the solution is found. The solution 
is modelled as a sum of conditional probabilities, which ensures data fidelity, the physics of the system such as 
noise and correlations across time. Additionally, it is possible to add terms, which constrain the dynamic solution 
by using a static reconstruction, that directly segments the solution and terms that regularise it. The Bayesian 
algorithm presented in Myers et al.30 is equivalent to the one presented in Myers et al.29 if the assumptions such 
as binarisation and spatial localisation are applied to the Bayesian algorithm.

Binarisation or discretisation of attenuation values is commonly used to improve the reconstruction qual-
ity for samples with only a few unmixed well-defined phases. The discrete algebraic reconstruction technique 
(DART) and its extension total variation regularised discrete algebraic reconstruction technique (TVR-DART), 
presented by Batenburg et al.31 and Zhuge et al.32, are designed for such systems.

Van Eyndhoven et al.33 has introduced a method, rSIRT-PWC, similar to the method by Myers et al.29 i.e. 
they separated the dynamic system into two regions – a static and a dynamic. However, they take special care 
to handle pixels along the border of the dynamic and static regions. The attenuation value of pixels within the 
static region is set to zero while the attenuation value of pixels which are either partially or fully in the dynamic 
region is modelled as piecewise constant functions. This assumption is appropriate for their use case where a 
single fluid phase is propagating through a porous media. However, it is not appropriate for two-phase fluid flow 
cases, where the value of a voxel might change multiple times during the dynamic process.

In this paper, we present a method that is developed with the aim to reconstruct dynamic data from two-phase 
fluid flow experiments, but it can be used for any dynamic experiment, where it is possible to obtain a high-
quality static data set of the initial system before initiating the dynamic experiment. This could for example be a 
core flooding experiment where projection images could be obtained from many angles and with long exposure 
times before the actual flooding experiment. With this large amount of low-noise data, a detailed image of the 
different parts of the sample such as rock-matrix and voids could be obtained. The information gathered from a 
high-quality reconstruction of the static system is the crux of our reconstruction algorithm. It is used to initialise 
an iterative reconstruction method, which will bring the algorithm closer to a desirable solution. The reconstruc-
tion of each time is initialised by the solution of the former step. Additionally, we constrain the solution with a 
segmentation of the static data set.

We have investigated the performance of our proposed approach by comparison to other SIRT based algo-
rithms as well as the commonly used filtered-back projection (FBP) algorithm. The SIRT based algorithms we 
compare to are simpler versions of the algorithm we have developed. We compare the results of the different 
algorithms qualitatively by visual inspection and quantitatively using the ℓ2-norm of the residual between the 
reconstructions and the ground truth. Furthermore, we assess the resulting image contrast by comparing histo-
grams of reconstructed voxel values.

Methodology
Reconstruction. An iterative reconstruction technique is used for this work. Typically, iterative reconstruc-
tion techniques attempt to solve the linear system

where x ∈ R
n is the reconstructed volume stored as a vector, b ∈ R

m is the projection data or radiographs also 
stored as a vector, A ∈ R

m×n is the forward projection operator or the system matrix. Determining an x that 
solves the equation is typically an ill-posed problem because there is either no solution or the solution is not 
unique. Hence, a direct inversion of Eq. (1) is not  possible34. We, like others, have chosen to employ the iterative 
reconstruction method, SIRT, because it is a robust technique and it allows us to incorporate prior knowledge 
when solving the linear set of  equations29,33,35,36.

The basic principle behind the SIRT algorithm is that it uses the residual between the forward projection of 
the current reconstruction and the radiographs to update the solution. The update step of the SIRT algorithm 
is given by

where x(k) ∈ R
n is the image obtained at the kth iteration, AT ∈ R

n×m is the backward projection operator, 
C ∈ R

n×n is a diagonal matrix containing the inverse column sums of A i.e. cjj = 1/
∑

i aij , and R ∈ R
m×m is a 

diagonal matrix of the inverse row sums of A i.e. rii = 1/
∑

j aij
37.

The starting point of the reconstruction x(0) can be initialised with an arbitrary vector of real numbers. 
However, a vector where each element has the same value (normally zero) is generally  used29,32,33. In the present 
example, the rock matrix does not change during the experiment. Hence, all the voxels in the rock matrix should 
have constant intensity independent of the time step, and these voxels make up a large part of the sample. This 
means that we can initialise the first time step of the dynamic reconstruction with the high-quality reconstruc-
tion of the static sample. Additionally, for a time series of data, we suggest initialising x(0) for time step, t, with 
the solution of the previous time step, t − 1 , since that reconstruction is expected to be closer to our solution 
than a vector of zeroes.

(1)b = Ax ,

(2)x(k+1) = x(k) + CA
T
R

(
b− Ax(k)

)
,
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As mentioned the rock matrix should not change during the experiment. Hence, we can also use the high-
quality static reconstruction to constrain our solution. We can determine the rock matrix voxels via segmentation 
of the high-quality static reconstruction, which we can use to force the algorithm to keep the voxel values of the 
rock matrix constant. Mathematically, this operation is equivalent to projecting the right hand side in Eq. (2) onto 
a convex set C , which only contains allowed values, using the projection operator PC

38. The projection operator is 
also used to apply the box constraints mentioned in the “Introduction” section, where the set would be given by

with µmin being the smallest attenuation value in the sample and µmax being the largest.
The set we project our solution onto depends on the classification of each voxel, which is derived from the 

segmentation. We obtain the segmentation by thresholding the static reconstruction to identify regions of either 
rock or fluid. Voxels with a value above the threshold are defined as rock and fixed at the expected value while 
voxels below the threshold might be fluid. A voxel is only defined as fluid if its value is between the attenuation 
values of oil and water. This leaves us with voxels which have a larger attenuation value than water but smaller 
than rock. Voxels within this interval cannot be uniquely assigned to either fluid or rock and are therefore sub-
jected to regular box constraints shown in Eq. (3). Using this technique, the iterative updating step is given by

The SIRT algorithm from the ASTRA toolbox is used because it provides highly optimised C++ and CUDA 
code that can be called via a Python (or Matlab) interface. This enables the use of one or more GPUs to perform 
the reconstructions, which is substantially more effective than using  CPUs39–41. The projection operation PC is 
performed with NumPy in Python.

Stopping criteria. A general problem associated with iterative reconstruction methods is to determine 
when the optimal solution is obtained. Ideally, we would like to stop iterating when the minimal ℓ2-norm of the 
residual between the ground truth and the reconstruction is reached i.e. we wish to minimise

where x̄ is the ground truth. Due to noise in the projection data, the solution x(k∗) , which minimises the figure 
of merit, might not be where Eq. (4) converges to as k → ∞38.

The ground truth, x̄ , is not known in a real experiment, so we have to find a way to minimise Eq. (5) without 
being able to compute it directly. Multiple stopping rules have been proposed in the literature, however, using the 
normalised cumulative periodogram (NCP) of the residual, r(k) = b− Ax(k) ∈ R

n , seems to stop the algorithm 
close to the optimal  solution42–45.

The NCP stopping rule is based on the assumption that the residual, r(k) , will have an NCP similar to the 
NCP of white noise when Eq. (5) is minimised, because there should only be white noise left in the residual at 
this point. This means that all information have been extracted from the projection data and the reconstruction 
can therefore be terminated.

Seeing if the residual is consistent with white noise requires calculating the periodogram. A periodogram 
is defined as the absolute squared values of the discrete Fourier coefficients of a vector. The periodogram of the 
residual vector is given

DFT denotes the discrete Fourier transform and q = ⌈n/2⌉ . The reason why only approximately half of the ele-
ments of rr are used to calculate p̂ is because the Fourier coefficients in the power spectrum of a real vector are 
symmetric around the midpoint of the vector.

The normalised cumulative periodogram (NCP) is now defined as

Note that the first element of p̂ , known as the DC-component, is excluded from the definition such that it 
starts in (0, 0). The NCP value of white noise is expected to be a straight line ranging from (0, 0) to (q, 1). 
This line cwhite can be used for comparison with the NCP of the residual. This can be done using the ℓ2-norm 
rNCP = �c(r)− cwhite�2.

A detailed description of how the NCP stopping rule is used can be found  in45. A major benefit of this method 
is that it adapts to noise level in the projection data.

We terminate the reconstruction in our implementation when two iterations on either side of r(k)NCP are larger 
than r(k)NCP . We require two iterations to prevent small fluctuations of r(k)NCP from terminating the reconstruc-
tion prematurely. It was found that rNCP exhibited more than one minimum at low noise levels. The algorithm, 
therefore, iterates beyond the first detected minimum to inspect if the current is a local minimum, i.e. if there 
should exist a second rNCP minimum.

The NCP stopping rule is, computationally, fairly demanding since r(k) = b− Ax(k) has to be calculated along 
with its discrete Fourier transform after every iteration. r(k) is calculated by ASTRA during the SIRT update step, 
however, only the norm of it can be retrieved which makes it necessary to calculate it explicitly after a SIRT 

(3)C = [µmin,µmax]
n,

(4)x(k+1) = PC

(
x(k) + CA

T
R

(
b− Ax(k)

))
= PC

(
SIRT

(
x(k)

))
.

(5)Figure of merit = �x(k) − x̄�2 ,

(6)p̂i = |r̂i|
2, i = 1, 2, . . . , q with r̂ = DFT(r).

(7)cj(r) =
p̂2 + . . . p̂j+1

p̂2 + . . . p̂q+1
, j = 1, 2 . . . , q.
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update. CuPy is utilised to speed up the computation of the NCP via CUDA as the Fourier transform especially 
can benefit from  parallelisation46. The forward projection is calculated using the ASTRA toolbox.

The implementation of the reconstruction algorithm is shown in Algorithm 1. The algorithm starts with the 
initialisation of the current time step using either the static reconstruction or the reconstruction of the previous 
time step.

This is followed by a loop where the actual reconstruction is performed. The loop is limited to Nmax iterations 
to prevent the algorithm from failing to terminate. The stopping criterion is simplified as the actual implementa-
tion can handle cases where only one iteration is needed before convergence. Additionally, the implementation 
also continues iterating beyond the first detected minimum to ensure it is not stopping prematurely.

Reconstruction algorithms used. We have chosen four versions of the SIRT algorithm and the FBP 
method to test the performance of our algorithm. The latter will serve for comparison as it is the most commonly 
used algorithm for tomographic  reconstruction26. The SIRT algorithms are also compared to a FBP reconstruc-
tion and an ideal FBP which uses 720 projections and ρ = 0.25%.

The differences between the SIRT methods used are shown in Table 1. Box constraints means that the attenu-
ation coefficients of voxels in the reconstruction are truncated to the minimum and maximum values present 
in the sample. For the present case, this means a lower limit of 0 and an upper limit of 2.5. Initialisation refers 
to initialising time step t = 0 with the reconstruction of the static system and the remaining time steps with a 
reconstruction of the previous time step. Local box constraints refers to projecting the reconstruction onto the 
convex set C created with a segmentation of the static reconstruction as explained in the ““Reconstruction” sec-
tion. This means the attenuation value of voxels identified as chalk are set to the same attenuation value as that of 
chalk and the attenuation value of voxels identified as fluid are confined to be within the interval of oil and water.

Results and discussion
Comparison of the reconstructions. The method is tested on a synthetic data set that consists of a rock 
matrix with a homogeneous mixture of water and oil (Fig. 2), that separate over time as they are immiscible. The 
details of this simulation can be found in the “Methods” section. Working with simulated data enables quantita-
tive comparisons between the different reconstruction methods since we have the ground truth. We will, from 
now on, use the term residual as the difference between the ground truth and the reconstruction unless other-
wise stated. We have chosen to quantitatively examine the reconstruction methods in four ways:

Table 1.  An overview of the different approaches used for the four SIRT reconstruction algorithms that were 
tested. See text or the “Reconstruction” section for a detailed explanation.

Box constraints Initialisation Local box constraints

SIRT ✗ ✗ ✗

SIRT-BC ✓ ✗ ✗

SIRT-IC ✓ ✓ ✗

SIRT-LC ✓ ✓ ✓
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• The ℓ1-norm of the residual between ground truth and reconstruction. This can be found in the supplemen-
tary material.

• The ℓ2-norm of the residual.
• The distribution of voxel values in the reconstructions.
• The distribution of the residual. This can be found in the supplementary material.

Only the voxels within the sample area are used for the quantitative analysis i.e. the air surrounding the sample 
is ignored.

Visual appearance of the reconstructions. Figure 3 shows two reconstruction series, one in the top 
row with low noise ( ρ = 0.25% ) and a large number of projections ( Nproj = 360 ) and one in the bottom row 
with high noise ( ρ = 5.0% ) and a low number of projections ( Nproj = 45 ). Nproj refers to the number of projec-
tions in a data set and ρ refers to the relative noise level in a data set. A detailed explanation of the noise in the 
data sets can be found in the “Noise” section. The remaining reconstructions series can be found in Section S1 of 
the supplementary material. It is obvious from visual inspection that all reconstruction techniques used perform 
well when applied to the data set with a large number of low noise projections in the top row. In this case, the 
primary concern becomes computational speed.

For the other extreme, we have a data set with high noise (5%) and few projections (45), shown in the bot-
tom row of Fig. 3, a significant difference is found in the obtained image qualities. Here the FBP reconstruction 
becomes very noisy. Almost to the point where it is impossible to differentiate between the two fluid phases. SIRT 
and SIRT-BC perform similarly, which indicates the addition of box constraints in SIRT-BC does not improve 
the reconstruction significantly. A major improvement is found when the reconstruction is initialised using the 
high-quality static data as described in the Reconstruction, which can be seen for the SIRT-IC and SIRT-LC 
reconstructions. The fluid phases are clearly visible using both, but SIRT-IC exhibits a fair bit of noise, which is 
eliminated by the local box constraints used in SIRT-LC.

ℓ
2
-norm of the residual. The performance of the algorithms has been quantified by calculating the ℓ2-

norm of the residual between the reconstructions and the ground truth for each time step in the simulation. This 
has been plotted as a function of time in Fig. 4. The figure confirms that all algorithms provide good and similar 
results for data set reconstructed using the low noise ρ = 0.25% and a high number of projections, 360. Notice-
ably, they all perform almost as well as the FBP reconstruction with 720 projections and ρ = 0.25% , the data set 
that represents a reconstruction under “ideal” conditions. It is apparent that FBP solution quickly deteriorates as 
noise increases and the number of projections is reduced. The same is partly true for SIRT and SIRT-BC, but it is 
not as significant. The addition of box constraints does improve the ℓ2-norm of the residual noticeably. However, 
this effect becomes increasingly less pronounced as the data degrades. The addition of initialisation substantially 
improves the reconstruction when the data quality degrades.

The ℓ2-norm for both SIRT-IC and SIRT-LC vary across time due to the initialisation which links the current 
time step with the previous. Both reconstructions initially improve slightly in the best data case after which their 
performance slightly degrades. This behaviour gets less pronounced as the quality of the data deteriorates. We 
performed SIRT reconstructions on a special data set where the simulation was frozen such that the first time 
step in the simulation was repeated for all time steps. The noise in each time step is unique. This was done to 
ensure that the deterioration of performance seen in Fig. 4 of SIRT-IC and SIRT-LC across time is not because 

Figure 2.  3D visualisation of the simulation. The rock matrix have been removed from the upper part of the 
simulation along with upper front part of the fluid phase. The rock is brown, the water is blue and the oil is light 
grey. This figure is created with  ParaView47.
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the algorithms diverge. This test showed that SIRT-IC and SIRT-LC improves across time. The results from this 
test can be found in Fig. S8 in the supplementary material.

NCP stopping criteria and convergence. The challenge when using iterative techniques to solve the 
linear set of equations is to determine when the optimal solution has been obtained. Here we will analyse the 
performance of the NCP criteria, which is used to terminate the iterative algorithms. In Fig. 4 we observed that 
the ℓ2-norm increased for later time steps. This behaviour seems to be related to the performance of the NCP 
stopping rule, which terminates prematurely for low noise data. In general, the method seems less suited for low 
noise data. This is especially true for the initialised algorithms. The number of iterations taken before the NCP 
stopping rule is met for each time step is shown in Fig. 5.

A general trend for all methods is that the number of iterations needed decreases as the quality of the data 
decreases. This is because the residual will resemble white noise more quickly as the noise level increases. The 
necessary number of iterations depends more on the noise level than the number of projections. This can be 
deduced by examining Fig. S11 in the supplementary material which shows the iterations needed for all the 
iterative algorithms on all data sets.

SIRT-IC and SIRT-LC show some variability in the number of iterations required compared to the two other 
algorithms. Initially, we see a sharp increase in the number of iterations required which is followed by a long 
decay. When starting, few iterations are needed because the algorithms are initialised with a reconstruction that 
already has converged according to the NCP criterion. The simulation changes most rapidly for the first time 
steps which means more iterations are needed in this period of the simulation compared to later on where the 
dynamics of the simulation slow down.

Figure 3.  An example of the five different reconstruction algorithms for the best (upper row) and worst (lower 
row) data cases. Slice 171/256 at time step 51/100 is shown in the figure. Note that scale bar is truncated to 
[0, 2.5]. This makes the effect of box constraints present in SIRT-BC, SIRT-IC and SIRT-LC less pronounced.

Figure 4.  The ℓ2-norm of the residual as function of the time step for the three different cases of noise and 
number of projections. The ideal FBP reconstruction ( ρ = 0.25% , 720 projections) is shown for comparison. 
Notice that the y-axis range is different on the three plots.



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:12501  | https://doi.org/10.1038/s41598-021-91776-1

www.nature.com/scientificreports/

This is confirmed by reversing the dynamics and performing the reconstruction on this reversed data set. 
The iterations needed for the reversed reconstruction is shown in Fig. 6, where we see the number of iterations 
needed gradually increase as the dynamics of the simulation increase.

The availability of the ground truth makes it possible to evaluate how well the NCP algorithm is at terminating 
at correct iteration number. This is done by comparing the solution achieved using the NCP stopping criteria 
with an “ideal” solution which minimises Eq. (5). The comparison consists of calculation the differences between 
the number of iterations used by the two stopping criteria and the difference between the ℓ2-norm of the two 
stopping criteria. This is shown for the first 20 time steps of the simulation using 120 projections with a noise 
level of 1.0% in Fig. 7 for the SIRT and SIRT-LC algorithms. In plot a we see that the NCP criteria with SIRT in 
general overestimates the number of iterations needed which results in a slight increase in the ℓ2-norm when 
compared to the ideal case which can be seen in plot b of Fig. 7. The SIRT-LC algorithm initially underestimates 
the number of iterations needed after which it remains fairly close to the ideal solution. In general, the NCP 
stopping criteria works best when the noise level is 1.0% or above and the number of projections is 120 or below. 
The behaviour of SIRT and SIRT-BC is very similar and the same is true for SIRT-IC and SIRT-LC.

Histograms of voxel values. A more direct way to compare the performance of the reconstruction algo-
rithms is to examine the distribution of reconstructed voxel values compared to the actual voxel values in the 
simulation across all time steps. Some of these results are shown in Fig. 8.

The black line represents the distribution of voxel values found in the simulation. There are three distinct 
peaks which correspond to three phases, oil at 1.0, water at 1.7 and rock at 2.5. Values between 1.0 and 1.7 are 
primarily related to the mixture of oil and water, however, it can also be related to the partial volume effects at 
the interface between fluid and mineral, which can range from 1.0 to 2.5.

The plot in Fig. 8 a shows the ideal data case and confirms that all algorithms give similar results for this 
data set as was found analysing Figs. 3 and 4. The effect of box constraints is noticeable as both FBP and SIRT 
have a high amount of voxels with values that far exceed the upper limit of 2.5. We also see that SIRT-IC has a 
tail towards 0 in plot c that could be a result of the limited amount of iterations used by the algorithm for that 
specific data set. Looking at the worst data case in c SIRT-IC and SIRT-LC are the only algorithms that keep 
having noticeable peaks, although SIRT-LC does appear a bit sharper. This increase in contrast fits well with the 
difference in visual appearance between in SIRT-IC and SIRT-LC as seen in Fig. 3.

Challenging regions in the reconstructions. In Fig. 9 the residual is shown for the best and worst data 
case for slice 171 at time step 51. In the upper row, we see that FBP and SIRT has most of their errors spread out 
compared to the remaining algorithms. SIRT-BC has most of its errors at the transition between the rock and 
fluid phase. In contrast SIRT-IC and SIRT-LC do fairly well in general. There are, however, large regions within 
the fluid phase in both of the reconstructions that are either overestimated or underestimated. This is again 
caused by the underestimation of iterations needed.

The bad data case shows there is no discernible area which the FBP fails to reconstruct, unlike the SIRT 
algorithms where there is a definite structure in the plots. SIRT-IC and SIRT-LC still handle the reconstruction 
fairly well with SIRT-LC being a bit more smooth.

Global performance of the algorithms. 
The ℓ1-norm and ℓ2-norm of the residual for the entire 4D reconstruction is shown in Table 2. The table shows 
that SIRT-LC is superior to the other algorithms in the bad data case and slightly inferior to SIRT-IC for the 
best data case for the ℓ2-norm. This was also expected based on Fig. 4 where the values for SIRT-IC are below 
the values of SIRT-LC. A table of all data cases is available in the supplementary material where it is seen that 
SIRT-LC is the best algorithm in general.

Figure 5.  The number of iterations required in each time step before the NCP stopping criteria is met for the 
three different data cases. SIRT-IC and SIRT-LC nearly coincides in all cases.
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Conclusions
We have developed a reconstruction algorithm for dynamic tomography, based on SIRT. Our algorithm targets 
experiments where it is possible the collect an initial high-quality tomography data set before the dynamic 
experiment is initiated. The reconstruction of the static system is used to initialise and constrain the reconstruc-
tions of the dynamic data via a segmentation of the static system in order to strongly regularise the solution. 
Additionally, we use the NCP stopping criterion to optimise the number of iterations used. We have shown 
using simulated data that this procedure significantly improves the quality of the reconstruction of data with a 
minimum number of projections and high noise levels to a point, where it is comparable to an ideal traditional 
reconstruction even when using poor data.

Methods
Computational fluid dynamics simulation. We test our reconstruction algorithm using a synthetic 
dynamic data set as the ground truth. The data set consists of a rock matrix with a homogeneous mixture of two 
immiscible fluids, modelled as an emulsion of water and oil, that separate over time while being driven upward 
by a small body force. The separation is initially fairly vigorous, i.e. the dynamics during this period of the 
experiment is much faster than later in the separation process, yielding a data set that mimics an experimental 
two-phase fluid system.

A segmented nanoCT data set collected on a piece of chalk, a fine-grained carbonate rock, provided a real-
istic environment for simulating a dynamic data set. The nanotomography measurements were performed at 
BL47XU, SPring-8,  Japan48, providing a voxel size of 38 nm. 1800 projections were recorded while rotating the 
sample 180◦ with an exposure time of 150 ms. The projection data were dark current and bright field corrected. 
The truncated sinogram, due to a smaller FOV than the sample dimension, were  completed49 and to avoid ring 
artefacts in the reconstructed image stripe artefacts were reduced in the  sinogram50 before the 3D volume was 
reconstructed using the GridRec algorithm in  TomoPy51. Noise in the 3D image was reduced using our iterative 
nonlocal means  method52. A cylindrical rock matrix was made by taking a subvolume of 2563 voxels whereafter 
voxels outside a radius of 124 voxels were removed slice by slice. We mirror the rock matrix along its vertical 
axis to allow for vertical periodic boundary conditions of the simulation domain, i.e. the resulting cylindrical 
volume has a diameter of 248 voxels and length of 512 voxels.

Multiphase flow simulations were conducted following the formulation of a phase-field Lattice Boltzmann 
method for isothermal and incompressible fluid systems as given by Fakhari et al.53,54 with a custom CUDA 
implementation. Implementation details and parameter settings, that have been used but are not essential to our 
findings here, are presented in Table S2 of the supplementary material.

The initial system contains a fluid mixture of equal amounts of oil and water in every wet node that separates 
into an equivolumetric mixture of two separate phases with a density ratio of about 4:3, a dynamic viscosity 
ratio of about 3:4 and a three-phase contact angle of 90◦ at the rock matrix interface. The differentiability of the 
phase-field over the course of the simulation was ensured by modelling fluid-fluid interfaces with a three voxel 
wide smooth transition. Snapshots of the multiphase dynamics were generated by exporting the phase-field first 
after running the simulation for 3000 steps and then after every additional 100 steps until 100 frames were col-
lected that are subsequently called time step 0 to 99. The top half of the simulation i.e. the “mirrored” part was 
excluded from the volume used for the simulation of the tomography experiment.

Figure 6.  The number of iterations required in each time step before the NCP stopping criteria is met for the 
case with ρ = 1.00% and Nproj = 120 for the SIRT-LC algorithm.
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The numerical value of the phase-field voxels exported from the simulation was set equal to values measured 
experimentally with a laboratory CT scanner in a two-phase system presented in Lin et al.27. However, they used 
a Bentheimer sandstone instead of a carbonate. Their scan was performed at 80 KeV and both the brine and the 
decane used to saturate the sandstone were doped with 3.5 wt% potassium iodide. Using these measured values 
ensures that the contrast between the different phases of the system is comparable to a real experiment. The 
interface between the rock and fluid was smeared using a Gaussian filter to emulate partial volume effects, i.e. 
voxels, which are composed of both rock and fluid. The first recorded time frame of the simulation can be seen 
in Fig. 2 where the rock matrix is shown in brown and the water and oil are shown in blue and white respectively. 
The top part of the rock matrix along with half of the fluid phase is transparent in the figure.

Simulation of a dynamic X-ray experiment. Forward projection. The fluid dynamic simulation is for-
ward projected using a parallel beam geometry with the ASTRA tomography toolbox. The forward projection 
operator of ASTRA does not reflect the energy spectrum of a laboratory X-ray source and can be viewed as per-
fectly monochromatic. Projection angles are distributed uniformly between 0 ◦ and 180◦ as angles between 180◦ 
and 360◦ are redundant when using a parallel beam setup. The detector response is modelled as perfect and with 
a width of 300 pixels, to ensure that the full sample width is covered.

Figure 7.  Evaluation of the performance of the NCP stopping criteria. In plot (a) the difference between the 
number of iterations used with the NCP stopping criteria and the ideal number of iterations a function of time 
step in the simulation. In plot (b) the difference between the ℓ2-norm of residual when using the NCP stopping 
criteria and the ideal ℓ2-norm is shown as a function of time step in the simulation.

Figure 8.  Histograms of the voxel values on a logarithmic scale of the ground truth image and the 
reconstructions. Plots (a–c) show histograms for reconstructions of data sets with 360 number of projections 
with 0.25% noise, 120 number of projections with 1.00% noise and 45 number of projections with 5.00% noise 
respectively.
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Each time step of the simulation is forward projected independently, which mean that we approximate indi-
vidual steps as static. An alternative to this would be to include the dynamics in the forward projection such that 
the simulation develops between each projection. This would also make it possible to account for the time it takes 
for the gantry to rotate the sample which is negligible in our local CT scanner but considerable in other CT scan-
ners. Simulating the acquisition of radiographs makes it much harder to perform quantitative analysis as a time 
step in the reconstruction will be composed of multiple time steps in the simulation and is it therefore not done.

If we use the same geometric matrix, A , to perform the forward projection as for the reconstruction, we will 
commit the so-called inverse crime, i.e. that the use the exact same discretisation both  ways55. To avoid com-
mitting the inverse crime the forward projected data are rotated with respect to the grid of the reconstruction.

The number of projections needed for a good reconstruction using standard FBP should be larger than 
Npixπ/2

26. Our detector size of 300 pixels, means that at least 471 projections are required to perform an FBP 
reconstruction of high quality. To be a bit conservative 720 projections are used for both the high-quality static 
prior and an ideal FBP reconstruction. 45, 120 and 360 projections are used for the numerical experiments, which 
represent experiments with a low, a moderate and a high number of projections.

Noise. In real experiments, the recorded projection data will be affected by noise. The data obtained from an 
X-ray detector can often be assumed to follow Poisson statistics, i.e. the variance of the signal is equal to the 
signal itself. To do this b have to be converted from the negative logarithmic scale to photon counts (Step 3 in 
Algorithm 2). The next step of the algorithm is applying noise to the rescaled data. This is done by sampling a 
Poisson distribution where the intensity in each detector pixel is used as the mean of the distribution (Step 4 in 
Algorithm 2). Since the noise operation can only be applied on integers the floor function is applied first. The 
noisy projection data is scaled back to the negative logarithmic scale and returned along with the noise vector e.

Figure 9.  An example of the residual of the five different algorithms for the best (upper row) and worst (lower 
row) data cases. Slice 171/256 at time step 51/100 is shown in the figure. Pixel values are constrained to be 
within ±0.1 in the upper row and within ±0.5 in the lower row.

Table 2.  Table of the ℓ1 - and ℓ2-norms for the best and worst data case. Bold numbers indicate the best 
performing algorithm.

Nproj = 360 
ρ = 0.25%

Nproj = 45 
ρ = 5.00%

ℓ1

(

·107
)

ℓ2

(

·103
)

ℓ1

(

·107
)

ℓ2

(

·103
)

FBP 4.13 1.51 179.59 63.21

SIRT 4.76 1.70 32.49 11.49

SIRT-BC 2.78 1.54 25.77 11.06

SIRT-IC 2.74 1.34 8.68 3.69

SIRT-LC 2.31 1.43 6.25 3.34
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Modelling the noise as a single Poisson distribution is not entirely accurate as laboratory X-ray sources 
provide a wider spectrum of X-ray energies, which each differ in transmission through the sample. Hence, it in 
principle gives rise to multiple Poisson distributions with different means. Additionally, the X-ray detector will 
exhibit electrical noise which can be modelled as Gaussian  noise56–59.

The relative noise level in the projection data is calculated using

where e is the noise vector added to the forward projection of the ground truth Ax̄ . We have chosen to use three 
noise levels which represent low, moderate and high-level noise, which is equivalent to 0.25%, 1% and 5%. These 
levels were based on a qualitative comparison between the noisy simulated projection data and data acquired by 
our local CT scanner where a noise 0.25% is generally the noise level of a high-quality scan.

Simulated experiments. The numerical experiments were performed using the three different image 
noise levels (0.25%, 1% and 5%) and with three different number of projections (45, 120 and 360), i.e. nine simu-
lated experiments will be reconstructed.

The nine different data sets are reconstructed using the five algorithms described in the “Reconstruction 
algorithms used” section.

Data availability
All code used for the paper along with the data sets of the attenuation coefficients are available at https:// gitlab. 
gbar. dtu. dk/ pwra/ Numer icalE xperi ments and https:// doi. org/ 10. 11583/ DTU.c. 54485 94. All figures are created 
with  Matplotlib60 except where noted otherwise.
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CHAPTER6
Contribution B:

Stopping Rules for Algebraic Iterative
Reconstruction Methods in Computed

Tomography

 Contribution B  is in many ways a result of the work done during  Contribution A  .
We needed an automatic way to terminate our reconstructions during that project
as the optimal number of iterations for our reconstruction algorithms varied with
data quality. I had previously learned of different “stopping rules” during a PhD
course on computed tomography by Per Christian Hansen. We, therefore, established
contact with him, and he provided us with the literature needed to implement the
NPC stopping rule used in  Contribution A . We met again during a summer school
on inverse problems where we discussed writing a paper on different stopping rules,
which eventually resulted in  Contribution B  .

In  Contribution B  , we sought to compare multiple stopping rules both using the
ubiquitous Shepp-Logan phantom but also using a large scale example more akin
to what is seen in modern tomography (Hansen, Jørgensen, and Rasmussen,  2021 ).
Implementing the stopping rules such that they could be applied to large problems
constituted the majority of my contribution. The paper was submitted to the 21st
edition Computational Science and Its Applications (ICCSA) Conference in April
2021 and was accepted after peer-review in June 2021.

Unfortunately, delays at the publisher mean that the work has not been published
yet. The version of the paper submitted to arXiv.org is, therefore, included below. It
can also be found online at  https://arxiv.org/abs/2106.10053 .
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Abstract—Algebraic models for the reconstruction problem in
X-ray computed tomography (CT) provide a flexible framework
that applies to many measurement geometries. For large-scale
problems we need to use iterative solvers, and we need stopping
rules for these methods that terminate the iterations when
we have computed a satisfactory reconstruction that balances
the reconstruction error and the influence of noise from the
measurements. Many such stopping rules are developed in the
inverse problems communities, but they have not attained much
attention in the CT world. The goal of this paper is to describe
and illustrate four stopping rules that are relevant for CT
reconstructions.

Index Terms—tomographic reconstruction, iterative methods,
stopping rules, semi-convergence

I. INTRODUCTION

This paper considers large-scale methods for computed
tomographic (CT) based on a discretization of the problem
followed by solving the system of linear equations by means
of an iterative solver. These methods are quite generic in
the sense that they do not assume any specific scanning
geometry, and they tend to produce good reconstructions with
few artifacts in the case of limited-data and/or limited-angle
problems.

In CT, a forward projection maps the object to the data in
the form of projections of the object onto the detector planes
for various scan positions. In the case of parallel-beam CT the
forward projection is known as the Radon transform [21].

In practise, data consists of noisy measurements of the
attenuation of the X-rays that pass through the object. The
discretization of the reconstruction problem takes the form

Ax ≈ b , b = Ax̄+ e , (1)

where the “system matrix” A ∈ Rm×n is a discretization
of the forward projector, b ∈ Rm is a vector with the
measured data, and x ∈ Rn is a vector that holds the pixels of
the reconstructed image of the object’s interior. Moreover, x̄
represents the exact object and e represents the measurement
noise. A number of discretization schemes are available for
computing the matrix A, see, e.g., [15], [17].

There are no restrictions on the dimensions m and n of the
matrixA; both over-determined and under-determined systems

This work was partially funded by a Villum Investigator grant (no. 25893)
from The Villum Foundation.

are common, depending on the measurement setup. The matrix
AT represents the so-called back projector which maps the
data back onto the solution domain [21]; it plays a central
role in filtered back projection and similar methods.

In large-scale CT problems, the matrix A – in spite of the
fact that it is sparse – is often too large to store explicitly.
For this reason we must use iterative solvers that only access
the matrix via functions that compute the multiplications with
A and AT in a matrix-free fashion, often using GPUs or
other hardware accelerators. In CT these iterative solvers are
collectively referred to as algebraic iterative reconstruction
methods which includes well-known methods such as ART
[11] and SIRT (also known as SART) [3].

Common for all these methods is that they, from an initial
vector x(0) (often the zero vector) produce a sequence of
iteration vectors x(k), k = 1, 2, . . . which, in the ideal
situation, converge to the ground truth x̄. In practise, however,
when noise is present in the measured data we experience a
phenomenon called semi-convergence:

• During the initial iterations, the iteration vector x(k)

approaches the desired but un-obtainable ground truth x̄.

• During later iterations, x(k) converges to the undesired
noisy solution associated with the particular iterative
method (e.g., A−1b if the system matrix is invertible).

This is illustrated in Fig. 1 which shows the error history,
i.e., the reconstruction error ‖x(k) − x̄‖2 versus the number
of iterations k, together with selected iterates x(k) shown as
images. The error history has the characteristic form associated
with semi-convergence.

If we can stop the iterations just when the convergence
behavior changes from the former to the latter, then we achieve
an approximation to x̄ that is not too perturbed by the noise
in the data. This paper describes four such methods based on
certain statistical properties of the noise.

Sections II and III describe four state-of-the-art stopping
rules as well as two methods to efficiently estimate a trace-
term that is needed on some of these rules; all numerical
experiments in these sections were performed by means of
the AIR Tools II software package [14]. In Section IV we
illustrate these techniques with a large-scale example.
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Fig. 1. Illustration of semi-convergence for Landweber’s method applied to a small noisy test problem. Top: the error history, i.e., the reconstruction error
‖x(k) − x̄‖2 as a function of the number of iterations k. The solid green line shows the part where x(k) approaches x̄ while the red dash-dotted line shows
the part where x(k) becomes dominated by the noise. Bottom: selected iterations with inserts that zoom in on a small region; the increasing amount of noise
is clearly visible.

II. FOUR STOPPING RULES

Our stopping rules apply to methods of the general form

x(k+1) = x(k) +DATM
(
b−Ax(k)

)
, (2)

where different choices of the diagonal matrices D and M
lead to different methods – see, e.g., [5] for an overview. To
simplify the presentation, we focus on the simple case where
D and M are identity matrices, in which case we obtain
Landweber’s method (which is equivalent to the steepest
descent method applied to the least squares problem):

Landweber’s method

x(0) = initial vector
for k = 0, 1, 2, . . .

x(k+1) = x(k) + ωAT (b−Ax(k))
end

We will frequently refer to the residual for the kth iterate,
defined as the vector

%(k) = b−Ax(k) , k = 1, 2, 3, . . . (3)

Moreover, after a bit of algebraic manipulations it turns out
that we can write the kth iteration vector as

x(k) =
k−1∑
j=0

(I − ωATA)jωAT b = A#
k b , (4)

which defines the matrix A#
k such that we can write the kth

iterate as x(k) = A#
k b. This is convenient as a theoretical tool,

but A#
k is never computed explicitly.

To set the stage, we need to introduce a small amount of
statistical framework and notation. We will often need the
exact noise-free data that corresponds to the ground truth
image, and we write

b̄ = Ax̄ . (5)

We can then write the measured data as b = b̄ + e. The
elements of the noise vector e are random variables, i.e., their
values depend on a set of well-defined random events. The
vector of expected values E(e) and the covariance matrix
Cov(e) are defined as

E(e) =

E(e1)
E(e2)

...

 , (6)

Cov(e) = E
((
e− E(e)

) (
e− E(e)

)T)
. (7)



To simplify our discussion and make the ideas clearer, through-
out this section we will restrict our analysis to white Gaussian
noise with zero mean:

E(e) = 0 , Cov(e) = η2I , E(‖e‖22) = mη2 , (8)

where η is the standard deviation of the noise and m is the
number of elements in e. Noise in tomographic problems is
rarely strictly Gaussian, but sometimes this is a reasonable
assumption.

A. Fitting to the Noise Level

Our description of this stopping rule is based on [15,
§11.2.3]. A simple idea is to choose the number of iterations
k such that the residual %(k) is “of the same size” as the
noise vector e. Specifically, such that ‖%(k)‖2 approximates
the expected value E(‖e‖2) of the latter:

‖%(k)‖2 ≈ η
√
m . (9)

In the literature this is referred to as the discrepancy principle
[6]. Since ‖%(k)‖2 takes discrete values for k = 1, 2, 3, . . .
we cannot expect to find a k such that the above holds with
equality.

It is common to include a constant τ slightly larger than 1,
say, τ = 1.02, such that the above condition takes the form
‖%(k)‖2 ≤ τ η

√
m. This constant can be useful as a “safety

factor” when we have only a rough estimate of the noise.
If we replace x(k) with the ground truth x̄ then the residual

is b−Ax̄ = e and the residual norm obviously equals ‖e‖2.
However, this is not a sound statistical argument that the norm
of the residual %(k) in Eq. (3) should be equal to ‖e‖2 for the
optimal iterate x(k).

Here we present an alternative that is based on statistical
principles. To motivate this stopping rule, we split the residual
vectors as follows:

%(k) = b−Ax(k) = b−AA#
k b

= (I −AA#
k ) b̄ + (I −AA#

k ) e .

The heuristic insight is then as follows:
• When k is too small then Ax(k) is not a good

approximation the exact data b̄. Hence, the residual %(k)

is dominated by (I −AA#
k ) b̄ and ‖(I −AA#

k ) b̄‖2 is
larger than ‖(I −AA#

k ) e‖2.

• When k is “just about right” then Ax(k) approximates
b̄ as well as possible; the norm ‖(I − AA#

k ) b̄‖2 has
now become smaller and it is of the same size as the
norm ‖(I −AA#

k ) e‖2.

• When k is too large then the residual %(k) is dominated
by the noise component (I − AA#

k ) e, and therefore
‖(I −AA#

k ) e‖2 dominates the residual norm.
According to these observations we should therefore choose k
such that ‖(I−AA#

k ) b̄‖2 ≈ ‖(I−AA#
k ) e‖2. Unfortunately

both these are unknown.
The above heuristic reasoning has been formalized in [13],

[18] and [25], and we will summarize the main results as they

apply here. The key points are that ‖(I − AA#
k ) b‖2 is an

approximation to the prediction error ‖(I − AA#
k ) b‖2 and

that
E(‖(I −AA#

k ) e‖22) = η2 (m− tk)

in which
tk = trace(AA#

k ) . (10)

Hence, at the optimal k we have

E(‖%(k)‖22) ≈ η2 (m− tk) . (11)

Here, k is “optimal” in the sense that it is the largest iteration
number for which we cannot reject x(k) – computed from the
noisy data b – as a possible solution to the noise-free system,
cf. [25, p. 93].

The real number m− tk is sometimes referred to as the ef-
fective (or equivalent) degrees of freedom [27] in the residual.
An exact computation of tk is cumbersome for most methods,
but it can be approximated quite efficiently as described in
§III. We have thus arrived at the following “fit-to-noise-level”
(FTNL) stopping rule where, again, we include the “safety
factor” τ :

Stop rule: FTNL

Stop at the smallest k

for which ‖%(k)‖2 ≤ τ η
√
m− tk .

Example 1. We illustrate the FTNL “fit-to-noise-level”
stopping rule with two small parallel-beam CT problems
with image size 64 × 64 and 91 detector pixels. The pro-
jection angles are, respectively, 3◦, 6◦, 9◦, . . . , 180◦ (giving
an over-determined system) and 8◦, 16◦, 24◦, . . . , 180◦ (giving
an under-determined system). In both cases we removed zero
rows from the system matrix.

We used Landweber’s method to solve these two problems.
Figure 2 shows the reconstruction errors ‖x(k) − x̄‖2 and the
norms ‖%(k)‖2 versus k, together with the threshold η

√
m and

the function η
√
m− tk, i.e., here we use τ = 1. The graphs

confirm the monotonic decrease of the residual norm. For both
problems, the “fit-to-noise-level” stopping rule terminates the
iterations close to the optimal number of iterations. A stopping
rule involving η

√
m, on the other hand, would terminate the

iterations much too early. �

B. Minimization of the Prediction Error – UPRE

The key idea is to find the number of iterations that
minimizes the prediction error, i.e., the difference between
the noise-free data b̄ = Ax̄ and the predicted data Ax(k).
Statisticians refer to various measures of this difference as the
predictive risk, and the resulting method for choosing k is
often called the unbiased predictive risk estimation (UPRE)
method.

Here we present the results specifically in the framework
of iterative reconstruction methods and using the matrix A#

k

defined in Eq. (4). Following [26, §7.1], where all the details



Fig. 2. Illustration of the FTNL stopping rule for Landweber’s method, with
two parallel-beam tomographic problems. The smallest reconstruction error is
marked with the black dot, and the residual norms that satisfies the stopping
rules are marked with red circles. The FTNL rule works well, while stopping
at that k for which ‖%(k)‖2 ≈ η

√
m terminates the iterations much too

early.

can be found, the expected squared norm of the prediction
error (the risk) is

E
(
‖b̄−Ax(k)‖22

)
=‖(I −AA#

k ) b̄‖22 +

η2 trace
(
(AA#

k )2
)

while the expected squared norm of the residual can be written
as

E
(
‖b − Ax(k)‖22

)
= ‖(I −AA#

k ) b̄‖22 +

η2 trace
(
(AA#

k )2
)
− 2η2 trace(AA#

k ) + η2m .

Combining these two equations we can eliminate one of the
trace terms and arrive at the following expression for the risk:

E
(
‖b̄−Ax(k)‖22

)
= E

(
‖b−Ax(k)‖22

)
+

2η2 trace(AA#
k )− η2m .

Substituting the actual squared residual norm ‖%(k)‖22 =
‖b−Ax(k)‖22 for its expected value, we thus define the UPRE
risk as a function of k:

U (k) = ‖%(k)‖22 + 2 η2 tk − η2m (12)

with tk given by (10). A minimizer of U (k) will then give an
approximation to a minimizer of the prediction error. We note
that U (k) may not have a unique minimizer, and we therefore
choose the smallest k at which U (k) has a local minimum.
Thus we arrive at the following stopping rule:

Stop rule: UPRE

Minimize U (k) = ‖%(k)‖22 + 2 η2 tk − η2m .

C. Another Rule Based on the Prediction Error – GCV

The above UPRE stopping rule depends on an estimate of
the standard deviation η of the noise – which may or may not
be a problem in practise. We shall now describe an alternative
method for minimization of the prediction error, derived by
Wahba [27], that does not depend on knowledge of η.

The outset for this method is the principle of cross vali-
dation. Assume that we remove the ith element bi from the
right-hand side (the noisy data), compute a reconstruction
x
(k)
[i] , and then use this reconstruction to compute a prediction

b̂i = rTi x
(k)
[i] of the missing data bi, where

rTi = A(i , :) = ith row of A.

The goal would then be to choose the number of iterations k
that minimizes the mean of all the squared prediction errors:

Ĝ(k) =
1

m

m∑
i=1

(
bi − b̂i

)2
=

1

m

m∑
i=1

(
bi − rTi x

(k)
[i]

)2
.

Then it is proved in [27, Thm. 4.2.1] that we can avoid the
vectors x(k)

[i] and write Ĝ(k) directly in terms of x(k):

Ĝ(k) =
1

m

m∑
i=1

(
bi − rTi x(k)

1− α(k)
i

)2

, (13)

where α(k)
i is the ith diagonal element of the matrix product

AA#
k associated with x(k).

At this stage, recall that the 2-norm is invariant under an
orthogonal transformation, of which a permutation is a special
case. Specifically, if Q is an orthogonal matrix then

‖Q (Ax− b)‖2 = ‖Ax− b‖2

which means that the reconstruction x(k) is invariant to such
a transformation. Unfortunately it can be proved [27] that
the minimizer of Ĝ(k) is not invariant to an orthogonal
transformation of the data. In particular, it is inconvenient that
a stopping rule based on Ĝ(k) would produce a k that depends
on the particular ordering of the data.

The generalized cross validation (GCV) method circum-
vents this problem by replacing all α(k)

i with their average

µ(k) =
1

m

m∑
i=1

α
(k)
i =

1

m
trace(AA#

k ) =
tk
m

,



leading to the modified measure

G̃(k) =
1

m

1

(1− µ(k))2

m∑
i=1

(
bi − rTi x(k)

)2
=
‖b−Ax(k)‖22
m(1− tk/m)2

= m
‖%(k)‖22

(m− tk)2
. (14)

The minimizer of G̃(k) is, of course, independent of the factor
m and hence we choose to define the GCV risk as a function
of k as

G(k) =
‖%(k)‖22

(m− tk)2
. (15)

We have thus arrived at the following η-free stopping rule
where again, in practice, we need to estimate the quantity tk:

Stop rule: GCV

Minimize G(k) = ‖%(k)‖22 / (m− tk)2 .

The above presentation follows [27, §4.2–3]. A different
derivation of the GCV method was presented in [10]; here the
coordinate system for Rm is rotated such that the correspond-
ing influence matrix becomes a circulant matrix with identical
elements along all its diagonals. This approach leads to the
same GCV risk G(k) as above.

Perhaps the most important property of the GCV stopping
rule is that the value of k which minimizes G(k) in (15) is also
an estimate of the value that minimizes the prediction error.
Specifically, if kGCV minimizes the GCV risk G(k) and kPE

minimizes the prediction error ‖b̄−Ax(k)‖22, then it is shown
in [27, §4.4] that

E
(
‖b̄−Ax(kGCV)‖22

)
→ E

(
‖b̄−Ax(kPE)‖22

)
for m→∞ .

The UPRE and GCV stopping rules have the slight inconve-
nience that we need to take at least one iteration too many in
order to detect a minimum of U (k) and G(k), respectively. In
practise, this is not really a problem. For tomography problems
the iteration vector x(k) does not change very much from
one iteration to the next, and hence the minimum of the error
history ‖x̄−x(k)‖2 is usually very flat. Hence it hardly makes
any difference if we implement the UPRE and GCV stopping
rules such that we terminate the method one iteration (or a
few iterations) after the actual minimum of U (k) or G(k).

Example 2. We illustrate the UPRE and GCV stopping rules
applied to Landweber’s method with the two CT problems
from Example 1. In both cases we removed zero rows from
the system matrix. Figure 3 shows U (k) and G(k) from Eqs.
(12) and (15) versus k, together with the error histories. The
two stopping rules terminate the iterations at approximately the
same number of iterations – not too far from the minimum of
the error history. Note how flat the error history is: in practise
it makes no difference if we terminate the iterations exactly
at the minimum of U (k) and G(k) or a few iterations later. �

Fig. 3. Illustration of the UPRE and GCV stopping rules for Landweber’s
method applied to the two parallel-beam CT problems in Example 1 and 2.

D. Stopping When All Information is Extracted — NCP

The above stopping rules include the trace term tk in Eq.
(10). This term can be estimated at additional cost as discussed
in §III below, but it is also worthwhile to consider a stopping
rule that needs neither the trace term tk nor the standard
deviation η of the noise. The so-called NCP criterion from
[16] and [23] is one such method. The considerations that
underly this method are as follows:

1) noisy data only contain partial information about the
reconstruction,

2) in each iteration we extract more information from the
data, and

3) eventually we have extracted all the available informa-
tion in the noisy data.

Therefore we want to monitor the properties of the residual
vector. During the initial iterations we have not yet extracted
all information present in the data and the residual still
resembles a meaningful signal, while at some stage – when
all information is extracted – the residual starts to appear like
noise. When we iterate beyond this point, we solely extract
noise from the data (we “fit the noise”) and the residual vector
will appear as filtered noise where some of the noise’s spectral
components are removed.

To formalize this approach, in the white-noise setting of this
presentation, we need a computational approach to answering
the questions: when does the residual vector look the most like
white noise? To answer this question, statisticians introduced
the so-called normalized cumulative periodogram.

In the terminology of signal processing, a periodogram is
identical to a discrete power spectrum defined as the squared
absolute values of the discrete Fourier coefficients. Hence the
periodogram for an arbitrary vector v ∈ Rm is given by

p̂i =
∣∣v̂i∣∣2, i = 1, 2, . . . , q , v̂ = DFT(v) . (16)



Fig. 4. Illustration of NCP vectors c(v) ∈ R256 for vectors v that are white
noise (left), dominated by low-frequency components (middle), and dominated
by high-frequency components (right).

Here, DFT denotes the discrete Fourier transform (computed
by means of the FFT algorithm) and q = bm/2c denotes
the largest integer such that q ≤ m/2. The reason for
including only about half of the Fourier coefficients in the
periodogram/power spectrum is that the DFT of a real vector
is symmetric about its midpoint. We then define the corre-
sponding normalized cumulative periodogram (NCP) for the
vector v as the vector c(v) of length q with elements, for
j = 1, 2, . . . , q,

cj(v) =
p̂2 + · · ·+ p̂j+1

p̂2 + · · ·+ p̂q+1
=
‖v̂2:j+1‖22
‖v̂2:q+1‖22

. (17)

White noise is characterized by having a flat power spectrum
(similar to white light having equal amounts of all colors), and
thus the expected value of its power spectrum components is
a constant independent of i. Consequently, the expected value
of the NCP for a white-noise vector vw is the vector

E
(
c(vw

)
) = cw =

(
1

q
,

2

q
, . . . , 1

)
.

How much a given vector v deviates from being white noise
can be measured by the deviation of the corresponding c(v)
from cw, e.g., as measured by the norm ‖c(v)− cw‖2.

Example 3. Figure 4 illustrates the appearance of NCP
vectors c(v) for vectors v of length m = 256 with dif-
ferent spectra. The completely flat spectrum for white noise
corresponds to a straight line from (0, 0) to (q, 1) with
q = b256/2c = 128. The left plot shows NCPs for 10
random realizations of white noise, and they are all close to the
ideal white-noise NCP cw. The middle and right plots show
NCPs for random vectors that are dominated by low-frequency
and high-frequency components, respectively; their systematic
deviation from cw is obvious. �

To utilize the NCP framework in the algebraic iterative
methods for tomographic reconstruction, a first idea might be
to terminate the iterations when the deviation measured by
‖c(%(k))−cw‖2 exhibits a minimum. However, this would be
a bit naive since the residual vector does not really correspond
to a 1D signal of length m. Rather, the right-hand side b
consists of a number of projections, one for each angle of the
measurements – and the residual vector inherits this structure.
Hence, a better approach is to apply an NCP analysis to each
projection’s residual, and then combine this information into
a simple measure.

Depending on the CT scanner, each projection is either a 1D
or 2D image, when we perform 2D and 3D reconstructions,

respectively. To simplify our presentation, we assume that our
data consists of mθ 1D projections, one for each projection
angle θ1, θ2, . . . , θmθ

. We also assume that the data are orga-
nized such that we can partition the right-hand side b and the
residual vector into mθ sub-vectors,

b =


b1
b2
...
bmθ

 , %(k) =


%
(k)
1

%
(k)
2
...

%
(k)
mθ

 , (18)

with each sub-vector corresponding to a single 1D projection.
Now define the corresponding quantities

ν
(k)
` =

∥∥c(%(k)`

)
− cw

∥∥
2
, ` = 1, 2, . . . ,mθ (19)

that measure the deviation of each residual sub-vector from
being white noise. Then for the kth iteration we propose to
measure the residual’s deviation from being white noise by
averaging the above quantities, i.e., by means of the “NCP-
number”

N (k) =
1

mθ

mθ∑
`=1

ν
(k)
` . (20)

This multi-1D approach for 2D reconstruction problems leads
to the following stopping rule:

Stop rule: NCP

Minimize N (k) =
1

mθ

mθ∑
`=1

∥∥c(%(k)`

)
− cw

∥∥
2
.

In the case of 3D reconstructions, where the data consist
of a collection of 2D images, the computation of ν(k)` should
take this into consideration. In particular we need to define
the NCP vector c

(
%
(k)
`

)
when the residual sub-vector %(k)`

represents an image; how to do this is explained in [16].
Similar to the previous stopping rules, in practise it is more

convenient to implement the NCP stopping rule such that
we terminate the iterations at the first iteration k for which
N (k) increases. There is no theory to guarantee that N (k) will
behave smoothly, and we occasionally see that N (k) exhibits
a minor zig-zag behavior. Hence it may be necessary to apply
the NCP stopping rule to a smoothed version of the NCP-
numbers, obtained by applying a “local” low-pass filter to the
N (k)-sequence.

Example 4. We illustrate the NCP stopping rule with a
parallel-beam CT problem with image size 256×256 and with
362 detector pixels and projection angles 1◦, 2◦, . . . , 180◦. The
performance is shown in Fig. 5 together with surface plots
of the matrix

[
c
(
%
(k)
1

)
, c
(
%
(k)
2

)
, . . . , c

(
%
(k)
mθ

)]
for selected

iterations k. We clearly see the changing shape of the NCP
vectors c

(
%
(k)
`

)
as k increases. The minimum of N (k) is

obtained at kNCP = 179. This is somewhat early, considering
that the minimum reconstruction error is obtained at k = 497
iterations – but on the other hand, the reconstruction and the
error changes only little between iterations 150 and 700. �



Fig. 5. Illustration of the NCP stopping rules for Landweber’s method applied to a parallel-beam test problem. We also show surface plots of the matrix[
c
(
%
(k)
1

)
, c

(
%
(k)
2

)
, . . . , c

(
%
(k)
mθ

)]
for selected iterations k. This stopping rule leads to a somewhat premature termination of the iterations at kNCP = 179

(the minimum error occurs for k = 497 iterations), but it should be noted that the error does not change much between iterations 179 and 700.

III. ESTIMATION OF THE TRACE TERM

The FTNL, UPRE and GCV stopping rules include the term
tk = trace(AA#

k ). To make these methods practical to use,
we need to be able to estimate this trace term efficiently,
without having to compute the SVD of the system matrix A
or form the influence matrix AA#

k . The most common way
to compute this estimate is via a Monte Carlo approach.

Underlying this approach is the following result from [9].
If w ∈ Rm is a random vector with elements wi ∼ N (0, 1),
and if S ∈ Rm×m is a symmetric matrix, then wTSw is an
unbiased estimate of trace(S). Therefore t estk = wTAA#

k w

is an unbiased estimator of tk = trace(AA#
k ).

To compute this estimate we need to compute the matrix-
vector product A#

k w efficiently. Recalling the definition of
A#
k in Eq. (4), this can be done simply by applying the

algebraic iterative method to the system Aξ = w which, after
k iterations, produces the iteration vector ξ

(k)
= A#

k w. The
resulting estimate

t̄ estk = wTA ξ
(k)

= (ATw)T ξ
(k)

(21)

is the standard Monte Carlo trace estimate from [9]. In an
efficient implementation of (21) the vector ATw is pre-
computed and stored.

An alternative approach was presented in [24]. This ap-
proach also applies to the general method in (2) with D = I

and with a general m×m matrix M (it is not required to be
symmetric). When we apply such a method with an arbitrary
nonzero starting vector ξ(0) to the system Aξ = 0, then it
follows from Eq. (4) that the iterates are

ξ(k) = (I − ωATBA)k ξ(0) .

Then it is shown in [24] that if we use a random starting
vector ξ(0) = w ∈ Rn with elements wi ∼ N (0, 1), and if
ξ(k) denotes the corresponding iterations for the system Aξ =
0, then wT ξ(k) is an unbiased estimator of n− trace(AA#

k ).
This leads to the alternative trace estimate

t estk = n−wT ξ(k). (22)

In order to use either of these trace estimates instead of the
exact tk, we must simultaneously apply the iterative method
to two right-hand sides, which essentially doubles the amount
of work. The Landweber method with the two different trace
estimation schemes are shown below.

If we are willing to increase the overhead further, we can
compute a more robust estimate of tk by applying the above
idea to several random vectors and computing the mean or
median of the t estk -values.



Fig. 6. Comparison of the two trace estimates t̄ estk and t estk for Landweber’s
method applied to the over-determined test problem from Example 1. The
thick red line is the exact trace tk , and the thin black lines are the trace
estimates for 10 different random vectors w and w.

Landweber method with (21) trace estimator

w = random m-vector for trace estimation
x(0) = initial vector

ξ
(0)

= 0 initial zero vector for trace estimation
z = ATw
for k = 0, 1, 2, . . .

x(k+1) = x(k) + ωAT (b−Ax(k))

ξ
(k+1)

= ξ
(k)

+ ωAT (w −Aξ(k))

t̄ estk+1 = zT ξ
(k+1)

trace estimate
stopping rule goes here

end

Landweber method with (22) trace estimator

w = random n-vector
x(0) = initial vector
ξ(0) = w initial vector for for trace estimation
for k = 0, 1, 2, . . .

x(k+1) = x(k) + ωAT (b−Ax(k))

ξ(k+1) = ξ(k) + ωAT (0−Aξ(k))
t estk+1 = n−wT ξ(k+1) trace estimate
stopping rule goes here

end

Example 5. We illustrate the two trace estimates t̄ estk and
t estk for Landweber’s method applied to the over-determined
test problem from Example 1. Figure 6 shows the trace esti-
mates for 10 different realizations of the random vectorsw and
w, together with the exact trace tk. We see that the estimate
t estk , shown in the bottom plot, has the smallest variance. We

Fig. 7. Illustration of the use of the trace estimate t estk in the FTNL stopping
rule for Landweber’s method applied to the over-determined test problem
from Examples 1. We used 10 different random vectors w in (22) and the
corresponding 10 intersections between ‖%(k)‖22 (thick red line) and η2 (m−
t estk ) (thin blue lines) are shown by the red circles. The black dot shows the
intersection with the exact η2 (m− tk).

are not aware of theory that supports this observation. �
Example 6. Continuing from the previous example, Fig. 7

illustrates the use of the trace estimate t estk in the FTNL
stopping rule. To show the variability of the stopping rule we
used 10 different random vectors w, leading to 10 different
realizations of η2 (m− t estk ). Their intersections with ‖%(k)‖22
are shown by the red circles, corresponding to stopping the
iterations at

k = 3100, 3112, 3421, 3512, 3722,

3875, 4117, 4133, 5553, 7000.

The black dot marks the intersection of the exact of ‖%(k)‖22
with η2 (m− tk), corresponding to iteration k = 3846. �

IV. LARGE-SCALE NUMERICAL EXAMPLE

In this section we use a simulated large-scale CT recon-
struction problem to illustrate the use of the GCV and NCP
stopping rules described above. We focus on an application in
dynamic tomography where the time scale of the process being
examined dictates the use of a small number of projections as
well as short exposure times of each projection. This leads to
challenging reconstruction problems where it is critical to use
a stopping rules that terminates the iterations such that x(k)

is as close as possible to x̄ and without having knowledge of
the noise level in the data.

Specifically we study the use of the GCV and NCP stopping
rules applied to the reconstruction of a single time step in a
simulation of a dynamic CT experiment. The dynamic process
under study is the separation of an emulsion of oil and water in
a porous rock; the components separate vigorously over time,
due to the two fluids being immiscible.

The basis of our simulation is a segmentation of a nano-CT
scan of a piece of chalk from the Hod field in the North Sea
Basin (sample id HC #15) which was scanned, reconstructed
and segmented as described in [4], [20]. A subset consisting
of 200× 256× 256 voxels is chosen for the fluid simulation.
Pixels outside a radius of 124 pixels from the center axis
are set to zero to form a cylinder, which is mirrored along
its vertical axis to ensure that the multiphase flow simulation
has periodic boundary conditions. The flow simulation is done



Fig. 8. A single slice of the volume being examined. White corresponds to
rock while light and dark grey correspond to water and oil respectively.

with a phase-field Lattice Boltzmann method for systems that
are isothermal and incompressible [7], [8]. The simulation pro-
duces phase values for each voxel that describes the fraction
of oil and water in the voxel. These phase values are converted
to attenuation values based on values measured in [19] where
a sandstone filled with a brine and oil is imaged with X-rays
at 80 keV.

Figure 8 shows a slice from a single time frame in the
simulation; the rock matrix is white, the water phase is light
grey, and the oil phase is dark grey. The time frame which
was chosen for testing the stopping rules is fairly early in the
simulation where multiple interfaces between the two fluids
are present.

Forward projection: The forward projection of the volume
is performed using the ASTRA toolbox with a parallel beam
geometry [1], [2], [22]. We use 362 detector pixels and 360
projection angles. The forward projection in ASTRA can be
considered an ideal experiment with monochromatic X-rays
and infinite brilliance, i.e., without any noise.

Noise: We create noisy data from the above clean data
in such a way that we emulate the noise present in X-ray
tomography as a result of the finite count of photons, cf.
[15, §4.4]. Specifically, if b̄ = Ax̄ denotes the clean data
computed by means of ASTRA, then the corresponding X-ray
intensities at the detector are given by

Īi = I0 exp(−b̄i) , i = 1, . . . ,m ,

where I0 is the source’s intensity. We then use Īi as the
expected value in a Poisson distribution to obtain noisy in-
tensities

Ii = P(Īi) = P(I0 exp(−b̄i)) , i = 1, . . . ,m .

Finally, we convert these noisy intensities back to the noisy
data vector b via the relation

bi = − log(Ii/I0) , i = 1, . . . ,m .

We use three different noise levels 0.25%, 1% and 5% which
visually corresponds to low, moderate and high noise. The
noise level is given by

ρ =
‖e‖2
‖b̄‖2

, e = b− b̄ , (23)

where e denotes the measurement error in Eq. (1). This noise
does not exactly fit with the assumption of white Gaussian
noise which is used for the previous derivations, but it is a
good approximation to the noise present in CT experiments.

Reconstruction: We compute reconstructions from the sim-
ulated projection data with the ASTRA toolbox by using
the Simultaneous Iterative Reconstruction Technique (SIRT)
iterative method. This is a special case of the general method
in Eq. (2) where the diagonal matrices D and M contain the
inverse column and row sums of A:

djj = 1/
m∑
i=1

aij and mii = 1/
n∑
j=1

aij .

We perform 1000 SIRT iterations and for UPRE and GCV
the trace t(k) in U (k) and G(k) is estimated using Eq. (21).
Note that only a single random vector w is used to reduce
computation time. This is not a concern in this specific case as
the estimation of t(k) proved very stabile for different random
vectors.

The forward projection of x(k) used in the calculation
of N (k) is computed with ASTRA, and the remaining part
of the algorithm is calculated with CuPy, a Python package
which makes it possible to offload calculations to a CUDA-
compatible GPU to improve the computation time of N (k).
The vector v in (16) is padded with zeros such that its
length can be written in the form n = 2a + 3b + 5c + 7d

as this substantially speeds up the calculation when the DFT

is calculated with CUDA.
Results: As previously mentioned, we reconstruct the data

at three different noise levels. Moreover, we subsample the
number of projections used for the reconstruction such that
it is performed with 360, 120 and 45 projection angles. This
leads to 9 different data sets.

Figure 9 shows graphs of ‖%(k)‖2, τ η
√
m− tk (called

FTNL), U (k), G(k), N (k) and ‖x(k) − x̄‖2 along with their
local minima. In general we see that the FTNL and UPRE
stopping rules perform well in this simulated example; but
they depend on knowledge of the noise level η which is rarely
known for real data. An advantage of the GCV and NCP
stopping rules is that they do not rely on an estimate of η.
GCV performs well in the case with 1% and 5% noise, but
it overestimates the number of iterations with the small noise
level ρ = 0.25%. The NCP stopping rule is also a robust
method and it performs well for all noise levels. It is worth
noting that the reconstruction error is very flat for this noise
level, which means the exact amount of iterations used is less
critical.

Figure 10 shows the effect of semi-convergence on the data
set when it is reconstructed with Nproj = 360 and ρ = 1.00%.
A single slice of the reconstruction is shown in all subfigures.



Fig. 9. Illustration of the four different stopping rules for the large-scale example. The filled circles on each curve represent the minimum. Each column
has a varying number of projections and each row has a varying amount of noise, as shown in the titles of each subplot.

All images in Fig. 10 are truncated such that their intensities
are between 0 and 25,000. Image a is the reconstruction after
k = 100 iteration where it still has a blurred appearance,
showing that more iterations are necessary. Images b and
c are the reconstructions at the number of iterations which
minimize the reconstruction error and N (k), respectively. The
appearance of these reconstructions is very similar, but c
has a slight increase in noise. The rightmost image d is the
reconstruction after 1000 iterations where it is noticeable more
noisy than b and c.

V. CONCLUSION

We surveyed several state-of-the-art stopping rules, based on
statistical considerations, that are useful for algebraic iterative
reconstruction methods in X-ray computed tomography (CT).
Common for these stopping rules is that they seek to terminate
the iterations at the optimal point where the reconstruction
error and the noise error balance each other. They are easy to
use and they are also easy to integrate in existing software.
We also illustrated the use of two of these methods for a
large-scale CT problem related to the study of multiphase flow
in chalk. Our numerical experiments show that especially the
NCP stopping rule – which is based on statistical properties of



Fig. 10. Illustration of semi-convergence for the large-scale example with 360 projections and noise level ρ = 1%. Results for four different iteration
numbers are shows. Image a is the reconstruction after 100 iterations. Image b is the reconstruction at kmin = 157 which is the number of iterations that
minimizes the reconstruction error. Image c is the reconstruction at kNCP = 189 which is the number of iterations that minimizes N(k). Finally, image d is
the reconstruction after k = 1000 iterations.

the residual and does not depend on knowledge of the noise
level – works well for this problem.
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CHAPTER7
Contribution C:

Crystal formation from high resolution 4D X-ray
µCT: Initiation, expansion, and densification

The two previous contributions represent the theoretical work done during the project.
However, we always had the intention that the algorithms developed in  Contribution
A should be used experimentally as this would verify their performance. Unforeseen
events delayed the production of the tri-axial flow cell, so we decided to broaden the
scope of the project such that the focus shifted from flow in porous media to dynamic
processes in general.

One of my co-supervisors, Henning Osholm Sørensen, therefore, introduced me
to PhD student Isaac Appelquist Løge, whose project is to develop a method to
investigate the kinetics of scale formation. We decided to perform dynamic in situ
experiments that examine the crystallisation process as there have been few of these
in the literature. We performed the initial test experiments in the spring of 2021 and
gathered the final data in the fall of 2021.

During the experiment, we flooded a carbon steel flow cell with water that was
supersaturated with BaSO4 for over 150 hours while continuously imaging it in a
CT scanner. We used a modified version of one of the algorithms presented in

 Contribution A to reconstruct the projections. This reduced image noise consider-
able and allowed us to analyse the scaling process in detail.

The contribution is still in preparation, and a draft of it is, therefore, included
below.
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Abstract

Crystallisation fouling presents a costly challenge, as it lowers the efficiency of heat exchangers, decreases

the throughput of desalination membranes and clogs underground pipelines. Optimal maintenance requires

accurate knowledge of the kinetics of the formation of crystallisation fouling. Current methods for com-

prehensive in situ investigations are limited. The most commonly used ex situ or 2D experiments cannot

capture dynamic effects or describe formation kinetics. This work uses X-ray computed tomography (CT)

scanning to address this challenge. We recorded the formation of crystalline fouling in situ by installing a

custom-built flow loop inside a CT cabinet. To record the temporal changes in the crystalline fouling, we

had to sparsely sample and underexpose the specimen, so we employed a custom reconstruction algorithm

ensured accurate reconstructions. The high spatiotemporal resolution of the experiment made it possible

to study the processes of crystal formation. Our findings show how the growth rate can vary 300 % in the

initial phases of growth. Even though we performed measurements for 150 hours, the rate at which growth

formed was not constant. This non-equilibrium effect reflects the complexity of crystallisation formation

in natural systems. Our findings provides a foundation for unveiling the dynamics of fouling mechanisms,

which will aid in developing more accurate prediction models.
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1. Introduction

Crystallisation fouling, i.e. the growth of unwanted crystals on a solid surface, presents both technical

and economic challenges in many industries [1, 2, 3, 4, 5, 6]. Optimal mitigation strategies hinges on accurate

prediction models that are established through developing insights to the process at hand. Decoupling the

build-up allows for functional mitigation strategies, capable of targeting the particular problem. Fouling can

be divided into five separate stages occurring throughout the build-up; nucleation, transport, attachment,

detachment and ageing [7]. Numerous experiments on the separate stages of fouling have revealed some of

the underlying mechanics.

Surface nucleation of insoluble crystals depends on the number of kink sites as kink sites lower the

surface energy [8]. Transport governs both bulk mixing and influx of reactive species to the surface; fluid

turbulence can cause complex anisotropic mixing [9], and accelerate wall transport in systems where sur-

face features modulate fluid flow [10]. Attachment is important both from a molecular and macroscopic

viewpoint. Molecular attachment in stagnant hydrodynamic surface layers can cause unexpected induction

times [11]. Macroscopic adhesion of pre-crystallised particles is dependent on gravitational forces, and the

rate of deposition or particle sedimentation becomes dependent on crystal density [12]. Crystal detachment

is dependent on the forces from the liquid [10], and of the substrate on which they are formed [13]. Modu-

lation of substrate properties can both increase [14] and decrease growth rates [13]. The individual phases

described above can be characterised in-depth; however, piecing the processes together is difficult due to

experimental limitations. Nucleation requires a high spatiotemporal resolution, as these processes are rapid,

while transport, attachment, detachment and ageing are occuring over long periods.

Investigating fouling formation has, throughout the literature, been performed with three prototypical

setups; the bulk jar test experiment, the rotating electrode experiment, and the flow loop [15] where fouling

was estimated by gained mass or increased pressure. To bridge the gap, there has been a call for new

approaches [16, 17]. Examples of newly developed methods used to examine fouling formation are:

• Scanning electron microscopy paired with energy dispersive X-ray spectroscopy [16].

• Quartz crystal micro balance (QCM) in combination with atomic force microscopy [18].

• In situ synchrotron CT scanning [19].

• X-ray fluorescence in conjunction with µCT scanning [20].

• In situ X-ray diffraction [21, 22].

Insights into the surface attachment mechanism have been gained from QCM, which showed larger

crystal growth at higher saturation index [18]. The growth kinetics of BaSO4 was investigated through

in situ synchrotron CT scanning, permitting a more in-depth mechanistic understanding of the growth in

2



porous media [19]. However, development of an experimental method capable of balancing a sufficently high

spatiotemporal resolution, with a long experimental time is missing [23].

The once-through flow loop poses as a good template for simulating real-world conditions of residence

time, hydrodynamics, and physio-chemical conditions, relevant for crystal growth. Furthermore, there has

been recent development showcasing the possibilities of designing these once-through systems, such that

surface adhesion was decoupled from bulk precipitation [24, 25].

In this study, we combined a once-through flow loop with spatiotemporally resolved CT scanning to

measure the fouling formation process throughout multiple stages. In situ investigation of fouling formation

allowed for a detailed analysis of different stages in growth and the transition between modes of fouling. We

decoupled three growth mechanisms present in crystallisation fouling build-up and showed how they affect

volume and mass deposition independently. We observed an initiation phase, characterised by many crystal

clusters forming; an expansion phase, where the volumetric growth rate is larger than the gravimetric rate;

lastly, we show densification, where incoming ions are closer packed, and the gravimetric rate is larger than

the volumetric.

Optimal mitigation strategies are based mechanistic insights, as these allow for protocols with the correct

functionalities to be developed. Predicting crystallisation formation is based on accurate knowledge of the

growth rate in the system. We show a growth rate that varies non-linearly with a span of 300 % from 0 to 150

hours. Non-equilibrium effect reflects the complexity of crystallisation formation in natural systems. Our

findings allow for comprehensive prediction models to be developed, decoupling the various stages present

in crystallisation build-up, and implement functionality based intervention strategies.

2. Materials and Method

2.1. Materials

BaCl2 (99.9 %, Sigma Aldrich), and Na2SO4 (99.0 %, Merck Millipore), were used as received. Two

separate solutions were prepared: 0.2mmolal BaCl2 and 0.27mmolal Na2SO4. The saturation indices (SI)

for the solution were calculated at 60 °C after mixing in a 1:1 ratio using the PHREEQC geochemical

simulator. Pitzer parameters were implemented [26, 27] and SI is calculated as:

SI = log10

(
aiaj
KSP

)
(1)

where ai and aj are the activity coefficients of the reactants and K SP is the solubility constant. The SI was

calculated to be 1.5 for the BaSO4 solution.

2.2. The experimental procedure

The experimental set-up is identical to the one described and used by Løge et al. for ex situ fouling

investigation [10]. We used single flow-through mode in a deposition cell with an internal diameter of 3mm
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and a length of 3 cm. The cells were fabricated on a CNC machine in a workshop affiliated with the authors,

based on the deposition cell design from Løge et al. [10]. The reaction temperature was fixed to 60 °C, and

the injected flow rate for each brine was 36mL/min, which gave a Reynolds number of 1080.

2.3. In situ X-ray tomography experiment

We imaged the set-up using the ZEISS XRadia Versa 410 instrument at the 3D Imaging Centre, DTU.

Before and after the in situ scanning procedure, high-quality scans of the sample were acquired. These scans

consisted of 2401 projections acquired over a 360° rotation. Aquisition was done using a beam energy of

150 kV and an exposure time of 5 s. Beam hardening was accounted for by filtering low energy radiation

away using an HE2 filter. Optical magnification of 4× was used yielding a pixel size of 4.6µm. We used

binning of factor two which resulted in a volume with 10153 voxels. The number of projections per scan

was reduced to 401 during the dynamic imaging to decrease acquisition time. The reduction resulted in

an acquisition time of approximately one hour, which ensured that we had a sufficient time resolution to

capture the dynamics of the scaling process. A total of 154 scans were gathered.

2.4. Reconstruction method

Artefacts and high noise levels are generally obtained using the standard FDK reconstruction algorithm

when few projections are recorded [28, 29, 30]. To avoid these we used the SIRT-BC algorithm as described

by Rasmussen et. al [31]. The SIRT-BC algorithm algorithm is based on the Simultaneous Iterative Recon-

struction Technique [32, 33] and is here used adding box constraints, i.e. an upper and a lower limit for the

reconstructed values is given in the reconstruction procedure.

The reconstruction algorithm leverages a high-quality scan of the sample acquired before dynamic data-

taking. The high-quality scan is without noise or other artefacts as it consists of more projections. The first

time step of the dynamic reconstruction is initialised with this high-quality reconstruction and subsequent

time steps are initialised with the reconstruction of the previous time step. The initialisation improves both

the quality of the reconstruction and speeds up the convergence of the algorithm. The difference between

FDK and SIRT-BC can be seen in Fig. 1, which shows an orthoslice of the cell after 50 hours of flow. The

magnified area shows a noticeably larger noise level in the FDK reconstruction. The noise makes distinguish-

ing the scale from the background difficult. Relying on this reconstruction would inhibit further analysis.

Algorithms such as SIRT-BC does not necessarily converge when the reconstruction that resembles the

actual object the most is obtained. Iterating beyond the optimal point decreases the signal to noise ratio

of the reconstruction, which makes it desirable to estimate this point. We attempted to do this with the

NCP stopping rule [34], but the NCP stopping rule terminated the reconstruction prematurely. Therefore,

we elected to use 100 iterations, based on experiments, for each time step.
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(a) FDK (b) SIRT-BC

Figure 1: A comparison of a reconstruction performed with the FDK algorithm and the SIRT-BC algorithm after

50 hours of flow.

Six data sets were lost during acquisition, and an additional two data sets exhibited a large amount of sample

movement and were not reconstructed. The first five reconstructions were excluded from the analysis as

the sample shifted slightly during this period. The remaining 141 data sets, excluding the initial and final

high-quality scans, were used for analysis throughout the study.

2.5. Segmentation

Quantitative information about the crystallisation fouling process were extracted by segmenting both

steel and BaSO4 in the reconstructions. Threshold segmentation was not feasible as the formed crystals

were faint at early stages of the experiment and at later stages the pixel intensity of the steel and BaSO4

is approximately identical. To create a satisfying segmentation, we used a graph cut method described by

Jeppesen et. al [35, 36].

The graph cut method requires flat surfaces, which is not the case for the circular cell. The surface

was unrolled by a geometric transformation from Cartesian coordinates into polar coordinates around its

centre. Such a transformation will make a circular object appear flat. The graph cut algorithm minimises

the energy of the graph cut it performs. The energy minimisation occurs when an image is cut into separate

regions along the most distinct surface present. The algorithm cuts the unrolled data in the darkest line,

thus yielding a division that provides the segmentation. To improve the performance of the algorithm the

contrast between the steel and the surrounding area should be maximised. We obtain a high contrast by

using the derivative and negative derivative of the image as it provides a single sharp transition for the
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outside and inside of the cell. An example of the graph cut method can be seen in Fig. 2. In Fig. 2a we

see a single unrolled slice of the cell for time step 100 along with the segmentation shown in cyan. From

the negative and positive derivatives the energies are created (Fig. 2b and Fig. 2c). The edge of the steel is

very dark compared to the background in these images, which is why the graph cut is performed there. The

segmentation gives us labels for the air surrounding the cell, the cell itself and the insides of the cell. The

segmentation algorithm is fast but memory intensive. Due to memory limitations only fifteen time steps can

be segmented simultaneously.

(a) An example of the unrolled data. (b) The energy used to find the inner

edge of the steel.

(c) The energy used to find the outer

edge of the steel.

Figure 2: An example of the segmentation for the central slice of the cell after 100 hours of injection. The cyan

lines indicate the surface detected by the graph cut algorithm. The area above the upper line is the inside of the cell

where the scale is growing. Below this line is the cell wall, and below the lower line, is the air surrounding the cell.

We would also like to segment the surface of the BaSO4. This surface is much fainter, especially during the

first 50 hours of the experiment, which makes it far more difficult to segment.

We use the previously obtained segmentation to remove the air and steel surrounding the inside of the

cell before using the graph cut method. For decent segmentation of the faint scale formation it is not

sufficient to use only the the derivative. To enhance the contrast between the scale and the background the

unrolled data must be preprocessed. Preprocessing is initiated by using an iterative nonlocal means denoiser

to increase the signal to noise ratio of the image [37]. Secondly, the denoised data is corrected for beam

hardening. The data values are then centre around zero by subtraction the average of the nonzero elements

of the unrolled data. The final step of the preprocessing, is filtering the data along the radial axis with a

median filter and with a Gaussian filter along both the radial and the angular axis. The final energy is given

by maximal image value minus the derivative and double derivative of the preprocessed image.
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2.6. Surface analysis

We calculated the texture parameters from Gadelmawla et al. [38] with the methodology developed by

Klingaa et al. [39, 40]. The algorithm used the segmented orthoslices of the reconstruction as input. The

profile texture parameters used in this work are the profile skewness, Psk, calculated as:

Psk =
1

Pq3

(
1

l

∫ l

0

Z (x)
3
dx

)
(2)

where Pq is the variation of the surface height Z(x), l is the length of measured surface in the axial direction,

and x is position on the surface. The skewness describes whether a height distribution are distributed above

(predominately consists of peaks) or below zero (predominatly consists of valleys). The kurtosis, Pku, is

calculated as:

Pku =
1

Pq4

(
1

l

∫ l

0

Z (x)
4
dx

)
(3)

and describes the spikiness of a surface. Values above three are generally considered "spiky" surfaces.

Finally, the average height of the 10 largest distances from valley to peak, P10z, is calculated as:

P10z =
1

10

∣∣∣∣∣
10∑
i=1

max10[Z(x)]i − min10[Z(x)]i

∣∣∣∣∣ (4)

where max10 and min10 are operators which return the ten largest and the ten smallest values of a vector.

P10z gives an indication of the overall size of the surfaces peaks and valleys.

2.7. Surface coverage and cluster distribution

We used an in-house program written in MATLAB to calculate the surface coverage. The program

used orthoslices of the reconstructions as input. Firstly, the algorithm identifies the inner diameter of the

cell. Secondly, the line integral along the inner diameter of the cell toward its centre is calculated. The line

integral should be sufficiently long such that all crystals that grow on the cell are included in the line integral.

The perimeter was divided into 500 points with an integration length of 0.3 radii. We used a geometric

transformation similar to the one described in Sec. 2.5 on the line integrals resulting in a planar surface.

The surface was subjected to a threshold based on the mean value of the line integrals, which divided the

surface into areas defined as covered and uncovered. The ratio of the covered and the total surface areas

defines the surface coverage.

Based on the segmented surfaces, we use the MATLAB function bwconncomp with its default settings to

calculate the number of clusters and the size of them. A covered pixel is defined as a cluster if its four nearest

neighbours (or more) are covered as well. The number of cluster at different sizes allows us to calculate the

distribution of cluster sizes.
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3. Results and Discussion

Crystallisation fouling formation is a complex process, going through various stages throughout its build-

up. We have identified three growth modes through spatiotemporal measurement of the formation process;

initiation, expansion, and densification. The surface area of the formed crystals indicates how three phases

are present (Fig. 4b). The initiation phase was characterised local roughening arising from corrosion, which

started the crystal formation, and the overall surface area decreased. The volumetric growth rate was larger

than the gravimetric rate in the expansion phase, while the opposite was true in the densification phase.

As spiky features are formed in the expansion phase (Fig. 4a), the surface area increases, whilst in the

densification phase, the crystals grow in density, while the surface area remains constant. The following

section characterises and quantifies the process in the identified regimes.

Figure 3: Observed mechanisms for crystallisation fouling. a-c Cross-sections of the cell at a 25 hours, b 75 hours

and c 125 hours. d The surface area of the BaSO4 as a function of time.

3.1. Initiation: Crystal formation on pristine steel

Initiation of growth on a pristine surface through the nucleation and formation of clusters is a transient

stage of the overall formation process. However, without overcoming the initial barrier for growth, a surface

will stay unfouled (Fig. 4a). The required energy to overcome this initial barrier for growth depends on the

condition of the surface[41]. A surface with either preexisting scale or roughness would have a smaller barrier

for surface [42, 43, 14]. Corrosion processes could create roughness capable of initiating surface growth, which

is something we observed during the initial phase of the scale formation. Corrosion processes are initiated by

the presence of dissolved O2 in the solution[44]. As corrosion process are initiated, crystallisation fouling will

attach to the local rough points (Fig. 4b). The surface is in pristine condition at the start of the experiment.
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After 5-10 hours corrosion roughens the surface, seen in the increased Pku. Surface morphologies with a

Pku above three are deemed spiky. The roughness act as nucleation sites for crystallisation fouling, which

initiates the growth. After 15 hours, growth occurs in multiple corroded areas, and it spreads out in the

plane of the surface. The formation of surface roughness due to corrosion is coincident with the formation

Figure 4: Initiation of crystallisation fouling. a-c Visualisation of initiation mechanism. The steel surfaces cor-

responds to measurements at a 6 hours, b 15 hours, c 45 hours. The corrosion behaviour of the steel surface is

characterised from d the skewness of the height distribution (Psk), e P10z and f the spikiness of the height distri-

bution (Pku)

of the first clusters, which lead us to believe that corrosion and scale formation are intimately linked. The

formation of the most clusters can be observed to occur during 20-50 hours, and it is in the period that the

local corroded areas are formed.

The formation of clusters is also witnessed in the cluster distribution, which is shown in Fig. 5b. In

the first 20 hours, nucleation seeds grow on the whole surface before reaching a detectable size with our

methods. This is followed by a rapid increase in the number of clusters which is a sign of widespread surface

nucleation. None of these initial formations are taller than 30 µm after 50 hours of growth (Fig. 6e). The

low height is because the clusters are, at this point, primarily growing laterally. The height of the clusters

increases as they start to coalesce during the expansion phase of the fouling.

As the clusters expand, the surface coverage increases to 20% at 50 hours (Fig. 6e). After the initiation

period at 0-20 hours, the rate of surface covering is linear at 0.5% hour−1. The constant surface coverage
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Figure 5: Evolution of clusters. a Bivariate histogram of cluster evolution. b Amount of clusters present.

rate also indicates that formed clusters are not coalescing. The clusters form near each other and create

the outline of a superstructure. These larger structures of higher intensity are faint but can be observed in

Fig. 6a-c. These show how a porous layer is being formed.

The deposition of crystals formed from 0-50 hours is low. Even though the crystals cover up to 20% of

the surface, and more than 70 clusters have formed, this causes little change in the intensity maps.

Curiously, after overcoming the barrier for surface growth, all presented parameters grow linearly. A

constant rate suggests that from 20 to 50 hours, the growth mechanism is unchanged in this period. There-

fore, until approximately 20% of the surface is covered with scale growth, the formation rate is caused by

crystals growing directly on steel. The clusters that form in this period are growing in the proximity of each

other, and are forming superstructures, however not much crystalline material is formed yet.

3.2. Expansion: Scale formation on a partially covered steel surface

After 50 hours of crystal formation, a new growth behaviour starts. We observe that instead of formation

of new clusters, the existing deposited crystals expand rapidly in volume. The expansion, is observed both

is the surface coverage, height of the crystals, and by the fact that crystals start to coalesce (see Fig. 6e,

Fig. 6f and Fig. 5b. The growth mechanism changes as the surface growth have covered 20% of the surface.

A rapid expansion of the scale growth can be observed in both the volumetric deposition and spikiness

shown in Fig. 7a and Fig. 7b. At 60 hours, the growth behaviour changes; there is a stark increase in the

deposited volume. The surface area, see Fig. 3, further supports this with a decrease from 20 to 60 hours

and then a sudden increase at 60-70 hours. A decrease in the surface area indicates that uniform deposition

occurs, while an increase in surface area results from features that extend away from the surface. Expansion

occurs on the whole surface as the surface area decreases again. Therefore, we observe that in the period

from 50-100 hours, the crystals undergo a growth process associated with a significant expansion. Further
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Figure 6: Evolution of scale formation. a-c Surface map of the fouling formation for a 50 hours, b 100 hours, c

150 hours. d Intensity of deposited crystals. e P10z for BaSO4 segmented surface. f Surface coverage.

evidence for this phase to be a transition, is in the spikiness (Pku) of the scale. The value of Pku is around

3.2 from 0-50 hours; however, at 50 hours Pku increases to 3.6 and decreases to 2.8 at 70 hours where it

settles. This shift in the surface morphology indicates that two different growth behaviours were present

before 50 hours, and after 70 hours, with a transition in between.

At 50 hours, clusters start to coalesce, as they expand in the lateral dimension of the surface and the

available surface area of pristine steel decreases. The number of clusters between 50 and 100 hours is shown

in Fig. 5b, which shows the competition between formation and coalescence. After 70 hours, the net cluster

formation rate is negative, which can be ascribed to two effects. Firstly, less area for new clusters to grow

exists, thereby decreasing the formation rate. Secondly, as the clusters grow larger, the distance between

them decreases, increasing the rate of coalescence. The rate of coalescence can be observed in Fig. 5a. The

number of small clusters have decreased between 50 hours and 100 hours and have instead been replaced by

larger clusters.

Larger crystals, in general, arise both from a larger surface attachment area and the increased crystal

height. During 60-70 hours, the crystal height increases from 50 µm to 70 µm. The height increase corres-

ponds to the increase in surface area in Fig. 3b. This rapid height increase is not a global phenomenon but

happening in local points; otherwise, the surface area would decrease. From 70 to 100 hours, the crystal
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Figure 7: Characteristics of the surface growth for the BaSO4 segmented surface. a-c Quantified height distribution

at a 50 hours, b 100 hours, c 150 hours. d Volumetric deposition. The volumetric deposition is determined from the

internal void volume of the deposition chamber. e Pku. The data is presented after filtering with a 3 point moving

average. f Psk.
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height only increases with 10 µm.

From 60 hours to 90 hours, the largest increase in surface coverage occurs. In this period the surface

coverage goes from 20% to 80%. Until now, the surface coverage occurs linearly; however, at 60 hours it

changes behaviour. The rate of covering slows down as less area is available. The surface coverage after 100

hours of deposition is visualised in Fig. 6b. The scale now covers 85% of the surface, and most of the growth

is interconnected. The intensity surface map in Fig. 6b shows clusters growing in the previously observed

superstructures, with high-intensity areas present. Both the segmented surface map and the intensity map

at 100 hours.

In this phase, the deposited mass changes linearly based on Fig. 6b, even though there is an exponential

growth in the lateral and horizontal dimensions (Fig. 6e and Fig. 6f).

Albeit, the rate is much larger than the initiation phase, the rate is constant from 60-100 hours. This

indicates that it is the same mechanism concerning the deposition of crystals.

At this point, growth occurs on pristine steel, on top of already formed crystals, and finally on the edges

between formed scale and pristine steel. This configuration of growth modes is stable still after 100 hours,

even though the surface coverage decreases to 85%, indicating that the contribution of the rate associated

with initiation is low. Furthermore, the growth on the edges of the existing crystals and steel is the most

dominant, as only a few areas have densified.

3.3. Densification: Scale formation on a covered surface

After initiation and expansion, the crystal growth enters the next phase, densification. Contrary to the

expansion phase, the crystal growth does not change its volumetric parameters after 100 hours (Fig. 6d-f).

However, as deposition is still occurring it is the density and not the volume of the deposited material

that increases. All clusters have merged into one single structure at 125 hours (Fig. 5), and the surface is

almost completely covered (Fig. 6e). The surface coverage rate decreases steadily as the surface coverage

approaches 100%. Growth can now only occur on the already formed crystal layer at this point. The clusters

stop growing in height at 87 µm, having only increased 5 µm from 100 to 150 hours.

While the surface coverage has almost reached 100 %, all clusters have both merged, and stopped growing

in height, there is still significant mass deposition. The three different stages are also presented through

the instantaneous growth rate (Fig. 8d). In the initiation phase, the mass change was almost constant from

20 to approximately 55 hours. In the expansion phase the growth rate decreased increased rapidly. Lasty,

during densification, the instantaneous growth rate decreases however, is still double that in the initiation

phase (Fig. 8.

At 100 hours the BaSO4 is deposited on a low-density phase (Fig. 8b), while at 150 hours, an outline

has formed around this phase (Fig. 8c). This outline is the crystal layer, which increased its density. The

densified layer is even clearer in Fig. 9. Here the thickness of the layers vary at different positions.
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Figure 8: Orthoslices depicting the evolution of scale formation after a 50 hours b 100 hours c 150 hours. d The

instantaneous rate of mass deposition. The growth rate is presented with a 3 point averaging filter.

Figure 9: Pseudo 3D representation of fouling formation at 150 hours growth. Periodic structures have formed,

which would indicate a resonance modulation of the liquid flow field. Hypothesised flow field lines are drawn.
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4. Conclusion

Through spatiotemporally resolved measurement of crystal formation, we present new insights into the

formation of crystal build-up. We grew crystals in a plug-flow reactor installed in a high-resolution X-ray

micro-computed tomography scanner. To mimic realistic fouling conditions, we performed experiments with

a low saturation index, which revealed the implications of kinetics. A novel reconstruction method, based

on the SIRT-BC algorithm, was used to improve reconstruction quality. The SIRT-BC algorithm uses a

high-quality pre-experiment scan to improve reconstruction quality and speed. Analysis was performed of

two segmented areas to characterise surface growth and corrosion features. The characterisation was done

through volume deposition and morphological parameters, such as surface coverage, cluster size distribution,

cluster height, spikiness of the height distribution.

We decouple three growth mechanisms present in crystallisation fouling build-up and show how they

independently affect volume and mass deposition. We discovered an initiation phase, characterised by the

formation of many crystal clusters, an expansion phase, where the volumetric growth rate is larger than

the gravimetric rate. Lastly, we show a densification phase, where incoming ions are closer packed, and the

gravimetric rate is larger than the volumetric.

The crystal formation was visualised through in-situ X-ray CT scanning and characterised through the

total surface area, surface coverage, crystal height, deposited mass, deposited volume, and a range of texture

parameters. The total surface area revealed three phases of growth. Firstly the surface area gradually shrank

as the uniform deposition occurred. Secondly, the surface area rose as spikey features were formed. Lastly,

the surface area stagnated as growth was incorporated into existing crystals rather than new structures.

Deposition rates were identified for these phases, where growth initiated with a rate of 4 mg per hour,

increased to 15 mg per hour and steadily decreased to 6 mg per hour 80 to 150 hours.

Predicting crystallisation formation is based on accurate knowledge of the growth rate in the system. Our

findings show how the growth rate can vary 300 % from initiation to the end. Even though we performed

measurements for 150 hours, the rate at which growth formed was not constant. This non-equilibrium effect

reflects the complexity of crystallisation formation in natural systems. These results allow for comprehensive

prediction models to be developed, capable of accounting for the various stages present in crystallisation

build-up.
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CHAPTER8
Conclusion

This thesis represents the conclusion of my PhD studies, which constitutes more
than three years of research. The project was carried out with the Danish Offshore
Technology Centre (DTU Offshore) as a part of their research on multiphase flow in
porous media. In particular, we sought to assist DTU Offshore with carrying out
dynamic X-ray computed tomography (CT) experiments. Dynamic CT experiments
have multiple uses within the oil and gas industry but are especially suited for core
flooding and scale formation experiments.

We have made significant contributions during this project that enables future
research within these fields. Additionally, the methods developed are not only useful
for the gas industry but are also relevant for fundamental research within carbon
storage, compaction and faulting of porous media and scaling processes.

In  Contribution A  , we developed a range of tomographic reconstruction algorithms
designed to preserve image quality for dynamic CT experiments despite noisy or
sparsely sampled projection data. The robustness of the algorithm was achieved in
two ways. Firstly, all dynamic reconstructions are initialised with a reconstruction
of the previous time step. The first dynamic reconstruction is initialised with a
high-quality scan of the experiment taken before the dynamic experiment is started.
Secondly, the reconstruction is constrained such that pixels are only allowed to take
on specific values or ranges of values. The constraints are derived from a segmen-
tation of the high-quality scan. The algorithm performed excellently compared to
traditional reconstruction algorithms, based on numerical experiments, and using it
rather than traditional algorithms can greatly increase the temporal resolution of a
CT scanner.

In  Contribution B , we presented and tested four stopping rules that provide a
heuristic for when to terminate algebraic reconstruction algorithms. This is necessary
as these algorithms do not converge at the point when the optimal reconstruction is
reached, and iterating beyond this point only increases the noise in the reconstruction.
Numerical experiments revealed that all methods we tested provided an accurate es-
timate of the optimal stopping point. Two of the four methods do not require any
information about the noise level in the data and can therefore be readily applied.

In  Contribution C  crystallisation fouling was examined using 4D X-ray tomogra-
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phy. A flow cell consisting of a small carbon steel cylinder was injected with distilled
water supersaturated with BaSO4 for more than 150 hours while being imaged in
a CT scanner. We used a modified version of one of the algorithms developed in

 Contribution A  to reconstruct the dynamic data. Using this algorithm improved the
signal to noise ratio of the reconstructions, which allow further quantitative analysis.
Based on the reconstructions, we characterised the growth and morphology of the
scale as it changed during the experiment. This further enhances the applicability of
contribution A, as we now have a detailed study of how terminate the reconstruction
algorithms.

To summerise,  Contribution A  and  Contribution B  provide tools that make it
possible to perform dynamic CT experiments with laboratory sources. These methods
are used in  Contribution C  , which made it possible to obtain novel insights in the
scale formation process. Based on these contributions, we conclude that this thesis
shows that dynamic X-ray tomography is a valuable metrology that can provide novel
insights in a wide range of research fields.



APPENDIXA
CT Scanners at DTU

Offshore
DTU Offshore has two CT scanners available for imaging, and one of these scanners
have been used extensively throughout this project. This scanner is colloquially re-
ferred to as the nanoCT. The source of the scanner is a Hamamatsu microfocus X-ray
source L10711-03. The source has two cathodes, one made of LaB6 and another in
tungsten, that allows for a tube voltage of either 20 kV to 100 kV or 20 kV to 160 kV.
Switching between these cathodes allow for either high resolution (LaB6 cathode) or
high intensity (tungsten cathode).

The X-ray radiation is detected with a Varian PaxScan 4343CB flat-panel detec-
tor. The detector has 3072 × 3072 pixels, each with a pitch of 0.139 µm that results in
a total pixel area of 42.7 cm × 42.7 cm. The detected radiation is converted to visible
light with a thallium doped caesium iodide (CsI:TI) scintillator that is detected by
amorphous silicon pixels.

A full list of the scanner components is shown below:

• X-ray radiation Source:  Hamamatsu microfocus X-ray source – L10711-03  

• Source translation: Newport linear stage (unknown model – possibly a UTS
stage)

• Rotation stage:  Aerotech ABRT-150 

• Detector:  Varian PaxScan 4343CB 

• Detector stage:  Newport M-IMS400LM-S 

• Translation stage:  Airpel-AB Air Bearing Cylinders 

• Newport XPS motion controller
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APPENDIXB
Sample Movement

Corrections for
Contribution C

In  Figures B.1 and  B.2 we see the a cross-section of the flow cell used in  Contribution
C before and after the reconstruction accounted for the movement of the sample. The
difference is subtle, but there are streak artefacts along the left and right sides of the
flow cell. These artefacts are not present in the corrected reconstruction.

Figure B.1: Reconstruction of the flow cell performed without sample movement correc-
tions.
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Figure B.2: Reconstruction of the flow cell performed with sample movement corrections.
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