

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 07, 2024

Generalization in Deep Learning and Bayesian Graph Cut

Taborsky, Petr

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Taborsky, P. (2022). Generalization in Deep Learning and Bayesian Graph Cut. Technical University of
Denmark.

https://orbit.dtu.dk/en/publications/39e3075c-3b92-4990-86d3-b969e780aba1

Generalization in Deep Learning
and Bayesian Graph Cut

Petr Taborsky

Kongens Lyngby 2022

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Summary (English)

The focus of the thesis is a puzzling capability of deep neural networks to "work
well" on previously unseen data, i.e., to generalize well. The long-lived open
problem in machine learning with links to the cognitive abilities of biological
neural networks.

The thesis consists of an introductory chapter, three theoretical chapters, address-
ing the main topic in increasing depth and complexity, and two complementary
papers. After the introductory chapter sets the scene, the thesis addresses the
problem with increasing complexity. It starts with presenting a novel perspec-
tive on an evolution of the eigenspectrum of general loss function during the
gradient descent (GD) optimization of the neural network model parameters.
The following chapters specialize in a broad class of Bregman divergence losses,
that includes common DL objectives. Several novel theoretical and experimen-
tal results are presented. These include the formulation of the so-called Self
Regularized Bregman Objective (SeReBrO) and its equivalence to stochastic
gradient descent optimizing Bregman losses and proving the presence of a latent
regularizer.

Next, the following fundamental research question is addressed: Could a small
gradient noise, possibly negligible when updating individual weight parameters
by mini-batch back-prop, have a significant effect by imposing a large model
variance prior through its non-negligible norm concentrating away from zero in
high dimensional (overparameterized) settings?

The main contribution of this thesis is a positive answer to this question obtained
in a sequence of new theoretical results for isotropic and further generalized to

ii

an arbitrary gradient noise covariance matrix. In the result, it is shown that the
generalization impact of an overparameterization and noise is limited by the rank
of a noisy gradient covariance matrix. Further, it is put into perspective, shedding
light on existing experimental and theoretical challenges in generalization in
deep learning, and demonstrating that it provides also a practical tool leading
to better generalizing models.

An experiment on denoising auto-encoders (DAE) is presented in which recom-
mended explicit regularizers are replaced by stochasticity and overparameteriza-
tion to boost the rank of gradient noise covariance matrix along the lines of this
thesis, and, opposing the previous expectation, are shown to learn to generalize
well.

The thesis concludes with a paper on unsupervised Bayesian learning on graphs by
making use of generative modeling of uncertainty that allows for inference, verified
on real-world data sets and images. The experiment section demonstrates that
Bayesian Cut outperforms the popular spectral and modularity-based methods
and renders itself as their probabilistic alternative. Bayesian Cut source code
has been made available.

Overall, the thesis benefits from taking a probabilistic approach when addressing
deep learning in the first part and unsupervised learning in the Bayesian Cut.
Intriguingly, a deeper link emerged in a form of hypergeometric functions, that
in both cases present the solution to underlying mathematical problems.

Summary (Danish)

Målet med denne afhandling er en forvirrende evne af dybe neurale netværk til at
’arbejde godt’ på tidligere usete data, dvs. at generalisere godt. Den langlivede
åben problem i maskinlæring med forbindelser til biologiske kognitive evner
neurale netværk. Specialet består af et indledende kapitel, tre teoretiske kapitler,
ing hovedemnet i stigende dybde og kompleksitet, og to komplementære papirer.
Efter det indledende kapitel sætter scenen, behandler afhandlingen problem med
stigende kompleksitet. Det starter med at præsentere et nyt perspektive på en
udvikling af egenspektret af generel tabsfunktion under gradient descent (GD)
optimering af de neurale netværksmodelparametre.

De følgende kapitler specialiserer sig i en bred klasse af Bregman divergenstab,
der inkluderer fælles DL mål. Flere nye teoretiske og eksperimenterendesam-
lede resultater præsenteres. Disse omfatter formuleringen af det såkaldte Selv
Regularized Bregman Objective (SeReBrO) og dets ækvivalens til stokastisk
gradient-nedstigning optimerer Bregman div. og beviser tilstedeværelsen af en
latent regularizer.

Dernæst behandles følgende grundlæggende forskningsspørgsmål: Kunne en lille
gradientstøj, muligvis ubetydelig ved opdatering af individuelle vægtparametre
ved mini-batch back-prop, have en betydelig effekt ved at pålægge en stor model
varians forud gennem dens ikke-ubetydelige norm, der koncentrerer sig væk fra
nul høje dimensionelle (overparametrerede) indstillinger?

Hovedbidraget i denne afhandling er et positivt svar på dette opnåede spørgsmål
i en sekvens af nye teoretiske resultater for isotrop og yderligere generaliseret til
en vilkårlig gradient støj kovarians matrix. I resultatet er det vist, at generalise-

iv

ringseffekten af en overparameterisering og støj er begrænset af rangeringen af en
støjende gradient-kovarians matrix. Ydermere sættes det i perspektiv, udgydelse
lys på eksisterende eksperimentelle og teoretiske udfordringer i generalisering i
dyb læring og demonstrere, at det også giver et praktisk værktøj til at lede til
bedre at generalisere modeller.

Et eksperiment med denoising auto-encoders (DAE) præsenteres, hvori ekspli-
citte regularisatorer erstattes af stokasticitet og overparameterisering for at øge
rangeringen af gradient støj kovarians matrix i overensstemmelse med denne
afhandling, og i modsætning til den tidligere forventning er det vist, at de lærer
at generalisere godt.

Specialet afsluttes med et papir om uovervåget Bayesiansk læring på grafer af gør
brug af generativ modellering af usikkerhed, der giver mulighed for slutninger,
verificeret på datasæt og billeder fra den virkelige verden. Eksperimentdelen
viser det Bayesian Cut overgår de populære spektral- og modularitetsbaserede
metoder og fremstiller sig selv som deres sandsynlige alternativ. Kildekode til
Bayesian Cut metoden er gjort tilgængelig.

Samlet set drager specialet godt af at tage en sandsynlighedstilgang, når den
adresserer dyb læring i første del og uovervåget læring i Bayesian Cut. Spændende
nok opstod et dybere link i en form for hypergeometriske funktioner, dvs i begge
tilfælde præsentere løsningen på underliggende matematiske problemer.

Preface

This thesis was prepared at the Department of Applied Mathematics and Com-
puter Science, Technical University of Denmark, in fulfillment of the requirements
for acquiring a Ph.D. in Engineering.

During the Ph.D., a research stay was conducted at Telenor Research Center,
Fornebu, Norway in collaboration with the Norwegian University of Science and
Technology, Trondheim. The research considered differential private machine
learning and automatic speech recognition systems, from which the findings are
not disclosed in this thesis.

The thesis was funded by the Technical University of Denmark and Telenor
DK with guidance under Professor Lars Kai Hansen. The work was carried out
between January 1, 2018, and April 4, 2022.

The thesis is a monograph that includes 2 research papers.

Lyngby, 04-April-2022

Petr Taborsky

vi

Contributions

The thesis is a standalone monograph.

Papers included in the thesis

A P. Taborsky, L. K. Hansen, Mechanisms that support generalization in
deep learning, currently in proceedings of ICML 2022 (Phase 1 Accepted)
at submission date of this thesis.

B Taborsky, P., Vermue, L., Korzepa, M., and Morup, M. (2021). The
bayesian cut. Ieee Transactions on Pattern Analysis and Machine
Intelligence, 43(11):4111–4124

Papers not included in the thesis

1. Vamsee K. Kodali, P. Taborsky, G. Canright, Using Differential Privacy to
Disclose Tourism Statistics with a Quantified Limit on Risk of
Re-identification, ©Telenor Research, published internally.

viii

Acknowledgements

I would like to thank {V iktor,Marta, Petra} and all permutations of this set
for being a never ending source of inspiration, energy and joy during the work
on the thesis.

And special thanks to Lars Kai Hansen for his brilliant and human centric
support. This has led to a PhD study that has been both fun and challenging.

I would also like to warmly thank my research collaborators: Morten Mørup,
Laurent Vermue, Maciej Korzepa, Geoffrey Canright, Vamsee K. Kodali for
interesting discussions and learnings throughout the research.

Thanks to the Technical University of Denmark and Telenor Denmark for funding
the research.

x

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Contributions vii

Acknowledgements ix

1 Introduction 1
1.1 Thesis Outline and Contributions 2
1.2 Setting Up the Scene . 5
1.3 Related Recent Work . 8

1.3.1 Learning in the Manifold of Distributions (LiMoD) 16

2 GD Evolution of the Hessian for General DL Objectives 19
2.0.1 Chapter Introduction . 20
2.0.2 Chapter Related Preliminaries and Definitions 21

2.1 GD Evolution of the Hessian Spectrum 21
2.1.1 GD as a Sequence of Local Coordinate Changes 22
2.1.2 Regime of A Small Gradient 26
2.1.3 Analysis in a Small Gradient Regime of GD 29

3 Self Regularized Bregman Objective (SeReBrO) 35
3.0.1 Preliminaries on Bregman Divergences 36
3.0.2 Self-Regularized Bregman Objective (SeReBrO) 45
3.0.3 SeReBrO via Cumulants Matching 50

xii CONTENTS

4 Generalization of Deep Learning Optimizing Bregman Diver-
gences 57

4.0.1 Going Deep . 59
4.0.2 SGD Gradient Norm in Deep Networks 60
4.0.3 The Norm of the Gradient as Anti-Overfitting Prior . . . 73
4.0.4 Implications . 77

4.1 Experiment: DAEs Self-Regularized by Width, Depth, and Rank
of the Gradient Noise ⌃ . 80

5 Discussion and Conclusion 85
5.0.1 The Elephant in the Room 86
5.0.2 On Weights and Diffusion to Irrelevant Directions 87

6 Mechanisms that support generalization in deep learning (Pa-
per A) 89

7 The Bayesian Cut (Paper B) 105

Bibliography 127

Chapter 1

Introduction

. . .The great question certainly was, what? Alice looked all round her at the
flowers and the blades of grass, but she did not see anything that looked like the
right thing to eat or drink under the circumstances. There was a large mushroom
growing near her, about the same height as herself; and when she had looked
under it, and on both sides of it, and behind it, it occurred to her that she might
as well look and see what was on the top of it. . . .

Alice meets the Caterpillar, Alice’s Adventures in Wonderland, Charles
Ludtwidge Dodgson (Lewis Carroll, 1865)

2 Introduction

1.1 Thesis Outline and Contributions

The focus of the thesis is a long puzzling capability of deep neural networks to
"work well" on previously unseen data, i.e., to generalize. This has been a very
lively and open problem in machine learning ever since the emergence of current
Deep Learning (DL), [Hinton et al., 2006, Salakhutdinov and Hinton, 2007] in
2006 with the latest challenges summarized in [Zhang et al., 2021, Bengio et al.,
2021]. It originated from and still has the potential to help understand the
cognitive abilities of biological neural networks.

The thesis consists of an introductory chapter, three theoretical chapters ad-
dressing the main topic in increasing depth and complexity, and two papers, one
published and one in the proceedings. The introductory chapter sets the scene
by reviewing necessary existing work and approaches and lays out necessary
definitions. The aim is to give a necessary overview of the field and introduce
the approach of the thesis by placing it into context.

Chapter 2, GD Evolution of the Hessian for General DL Objectives,
analyzes the evolution of the eigenspectrum of general loss function during the
gradient descent (GD) optimization of the neural network parameters. The
flatness of the Hessian of loss has been often used as one of the proxies for good
generalization properties, [Hochreiter and Schmidhuber, 1997]. After reviewing
the recent related work on the topic of the chapter the novel results in a form
of two Lemmas are proven. It concludes with an interpretation of the results
in the context of practical applications with links to supporting experimental
works. It includes a discussion on the pros and cons of the general loss approach
motivating the next chapter.

Chapter3, Self Regularized Bregman Objective (SeReBrO), reflecting
on an ambiguity of a general approach of Chapter 2 this chapter specializes
in the broad class of Bregman divergence losses, that includes common DL
objectives. Several novel theoretical and experimental results are presented.
These include several lemmas leading to the formulation and proof of the first
main result of the thesis, the "SeReBrO" Theorem 3.15 with its Corollary, which
shows the equivalence between stochastic gradient descent and Self Regularized
Bregman Objective (SeReBro) proving the presence of a latent regularizer in
SGD optimization of Bregman losses.

Chapter4, Generalization of Deep Learning Optimizing Bregman Di-
vergences, building upon previous this chapter applies SeRebrO on the stochas-
ticity of deep learning in high dimensions present due to overparameterization
of the network. First, it builds the intuition for high dimensions leading to the
following fundamental research question.

1.1 Thesis Outline and Contributions 3

Research Question Could a small gradient noise, possibly negligible when
updating individual weight parameters by mini-batch back-prop, have a significant
effect by imposing a large model variance prior through its norm concentrating
away from zero in high dimensions?

The rest of the chapter answers this question positively and constitutes the main
contribution of this thesis.

This is done in a sequence of new theoretical results to the Theorem 4.3 and
its Corollary 4.4 providing the basis for a proof of Theorem 4.6 addressing
the research question for isotropic noise. Further, it generalizes the results to
an arbitrary gradient noise covariance through the novel Theorem 4.8 and its
Corollary 4.11 showing that the generalization impact of overparameterization
and noise is limited by the rank of noisy gradient covariance matrix ⌃. These
results not only shed light on existing experimental and theoretical works often
suggesting ambiguous results, see for instance [Kawaguchi et al., 2017], but also
provide a practical tool leading towards better generalizing models.

To demonstrate it the chapter concludes with an experiment on denoising auto-
encoders (DAE) [Vincent et al., 2008] in which recommended explicit regularizers
are replaced by stochasticity and overparameterization to boost the rank of ⌃
along the lines of this thesis, and, opposing the previous expectation, are shown
to learn to generalize.

Chapter5, Discussion and Conclusion, addresses the generalization chal-
lenges raised by work [Zhang et al., 2016] and more recent [Zhang et al., 2021].
Especially the reported ability of deep models to fit random labels with zero
training error, which that in first sight is a contradiction to the theory of this
thesis. In particular, deep networks trained by SGD should not be allowed to fit
random labels (corresponding to the signature of overfitting and highly complex
network) by the mere presence of latent SeReBrO regularizers. It is shown that
adaptive learning rate training methods, e.g., RMSProp, Adam, etc., used in
[Zhang et al., 2016] to fit the random label labels effectively cancel out the
SeReBrO regularization because they normalize the gradients by their (moving
average) norm. In conclusion, the reported overfitting of adaptive methods is a
supporting argument in favor of the thesis’ conclusions.

Paper A, Mechanisms that Support Generalization in Deep Learning,
presents a complementary geometrical view to previous chapters focused on
"flattening" of the representations during the stochastic gradient descent training
of deep models. It uses the generalized Pythagorean theorem on the output
layer geometry to interpret back-prop training as minimizing the loss of the
model on the output layer along parameterized (by activations of network) curves
determined by weights general position. It argues that the back-propagation

4 Introduction

projects network layer representations into a low-dimensional manifold, while non-
linearity, further amplified by the depth of the network, stratifies the model and
updates its feature representations locally to assist generalization. In conclusion,
several mechanisms, such as depth and batch normalization, are identified to
help deep models generalize well, supported by experiments.

Paper B, The Bayesian Cut, derives a novel probabilistic method to graphs
cuts, such as the "min-cut" problem. It proposes an alternative to spectral
methods, e.g, Normalized cut, by proposing a computational framework for cut-
ting graphs into communities or groups that accounts for parameter uncertainty
through Bayesian modeling. It extends the stochastic block model (dc-SBM)
and provides an analytical solution to the corresponding constrained integral
representation.

As with the rest of the thesis, this paper benefits from taking the (Bayesian)
probabilistic approach to both, deep learning models as well as to generative
modeling used in this paper. And, albeit distant, there is even a deeper link
between this paper and the rest of the thesis in the form of hypergeometric
functions, that in both cases present the solution to the underlying problem, the
marginal likelihood in the case of The Bayesian Cut and probability of stochastic
gradient norm being larger than the non-stochastic norm in Corollary 4.4.

Overall, it leads to a better recovery of the true underlying partitioning structure
of nodes into groups and more reliable inference. For illustrative purposes, the
results are demonstrated in the context of social network modeling in which
the true partitioning structure is known, and as well on image segmentation in
which results can easily be visually inspected. The computational framework
developed has applications beyond social network modeling and computer vision
to the many domains in which graph cuts are currently used.

1.2 Setting Up the Scene 5

1.2 Setting Up the Scene

Let a neural network f : Rb
⇥⌥ �! Rd of L layers be defined as the composition:

f(x,�!w) ='L(W
(L)) � 'L�1(W

(L�1)) � . . .

�'1(W
(1))(x) (1.1)

where each vector function 'l(W (l))(v) = al
⇣
W (l)v

⌘
is an activation function

al applied onto a result of matrix W (l) and vector v product. We denoted
collation of all network weights into a tensor as �!w 2 ⌥.

Definition of Generalization Error We follow definition from widely accepted
deep learning book [Goodfellow et al., 2016]. For the sake of brevity we don’t
use bold typeset for vectors in here as opposed to the main body of the paper.
The cost function can be written as an average over the training set, such as

J(w) = Ep̂data(x, y)`(f(x;w), y) (training error)

where ` is the per-example loss function (such as Bregman divergence), and
f(x;w) is the predicted output when the input is x, and p̂data is the empirical
distribution. In the supervised learning case, y is the target output.

Equation (training error) defines an objective function with respect to the train-
ing set. We would usually prefer to minimize the corresponding objective
function where the expectation is taken across the data-generating distribution
pdata rather than just over the (finite) training set:

J⇤(w) = Epdata(x,y)`(f(x;w), y) (generalization error)

In practice a generalization error is estimated on another (test) data set, randomly
sampled from pdata.

Following definition of a manifold is relatively self-contained and comes from
[Carmo and Flaherty, 1992].

Definition 1.1 (Differentiable (Smooth) Manifold). A differentiable manifold of
dimension n is a set M and a family of injective mappings x↵ : U↵ ⇢ Rn

�! M
of open sets U↵ of Rn into M such that:

1.
S

↵ x↵(U↵) = M

2. for any pair ↵,�, with x↵(U↵) \ x�(U�) = W 6= ;, the sets x�1
↵ (W) and

x�1
� (W) are open sets in Rn and the mapping x�1

� � x↵ is differentiable.

6 Introduction

3. The family {(U↵,x↵)} is maximal relative to the conditions (1) and (2).

The pair (U↵,x↵) (or the mapping x↵) with p 2 x↵(U↵) is called a parametriza-
tion (or system of coordinates) of M at p; x↵(U↵) is than called a coordinate
neighborhood at p.

For alternative more fundamental definition of Topological Manifold we refer
reader to works of [Tu, 2011, Tu, 2017, Hauser, 2018] or to excellent visual work
on differential geometry [Needham, 2021].

Definition 1.2. (Diffeomorphism, [Carmo and Flaherty, 1992], p.10, Def. 2.9)
Let M1 and M2 be differentiable manifolds. A mapping ' : M1 �! M2 is a dif-
feomorphism if it is differentiable, bijective, and its inverse '�1 is differentiable.

Proposition 1.3. (Differential, [Carmo and Flaherty, 1992], p.9, Proposition
2.7) Let Mn

1 and Mm
2 be differentiable manifolds and let ' : M1 �! M2 be

a differentiable map. For every p 2 M1 and for each v 2 TpM1, choose a
differentiable curve ↵ : (�✏, ✏) �! M1 with ↵(0) = p,↵0(0) = v. Take � = ' � ↵.
The mapping d'p : TpM1 �! T'(p)M2 given by d'p(v) = �0(0) is a linear mapping
that does not depend on ↵. It is called differential of ' as p.

Proof. cf. [Carmo and Flaherty, 1992]

On top of the previous we define loss function as Bregman divergence [Banerjee
et al., 2005] in Chapter 3 and 4:

L(z,y) = d�(z,y)

= �(z)� �(y)� hz � y,ry�(y)i (1.2)

, where � : Rd
�! R is strictly convex function and ry denotes the gradient of �.

Overall, following the generalization framework of [Kawaguchi et al., 2017] we aim
to minimize `(�!w ;D, f) given training dataset indexed by set D and hypothesis
captured in composition of f :

`(�!w ;D, f) =

Z

(x,y)2D

L(f(x,�!w),y)dP(x,y) (1.3)

From now on we will abuse notation and use w instead of �!w to denote either all
or subset of weight(s) depending on the context. We will also use index instead

1.2 Setting Up the Scene 7

of a function argument to denote dataset over which loss is evaluated, i.e. `D(w)
instead of `(�!w ;D, f). And we refer to value of loss over batch Bi ⇢ D as `Bi(w).

Further in this paper we consider back-prop training of network f using stochastic
gradient descent (SGD) with the constant learning rate ⌘ over mini-batch samples
indexed by Bi

wk+1 =wk � ⌘rw`Bi(wk) (1.4)

In case of mini-batch being whole dataset we may refer to it as (full) gradient
descent (GD) throughout the text.

Throughout this thesis ryg denotes the gradient of g : Rd
�! R, defined as

1�form on a vector space, i.e. a single-vector y input function, for an exact
definiton of forms see, [Lee, 2013, Tu, 2011]). However when g : Rd

�! Rh is
vector-valued function then we abuse the notation and ryg then denotes the
Jacobian of map g of d⇥ h elements.

For the completeness we state here a definition of Lipschitz function as follows.

Definition 1.4 (C�Lipschitz function). A function f : Rd
�! R such that

|f(x)� f(y)| Ckx� yk2 for all x and y, where C is a constant independent
of x and y and k·k2 is a norm induced by Euclidean metric on Rd, is called
C�Lipschitz function.

For example, any continuous function with the first derivative bounded by B
must be B�Lipschitz.

8 Introduction

1.3 Related Recent Work

The convergence of learning and generalization in deep neural networks (DNNs)
has been a lively research topic for more than two decades. Receding from an
ambition to cover even the latest research compellingly this section only mentions
the most related and influential works for this thesis with an emphasis to describe
different approaches used to address generalization in DL.

To start with a convergence of stochastic gradient descent (SGD) to optima,
multi-layer linear networks were analyzed by [Glorot and Bengio, 2010] and
[Kawaguchi, 2016] and showed that every local minimum is global. There is
progress on understanding convergence to global optima in general [Zhu et al.,
2019], for two-layer ReLU networks in [Du et al., 2018] and ResNet’s in [Du
et al., 2019]. The [Hardt et al., 2016] performs the stability analysis of SGD and
shows that the faster (stepwise) the training is the more stable the algorithm
converges. Overall, convergence and generalization properties of deep models
are argued to be related to three following factors by [Jastrzębski et al., 2017]:
learning rate, batch size, and gradient covariance. In particular, it is argued that
the ratio of learning rate to batch size is a key determinant of SGD dynamics
and of the width of the final minima.

Other interesting views on both, convergence and generalization, have been
produced by a line of work using a continuous approximation to inherently
discrete SGD training leading to representing SGD in a form of a stochastic
process guided by (stochastic) differential equations. Early works of [Hansen et al.,
1993] showed that SGD upon (adiabatic) convergence to stationary distribution
never settles at the optimum but rather fluctuates around with an isotropic
covariance. Recently under certain smoothness and moments assumptions works
of [Li et al., 2017, Li et al., 2019] derived the expected distribution of SGD not
only at optima but weakly along the finite trajectories as well with comments
on the switch between "convergence" vs. "fluctuation" regime conditioned on
eigenvalues of Hessian to learning rate ratio. Also by dynamical approximation, it
has been argued that SGD exponentially favors the flat minima [Xie et al., 2020].
Notably, besides the continuous approximation that requires an infinitesimal
learning rate along the paths and in practice is almost never met, it assumes
closeness of gradient covariance matrix and Hessian. That is a commonly used
assumption but was also argued to be violated. Strictly speaking, it does not
hold unless the model reaches the true parameter of underlying data generating
distribution, [Pawitan, 2004].

Zooming in on generalization, merits are most commonly attributed to stochas-
ticity in gradient descent (GD) optimization [Roberts, 2021, Smith et al., 2021]
claiming that stochastic gradient descent (SGD) implicitly regularizes generaliza-

1.3 Related Recent Work 9

tion error. But it is not clear how it happens and what role the architecture data
and problem plays. The work [Kawaguchi et al., 2017] claims that generalization
is determined by all these factors and SGD may and may not even play a role.
Also, [Geiping et al., 2021] raises questions about the impact the stochasticity of
GD has on generalization whatsoever.

Moreover, there are two fronts of generalization research. On one hand, there is
an argument for a presence of an implicit bias of SGD towards well generalizing
solutions such as in recent [Huh et al., 2021]. On the other hand, another line of
work shows that "bad" local minima exist and SGD may reach them [Liu et al.,
2019] supporting the notion that the current understanding of the generalization
in DNNs still requires a revision, [Zhang et al., 2016, Liu et al., 2019, Zhang
et al., 2021].

(Hessian) flatness-based approaches. The flatness of the loss around (local)
optimum is by intuition and as well arguably [Hochreiter and Schmidhuber,
1997, Goodfellow et al., 2016] related to the good generalization of the model
around the optima. Intuition is based on local quadratic approximation (in the
case of the Gaussian model it would correspond to inverse covariance (precision)
matrix, [Bishop, 2006]) and then flat Hessian1, i.e., with small eigenvalues,
corresponds to the model being fitted, that has a large variance and thus is not
forced by maximum likelihood to fit training data exactly.

Despite a curvature (Hessian eigenspectrum) depends on parameterization, also
challenged in [Zhang et al., 2016] and depending on the settings SGD may never
converge to an optimum in finite time due to a presence of (small) negative
eigenvalues [Yao et al., 2020] and "asymmetric valleys" in the loss [He et al.,
2019a], it has been widely used to explore the generalization abilities of neural
networks.

Analyzing the spectrum of Hessian, related to Chapter 2 of the thesis, [Cohen
et al., 2021] demonstrates that full-batch gradient descent on neural network
training objectives typically operates in an Edge of Stability regime, characterized
by the maximum eigenvalue of the training loss Hessian hovers just above the
value 2/(step size), and the training loss behaves non-monotonically over short
timescales, yet consistently decreases over long timescales.

Further experimental analysis of neural net optimization via Hessian eigenvalues
has been enabled by the recent appearance of software such as PyHessian, [Yao
et al., 2020] or methods such as in [Ghorbani et al., 2019].

These works provide experimental inputs for Chapter 2 of the thesis. In non-

1positive definite at the (global) optimum [Pawitan, 2004]

10 Introduction

batch normalized networks, the rapid appearance of large isolated eigenvalues in
the spectrum was observed, along with a concentration of the gradient in the
corresponding eigenspaces. In batch normalized networks, these two effects are
almost absent. Another thesis inspiring work, [Jastrzebski et al., 2021], shows the
evidence that the early phase of training a deep neural network has a dramatic
effect on the local curvature of the loss function. It is presented that SGD
implicitly penalizes the trace of the Fisher Information Matrix (FIM), a measure
of the local curvature, from the start of training and that poor generalization
coincides with the trace of the FIM attaining a large value early in training.

Representation learning Related, other aspects of deep learning require a
deeper understanding, such as the ability of deep networks to learn important
features and learn to ignore the irrelevant noisy features (argued to be related to
better generalization) as emphasized by [Bengio et al., 2021]. Information theory-
based arguments applied for representation learning in [Achille and Soatto, 2018a,
Achille and Soatto, 2018b, Achille and Soatto, 2016] argue that invariance to
nuisance factors in a deep neural network is equivalent to information minimality
of the learned representation and that stacking layers and injecting noise during
training naturally bias the network towards learning invariant representations.

When we refrain from a vanilla stochastic gradient training, i.e., without ad-
ditional explicit methods helping generalization, there are two massive fields
that have been shown to help generalization, "normalization" and "explicit
regularization".

Normalization It is well established that normalization, i.e., an affine transform
of the inputs to produce zero means and unit variance random variables, accel-
erates convergence [LeCun et al., 2012]. Since then many other normalization
methods have been proposed.

Batch normalization (BN) [Ioffe and Szegedy, 2015] is an algorithmic method
that makes the training of DNN faster and more stable. It consists of normalizing
activation vectors from hidden layers using the first and the second statistical
moments (mean and variance) of the current batch. This normalization step is
applied right before (or right after) the nonlinear function. BN has been shown
to provide several training merits. These include prevention of exploding or
vanishing gradients, robustness to different settings of hyper-parameters such as
learning rate and initialization scheme and keeping most of the activations away
from saturation regions of non-linearities. Work in [Kohler et al., 2018] based
on Gaussian input assumptions showed that BN reduces the cross-dependency
between layers in DNN. Due to this dependency reduction, a gradient-based
optimization with an adaptive step size can enjoy a linear convergence rate.

Weight Normalization (WN) [Salimans and Kingma, 2016] decouples the length

1.3 Related Recent Work 11

of the weight vector from its direction. The optimization of these two components
runs separately. Notably, WN has been shown empirically to benefit from similar
acceleration properties as BN. While BN fits well in feed-forward architectures
it is more troublesome to apply in recurrent networks. Other caveats include a
dependence on mini-batch size and deterioration if test set sample distribution
differs from the training set (see also below).

Layer Normalization (LN) [Ba et al., 2016], which normalizes all hidden units of
the layer by shared mean and variance computed on a single training sample,
was developed to mitigate all these issues and empirically demonstrated to work
well, especially for recurrent networks, [Ba et al., 2016].

While all the above-mentioned techniques relate the benefits of normalization
to optimization, the generalization merits drawn significantly less attention.
The original work [Ioffe and Szegedy, 2015] conjectured that BN implicitly
regularizes training to prevent over-fitting. [Zhang et al., 2016] and later in [Zhang
et al., 2021] presents BN as an implicit regularizer drawing on experimental
evidence. Injecting random noise in the input layer is known to be equivalent to
regularization by weight decay (L2 regularization), as shown in [Bishop, 1995]
and generalized to DNNs or autoencoders (AE), [Poole et al., 2014]. Dropout
[Srivastava et al., 2014] can be seen as noise injection in DNN layers, [Poole
et al., 2014].

Nevertheless, to the best of our knowledge generalization properties of solutions
found by BN are not yet fully understood. Moreover, [Lian and Liu, 2019] points
out three downsides of BN, shown experimentally, as follows:

• BN overfits when trained with unit mini-batch size.

• Solution found by BN is mini-batch size-dependent.

• BN linear model fails to converge to high accuracy (compared to alternative
logistic regression model) if data are with large variation2.

BN was empirically shown to improve generalization in DNN [Luo et al., 2018,
Santurkar et al., 2018, Ba et al., 2016]. Yet, theoretical understanding is still
in progress. The original work [Ioffe and Szegedy, 2015] hypothesized that BN
effectiveness was mostly due to internal covariate shift (ICS) reduction. The
idea was challenged by [Santurkar et al., 2018] using counterexamples and rather
stressed the smoothing effect of BN on the optimization landscape. Specifically,
it is demonstrated that there does not seem to be any specific link between the

2This particular experiment is on the shallow linear network, implementing logistic regression
trained on synthetic data

12 Introduction

convergence gain of BN and the reduction of ICS. In fact, it is shown that in a
certain sense BN might not even reduce ICS. Here we follow to argue that it is
not reduction of ICS, but rather the pervasive presence of ICS throughout the
training process that assists generalization.

Explicit Regularization There are many regularizers at hand to be combined
with SGD training and that work provably and empirically well. Next, we review
the most common regularization techniques.

The classic and one of the most effective and efficient regularizers is the early
stopping combined with a common random initialization of weights around zero,
i.e. of [He et al., 2015, Glorot and Bengio, 2010] zero mean and variance that
corrects for the number of units of the network weights are gradually updated
over the course of the learning and suggest that vanilla SGD leads towards a
complex and eventually over-fitting network f characterized by large weights.
Early stopping is an effective and robust way to stop weights along the way, [Li
et al., 2020a].

Another widely effective regularization stemming from numerical methods as
total variation and Tikhonov regularization [Bishop, 1995] is the weight decay
[Goodfellow et al., 2016]

One of the most common regularization techniques developed specifically to
regularize neural networks is the drop-out, [Srivastava et al., 2014]. Dropout
regularizes by multiplying, a random or deterministic, a subset of layers’ outputs
by zero [Srivastava et al., 2014, Goodfellow et al., 2016] and thus deactivating
weights leading to those units from gradient update at the given step, slows the
growth of the weight parameters similarly to BN.

Note that the authors of batch normalization in their work [Ioffe and Szegedy,
2015], also see above, based on experiments suggest that batch normalization
reduces, partially or completely, the need for drop-out, suggesting a similar
effect on the training. Or alternatively, [Hinton et al., 2012b] approximates the
dropout effect by the full model with outgoing weights of node i multiplied by the
probability of including the unit i. That is weight noise-related regularization.

Noise injection, including the above mentioned dropout or use of a mini-batch
stochastic gradient3, is also widely known and working regularizer [Neelakantan
et al., 2016, He et al., 2019b, Noh et al., 2017, Bishop, 1995, Poole et al., 2014].
Note that the data augmentation can be viewed as a noise injection into input
data [Goodfellow et al., 2016, Poole et al., 2014].

3as opposed to a full (non-stochastic) gradient evaluated on all training data at every step

1.3 Related Recent Work 13

Besides explicit regularization or normalization generalization can be imposed
"by a principle". As in a view provided by information-theoretic approaches
based on compressing the information flowing through the network [Tishby and
Zaslavsky, 2015, Tishby et al., 2000]. They draw the links between SGD training
and information bottleneck (IB) variational principle (regularizer) based on
maximizing the (mutual) information between quantization of the inputs and
targets while minimizing (mutual) information (forgetting irrelevant features)
between input and quantized (compressed) version.

Deep Networks In the case of deep networks, vanilla SGD suffers from van-
ishing gradients and fails to train whatsoever. Or if trained the results are
suboptimal compared to networks trained with help of explicit methods such
as batch-normalization described above. For recent deep architectures with
skip connections, i.e., identity maps between activations from different layers,
often "skipping" one or more layers, [He et al., 2016, He et al., 2020], these skip
connections have been shown to have a regularization effect due to imposing
smoothness prior on a layer to layer maps composing the network f in [Hauser,
2018].

Initialization has been explored as one of the fundamental building blocks of
good generalization [Frankle and Carbin, 2018] and more recent in [Malach et al.,
2020]. The Lottery ticket hypothesis [Frankle and Carbin, 2018] brings into play
the role of weights initialization [Sutskever et al., 2013, Daniely et al., 2016]
linked to random matrix theory and argues that dense, randomly-initialized, feed-
forward networks contain subnetworks (winning tickets), significantly simpler
in terms of a number of parameters, that, when trained in isolation, reach test
accuracy comparable to the original network in a similar number of iterations,
i.e., generalize the same. This suggests that depth may not have a larger role
than initialization in deep networks.

While depth has been shown to exponentially increase the expressivity of the
network compared to wide networks [Hanin and Rolnick, 2019], the role of depth
with respect to generalization is largely unknown. On top, the same work of
[Hanin and Rolnick, 2019] has shown that the practical expressivity of deep
networks – the functions they can learn rather than express – is often far from the
theoretical maximum, and realizing the full expressivity of deep networks may
not be possible in practice, at least with current methods. This thesis provides
yet another view and argues that lower practical expressivity may be the price
to pay for the better generalization imposed by the depth, under circumstances.
There is no free lunch, is there? :-)

14 Introduction

1.3.0.1 Alternative Approaches to Generalization

Besides the most common definition of generalization error [Goodfellow et al.,
2016] from the Definitions section the following presents selected alternative
approaches for completeness.

Fisher Rao Metric and Complexity Recent work [Liang et al., 2019] pro-
posed Fisher-Rao norm as a capacity measure of generalization ability

kwkfr = wTFw (1.5)

where w denotes flattened vectorized version of all weights of the neural network
model f(�,w). It is shown therein that this norm has desirable invariance prop-
erties and relates to generalization capacity defined as Rademacher complexity

RN (⌦) = E� sup
w2⌦

1

D

|D|X

s=1

�iL(f(xs|w),ys). (1.6)

The Rademacher complexity directly gives an upper bound on generalization
error (see e.g. [Mohri et al., 2012]), Theorem B.1 Suppose the loss function is
bounded in [0, c] and is L-Lipschitz in the first argument. Then with probability
at least 1� � over sample D of size |D|:

sup
w2⌦

�
L(f(w))� LD(f(w))

 2LRD(⌦) + 3c

s
log(2/�)

2|D|
(1.7)

where F is defined as a set of functioned generated by weights architecture and
dataset f(xs,w), s 2 D and L without index denotes expected loss over the
latent data distribution as opposed to empirical loss LD we optimize over.

Therefore, as long as we can bound the Rademacher complexity of a certain
function class that contains our learned predictor, we can obtain a generalization
bound.

In particular for deep linear networks [Liang et al., 2019, Neyshabur et al., 2015]
has shown that Rademacher complexity is bounded from top by this norm. In
the definition we used primal formulation of the loss 3.0.1.2, d�(f(x|w),y).

In the case of ReLu networks bounding Rademacher complexity by Fisher-Rao
normk·kfr is challenging. However, it is shown therein that other norms (spectral,
group and path norm) can be viewed as a subset of the unit Fisher-Rao norm
ball, and Rademacher complexity on these subsets is bounded by L ·

2depthPolylogp
N

.

1.3 Related Recent Work 15

Expressivity vs. Generalization Work [Raghu et al., 2017] has shown visually
and theoretically, that arc length l(f(x(t))) of the trajectory of the network
f(x) along the (nonlinear) curve x(t) grows exponentially with the depth of the
network and show that this bound is asymptotically tight in the limit of large
initialization variance.

16 Introduction

1.3.1 Learning in the Manifold of Distributions (LiMoD)

This section introduces the probabilistic view taken by the thesis from Chapter
3 onwards, the Learning in the Manifold of Distributions. It connects works of
[Hauser, 2018] and [Amari, 2016] and provides the rigorous foundation for SGD
optimization of Bregman divergence with regards to parameters of its argument.

It is defined by seeing layers of the neural network model being seen as coordinate
representations of a data manifold4 M following [Hauser, 2018] and imposes the
Exponential family probability model over the output layer. One model per
every training datum (or pair of input-output in case of supervised learning).
Let us dub it Learning in the Manifold of Distributions, or "LiMoD" in short for
the rest of the thesis.

In this view, the neural network f is a composition of maps, parametrized by
the learnable weights, that define layer-by-layer transformations of coordinate
representations of M . Altogether it forms by assumption a smooth5 input-output
map.

As presented in [Hauser, 2018] an input layer is a rather arbitrary representation
of a data manifold M . For example, an RGB representation of the image
used for image recognition is used just because RGB is a convenient format for
image software and displays. However, it is not a good representation for the
labeling/image recognition task. The output layer is considered to be embedded
in the Euclidean space.

In the case of the Bregman divergence loss, the output layer has a dually flat
geometry following the Information Geometry, [Amari, 2016]. By Theorem 2.2
of [Amari, 2016] there is a bijection between regular Exponential families and
the Bregman divergences using the result of [Banerjee et al., 2005]. And further,
Theorem 6.2, [Amari, 2016], instigates that a geometry derived from the Bregman
divergence is dually flat and the affine coordinate systems are natural and mean
value parameters.

Let’s define the index set ID = {1, . . . , |D|}, where D is training data set. Then
using the dual interpretation (3.0.1.2) and (3.31), the loss over training data is

4For the definition of a manifold see previous section or any differential geometry book.
Intuitively speaking a manifold is a deformed Euclidean space with typically different global
topology, e.g., a sphere vs. a flat plane in 3D as examples of two different 2-dimensional
manifolds. An n-dimensional manifold is a set of points such that each point has n-dimensional
extension in its neighborhood and every such neighborhood is topologically equivalent to an
n-dimensional Euclidean space - that gives rise to a local coordinate system.

5ReLu can be seen as a limit case of smooth NN models using softmax activations

1.3 Related Recent Work 17

given by
X

s2ID

L(f(xs,w),ys) = � log
Y

s2ID

p✓s(ỹ = ỹs) +
X

s2ID

 (ỹs)

| {z }
const.w.r.t.w

(LiMoD)

where ✓s = f(xs,w) are natural parameters of dual exponential family with
cumulant �(·), derived from d (r�(y),r�(f(xs,w))) over random variables
ỹ = r�(y).

Under a common assumption that training data is independently sampled from
a latent data distribution, the factors of the product

Q
s2ID

p✓s(ỹ) are mutually

and conditionally independent distributions, given weights w.

An example of such a product of two one dimensional Gaussians with zero means
and unit variance is presented in Fig 1.1. It depicts the settings with training
data D comprising two data points with target values {0, 0}. In other words,
the output layer distribution is fully determined by |D|, targets ys, s 2 ID and
choice of �6.

Thus there are two interpretation at hand. First, optimizing the (LiMoD) may
be seen as maximum likelihood optimization of one large Exponential Family
"product" model with the dimensionality |D|⇥ (dim(y)� 1) with conditionally
independent factors corresponding to individual observations indexed by s in
(LiMoD). Or the second, it is also a maximum likelihood (ML) optimization
of many, i.e. |D| conditionally independent dim(y)-dimensional models derived
from dual formulation of loss 3.0.1.2.

Note that optimum of distribution p✓s(ỹ) is attained at r�(ys) for every s
because it is ML estimate for the case of one single observation. And further
making use of independent samples of training data, the unique optimum (from
the strict convexity of � the gradient mapping r�(ys) is invertible) of the large
"product" model is also known and given by coordinates [ys], s 2 ID. Let’s
denote it f̂ .

Given independently sampled finite training data set D from a latent data
distribution we call stochastic gradient descent optimization of LiMoD with
regards to weights Learning in the Manifold of Distributions (LiMoD).
As already outlined LiMoD provides a novel perspective of the learning in the
probabilistic manifold with known geometry derived from � (or equivalently

6together with some base measure. However, it is irrelevant with regards to optimizing
LiMoD w.r.t. to weights. Thus without loss of generality, it can be set to Lebesgue or counting
measure in case of discrete targets and further disregarded for brevity.

18 Introduction

Figure 1.1: Log density of the product of two zero mean unit variance Gaussian
distributions.

from) that corresponds to optimizing finitely many known distributions, p✓s(ỹ,
as opposed to a standard one-probability-model view.

So optimizing LiMoD seems quite straightforward, isn’t it? We know the optimum
of the output layer, i.e. f̂ , and we just need to put the finger on it using the
weights w parametrizing the f . In the deep learning settings, there are often
by orders of magnitude more weight parameters than there are training data
samples |D|. The optimum f̂ may be expressed by the multitude of weight
configurations/sub-manifolds of weight manifold, [Zhang et al., 2016], that all
have the same loss value7. They may differ in generalization properties of f
they define though. This is also true for linear over-parametrized networks, e.g.,
overparameterized linear regression, for instance.

The challenge is thus not only to converge to any one of optima in weight space
but to converge to the one that generalizes well.

The LiMoD perspective will be picked up in Chapter 3 and extended therein.
Further, the thesis will explore how SGD training, overparameterization, and
architecture of network f impact its generalization using the framework of
LiMoD.

7alongside with other local optima with larger loss values in general

Chapter 2
GD Evolution of the

Hessian for General DL
Objectives

. . .As soon as she had made out the proper way of nursing it, (which was to
twist it up into a sort of knot, and then keep tight hold of its right ear and left
foot, so as to prevent its undoing itself,) she carried it out into the open air. . . .

Alice and pig baby, Alice’s Adventures in Wonderland, Charles Ludtwidge
Dodgson (Lewis Carroll, 1865)

20 GD Evolution of the Hessian for General DL Objectives

2.0.1 Chapter Introduction

The most of deep learning theory books consider the neural network model
f(x,w) as a (unnormalized) probability model either explicitly, or implicitly,
parameterized by weights w. Then loss optimization corresponds to maximizing
likelihood directly or by lower bound (ELBO) in variational/bayesian networks
or else.

Such approaches allow for an application for wide range of well developed
methods from statistical learning theory yet come short at fully explaining some
phenomenons observed in deep learning, such as its generalization capability
among others, [Zhang et al., 2016, Zhang et al., 2021].

Another approach uses geometric (re)formulation of the deep learning problem
as optimizing a whole family of distributions (so-called probability manifold,
[Amari, 2016, Hauser, 2018]) as opposed to one single model.

Alternatively, instead of relying on the implicit regularization one may regularize
model explicitly[Goodfellow et al., 2016]. This is well known and long used
concept stemming from numerical and statistical methods used for instance in
inverse problems such as Tikhonov regularization or total variation [Bishop, 1995].
In fact there is a line of work arguing for nonexistence of implicit regularizer as
in [Liu et al., 2019] or its needlessness [Geiping et al., 2021], see Related Work
below. More over wast and active field of research on Bayesian deep learning or
Gaussian processes [Rasmussen, 2003], deploying priors (believes) can be seen
as generalizing concept of "hard" regularizers ported into probabilistic learning
[Bishop, 2006, Goodfellow et al., 2016]. [Luo et al., 2018].

In this initial chapter we take general loss and analyze the evolution of the
eigen-spectrum of the Hessian of loss under following assumptions.

Definition 2.1. (Weak Assumptions)

1. weights lie in a differentiable manifold, denoted W, i.e. it is a topological
space. For the purpose pf deep learning we assume W = Rm

2. stochastic gradient descent step is reversible and smooth map, i.e., diffeo-
morphism, see Definition 1.2, on the weight manifold

3. the training objective (a loss function) is trice differentiable and with a
bounded gradient on any closed interval of the domain

4. standard random weight initialization, [Sutskever et al., 2013, Daniely

2.1 GD Evolution of the Hessian Spectrum 21

et al., 2016, Glorot and Bengio, 2010, Goodfellow et al., 2016]1

5. (technical) SGD updates are evaluated at an arbitrary precision2

Remark. We explicitly note that a variable learning rate ⌘t and arbitrary loss `
is accounted for in this Chapter.

In what follows this chapter shows in Lemma 2.2 that under Weak Assumptions
2.1 the Hessian of the objective at the point T is closely approximated by

HwT (BT) = A
T�1Q
t=1

�
I � ⌘tHwt(Bt)

��2, where A = Hw0(BT) is the Hessian after

a random initialization at time t = 0 and where Bt denotes a randomly sampled
batch of training data at step t.

This is to the best of authors knowledge a novel results that links a curvature of
the solution (Hessian) to the convergence path and not only sheds light on deep
learning phenomenons and recent experimental results, see Related Work, but
also suggests the ways to improve generalization.

Interpretation of the main result of this chapter, Lemma 2.2, is presented therein
including insights into the long puzzling mysteries of deep learning by (S)GD, such
as its generalization ability in spite the over parameterization and convergence
to global optimum in spite of a generally rugged landscape.

2.0.2 Chapter Related Preliminaries and Definitions

Diffeomorphism, defined by 1.2, introduces a notion of equivalence between
differentiable manifolds. As an example take differentiable and invertible change
of coordinates (change between bases of a vector space) in Euclidean spaces Rn.

2.1 GD Evolution of the Hessian Spectrum

Let’s define mapping ' : W �! W that represents one GD step t as follows

'(t) : w �! w � ⌘t
@

@w
(`(Bt, w)) (gradient step)

1replaceable by other less practical assumptions
2technical requirement allowing to work with matrix inverse for the sake of simplicity and

instead of Moore-Penrose pseudo inverse, in case this assumption was violated

22 GD Evolution of the Hessian for General DL Objectives

It is straightforward to see that given training data (in a batch of full) denoted
Bt the ' is locally a diffeomorphism, because gradient map is locally an invertible
affine map. We’ll see that locally is "good enough" for this entry Chapter as all
its results are valid under "small gradient regime", i.e,

��r`('(w0))
��
2
 ✏, and

thus the whole Chapter operates under "first order" approximation.

2.1.1 GD as a Sequence of Local Coordinate Changes

As shown in [Carmo and Flaherty, 1992], p26, if ' : W �! W is a diffeomorphism,
v 2 TpW and ` is a differentiable function in a neighborhood of '(p), we have

(d't(v)`)'(p) = v(` � 't)(p) 8t 2 R. (2.1)

It follows by a derivative chain rule applied on a differentiable parameterized
curve ↵(t), t 2 R and using the fact that the differential d'(v) is independent on
↵ as in Proposition 1.3 in Preliminaries.

Note that for some p 2 W the v denotes a tangent vector3 of a form
mP
i=1

ai(p)
@

@xi
(p),

where xi represent coordinate curves of the tangent space TpW and ai(p) are
its coordinates. If (@

@y1
, . . . , @

@ym
)('(p)) denotes coordinate system of this tan-

gent space then differential d' then maps v to d'(v) 2 T'(v)W, i.e., vector
mP
i=1

ai('(p))
@

@yi
('(p)).

Detailed proof requires some more technical definitions and is found in [Carmo
and Flaherty, 1992]. We only need its special case when W = Rm. In this case
RHS of (2.1) reduces to a standard chain rule of derivatives with (2.1) defining
the corresponding Jacobian of the coordinates change.

Considering the ' defined above as the GD update the following lemma links a
curvature of the loss at step T to the sequence of the GD updates leading to it.

Lemma 2.2. (Full batch) Consider full batch gradient descent (GD) optimiza-
tion of the loss ` over weight parameters of dimension d and 't defined in
(gradient step). Under general Assumptions 2.1 consider loss function ` hav-
ing bounded absolute values of third partial derivatives by 0 � < 1 on any
closed interval of its domain. Further at GD step T 2 N+ define composition
'(w0) := 'T�1 � · · · � '0)(w0).

If the norm of the gradient
��r`('(w0))

��
2
 ✏ at T is upper bounded by ✏ 0 the

3(or 1-form, see [Tu, 2017])

2.1 GD Evolution of the Hessian Spectrum 23

following holds for the Hessian of ` at the step T

H'(w0) = Hw0J
2 + ", k"kmax ✏� (2.2)

where J is a real (symmetric) inverse of Jacobian of '(w0) w.r.t. w0

J =
T�1Y

t=1

(I � ⌘tHwt)
�1 (2.3)

and where " denotes a real symmetric d⇥ d "error matrix" with all elements in
absolute value lower than ✏�.

Proof. For the sake of simplicity we show the case for two dimensions. Higher
dimensions are exactly same just more involved.

Let denote by (x, y) ! (u(x, y), v(x, y)) the "change of variable" diffeomorphism.
Consider `((u(x, y), v(x, y))) and its Hessian w.r.t. (x, y) and (u, v).

First and second derivatives of the loss are

`x = `uux + `vvx (2.4)
`xy = `uuuxuy + `uvuxvy + `uuxy + `vuvxuy + `vvvxvy + `vvxy (2.5)

where subscript denotes derivative of ` with regards to it. The full hessian is
✓
`xx `yx
`xy `yy

◆

| {z }
Hx

=

✓
`xx(u(x, y), v(x, y)) `yx(u(x, y), v(x, y))
`xy(u(x, y), v(x, y)) `yy(u(x, y), v(x, y))

◆
(2.6)

with the elements given by (2.5) with appropriate index.

By assumptions ` has bounded third partial derivatives by �. Set w0 = (x0, y0)
and (u1(x0, y0), v1(x0, y0)) = '(w0) = w1. Thus (2.5) becomes

`xy = `uuuxuy + `uvuxvy + `vuvxuy + `vvvxvy + "xy, |"xy| �✏, 8x, y (2.7)

where the upper bound on " follows from `'0(w0)((u1(x0, y0), v1(x0, y0))) < ✏ by
assumption of the lemma and by the Cauchy-Schwartz inequality.

While (2.2) gives lower left corner element of H(x,y) a straightforward matrix
multiplication formula verifies that following gives full Hessian

✓
`xx `yx
`xy `yy

◆

| {z }
H(x,y)

=

✓
ux, vx
uy, vy

◆

| {z }
Jx

✓
`uu `uv
`vu `vv

◆

| {z }
H(u,v)

✓
ux, uy

vx, vy

◆

| {z }
JT
x

+ "|{z}
an error matrix "

(2.8)

24 GD Evolution of the Hessian for General DL Objectives

where " is real symmetric matrix with elements "xy defined above and d denotes
dimension of weights from the statement of the lemma (in this particular case
d = 2). The symmetry of ", i.e., "xy = "yx, follows directly from exchangeability
of the order of differentiation @2

@x@y = @2

@y@x for any twice differentiable function.

While Jacobian Jx are not symmetric in general in case of SGD diffeomorphism
' defined in (gradient step) and by taking derivative

Jw0
:=

@u'

@x , @u'

@y
@v'

@x , @v'
@y

!
(w0) = I � ⌘H(x,y)(w0) (2.9)

where (u', v') denotes vectorized version of map ' : (x, y) �! (u, v), we see that
it is real, symmetric due to interchangebility of the order of derivatives in and
invertible (diffeomorphism is invertible by definition).

In the previous we derived the result without considering ' being composition
diffeomorphisms (corresponding to gradient descent steps). Because composition
of diffeomorphisms is again diffeomorphism [Carmo and Flaherty, 1992] this
extension is straightforward by plugging the definition of '(w0) := 'T�1 �

· · · � '0)(w0) from the Lemma into (2.9) and applying a chain rule to obtain

JwT
w0

= @'
@w0

= JwT
wT�1

JwT�1
wT�2 . . . Jw1

w0
=

T�1Q
t=0

(I � ⌘tHwt).

Because all the Jacobians involved are real symmetric matrices as well as Hw0 is
they all commute. If the product of two symmetric matrices is symmetric, then
they must commute (AB = (AB)T = BTAT = BA) (Or more formally they
are all unitarily diagonizable (by SVD) and because a change of orthonormal
basis does not change eigenvalues, they are simultanously unitarily diagonizable,
[Gantmakher, 1959], and thus normal. Normal matrices commute.).

Invertibility and symmetry allows to set J := (JwT
w0

)�1 and the statement of the
lemma follows.

Remark. Notably only gradient at T is required to be small while gradients in
between are arbitrary (bounded by Assumptions 2.1). That is once SGD hits low
level of the loss, i.e., norm of gradients are below ✏, at some point T the Lemma
2.2 allows for inspection of its curvature depending at the path leading to this
point.

Remark. (Bounded 3rd derivatives of `)The third derivative bound � is always
finite on finite datasets and at finite T , i.e. after finite number of back-prop steps,
assuming a smoothness of f and initialization around zero, as elaborated earlier.
Never the less, the absolute value of the (finite) bound may be ever increasing
with number of steps and thus one needs some mechanism (implicit or explicit)
to regularize the f .

2.1 GD Evolution of the Hessian Spectrum 25

While this Chapter considers a general loss function, we lack such mechanism
in this generality. In the next Chapter 3 we reduce our attention to still a wide
class of Bregman losses, comprising the most common objectives, as will be
shown. It will be argued that when optimized by a stochastic gradient descent
over-parameterized neural network f tends to be constraint (and thus `) rendering
the results of this Chapter usefull in such contexts.

Note that because 't, 8t are diffeomorphisms then (I � ⌘tHwt)’s are invertible
for every t and J is well defined.

2.1.1.1 Difficulties in Generalizing Lemma 2.2 to Stochastic Settings

While the Lemma 2.2 assumes a full batch gradient descent we’d like to have simil-
lar statement for a stochastic version in expectation w.r.t. weight initialization
probability distribution at least.

However even that seems to be quite challenging without further assumptions, as
also noted in [Cohen et al., 2021] for different reasons, perhaps. Let’s demonstrate
it in one-dimensional case.

First note, that in stochastic gradient descent settings both gradient and Hessian
depends on the batch. We’ll indicate the corresponding batch at step t in their
arguments, i.e., the Hw0(Bt) denotes the sample Hessian of loss ell evaluated
over batch Bt, given step t. In this respect the Lemma 2.2 worked for full batch
(GD) with a simplified notation Hw0 = Hw0(BT) = Hw0(B0).

Let’s assume H is one dimensional variable and let’s denote its expectation by
H0. Let’s assume that ⇠ represents series of stochastic updates of Hessian H0

over k > 1 SGD steps thus H = ⇠(H0). It represents a "stochastic" and one
dimensional version (function) of Equation (2.2) from the Lemma 2.2. Then by
the Taylor expansion of ⇠(H) around H0 we can write

E[⇠(H)] = ⇠(H0) + E[⇠00(xH)(H �H0)
2]. (2.10)

In case ' had bounded second derivative, i.e. |⇠00(xH)| C for all H we could
write

|E[⇠(H)]� ⇠(H0)| CE[(H �H0)
2] = CVar(H). (2.11)

This would be exactly what we wanted. However tricky part is bounded second
derivative of transformation ⇠ in |⇠00(xH)| C. By inspection of Equation (2.2)

26 GD Evolution of the Hessian for General DL Objectives

from the Lemma 2.2 we see that ⇠(H0) involves
T�1Q
t=1

(I � ⌘tHwt)
�2 meaning that

if ⇠(H0) get close to 1/⌘t at any of k steps the bound C explodes rendering the
approximation above not useful.

It may be possible to work around it by showing under some additional assump-
tions, on an initial and sampling distribution as well as on a learning rate ⌘t
perhaps, that this case has low probability to happen and obtain the stochastic
version of the Lemma 2.2 in expectation. It is left for future work however and
we follow the Chapter with full gradient descent (GD) in mind.

Remark. (On generalization of the Lemma 2.2 to an arbitrary manifold W)
From the differential geometry point of view the Hessian is an extrinsic curvature
(second fundamental form), [Carmo and Flaherty, 1992] and as such depends on
the coordinate system. Hence it changes under diffeomorphism (gradient step)
and one needs the assumptions of the Lemma, i.e., small gradient assumption��r`('(w0))

��2
2
 ✏ and some analogy of the third derivatives on manifold at T

to generalize (2.2) to arbitrary differential manifold W. We do not go into this
general case here however and leave it for future work, as it is not required to
explain the current deep learning applications and is beyond the scope of this
thesis.

2.1.2 Regime of A Small Gradient

For reasons outlined in the previous section the rest of this chapter assumes a
full gradient and full descent (GD) only unless stated explicitly.

As will be shown shortly when average gradient r` gets small at some entry
time t0 (the following sequence of) Hessian Hwt for t > t0 is approximated
by polynomial function of Hwt0

. Under such regime we are able to track
approximately the evolution of spectrum of Ht over time.

First we derive the relation between the Hwt and Hwt0
for t > t0. A spectral

density transformations and their dynamics are described in the follow up at the
rest of the section.

2.1.2.1 Transformations of initial spectral density by GD

Consider n eigenvalues of real symmetric matrix Ht of dimension n, denoted
�t
1(Ht) < �t

2(Ht) < · · · < �t
n(Ht). Because Ht’s for all t are symmetric or

2.1 GD Evolution of the Hessian Spectrum 27

Hermitian, these eigenvalues are all real. Further because of the Assumption 2.1,
No.5, (the arbitrary high precision) all eigenvalues are distinct. In a realm of
deep learning this corresponds to random initialization producing distinct values
almost surely. These values are then mapped by diffeomorphisms evaluated
at high precision and thus are distinct along the training almost surely (w.r.t.
initialization probability distribution).

When Hw0 is random Wigner matrix with i.i.d. elements from any probability
distribution with finite moments we’d have initial spectral distribution given by
semicircle probability distribution given by

�(�)d� =
1

2⇡

p
4� x21|�|2d�. (semi-circle law)

Never the less work of [Baskerville et al., 2022] and links therein points out that
Hessians in deep learning applications do not follow this law (we’ll shortly see
why). While it is empirically shown for later stages of the training it is unclear
how much the spectrum after random initialization differs from (semi-circle law).
Because of this uncertainty the thesis does not make use of the result above. We
thus also omit the random theory definitions and refer reader to [Feier, 2012] for
proof and more in case of interest. We leave this for future work and proceeds
assuming general "arbitrary" spectrum of Hw0 with finite support.

Will make use of the following known lemma stating that polynomial function
h applied on real symmetric diagonizable matrix gives matrix with eigenvalues
h(�).

Lemma 2.3. (Eigenvalues of h(A)) Consider polynomial matrix function h(z) =P
k ↵kzk and assume a n ⇥ n real symmetric matrix A. Then eigenvalues of

matrix of h(A) are given by

{h(�i(A))}ni=1. (2.12)

Proof. By spectral theorem [Bhatia, 1997, Bishop, 2006] real symmetric matrix
is diagonalizable with respect to an orthonormal basis, A = UDU�1 where D is
a diagonal matrix with eigenvalues on the diagonal. Then we have

h(D) =
mX

k=0

↵kD
k =

mX

k=0

↵kdiag(�1, . . . ,�n)
k =

mX

k=0

↵kdiag(�k
1 , . . . ,�

k
m)

= diag(
mX

k=0

↵k�
k
1 , . . . ,

mX

k=0

↵k�
k
n) = diag(h(�1), . . . , h(�n)) (2.13)

Because of U are orthonormal (UDU�1)2 = (UDU�1)(UDU�1) = (UD2U�1)

28 GD Evolution of the Hessian for General DL Objectives

and so on, and h is polynomial we have

h(A) = h(UDU�1) = Udiag(h(�1), . . . , h(�n))U
�1, (2.14)

i.e., h(A) is similar to
diag(h(�1), . . . , h(�n)) and the only eigenvalues are {h(�i(A))}ni=1.

To make use of this lemma we need to show that GD can be represented as
polynomial function applied on eigenvalues of Hw0 . While this does not hold in
general the following lemma shows that it approximately holds when (average)
gradient r` is small.

Recall that gradient of loss r` is at GD evaluated as average gradient over
training data. This means that while gradient r` may be small for instance at
local or global optimum its variance (inverse Hessian) need not. In fact under
Gaussian assumption, which for instance can be invoked by central limit theorem,
these two moments are independent.

Let’s assume GD (average) gradientkr`k2 ✏ at some entry time t0 and remains
under this threshold until some time denoted T < 1. Following lemma as a
direct consequence of the Lemma 2.2 approximates Hessian at T by polynomial
function of Hwt0

.

Lemma 2.4. Under assumptions of the Lemma (2.2) assume gradientkr`k2 ✏
at time t0 and remains under this threshold until time step T 2 N+, T < 1.

Then the Hessian of the loss HwT at step T is approximated by 1/P (Hwt0
), where

P is a polynomial4 matrix function of a finite degree given by

HwT =
T�1Y

t=t0

Lt(Hwt0
)

| {z }
def.
= 1/P (Hwt0

)

+"(T � t0)
2/2 (2.15)

and Lt(·)’s are given by a recurrent relation

Lt(Z) =
tY

k=t0

�
I � ⌘kLk�1(Z)

��2 (2.16)

4One could define instead of polynom P a Laurent series 1/P . In general Laurent series
are defined as a formal power series of a form

P
n2Z anx

n which are allowed to have a finite
number of negative exponents.

The order of a formal Laurent series is defined as the smallest n such that an 6= 0. This
is kind of like the degree of a polynomial, but for negative integers. The degree of a formal
Laurent series is defined in the same way as the degree of a polynomial, though the degree
may not exist (since all of the an for n > 0 are still allowed to be nonzero).

2.1 GD Evolution of the Hessian Spectrum 29

where error terms of ✏2 and higher are neglected. The " is the "error" real
symmetric matrix from the Lemma 2.2.

Proof. Proof follows by the Lemma 2.2 applied on Hw0 = Hwt0
and error

manipulation using Taylor series of the first order in terms of ✏ and neglecting
higher terms.

To simplify the notation of the proof assume without loss of generality that
t0 = 0. We prove the lemma by induction in T .

Step (T = 1): For Hw0 = Hwt0
and T = 1 the Lemma (2.2) gives the Hessian

Hw1 is approximated by following polynomial function of Hwt0

Hw1 =(I � ⌘kHw0)
�1 Hw0 (I � ⌘kHw0)

�1 + "

=Hw0 (I � ⌘kHw0)
�2 + "

def.
= Lt0(Hwt0

) + " (2.17)

where the (Laurent polynom) Lt0(Hwt0
) is defined in the statement and " is from

the Lemma 2.2. The last step follows from the fact that if the product of two
symmetric matrices is symmetric, then they must commute (they are all unitarily
diagonizable (by SVD) and because a change of orthonormal basis does not
change eigenvalues, they are simultanously unitarily diagonizable, [Gantmakher,
1959]). We obtained the statement of the lemma for t0 = 1 and T = 1 which
concludes the first part of the proof.

Step (T � 1 �! T): First part of (2.15) follows exactly by the same arguments
as the previous step, i.e. Lemma 2.2 applied on t0 = T � 1 and T same as in
this step.

For the "error" part involving " we note that an induction step adds one
element to the product (2.15) defined by recurrent definition of LT (Z) =�
I � ⌘kLT�1(Z)

��2, i.e., (2.16), is a product of T � t0 terms every of which has
an error " by the Lemma 2.2 and neglecting terms ✏2 and higher. Thus the
step T adds (T � t0 � 1)" to the overall error sum. The statement follows from

summing up the finite series
TP

t=t0

(T � t0)" = "(T � t0)2/2 proving the induction

step and the statement.

2.1.3 Analysis in a Small Gradient Regime of GD

The previous lemma 2.4 provides an insight to an evolution of a spectrum of
Hessian under a small gradient regime. The rest of the chapter is dedicated to

30 GD Evolution of the Hessian for General DL Objectives

analysis of the Lemma 2.2 and Lemma 2.4 and its consequences for gradient
descent (GD) back-prop for general loss objectives.
Definition 2.5. Given notation of this chapter bending coefficient is defined as
follows

⇠(�) := (1� ⌘t�)
�2 . (2.18)

Figure 2.1: Flattening/bending effect of an GD update on the Hessian eigen-spectrum at
time t, i.e., spectrum of Hwt . ⇠ is a bending coefficient from Definition 2.18
as a function of �. Eigenvalues are depicted on y-axis. Boundaries between
flattening/bending zones are horizontal dashed lines and occur at levels given by
⌘t,i.e., (0, 1

⌘t
,

2
⌘t

,
3
⌘2
t
). Lines in red depicts an update direction on the eigenvalues

within that range. Right most is a sketch of cumulation of eigenvalues over
training (a sort of eigenspectrum ghost).

Overall under assumptions of the Lemma 2.4 we can deduct following dynamics of
the spectrum of Hessian during GD back-prop training also captured in Fig.2.1:

2.1 GD Evolution of the Hessian Spectrum 31

• HT has negative eigenvalues almost surely w.r.t. probability distribution
used to initialize weights. This is due to the first element Hw0 that is
present in (2.2). The spectrum of this initial element of recurrence relation
Hw0 has, given by a random initialization around zero [Sutskever et al.,
2013, Glorot and Bengio, 2010, Goodfellow et al., 2016], negative eigenvalues
almost surely. In polynom P it only multiplies positive second powers of
the spectrum of

�
I � ⌘tHwt(Bt)

��1 because the Jacobian of every step is
present twice in the product. Hence even close to optimum HT has always
escape path towards the lower loss levels.

The line of thoughts above only works if gradients have been low, i.e.,
under the threshold over the whole training, which is barely the case
in practice. On the other hand, recent works on the Hessian spectrum,
[Cohen et al., 2021, Yao et al., 2020] show that Hessian loss has a bunch
of negative eigenvalues (be they small) during the whole training process.
These experiments suggest the regime of large gradients acts rather as
a "shake up" of the spectrum (possibly due to large "’s) yet it seems to
always leave a significant portion of eigenvalues negative (Note this is
empirical observation only). If so, the small gradient regime then keeps
them negative as argued above, possibly enabling a steady path to low loss
levels, [Choromanska et al., 2015].

It does not grant global minimum convergence in finite time though, yet
gradients updates of vanilla GD are mostly along the largest eigen-directions
and further analysis is needed.

• Another interesting point raised in [Cohen et al., 2021] is that GD does
not diverge when sharpness at time T , i.e, �T

max, gets above the level of
2
⌘t

as it should based on a quick analogy with one dimensional quadratic
objective l(x) = 1

2ax
2 + bx+ c, where GD with step size ⌘ will diverge if a

exceeds the threshold 2/⌘, as showed in [Cohen et al., 2021]. It shown there
that update step xt = (1� ⌘a)t(x0 �x⇤)+x⇤ where x⇤ is the optimum. In
case a > 2

⌘ sequence of {xt} will oscillate around x⇤ with ever-increasing
magnitude. Notably, in our case of eigenvalue sequence, we rather have
an update of the form �t+1 = ⇠(�t) = (1� ⌘�t)�2, i.e. reciprocal to the
quadratic case.

Therefore, instead of diverging, whenever �t
�

2
⌘t

the update is ⇠(�t) 1

resulting in next �t+1 in sequence being lowered (dubbed "flattening" of
the Hessian in Fig.2.1 as opposed to the "bending" opposite case of ⇠ > 1)
back under the level 2

⌘t
along the red arrows depicted in Fig.2.1. Therein,

depending on where the �t on the real axis is, the (red) arrows show the
direction of the update �t+1

� �t holistically.

As a consequence, the GD is "bouncing back" from large "sharpness"
regions imposing stability above the level of 2

⌘ . Note that divergence

32 GD Evolution of the Hessian for General DL Objectives

happens approximately above the level 3
⌘2 when considering the increase

of �’s, i.e., of the sharpness or curvature of the Hessian, incurred in the
"out of small gradients regime", i.e., r` ✏ from the Lemma is violated.
This is because increasing curvature of Hessian leads to larger gradients
and at one point they happen to be large enough to increase sharpness
(via weight update) more than (first-order) dumping effect of ⇠(�t) can
balance. Nevertheless, we omit the details for brevity.

• Singularity of ⇠(�t) at �t = 1/⌘t. At this point, sharpness explodes. On
the other hand, with a fixed learning rate the GD will hit this value exactly
with zero probability. Nevertheless, especially with a small learning rate
that slowly but steadily increases sharpness due to "bending" updates of
the spectrum, see Fig.2.2, it will get to its vicinity very likely. Depending on
the closeness to 1/⌘t such a step would eject GD from the "small gradient
regime". Notably, when learning rate ⌘t decays, as is common practice in
DL, or GD hits the loss plateau, the updates ⇠(�t) become negligible while
points (0, 1

⌘t
, 2
⌘t
, 3
⌘2
t
) get far apart leading to a stagnating spectrum.

The results above are well supported by the above-mentioned paper [Cohen et al.,
2021] the Figure 1 of which is also brought in here and presented in Fig.2.2 for
convenience.

Figure 2.2: Figure 1 from [Cohen et al., 2021] showing the sharpness, i.e., the largest
eigenvalue of the Hessian, converging and hovering above the level of 2/⌘t
supporting experimentally the theoretical results of this chapter.

2.1.3.1 Conclusions

As follows from the discussion above under the small gradient regime spectrum
of the Hessian tends to cumulate around two points, 0 and 2

⌘ as also suggested
visually in Fig.2.1 by the (red) curve on the right. Despite the evolution has been
derived under some weak assumptions 2.1 and more stringent ones on "gradient

2.1 GD Evolution of the Hessian Spectrum 33

norm" and smoothness, as stated in the Lemma 2.4, it supports the recent
empirical results in mentioned works [Cohen et al., 2021, Yao et al., 2020, Geiger
et al., 2019] and provides some new perspectives on the curvature of the loss
(the Hessian).

On the upside, the results of this Chapter are valid for general loss functions
and provide new and detailed perspectives on the spectrum of the Hessian. One
of its main downsides is that it only covers a full gradient descent back-prop
training while stochasticity is argued and supported by experiments to play a
major role in the generalization of deep networks. This is the topic the next
section addressed at length at the cost of limiting our focus to a wide class of
the Bregman divergence losses.

34 GD Evolution of the Hessian for General DL Objectives

Chapter 3
Self Regularized Bregman

Objective (SeReBrO)

. . . Suddenly she came upon a little three-legged table, all made of solid glass;
there was nothing on it except a tiny golden key, and Alice’s first thought was
that it might belong to one of the doors of the hall; but, alas! either the locks
were too large, or the key was too small, but at any rate it would not open any
of them. However, on the second time round, she came upon a low curtain she
had not noticed before, and behind it was a little door about fifteen inches high:
she tried the little golden key in the lock, and to her great delight it fitted! . . .

Alice finding tiny door behind the curtain, Alice’s Adventures in Wonderland,
Charles Ludtwidge Dodgson (Lewis Carroll, 1865)

36 Self Regularized Bregman Objective (SeReBrO)

3.0.1 Preliminaries on Bregman Divergences

From now on for the rest of the thesis and for reasons to be revealed shortly let
a loss to be the Bregman divergence [Amari, 2016, Banerjee et al., 2005] defined
as follows

`(z,y) = d�(z,y) = �(z)� �(y)� hz � y,ry�(y)i (3.1)

, where � : Rd
�! R is a strictly convex function.

The definition of the generalization error holds and was defined in generalization
error. An important property of the Bregman divergence is that its derivative
w.r.t the first argument at datum (xs,ys) evaluates as

rxd�(x, y) = r�(x)�r�(y) (3.2)

Further it can be shown that there exist an isomorphic dual space such that

d�(z,y) = d (r�(y),r�(z)) (3.3)

, where is a convex conjugate to �. For more details see [Hiriart-Urruty and
Lemaréchal, 2012].

Definition 3.1 (Convex sets and Cones). A set C ✓ Rd is convex if for all
x, y 2 C and ↵ 2 [0, 1], the set C also contains the point ↵x+ (1� ↵)y. A cone
K is a set such that for any x 2 K, the ray {|� > 0} also belongs to K. A
convex cone is a cone that is also convex.

Definition 3.2 (Convex and Affine Hulls). A linear combination of elements

x1, x2, . . . , xk from set S is a sum
kP

i=1
↵ixi, for arbitrary scalars ↵i 2 R. An

affine combination is a linear combination with a restriction
kP

i=1
↵i = 1 and a

convex combination is an affine combination with further restriction ↵i � 0
for all i = 1, . . . , k. The affine hull of a set S, denoted aff(S), is the smallest
set that contains all affine combinations. Similarly, the convex hull of a set S,
denoted conv(S), is the smallest set that contains all its convex combinations.
Note that conv(S) is a convex set by definition.

Definition 3.3 (Polyhedra). Polyhedron is a set that can be represented as the
intersection of a finite number of half-spaces

P = {x 2 Rd
|haj , xi bj , 8j 2 J } (3.4)

where for each j 2 J , the pair (aj , bj) parameterizes a particular half-space. A
bounded polyhedron is called polytope.

37

Definition 3.4 (Shannon entropy).

H(p) =

Z

X

log p(x)p(x)⌫(dx) (3.5)

w.r.t. some base measure ⌫.

Definition 3.5. (see. [Rashid et al., 2019]) Let f : K ⇢ R �! R is exponentially
convex function, if f is positive and 8u, v 2 K and t 2 [0, 1] we have

ef((1�t)u+tv)
 (1� t)ef(u) + tef(v) (3.6)

Alternative and higher dimensional definition of exponentially convex function
follows (see[Banerjee et al., 2005]).

Definition 3.6. A function f : ⇥ �! R++,⇥ ⇢ Rd is called exponentially convex
if the kernel Kf(a, b) = f(a+ b), where a+ b 2 ⇥, satisfies,

X

i

X

j

K(✓i, ✓j)uiuj � 0 (3.7)

for any set {✓1, ✓2, . . . , ✓n} ✓ ⇥, 8i, j and {u1, . . . , un} ✓ C and uj denotes
complex copnjugate of uj, i.e., kernel K(✓i, ✓j) is positive semi-definite.

Definition 3.7. (Regular Bregman divergence, [Banerjee et al., 2005]) Let
f : ⌦ �! R++,⌦ ⇢ Rd be a continuous exponentially convex function such that ⌦
is open and (✓) = log(f(✓)) is strictly convex. Let � be the conjugate function
of . Then we say that the Bregman divergence d� derived from � is a regular
Bregman divergence.

[Banerjee et al., 2005] proves that there is a bijection between regular exponential
families and regular Bregman divergences in a form of (3.25). The crux of the
argument relies on results in harmonic analysis connecting positive definiteness
to integral transforms. In particular, following result due to [Devinatz, 1955],
and taken from [Banerjee et al., 2005], is used that relates exponentially convex
functions to Laplace transforms of bounded non-negative measures.

Definition 3.8 (Push-forward measure). Given measurable spaces X1,S1 and
X2,S2, a measurable mapping f : X1 ! X2 and a measure µ : S1 ! [0,+1], the
push-forward of µ is defined to be the measure

f⇤(µ) : S2 ! [0,+1] (3.8)

given by

(f⇤(µ))(B) = µ
⇣
f�1(B)

⌘
for B 2 S2. (3.9)

38 Self Regularized Bregman Objective (SeReBrO)

Theorem 3.9 (3.6.1. Theorem, [Bogachev and Ruas, 2007]). Under notation
of Definition 3.8 of push-forward measure (f⇤(µ) above, for every S2-measurable
function on X2 following holds

Z

X2

u(y)df⇤(µ)(y) =

Z

X1

u(f(x))dµ(x) (3.10)

if at least one of the sides is well defined.

Theorem 3.10. ([Devinatz, 1955]) Let ⌦ ⇢ Rd be an open convex set. A
necessary and sufficient condition that there exists a unique, bounded, non-
negative measure ⌫ such that f : ⌦ �! R++ can be represented as

f(✓) =

Z

Rd

ehx,✓id⌫(x) (3.11)

is that f is continuous and exponentially convex.

Basics of Exponential Families we use definitions and notation as close as
possible to an inspiring and exciting work of [Wainwright and Jordan, 2008].

Exponential family is a parameterized family of densities, taken with respect to
some underlying (base) measure.

Given random vector (X1, X2, . . . , Xm) taking values in some space X
m =

⌦
m
s=1Xs, let be t = (t↵,↵ 2 I) be a collection of functions t↵ : X �! R, so-called

sufficient statistics and where I is a index set with d = |I| elements to be
specified so that t(X) defines vector-valued map from X

m
�! Rd. For a given

vector of sufficient statistics t↵, let ✓ = (✓↵,↵ 2 I) a vector of canonical or
natural parameters. For fixed x 2 X

m the h✓, t(x)i denotes Euclidean inner
product in Rd of the two vectors ✓ and t(x).

With this notation, the exponential family associated with t consists of the
following parameterized collection of density functions

p✓, (x1, x2, . . . , xm) = exp{h✓, t(x)i � (✓)}, (3.12)

defined with respect to d⌫. The function , known as log partition or cumulant
function, is defined by the integral

 (✓) =

Z

Xm

exph✓, t(x)i⌫(dx). (3.13)

The canonical parameters ✓ belong to the set

⌦ := {✓ 2 Rd
| (✓) +1}. (3.14)

39

Corresponding mean value parameter space is defined as

M := {µ 2 Rd
|9p s. t. Ep[t(x)] = µ}. (3.15)

Notably density p, defined with respect to the underlying measure ⌫, is not
restricted to the exponential family associated with sufficient statistics t(x) and
base measure ⌫. However it turns out that under suitable tehnical conditions,
this vector provides an alternative parameterization of this exponential family,
see [Wainwright and Jordan, 2008], chapter 3.

Embraced with definitions above we can characterize specifics of exponential
families defined above.

Regular families is a exponential family for which domain ⌦ is an open set.

Minimal is an exponential family such that its sufficient statistics are linearly
independent, i.e., there does not exist vector a 2 Rm such that

ha, t(x)i =
X

↵2I
a↵t↵(x) = c (3.16)

almost everywhere with regards to ⌫(x) and where c is a real constant. Bold
font is used to emphasize that all elements involved are vectors. This gives rise
to minimal representation of the exponential family where each distribution is
given by a unique parameter vector ✓.

Overcomplete is a exponential family that is not minimal in the sense of (3.16).
In such representation there exist affine subsets of ⌦ that are associated with
the same distribution.

Note that exp. family is defined with respect to some carrier measure. Then
density p0 correspond to Radon-Nykodym derivative dP0(!)

d�(!) where P0 is absolutely
continuous w.r.t. the Lebesque or counting measure � for continuous and discrete
r.v. respectively in an alignment with [Wainwright and Jordan, 2008], [Banerjee
et al., 2005].

It can be easily seen that if x 2 Rd denotes the natural statistic T (!), then the
probability density function g(x; ✓) (with respect to the appropriate measure dx)
given by

g(x; ✓) = exp
�
h✓,xi � (✓)

�
dP0(x) (3.17)

is such that f(!; ✓)/g(x; ✓) does not depend on ✓. Thus, x is a sufficient statistic
[Amari, 2016] for the family, and in fact, can be shown (Barndorff-Nielsen, 1978)
to be minimally sufficient.

40 Self Regularized Bregman Objective (SeReBrO)

Example, Gaussian 1D For instance, the natural statistic for the one-dimensional
Gaussian distributions denoted by

f(!;µ,�) =
1

p
2⇡�2

exp�
(! � µ)2

�2
(3.18)

is given by x = [!,!2] and the corresponding natural parameter turns out to be
✓ = [µ/�2, 1/2�2], which can be easily verified to be minimally sufficient.

In this thesis it is convenient to work with the minimal natural sufficient statistic
x and hence, we redefine regular exponential families in terms of the probability
density of x 2 Rd, noting that the original probability space can actually be
quite general.

This generality is for instance reflected in formulation of exponential family in a
form

exp
�
h✓,xi � (✓)

�
dH(x) (3.19)

, i.e., with respect to measure H(x) as opposed to Lebesgue dx. Suppose H is
a non-decreasing function of a real variable. Then Lebesgue–Stieltjes integrals
with respect to dH(x) are integrals with respect to the reference measure of the
exponential family generated by H. When the reference measure is finite, see also
Theorem 5 in [Banerjee et al., 2005], it can be normalized and H is actually the
cumulative distribution function of a probability distribution. If H is absolutely
continuous it can be written dH(x) = h(x) dx so the formulas reduce to that
of the previous paragraphs. Alternatively, we can write the probability measure
directly as

P (dx; ✓) = exp
�
h✓,xi � (✓)

�
⌫(dx) (3.20)

where h(x) is a Radon-Nykodym derivative of ⌫ with respect to Lebesgue measure
dx, i.e., d⌫ = h(x)dx. Then we can write both (3.19) and (3.20) as

exp
�
h✓,xi � (✓)

�
h(x)dx (3.21)

and analogically for counting measure instead of dx.

Table 3.1 from p.42 [Wainwright and Jordan, 2008] enlists some common distri-
butions of the exponential family, including "Gaussian Location family" which
is the imposed distribution when Squared loss is used in deep learning as will
shortly be shown.

3.0.1.1 Mean Parameter Space

The previous definition 3.15 of Mean Parameter Space, taken from [Wainwright
and Jordan, 2008], is used in the following.

41

Family X
⌫,
h(·)

Suff. stats
h✓, t(x)i

 (✓)

Bernoulli {0, 1} Counting ✓x log(1 + exp(✓))

Gaussian
Location f. R

Lebesgue,
exp {�x2/2}p

2⇡

✓x 1
2✓

2

Gaussian R
Lebesgue,

1p
2⇡

✓1x+ ✓2x2
�

✓2
1

4✓2
2
�

1
2 log(�2✓2)

Exponential {0,+1} Lebesgue ✓x � log(✓1)

Poisson N [{0}
Counting

1
x!

✓x exp(✓)

Beta (0, 1) Lebesgue ✓1 log x+
✓2 log(1� x)

P
i2{1,2}

log�(✓i + 1)�

log�(
P

i2{1,2}
(✓i + 1))

Table 3.1: Several well-known classes of scalar random variables as exponential families.

Let p be a given density defined with respect to the underlying base measure ⌫;
for the moment, we do not assume that p is a member of an exponential family
defined with respect to ⌫. The mean parameter µ↵ associated with a sufficient
statistic t↵ : Xm

�! R is defined by the expectation

µ↵ = Ep[t↵(X)] =

Z
t↵(x)p(x)⌫(dx), 8↵ 2 I (3.22)

In this way, we define a vector of mean parameters (µ1, µ2, . . . , µd), one for each
of the |I| = d sufficient statistics t↵, with respect to an arbitrary density p.
An interesting object is the set of all such vectors µ 2 Rd traced out as the
underlying density p is varied.

More formally, corresponding mean value parameter space is defined in 3.15 as

M := {µ 2 Rd
|9p s. t. Ep[t(x)] = µ}. (3.23)

corresponds to all realizable mean parameters. It is important to note that in
this definition, we have not restricted the density p to the exponential family
associated with the sufficient statistics t and base measure ⌫. However, it turns
out that under suitable technical conditions, this vector provides an alternative
parameterization of this exponential family.

Example [Gaussian, (3.18), continued] We illustrate the mean value param-
eter space M on a d-dimensional Gaussian distribution, introduced for d = 1
in 3.18, just with a change of notation from ! to column vector x 2 Rd. Then
sufficient statistics become t(x) = [x, hx,xi].

42 Self Regularized Bregman Objective (SeReBrO)

For this particular model, it is straightforward to characterize the set M of
globally realizable mean parameters (µ,⌃). We begin by recognizing that if (µ,⌃)
are realized by some distribution (not necessarily Gaussian), then ⌃�µµT) must
be a valid covariance matrix of the random vector X, implying that the positive
semidefiniteness (PSD) condition ⌃ � µµT < 0 must hold. Conversely, any
pair (µ,⌃) for which the PSD constraint holds, we may construct a multivariate
Gaussian distribution with mean µ, and (possibly degenerate) covariance ⌃�µµT ,
which by construction realizes (µ,⌃).

Thus, we have established that for a Gaussian Markov random field, the set M

has the form

M = {(µ,⌃) 2 Rd
⇥ PSDd

|⌃� µµT < 0} (3.24)

where PSDd denotes the set of d⇥d symmetric positive definite matrices. Figure
3.1 illustrates this set in the scalar case (d = 1).

�=1

-1.5 -1.0 -0.5 0.5 1.0 1.5
�

0.5

1.0

1.5

2.0

�

Figure 3.1: Blue filled area depicts a set M for one dimensional Gaussian distribution
N(µ,⌃) given by contraint on positive definitness ⌃� µµ

T < 0 that is ⌃ � µ
2

in this d = 1 dimensional case. The orange level line shows the range (�1, 1)
of the mean parameter µ that is "allowed" under exponential family incurred
by strictly convex function �(µ) := 1

2 hµ, µi, i.e., in one dimensional case µ
2
/2.

All other values are not

Notably the mean parameter space does not span the whole available space, in
this case R2, but is a (convex) subspace of it.

As shown further in [Wainwright and Jordan, 2008] and for brevity is also
presented here, the set M is always a convex subset of Rd. Indeed, if µ and µ0

are both elements of M , then there must exist distributions p and p0 that realize
them, meaning that Ep[t(x)] = µ and E0

p[t(x)] = µ0. For any � 2 [0, 1], the

43

convex combination µ(�) := �µ+(1��)µ0 is realized by the mixture distribution
�p+ (1� �)p0, so that µ(�) also belongs to M.

It can also be shown by Minkowski-Weyl theorem, that convex polytope M is
equal to the intersection of a finite collection of half-spaces, see [Wainwright and
Jordan, 2008], p.54 and Appendix A.2.

This property of M stating that all mean parameters realizable by some distri-
bution (and hence also by exponential family distribution, see [Wainwright and
Jordan, 2008]) are constrained to lie in the convex subspace, turns out to be
essential for implict regularization of neural networks, as will be shown shortly.

Bijection of Regular Exponential Families and Bregman Divergences

As presented in [Banerjee et al., 2005], Theorem 4, there exists a one-to-one
mapping between the regular exp. family of distributions p(,✓)(x) generated by
sufficient statistics, reference measure and Bregman div. d�(x,y),

p(,✓)(x) = exp(�d�(x,µ))b�(x) (3.25)

where the related exponential family has the following form

g(x; ✓) = exp
�
h✓,xi � (✓)

�
dP0(x) (3.26)

and

b�(x) = exp(�(x))p0(x) (3.27)

is uniquely determined given the measure P0(!) and dP0(!) = p0(x)dx. In this
case p0(x) denotes reference measure corresponding to h(x) = d⌫

dx from (3.21).

Because relation between Bregman divergences and exponential families is essen-
tial to this thesis in what follows we show the relation of the right hand sides of
(3.25) and (3.17) in detail.

Let mean and natural parameters be denoted µ and ✓ respectively. Since � and
 are Legendre (convex) duals there are also following known properties, see.
[Wainwright and Jordan, 2008]

E✓[x] = µ(✓) (3.28)
r (✓) = µ,r�(µ) = ✓ (3.29)

for µ 2 int(dom(�)) so that r� exists.

44 Self Regularized Bregman Objective (SeReBrO)

The conjugate function can be expressed as �(µ) = hr�(µ),µi � (r�(µ)),1
and thus we can write log likelihood of p(,✓)(x) from Eq.(3.17) as

hx,✓i � (✓) = (hµ,✓i � (✓)) + hx� µ, ✓i

= �(µ) + hx� µ,r�(µ)i (3.30)

Therefore for any x 2 dom(�) and µ 2 int(dom(�)) we can write:

hx,✓i � (✓)� �(x) = �d�(x,µ). (3.31)

For further technical details we refer reader to [Banerjee et al., 2004].

3.0.1.2 Dually Coupled Exponential Families

There is an intriguing property of the Bregman divergences stating that the
Bregman divergence d equals to the Bregman divergence d� on the dual space
defined by gradient mapping r�.

Thus, by means of (3.25), the "dual" Bregman divergence d (r�(y),r�(f(x|w)))
defines the coupled Exponential family p�,f(x|w)(y) over the dual space.

In lieu of this duality we have the loss `(z,y) = d�(z,y) = d (r�(y),r�(z))
represents two coupled exponential families . . .

1. (primal) . . . defined by a cumulant function and neural network f(x|w)
being parametrized sufficient statistics. Mean value parameters are given by
targets y, given by Eq. (3.25) applied on loss `(f(x|w),y) = d�(f(x|w),y).

2. (dual) . . . defined by a cumulant function � and sufficient statistics r�(y)
derived from `(f(x|w),y) = d (r�(y),r�(f(x|w))). The neural network
f(x|w) maps inputs x into the natural parameter space of this family.

In the primary view the loss is mapped to an exponential family with sufficient
statistics f(x,w) given by neural network f and mean parameters are given by y
(thus maximum likelihood estimate of natural parameter is given by ✓̂ = r�(y)
if y 2 M).

1follows from definition of (✓) := supµ2dom(�)h✓,µi � �(µ)) and because the supremum
is attained at ✓ = r�(µ). We skip technicalities in definitions for a supremum to be attainable
for the sake of space and brevity, see [Wainwright and Jordan, 2008] for details.

45

3.0.2 Self-Regularized Bregman Objective (SeReBrO)

Recall that in the LiMoD formulation of a neural network back-prop training
from Chapter 1 every data point defines one probability distribution from the
Exponential Family, defined by the Bregman loss with strictly convex function
�, sufficient statistics and base measure.

By duality and bijection between regular exponential families and regular Breg-
man divergences, making use of the primal view 1, we can write the loss for any
given data pair (x,y) on training data sample s as

d�(f(xs;w),ys)
(3.25)
= � log q(✓=r�(ys), ,w)(xs) + �(f(xs,w)) (3.32)

where exponential family distribution q is

q(✓, ,w)(x) := exp
�
h✓, f(x,w)i � (✓)

�
hx(x) (3.33)

will be reconstructed and elaborated in detail shortly in (3.42) in the next section.
Note that both elements functionally depend on weights and are optimized by
SGD.

In what follows we construct exponential family from given strictly convex
function (and thus its convex dual �) allowing us to interpret both terms and
arriving at the Theorem 3.15, the main result of this chapter, at the end of this
section.

3.0.2.1 (Re)construction of the objective from

This section gives meaning to both terms of 3.32 by constructing both elements
of the equation from given function (or �).

By Theorem 3.11 from [Devinatz, 1955], rewritten for brevity in Preliminaries,
for a given strictly convex � there exists a unique (almost everywhere) bounded
positive measure, denoted ⌫z, on (latent) space, denoted Z ⇢ Rd, such that,

e (✓) =

Z

Rd

ehz,✓id⌫z(z). (3.34)

By the other perspective, theorem restates, that there exist (bounded positive)
measure ⌫z such that e (✓) can be expressed as the Laplace transform of its
Radon-Nikodym derivative d⌫z

d� , where � is either Lebesgue (or analogously

46 Self Regularized Bregman Objective (SeReBrO)

counting measure for discrete case) and assuming ⌫ being absolutely continuous
w.r.t. �

Note that as a consequence d⌫z(z) is independent of ✓ by construction.

Then, as shown in [Banerjee et al., 2005], divergence derived from convex dual �
gives rise to exponential family distribution parameterized by ✓, as defined in
(3.25), with density

g(✓,)(z) := exp
�
h✓, zi � (✓)

�
d⌫z(z) = exp

�
h✓, zi � (✓)

�
hz(z)dz (3.35)

where hz is Radon-Nikodym derivative d⌫z(z)
d�(z) assuming ⌫z is absolutely continu-

uos w.r.t. to Lebesgue (or counting) measure �(z). For brevity we retract to
usual notation for Lebesgue measure �(z) as dz with an abuse of notation for
counting measure as well to cover for the case of discrete distributions.

Following lemma’s derive well known identities of cumulant function of exponen-
tial family. They show however that these properties follow from strict convexity
of � and duality between � and .

Lemma 3.11. Under previous notation following holds

r (✓) = Eg(✓,)
[z] (3.36)

Proof. From (3.34) we have (✓) = log
R

Rd

ehz,✓id⌫z(z). Because ⌫z is indepen-

dent of ✓,by taking derivative, i.e., r we obtain statement of the lemma as
follows

r (✓) =

R

Rd

zehz,✓id⌫z(z)

Z

Rd

ehz,✓id⌫z(z)

| {z }
(3.34)
= (✓)

=

Z

Rd

zehz,✓i� (✓)d⌫z(z) = Eg(✓,)
[z].

Lemma 3.12. Under previous notation and assuming that ⌫z is normalized the
following holds

�(r (✓)) = DKL(g(✓,)||d⌫z) (3.37)

Proof. From convex conjugacy of and �, i.e., �(µ) = sup
✓
hµ, ✓i � (✓) and

by taking derivative and setting it to zero to find supremum is attained at

47

µ = r (✓), we have �(r (✓)) = hr (✓), ✓i � (✓) and by previous lemma
(3.36) this equals to

�(r (✓)) = hEg(✓,)
[z], ✓i � (✓) =

Z

Rd

(hz,✓i � (✓))ehz,✓i� (✓)d⌫z(z)

=

Z

Z

log

✓
g(✓,)

d⌫z

◆
g(✓,)(z)

def.
= DKL(g(✓,)||d⌫z) (3.38)

where DKL(g||d⌫z) denotes Kullback-Leiber divergence as defined in [Amari,
2016, Bishop, 2006].

Remark. Note that one can assume ⌫z to be normalized without loss of generality
as adding its normalization constant, that is independent on w, to the objective
does not change the optimization trajectory and position of the optima. Thus for
the rest of this chapter consider ⌫z to be probability measure, i.e., normalized
measure, on Z.

Next we extend g(z), i.e., the distribution defined by � over the latent space Z,
to the distribution q(x) over inputs X .

Given set X and � algebra S on X with (probability) measure P (x), i.e.,
measurable space (X ,S, P (x)), we can define probability distribution over X by
considering sufficient statistics f(x,w) with x 2 X under mild condition on f .

The only condition required is existence of some positive measure ⌫x(x) such
that following integral is finite

Z

X

ehf(x,w),✓id⌫x(x) < 1 (3.39)

as then the resulting density over X can be normalized and thus well defined.

We prove by construction that such ⌫x exists under general yet sufficient condi-
tions to meet this requirement in what follows.

For X ⇢ Rm, such as in machine and deep learning, a measurability of f is
ensured for instance when f is almost everywhere continuous on Rm or, in
discrete case, for finite f .

Let’s assume f : X �! Z is surjective and P -measurable and P is absolutely
continuous w.r.t. Lebesgue or counting measure � on X . Let’s define ⌫x as
follows

⌫x(E) := ⌫z(f(E)) (3.40)

48 Self Regularized Bregman Objective (SeReBrO)

To check this is well-defined, we have to show that f(E) is a Borel set in Z for
any Borel set E in X . This uses the surjectivity of f and the fact that Borel
algebra is the smallest �-algebra containing all closed sets.

It is also straightforward to see from surjectivity of f giving f(f�1(B)) = B that

⌫x(f
�1(B)) = ⌫z(B) for B 2 Z (3.41)

where f�1(E) := {x 2 X : f(x 2 E 2 Z)}, the so-called pre-image (and NOT
an inverse of f).

Lemma 3.13. That is ⌫z is the push-forward measure of ⌫x denoted ⌫x⇤ , i.e.,
⌫z = ⌫x⇤

Proof. From definition.

Construction above has shown the well known fact that strictly convex � and
continuous and finite sufficient statistics f (that is given parameters w in case f
represents neural network) give rise to exponential family over (X ,S, P) with
following density

q(x;✓,) := exp
�
h✓, f(x,w)i � (✓)

�
d⌫x(x) (3.42)

= exp
�
h✓, f(x,w)i � (✓)

�
hx(x)dx (3.43)

where hx is Radon-Nikodym derivative d⌫x(x)
d(x) assuming ⌫x is absolutely continu-

ous w.r.t. to Lebesgue (or counting) measure dx.

Note that while the measure d⌫z does not depend on statistics f the d⌫x and
thus also hx(x) does.

Lemma 3.14. (change of measures) Let (X ,S, ⌫x) and (Z, T , ⌫z) denote two
measurable spaces, with ⌫x and ⌫z defined above by (3.40) and (3.34) respectively.

Then for ⌫x-measurable f : X �! Z the following holds
Z

f(E)

g(z;✓,) =

Z

E

q(x;✓,), 8E 2 S (3.44)

Proof. By construction of ⌫x in (3.40) we have ⌫z = f⇤⌫x as shown earlier, see
lemma 3.13. Because ⌫z = f(⌫x), i.e., ⌫z is a pushforward of ⌫x, the assumptions

49

of the change of measure theorem 3.10 are met. Its direct application on the
definition of g(z), (3.35) gives statement of the lemma as follows

Z

f(E)

exp
�
h✓, zi � (✓)

�
d⌫z(z) =

Z

E

exp
�
h✓, f(x)i � (✓)

�
d⌫x(x). (3.45)

Embraced by previous lemmas we are ready to state the main theorem of this
chapter.

Theorem 3.15. (Self Regularized Bregman Objective (SeReBrO)) Under no-
tation of this chapter and for f : X �! Z continuous optimization of the loss
`(f(xs;w),ys) = d�(f(xs;w),ys) with respect to weights w is equivalent to
optimizing objective

� log qr�(ys), (xs) +DKL(g(r�(f(xs,w),)||d⌫z) (3.46)

w.r.t. w and where g and q are defined in (3.35) and (3.42) respectively and
both are functionally dependent on weights w.

Proof. For any given data pair (x,y) and by bijection between regular exponential
families and Bregman divergence (3.25) we can write loss on the training data
sample s as follows

d�(f(xs;w),y)
(3.25)
= �

�
h✓, f(xs;w)i � (✓)

�
dP0(f(xs;w))| {z }

A

+ �(f(xs,w))| {z }
B

+ const. w.r.t. w (3.47)

Part A: Note that dP0(f(xs;w)) from [Banerjee et al., 2005] and (3.25) cor-
responds to ⌫z(f(xs;w)) of this section. Than part A above equals A =
� log g(z;✓,) evaluated at z = f(xs;w).

Next we proceed by the "change of measures" lemma 3.14 applied on set X

containing data pairs (xi,yi) with i indexing data points and E = (xs,ys),
which is particular training data point with index s given by assumption of the
theorem. Note X is a joint input-target set not only inputs as would notation
falsely suggest. Lemma 3.14 gives

A = � log q(x;✓,)

which is the first part of the statement of the theorem.

50 Self Regularized Bregman Objective (SeReBrO)

Part B: Because � is strictly convex r from natural to mean parameters
is a one-to-one, i.e., invertible, mapping with inverse r�,see [Wainwright and
Jordan, 2008], and thus r (✓) = f(xs;w) is equivalent to ✓ = r�(f(xs;w)).
Now the second part of the statement to be proven follows directly from the
lemma 3.12 applied on ✓ = r�(f(xs;w)).

Corollary 3.16. For batch B randomly sampled from the (latent) data distri-
bution, denoted Pdata, and under notation of Theorem 3.15 the optimization of
the loss

P
s2B

`(f(xs;w),ys) =
P
s2B

d�(f(xs;w),ys) with respect to weights w is

equivalent to optimizing objective

DKL(Pdata(B)||
Y

s2B
qr�(ys), (xs)) +

X

s2B
DKL(g(r�(f(xs,w),)||d⌫z). (3.48)

Proof. Straightforward from independence of data samples by assumption of the
corollary (a standard practice in deep learning tasks).

Remark. Theorem 3.15 and its corollary casts loss as optimizing two oppo-
site Kullback-Leibler divergences, where the first corresponds to maximizing the
likelihood while the second of opposite and reduces the divergence.

Remark. (Not all SGD are the same) Importantly it does not claim that every
gradient descent optimizes these two divergences. If gradient descent is performed
over parameter space only as in classic parameter estimation problem of one
probability model, e.g. linear or logistic regression with Gaussian errors, etc. then
only the likelihood is maximized as the second term is constant w.r.t. weights.

Remark. Link to the concept of Entropy. The entropy of some probability
distribution p can be seen as Kullback-Leibler divergence between p and uniform
distribution (straight-forward from the definition of DKL(p||Unif)2), see [Giffin,
2008].

3.0.3 SeReBrO via Cumulants Matching

While the previous section presents the decomposition of the Bregman divergence
loss in general, this section analyzes the effect of both, stochastic and full, gradient
descent optimization of this objective. We argue that in the case of mini-batch
training inherent noise in the gradient keeps the variance of gradients larger
compared to the full gradient even in a regime of small gradient norms (plateau

2Uniform distribution to be well defined requires finite domain. Otherwise one can take
the limit case of uniform distributions over finite domains, in a similar way to the use of the
improper priors in Bayesian methods

51

or local/global optima). This imposes the (soft) constraint on the variance of
the model over targets, preventing it from collapsing at low loss levels and thus
preventing the net f from over-fitting.

3.0.3.1 Minimizing DKL(g||d⌫z), Matching Cumulants

As was pointed out in the previous chapter the crucial different between maximum
likelihood estimation and optimizing neural networks is the second element
+
P
s2B

DKL(g(r�(f(xs,w),)||d⌫z) in Corollary 3.16 corresponding to minimizing

the batch average KL divergence from g to ⌫ as stated by Lemma 3.12.

To shed more light on what’s going on let’s have a look at ⌫z first. By its
definition it is a unique positive probability3 measure defined in (3.34) as

e (✓)e� (0) = e� (0)

Z

Rd

ehz,✓id⌫z(z) (3.49)

It follows by taking the derivatives of (3.49) at ✓ = 0 that is a cumulant
generating function of ⌫z. For instance the first cumulant, i.e., mean of sufficient
statistics, is obtained as

r (✓)e� (0)e (✓)
|✓=0 = r (✓)|✓=0 =

Z

Rd

zehz,0id⌫z(z) = E⌫z [z] (3.50)

and so on with higher cumulants.

Thus minimizing the KL divergence DKL(g(r�(f(xs,w),)||d⌫z) from g to ⌫z from
the Theorem 3.15 and its corollaries corresponds to matching the cumulants (or
moments, both define a bounded! probability distribution uniquely [Billingsley,
1995]) of these two distributions [Bishop, 2006]. Minimizing KL divergence
between two exponential family models by matching moments is well known and
used in variational methods [Bishop, 2006] and Expectation Propagation [Minka,
2001, Bishop, 2006]. The method above is similar in its nature but extends
(3.50) the moment matching between g from Exponential family and ⌫x that is
inherently ambient given by Theorem 3.11.

Moreover, while in methods of approximate inference the moments are analytically
known and matched, the backprop training optimizes the weights of the model

3It is explicitly normalized by a constant e
 (0)) in here. Thus a probability measure as

was assumed throughout the chapter, abusing notation and denoting it also ⌫z , is obtained
explicitly.

52 Self Regularized Bregman Objective (SeReBrO)

f to meet both objectives in Theorem 3.15 including the likelihood besides the
"cumulant" term. Thus the cumulants are matched only approximately acting as
a regularizer. One could compare the cumulants matching by minimizing the KL
divergence DKL(g(r�(f(xs,w),)||d⌫z) to a soft constraint similar to prior belief
on moments in Bayesian methods [Gelman et al., 2013].

Note that cumulants of g(r�(f(xs,w),) are given by derivatives of evaluated
at ✓ = f(xs,w) given by outputs of f .

Matching the First Cumulants making use of (3.50) we have that backprop
minimization of loss leads to

r (✓)|✓=0 =

Z

Rd

zehz,0id⌫z(z) = E⌫z [z]
backprop

⇡ r (f(xs,w)) 8xs. (3.51)

Since is strictly convex the exact match is only achieved by f ⌘ 0. Because
f includes bias term in general such a setting works for arbitrary values of
targets. Note that after a standard random weights initialization around zero
[Glorot and Bengio, 2010, Goodfellow et al., 2016] f ⌘ 0 is true in expectation
w.r.t. initializing distribution. While the second "KL" term in Theorem 3.15 is
optimal (in expectation), the "likelihood" term is typically randomly "bad" at
initialization.

During the course of backprop training, the model strives to strike the balance
between maximizing the "likelihood" term and minimizing the "KL" term acting
as a regularizer. Intuitively the Equation (3.51) keeps the outputs of f close
to ✓ = 0, i.e., the origin of the output manifold4. That means the effect of
matching the first cumulant (3.51) is to keep weight parameters not "far away"
from the bias parameter of the output layer and it can be intuitively seen as
a sort of translated "weight decay" implicit regularizer of the output layer
with an (intuitively) diminishing effect on the layers towards the input [Bishop,
1995, Goodfellow et al., 2016].

As it will be shown shortly, the LiMoD, model "per sample" perspective, will be
used to reformulate SGD as a back-prop with adaptive step dependent learning
rate ⌧t. In turn, this learning rate will have a step-dependent regularization effect,
evolving over the course of the training and depending on hyperparameters.

Before moving on let’s note that standardization of training data (i.e., centralizing
and dividing by sample variance), which is standard practice nowadays leads

4note again, that f includes bias terms in general, so this does not mean output f is kept
zero, but rather "target data mean", i.e. what the bias parameter of the last layer converges
to.

53

to balanced first cumulants matching regularization viewed by a prism of this
subsection. On the contrary unnormalized training, data lead to divergence
"KL" term being large along with certain directions possibly leading to a model
biased towards certain features.

Matching the Second Cumulants By repeating (3.50) we obtain the second
cumulant matching condition as follows

r
2 (0)

backprop
⇡ r

2 (f(xs,w)). (3.52)

Since KL divergence is asymmetric minimizing KL(g||⌫) and KL(⌫||g) leads
to different solution in general, see [Bishop, 2006], Chapter 10. In particular
minimizing KL divergence from g to ⌫z leads to g that avoids areas of domain
where ⌫z is negligible as could be seen from definition of KL and is also visually
shown elaborately in [Bishop, 2006], Chapter 10. In other words it favors

���r2 (0)
���

���r2 (f(xs,w))
��� (3.53)

for some matrix norm (due to norms equivalence on finite spaces, [Bhatia, 1997]).
For instance the matrix norm induced by a vector norm k ·k as k⌃k = sup{k⌃xk :
kxk 1}.

Recall that by convex duality we have r
2 = (r2�)�1 and that � is a cumulant

function for the "dual" view probability model over targets ỹ that are sufficient
statistics as well and parametrized by outputs of f , see (3.0.1.2).

That means minimizing DKL(g(r�(f(xs,w),)||d⌫z) leads to a model whose vari-
ance at predicted parameters f(xs,w) is approximately r

2�(0), Eq. (3.54), and
biased to be bounded from the top by the second cumulant of ⌫z in (3.54) as
follows

r
2�(0) ⇡ r

2�(f(xs,w)) (3.54)
���r2�(0)

��� �

���r2�(f(xs,w))
��� . (3.55)

3.0.3.2 Minimizing DKL(g||d⌫z) Shapes the Net f

Eq. 3.54 means that the (dual view) model derived from

`(f(x|w),y) = d (r�(y),r�(f(x|w)))

over targets ỹ := r�(y), defined in 3.0.1.2, has a given variance by r
2�(0),

approximately (in a sense of the divergence DKL(g||d⌫z)) from (3.16)). For

54 Self Regularized Bregman Objective (SeReBrO)

instance in the case of "squared loss", given by �(µ) = 1
2 hµ,µi, it’d be an

identity matrix I. This can be seen as a prior belief (in a form of degenerate one
point delta function probability distribution) imposed on variance parameter of
the model in the Bayesian statistics sense [Gelman et al., 2013].

If this imposed variance r
2�(0) is larger than the variance of target data

distribution over ỹ than f(xs,w) is given a slack by r
2�(0) to fit y, because

gradients of likelihood would tend to vanish when f(xs,w) is in a high likelihood
region of y, determined by variance r

2�(0). In such setting, the f(xs,w) is
not updated to fit ys exactly, i.e., to overfit, as opposed to the case of low(er)
variance of r

2�(0). This is well known behaviour from regression Gaussian
models ([Rasmussen, 2003]) with priors on (or given) variance of the model for
instance. Next section shows how this variance changes over training and how it
depends on a batch size and learning rate.

More over this is intuitively in line with matching/minimizing the first moment
as well as it is expected that fitting ys exactly produces larger distance of the
outputs f(xs,w) from the origin than only getting to its vicinity (going from
the origin as network is initialized close to it, f(xs,w) = 0 for all xs).

Alternative interpretation rises from the use 1st order Taylor approximation to
f as a function of xs that gives a variance approximation rxfvar(X)rxf 5

while assuming finite data variance var(X) < 1. Then bounding this variance
leads to penalizing the norm of the gradientkrxfk2 and thus alsokrx`k2 that is
argued to be connected to all sorts of norm regularizes, e.g., path norm [Yoshida
and Miyato, 2017, Neyshabur et al., 2015, Kawaguchi et al., 2017], l2norm
[Goodfellow et al., 2016], depending on activation functions used in the model.

More broadly. Under the LiMoD perspective, where individual sample dependent
models indexed by s belong to the -imposed Exponential family, the joint
model over pairs (xs,ys) belongs to Exponential family as well, [Wainwright and
Jordan, 2008, Amari, 2016]. Then imposing the priors on the model via � and
its moments while parameterizing the mean function r�(f(x|w))) can be seen
as a generalization of Gaussian models, [Rasmussen, 2003]. In particular, and
under the model hypothesis, any subset of data points defines a joint probability
distribution from (some) Exponential family meeting constraints given by � and
with parametric (by weights) mean value function. Details are left for the future
work.

5also by the delta method in case of CLT was legit to apply

55

3.0.3.3 LiMoD Back-prop Formulation

For reasons to be revealed shortly, let’s lump together learning rate multiplied
by a l2 norm of a gradient over batch size, [Goodfellow et al., 2016] into one step
dependent hyper parameter denoted ⌧t :=

⌘tkr`tk2
|Bt| .

Then back-prop step t proceeds with a unit gradient �!g t multiplied by a "learning
rate" ⌧t.

Since Bregman divergence is linear in the first parameter, [Banerjee et al.,
2005], and assuming ⌧t > 0, one can absorb scalar ⌧t into a � and consider the
�t = ⌧t�, a "new" strictly convex and step dependent function that generates a
corresponding Bregman divergence (3.31) to be minimized in every step.

To summarize it we have defined the following step dependent entities recasting
the back-prop training into step dependent optimization, i.e., the objective at
every step is different in general and given by �t

Definition 3.17. (LiMoD back-prop training formulation)

⌧t :=
⌘tkr`tk2

|Bt|
(LiMoD learning rate)

�!
g t :=

r`t
kr`tk2

(LiMoD gradient)

�t :=⌧t�. (LiMoD objective)

Relating it to (3.55) one sees that the smaller learning rate or gradient norm over
batch size the smaller variance of the model is allowed by (3.55) and thus f has to
fit targets closely. This may happen by learning rate decay, a standard practice in
deep learning, see [Goodfellow et al., 2016], during and at the end of the training
allowing for "overfitting". In other words, we have theoretically recovered highly
intuitive and well-known, and observed phenomena. On contrary, the novel
results will follow in the next chapter by analyzing the last ingredient of ⌧t, a
norm of gradient, whose effects are complex, especially in higher dimensions.

To motivate it to consider stochastic training with the constant learning rate
⌘t and batch size |Bt|. Then a decreasing norm of gradient, occurring possibly
at (a vicinity of) optimum or plateau, brings ⌧t small and thus imposes smaller
variance on the targets model (3.54) using �t = ⌧t� in place of � as described

56 Self Regularized Bregman Objective (SeReBrO)

above. In particular, we obtain

⌧tr
2�(0) ⇡ r

2�t(f(xs,w)) (3.56)

⌧t
���r2�(0)

��� �

���r2�t(f(xs,w))
��� . (3.57)

where r
2�t(f(xs,w)) is a variance of the model over targets at update t as

described in previous section. One can see that scalar ⌧t controls the variance of
the model. The most interesting constituting element of ⌧t is norm of gradients
and will be elaborated next.

Chapter 4
Generalization of Deep

Learning Optimizing
Bregman Divergences

. . . ‘There’s more evidence to come yet, please your Majesty,’ said the White
Rabbit, jumping up in a great hurry; ‘this paper has just been picked up.’ . . .

King reflecting in court, Alice’s Adventures in Wonderland, Charles Ludtwidge
Dodgson (Lewis Carroll, 1865)

58 Generalization of Deep Learning Optimizing Bregman Divergences

This chapter builds upon the previous one and shows that stochasticity in
training and depth of the network together, have consequences on a norm of
noisy gradient that will concentrate away from zero as a function of dimension
and as opposed to the behavior of the low dimensional models and common
intuition. That put together with previous findings of this chapter will allow us
to present a statement linking the depth and stochasticity of back-prop training
to generalization in deep learning.

4.0.0.1 Going Noisy with Mini-Batch Training

Compared to full batch (gradient descent) a mini-batch (stochastic gradient
descent) training could be seen as back-propagation of a full batch gradient with
an additive random noise [Li et al., 2020b, Du et al., 2018, Li et al., 2017, Li
et al., 2019, Mandt et al., 2017, Goodfellow et al., 2016] and many others.

Formally in what follows we use the construction from [Li et al., 2017] and
consider a unit batch size of 1 for simplicity. The stochastic gradient descent
(SGD) replaces the full gradient r` with a sampled version, serving as an
unbiased estimator. In its simplest form, the SGD iteration is written as

wt+1 �! wt � ⌘tr`�t(wt) (4.1)

where t � 0 and �t are i.i.d uniform variates defining the subset of training
data (random mini-batch) taking values in {1, 2, . . . , |D|} where D denotes set
of training data. Now we can rewrite (4.1) as

wt+1 �! wt � ⌘tr`(wt) +
p
⌘tVt (stochastic gradient step)

where Vt =
p
⌘t(r`(wt)�r`�t(wt)) is a d�dimensional random vector. Given

wt, Vt has mean 0 and covariance matrix ⌘⌃(wt) with

⌃(w) =
1

|D|

|D|X

i=1

(r`(w)�r`i(w))(r`(w)�r`i(w))
T . (4.2)

Define gradient errors as

"i := r`i(w)�r`(w) (4.3)

equivalently written as

"i(w) = |D|r`(w)�

|D|X

j=1,j 6=i

r`j(w). (4.4)

59

Consider a large enough training data size, e.g., the common deep learning
applications with more than hundreds of training data samples, etc., and bounded
moments of errors (4.3) "i, 8i. Then by the Central Limit Theorem (CLT),
[Gelman et al., 2013], applied on errors (4.4) and on (4.2) one obtains that "i
are (asymptotically in training data size |D|) Gaussian and sample covariance of
errors, ⌃, is asymptotically Gaussian estimator of variance of gradient error " at
given w.

The construction above considers a unit batch size. For the larger batch sizes,
the construction and Gaussian approximation follow by the same lines taking �t
to be randomly sampled set of indices of training data and using general CLT as
�t are now (weakly) dependent.

4.0.1 Going Deep

As opposed to low dimensional case, the norm of random vector in high dimen-
sional spaces behaves a bit unintuitively, i.e., random vector of zero mean and
unit variance coordinates in Rn will concentrate in the distance

p
n from zero.

Gaussian and Spherical Distributions A prequel for such a statement is the
following insightful lemma that will turn useful in higher dimensions. It shows
that Gaussian distribution in Cartesian coordinates corresponds to Uniform
(direction) and �2 (radius) distribution in polar coordinates. Lemma is also an
Excercise 3.3.7 in [Vershynin, 2018]. It is presented here for completeness with
proof.

Lemma 4.1. (The Gaussian as a Spherical Distribution) If X ⇠ N(0, In), then
X = R · U , where

R2 =kXk
2
2 ⇠ �2(n) and (4.5)

U =
X

kXk2

⇠ Unif(Sn�1) (Uniform distribution on a sphere)

and R and U are independent. Further (n� 1)-sphere of radius R > 0 is defined
Sn�1(R) = {x 2 Rn :kxk2 = R} and Sn�1 denotes the unit radius (n�1)-sphere
and k·k2 is the Euclidean metric induced l2 norm.

Proof. Suppose X = {X1, . . . , Xn} is a multivariate random vector with inde-
pendent and identically distributed standard Gaussian coordinates Xi ⇠ N(0, 1).
Then X ⇠ N(0, I) is a multivariate normal distribution with zero mean and
identity covariance matrix I and R2 :=kXk

2
2 = (X2

1 + · · ·+X2
n) ⇠ �2(n) follows

�2 distribution by definition, see [Gelman et al., 2013, Bishop, 2006].

60 Generalization of Deep Learning Optimizing Bregman Divergences

Let O be an orthogonal (square and real) matrix, i.e, OT = O�1. Than XO
has same distribution as X. It follows from the fact that X is multivariate
Gaussian N(0, I) then OX is as well multivariate Gaussian (by plugging into
density) and then these are equal iff means and variances equal, [Bishop, 2006]
for instance. But that is straightforward to see as E[OX] = OE[X] = 0 =
E[X] and E[(OX)2] = E[(OX)T (OX)] = E[(XTOT (OX)] = E[X2]. Because
orthogonality of O gives also kOXk2 = OOT

kXk
2
2 = kXk2 (we just proved it)

then we have OX
kOXk2

is identically distributed with X
kXk2

.

We have gotten that U := X
kXk2

is invariant under rotations and U lies on the
unit sphere. That is (equivalent with) a definition of the uniform distribution on
the unit sphere, [Vershynin, 2018], and shows that U uniformly distributed on
the n-dimensional unit sphere.

Independence of U and R follows by showing P (U,R) = P (U |R)P (R) =
P (U)P (R) (independence), that is equivalent to P (U |R) = P (U) (for case
P (R) > 0, otherwise trivially). But for given R = c where c is constant we have
P (U |R) = P (X/kXk2 |kXk2 = c). Since X is multivariate normal with zero
mean its density only depends onkXk2 and thus is constant forkXk2 = c, which
means X|kXk2 = c is uniformly distributed over all vectors x such kxk2 = c.
And thus P (X/kXk2 |kXk2 = c) is uniformly distributed over vectors on a unit
sphere, i.e. it is P (U). We showed P (U |R) = P (U) for all values of R which
concludes the proof.

In the following the fact that in the (high) dimension n the variance of radius
R, defined in previous Lemma, Eq. (4.5), shrinks (concentrate) around

p
n

exponentially. This will allow us to show that zero mean errors "i are uniformly
distributed on a sphere with radius

p
n.

4.0.2 SGD Gradient Norm in Deep Networks

Deep networks. The word deep in the context of this chapter means high
dimensional weights (altogether with biases), i.e. vector of parameters w 2 W is
embedded in high dimensional Euclidean space W ✓ R|W|. Thus also gradient
of loss r` is of a (high) dimension |W|. As outlined before in high dimensional
Euclidean spaces a vector with zero centered random coordinates concentrates
away from zero opposing the intuition from low dimensions.

Research Question: Could a small gradient noise, possibly negligible when
updating individual weight parameters by mini-batch back-prop, have a significant

61

effect by imposing a large model variance (3.56) SeReBrO prior through its norm
concentrating away from zero in high dimensions?

It is not obvious even if the norm grows with dimensionality as outlined because
the norm of noisy gradient is only upper-bounded by1 and it is not a sum
of norms (of the noisy and the full gradient)2 in general. Consequently, the
noise may cancel out or remain negligibly small during the training or upon
convergence living up to intuition from low dimensions.

It will be shown that this cancellation does not happen when stochastic (mini-
batch) training is combined with an over-parameterization. The main contribu-
tion of this chapter is providing a positive answer to the Research question above.
In particular, showing that it holds almost surely with the growing dimension of
weights.

4.0.2.1 Concentration of the Norm in High Dimensions

Challenging our low dimensional intuition, despite the standard normal distri-
bution N(0, In) in high dimensions has the density maximal at origin, yet it
concentrates in a thin spherical shell around the sphere of radius

p
N and width

O(1). The concentration inequality in the next theorem 4.7 from [Vershynin,
2018] states that the norm of the random vector lies far from zero, as also shown
in Fig. 4.3 later.

4.0.2.2 Intuition

To begin with, let’s build some intuition for a high-dimensional setting. For
instance, what can we expect about a randomly picked vector from N(0, In)?
Should it be close to the origin (by density and low dimensional intuition) or
rather away from zero?

We argue that a random point is more likely to be close to the shell than in
the center. Not because the probability in the center is "low" (the opposite is
true), but just because there are increasingly more points overall (in a sense of
area/volume density integrals) away from the origin, despite being spread thin.

1the triangle inequality of the Euclidean norm
2unless they are orthogonal, which is sometimes assumed and can be shown to be true

around global optimum, i.e., at true parameter [Pawitan, 2004]. However, we’d like to have
this property throughout the training and out of optima (does the training ever converge to
any optimum in fact? [Goodfellow et al., 2016]).

62 Generalization of Deep Learning Optimizing Bregman Divergences

This can be seen already in two dimensions, see Fig. 4.1. The probability of a
randomly picked point inside the (blue) circle with radius 0.5 is ⇡ 0.11(sampled)
and 0.146(theoretical), while probability of randomly picked point between the
(blue) and (red)3 circle is ⇡ 0.28(sampled) and 0.32(theoretical) and beyond
the (red) line being ⇡ 0.614 (and 0.534(theoretical)

On the other hand, consider the arbitrary circle S of a radius r. Let’s compare
the probability of picking the point from inside of two such circles with different
centers. I.e., the areas are the same, and positions differ. It follows that the
probability of picking a point inside of the S closer to the origin is larger because
the density increases towards the center where it is highest, as also a heatmap in
Fig. 4.1 presents.

As opposed to a density being the infinitesimal limit of the probability per area the
above-mentioned concentration is rather an "unnormalized" probability over the
area. Because the area grows with radius and exponentially in dimension, i.e. ⇠

rn, the probability accumulates radially dropping density (Gaussian marginals of
n-dimensional Gaussians) over a radially expanding area, exponentially expanding
with increasing dimension. It leads to an "equilibrium" away from the origin,
the mentioned shell of the hyper-sphere of radius

p
n.

Figure 4.1: Following contains 2D histogram of 106 samples from two dimensional N(0, In),
i.e, for n = 2. On the (left) drawn as N(0, 1) Cartesian coordinates, on the
(right) drawn from spherical normal R · U , U ⇠ Unif(S1), R2 ⇠ �

2(2) in polar
coordinates, see Lemma 4.1.
To motivate intuitively the concept of a "concentration" of a random vector with
zero centered standard Gaussian coordinates N(0, 1) in high dimensions away
from origin, see theorem 4.7 from [Vershynin, 2018], note, that a probability
of a random vector to lie outside of the (red) circle with radius 1, i.e. radius
of 1 standard coordinate deviation (std), is ⇡ 1� 0.682 = 0.537, that is larger
than 1

2 . And thus it is more likely for a random point to be picked from that
"outer" area as opposed to 1D case, where probability to lie within ±1std is
larger, ⇡ 0.68, as well known.

3of radius 1
4simulations done using Numpy package, python [vanRossum, 1995].

63

4.0.2.3 Concentration in High Dimensions

As before, consider a random vector X = {X1, . . . , Xn} in Rn with independent
and identically distributed standard Gaussian coordinates Xi ⇠ N(0, 1). Then
X ⇠ N(0, In) is a multivariate normal distribution with zero mean and identity
covariance n ⇥ n matrix In and let its norm be denoted R2 := kXk

2
2 = (X2

1 +
· · ·+X2

n) ⇠ �2(n)5. Note that R 2 R is a non-negative real number. Then

E[R2] := E[kXk
2
2] =

nX

i=1

E[X2
i] = n. (4.6)

The length of X can be expected to be around
p
n. The following theorem

proven in [Vershynin, 2018] states that it is indeed true with high probability,
exponentially vanishing as a function of distance t from a sphere of radius

p
n.

We use its lighter version here for brevity.

Theorem 4.2. (Norm concentration in high dimensions, Informal, see blog of
Anmol Goel and [Vershynin, 2018] manuscript) Let X be a random vector in Rn

with independent coordinates. Then

P (|kXk2 �
p
n |� t) 2 exp{�ct2} (4.7)

where c > 0 is a constant, and t � 0 and k·k2 is the Euclidean vector norm
(l2�norm).

Proof. The formal statement (Theorem 3.1.1.) for sub-gaussian distributions and
detailed proof is to be found in an excellent book on high dimensional probability
[Vershynin, 2018], section 3.1.

To clarify the relation of Gaussian r.v. to spherical distribution as shown in
Lemma 4.1 and let us represent X in polar coordinates

X = r↵ (4.8)

where r is the length and ↵ = X
kXk2

is the direction of X. Then X becomes
approximately only a function of direction given n

X ⇡
p
n↵ ⇠ Unif(

p
nSn�1) (4.9)

with an exponentially vanishing error with increasing dimension n. A relation
between Gaussian r.v. in Cartesian and polar coordinates is general and can be

5
�
2 distribution by definition

https://anmolg.me/post/high-dimensional-normal/
https://anmolg.me/post/high-dimensional-normal/

64 Generalization of Deep Learning Optimizing Bregman Divergences

seen demonstrated by sampling from Cartesian and spherical representation in
two dimensions in Fig. 4.1 (left) and (right), respectively.

Alternatively put, the concentration inequality (4.7) says that the standard
normal distribution in high dimensions is close to the uniform distribution on
the sphere of radius

p
n, i.e. X ⇠ N(0, In) ⇡ Unif(Sn�1(

p
n)).

Note that this in line with general representation of Gaussian as a spherical
distribution as by Lemma 4.1, just with radius becoming increasingly "shrinked"
around its expected value.

Fig. 4.2, taken from [Vershynin, 2018], Figure 3.6, presents a high level intuition
behind the norm concentration theorem In the follow up the Figure 4.3 reports

Figure 4.2: Figure 3.6 from the book [Vershynin, 2018], p.53. A Gaussian point cloud in two
dimensions (left) and its intuitive visualization in high dimensions (right). In
high dimensions, the standard normal distribution is very close to the uniform
distribution on the sphere of radius

p
n.

a synthetic data experiment and demonstrates the statement of the Theorem
empirically on 30, 000 vectors from R103 . To sum it up a high-dimensional
random normal vector X 2 Rn is (exponentially) tightly concentrated around a
sphere of radius

p
n with norm kXk2 ⇡

p
n.

65

Figure 4.3: Histogram of Euclidean norms of 30000 vectors in R103 with randomly sam-
pled standard zero mean Gaussian coordinates N(0, 1). Vectors in this 103-
dimensional space are apparently following the norm concentration Theorem
from [Vershynin, 2018], stated above, showing the norm concentrates aroundp
1000 ⇡ 31.6 (blue line), that is far from zero as opposing the intuition from

lower dimensions.

4.0.2.4 Noisy Gradient is Larger Then Full Batch Gradient in Prob-
ability

Recall that considering mini-batch training gradient error in a batch i was defined
in (4.3) as

"i := r`i(w)�r`(w) (4.10)

Under a large enough training data size assumption allowing Central Limit
Theorem (CLT) to be invoked, "i were shown to be (asymptotically in training
data size |D|) Gaussian with zero mean and sample covariance of errors, ⌃, is
asymptotically Gaussian estimator of the variance of gradient error " at given w.

So a "noisy gradient" can be written as a sum of two following vectors where r`
is fixed, while "i is randomly distributed following N(0,⌃), i.e.

r`i = r`+ "i. (4.11)

Let’s denote the dimension of the gradient by N . Then by Lemma 4.1 a random
vector "i with Gaussian coordinates can be represented in polar coordinates as
R · U , where U is a direction random vector with uniform distribution on the

66 Generalization of Deep Learning Optimizing Bregman Divergences

unit (N � 1)-sphere and R is a random radius vector such that R2
⇠ �2(N) in

polar coordinates.

Next, we prove the following theorem in a R2 plane for its instructive nature.
The corollary for higher dimensions follows.

Theorem 4.3. Consider vector r`i = r`+" 2 R2, where r` is a given constant
vector and " ⇠ Unif(S1(r)), is uniformly distributed random vector on the circle
of the given radius r > 0 i.e. k"k2 = r. If r 2kr`k2 then

P
�
kr`ik �kr`k

�
=

1

2
+

arcsin
⇣

k"k2
2kr`k2

⌘

⇡
(4.12)

and 1 otherwise, i.e., for r > 2kr`k2. The k·k denotes the Euclidean norm in
R2.

Proof. We opted for a geometrical proof as presented in Fig.4.4 for its visual
suggestivity.

First note that for k"k2 = r � 2kr`k2 the

kr`ik
2
2 =kr`+ "k22 =kr`k22 +k"k22 + 2h",r`i = (4.13)

kr`k22 +k"k22 + 2kr`k2k"k2 cos (]r`
") (4.14)

�kr`k22 + r2 � 4kr`k22| {z }
�0

(4.15)

�kr`k22 (4.16)

is always true, and thus P
�
kr`ik �kr`k

�
= 1 by posititivity of the norm proving

the second part of the statement. It should be also visually straightforward from
Fig. 4.4.

Let’s further consider the case r 2kr`k2. Given the radius r and kr`k2
(deterministic gradient) consider the triangle PQR with sides |PR| = kr`ik2,
|PQ| = kr`k2 and |QR| = r, see Fig.4.4. Point R of the triangle follows
the uniform distribution on the circle with a center Q and radius r and thus
considering polar coordinate system with origin at Q we have k"k2 = r and
R ⇠ Unif(S1(r)) has a coordinate ✓ measured from vertical line going through
Q pointing upwards, as in Fig.4.4.

Now consider the angle ↵ defining a point R = (r, ✓ = ↵/2) such that |PR| =
|PQ|, i.e., the length of the sides of the triangle with the common vertex P are
equal. By elementary geometry, it follows that]QPR = ↵.

67

Figure 4.4: Consider the angle]QPR = ↵ such that the triangle PQR has lengths of
sides |PQ| and |PR| equal. Such ↵ 2 (0,⇡) always exists for any given radius
2|PQ| > r > 0 of a circle S1(r) with a center at Q. It follows the length of (blue)
arc, i.e., a semi-circle, plus nonzero lenghts of two (red) arcs are always larger
than half of the circumference of S1(r), i.e., the length of (blue) arc. Consider
R uniformly distributed on the circle S1(r). Then the probability (in a sense of
Unif(S1(r))) of |PR| being larger then |PQ| is proportional to arc lengths and is
larger than 1

2 for any 2|PQ| > r > 0. Note that for r � 2|PQ| this probability is
always 1.

This is a boundary position in the sense that the norm of r`i is strictly larger if
the point R lies anywhere on the (blue) or the (red) arc of the circle and strictly
smaller in the opposite case, as depicted in Fig. 4.4. It follows by the well-known
triangle inequality combined with the Pythagorean theorem applied on triangle
PMR for instance.

Note that (blue) arc is a semi-circle. Thus it follows that (blue)+(red) arc length
is strictly larger than half of the circumference for any r > 0. Since R is uniformly
distributed on the circle the arc lengths are proportional to probabilities and we
can write

P
�
kr`ik �kr`k

�
=

red + blue arc
circumference

=
(⇡ + ↵)r

2⇡r
=

1

2
+

↵

2⇡
(4.17)

Finally from triangle PMQ we get that sin ↵
2 = r/2

r` and thus

↵ = 2arcsin
k"k2

2kr`k2
(4.18)

where we plugged in |PR| =kr`ik2, |PQ| =kr`k2 and |QR| = r =k"k2.

68 Generalization of Deep Learning Optimizing Bregman Divergences

Corollary 4.4. Consider vector r`i = r` + " 2 RN , where r` is a given
constant vector and " ⇠ Unif(rSN�1), is uniformly distributed random vector on
the circle of the given radius r > 0 i.e. k"k2 = r. If r 2kr`k2 then

P
�
kr`ik �kr`k

�
= 1�

1

2
Icos2(↵/2)

✓
N � 1

2
,
1

2

◆
. (4.19)

where

↵ = 2arcsin
k"k2

2kr`k2
(4.20)

as in Lemma 4.3 and 1 otherwise, i.e., for r > 2kr`k2.

The Icos2 ↵/2

�
n�1
2 , 1

2

�
is a regularized Beta function, [Myland et al., 2008], defined

as I(z; a, b) = B(z; a, b)/B(a, b) where B(z; a, b) is incomplete beta function
B(z; a, b) =

R z
0 u(a�1)(1 � u)(b�1)du and B(a, b) is a complete Beta function

defined as B(1; a, b).

Proof. Note that the second part of the statement for RN follows by an identical
argument as in R2 because it is based on well known Euclidean norm relation
that is independent of dimension, see Theorem 4.3.

Overall, the idea of the proof follows the same line of arguments as in R2 just
instead of the circle in R2 the (N � 1)-spheres are considered. Because of the
direction is uniformly distributed over the hyper-sphere rSN�1 the probability
P
�
kr`ik kr`k

�
is proportional to a ratio of the area of hyperspherical cap to

the area of the whole hypersphere in an exact analogy to R2.

An area of the hyperspherical cap on the Sn(r) given by a co-latitude ✓, the
angle between vector of the sphere and its positive nth axis, i.e., the axis from
center of the sphere to the "north" pole), is by work [Li, 2010] given as

1

2
An(r)Isin2 ✓

✓
n� 1

2
,
1

2

◆
(Area of a hyperspherical cap on Sn�1(r))

where An(r) is a area of (n � 1)-sphere Sn�1(r) and Isin2 ↵

�
n�1
2 , 1

2

�
is the

regularized Beta function as defined in the corollary. Note that in our case,
relating to Fig. 4.4, the co-latitude is ✓ = ⇡�↵

2 .

For more details on regularized Beta function kindly refer to the Chapter 4 of
this thesis6 or [Myland et al., 2008] or Wolfram Math World
https://mathworld.wolfram.com/IncompleteBetaFunction.html.

6IEEE TPAMI paper "Bayesian Cut" uses incomplete Beta function and some if its
properties.

69

Note that (Area of a hyperspherical cap on Sn�1(r)) corresponds to
P
�
kr`ik kr`k

�
, that is a complementary probability to the one wanted. Fur-

ther it contains a factor An(r), i.e., an area of the whole hypersphere. Then ratio
of hypershperical cap area over the area of whole sphere An(r) simply equals the
value of the regularized Beta function. Hence the probability P

�
kr`ik �kr`k

�

and statement of the corollary to be proven is given as

P
�
kr`ik �kr`k

�
= 1�

1

2
Icos2(↵/2)

✓
N � 1

2
,
1

2

◆
. (4.21)

A relation between ↵ and " translates to high dimensions unchanged from R2

because the high dimensional case is symmetric around the nth co-latitude axis
the same way as R2 case w.r.t. PR, see Fig.4.4)

↵ = 2arcsin
k"k2

2kr`k2
(4.22)

which concludes the proof.

Note the value of the regularized incomplete Beta in the Corollary 4.4 can be
interpreted as the probability of a random vector on a hemisphere falling onto
a cap defined by co-latitude ⇡�↵

2 . Letting alone that such a view may serve as
a basis for efficient sampling from such spherical distribution, see [Li, 2010], it
may also be used as a numerical test (numerically efficient evaluation of Beta
functions are available in major ML software platforms,e.g., Python [vanRossum,
1995], see also the Chapter 4) that training follows the hereby described behavior.
Exploring these avenues is left for future work.

Up until this point we have worked in a "marginal" regime with a given fixed
radius set to an arbitrary yet given value r. Next, we alleviate this marginality
and consider stochastic back-prop training under LiMoD settings of this Chapter
in the full generality.

Definition 4.5. (SGD setting) Consider SGD mini-batch training given by given
by Equation (4.11) with batch index i where realization of "noise" variable " for
the batch i is denoted "i and "noisy" ith batch gradient r`i. In SGD mini-batch
training we have r`i = r`+ " by (4.11) and " is considered to be zero centered
Gaussian " ⇠ N(0,⌃) as derived earlier following by CLT in (4.4).

Let’s define radius and direction of " given by

Rsgd(N) :=k"k2 , R
2
sgd(N) ⇠ �2(N) (SGD radius)

Usgd(N) :=
"

k"k2
⇠ Unif(S(N�1)) (SGD direction)

70 Generalization of Deep Learning Optimizing Bregman Divergences

the random variables given by Lemma 4.5. Further we have

E[k"k2] =
p

N. (4.23)

and by the Concentration theorem 4.7 applied on " we have that Rsgd fluctuates
(exponentially) close to the radius

p
N .

Note that by the corollary 4.4 the probability of noisy (stochastic) gradient r`i
to be larger than "not-noisy" (full batch) r` is always larger then 1

2 for any given
positive value of Rsgd(N) = r =k"ik > 0 and this probability only depends on
this norm, i.e., radius Rsgd(N) of the sphere and not on the direction Usgd(N).

Ultimately we are interested in dependence on dimension N . From the corollary
4.4 it follows it depends on N through Rsgd(N), defining area of the hyper-
spherical cap through ↵ = 2arcsin Rsgd(N)

2kr`k2
as well as directly through the first

argument of Icos2(↵/2)
⇣

N�1
2 , 1

2

⌘
from (4.19).

The next theorem and its corollary show that this double dependence on N is
not in contradiction and moreover is monotonically increasing with the rank of
the covariance matrix of the noise ".

Theorem 4.6. (Norm of isotropic noisy gradient) Under SGD settings 4.5 with
identity stochastic gradient covariance matrix ⌃ = IN the following holds

P
�
kr`ik �kr`k

�
>

1

2
for any N > 1, and (4.24)

lim
N�!1

P
�
kr`ik �kr`k

�
= 1 (4.25)

almost surely. More over P
�
kr`ik �kr`k

�
is monotonically increasing to 1 with

increasing rank(⌃), i.e., N .

Proof. Consider an arbitrary step t of stochastic back-prop training 4.5. Then
value of the full gradient r` at t is deterministic, i.e. non-random, while r`i at
t is a random zero mean isotropic Gaussian variable according to assumptions.

P
�
kr`ik �kr`k

�
> 1/2 a.s.: The first statement of this theorem is a direct

consequence of the corollary 4.4 that yields the probability P
�
kr`ik �kr`k

�
> 1

2
whenever value of r = k"k2 > 0. But this is true with probability 1 because
" ⇠ N(0,⌃) and P (" = 0) = 0. In other words the statement holds "almost
surely" (a.s.), supported by Fig.4.4 geometrically.

Monotonicity: Recall the norm of full gradient kr`k is given constant. Consider
R2 case in Fig.4.4. Radius Rsgd =k"k2 defining radius of circle r is now random

71

variable. Never the less, note that P
�
kr`ik �kr`k

�
= 1 whenever value of Rsgd

on batch i satisfies k"ik2 � 2kr`k2 by the Theorem 4.3 and its Corollary 4.4
for RN . But from concentration theorem 4.7 we know that Rsgd concentrates
exponentially closely around

p
N and thus increases with dimension N .

Following this idea we P
�
kr`ik �kr`k

�
= by random radius Rsgd and prove

that both factors are monotone and increasing with N . Formally we use sum
rule of probability

P
�
kr`ik �kr`k

�
(N) =P

�
{kr`ik �kr`k} & {Rsgd(N) < 2kr`k2}

�
| {z }

PS(N)

(4.26)

+P (Rsgd(N) � 2kr`k2| {z }
PR(N)

(4.27)

and show that PS(N) is increasing and P (Rsgd(N) is non-decreasing with
increasing N until they reach 1.

Monotonicity of PS(N) Note that by corollary 4.4 PS(N) = 1 when r > 2kr`k2
and thus we only need to prove the case r 2kr`k2.

In this case the same corollary gives direct formula for PS(N)

P
�
kr`ik �kr`k

�
= 1�

1

2
Icos2(↵/2)

✓
N � 1

2
,
1

2

◆
(4.28)

where ↵ 2 (0,⇡). In such case cos2(↵/2) is monotonically decreasing on ↵ 2 (0,⇡)

with stationary points 0,⇡. Since ↵ = 2arcsin
k"k2

2kr`k2
.

Now using the fact that the incomplete Beta Bz(a, b) is monotonically decreasing
function of both arguments a and b and monotonically increasing in z7, [Myland
et al., 2008], p.604, yields required.

In a larger detail: For the proof of monotonicity w.r.t. a (and b, by symmetry)
we only need it for z 2 [0, 1] because we have z = cos2 fixed and bounden
by 1 from above. Then decreasing monocity can be shown from the definition
B(z; a, b) =

R z
0 u(a�1)(1 � u)(b�1)du because increasing a decreases the inside

of the integral for all u, i.e. on the whole interval u 2 (0, 1). Integral can be
approximated by the Riemanian sum (B(z; a, b) smooth function w.r.t. Lebesgue
measure) over f(u)du, where f denotes inside of the integral. Every sum is
strictly smaller for a0 = a+ ✏, ✏ > 0 compared to the the same sum with a and by
taking the limit du �! 0 and continuity the monotonicity follows. For a geometric
intuition see Fig.4.4 where increasing N means increasing r = k"k2 and thus

7fixing all other arguments but one in focus

72 Generalization of Deep Learning Optimizing Bregman Divergences

↵ = 2arcsin
k"k2

2kr`k2
leading to increasing length of a (red) arc. That B(z; a, b)

is monotonically increasing in z, z 2 [0, 1] is straightforward from its definition
above and strict positivity of the defining integrand on u 2 [0, z).

Asymptotics: Making use of [Myland et al., 2008] and https://mathworld.wolfram.com
/IncompleteBetaFunction.html following approximations can be found and used
to shed light on asymptotic behaviour of Icos2(↵/2)

⇣
N�1
2 , 1

2

⌘
when N �! 1

B(z; a, b) /
za

a

�
1 +O(z)

�
(4.29)

B(a, b) / �(b)a�b (4.30)

Then, fixing everything but N , the limit is

lim
N�!1

Icos2(↵/2)

✓
N � 1

2
,
1

2

◆
=

lim
N�!1

(cos2(↵/2))N�1(N � 1)�1/2

�(1/2)

⇣
1 +O(cos2(↵/2))

⌘
= 0 (4.31)

by cos2(·) being bounded from above by 1.

Non-decreasing PR(N) The norm concentration theorem 4.7 says that P (| Rsgd�p
N |� t) 2 exp{�ct2} where RHS is independent on N , c is positive constant

and t > 0 is a distance from SN�1(
p
N). In other words Rsgd(N) lies in the

interval (
p
N � t,

p
N + t) with probability 1� 2 exp{�ct2} and this probability

does not depend on N .

Next fix N and take t such that
p
N � t = 2kr`k and consider some T > N .

Then we also have Rsgd(T) lies in the interval (
p
T � t,

p
T + t) with the same

probability probability 1 � 2 exp{�ct2}. Because both these probabilities are
same and independent on T and N for all c and t their one sided probabilities
also equal (given c and t), i.e., P (Rsgd(N) � 2kr`k2) = P (Rsgd(T) �

p
T � t).

Because probability being positive measure on sigma algebra it follows that if
B ✓ A then P (A) � P (B). And thus

P (Rsgd(T) � 2kr`k2) � P (Rsgd(T) �
p

T � t) = P (Rsgd(N) � 2kr`k2)
(4.32)

because (
p
T � t,1) ✓ (2kr`k2 ,1). Since we took arbitrary T > N it proves

PR(N) is non-decreasing in N.

73

4.0.3 The Norm of the Gradient as Anti-Overfitting Prior

Let us recall what the role of the norm of the (stochastic) gradient is in the
back-prop learning. We consider LiMoD training formulation of a standard
SGD training using (LiMoD learning rate) in combination with normalized gra-
dient (LiMoD gradient) and step dependent loss (LiMoD objective) as defined
in Definition 3.17 in the first part of this chapter.

In particular we have shown (restating the formulas (3.57) here) that

⌧tr
2�(0) ⇡ r

2�t(f(xs,w)) (4.33)

⌧t
���r2�(0)

��� �

���r2�t(f(xs,w))
��� (4.34)

where r
2�t(f(xs,w)) is a variance of the model being trained by back-prop

minimizing (3.16) over targets at update t. Thus larger ⌧t leads to a wider
variance of the model driven by a larger DKL(g||⌫z) penalty for over-fitting.

In other words rephrasing one of the main results of the thesis, the corollary
3.16, the loss is minimized not by maximizing the likelihood itself but rather by
striking a balance between "exact fit" and "small variance" (over-fitting) penalty.

4.0.3.1 Role of Other Cumulant Priors

Intriguingly, the norm of the gradient is not the only implicit regularizer acting
during the back-prop training. In the LiMoD training, defined in 3.17, matching
the second cumulants (3.52), imposing the variance prior that prefers large
gradient norms, is always accompanied by matching the first8 cumulants
(3.51) that prevent the outputs of f to be "large", as elaborated in Section 3.0.3.1.

Notably, this does not mean that all weights have to be small to generalize well.
In fact, large weights responding to so-called "irrelevant features"9 [Bengio et al.,
2021] are allowed, i.e., are not implcitly regularized, by SeReBrO. In a sense,
it suggests a diffusion to irrelevant directions is not only allowed but may be
helpful in terms of generalization. Further research along these lines is needed,
encouraged, and is left for future work.

8and higher cumulants depending on the chosen loss function, or rather from which it
derives. The higher cumulants impose skewness and other priors in general. Further research
is needed and is left for future work.

9features that do not correlate with changes of target variables

74 Generalization of Deep Learning Optimizing Bregman Divergences

4.0.3.2 Arbitrary Noise Covariance ⌃ ⌫ 0

Because ⌧t, defined in (LiMoD learning rate) and restated here for brevity as
⌘tkr`tk2

|Bt| , depends on the norm of kr`tk2 one can see that norm of the gradient
kr`tk2 controls the variance of the model being fitted and acts as a (step t) prior.
Note that this prior changes every step in general.

If this is so and considering the results of the previous theorem, we should see
all deep models generalize well or gradients explode. Why is it not that so? In
practice, stochastic gradients are not isotropic as in the previous theorem and
are "dampened" by a spectrum of their covariance matrix ⌃ ⌫ 0 (besides other
factors such as learning rate, etc.).

In what follows, the previous results will be leveraged to shed light on the training
with an arbitrary ⌃ ⌫ 0.

Definition 4.7. (kernel and image of linear operator) Let A be a linear operator
on a vector space V . Then subspace ker(A) = {v 2 V : Av = 0} is called kernel
of A and the subspace im(A) = {Av : v 2 V } is called the image of A.

Consider an arbitrary real square D ⇥D noise covariance matrix ⌃ ⌫ 0 of rank
N . Consider a standard Euclidean vector space RD and define the null space
of matrix A as ker(A) = {x : Ax = 0} a null space of ⌃, [Roman et al., 2005].
Because ⌃ ⌫ 0 then its rank N D and D � N is the dimension of the null
space of ⌃, i.e. and also a number of zero eigenvalues.

In an analogy to previous chapter let’s denote N positive eigenvalues of a
real symmetric matrix (so it has real eigenvalues) ⌃ of dimension N , by 0 <
�+
min(⌃) = �+

1 (⌃) �+
2 (⌃) · · · �+

N (⌃) = �+
max(⌃).

Because ⌃ is a real and symmetric one can invoke a well known singular value
decomposition (SVD) [Roman et al., 2005, Bhatia, 1997, Gantmakher, 1959] to
write it as ⌃ = U⇤UT where U is an orthonormal matrix with eigenvectors of ⌃
in columns and ⇤ is a diagonal matrix with {�+

i }
N
i=1 on diagonal and the rest of

diagonal elements N �D are zeros.

Let’s define the D⇥D matrix ⌃ 1
2 := (U⇤

1
2) where ⇤ 1

2 is a diagonal matrix with
{

q
�+
i }

N
i=1 on diagonal. The rest of diagonal elements of ⇤ N � D are zeros.

Let’s assume without loss of generality the and the diagonal ⇤ is in descending
order and thus first N columns of U are eigenvalues corresponding to positive
eigenvalues, the rest span null space of ⌃. Then ⌃ 1

2⌃
1
2
T
= ⌃.

75

Theorem 4.8. (Expected norm of ⌃ 1
2 ") Under notation of this section consider

a random Gaussian vector " ⇠ N(0, ID). Then the expected norm of random
vector ⌃ 1

2 " is lower bounded by
q
rank(⌃)�+

min(⌃) E
���⌃

1
2 "
���
2

q
rank(⌃)�+

max(⌃) (4.35)

where �+
min(A) and �+

max(A) denotes the smallest and largest positive eigenvalue
of ⌃ respectively.

Proof. Because ⌃ is a linear operator on RD we can write RD as a direct sum
RD = ker(⌃) � im(⌃), see [Roman et al., 2005], Theorem 2.21, and we also
have ker?(⌃) = im(⌃)10. Hence we write " = "? + "0, where "0 2 ker(⌃) and
"? 2 im(⌃). Recall that N denotes the rank(⌃), i.e., number of its positive
eigenvalues.

Since " ⇠ N(0, ID) and for Gaussian distribution "orthogonal is independent",
[Bishop, 2006, Gelman et al., 2013], expectation over RD = ker(⌃)� im(⌃) is
expectation over kernel ker(⌃) + expectation over the image im(⌃) as follows

E

���⌃
1
2 "
���
2

2

�
= Eker(⌃)

���⌃
1
2 "0
���
2

2

�

| {z }
=0

+Eker?(⌃)

���⌃
1
2 "?

���
2

2

�
(4.36)

where Eker(⌃) and Eker?(⌃) denotes the conditional expectation over kernel and
image of ⌃ respectively.

Further we make use of the Rayleigh quotient formula on a real symmetric ATA
that holds for any real matrix A, [Parlett, 1998],

sup
x 6=0

kAxk22
kxk22

= �max(A
TA) =) kAxk22 �max(A

TA)kxk22 (4.37)

inf
x 6=0

kAxk22
kxk22

= �min(A
TA) =) kAxk22 � �min(A

TA)kxk22 (4.38)

and apply it on the
���⌃ 1

2 "
���
2

2
with constraint on " /2 ker(⌃), i.e.

���⌃ 1
2 "?

���
2

2
.

Note that this constraint ensures the minimum of the norm is positive. And
because positive eigenvalues of matrices ⌃ 1

2⌃
1
2
T
, ⌃ 1

2
T
⌃

1
2 and ⌃ are the same by

the construction above, the inside of the expectation (4.36) has following bounds

k"k22 �
+
min(⌃)

���⌃
1
2 "
���
2

2
k"k22 �

+
max(⌃). (4.39)

10as also follows from (SVD) above noting eigenvectors corresponding to zero eigenvalues
are orthogonal to non-zero ones

76 Generalization of Deep Learning Optimizing Bregman Divergences

Now taking the conditional expectation Eker?(⌃) and plugging the (4.36), that
showed the conditional expectation over image of ⌃ equals the unconditional

expectation Eker?(⌃)

���⌃ 1
2 "?

���
2

2

�
= E

���⌃ 1
2 "
���
2

2
, we can replace the middle term

in inequalities above and obtain

�+
min(⌃)Eker?(⌃)k"k

2
2

���⌃
1
2 "
���
2

2
 �+

max(⌃)Eker?(⌃)k"k
2
2 . (4.40)

Further " has i.i.d. coordinates and is rotation invariant, i.e., invariant with
respect to orthonormal change of basis, we can effectively replace conditional
expectation of the square of the norm over the N -dimensional subspace ker?(⌃)
by the expectation over RN

✓ RD of the original space RD shown to be equal N

N�+
min(⌃) E

���⌃
1
2 "
���
2

2
 N�+

max(⌃). (4.41)

which by taking square root (all elements are strictly positive) concludes the
proof.

Definition 4.9. (Lipschitz functions on metric spaces). Let (X, dX) and (Y, dY)
be metric spaces. A function f : X �! Y is called Lipschitz if there exists L 2 R
such that

dY (f(u), f(v)) LdX(u, v) 8u, v 2 X (4.42)

The infimum of all L in this definition is called the Lipschitz norm of f and is
denoted kfkLip.

For completeness let’s note there is a general version of concentration for Lipschitz
functions on a sphere as stated in [Vershynin, 2018], Chapter 5.

Theorem 4.10. (Theorem 5.4.1, [Vershynin, 2018], Concentration of Lipschitz
functions on the sphere) Consider a random vector X ⇠ Unif(SN�1(

p
N)), i.e.

X is uniformly distributed on the Euclidean sphere of radius
p
N � 1. Consider

a Lipschitz function f : (SN�1(
p
N)) �! R. Then for every t � 0, we have

P{|f(X)� E[f(X)]| � t} 2 exp

(
�

ct2

kfkLip

)
. (4.43)

Note that if we take f : X �!

���⌃ 1
2X
���
2

and knowing the norm is Lipschitz, [Ver-

shynin, 2018, Bhatia, 1997]11 than we have by previous theorem that
���⌃ 1

2X
���
2

11Follows by defining matrix norm from a vector norm k · k as k⌃k = sup{k⌃xk : kxk 1}
and triangle inequality, one gets Lipschitz constant L =k⌃k.

77

concentrates around its expected value tightly in t and reciprocally w.r.t. Lips-
chitz constant.

Corollary 4.11. (Gradient norm is bounded by rank of ⌃ in Deep Learning)
Consider LiMoD training from Definition 3.17 and the stochastic gradient (4.11)
with an arbitrary covariance matrix ⌃ ⌫ 0 with rank d > 1, i.e., with noise
" ⇠ N(0,⌃). Then expected norm of stochastic gradient on batch i and at
arbitrary step t is approximately bounded from above by

kr`ik
2
2 kr`k22 + rank(⌃)�max(⌃) + t (4.44)

with probability 1� 2 exp

⇢
�

ct2

kfkLip

�
.

Proof. (Sketch) By triangle inequality we have

kr`ik2 kr`k2 +k"k2 . (4.45)

Further from the theorem 4.10 when taking f : X �!

���⌃ 1
2X
���
2

we have

P (E[f(X)]� t f(X) E[f(X)] + t) 2 exp

(
�

ct2

kfkLip

)
. (4.46)

Finally, taking the upper bound on expected norm from previous theorem 4.8 and
plugging into the RHS of f(X) E[f(X)] + t above the statement follows.

4.0.4 Implications

The theorems 4.6 for isotropic noise and theorem 4.8 together with Theorem 5.4.1
[Vershynin, 2018] for arbitrary Sigma all show that stochastic gradient norm
is larger than the norm of a full gradient and more likely so with the growing
number of parameters, i.e. the dimension of weights.

But as opposed to isotropic noise the theorem 4.8 and its corollary 4.11 show
that the large dimension of weights is only enabler and it is effectively reduced by
rank of covariance matrix ⌃. This is in the author’s opinion a highly interesting
result with many theoretical and practical implications some of which are stated
in what follows.

First and foremost, the main conclusion of this chapter is that any method
increasing the rank of noise covariance ⌃ prevents overfitting. Let’s further
elaborate on this in detail.

78 Generalization of Deep Learning Optimizing Bregman Divergences

4.0.4.1 The Larger Rank of Noise Covariance ⌃, The Less Overfitting

This is a direct consequence of theorems 4.6 for isotropic noise and theorem 4.8
together with Theorem 5.4.1 [Vershynin, 2018] that show the stochastic gradient
leads to a larger ⌧t and thus imposes a wider prior on variance of the model
⌧t
��r2�(0)

�� from (3.57) 3.17 leading to arguably "simpler", i.e., not over-fitting,
network as argued in Section 4.0.3.

4.0.4.2 SGD Generalizes Better Than GD in Overparameterized net-
works

In this perspective, the "full" gradient learning (GD) corresponds to ⌃ with
rank 0. Starting there the mini-batch (or stochastic gradient) (SGD) training
[Robbins and Monro, 1951], known to be improving generalization in theory
and practice [Bottou and Bousquet, 2007, Goodfellow et al., 2016], increases
the rank of ⌃ by the construction detailed in the Section (4.0.0.1). Such doing
leads by the theory developed in this thesis to wider priors during the training
resulting in better generalization of SGD compared to GD in deep learning as
also argued and empirically demonstrated by numerous papers, [Goodfellow
et al., 2016, Zhang et al., 2016, Bengio et al., 2021, Bishop, 2006, Zhang et al.,
2021, Hinton, 2012] and many others.

4.0.4.3 Common Regularizers Put Into LiMoD Perspective

Notably relying on "vanilla" SGD may not be enough. Letting alone an influence
of hyperparameters, the "anti-overfitting" prior controlled by rank(⌃), acting in
⌧t through a norm of the SGD gradient, is in every step t of the vanilla SGD
case bounded by the size of a training data, denoted earlier as |D|. This is
straightforward to see from Section 4.0.0.1 with ⌃ being the sample covariance,
i.e. sum of matrices of |D| unit ranks.

So it is common practice to combine SGD with additional regularizers some of
which can be cast as methods boosting the rank(⌃) by injecting the noise one
way or the other (see below), such as

1. data augmentation [Goodfellow et al., 2016], combined with SGD increases
rank(⌃) by augmenting sample data size as ⌃ is in this case a sample
covariance, as in Section 4.0.0.1

79

2. injected input and/or target data noise effectively increases rank of ⌃ in
the same way as augmentation, [Poole et al., 2014]

3. injecting gradient or weight noise often imposes ⌃ with a full rank, i.e.,
N = D in Theorem 4.8 and its corollary, due to i.i.d. of its coordinates. It
depends on the type of noise injected. One way or the other, the gradient
covariance is a mixture of the injected noise covariance and the sample
covariance (of rank 0 in the case of GD instead of SGD). The work of
[Neelakantan et al., 2016] et. al. analyzes different methods of gradient
noise with strong empirical evidence supporting its generalization merits.
Weights noise injection is argued to help robustness against adversarial
attacks in [Noh et al., 2017].

4. injecting activation noise including popular regularizers as drop-out (can
be also seen as an ensemble averaging over range of random sub-models due
to dropped out units, [Hinton et al., 2012b, Srivastava et al., 2014], see next
point), batch normalization [Ioffe and Szegedy, 2015], see next point, etc.
Injecting noise into activations during the SGD training together with the
bottleneck architecture is used in denoising autoencoders (DAE) in [Poole
et al., 2014], where it is argued and practically shown to generalize well. In
the next Experimental section, we show that bottle-neck architecture can
be omitted, when the noise and depth are applied as a regularizer instead.
A novel and direct experiment in support of the conclusions of this thesis.

5. batch normalization [Ioffe and Szegedy, 2015, Santurkar et al., 2018] As
opposed to vanilla SGD training, BN ensures all activations (after normal-
ization) fluctuate (so-called "internal covariate shift", [Ioffe and Szegedy,
2015]) around zero with the second moment ⇡ 1 even in the small gradients
regime, causing output layer parameters fluctuate. Thus even on the flat
areas of loss gradient (norm) is protected from collapsing, imposing the
wider variance prior ⌧t

��r2�(0)
�� compared to a case without BN.

6. skip connections as in ResNet [He et al., 2016], shown to be helping
generalization [He et al., 2020, Rousseau and Fablet, 2018, Hauser and
Ray, 2017] besides making deep model trainable. ResNets can be seen as a
ensemble of networks [Hansen and Salamon, 1990] as presented in [Veit
et al., 2016]. From the LiMoD perspective an ensemble averaging (could also
include dropout [Hinton et al., 2012b, Srivastava et al., 2014, Goodfellow
et al., 2016]) also increases the rank of rank(⌃) by averaging of sample
covariances over many "ensemble" models. This is due to "ensemble"
models having different weights and thus value of loss functions on the
same (batch) data inputs at the particular step t.

80 Generalization of Deep Learning Optimizing Bregman Divergences

4.1 Experiment: DAEs Self-Regularized by Width,
Depth, and Rank of the Gradient Noise ⌃

The experiment of this section is as well partially reported in Paper A, Figures 1.
and 2., to motivate the claim that explicit regularizer, in this case, the bottle-neck
layer and injected data input noise in denoising auto-encoders (DAE), [Vincent
et al., 2008], can be replaced by an over-parameterization of the model, in this
case, both width and depth are large, trained with SGD and batch-normalization
(BN).

More precisely, DAEs are an extension of auto-encoders trained to reconstruct
a clean version of input from its corrupted version [Poole et al., 2014]. To
demonstrate the ability of deep networks trained with a stochastic gradient to
learn the robust solution we train the DAE model to fit the identity function
without adding noise to input data as opposed to a recommended procedure in
[Vincent et al., 2008, Poole et al., 2014].

The main methods used to regularize DAE are bottle-neck architecture or noise
injected into inputs during training. Otherwise, DAE learns an identity map. In
the experiment below neither of these is used. The architecture of convolutional
layers is wide of an "anti-bottleneck" shape ’<>’ instead of recommended
bottleneck ’><’, and there is not any noise injected into training samples.

Instead we used depth combined with mini-batch (SGD) training, see Section
4.0.0.1, that ensures the rank of gradient noise covariance ⌃ from previous section
is positive and thus imposing an implicit LiMoD wide priors on model variance
(3.56).

In this case, it is 25 layers deep auto-encoder trained with stochastic (mini-batch)
gradient descent with batch-normalization (BN). In detail, two following auto-
encoder models are compared on the widely known and used hand-written digits
MNIST dataset. The version from PyTorch datasets module, [Paszke et al.,
2017].

• Shallow AE+BN (1 (encoder) + 2 (decoder) CNN layers, ReLU acti-
vations, with BN), 784 neurons in first and 200704 neurons in the widest
second layer, decoded back to 784 of the output.

• Deep AE+BN (15 (encoder) + 10 (decoder) CNN layers, ReLU activa-
tions, with BN). The last decoder layer comprises 200704 neurons as in
the Shallow model for the good comparison.

4.1 Experiment: DAEs Self-Regularized by Width, Depth, and Rank of the
Gradient Noise ⌃ 81

According to [Vincent et al., 2008] these learn identity function and perform
poorly on de-noising noisy inputs12.

Results As opposed to the Shallow model (at the bottom of the Figure), Fig.4.5
demonstrates that the wide and "Deep 15 + 10 CNN layers AE+BN" ReLU
auto-encoder trained without noise injection, converged to a solution robust
to input noise13 supporting the implicit LiMoD regularization effect caused by
over-parametrization combined with a large rank of gradient noise covariance ⌃
due to the use of mini-batch SGD and batch normalization as predicted by this
thesis.

12This behavior is recovered in AE experiments without BN or with vanilla SGD on models
with sine activations presented in Supplementary Material of Paper A

13The noise in test samples is additive Gaussian N(0, 0.3)

82 Generalization of Deep Learning Optimizing Bregman Divergences

Figure 4.5: Deep AE+BN 15 (encoder) + 10 (decoder) CNN ReLU layers of wide "<>"
(as opposed to bottleneck "><") architecture (200704 neurons in the widest layer,
compared to 784 of the input and output) and trained with batch normalization
de-noising identity map that is robust to noise, while the model was trained
only on clean images: For clean images it operates as the identity, while on
noisy inputs (middle column) it recovers the clean original, cf., ’Recovered’,
’Original’ columns.

Figure 4.6: Shallow AE+BN, 1 (encoder) + 2 (decoder) CNN ReLU layers of wide "<>"
architecture with 200704 neurons in the widest layer as above. Despite being
trained with batch normalization result is not robust against the input noise,
compared to its deep variant shown in Fig.4.5 above.

Further, Figure 4.7 shows an evolution of the train and test (reconstruction)
error of two models during training. It supports the claim that noise (SGD +
BN) combined with the over-parametrization (deep and wide <> architecture 25

4.1 Experiment: DAEs Self-Regularized by Width, Depth, and Rank of the
Gradient Noise ⌃ 83

layers with over 2 · 105 neurons in the middle) on MNIST "protect" deep model
(blue) from over-fitting as opposed to the shallow model (red).

Figure 4.7: Shallow AE+BN, 1 (encoder) + 2 (decoder) vs. Deep AE+BN 15 (encoder)
+ 10 (decoder) CNN ReLU models from Figure 4.6 and evolution of their Mean
Squared Error (MSE) on training (left axis) and test samples (right axis).
It shows that training error (red) of the shallow model dropped close to zero
already after 5000 steps (having learnt an identity map) while (blue) training
error of the Deep model never reached such levels due to anti-overfitting prior
imposed by batch normalization and over-parametrization (both wide and deep
model). Eventually the deep model outperformed shallow one (after ⇡ 20000
SGD updates) and test (called "reconstruction") error (light blue) continued
dropping steadily further while (yellow) shallow model continued leveling out.

84 Generalization of Deep Learning Optimizing Bregman Divergences

Chapter 5

Discussion and Conclusion

. . . ‘If there’s no meaning in it,’ said the King, ‘that saves a world of trouble,
you know, as we needn’t try to find any. And yet I don’t know,’ he went on,
spreading out the verses on his knee, and looking at them with one eye; ‘I seem
to see some meaning in them, after all. . . .

King reflecting in court, Alice’s Adventures in Wonderland, Charles Ludtwidge
Dodgson (Lewis Carroll, 1865)

86 Discussion and Conclusion

Having praised the over-parametrization in combination with noise as an implicit
anti-overfitting regularizer in the previous section there is apparently an elephant
in the room to be addressed.

5.0.1 The Elephant in the Room

As widely known the over-parameterized deep models trained by SGD are readily
over-fitting, even fitting the random labels as shown in [Zhang et al., 2021, Zhang
et al., 2016]. How does it go along with the results of this thesis suggesting the
opposite?

It has been shown in [Zhang et al., 2016, Zhang et al., 2021] that deep nets
are capable of fitting random labels reaching zero training error. As reported
therein, it has been reached using Adam optimizer. Experiments on MNIST
datasets during work on this thesis showed that vanilla SGD was not able to fit
random labels even after an extensive amount of training epochs unless adaptive
methods were used. Based on the idea of RProp [Hinton et al., 2012a], both,
RMSprop and Adam, are based on normalizing gradients by moving averages of
their norms, see [Goodfellow et al., 2016].

RMSprop,[Hinton et al., 2012a], uses an exponentially weighted moving average
of the norm of the gradient to normalize and Adam, [Kingma and Ba, 2014],
combines it with momentum, again weighted moving average of gradients. Overall
they are all using the adaptive normalization of the gradient similar to the form
shown in (5.1).

The recent work [Zou et al., 2021], alongside others, shows that Adam may find
worse solutions that vanilla SGD.

We argue this is a consequence of normalizing gradients and thus effectively
canceling the "anti-overfitting" priors arising from minimization of DKL(g||⌫z)
in Corollary 3.16. In other words adaptive work against matching cumulants
(3.51) and (3.52) as introduced by this thesis.

In particular, the weight update of the Rprop (sign of gradient, [Hinton et al.,
2012a]) can also be written as standard gradient descent with the learning rate
decayed by the norm of the gradient

Wt �
⌘

kgk2
g ⌘ Wt �

⌧t
kr`tk2

�!
g t (5.1)

where g denotes gradient of loss w.r.t. to weights and when we adapted it to
LiMoD training notation defined in 3.17. In a light of LiMoD training, the prior

87

on variance of the model (3.57) controlled by ⌧t that is driven large by the norm
of the gradient kr`tk2, the Rprop (and RMSprop and Adam, as noted above)
cancels the norm of the gradient from ⌧t allowing for the observed over-fitting
[Zhang et al., 2016].

Secondly note that (5.1) has a similar (de-regularizing) effect on matching the
first cumulant (3.51) that intuitively prevents weights of the outer layers from
going extreme during training.

From the weight space perspective, adaptive learning allows the model to acquire
large weights minimizing likelihood while neglecting the LiMoD implicit regu-
larizer DKL(g||⌫z) and converging to max likelihood solution with zero-training
error. By (5.1) the larger the norm of the gradient g the smaller the effective
learning rate ⌘

kgk2
of adaptive methods is. So once in the area of large gradi-

ents (fitting maximum likelihood and neglecting DKL(g||⌫z)) it stays in the
over-fitting regime. The resulting model has very likely a signature of a poorly
generalizing model.

Having said above it does not mean that adaptive methods overfit necessarily. On
contrary, with a suitable setup of hyperparameters and with explicit regularizers
they may be by far the fastest method to achieve excellent results, [Kingma and
Ba, 2014]. This is rather to point out that they are not implicitly regularized.

Through the prism of the LiMoD perspective, the very discussed capability
of deep models to fit random labels is in support of the results of this thesis.
Moreover, the works [Zhang et al., 2016, Zhang et al., 2021] provide valuable
empirical evidence for the conclusions of the thesis.

5.0.2 On Weights and Diffusion to Irrelevant Directions

Following on Section 4.0.3.1, the norm of the gradient is not the only implicit
regularizer acting during the back-prop training. In the LiMoD training, defined
in 3.17, matching the second cumulants (3.52), leading to the variance
prior from the previous section that prefers large gradient norms, is always
accompanied by matching the first and higher cumulants depending on the
chosen loss function, or rather from which it derives. The higher cumulants
impose skewness and other priors in general. Further research is needed and is
left for future work. The first cumulants (3.51) matching prevent the outputs
of f to be "large", as elaborated in Section 3.0.3.1.

Notably, this does not mean that all weights have to be small to generalize
well. In fact, large weights of "irrelevant features" [Bengio et al., 2021], i.e.,

88 Discussion and Conclusion

those that do not correlate with changes of target variables and thus do not
influence the outputs of f if network architecture allows, e.g., linear model vs.
shallow non-linear vs. deep non-linear model, etc. In a sense, it suggests a
diffusion to irrelevant directions is not only allowed but may be helpful in terms
of generalization. Further research along these lines is needed, encouraged, and
is left for future work.

Chapter 6
Mechanisms that support

generalization in deep
learning (Paper A)

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Mechanisms that support generalization in deep learning

Anonymous Authors
1

Abstract

A generalized Pythagorean theorem for the output
layer geometry is used to explore how back-prop
projects network layer representations into a low-
dimensional manifold, while non-linearity, further
amplified by the depth of the network, stratifies
the model and updates its feature representations
locally to assist generalization. This is in contrast
to the more global representations of linear or shal-
low models. Such stratification allows the deep
model to flatten in locally irrelevant (noisy) fea-
ture directions enabling a globally robust model.
Batch-normalization, dropout or (smaller) batch
sizes are further enabling mechanisms. Our ev-
idence includes experimental results with auto-
encoders as well as with supervised models on
various feed-forward and convolutional architec-
tures.

1. Introduction

The generalization ability that has led to massive successes
of deep neural networks (DNN) in many applications is still
poorly understood (Zhang et al., 2021; 2016).

In this work we will address factors that enable supervised
or semi-supervised model to learn and generalize well. The
motivating example based on autoencoders (AEs) is pre-
sented in Fig.1, where the depth of the model combined
with batch-normalization (BN) leads to a model that can
de-noise images without being trained for it. We address the
problem by taking a geometrical perspective on the layers
of a DNN model. In particular we consider the layers as
transformations of a data manifold acting as parametriza-
tions of the output layer (Hauser, 2018), and analyze their
behaviour during (stochastic) gradient descent training. Un-
der this view the forward and backward passes of back-prop
(LeCun et al., 1988), update the configurations of the layer
activations, i.e., update the parameters of the output layer.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Figure 1: Deep AE+BN 15 (encoder) + 10 (decoder) CNN ReLU

layers of wide ”<>” (as opposed to bottleneck ”><”)

architecture (200704 neurons in the widest layer, com-

pared to 784 of the input and output) and trained with

batch normalization de-noising identity map that is ro-
bust to noise, while the model was trained only on clean

images: For clean images it operates as the identity,

while on noisy inputs (middle column) it recovers the

clean original, cf., ’Recovered’, ’Original’ columns.

Figure 2: Shallow AE+BN, 1 (encoder) + 2 (decoder) CNN ReLU

layers of wide ”<>” architecture with 200704 neurons

in the widest layer as above. Despite being trained

with batch normalization result is not robust against the

input noise, compared to its deep variant shown in Fig.1

above.

Let’s start by stating what we believe is a natural but essen-
tial assumption on target distributions implicitly present in

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Mechanisms that support generalization in deep learning

both supervised and semi-supervised deep learning prob-
lems.

Implicit Target Assumption (ITA): The target variables,

denoted {ys} and indexed by training data index s are

subject to some general constraints g(ys) = 0, such that the

interior of the graph of g(y) = 0 defines a manifold, which

is compact and smooth
1
. This could be a simplex equation

for binary classification model, P (ys = 1) + P (ys = 0) =
1 8s, or could capture functional constraints on moments
of target distribution, as exemplified by a Gaussian process
(Rasmussen, 2003), or ys’s being close to a low dimensional
manifold, in regression problems.

The (ITA) is relevant when the targets encode some (learn-
able) pattern. We will argue that this is the case for the com-
bination of implicit targets distribution traits, such as fixed
variance (second moment) around mean curve in regres-
sion for instance, and the explicit choice of loss (probability
model), such as mean square error (MSE), cross-entropy,
or log-likelihood. We note that this view, which focuses on
targets, differs from a low-dimensional data manifold as-
sumption, often assumed in representation learning, (LeCun
et al., 2015), based on all data (not only targets).

Motivating Example Let us consider the example of a bi-
nary classifier and, for simplicity assume a unit mini-batch.
The two classes represent a model parameterized by proba-
bility of success of respective class, p0 and p1. A pattern to
learn is represented by making the two probabilities depen-
dent, i.e., to constrain them to form a simplex p0 + p1 = 1.
Formally we just defined a one-dimensional Bernoulli model
by constraining a two dimensional Binomial model by the
softmax representation, see e.g., (Goodfellow et al., 2016).
The corresponding (ITA) for labels encoded as 0 and 1 is
g(ys) = P (y = 0) + P (y = 1)� 1 = 0, where P is sam-
ple mean of class indicators I[ys = 0] and I[ys = 1] over
batch. It defines a one dimensional curve on the two dimen-
sional Binomial distribution (exponential family) probabilis-
tic manifold incurred by the cross-entropy loss (a Bregman
divergence, see later).

Accuracy and Flattening Back-prop training minimizes
the loss, i.e. divergence along

�!
� in Fig.3. By a general-

ized Pythagorean Theorem this divergence can be decom-
posed into two orthogonal components. Namely ”accuracy”
component along

�!
�a, defined by constraint g(y) = 0, and

”normal” component along
�!
�n, in analogy to Pythagoras

theorem in Euclidean space. Back-prop minimizes along
�!
�a increasing accuracy and along

�!
�n, projecting outputs

into the low dimensional manifold, g(y) = 0. Because
�!
�n

points in the ”irrelevant” direction not contributing to accu-
racy within target manifold (at P), this projection trains the

1see (Carmo & Flaherty, 1992) and Supplementary Material
for definition

model to become robust to input signals by sending outputs
in irrelevant directions. We further argue that increasing

Figure 3: Generalized Pythagorean Theorem, see (Amari, 2016),

Theorem 1.2. Loss ` along
�!
� and defined as a di-

vergence of targets ỹ and prediction f̃(x) is a sum of

divergences along
�!
�a and

�!
�n.

such robustness is linked to activations in the network. As
shown already in (LeCun et al., 1991), the activations (and
their sample moments) have an impact on convergence and
generalization of the model. In the pursuit of better opti-
mization and convergence properties batch normalization
(BN) was introduced to address inherent distributional shifts
in activations. The original idea was based on the obser-
vation that the distribution of each layer’s inputs changes
during training, as the parameters of the previous layers
change, the so-called internal covariance shift (ICS) (Ioffe
& Szegedy, 2015). This was claimed to slow down the train-
ing by requiring lower learning rates and careful parameter
initialization, making it hard to train models with saturating
non-linearitiesl like ReLU’s. To address this ‘negative’ ef-
fect of ICS the BatchNorm layer, normalizing activations of
hidden layers using the first and the second moments (mean
and variance) of the current batch, was developed.

The practical success of BN is indisputable. It improves
speed and stability of DNN training. By now, it is used
by default in most deep learning models. A full theoreti-
cal understanding of why BN works is lacking behind its
empirical success, however, cf., Section 2.

Contributions

We unify supervised and semi-supervised back-prop
training and reformulate it as an intuitive geometric
procedure that flattens and bends curves. Evidence that
these two mechanisms support generalization is given in a
form of analysis and experiments throughout the paper. We
formulate and present evidence for the following:

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Mechanisms that support generalization in deep learning

Hypothesis: The generalization of an unregularized

neural network is contingent on training batches having

divergence component along
�!
�a much smaller than along

�!
�n, with these directions defined in Fig.3. In addition,

by random initialization combined with depth and batch

normalization (BN) convergence is more likely. The analysis

points to alternatives to BN, such as noise in layers (incl.

inputs) or smaller batch-to-learning rate ratio.

2. Further Related Work

The convergence of learning and generalization in DNNs
has been a lively research topic over more than two decades.
The case of SGD dynamics in multi-layer linear networks
was analyzed by (Glorot & Bengio, 2010) and (Kawaguchi,
2016) showed that every local minimum is global. There is
progress on understanding convergence to global optima in
general (Zhu et al., 2019), for two layer ReLU networks in
(Du et al., 2018) and ResNet’s in (Du et al., 2019). Recent
work argue for implicit bias of SGD towards well gener-
alizing solutions (Huh et al., 2021). Also a line of work
shows that ”bad” local minima exist and SGD may reach
them supporting the notion that current understanding of
the generalization in DNNs still requires a revision, (Zhang
et al., 2016; Liu et al., 2019; Zhang et al., 2021).

It is well established that normalization, i.e., an affine trans-
form of the inputs to produce zero means and unit vari-
ance random variables, accelerates convergence (LeCun
et al., 2012). Since then many other normalization methods
have been proposed. Batch normalization (Ioffe & Szegedy,
2015) is an algorithmic method which makes the training
of DNN faster and more stable. It consists of normalizing
activation vectors from hidden layers using the first and the
second statistical moments (mean and variance) of the cur-
rent batch. This normalization step is applied right before
(or right after) the nonlinear function. BN has been shown
to provide several training merits. These include prevention
of exploding or vanishing gradients, robustness to differ-
ent settings of hyper-parameters such as learning rate and
initialization scheme, and keeping most of the activations
away from saturation regions of non-linearities.

Work in (Kohler et al., 2018) based on Gaussian input as-
sumptions showed that BN reduces the cross-dependency
between layers in DNN. Due to this dependency reduction
a gradient-based optimization with an adaptive step-size
can enjoy a linear convergence rate. While BN fits well in
feed forward architectures it more troublesome to apply in
recurrent networks. Other caveats include a dependence on
mini-batch size and deterioration if test set sample distribu-
tion differs from training set (see also below).

While all above mentioned techniques relate benefits of nor-
malization techniques to optimization, generalization merits

drawn significantly less attention. The original work (Ioffe
& Szegedy, 2015) conjectured that BN implicitly regular-
izes training to prevent over-fitting. (Zhang et al., 2016)
and later in (Zhang et al., 2021) presents BN as an implicit
regularizer drawing on experimental evidence. Injecting
random noise in the input layer is known to be equivalent
to regularization by weight decay (L2 regularization), as
shown in (Bishop, 1995) and generalized to DNNs or au-
toencoders (AE), (Poole et al., 2014). Dropout (Srivastava
et al., 2014) can be seen as noise injection in DNN layers,
(Poole et al., 2014).

BN was empirically shown to improve generalization in
DNN (Luo et al., 2018; Santurkar et al., 2018; Ba et al.,
2016). Yet, theoretical understanding is still in progress.
The original work (Ioffe & Szegedy, 2015) hypothesized
that BN effectiveness was mostly due to ICS reduction a
notion challenged by (Santurkar et al., 2018) using counter
examples and rather stresses the smoothing effect of BN on
the optimization landscape. Specifically it is demonstrated
that there does not seem to be any specific link between
the convergence gain of BN and the reduction of ICS. In
fact, it is shown that in a certain sense BN might not even
reduce ICS. Here we follow to argue that it is not reduction

of ICS, but rather the pervasive presence of ICS throughout
the training process that assists generalization.

3. Formulation

For the sake of brevity, definitions of test and general-

ization error as well as definition of smooth manifold is
given in Supplementary Material. Further, this paper con-
siders Bregman divergence loss functions (Amari, 2016;
Banerjee et al., 2005) defined as `(z,y) = d�(z,y) =
�(z) � �(y) � hz � y,ry�(y)i, where � : Rd

�! R
is a strictly convex function. This choice allows us to de-
rive general results for a wide range of losses, including
classification and prediction problems.

An important property of the Bregman divergence is that its
derivative w.r.t the first argument at datum (xs,ys) evalu-
ates as

rxd�(x, y) = r�(x)�r�(y) (1)

Further it can be shown that there exist an isomorphic dual
space such that d�(z,y) = d (r�(y),r�(z)), where
is a convex conjugate to �. For more details see (Hiriart-
Urruty & Lemaréchal, 2012).

Batch Normalization In the following, a notation estab-
lished in (Ba et al., 2016) is used for all three normalization
methods analyzed.Consider the lth hidden layer in a deep
feed-forward neural network, and let al be the vector repre-
sentation of the summed inputs to the neurons in that layer.
The summed inputs are computed through a linear projec-
tion with the weight matrix W l and the bottom-up inputs

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Mechanisms that support generalization in deep learning

zl given as ali = W (l)T [:, i]zl, zl+1
i = q(ali + bli), where

q(·) is an element-wise non-linear function and W (l)T [:, i]
is the ith column of the weight matrix (vector of incoming
weights to the ith hidden units and bli is the scalar bias pa-
rameter. The parameters in the neural network are learned
using gradient-based optimization algorithms, with the gra-
dients being computed by back-propagation.

BN normalizes the summed inputs to each hidden unit zli of
the layer l over the training cases. Specifically, for the ith

summed input in the lth layer, it rescales the summed inputs
according to their variances under the distribution of the
data āli =

gi
�i
(ali � µl

i), µ
l
i = E[āl],�l

i =
p
E[(ali � µl

i)
2],

where āli is normalized sum of the inputs to the ith hid-
den unit in the lth layer and gi is a gain parameter scaling
the normalized activation before the non-linear activation
function. The expectation is over whole training data distri-
bution and it is is replaced by sample estimates from current
batches in practice.

BN normalizes the summed inputs ai to a neuron through
the two scalars µ and �. They also learn an adaptive bias
b and gain g for each neuron after the normalization zi =

q
⇣

gi
�i
(ai � µi) + bi

⌘
, where q(·) is a non-linearity used for

the hidden unit i and where we left out upper index of the
layer l hidden unit i belongs to for brevity.

Learning in the Manifold of Distributions Our ambition
is to relate the variations in the activations zli in the layers,
representing features, to changes of the loss function. We
use the concept of Information Geometry(Amari, 2016)
combined with Riemannian geometry of the neural networks
derived in (Hauser, 2018) and introduce Learning in the
Manifold of Distributions (LiMoD).

In the LiMoD setting, following (Hauser, 2018), layers
and their activations are representations of the (latent) data
manifold2 and, at the same time, they represent parameteri-
zations of the output layer Exponential family. As opposed
to a more common view o deep learning as a weight opti-
mization, the LiMoD presents it as an optimization over the
activations (parameters of the model) rather than weights.

Let a neural network f : Rb
⇥ ⌥ �! Rd of L layers be

defined as the composition:

f(x,�!w) ='L(W
(L)) � 'L�1(W

(L�1)) � . . .

�'1(W
(1))(x) (2)

where each vector function 'l(W (l))(v) = al
⇣
W (l)v

⌘
is

an activation function al applied onto a result of matrix W (l)

and vector v product. Let H l denote number of hidden units
of the layer l.

In these settings the output layer is a parametric manifold of
2or rather its immersions/submersions into layer manifolds

the Exponential family probability distributions over the
target/label variables induced by the choice of the con-
vex function �, e.g., � := 1

2 hx,xi for square loss and

�(x) :=
dP

j=1
xj log2 xj s.t.

dP
j=1

xj = 1 for KL diver-

gence, which covers negative log likelihood models and
cross-entropy loss for classification tasks, cf. (Banerjee
et al., 2005; Hiriart-Urruty & Lemaréchal, 2012). Given
index of the data sample s, the output of the neural network
model f(xs,w) defines a natural parameterization of the
probability model over targets ỹ := r�(ys) and network
f is further parameterized by weights w. Tilde notation for
a gradient map r� is used throughout the paper, including
the Introduction and Fig.3.

By the construction above, the strictly convex function �
gives rise to Bregman divergence and, through a bijection
between Bregman divergences and regular Exponential fam-
ilies, cf. (Banerjee et al., 2005), it endows the output layer
as a probabilistic manifold with every point representing a
distribution from this Exponential family3. According to
(Amari, 2016), Chapter 2, by this construction, the output
layer is a (dually flat) Riemannian manifold with Fisher
Information Matrix (FIM) as a metric. In fact, in the case of
Bregmann divergence loss, the Fisher Information Matrix is
given by the Hessian of (convex dual of �)

FIM(✓s) |✓s=f(xs,w)= rr :=
�
@@� (✓s)

,�

(3)

where ,� are indexes of the output layer coordinate system
corresponding to natural parameters of the related Exponen-
tial Family.

3.1. Back-prop, Straight and Curved

As the previous section outlined, activations zl represent
inputs, transformed by a composition of previous layers.
Let’s call them features, slightly deviating from the usual use
of this word (as independent input variables). In this paper,
features are real values of activations. Further consider the
ith feature of the layer l evaluated at data point xs. Let’s
denote such real number zli(xs) 2 R.

In the network (2), for a given layer l and its i-th activation,
the layer by layer composition defines a map from layer l
to the output layer projecting ith feature as �li(t) : t �!

'L(W (L)) � 'L�1(W (L�1)) � · · · � 'l(W (l))(zl + tei)

where t 2 R and ei 2 RHl

is unit vector with H l
� 1 zero

elements and 1 on position i.

Assuming necessary smoothness of f , �li(t) defines a pa-
rameterized curve on the output layer, see. (Carmo & Fla-
herty, 1992).

3with a cumulant function given by convex dual of �, denoted
 , see Preliminaries section

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Mechanisms that support generalization in deep learning

Tangent vector (”speed”) of general curve �(t) at t is given
by �0(t), where ’ denotes a derivative with respect to a real
parameter. Similarly, fixing the layer l and index of a hidden
unit i, by taking derivative of �li(t) w.r.t. ai we get q0 gi�i

and
by applying chain rule, we obtain the vector field along the
curve �li(t) of the dimension of the output layer dim(ys)
whose jth element evaluates as

�0
li(t)[j] =

X

p2BPli
j

W (p)
LY

k=l

Q(t, k)
gkp(k)
�l
p(k)

(4)

where BP
li
j is a set of all paths connecting hidden unit i of

the layer l to an output layer node j through the network f
such that each layer k along the path p has exactly one node
present in the path, denoted p(k). Then W (p) denotes the
product of weights along the path p and Q(t, k) is a product
of activation derivatives along the path p(k).

Back-propagated gradient of the weight wl�1
m leading to

node i of the layer l, considering unit mini-batch for sake of
simplicity, is written as

@`

@wl�1
m

=
@`(✓)

@✓

����
✓=f(xs,w)

d�li(t)

dt

����
t=zl

i(xs)

q0(al�1
m)zl�1

m

(5)

using the chain rule, also see (Bishop, 2006). For Bregmann
divergence loss ` the first factor of RHS evaluates element-
wise as

�j(s) :=
@`(✓)

@✓j

�����
✓=f(xs,w)

=r�(f(xs,w)[j])�r�(ys[j]) (6)

where we used (1) applied element-wise at the point ✓ 2

Rdim(y) of the output layer. Note that �, that defined loss
in (6), denotes a convex dual function to and is essentially
different from curve � denoted in italic. For a square loss,
�j from (6) is a vector of ”errors”, whose jth element is a
squared error between prediction f(x,w)[j] and target y[j].

Note, that back-propagation (5) includes a direction of
forward-propagated feature zli evaluated at the end of in-
terval (0, zli) (corresponding to data sample xs), i.e. namely
d�li

(t)
dt

���
t=zl

i(xs)
shortly denoted as �0

li
(zli(xs)).

Following (5) and assuming non-saturated state q0(al�1
m) 6=

0 a backward pass minimizes a standard `2-inner product,
projecting the ”error” vector� onto vector �0

li
(zli(xr)). As

such it is a function of a tangent �0
li
(zli(xr)).

Assume value of feature zli(·) at four close (in layer repre-
sentation) input data samples with indices r, t,m, n (points
R, T,M,N in Fig.4 respectively). Back-prop, evaluated on

current data sample xs (green cross), expands �(t) along
�
�!
� by updating incoming weights (5).

By this scaling, see Fig. 4 depicting two back-prop updates,
RN segment, before insensitive to errors along

�!
� has been

split and MN (red) part of has become partially sensitive
to this direction.

Figure 4: Parameterized features curves �(t), t 2 (0, 0.5) (light

blue) of the ”two moons” model (see Experiments sec.).

Presented is feature of the 3rd layer, evaluated at the

same data sample (xs) over two back-prop steps (black

crosses) at the early stage of the training. An image of

the zero feature, �(0) (green cross), denotes starting

point, (blue) arrow shows the
�!
�s direction. Besides

translation and due to an expansion in ��!
�s direction

length of the �(t) curve on interval (0, 0.5) gets longer

over steps, following the underlying curvature of �(t).
Neighbours RT (blue segment) are kept close and unaf-

fected over updates, because they lie on segment orthog-

onal to
�!
�s, while features in MN (red segment) have

become sensitive to this direction.

Overall, back-prop can be viewed as procedure updating
curves (representations of features) in such a way that only
parts linearly aligned with

�!
� get updated, i.e., scaled, by

updating weights. Further curvature of �li(t), if present,
causes different parts of zli(·)’s feature range being respon-
sive to different directions, localizing the back-prop for
future updates.

�(t) is curved in general, whose curvature depends on
weights along the path to the output layer as well as on
other features of layer l through Q(t, k) and W (p) in (5)
respectively. It is affected by their updates throughout the
training. Nevertheless, back-prop proceeds asynchronously
and updates a particular weight having all other weights and
features fixed. That means curvature of �li for one update
is fixed.

Further, by smoothness of f there exist a zl-neighborhood
of feature zl(xs) on which the 4 is constant vector field
�0
li
(t). If this vector field is updates so it becomes non-

constant on this zl-neighborhood then it either does not

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Mechanisms that support generalization in deep learning

affect �0
li
(t) on other zl-neighborhoods, e.g., features of

other training data samples, or it stratifies them too. In either
case curvature enables localization of back-prop.

3.2. Small Accuracy Divergence Enables Robustness

Another ingredient contributing to better generalization is
the ”flattening” phenomenon of the layer representations
during back-prop training outlined in the Introduction. It
is experimentally demonstrated in Fig.5, (Hauser, 2018)
and additional experiments in Supplementary Material and
further references.

(ITA) constraints g(y) = 0 define, generally curved, sub-
manifold of the probabilistic manifold. While the example
in the Introduction presents binary classification model with
g(y) = 0, being simplex line (geodesic on natural parameter
space) of related Binomial distribution, in the general case
of curved g(y) = 0, such as regression problems, general
Pythagorian Theorem applies locally on geodesic neighbor-
hoods of targets {ys} in training data.

Thanks to (assumed) smoothness of probability manifold
and (ITA) by definition of the manifold, there exists (infitesi-
mally) small ys-neighborhood of ys such that tangent space
of g(y) = 0 at given ys approximate (by local isomorphism
from definition4) manifold to arbitrary precision., for all s.
Locally any geodesic segment in ys-neighborhood forms
the base of the geodesic triangle of Fig.3 onto which

�!
�n

propagates feature curves. Neighborhoods ys-neighborhood
indexed by s have different directions of normal components
due to curvature of g(ys) = 0, however.

On ys-neighborhoods back-prop makes feature curves in-
sensitive to fluctuations of features propagated orthogonal
to g(ys) = 0 by the mechanism of Fig.3 and therefore also
on their union, that is global.

Never the less, back-prop updates are in a direction of a
�!
�

and it coincides with
�!
�n only if divergence along

�!
�a is

small compared to divergence in
�!
�n direction. Thus robust-

ness can only be built on those ys-neighborhoods that have
larger ”normal” divergence components than ”accuracy”.
Summarizing the previous arguments we arrive at:
Postulate 1 (Informal). Let d�(f(xs),ys) denote Bregman

divergence loss ` (3). Then, following notation of Fig.3, a

unit batch size back-prop (5) on training datum s updates

weights in direction of
�!
�n, building robustness, only if

d�(ys,r (P)) << d�(r (P), f(xs)).

Depth and Random Initialization One straightforward
argument for depth supporting generalization is to link the

4follows by approximation of discrete set of |D| equations
g(ys) = 0 by smooth manifold assumed by (ITA) and then by
local isomorphism of manifold to Euclidean (tangent) spaces from
definition of manifold, see (Tu, 2011; Carmo & Flaherty, 1992)

depth to higher accuracy, (Goodfellow et al., 2016), and
then apply Postulate 1.

Further on a geometric view built up in this paper reveals
a link between robustness and random initialization we
present in what follows. We have shown before that higher
curvature of the feature curves �(zli) during training, re-
ported in Fig.5, means an interval of activation values zli
in split into larger number of sub-intervals each of which
responds to a different direction of gradient of loss

�!
� , de-

termined by inner product �0(zli)
�!
� in back-prop (5).

Following Proposition 1 proven in Supplementary Material
states that the deeper the network the higher probability of
curved �(zli)’s there is.

Proposition 1. Consider random weight initialization pro-

ducing i.i.d. distribution of layer activations, conditionally

on inputs, with finite moments
5
. Then in randomly initial-

ized deep neural network (2) a probability of a curved �(zli)
grows linearly with depth L.
Assumingk·k2 of these sub-intervals were distributed ran-
domly with finite first and second moments (as by popular
random weight initialization, (Glorot & Bengio, 2010) or He
(He et al., 2015) initialization) by smoothness of �(t) it fol-
lows that the larger number of such sub-intervals produces
smaller6 linear neighbourhoods in the output layer, these
sub-intervals are mapped on through �(zli). In the extreme
case, each neighborhood contains at max one training datum
output f(xs) and gets highly specialized to fit the loss at
this particular point, bringing the model to a state where
divergence along

�!
�a is close to zero. Not necessarily zero

training error (loss `), because minimization of divergence
along

�!
�n may have been hindered by large

�!
�a, see Pos-

tulate 1 and corroborating experiments in Supplementary
Material.

Proposition 1 states that the probability of reaching this
training point increases with the depth of the model. If
there are no updates along

�!
�n, such a solution, even with

zero training error, has features with arbitrary tangents �0(t)

pointing also normal direction
�!
�n and thus arbitrarily low

robustness in general.

Learning Robustness

Following up on previous section, a starting point for this
section is condition of Postulate 1, d�(ys,r (P)) <<
d�(r (P), f(xs)). Further let’s analyze settings that pre-
vent/support minimizing divergence along

�!
�n.

Batch size In case of non-unit mini-batch of size B with
samples indexed by b the loss is averaged over batch sam-
ples, (Goodfellow et al., 2016). Assume training data to be

5such as common Xavier (Glorot & Bengio, 2010) or He (He
et al., 2015) initialization

6in FIM metric of output layer

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Mechanisms that support generalization in deep learning

independently sampled from underlying latent data distri-
bution. Then

�!
� is average of derivatives of d�(f(xs),ys)

over batch. Recall
�!
� and its

�!
�n and

�!
�a components are

vectors living in (dually) flat probabilistic manifold, (Amari,
2016), parameterized by natural coordinates of related Ex-
ponential Family and back-prop sums them up. That means
that components also average.

Notably, if samples of non-zero loss are close to each other
on the same geodesic of g(yb) = 0 then the average of
their normal components stays approximately orthogonal
to this geodesic and does not cause an increase of loss in
�!
�a direction. The more apart they are in target manifold
g(yb) = 0 the more this average affects also the ”accuracy”
component if it is curved.

Note that in the similar way the
P

b

�!
�a/B averages over

batch as well during training. That may cause back-prop
to stay in local optima, as in Fig.5, 3rd row of the panel.
When batch size decreased training continues as

P
b

�!
�a/B

increased. Never the less, also in local optimum whenP
b

�!
�a/B is small, by Postulate 1 flattening follows, if

divergence along
P

b

�!
�n/B non-zero and robustness is

built.

Overall, the larger the mini-batch size B the higher chance
that resulting in

P
b

�!
�n/B average out over the batch, caus-

ing lower flattening in the irrelevant direction leading to
lower robustness. Note also, that increasing the learning
rate, in line with keeping the same learning rate to batch
ratio helps only partially, as averaging happens first and in
case it zeros out the learning rate have next to nothing effect.
On the other hand, the average will never be exactly zero
on all batches, assuming training with a constant learning
rate, (Hansen et al., 1993) and then increasing learning rate
to batch ratio may help, as confirmed in Experiments in
Supplementary Material.

Batch normalization (BN) & noise in layers Training
with BN only makes sense with batches of the sizes that
ensure data distribution in the batch is close to a training
data distribution, (Ioffe & Szegedy, 2015; Santurkar et al.,
2018). In such settings averaging of

�!
�’s, described in the

previous section affects convergence and flattening.

As opposed to vanilla SGD training, however, BN ensures
all activations zli (after normalization) fluctuate around zero
with the second moment ⇡ 1 even in the small gradients
regime, such as in the case of averaging over batches. Tho
imposed variations in after effect cause the feature curves
�(zli) evaluated on batch samples propagate along the
curves reviving the loss and its gradient. This behavior
is reported in experiments in (Santurkar et al., 2018), show-
ing the internal covariant shift (variations of activations) is
in certain cases in fact enhanced instead of reduced by BN,

and gradients norms are kept non-zero by BN.

Assuming loss along ”accuracy” component has reached its
local minimum (otherwise SGD escapes in next steps and
training continues) the only way the back-prop decreases
loss is to make features insensitive along

�!
�n as these do

not affect ”accuracy” component.

This causes weights to be updated so that model ignores
changes of features in these ”irrelevant” directions (normal
to output data manifold) while maintaining ”accuracy” diver-
gence in its low (or evacuating local optima due to increase
of divergence along

P
b

�!
�a/B by flattening).

Applied on l = 0, i.e. the input layer, back-prop ’shapes’ the
network f(x|w) so that it has low sensitivity (derivative)
along feature curves of the inputs training f to generalize
well on inputs.

On the other hand, since divergence along
P

b

�!
�a/B may

still be significant even in the local optimum, the flattening
with BN only happens till divergence along

P
b

�!
�n/B gets

on the comparable level to
P

b

�!
�a/B due to Postulate 1.

This can explain the reason behind BN solutions general-
izing worse than those found by vanilla SGD and smaller
batch size.

Nevertheless, BN (and other similar normalization methods,
as layer normalization, (Ba et al., 2016)) enables back-prop
to train extremely deep models, as ResNets, (He et al., 2020),
maintaining gradient flow by normalization and preventing
vanishing gradients (case with vanilla SGD in deep models).

Noise in layer activations and inputs Work (Poole et al.,
2014) showed that injecting noise to layers and inputs helps
generalization of auto-encoders and in deep networks, both
theoretically and experimentally. Getting back to the main
experiment of the paper in Fig.1 noise in the inputs is
the classical way to train denoising auto-encoders (DAE),
(Poole et al., 2014).

From the perspective of this paper, injecting noise into the
activations of layers and inputs, including methods such
as dropout, (Srivastava et al., 2014), contributes to gener-
alization by the same mechanisms as BN in the previous
section. On top, it does not require large mini-batch sizes.
On the downside, we conjecture that scale of the noise is an
important hyper-parameter that may prevent reaching low
levels of ”accuracy” divergence

P
b

�!
�a/B if over-boosted

and thus also lower robustness on data samples from such
mini-batches.

4. Experiments

To demonstrate the ability of deep networks trained with
BN to learn the robust solution we train the denoising auto-

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Mechanisms that support generalization in deep learning

encoder (DAE) (Vincent et al., 2008) model. As argued
therein DAE is learning the identity function. More pre-
cisely, Denoising autoencoders (DAEs) are an extension of
autoencoders trained to reconstruct a clean version of input
from its corrupted version (Poole et al., 2014). The main
methods used to regularize DAE are bottle-neck architec-
ture or noise injected into inputs during training. Otherwise,
DAE learns an identity map. In our experiments, we use
neither of these. Architecture of convolutional layers is of a
shape ’<>’ instead of recommended bottleneck ’><’, and
there is not any noise injected into training samples. Further
details in Fig.1.

According to (Vincent et al., 2008) these learn identity func-
tion and perform poorly on de-noising noisy inputs. This
behavior is recovered in AE experiments without BN or
with vanilla SGD on models with sine activations presented
in Supplementary Material.

On contrary, Fig. 1 from the Introduction, demonstrates that
”Deep 15 + 10 CNN layers AE+BN” ReLU auto-encoder
trained without noise injection, converged to a solution ro-
bust to input noise7.

Throughout the paper experiments with binary classifier
models on synthetic ”two moons” scikit-learn datasets, (Pe-
dregosa et al., 2011) are reported extending experiments
with AE to supervised learning. The ”Two Moons” model
is a feed-forward model with 2D inputs + 7 tanh or relu or
linear (3-5-10-10-5-2-2) layers, followed by sigmoid. Fur-
ther experiments with both deep and shallow architectures
are in Supplementary Material.

Evacuation of a local optimum example enabled by
curved feature curves and executed by increased learning
rate to batch ratio. The network f maps all training data
into a small area (single point) at the beginning, given by
the general position of weights after standard random ini-
tialization, (Daniely et al., 2016; Sutskever et al., 2013), as
depicted in Fig.5, top row, the first and the second image8.

As the training progresses, following the previous section,
outputs of f are propagated into a one-dimensional man-
ifold, captured by the second row, showing outputs of f
before sigmoid (leftmost) and the same effect on feature
curves in the middle of the second row of Fig.4.

After the model has stuck in the local (linear model) op-
timum (3rd row), decreasing the mini-batch size from 20
to 2 enhanced gradients9. On batches producing large loss,
the gradients extend the scale of the layer representation
so much that some of the large loss features are mapped
into previously unused non-linear regions of �li(�) map.

7The noise in test samples is additive Gaussian N(0, 0.3)
8zoomed in after 30 SGD updates
9similar effect had an increase of a learning rate 10⇥.

Figure 5: ”Two moons” binary classifier with 7 hidden linear lay-

ers and tanh activation. The top three rows showcase

the first 10, 000 epochs of training with a mini-batch

size of 20, the bottom three rows demonstrate the change

caused by mini-batch size reduction to 2 for the last

10, 000 epochs. This change enlarged gradients expand-

ing the arc-length of feature curves to reach its curved

regions (middle column) and thus making the features at

opposite ends absorb back-propagated gradients of dif-

ferent directions, see Fig.4. Overall, decreasing batch

size enabled the model to continue training from a local

optimum at epoch 10, 000 with test accuracy 0.9 (third

row, right) and converge to a better one (test accuracy

1), last two bottom rows (epochs, 11, 500 and 20, 000).

This has an effect of ”localizing” the back-prop enabling
to fit parts with large errors while keeping the other ends
unchanged in line with previous arguments and Fig.4, see
Fig.5, middle column.

5. Discussion and Conclusions

Proposition 1 links work on the ”lottery ticket” hypothesis,
(Frankle & Carbin, 2018; Malach et al., 2020), that argue
the initialization determines the convergence trajectory and
resulting properties of the solution. From our results and
Proposition 1, it follows that initialization produces differ-
ent shapes of the feature curves. Fig.5 and 4 support the
theoretical argument that back-prop expands the arc-length

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Mechanisms that support generalization in deep learning

of the feature curves by up-scaling parts linearly aligned
with gradient of loss. In effect, it exploits an underlying
curvature of features shaped by initialization and following
weight updates (depending again on initialization). Hence it
is initialization that gives rise to different gradient flows and
stratifications of features, resulting in different trajectories
and generalization properties.

The phenomenon of ”flattening representations” has been
reported in deep learning experiments (Hauser, 2018), but
to the best of authors’ knowledge not yet fully understood.
The geometric view presented in this paper provides a unify-
ing view, shedding light on this fundamental phenomenon.
Theoretical arguments, corroborated by experiments with
AEs and classifiers are in favor of the Hypothesis stated in
the Introduction, that it is depth, combined with BN (or al-
ternatively with a adjusted learning rate to batch size ratio or
noise in layers), which delivers a well generalizing solution.

References

Amari, S.-i. Information geometry and its applications,
volume 194. Springer, 2016.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.
2016.

Banerjee, A., Merugu, S., Dhillon, I. S., and Ghosh, J. Clus-
tering with bregman divergences. Journal of machine

learning research, 6(Oct):1705–1749, 2005.

Bishop, C. M. Regularization and complexity control in
feed-forward networks. 1995.

Bishop, C. M. Pattern recognition and machine learning.
springer, 2006.

Carmo, M. P. and Flaherty, F. J. Riemannian geome-

try. Birkhäuser, 1992. ISBN 3764334908, 0817634908,
9780817634902, 9783764334901.

Daniely, A., Frostig, R., and Singer, Y. Toward deeper under-
standing of neural networks: The power of initialization
and a dual view on expressivity. Advances In Neural

Information Processing Systems, 29:2253–2261, 2016.

Du, S., Lee, J., Li, H., Wang, L., and Zhai, X. Gradient
descent finds global minima of deep neural networks.
In Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceed-

ings of the 36th International Conference on Machine

Learning, volume 97 of Proceedings of Machine Learn-

ing Research, pp. 1675–1685. PMLR, 09–15 Jun 2019.
URL https://proceedings.mlr.press/v97/
du19c.html.

Du, S. S., Zhai, X., Poczos, B., and Singh, A. Gradient
descent provably optimizes over-parameterized neural
networks. arXiv preprint arXiv:1810.02054, 2018.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. arXiv preprint

arXiv:1803.03635, 2018.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-

ceedings of the thirteenth international conference on

artificial intelligence and statistics, pp. 249–256. JMLR
Workshop and Conference Proceedings, 2010.

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y.
Deep learning, volume 1. MIT press Cambridge, 2016.

Hansen, L. K., Pathria, R., and Salamon, P. Stochastic
dynamics of supervised learning. Journal of Physics A:

Mathematical and General, 26(1):63, 1993.

Hauser, M. B. Principles of riemannian geometry in neural
networks. 2018.

He, F., Liu, T., and Tao, D. Why resnet works? residuals
generalize. IEEE transactions on neural networks and

learning systems, 31(12):5349–5362, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE inter-

national conference on computer vision, pp. 1026–1034,
2015.

Hinton, G., Srivastava, N., and Swersky, K. Neural networks
for machine learning lecture 6a overview of mini-batch
gradient descent. Cited on, 14(8):2, 2012.

Hiriart-Urruty, J.-B. and Lemaréchal, C. Fundamentals of

convex analysis. Springer Science & Business Media,
2012.

Huh, M., Mobahi, H., Zhang, R., Cheung, B., Agrawal,
P., and Isola, P. The low-rank simplicity bias in deep
networks. arXiv preprint arXiv:2103.10427, 2021.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In International conference on machine learning, pp. 448–
456. PMLR, 2015.

Kawaguchi, K. Deep learning without poor local minima.
arXiv preprint arXiv:1605.07110, 2016.

Kohler, J., Daneshmand, H., Lucchi, A., Zhou, M., Neymeyr,
K., and Hofmann, T. Towards a theoretical understanding
of batch normalization. stat, 1050:27, 2018.

LeCun, Y., Touresky, D., Hinton, G., and Sejnowski, T. A
theoretical framework for back-propagation. In Proceed-

ings of the 1988 connectionist models summer school,
volume 1, pp. 21–28, 1988.

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Mechanisms that support generalization in deep learning

LeCun, Y., Kanter, I., and Solla, S. A. Second order proper-
ties of error surfaces: Learning time and generalization.
In Advances in neural information processing systems,
pp. 918–924, 1991.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. nature,
521(7553):436–444, 2015.

LeCun, Y. A., Bottou, L., Orr, G. B., and Müller, K.-R.
Efficient backprop. In Neural networks: Tricks of the

trade, pp. 9–48. Springer, 2012.

Liu, S., Papailiopoulos, D., and Achlioptas, D. Bad global
minima exist and sgd can reach them. arXiv preprint

arXiv:1906.02613, 2019.

Luo, P., Wang, X., Shao, W., and Peng, Z. Towards un-
derstanding regularization in batch normalization. arXiv

preprint arXiv:1809.00846, 2018.

Malach, E., Yehudai, G., Shalev-Schwartz, S., and Shamir,
O. Proving the lottery ticket hypothesis: Pruning is all you
need. In International Conference on Machine Learning,
pp. 6682–6691. PMLR, 2020.

Needham, T. Visual Differential Geometry and Forms: A

Mathematical Drama in Five Acts. Princeton University
Press, 2021.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. 2017.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., et al. Scikit-learn: Machine
learning in python. the Journal of machine Learning

research, 12:2825–2830, 2011.

Poole, B., Sohl-Dickstein, J., and Ganguli, S. Analyzing
noise in autoencoders and deep networks. arXiv preprint

arXiv:1406.1831, 2014.

Rasmussen, C. E. Gaussian processes in machine learn-
ing. In Summer school on machine learning, pp. 63–71.
Springer, 2003.

Santurkar, S., Tsipras, D., Ilyas, A., and Madry, A. How
does batch normalization help optimization? In Pro-

ceedings of the 32nd international conference on neural

information processing systems, pp. 2488–2498, 2018.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine

learning research, 15(1):1929–1958, 2014.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. On the
importance of initialization and momentum in deep learn-
ing. In International conference on machine learning, pp.
1139–1147. PMLR, 2013.

Tu, L. W. Manifolds. In An Introduction to Manifolds, pp.
47–83. Springer, 2011.

Tu, L. W. Differential geometry: connections, curvature,

and characteristic classes, volume 275. Springer, 2017.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A.
Extracting and composing robust features with denoising
autoencoders. In Proceedings of the 25th international

conference on Machine learning, pp. 1096–1103, 2008.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning requires rethinking general-
ization. arXiv preprint arXiv:1611.03530, 2016.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning (still) requires rethinking
generalization. Communications of the ACM, 64(3):107–
115, 2021.

Zhu, Z., Wu, J., Yu, B., Wu, L., and Ma, J. The anisotropic
noise in stochastic gradient descent: Its behavior of es-
caping from sharp minima and regularization effects. In
ICML, pp. 7654–7663, 2019.

Zou, D., Cao, Y., Li, Y., and Gu, Q. Understanding the
generalization of adam in learning neural networks with
proper regularization. arXiv e-prints, pp. arXiv–2108,
2021.

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Mechanisms that support generalization in deep learning

A. Supplementary Material

A.0.1. NECESSARY DEFINITIONS

Following definition of a manifold is relatively self-
contained and comes from (Carmo & Flaherty, 1992).

Definition A.1 (Differentiable (Smooth) Manifold). A dif-

ferentiable manifold of dimension n is a set M and a family

of injective mappings x↵ : U↵ ⇢ Rn
�! M of open sets U↵

of Rn
into M such that:

1.
S

↵ x↵(U↵) = M

2. for any pair ↵,�, with x↵(U↵) \ x�(U�) = W 6= ;,

the sets x�1
↵ (W) and x�1

� (W) are open sets in Rn

and the mapping x�1
� � x↵ is differentiable.

3. The family {(U↵,x↵)} is maximal relative to the con-

ditions (1) and (2).

The pair (U↵,x↵) (or the mapping x↵) with p 2 x↵(U↵)
is called a parametrization (or system of coordinates) of M
at p; x↵(U↵) is than called a coordinate neighborhood at

p.

For alternative more fundamental definition of Topologi-
cal Manifold we refer reader to works of (Tu, 2011; 2017;
Hauser, 2018) or to excellent visual work on differential
geometry (Needham, 2021).

Definition of Generalization Error We follow definition
from widely accepted deep learning book (Goodfellow et al.,
2016). For the sake of brevity we don’t use bold typeset for
vectors in here as opposed to the main body of the paper.
The cost function can be written as an average over the
training set, such as

J(w) = E ˆpdata(x,y)`(f(x;w), y) (training error)

, where ` is the per-example loss function (such as Bregman
divergence), and f(x;w) is the predicted output when the
input is x, and ˆpdata is the empirical distribution. In the
supervised learning case, y is the target output.

Equation (training error) defines an objective function with
respect to the training set. We would usually prefer to
minimize the corresponding objective function where the
expectation is taken across the data-generating distribution
pdata rather than just over the (finite) training set:

J⇤(w) = Epdata(x,y)`(f(x;w), y) (generalization error)

In practice a generalization error is estimated on another
(test) data set, randomly sampled from pdata.

A.0.2. ”TWO MOONS” MODELS

The ”Two Moons” models are feed-forward neural networks
with 2D inputs. Deeper version is has 7 tanh or relu or linear

(3-5-10-10-5-2-2) layers, followed by sigmoid. Shallow has
2 tanh or relu or linear (5-2) layers + sigmoid.

Trained with constant learning rate (10�2 or 10�3) and
200,20 and 2 batch sizes. Training and test data comprises
600 data points generated by scikit learn, (Pedregosa et al.,
2011).

A.0.3. FLATTENING EXPERIMENTS

Figure 6: Flattening of the outputs of 7 layer FNN ”Two Moons”

model, trained by back-prop with a constant learning

rate and no regularizer.

A.0.4. EFFECT OF THE DEPTH

Proof of the Proposition 1 (also restated here).

Proposition 2. Consider random weight initialization pro-

ducing i.i.d. distribution of layer activations, conditionally

on inputs, with finite moments
10

. Then in randomly initial-

ized deep neural network (2) a probability of a curved �(zli)
grows linearly with depth L.

Proof. According to assumption, activations of layers zli
have i.i.d. distribution, given inputs, with finite moments.
Assume that model uses non-linear activation functions and
derivative of which, w.r.t. its argument, is different outside
of the interval I from the derivative inside of I , i.e., I =
(�1, 1) for tanh, or I = (0,1) for ReLU, etc.

Let’s denote P (zli /2 I) a probability that activations zli is
out of I . Then the probability that any activation is out of
I , i.e.

P
lL

P
nHl

P (zln /2 I) scales linearly in L for network

with L layers and H l activations in layer l.

On a side note, common initialization methods (He et al.,
2015; Glorot & Bengio, 2010) normalize variance by num-
ber of nodes in layers, thus

P
nHl

above is not reflected upon

in general case, to allow for such normalization.

Feature curves in deep vs. Shallow models experiment
reported in Fig.7.

10such as common Xavier (Glorot & Bengio, 2010) or He (He

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Mechanisms that support generalization in deep learning

Figure 7: Deep vs. Shallow w/o BN. Same as in Fig.9 colors en-

code `2 distance of �(t) images of (blue cross) from the

�(t) images of the points on the circles,independently,

i.e. colors are standardized for each circles irrespec-

tively on the radius. In case of deeper model (upper)

colors indicate ”distances” distributions vary with ra-

dius, while in case of shallow model (bottom) they do

less so. It visually demonstrates that ”closeness” of two

features, in deeper model, changes also radially and not

only with direction as in shallower model. We argue this

is due to larger curvature of �(t) enabling larger local-

ization of the output metric in line with Fig.4. Both mod-

els have been trained for 10, 000 epochs, mini-batches

of 20 ,instead of 200 as those would not converge, on

600 training data samples with constant learning rate

0.01.

A.1. Fitting Noisy & Random Labels

If targets differ for nearby inputs, as in case of noisy or even
random labels, than large errors in ”accuracy” component
�!
�a direction are produced and resulting � does not point
along normal directions not producing ”flattening” effect
but rather large weight update in general. See Fig.10.

It has been shown in (Zhang et al., 2016; 2021) that deep
nets are capable of fitting random labels with zero training

et al., 2015) initialization

Figure 8: Deep vs. Shallow + BN. Both models have been trained

for 10, 000 epochs, mini-batches of 200 on 600 training

data samples with constant learning rate 0.001.

Figure 9: Deep vs. Shallow w/o BN. Both models have been

trained for 10, 000 epochs, mini-batches of 20 on 600
training data samples with constant and larger learning

rate 0.01 compared to BN version.

error. As reported therein it has been reached using Adam
optimizer. Additional experiments in Supplementary Mate-
rial show that normalizing gradient leads to over-fitting in
some cases, in line with work (Zou et al., 2021) showing
that Adam may find worse solutions that vanilla SGD. We
argue this is a consequence of convergence conditions for
training with normalized gradients.

Weight update of the Rprop (sign of gradient, (Hinton et al.,
2012)) can also be written as standard gradient descent with
learning rate decayed by norm of gradient

Wt �
⌘

kgk
g (7)

where g denotes gradient of loss w.r.t. to weights. From
(5) one can see normkgk is a function of weights through
involved weight products W (p) and it follows that the larger
weight products are the slower training gets. In other words,

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Mechanisms that support generalization in deep learning

such adaptive methods are biased towards ”large weights”
configurations reciprocally to weight products W (p) of (5).

Figure 10: No Flattening for Noisy Labels A shallow ”Two

Moons” feed-forward network model of 3 layers,

trained by back-prop with a constant learning rate

and BN. Labels are 30-times more noisy than in Fig.5.

Noisy labels prevent flattening of the representations

in reported 8000 epochs.

Further, an increasingly large curvature of feature curves by
promoting large weight products W (p) by adaptive optimiz-
ers enables escaping from local optima and converging to
zero-training error.

In such regime of the effectively small learning rate does
not provide any chance to flatten and model stays in the
over-parametrized regime. Such model has a signature of a
poorly generalizing model (Zhang et al., 2016).

This is further demonstrated in Fig.13 with Adam and Fig.14
where Rprop is implemented11.

Figure 11: Normalized (BN) feed-forward network of 3 layers.

On the top first 2000 epochs of the training (snapshots

by 500) are shown, the bottom row reports snapshots

from epoch 8000, followed by resulting model with

decision boundary on test data. Model, used tanh ac-

tivations, constant learning rate of 0.001, mini-batch

of 20, training and test data of 600 samples.

A.1.1. ADAM AND RMSPROP EXPERIMENTS

Fig.14 shows RMSprop with no exp. decay hyper-parameter
↵ = 0. Further unreported experiments with varying ↵
showed little or no-dependence on this hyper-parameter.
Effectively it means that RMSprop reduces to training with
gradients of unit norm multiplied by sign() of gradient w.r.t.
respective weight.

Fig.15, demonstrates the very same AE model as in Fig.14,
just trained with mini batch size of 100 instead of unit mini-

11through optim. RMSprop PyTorch implementation with hyper-
parameter, controlling the length of moving average of previous
gradients considered set to zero, ↵ = 0, (Paszke et al., 2017)

Figure 12: The same model as in Fig.11 (3-layer FFN), trained

with the same settings just without BN. Resulted in

more profound and rapid flattening of the output repre-

sentation.

batch in Fig.14.

after 5⇥ 104 grad. updates

after 5⇥ 105 grad. updates.

Figure 13: DeepSIREN w/o BN, Adam, exp. decay with default

first and second gradient moments hyper-parameters

�1 = 0.9,�2 = 0.999 respectively, trained with unit

mini-batch size.

A.1.2. SIREN EXPERIMENTS

• DeepSIREN w/o BN, 15 (encoder) + 10 (decoder)
CNN layers, Sine activations, without BN.

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Mechanisms that support generalization in deep learning

after 5⇥ 104 grad. updates

after 5⇥ 105 grad. updates

Figure 14: DeepSIREN w/o BN, RMSprop, exp. decay hyper-

parameter ↵ = 0, unit mini-batch size

• DeepSIREN+BN, 15 (encoder) + 10 (decoder) CNN
layers, Sine activations, with BN.

Both models are compared in versions with and without
batch normalization.

after 5⇥ 104 grad. updates

after 5⇥ 105 grad. updates

Figure 15: DeepSIREN w/o BN, RMSprop, exp. decay hyper-

parameter ↵ = 0, mini-batch size of 100

Figure 16: DeepSIREN w/o BN. The depth alone without normal-

ization was also not enough to find model insensitive

to noise.

104 Mechanisms that support generalization in deep learning (Paper A)

Chapter 7

The Bayesian Cut (Paper B)

1

The Bayesian Cut
Petr Taborsky, Laurent Vermue, Maciej Korzepa, and Morten Mørup

Abstract—An important task in the analysis of graphs is separating nodes into densely connected groups with little interaction between
each other. Prominent methods here include flow based graph cutting procedures as well as statistical network modeling approaches.
However, adequately accounting for the holistic community structure in complex networks remains a major challenge. We present a
novel generic Bayesian probabilistic model for graph cutting in which we derive an analytical solution to the marginalization of nuisance
parameters under constraints enforcing community structure. As a part of the solution a large scale approximation for integrals
involving multiple incomplete gamma functions is derived. Our multiple cluster solution presents a generic tool for Bayesian inference
on Poisson weighted graphs across different domains. Applied on three real world social networks as well as three image segmentation
problems our approach shows on par or better performance to existing spectral graph cutting and community detection methods, while
learning the underlying parameter space. The developed procedure provides a principled statistical framework for graph cutting and the
Bayesian Cut source code provided enables easy adoption of the procedure as an alternative to existing graph cutting methods.

Index Terms—normalized cut, ratio cut, graph cut, modularity, degree-corrected stochastic block modeling, Bayesian inference,
incomplete gamma function, image segmentation.

F

1 INTRODUCTION

IN the analysis of graphs, partitioning nodes into groups
that are highly intra-connected with few inter-group con-

nections has become important in disparate scientific fields
- from network science for the identification of communities
[1], [2], computer vision for image segmentation [3], [4]
and the extraction of superpixel representations [5], scene
reconstruction from large community photo collections [6],
video decomposition [7], to physics for the splitting of
materials [8]. In fact, many problems can be rephrased
as a graph partitioning problem. This includes clustering
problems based on pair-wise similarity in which graph
partitioning approaches have found to have merits over tra-
ditional k-means and agglomerative hierarchical clustering
procedures [9], and semi-supervised learning problems in
which a popular solution procedure is to use graph cuts
constrained according to the labelled observations [10], [11].

A variety of computational tools have been developed
for graph partitioning. As such, methods based on minimiz-
ing flow between the separated entities have been devised
based on various quality measures of cutting graphs. Two
prominent procedures are the ratio cut [12] and normal-
ized cut [3], for a review see also [4], [9]. On the other
end, flexible in objective function, are methods minimizing
certain classes of submodular energies in pairwise Markov
Random Fields with applications in computer vision [13]
and extended to certain nonsubmodular functions in [14].
Recently, inference in sparse graphs recovering true parti-
tions using side information was introduced in [15]. While
providing general optimisation frameworks these methods
face scaling issues. Within network science a prominent
procedure to identify communities is based on optimizing
the modularity measure proposed in [1], which contrasts
intra-group connectivity structure relative to the connectiv-
ity structure as would be expected according to the nodes’

• Department of Applied Mathematics and Computer Science, Technical
University of Denmark, Kgs. Lyngby, Denmark.
E-mail: {ptab, lauve, mjko, mmor}@dtu.dk

degree distribution. Within the social sciences identifying
subgroups in graphs has been addressed using stochastic
block-models (SBM) [16], [17] that identify homogeneous
groups with similar connectivity profiles. This framework
has been advanced to community detection by constrain-
ing parameters specifying intra-connectivity to be higher
than inter-connectivity based on an information theoretic
compression imposing intra and inter link constraints [18]
or through Bayesian modeling constraining the parameters
specifying intra and inter group link densities [19]. When
partitioning networks a limitation of the SBM is that it
is driven by grouping nodes according to their degree
distribution. This issue has been alleviated by the degree-
corrected stochastic block model (dc-SBM) proposed in [20]
and its non-parametric Bayesian counterpart defined in [21].
Recently, it has been proven that modularity is a special
case of maximum-likelihood estimation in the dc-SBM [22]
assuming a planted l-partition model [23] in which link
densities within l groups are specified only by two pa-
rameters; a within community ⌘in and between community
strength ⌘out and further assuming the network is com-
munity structured, i.e. ⌘in > ⌘out. This then corresponds
to the generalized modularity quality function proposed
in [24] in which modularity is perfectly recovered when

⌘in�⌘out

log(⌘in)�log(⌘out)
= 1 [22].

In this paper, we propose a novel computational frame-
work for cutting graphs into communities or groups that ac-
counts for parameter uncertainty through Bayesian model-
ing. Our starting point is the dc-SBM in which we explicitly
impose community structure requiring the parameters spec-
ifying intra-connectivity to be strictly larger than the cor-
responding inter-connectivity. Although less flexible than
the dc-SBM, our model is more realistic than the planted
l-partition model as we endow each community separate
link-densities. We derive a Bayesian inference procedure
and provide an analytical solution to the corresponding con-
strained integral representation. On three social networks

c�2020 IEEE

2

TABLE 1: Summary of the notation used.

Notation Meaning Definition
A Adjacency Matrix
Aij Link strength between node i and j

bc
Hyperparameter link density gap between
the inter clusters expected link density and expected link density in community c

C Number of communities/clusters
G Undirected Graph
di Degree of node i Aii/2 +

P
j 6=i Aij

Dc Sum of node degrees in cluster c.
P

i:zi=c di

n Total number of nodes in graph G

nc Number of nodes in cluster c
P

i:zi=c 1

nout Number of nodes between the clusters
q

n2 �
PC

c=1 n
2
c

N Total number of links in the graph G
P

i Aii/2 +
P

i<j Aij

Nc Number of links in cluster c
P

i:zi=c Aii/2
+
P

i:zi=c,j<i:zj=c Aij

Nout Number of links between the clusters N �
PC

c=1 Nc

zi Cluster assignment of node i

z Set of node assignments zi for all nodes n {z1, z2, . . . , zn}
ZG Normalizing constant of the graph G

Q
i<j Aij !

Q
i
Aii
2 !2

Aii
2 .

ZBC
Normalizing constant of the
constrained distribution see (5)

↵c A priori assumed link counts within community c, ↵c 2 R+
↵out A priori assumed link counts between communities, ↵out 2 R+
�c A priori assumed number of network entries within community, �c 2 R+
�out A priori assumed number of network entries between communities, �out 2 R+
⌘ Set of all ⌘ parameters {⌘1, . . . , ⌘C , ⌘out}
� Degree correction hyperparameter
⌘c Parameter controlling expected density of links within cluster c
⌘out Parameter controlling expected density of links between clusters
�i Weight of node i

� Set of node weights �i for all nodes n {�1,�2, . . . ,�n}
✓i Node degree control weight for node i nzi�i

B(x) Multivariate Beta function
Q

k �(xk)
�(

P
k xk)

we demonstrate the importance of correctly accounting for
community-structure when clustering nodes in graphs and
that our Bayesian approach to cutting graphs have mer-
its in contrast to the prominent graph cutting procedures
outlined above. This includes better recovery of the true
underlying partitioning structure of nodes into groups and
more reliable inference. We further highlight the utility of
the procedure for image segmentation considering both the
Fast Marching Method (FMM) of [25] and the mean color
regional adjacency graph (RAG) of [26] where normalized
cut is typically applied. Notably, our results are for il-
lustrative purposes demonstrated in the context of social
network modeling in which the true partitioning structure
is known, and image segmentation in which results can
easily be visually inspected. However, we note that the com-
putational framework developed has application beyond
social network modeling and computer vision to the many
domains in which graph cuts are currently used.

2 METHOD

Let G be an undirected graph with adjacency matrix A (i.e.,
Aij = Aji) whose elements Aij are equal to the number of
links between nodes i and j for i 6= j and for computational

reasons [20] twice that number for i = j. Let further n define
the total number of nodes in the graph.

Following the dc-SBM [20] we assume that G is par-
titioned into a fixed number of C communities and the
number of links between nodes i and j follow a Poisson
distribution:

Aij =

(
Poisson(✓i✓j⌘zizj) for i 6= j

Poisson(12✓
2
i ⌘zizi) for i = j

, (1)

in which the parameter ⌘ce controls the probability of links
between communities c and e, ✓i regulates the probability
of links connected to the node i based on the degree of that
node, and zi defines the community assignment of node i.
The factor of 1

2 for i = j results from the factor of two in
the definition of diagonal elements of the adjacency matrix.
In particular in all presented application in this paper self-
links Aii are constant. For the social networks presented
they are zeros given by data, while in image applications
with well defined similarities (following a common sense
that node/pixel is similar to itself) they obtain maximal
similarity.

As noted in [20] typically in large scale applications (i.e.
images) self-links do not play a role as their effect diminish
with scale (⇠ 1/n). If necessary they can be marginalized as

3

suggested in [21]. Although it may be undesired to account
for self-links they add to generality of the model that makes
computations and (approximate) optimisation easier, i.e.
[27].

In order to keep analytic tractability of the constrained
model that will be introduced later we assume all links
between different communities are generated using the
same value, i.e. ⌘ce = ⌘out for c 6= e. We will also refer
to ⌘cc simply as ⌘c and ⌘ as the set of all {⌘1, . . . , ⌘C , ⌘out}
parameters. Accordingly, the probability of graph G can be
written as:

P (G|✓,⌘, z) =
Y

i<j

(✓i✓j⌘zizj)
Aij

Aij !
exp(�✓i✓j⌘zizj)

⇥

Y

i

(12✓
2
i ⌘zizi)

Aii/2

(Aii/2)!
exp(�

1

2
✓2i ⌘zizi)

=
1

ZG
⌘Nout
out exp(�

n2
out

2
⌘out)

⇥

"
Y

c

⌘Nc
c exp(�

n2
c

2
⌘c)

"
Y

i

✓di
i

#

.

(2)

We have here used that di = Aii/2 +
P

j 6=i Aij is the
degree of node i; nc =

P
i:zi=c 1, Nc =

P
i:zi=c Aii/2 +P

i:zi=c,j<i:zj=c Aij are respectively the number of nodes
and links in community c; n2

out = n2
�
PC

c=1 n
2
c and

Nout = N �
PC

c=1 Nc with N =
P

i Aii/2 +
P

i<j Aij ,
whereas ZG =

Q
i<j Aij !

Q
i
Aii
2 !2

Aii
2 . Following [21], given

partition z, we define a constraint
P

i:zi=c ✓i = nc and
parametrize ✓i = nzi�i such that parameters (�i)zi=c for
each community c lie on a simplex. We endow all param-
eters with priors thereby accounting for uncertainty using
Bayesian modeling. Thus, for given partition z, we assign
Dirichlet priors for the (�i)zi=c parameters of each commu-
nity c. Further we impose Gamma priors for the elements of
⌘ and we obtain:

p(�|z) =
Y

c

1

B (�1nc)

Y

i:zi=c

���1
i ,

p(⌘) =
�↵out
out

�(↵out)
⌘↵out�1
out exp(��out⌘out)

⇥

Y

c

�↵in
c

�(↵c)
⌘↵c�1
c exp(��c⌘c),

(3)

where B(x) =
Q

k �(xk)
�(

P
k xk)

denotes the multivariate Beta
function, and � is a hyperparameter that allows to infer the
optimal strength of degree correction for a given graph such
that if � ! 1, then �i !

1
nc

and ✓i ! 1 and the model
reduces to the corresponding SBM [21]. On the other hand,
if � ! 0, then �i⇤ ! 1 and ✓i⇤ ! nc for some node i⇤ in
each community c and thus a network generated according
to this prior becomes dominated by a few greedy nodes.
↵c and ↵out denotes the a priori assumed number of links
within community c and between communities (i.e., the
prior shape parameter of the Gamma distribution) whereas
�c and �out denotes the corresponding a priori imposed
number of network entries (i.e., the prior rate parameter of
the Gamma distribution) within community c and between

communities. Assuming further an uniform prior on z,
P (z) = C�n, we obtain:

P (G, z) =
Z

P (G|�,⌘, z)p(�)p(⌘)P (z)d⌘d�

=
C�n

ZG

�(Nout+↵out)�
↵out
out⇣

n2
out
2 +�out

⌘Nout+↵out

�(↵out)

⇥

Y

c

�(Nc+↵c)�↵c
c⇣

n2
c
2 +�c

⌘Nc+↵c

�(↵c)

B (�1nc+(di)i:zi=c)

B(�1nc)
nDc
c ,

(4)

where Dc =
P

i:zi=c di is the sum of node degrees
in community c. The marginalized parameters ⌘ =
{⌘1, . . . , ⌘C , ⌘out} can be interpreted as the densities of
links within each community and between the communities
respectively.

To ensure community structure in the graph, we
presently restrict the model such that the within-community
densities are larger than the between-community density.
This has previously been considered in the context of the
SBM [18], [19] but not in the context of the dc-SBM and
without fully analytical tractable solutions to the constraints
as presently derived. We constrain ⌘ parameters such that
⌘cbc � ⌘out for each community c where each bc is a
hyperparameter within range [0, 1] specifying a density gap
between the inter and intra community densities as consid-
ered in the context of the standard SBM in [19]. We introduce
this constraint by defining the following constrained prior
on the ⌘ parameters

pBC(⌘) =
1

ZBC
⌘↵out�1
out exp(��out⌘out)

⇥

CY

c=1

⌘↵c�1
c exp(��c⌘c)

!

I(⌘),
(5)

where I(⌘) =
Q

c �[0;1[(⌘c�bc⌘out) is an indicator function
evaluating to 1 if the constraints are satisfied and zero
otherwise (�[a;b](x) is the standard step function evaluating
to one if x 2 [a; b] and 0 otherwise). ZBC is the normalizing
constant of this constrained distribution. For a summary of
the notation used see table 1.

Combining priors with the likelihood function and

4

marginalizing the � and ⌘ parameters gives:

p(G, z) =
Z

p(G|�,⌘, z)p(�|z)pBC(⌘)p(z)d⌘d�

=
Z

⌘Nout+↵out�1
out exp

✓
�⌘out(

n2
out

2
+�out)

◆

⇥

"
Y

c

⌘Nc+↵c�1
c exp

✓
�⌘c(

n2
c

2
+�c)

◆
I(⌘)

⇥
B (�1nc+(di)i:zi=c)

B(�1nc)
nDc
c

�
d(⌘)⇥

C�n

ZGZBC

=
Z 1

0
e�⌘out(

n2
out
2 +�out)⌘Nout+↵out�1

out

⇥

CY

c=1

�

0

@Nc + ↵c, ⌘out ⇥

0

@
n2
c
2 + �c

bc

1

A

1

A d⌘out

⇥

"
CY

c=1

✓
n2
c

2
+�c

◆�(Nc+↵c)

⇥
B (�1nc+(di)i:zi=c)

B(�1nc)
nDc
c

�
⇥

C�n

ZGZBC
,

(6)

where in the second step we used change of variables s =

⌘c(
n2
c
2 +�c) to obtain each of c integrals in the form of an

upper incomplete gamma function (in the following simply
referred to as incomplete gamma function) given by [28]:

� (↵, x) =

1Z

x

s↵�1e�sds (7)

A major challenge that remains and we presently solve
is to analytically marginalize ⌘out in the above expression
thereby solving analytically for the constraints specified by
I(⌘).

2.1 Marginalization of constrained ⌘ parameters

According to eq. (6) marginalizing under the constraint
imposed by I(⌘) requires the solution to an integral of the
following form:

Z 1

0
e�B0xxµ0�1

CY

c=1

�(µc, Bcx)

!

dx, (8)

(Marginalizing integral)

Where we have used the following substitutions, x = ⌘out,
µc := Nc + ↵c, µ0 := Nout + ↵out, Bc := n2

c
2 + �c,

B0 := n2
out
2 + �out, and ignored all terms independent

on ⌘out. As a result, the µc and Bc elements in (8) relate
respectively to scale and rate parameters of the involved
incomplete gamma functions.

We outline what is to the best of our knowledge a
novel approach solving integrals of the form presented in
Eq.(8). We exploit the following known recurrence property
of incomplete gamma functions (see Theorem 1 in [29]):
�(a + 1, x) = a�(a, x) + xae�x for a 2 R, a > 0. This can
be considered a generalization of �(n + 1) = n�(n) to the

incomplete Gamma function. By a simple recursion of this
property we obtain

�(a, x) =
�(a+K,x)

(a)K̇
� xae�x

K�1X

i=0

xi

(a) ˙i+1

(K-recurrence of �0s)

where (a)ṅ is the Pochhammer symbol (a.k.a. ”rising fac-
torial”) defined as (a)ṅ = �(a + n)/�(a). This recursion
formalizes idea of ”shifting” of shape parameters of gamma
distribution as shown in figure 1.

The following theorem presents application of the “shift-
ing” method described above to solve the multidimensional
incomplete gamma integral in equation (8) up to an arbi-
trary precision.

Theorem 2.1. For every C 2 N+, µi, Bi 2 R, µi > 0, Bi > 0
for i 2 {1, ..., C} and K 2 N+ following equality holds:

Z 1

0
e�xB0xµ0�1

CY

c=1

�(µc, Bcx)dx (9)

=
CX

m1=1

CX

m2=1,
m2 6=m1

. . .
CX

mC=1,
mC 6=m1,...,mC�1

K�1X

i1=0

. . .
K�1X

iC=0

CY

w=1

B
µmw
mw (B0 +

w�1P
j=1

Bmj)
iw

µ0 +
w�1P
j=1

(µmj + ij)

! ˙iw+1

⇥

�

µ0 +
CP

j=1
(µmj + ij)

!

(B0 +
CP

j=1
Bmj)

(µ0+
CP

j=1
(µmj+ij))

(10)

+ E(K),

(11)

where the error term E(K) satisfies limK�!1 E(K) = 0.

Proof. Detailed proof altogether with additional two proven
lemmas is to be found in appendix. (6.3)

To evaluate the joint distribution p(G, z) the integral (8)
is to be evaluated twice. First to compute prior normaliza-
tion factor of hyperparameters (↵’s being gamma priors),
denoted ZBC , and second to evaluate the integral (6) with
shape parameters µ’s that are result of ↵’s added together
with link counts from the respective clusters.

While the former can be efficiently solved by theorem
2.1 as the prior values are typically small requiring a small
value of K , the latter imposes substantial computational
challenges especially for large and dense graphs where the
use of theorem 2.1 becomes computationally heavy as the
required K has to be in orders of magnitudes of the number
of links in the largest cluster.

Rather than resorting to analytical integration one could
opt for the use of point estimates in the large setting where
the posterior distribution can be expected to be peaked and
thereby point estimates to provide reasonable accuracy or
apply simple normal approximations through the Laplace

5

Fig. 1: Decomposition of integrand of Part A in lemma 6.1
into elements and shift of original gamma pdf (dotted red)
using (K-recurrence of �0s) to the inadequately shifted (gray
curve K=19.5) and adequately shifted (red curve K=73.5)
with close to zero-mass area of all the considered incomplete
gamma functions (blue, green, and black curves) whereby
the product in Part A becomes close to zero. As a result, the
size of the shift controls the closeness to zero of Part A.

procedure also potentially accounting for the constraints
using the result of the work of Hartman at al. [30] from 2017.
Notably, a simple point estimate would be the maximum
a posteriori of ⌘ under the required constraint and as the
posterior is convex with convex constraints on ⌘ the MAP
estimation of the constrained ⌘ is convex. Alternatively,
⌘out could be sampled and conditioned on the sampled
value of ⌘out, ⌘c could be analytically marginalized using
the incomplete Gamma function. While these approaches
are scalable they are approximate and for the large scale
setting we therefore opt for the following analytic procedure
accounting explicitly for the uncertainty of ⌘ while keeping
complexity at O(C) for evaluating (8) which is the same as
can be achieved by use of point estimates.

2.2 Large Scale Settings

Up until now there were no limitations set on values of
⌘ and in particular of hyperparameters µ and B, besides
being real and positive. In large scale applications however,
we are often facing large values of µc,c2{1,...,C}. In such
case, it is convenient to consider evaluation of the integral
for integer values of the µ’s. As we present in the following
theorem, for integer µ’s the integral is proportional to the
CDF of the Negative Multinomial distribution with easy
to evaluate limiting distribution. Notably, it is shown in
section 3.1 that resorting to the integer setting imposes no
significant constraints for most large scale applications.

Next we present main result of this section: exact evalu-
ation of the integral (8) in case of integer shape parameters
of involved gamma densities:

Theorem 2.2. For C 2 N+, µi 2 N+ and Bi 2 R+,
i 2 {0, ..., C} integral (8) is proportional to the cumulative distri-

bution function of the Negative Multinomial (NMn) distribution
and the following equality holds:
Z 1

0
e�xB0xµ0�1

Y

i2{1,...,C}
�(µi, Bix)dx

=

CQ
c=0

�(µc)

Bµ0
0

⇥ (12)

⇥

µ1�1X

i1=0

· · ·

µc�1X

ic=0

�(µ0+i1+. . .+ ic)

�(µ0)i1!. . . ,ic!

✓
B0

B

◆µ0 CY

c=1

✓
Bc

B

◆ic

,

(13)

where B :=
PC

i=0 Bi

Proof. To be found in Appendix (6.4). For Negative Multino-
mial distribution definition and properties refer to [31].

The connection to Negative Multinomial distribution
shown in theorem 2.2 also allows for an interpretation of
the marginalized posterior (8) probability. If we consider
sequence of independent multinomial trials in each of which

event Ei occurs with probability pi,i2{0,...,C} ,
CP
i=0

pi = 1

and let Xi be the frequency of Ei,i2{1,...,C} ”successes”
before predefined number µ0 of X0 ”failures” appears, then
(X0, X1, ..., XC) follows the Negative Multinomial distribu-
tion NMn [31].

Hence integral (8) is proportional to the likelihood of
observing µi ”successes” (links within clusters) before num-
ber of ”failures” (links between clusters) reaches at most µ0,
given that number of links in graph follows multinomial
distribution with probability of links appearing in cluster c
being Bc

B , which is positively related to the relative size of a
cluster (proportion of nodes in cluster) c.

In the following section we make use of favourable
asymptotics of the Negative Multinomial distribution to
derive a fast evaluation of the integral for the large scale
setting.

3 INFERENCE
We presently show how to efficiently evaluate Theorem 2.1
for C = 2 clusters. In this case, the formula (omitting the
error term) can be written as:

Bµ1
1 Bµ2

2 �(µ0)
2X

m=1

K�1X

i1=0

K�1X

i2=0

(1 +Bm)i2

(1 +B1 +B2)µT+i1+i2

⇥
(µ0 + i1 + 1)(µm�1)�(µT + i1 + i2)

�(µ0 + µm + i1 + i2 + 1)
,

where µT = µ0+µ1+µ2. If we apply substitution v = i1+i2,
we can rewrite the above expression as:

Bµ1
1 Bµ2

2 �(µ0)
2X

m=1

2(K�1)X

v=0

(1 +Bm)v�(µT + v)

(1 +B1 +B2)µT+v

⇥

min(v,K�1)X

i1=0

(µ0 + i1 + 1)(µm�1)

(1 +Bm)i1
.

We notice that the sums dependent on v or i1 can be
evaluated independently in O(K) time which allows for
efficient evaluation compared to the original O(K2) time.

6

With regards to control of the approximation error The-
orem 2.1 gives for arbitrary error thresholds ✏ the existence
of K that evaluates this integral up to ✏ precision. However,
the Theorem is not explicit about the choice of a sufficient
value of K . One simple approach for finding K to control
approximation error we used to produce the results pre-
sented in section 2.1 is to set K such that the mode of
inter cluster link density µ0+K�1

B0
is equal or greater than

the q-quantile of all gamma distributions controlling intra
clusters link densities. An accuracy is then controlled by
setting values of q. Results of this application on karate
network are shown in figure 2. There are many alternative
choices for K , however, we found this approach to be easy
and efficient in practice. For the purpose of error evaluation
we compared results of Theorem 2.1 with results of the
scipy.integrate.quad function from the scipy 1.2.0 python
package. From the figure we can observe how increasing
K , corresponding to increasing the q-quantile according to
the method described above, controls the absolute error on
the evaluation of the integral. For the results obtained in the
following we used q = 0.9999, given that this guarantees
an absolute error close to 10�5, but in most cases will range
around 10�9.

Fig. 2: Maximum and median absolute approximation error
and corresponding number of added observations T for
karate network based on 100 chains with 100 samples each.

Typically, a graph cut is obtained by optimizing a given
cost function. In case of Bayesian Cut, the cost function is
defined by the posterior distribution p(z|G) which specifies
probability of every possible partition of graph G. While
the full posterior would provide lots of insight into different
ways of cutting the graph, due to its high complexity, it is
not possible to determine it fully. Instead, the most reason-
able approach is to search for the maximum of the posterior
(MAP) zMAP = argmaxzp(z|G). While one could opt for
optimization of the posterior distribution of z possibly
making use of wide arsenal of approximation methods i.e.
[14], [13], [32] or other discrete optimisation methods [33] to
this NP hard problem, we advocate using MCMC sampling
(for reference see [34], Chapter 11) before performing opti-
mization for a few reasons. First of all, optimization might
get stuck in local maxima while sampling given enough
time will find the global maximum. In practice, within the
sampling budget, the sampler will likely focus on some high
density region of the posterior, but it will still explore mul-
tiple modes within that region. A comparison of only using
optimization compared to using the sampler can be found in
the appendix, see section 6.3. Secondly, by using sampling
we are able to infer values of specific hyperparameters to
create a more plausible model that explains the observed
data better and thus learn about the underlying structure

of the problem. Finally, sampling produces not only a point
estimate but an approximation of the true posterior (more
or less accurate depending on its complexity and sampling
budget) that can be used to answer more complex questions
than what the most probable cut is. To perform MCMC
sampling, we use Gibbs sampling and sample each element
zi of z independently:

p(zi|G) =
p(G, z)

p(G, z�i)
/ p(G, z).

We treat the hyperparameter � as a random variable while
fixing other parameters to a constant value. We use the non-
informative prior p(�) = ��1 and after each Gibbs sweep
over all nodes in the graph, we perform 20 Metropolis-
Hastings (MH) updates using the proposal distribution
�⇤ = � exp(✏), ✏ ⇠ N(0,� = 0.1). Alternatively, if one is not
interested in inferring �, it can be set to 1 which assumes
any configuration of node-specific parameters (�i)zi=c of
community c is equally probable (i.e., corresponding to the
uniform distribution over the (nc�1)-simplex). Furthermore,
we fix all ↵ and � parameters to a non-informative value
0.01 and set b to 1 unless specified otherwise. After running
out of the sampling budget, we apply deterministic opti-
mization by switching node assignments only when it leads
to higher likelihood and we stop when in a full sweep over
all nodes we do not observe any further improvement.

3.1 Inference for large graphs
Posterior distribution of ⌘ (expected density of links) in BC
model has the same form as prior (due to the conjugacy
between Poisson and Gamma) where ‘shape’ µc and ‘rate’
Bc, in general positive real parameters of the involved
gamma densities, are by definition priors ↵c 2 R+ and
�c 2 R+updated by the added number of links and nodes in
cluster c respectively. This often results in large, in general
real, values when dealing with large graphs. In order to
find a fast evaluation algorithm first let us note that for
the cutting of large graphs limiting ourselves to integer
shape hyperparameters of both prior and posterior gamma
densities while updating real ‘rate’ impose any relevant
constraints in most applications as the prior is overwhelmed
by the observed data. Technicaly speaking transformation
from µ0 = dµe, B0 = dµe

µ B keeps mean of posterior gamma
distribution unchanged (µ0

B0) while increases its variance (or
uncertainty) (µ0

B02) by factor diminishing with scale. There-
fore and especially with uninformative priors resorting to
integer ‘shape’ should have an insignificant and asymptoti-
cally zero effect on posterior for large values of µ and if not
the general Theorem (2.1) should be applied.

Secondly, as shown in [31], a limiting distribution of the
negative multinomial decomposes into a product of Poisson
distributions as µ0 ! 1. Making use of this limiting distri-
bution we obtain a large scale (asymptotic) solution of our
integral. In the following we make use of the fact that the
cummulative density function (cdf) of a Poisson distributed
variable FPois(�)(µi � 1) can be written as �(µi � 1;�). Let
m denote the threshold beyond which the asymptotic is ap-
plied. To determine m we analyze in Figure 3 how well the
asymptotic approximation of the marginalized integral (8)
behaves. The figure shows that absolute error of log integral

7

is close to zero but for the bipartite setting, correspond-
ing to a graph in which all links/similarities are between
clusters while there is zero density of link/similarity within
clusters. In such setting it is still possible to evaluate the
integral exactly using Theorem (2.2) with complexity O(N).
However, if the observed graph G has bipartite structure
(can be detected prior to application of the method) then
the proposed asymptotic becomes expensive. This does not
impose any issues for most applications, in particular, for
image segmentation where bipartite structures are unlikely.
Formally, proposed method to evaluate the marginalized
integral (8) in large scale settings depends on sum of weights
(in our case number of links) between clusters, µ0:

Fig. 3: Error of logarithm of integral (8) evaluated by
“shifted” method of theorem (2.1) with bounded error of
10�5 and logarithm of same integral evaluated by asymp-
totic method of section (3.1). For experiments we fixed
B0 = 60 and B1 = B2 = 70 while ranging µout 2 (51, 103)
and µ1 = µ2 = µin 2 (0, 103).

Large µ0 > m: If µ0 is sufficiently large, then (41) resolves
asymptotically into:

CY

i=1

�(µi � 1;µ0Bi/B0) (14)

Small µ0 m: In this case there are 2 options:

• In case the smallest of µc’s, c2{1,...,C}, is sufficiently
large min

c
(µc) > m we apply ‘per-partes’ on (41) to

rotate elements of integral and asymptotic decompo-
sition on each of C summands resulting in:

B�µ0
0

CY

i=0

�(µi)�
CX

j=1

CY

i=0,
i 6=j

�(µi�1;↵jBi/B0) (15)

• Else, when one or more µc’s, c2{1,...,C}, are small
(min

c
(µc) < m), asymptotic properties of NMn are of

no use. This corresponds to a degenerated case when
nodes within one or more clusters are dissimilar
or respective clusters contain few nodes. In either
case this does not correspond to a preferable cut.
Let’s note that it is unlikely that the Metropolis -

Hastings/ Gibbs MCMC sampler appears to be sam-
pling from an assignment corresponding to this case
unless observed graph has aforementioned bipartite
structure. In degenerate case sampler would need to
accept low probability proposals against the imposed
constraints on the link densities. So unless initial
assignments of sampler are degenerate or number
of clusters C is extremely large compared to nodes
in the considered graph, it is unlikely to end up in
such case during sampling. Anyway, in such case we
evaluate the integral of theorem 2.2 directly at cost of
higher complexity O(N) instead of O(C).

In the procedure above m represents a threshold above
which asymptotic apply. In our image experiments (non
bipartite structure) we applied m = 50 given results of fig.
3, striking balance between accuracy and runtimes. More
elaborate and/or conservative choices may be better suited,
depending on use.

3.2 Reference methods
We contrast the proposed BC to the corresponding dc-
SBM without community constraints given by (4) as well
as to modularity optimization (Mod), ratio-cut (RC) and
normalized cut (NC). The solutions obtained by RC and
NC were derived using the spectral clustering procedure
described in [9] whereas the modularity objective was opti-
mized using the spectral approach described in [1]. We note
that the spectral optimization procedure may be suboptimal
to other inference approaches, however, we presently use
these solutions for illustrative purposes to characterize the
methods and contrast favourable configurations by these
approaches to the favorable configurations using the pro-
posed BC procedure.

To evaluate the modularity score of a given partition we
use the modularity objective function described in [1], given
by

Q(z) =
1

4m

CX

c=1

2

4
X

i:zi=c

0

@
X

j:zj=c

(Aij �
kikj
2m

)

�

X

j:zj 6=c

(Aij �
kikj
2m

)

1

A

3

5 , m =
1

2

nX

i=1

ki

(16)

To evaluate solutions in the domain of NC and RC we use
their respective cost functions as defined in [9]

RC(z) =
1

2

CX

c=1

1

nc

X

i:zi=c

X

j:zj 6=c

Aij , (17)

NC(z) =
1

2

CX

c=1

1

Kc

X

i:zi=c

X

j:zj 6=c

Aij . (18)

3.3 Visualization technique for solution landscape
To show the solutions supported by each procedure we
plot the solution landscapes similar to the method proposed
in [35]. These landscapes were created by obtaining a set
of V z vectors for the models under scrutiny. This set of
vectors is expanded by 50% to cover the in between solution

8

space through pseudo-random vectors, i.e. a new vector is
generated by randomly taking two distinct z vectors and
combining half of the elements of each vector. The score
or likelihood for each vector is subsequently obtained by
running the specified model with each unique z vector. As
measure of distance between partition vectors we use the
Variation of Information [36] between all V vectors. The
resulting V ⇥ V dimensional distance matrix is reduced
to two dimensions using Multidimensional Scaling [37].
Discrete Sibson Interpolation [38] is subsequently used to
obtain a meshgrid of the remaining two dimensions.

4 RESULTS AND DISCUSSION

In the following we analyze the properties of the proposed
Bayesian Cut (BC) model for community detection in social
networks and image segmentation for computer vision.

We first present results on a set of simple synthetic net-
works (Section 4.1) followed by results for community de-
tection in social networks (Section 4.2) that have an advan-
tage of available “ground truth” as well as unified definition
of an adjacency matrix across methods we compare with.
Hence presented comparison provides insights on graph
cutting performance more clearly than in the subsequent
image applications where cuts are used in connection with
disparate similarity matrices. In Section 4.3 two often used
similarity matrices are presented to demonstrate utility of
BC model as a generic tool for graph cuts. We further apply
multiple cluster solutions on the images.

The Bayesian Cut source code used for these experiments
is provided through a public source code repository, hosted
on Github (https://github.com
/DTUComputeCognitiveSystems
/bayesian cut), and through the Python Package In-
dex (https://pypi.org/project/bayesian-cut/) to allow a
straightforward installation of the package. To ensure ac-
cessibility and reproducibility of the results, the repository
includes image of “bears” used in experiments (original
downloaded from: https://images.app.goo.gl
/Mvdra73AwjfRfp629) and the software, that is accompa-
nied by instructions on how to use the package and Jupyter
Notebooks that show how the results were obtained.

4.1 Synthetic networks
We test the proposed algorithm on synthetic networks to
demonstrate the effect of imposed connectivity constraint
on the inference. In this experiment, we fix the total num-
ber of nodes to n = 100 and links to N = 1000. We
assume networks are partitioned into two communities
having equal number of nodes (n1 = n2 = n

2) and links
(N1 = N2 = Nin). For different values of intra- to inter-
community link density ratio (⌘in/⌘out= 2Nin

Nout
), we generate

network to match these predefined properties. We fix � to
106 (to remove effects of degree correction), ↵out to 10�6

(to remove the difference coming from marginalizing the
constrained vs. unconstrained prior) while keeping values
of the other hyperparameters as specified in Section 3. In
Figure 4, we show the posterior densities (up to a constant)
of the partition for a wide range of ⌘in/⌘out density ratios
for a constrained (Bayesian Cut) and corresponding uncon-
strained (dc-SBM) model to demonstrate the effect of the

constraint. Condition ⌘in/⌘out < 1 represents an extent of
constraint violation - the closer it is to 0, the stronger the
violation. At extreme of 0, the partition represents a bipartite
network which is a structure exactly opposite to a commu-
nity structure. As it can be seen in the figure, unconstrained
dc-SBM assigns very high probability to partitions where
there is very distinct difference between intra- and inter-
community densities, even if inter-community density is
higher. On the other hand, the constrained model penalizes
partitions that violate the constraint and assigns them even
lower probability than to partitions with the density of links
uniformly distributed over the whole graph.

Fig. 4: Experiment on synthetic networks confirms that con-
strained BC model “Bayesian cut” strongly penalizes parti-
tions that violate graph connectivity constraint, ⌘in � ⌘out,
compared to unconstrained “dc-SBM” model that assigns
very high probability to partitions where there is very
distinct difference between intra- and inter-community den-
sities, even if inter-community density is higher.

4.2 Community detection in social networks

For community detection the properties of the proposed
Bayesian Cut (BC) model are analyzed based on three
real world social networks and contrasted to ratio-cut,
normalised cut, modularity and the unconstrained dc-SBM.
The networks considered are:
Karate: A social undirected network studied by Zachary
[39] of ties in a Karate club that turned out to split in two.
The network consists of 34 nodes and 78 edges and was
partitioned using modularity in [1].
Polblogs: The political blogosphere (Polblogs) network
on US politics assembled by [40]. We consider the largest
connected component of the network in the undirected
form used in the dc-SBM analysis of [20] which contains
1222 nodes and 16714 edges.
HIV-1: Sexual partnership network extracted from the first
study (Colorado Springs Project 90) in HIV Transmission
Network Metastudy Project [41]. We consider the largest
connected component of the network consisting of 1888
nodes and 2096 edges.

In all analyses we used C = 2 corresponding to the
ground-truth structure of the split in Karate club and po-
litical blogs along party line. Notably, when C = 2 there
is only one ⌘out parameter in the dc-SBM and our analyses
correspond to the dc-SBM parametrization with and with-

9

K
ar

at
e

Po
lb

lo
gs

H
IV

-1

Fig. 5: Comparison of the dc-SBM (left column) and BC (right column) solution landscapes based on p(z|G) as well as
the resulting cuts performed on the three networks. The outer right column shows the trace plots obtained running each
model with 15 chains and 1000 samples. The dc-SBM model exhibits for all three networks modes and thus resulting cuts
that violate the constraint ⌘in � ⌘out. In the corresponding adjacency matrices it can be seen that whenever the constraint
is violated (lower adjacency matrix/network for each example), the off-diagonal blocks have a higher density than at least
one of the diagonal blocks. In contrast, the proposed BC model gives those regions of the solution landscape that violate
the constraint lower likelihoods, which leads only to modes and thus resulting cuts that do not violate the constraint.

out the community constraint. For model inference in the
dc-SBM and BC we use Gibbs sampling to infer z.

4.2.1 Comparison of dc-SBM and BC
Figure 5 shows the results of the unconstrained dc-SBM
and our Bayesian Cut (BC) procedure for b1 = b2 = 1,
i.e. imposing the constraint ⌘1 � ⌘out and ⌘2 � ⌘out.
Furthermore, a non-informative prior is used, i.e. ↵in =
↵out = �in = �out = 0.01. For the Karate network (top
panel) we observe that the conventional Bayesian dc-SBM
(given by the likelihood in (4)) creates a substantially differ-
ent solution from our proposed BC. While our BC peaks
around the true split of the Karate network, we observe
that the samples of the conventional dc-SBM concentrate
around two modes of the distribution in which the other
mode represents a configuration that does not comply with

the notion of community structure, but has a significantly
higher likelihood.

For the larger Polblogs network we again observe that
the dc-SBM exhibits one mode that does not comply with
the community structure and creates a split leading to one
community with high link density and one community
with a bipartite structure, while the mode shared with our
proposed model corresponds well to a separation along
political orientation (i.e., democrat vs. republican). In the
bottom panel for the HIV-1 network we observe a substan-
tial difference between the dc-SBM and our proposed BC
procedure with no shared modes. Here the unconstrained
model identifies a bipartite structure in which one com-
munity has very low link density as compared to the inter
community link density, whereas the constrained model by

10

dc-SBM BC

K
ar

at
e

Po
lb

lo
gs

H
IV

-1

Fig. 6: Gamma inference and resulting node degree correction (theta) of the dc-SBM and BC for all three networks. The
dc-SBM and BC models show substantial differences, since the parameter inference resulting from the BC model is more
reliable, because it contrary to the dc-SBM does not get stuck in local optima that violate the constraint.

only giving community structure support strives to separate
the network according to identifying separate communities.

Overall it can be seen that the BC with its constraints
is more in line with the natural splits in the Karate and
Polblogs networks and suggests a more sensible split for
the HIV-1 network. The sub-optimal congruity of the un-
constrained model can be attributed to the local modes of
the posterior observed in Figure 5 that are unsupported by
the BC procedure.

On the outer right side in Figure 5 the convergence of
the dc-SBM and BC is illustrated for 15 chains and 1000
samples. Notably, we observe that for the Karate and politi-
cal blogosphere networks the unconstrained model explores
the mode not complying with community structure. For the
political blogosphere the inference for most of the chains
is stuck in the local sub-optimal mode of the posterior
distribution, incapable of escaping this mode by the Gibbs
sampler and recovering the underlying correct structure
leading to the lower cut shown in the middle panel of
figure 5. In contrast all chains of the BC model converge
to the underlying partitioning structure for both networks.
When considering the HIV-1 network it can be observed
that the solution space supporting community structure
is consisting of a vast number of local optima, contrary
to the non-community supporting structure, which has a
strong global mode. This is causing the community structure
inferred to be less reliable and the chains to end in local
modes of the community constrained posterior.

The influence of BC and dc-SBM on inferring the param-
eter controlling for degree (�) is shown in figure 6. Here
the gamma inference as well as the node degree correction
distribution of each chain of both the dc-SBM and BC
model is shown for the three networks. Focusing on the
left column, a substantial difference within the inference of
the � parameter, i.e. controlling the degree correction, is
observable. Subsequently, the derived ✓ parameters differ
based on the modes preferred by the models. As previously
shown, the dc-SBM model often gets stuck in local modes
or exhibits globally preferred modes that do not support the

community structure. Accordingly, the parameter inference
is biased by the modes in the non-community structure
region in those cases. In the above analysis we used non-
informative priors on ⌘, however, we could also impose
an informed prior favoring community structure in the dc-
SBM. This and role of constraint parameter b is further ad-
dressed exemplary on the karate network in the appendix,
section 6.4.

TABLE 2: Comparison of Cuts running 100 chains with 1000
samples without and with (in parenthesis) deterministic
optimization in terms of their modularity value (Mod.) and
correspondence to ground truth partition structure (avaible
for Karate and Polblogs) as quantified using normalized
mutual information (NMI). h·i denotes average value and
d·e maximum value.

Score RC NC MOD dc-SBM BC

K
ar

at
e hNMIi 0.415 0.732 - 0 (0) 0.837 (0.837)

dNMIe 0.578 0.732 0.837 0 (0) 0.837 (0.837)

hMod.i 0.236 0.356 - -0.267 (-0.258) 0.371 (0.371)

dMod.e 0.313 0.356 0.371 -0.267 (-0.258) 0.371 (0.371)

Po
lb

lo
gs hNMIi 0.017 0.017 - 0.143 (0.146) 0.717 (0.718)

dNMIe 0.017 0.017 0.693 0.727 (0.737) 0.739 (0.739)

hMod.i 0.001 0.001 - -0.057 (-0.062) 0.426 (0.426)
dMod.e 0.001 0.001 0.424 0.426 (0.426) 0.426 (0.426)

H
IV hMod.i 0.045 0.045 - -0.363 (-0.365) 0.185 (0.411)

dMod.e 0.045 0.045 0.190 -0.357 (-0.359) 0.385 (0.463)

4.2.2 Comparison of dc-SBM and BC to Modularity, NC and
RC
In Table 2 we quantify the correspondence as measured by
normalized mutual information (NMI) between the inferred
partitions and the partition defined by the underlying split
with highest support for each of the considered methods
in the Karate network and separation according to party
line in Polblogs. Furthermore, we measure the adherence
to community structures of each model by calculating the
modularity for the inferred partitions using the formula
defined in eq. 16. For each calculated metric and network
we point out the average and maximum score achieved by
that particular method.

11

Fig. 7: Solution landscape comparison of BC, dc-SBM, Modularity, NormCut, RatioCut on the three networks. To explore the
space, 100 samples from 15 chains were taken for the Bayesian methods, while for the spectral cuts 200 different solutions
were generated for each method by randomly alternating 1% of the links within the networks. The costs of Normcut and
Ratiocut are inverted to allow for direct landscape comparisons.

12

We observe here that the BC achieves superior or on
par performance on all three networks. In these results we
again observe that the BC differs substantially from the
dc-SBM, which is explained by the underlying supported
configurations of the model likelihood P (z|G) shown in
figure 5. In figure 7 we explore the solution space also of the
ratio-cut (RC), normalized cut (NC) and modularity (Q) and
how these solutions are supported by their corresponding
objective functions.

We notice that the solutions supported (and thus the in-
ference landscape) by the proposed BC is more in agreement
with these existing community detection/graph partition-
ing procedures than the dc-SBM. However, we also observe
notable differences of the proposed Bayesian Cut (BC) and
these alternative partitioning procedures. In particular, nei-
ther RC nor NC provide as balanced solutions as the BC
and they provide higher support for solutions further away
from the underlying community structure. Here we pay
particular attention to the cuts proposed for the Polblogs
and HIV-1 network as these appear unsubstantiated due to
the fact that they exclude a very small group of persons from
the overall population.

For Polblogs both RC and NC exhibit very extreme and
local optima in their solution landscape, which lead to a cut
that excludes 4 persons from the other 1218 persons in both
cases. In the case of RC, defined in eq 17, the dominance
of the cost by the flow, i.e. links between two groups, is
obvious. Since these two group are only connected by 1
inter-link the cost for performing this is cut is extremely
low. In contrast, the true cut along party lines leads to one
group with 662 nodes and one with 560, which share 1217
inter-links. To obtain lower costs, no-more than 76 inter-
links would be allowed.

One way of alleviating this strong influence of the cut
flow is to use NC, defined in eq. 18, which does not divide
the cut flow by the number of nodes, but according to the
degree of the cluster. However, even though this subtle dif-
ference changes the solution landscape in non-community
supporting regions as shown in figure 7, the preference for
cuts that separate unbalanced groups having very low flow
remains. In this case the extreme cut leaves the small group
with a degree of 5 and the bigger group with a degree of
16710, which results in very low costs. The above mentioned
cut of our model results in a degree of 9464 and 8467 for the
group with 662 nodes and 560 nodes respectively. In this
case 894 inter-links would already give lower costs for our
cut, which shows the improvement over RC, but still is not
sufficient.

The highest congruence can be found between the BC
and the Modularity method, confirming the community
detection support of our proposed BC. Here we observe that
both methods exhibit almost identical solution landscapes,
which is reflected in the identical or very similar solution
landscapes obtained by the methods. Interestingly, for the
HIV-1 network the BC obtains a solution with a significantly
higher modularity than the spectral modularity method
itself identifies. In addition, this solution seems to be more
balanced, since it achieves almost equally sized groups,
while the proposed solution of the spectral modularity
method partitions the network into a small and a large
group. This highlights that BC strives for balanced modular

structures.

4.3 Image Segmentation
In following we present results of image segmentation suit-
able for foreground-background or scene recognition. We
compare BC model to NC and dc-SBM (with shared density
of links out ⌘out in case of more than two segments C > 2).

NC implementations are often in practice combined
with specific similarity matrices and we make use of the
following two widely used procedures:

Mean color RAG: Mean color Regional Adjacency Graph is
used to compute similarity matrices on super pixel graphs
(RAG) [26] that serves as an input for NC in popular python
package for image processing skimage https://scikit-
image.org/docs/dev/api/skimage.future.graph.html. To
compare with the BC method “cameraman” image and
“coffee”available in the skimage package was used.
Fast Marching Method (FMM): This method
(a.k.a. geodesical distance) is besides many used
in the Graclus software presented in [25]. We
used the MATLAB implementation of Jianbo Shi
from https://www.cis.upenn.edu/j̃shi/software/
to generate the FMM similarity matrix. Graclus
software optimizes normcut objective in a hier-
archical manner [25] with results presented at
https://www.cis.upenn.edu/j̃shi/software/demo2.html.
For comparison purposes we use the public image of
“baby” from the same site.

These methods produce similarity matrices S with ele-
ments in [0; 1]. To convert them into graphs with countable
links required by the BC model we follow similar proce-
dure as aforementioned Graclus software [25]. Graclus runs
A = d100 ⇤ Se while BC implements A = b100 ⇤ Sc, both
element wise.

Results of the BC model applied on images of “cam-
eraman” and “bears” using RAG can be found in figure
(8), “coffee” is presented in Appendix (13) and the results
on “baby” using FMM can be found in figure (9). Notably
BC model was applied on similarity matrices produced by
respective implementations of RAG and FMM described
above without further adjustments. In case of RAG and
“bears” we adjust sigma for the Gaussian similarity kernel
1 in case of “cameraman” we leave it on default setting.
“Cameraman” and “bears” experiments with Mean Color
RAG have been ran with no degree correction (corresponds
to hyper parameter � set extremely large 107).

In all applications mentioned BC performs on par or
superior to the compared methods (not necessarily state of
the art though). In two partitions version considered for
the “cameraman” the BC method separates objects from
sky. In case of the four partition scenario used on “bears”
BC recognizes foreground objects (cub and surrounding),
background and adult bear while the other methods only
partially succeed. For the “coffee cup” in appendix the BC

1. future.graph.rag mean color(img, labels1, mode=’similarity’,
sigma=70**2, segmentation.slic(img, compactness=0.3,
n segments=100)

13

Fig. 8: Top panel, Cameraman: Resulting cut of BC model for C=2 (e) segments compared with unconstrained dc-SBM
with shared ⌘out as well as spectral Norm cut. Fig (b) shows for reference RAG super pixel graph that is used to compute
similarity matrix. Results demonstrate on par or better results of BC against referenced methods. Also it shows effect of
constraint included in the model (we emphasized the effect of constraint by setting b=10 corresponding to 10x times higher
within segment links density compared to links density among segments): (e) vs (d) a constraint model improves the
results. Resulting cuts were obtained from 50 MCMC chains, 1000 samples each.
Bottom panel, Bears: Resulting cut of BC model for C=4 segments (j) compared with unconstrained dc-SBM with shared
⌘out (i) as well as spectral Norm cut (h) applied on mean color RAG similarity matrix. Similar to previous results figures
BC demonstrates on par or better results against referenced methods. Resulting cuts were obtained from 50 MCMC chains,
1000 samples each with hyperparameters set on b = 103 and without degree correction

(a) (b) (c)

Fig. 9: Bayesian cut (BC) applied on similarity matrix ob-
tained by fast marching method implemented by Jianbo
Shi from https://www.cis.upenn.edu/j̃shi/software/. Re-
sulting cut is sampled MAP obtained from 20 MCMC
chains, 1000 samples each. (a) original, (b) C = 2, b = 10,
with degree correction hyper parameter � being inferred.
Maximum of its posterior obtained at: �MAP = 4.07, (c)
C = 2, b = 10, � = 0.0001.

removes more of the background than the unconstrained
dc-SBM and captures more of the coffee cup object than NC.
In case of the “baby” image see figure 9 the effect of degree
correction parameter � controlling “greediness” of clusters
is showed. In the more greedy settings, (c) as opposed to
gamma being inferred in option (b), fixing it to “greedy”
mode recognizes focal object’s boundary more complete yet
produces artifacts.

In summary, the presented image segmentation results

by BC are on-par or superior to NC and the unconstrained
version. However, we noted during experiments that the
multiple MCMC runs produced slightly different cuts con-
firming that the inference is prone to sub optimal solutions
and multiple restarts are therefore recommended.

5 CONCLUSION

We have proposed the Bayesian Cut (BC) advancing the
degree-corrected stochastic block-model (dc-SBM) to explic-
itly account for community structure. In contrast to the dc-
SBM only one parameter specified inter-group connectivity
strength (⌘out), however, in contrast to the generalized mod-
ularity as conforming to an l-partition model with shared
link density across communities the proposed BC include
more flexible community specific link-densities. We derived
a fully Bayesian procedure and demonstrated that the im-
posed community constraints are analytically tractable even
for large graphs by deriving a novel general solution to in-
tegrals involving multiple incomplete gamma functions. We
expect the presented small and large scale solutions to the
integral will have applications beyond community detec-
tion in social networks and image segmentation considered
in this paper. For instance, for collapsed inference in the
performance analysis of cognitive radio networks [42]. We
observed that the constraints had significant impact on the
inference providing more reliable results in compliance with
ground truth for network exhibiting community structure

14

and it was also empirically confirmed that the constraint
had merits for image segmentation in computer vision. We
also observed that strictly enforcing community structure
enabled to identify configurations where traditional block-
modeling would identify bipartite structure. Notably, our
Bayesian Cut provides favorable partitions when compared
to traditional graph cutting procedures such as the ratio
and normalized cut. In particular, we empirically observed
that our BC procedure has meritorious properties balancing
the partitions more favorable than these existing graph
partitioning procedures. We have also derived fast large
scale multiple cluster solution that presents generic tool for
Bayesian inference.

We presently considered a uniform prior on the partition
P (z) = C�n to highlight the influence of the specification
of the likelihood p(G|z) in identifying partitions. However,
we note that within the Bayesian modeling framework other
(non-uniform) priors could be applied including the Pólya-
urn (i.e., marginalized Dirichlet-Categorical) representation
and its infinite limit given by the non-parametric Chinese
restaurant process (CRP) also used in stochastic block-
modeling [43].

Overall this work presents generic graph based cluster-
ing method that can be applied on wide range of similarity
matrices. For illustrative purposes we presently applied
our BC approach in the context of identifying communi-
ties in social networks and image segmentation, however,
the approach extends to the many applications in which
graph cuts are used. Flexibility with regards to similarity
matrix allows for possible applications in areas such as
scene reconstruction from large set of community photos
[6], where the image set is partitioned into groups of related
images, based on the visual structure represented in the
image connectivity graph for the collection. Connectivity
graph and corresponding similarity matrix is based on scale
invariant feature transform, SIFT [44], that extracts image
representative features that are used to find matches and
define similarity between each image pair. Another possible
area of application is Video summarization and scene de-
tection [7], where similarity used for graph partitioning are
based on color similarity and temporal frame distance.

In the outlook, although MCMC sampling are suitable
for network structure inference, in order to find optimal
cuts, future work should investigate alternatives while
keeping the properties of the proposed framework. Further
concerning image segmentation, this work made use of
two popular similarities, Fast Marching Method and Mean
Color, that rather relate pixels based on color intensities as
opposed to spatial features. As suggested above we leave
as future work to explore possibilities of BC applied on
other existing or new similarities as well as extension of
hereby presented bayesian generative hierarchical BC model
to allow for contextual spatial or other features [34].

REFERENCES

[1] M. E. Newman, “Modularity and community structure in net-
works,” Proceedings of the national academy of sciences, vol. 103,
no. 23, pp. 8577–8582, 2006.

[2] S. Fortunato, “Community detection in graphs,” Physics reports,
vol. 486, no. 3-5, pp. 75–174, 2010.

[3] J. Shi and J. Malik, “Normalized cuts and image segmentation,”
IEEE Transactions on pattern analysis and machine intelligence, vol. 22,
no. 8, pp. 888–905, 2000.

[4] B. Peng, L. Zhang, and D. Zhang, “A survey of graph theoretical
approaches to image segmentation,” Pattern Recognition, vol. 46,
no. 3, pp. 1020–1038, 2013.

[5] Z. Li and J. Chen, “Superpixel segmentation using linear spectral
clustering,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2015, pp. 1356–1363.

[6] N. Snavely, I. Simon, M. Goesele, R. Szeliski, and S. M. Seitz,
“Scene reconstruction and visualization from community photo
collections,” Proceedings of the IEEE, vol. 98, no. 8, pp. 1370–1390,
2010.

[7] C.-W. Ngo, Y.-F. Ma, and H.-J. Zhang, “Video summarization and
scene detection by graph modeling,” IEEE Transactions on circuits
and systems for video technology, vol. 15, no. 2, pp. 296–305, 2005.

[8] M. Witman, S. Ling, P. Boyd, S. Barthel, M. Haranczyk, B. Slater,
and B. Smit, “Cutting materials in half: A graph theory approach
for generating crystal surfaces and its prediction of 2d zeolites,”
ACS central science, vol. 4, no. 2, pp. 235–245, 2018.

[9] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
computing, vol. 17, no. 4, pp. 395–416, 2007.

[10] A. Blum and S. Chawla, “Learning from labeled and unlabeled
data using graph mincuts,” in Proceedings of the Eighteenth Inter-
national Conference on Machine Learning, ser. ICML ’01, 2001, pp.
19–26.

[11] J. Wang, T. Jebara, and S.-F. Chang, “Semi-supervised learning us-
ing greedy max-cut,” Journal of Machine Learning Research, vol. 14,
no. Mar, pp. 771–800, 2013.

[12] L. Hagen and A. B. Kahng, “New spectral methods for ratio cut
partitioning and clustering,” IEEE transactions on computer-aided
design of integrated circuits and systems, vol. 11, no. 9, pp. 1074–1085,
1992.

[13] V. Kolmogorov and R. Zabih, “What energy functions can be
minimizedvia graph cuts?” IEEE Transactions on Pattern Analysis
& Machine Intelligence, no. 2, pp. 147–159, 2004.

[14] V. Kolmogorov and C. Rother, “Minimizing nonsubmodular func-
tions with graph cuts-a review,” IEEE transactions on pattern analy-
sis and machine intelligence, vol. 29, no. 7, pp. 1274–1279, 2007.

[15] D. J. Foster, D. Reichman, and K. Sridharan, “Inference in sparse
graphs with pairwise measurements and side information,” arXiv
preprint arXiv:1703.02728, 2017.

[16] P. W. Holland, K. B. Laskey, and S. Leinhardt, “Stochastic block-
models: First steps,” Social networks, vol. 5, no. 2, pp. 109–137, 1983.

[17] K. Nowicki and T. A. B. Snijders, “Estimation and prediction
for stochastic blockstructures,” Journal of the American statistical
association, vol. 96, no. 455, pp. 1077–1087, 2001.

[18] M. Rosvall and C. T. Bergstrom, “An information-theoretic frame-
work for resolving community structure in complex networks,”
Proceedings of the National Academy of Sciences, vol. 104, no. 18, pp.
7327–7331, 2007.

[19] M. Mørup and M. N. Schmidt, “Bayesian community detection,”
Neural computation, vol. 24, no. 9, pp. 2434–2456, 2012.

[20] B. Karrer and M. E. J. Newman, “Stochastic blockmodels and
community structure in networks,” Physical Review E, vol. 83, no. 1,
p. 016107, 2011.

[21] T. Herlau, M. N. Schmidt, and M. Mørup, “Infinite-degree-
corrected stochastic block model,” Physical review E, vol. 90, no. 3,
p. 032819, 2014.

[22] M. E. Newman, “Equivalence between modularity optimization
and maximum likelihood methods for community detection,”
Physical Review E, vol. 94, no. 5, p. 052315, 2016.

[23] A. Condon and R. M. Karp, “Algorithms for graph partitioning
on the planted partition model,” Random Structures & Algorithms,
vol. 18, no. 2, pp. 116–140, 2001.

[24] J. Reichardt and S. Bornholdt, “Statistical mechanics of community
detection,” Physical Review E, vol. 74, no. 1, p. 016110, 2006.

[25] I. S. Dhillon, Y. Guan, and B. Kulis, “Weighted graph cuts without
eigenvectors a multilevel approach,” IEEE transactions on pattern
analysis and machine intelligence, vol. 29, no. 11, pp. 1944–1957, 2007.

[26] A. Trémeau and P. Colantoni, “Regions adjacency graph applied to
color image segmentation,” IEEE Transactions on image processing,
vol. 9, no. 4, pp. 735–744, 2000.

[27] Y. Zhang, Z. Ghahramani, A. J. Storkey, and C. A. Sutton, “Con-
tinuous relaxations for discrete hamiltonian monte carlo,” in Ad-
vances in Neural Information Processing Systems, 2012, pp. 3194–3202.

15

[28] R. AlAhmad, “Products of incomplete gamma functions,” Analy-
sis, vol. 36, no. 3, pp. 199–203, 2016.

[29] G. Jameson, “The incomplete gamma functions,” The Mathematical
Gazette, vol. 100, no. 548, pp. 298–306, 2016.

[30] M. Hartmann, “Extending owen’s integral table and a new mul-
tivariate bernoulli distribution,” arXiv preprint arXiv:1704.04736,
2017.

[31] M. Sibuya, I. Yoshimura, and R. Shimizu, “Negative multinomial
distribution,” Annals of the Institute of Statistical Mathematics,
vol. 16, no. 1, pp. 409–426, Dec 1964. [Online]. Available:
https://doi.org/10.1007/BF02868583

[32] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, “Network flows,”
1988.

[33] R. G. Parker and R. L. Rardin, Discrete optimization. Elsevier, 2014.
[34] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and

D. B. Rubin, Bayesian data analysis. CRC press, 2013.
[35] L. Peel, D. B. Larremore, and A. Clauset, “The ground truth about

metadata and community detection in networks,” Science advances,
vol. 3, no. 5, p. e1602548, 2017.

[36] M. Meilă, “Comparing clusterings by the variation of informa-
tion,” in Learning theory and kernel machines. Springer, 2003, pp.
173–187.

[37] I. Borg and P. Groenen, “Modern multidimensional scaling: theory
and applications,” Journal of Educational Measurement, vol. 40, no. 3,
pp. 277–280, 2003.

[38] S. W. Park, L. Linsen, O. Kreylos, J. D. Owens, and B. H. Hamann,
“Discrete sibson interpolation,” 2006.

[39] W. W. Zachary, “An information flow model for conflict and fission
in small groups,” Journal of anthropological research, vol. 33, no. 4,
pp. 452–473, 1977.

[40] L. A. Adamic and N. Glance, “The political blogosphere and the
2004 us election: divided they blog,” in Proceedings of the 3rd
international workshop on Link discovery. ACM, 2005, pp. 36–43.

[41] M. Morris and R. Rothenberg, “Hiv transmission network metas-
tudy project: An archive of data from eight network studies, 1988–
2001,” 2011.

[42] B. Van Nguyen, H. Jung, D. Har, and K. Kim, “Performance
analysis of a cognitive radio network with an energy harvesting
secondary transmitter under nakagami-m fading,” IEEE Access,
vol. 6, pp. 4135–4144, 2018.

[43] M. N. Schmidt and M. Morup, “Nonparametric bayesian modeling
of complex networks: An introduction,” IEEE Signal Processing
Magazine, vol. 30, no. 3, pp. 110–128, 2013.

[44] D. G. Lowe, “Object recognition from local scale-invariant fea-
tures,” in Proceedings of the seventh IEEE international conference on
computer vision, vol. 2. Ieee, 1999, pp. 1150–1157.

[45] P. Taborsky, L. Vermue, M. Korzepa, and M. Morup, “The bayesian
cut,” IEEE Transactions on Pattern Analysis Machine Intelligence,
no. 01, pp. 1–1, may 5555.

[46] G. Jameson, “A simple proof of stirling’s formula for the gamma
function,” The Mathematical Gazette, vol. 99, no. 544, pp. 68–74,
2015.

c�2020 IEEE. Reprinted, with permission, from [45].

Petr Taborsky received his M.Sc. degree in
Mathematics, Mathematical Statistics and Prob-
ability at Charles University, Prague. Currently
he’s PhD understudy at the Section for Cognitive
Systems at DTU Compute, Technical University
of Denmark. He’s also in AI team, Telenor Dan-
mark. His research interests include federated
machine learning, neural networks, and complex
network modeling.

Laurent Vermue received his M.Sc. degree in
Industrial Engineering and Management at the
Technical University of Berlin and MMSc. degree
in Management Science and Engineering at the
Tongji University. Currently he is a Ph.D. student
at the Section for Statistics and Data Analy-
sis and the Section for Cognitive Systems at
DTU Compute, Technical University of Denmark.
His research interests include machine learning,
complex network modeling and open research
software.

Maciej Korzepa received his M.Sc. degree in
Digital Media Engineering at the Technical Uni-
versity of Denmark. He is currently a Ph.D. stu-
dent at the Section for Cognitive Systems at
DTU Compute, Technical University of Denmark.
His research interests include machine learning,
intelligent interfaces, and complex network mod-
eling.

Morten Mørup received his M.S. and Ph.D. de-
grees in applied mathematics at the Technical
University of Denmark and he is currently Pro-
fessor at the Section for Cognitive Systems at
DTU Compute, Technical University of Denmark.
He has been associate editor of IEEE Transac-
tions on Signal Processing and his research in-
terests include machine learning, neuroimaging,
and complex network modeling.

166 SUPPLEMENTARY MATERIAL/APPENDIX

6.1 Theoretical results and proofs
Due to incomplete gamma recurrence (K-recurrence of �0s)
it is possible to rewrite the integral (8) according to the
following lemma (6.1):

Lemma 6.1. For C 2 N and all real µi > 0, Bi > 0, i 2

{0, ..., C} the following equalities hold
Z 1

0
e�xB0xµ0�1

CY

c=1

�(µc, Bcx)dx (19)

=
�(µ0)

Bµ0
0

CY

c=1

�(µc)�
CX

m=1

Bµm
m

Bµ0
0

Z 1

0
�(µ0, B0x)e

�Bmxxµm�1
CY

c=1
c 6=m

�(µc, Bcx)dx (20)

=
Z 1

0

e�xB0xµ0+K�1

(µ0)K̇

CY

c=1

�(µc, Bcx)dx

| {z }
Part A

+
CX

m=1

K�1X

i=0

(21)

Bi
0B

µm
m

(µ0)
˙i+1

Z 1

0
e�x(B0+Bm)xµ0+µm+i�1

CY

c=1
c 6=m

�(µc, Bcx)dx

| {z }
Part B

(22)

Proof. The first equality follows directly by applying
integration by parts using u0 = e�xB0xµ0�1 and

v =
CQ

c=1
�(µc, Bcx) and the second by the use of

(K-recurrence of �0s).

Using the above lemma, the aim is to select the number
of recurrences K such that Part A is made arbitrarily small
as illustrated by the underlying terms given in Figure 1. The
following lemma proofs that Part A can indeed be made
arbitrarily small.

Lemma 6.2. For all real µi, Bi 2 R, µi > 0, Bi > 0, i 2

{0, ..., C} and constant Q,Q 2 R, Q � 0 following limit exists
and holds:

lim
K�!1

KQ
⇥

Z 1

0

e�xB0xµ0+K�1

(µ0)K̇

CY

c=1

�(µc, Bcx)dx = 0

(23)

Proof. We proof the lemma by showing that for every K
there exists q such that integral over (q,1) is below thresh-
old ✏/2 and consequently there exists K large enough such
that the integral over (0, q] is also below ✏/2.

Without loss of generality we assume B0 = 1. (If B0 6= 1,
we apply a transformation of variables y = B0x on (23) and
take ✏⇥Bµ0

0 as a new epsilon and Bc
B0

as new Bc’s).
Denote f(x,K) = e�xxµ0+K�1

�(µ0+K) , which is a density func-
tion of the gamma distribution with shape parameter µ0+K
and rate 1 such that f(0) = 0. For every K,K � 1 f(x,K)
is positive and increasing on (0,m(K)), where m(K) is the
mode µ0+K�1, controlled by K which follows well known
characteristics of the gamma distribution.

Upper bound on (0, q]: Denote the regularized upper
incomplete gamma function �(↵,bx)

�(↵) which can be written as
1 - the cumulative distribution function [29] of the gamma

distribution and is therefore positive, decreasing on R+, and
bounded from the top by 1.

For every q 2 R, q > 0 and for every K 2 N+ large
enough to ensure that q is below the mode of the gamma
distribution with density f(x,K), that means K > q�µ0+1,
the following inequality holds:

KQ
⇥

Z q

0

e�xxµ0+K�1

(µ0)K̇

CY

c=1

�(µc, Bcx)dx

 qKQf(q,K)
CY

c=0

�(µc) (24)

We make use of Stirling’s formula [46]:

�(x) ⇠ (2⇡)
1
2xx� 1

2 e�x as x �! 1, (25)

where notation g(x) ⇠ h(x) means that g(x)
h(x) �! 1 as x �!

1. Taking K �! 1 and using Stirling’s formula above on
f(q,K) gives us existence of the following limit:

lim
K�!1

qKQf(q,K) ⇤
CY

c=0

�(µc) = 0 (26)

From (✏, �)-limit definition of (26) we get that for every
q 2 R, q > 0 and every ✏0 > 0, ✏ 2 R+ there exists K 0

2

N,K 0 > 0 such that for every K � max(K 0, q�µ0+1),K 2

N equation (24) ✏0.
Upper bound on [q,1): For every q > 0 we have from

definition that all upper incomplete gamma functions are
smooth and decreasing on [q,1) and can be bounded
from top by its value at q. We thereby get the following
upper bound by taking the integral over region from q to
1, recognizing the upper incomplete gamma function and
using �(a,x)

�(a) 1 (which trivially follows from the definition
of �(a, x)):

KQ
Z 1

q

e�xxµ0+K�1

(µ0)K̇

CY

c=1

�(µc, Bcx)dx (27)

 KQ
�(µ0)

CQ
c=1

�(µc, Bcq)

�(µ0 +K))

Z 1

q
e�xxµ0+K�1dx

= KQ
�(µ0 +K, q)

CQ
c=1

�(µc, Bcq)

�(µ0 +K)
�(µ0)

 KQ
CY

c=1

�(µc, Bcq)�(µ0) (28)

Following limit exists and follows directly from defini-
tion of incomplete gamma function (7):

lim
q�!1

CY

c=1

�(µc, Bcq)�(µ0) = 0 (29)

From the above limit we can now select q such that the error
is below ✏/2 and for this q we select K such that (26) is also
below ✏/2.

17

Theorem 6.3. For every C 2 N+, µi, Bi 2 R, µi > 0, Bi > 0
for i 2 {1, ..., C} and K 2 N+ following equality holds:

Z 1

0
e�xB0xµ0�1

CY

c=1

�(µc, Bcx)dx (30)

=
CX

m1=1

CX

m2=1,
m2 6=m1

. . .
CX

mC=1,
mC 6=m1,...,mC�1

K�1X

i1=0

. . .
K�1X

iC=0

CY

w=1

B
µmw
mw (B0 +

w�1P
j=1

Bmj)
iw

µ0 +
w�1P
j=1

(µmj + ij)

! ˙iw+1

⇥

�

µ0 +
CP

j=1
(µmj + ij)

!

(B0 +
CP

j=1
Bmj)

(µ0+
CP

j=1
(µmj+ij))

(31)

+ E(K),

(32)

where E(K) satisfies limK�!1 E(K) = 0.

Proof. We proof this by induction on C .

Case C=1: According to lemma 6.2 (for Q=0) we can for
every given ✏ > 0 find K’ such that Part A in lemma 6.1
will be below ✏ for all K > K 0 whereas the infinite integral
in Part B reduces to the Gamma function and we thereby
obtain:

Z 1

0
e�xB0xµ0�1�(µ1, B1x)dx

= ✏+
K�1X

i=0

Bi
0B

µ1
1

(µ0)
˙i+1

�(µ0 + µ1 + i)

(B0 +B1)(µ0+µ1+i)
. (33)

Induction step from C to C + 1: We again apply lemma 6.1
(for Q=0) on C + 1, and thereby obtain:
Z 1

0
e�xB0xµ0�1

C+1Y

c=1

�(µc, Bcx)dx (34)

=
Z 1

0

e�xB0xµ0+K�1

(µ0)K̇

C+1Y

c=1

�(µc, Bcx)dx

| {z }
Part C+1

(35)

+
C+1X

m=1

K�1X

i=0

Bi
0B

µm
m

(µ0)
˙i+1

(36)

Z 1

0
e�x(B0+Bm)xµ0+µm+i�1

⇥

C+1Y

c=1
c 6=m

�(µc, Bcx)dx

| {z }
Part C

(37)

Part C+1 in the above captures the error EC+1(K) intro-
duced reducing the integral involving C+1 to the integral
involving C incomplete gamma functions (due to the c 6= m
in the sum) given in Part C in the above, and according to
the induction we can assume the theorem holds for Part C
up to the error term EC(K):

EC+1(K) +
C+1X

m=1

K�1X

i=0

Bi
0B

µm
m

(µ0)
˙i+1

⇥ EC(K)

 EC+1(K) +K(C + 1) max
i2{1,...,K�1}

Bi
0B

µm
m

(µ0)
˙i+1

⇥ EC(K).

(38)

Next we show that elements

Q(K) := (C + 1) max
i2{1,...,K�1}

Bi
0B

µm
m

(µ0)
˙i+1

(39)

are bounded from the top when K �! 1. To see this we
note that it can be split into maxiL(. . .) that is maximum
over a finite set of integers lower than some L 2 N (that
always has finite upper bound) and maximum over {i � L}
such that maximum over this region is reached by the first
index L (that follows from limit lim

i�!1
(C + 1)B

i
0B

µm
m

(µ0)
˙i+1 = 0

which we get from Stirling formula (25) applied on �(µ0

�(µ0+i)
in Pochhammer symbol in (39)). So for all sufficiently large
K such that K � L we can bound Q(K) by a constant we
denote Q(1).

Notably, steps from (34) to (37) using lemma 6.1 together
with formula for sum of geometric finite sum reveal that
total error term of (38) including integral EC+1(K) and
sums of EC(K) comprises not more than 1�(K(C+1))(C+1)

1�K(C+1) =

1+K(C +1)+ (K(C +1))2 + · · ·+ (K(C +1))C integrals
of the same form as (23) multiplied by fractions of the
same structure as (39). Using same logic as for Q(1) earlier
that maximized fractions from 1 induction step and again
leveraging Stirling formula (25), [46], we get that there exists
L such that for all sufficiently large K � L we can bound
all these fractions from the top. We take their maximum,
denoted Q(2).
Since Q(1) is now maximized withing Q(2) we can bound
the total approximation error of (34) by:

 Q(2)
⇥K

1� (K(C + 1))(C+1)

1�K(C + 1)

!

⇥

max
i2{0,...,I}

 Z 1

0

e�xB0
0(i)xµ0

0(i)+K�1

(µ0
0(i))

K̇

Y

c

�(µ0
c(i), B

0
cx(i))dx

!

where we omitted exact expression for the sake of simplicity
and rather used symbolic notation instead for all combina-
tions of parameters µ0(i), B0(i) and finite number of indexes
(simplified as i).

Application of lemma 6.2 for the choice of Q such that
K(1�(K(C+1))(C+1)

1�K(C+1)) KQ with each integral in max and
taking K �! 1 brings the limit of this upper bound to 0.
That concludes the proof.

18

6.2 Large Scale settings
Assuming hyperparameter priors can be chosen to be inte-
ger values following theorem presents exact evaluation of
the integral (8):

Theorem 6.4. For C 2 N+, µi 2 N+ and Bi 2 R+,
i 2 {0, ..., C} (8) is proportional to the cumulative distribution
function of the Negative Multinomial (NMn) distribution and the
following equality holds:
Z 1

0
e�xB0xµ0�1

Y

i2{1,...,C}
�(µi, Bix)dx

=

CQ
c=0

�(µc)

Bµ0
0

⇥ (40)

⇥

µ1�1X

i1=0

· · ·

µc�1X

ic=0

�(µ0+i1+. . .+ ic)

�(µ0)i1!. . . ,ic!

✓
B0

B

◆µ0 CY

c=1

✓
Bc

B

◆ic

,

(41)

where B :=
PC

i=0 Bi

Proof. Equality follows from applying (K-recurrence of �0s)
from section K-recurrence of �0s on �(µ, x) = �(1 + (µ �

1), x) setting K = µi � 1 and a = 1 and further simplifying
as follows:

�(1 + (µ� 1), x)

�(µ)
= �(1, x) + xe�x

µ�2X

i=0

xi

�(i+ 2)

= e�x + e�x
µ�1X

i=1

xi

�(i+ 1)
= e�x

µ�1X

i=0

xi

�(i+ 1)

(’Euler and inc. gamma’)
(42)

where aṅ is the Pochhammer symbol (a.k.a. ”rising facto-
rial”) defined as aṅ = �(a+ n)/�(a). We used the fact that
�(1, x) = e�x (trivially from definition of upper incomplete
gamma �(a, x)).

Result follows from changing the order of integration
and integrating out x. That leads to gamma functions (by
definition) and gives formula to be proven. Alternatively
one can recognize inner integral over x as a Laplace trans-
form of xµ0+i1+...+ic.

Note: A similar but infinite sum formula of theorem (6.4)
also holds for real parameters µ. It can be shown by use of
binomial series expansion (1 + x)↵,↵ 2 R

+ and Laplace
transform. However, in a result we obtain infinite series.

6.3 Comparison of sampling vs. optimization
To show the advantage of using the inference method
described in section 3 over an optimization heuristic as
proposed in [20], we compare these two methods on the
HIV-1 network (ref. 4.2). Figure 10 shows the Box-Whisker-
Plots for the best obtained cut of each run/chain for each
method based on the log-likelihood p(z|G). The two left
Box-Whisker-Plots show the results of the optimization
heuristic, whereas the third Box-Whisker-Plot shows the
results for pure sampling without any optimization. In this
direct comparison the optimization obtains better results.

However, if the sampling method is followed by the op-
timization heuristic as proposed in this paper, we achieve
much better results compared to pure optimization. As
argued in Section 3, the optimization heuristic seems to get
stuck in local maxima. This can be observed in the two left
Box-Whisker-Plots. Running more optimization initiations
does not help to improve the results, since each run appar-
ently gets stuck in the same local maxima, which would
explain the marginal difference of obtained best cuts in log-
likelihood between 100 runs and 1000 runs. In contrary, the
sampler will likely focus on some high density region of
the posterior, but it will still explore multiple modes within
that region, which can be seen on the wide range covered
by its Box-Whisker-Plot. When these obtained best samples
are subsequently used with the optimization heuristic, the
obtained best cuts are significantly better than the cuts
obtained using the optimization heuristic only, as to be
seen in the fourth Box-Whisker-Plot. Interestingly, when
using the optimization heuristic before sampling to obtain
a starting point, we observe that sampling with or without
a final optimization obtains the same best cuts as the pure
optimization. This is most likely due to the optimization
finding an extreme local maximum, as mentioned above,
which even the sampler cannot escape.

Fig. 10: Comparison of sampling and pure optimization ac-
cording to [20] on the HIV-1 network through Box-Whisker-
Plots of the best obtained cut of each chain/run for each
method based on the log-likelihood p(z|G). The sampling
results are based on 100 chains and 1000 samples per chain.
Sampling followed by optimization shows superior perfor-
mance compared to only using the optimization or using the
optimization before sampling.

6.4 Influence of priors and constraints
In figure 11 the influence of the prior on both models
considering also a weak and strongly informative prior on
community structure is investigated. The non-informative
prior allows the models to find their preferred modes. In
this case the dc-SBM clearly exhibits the strongest support in
the non-community structure region as discussed in section
4.2.1 . Even though the medium community enforcing prior

19

BC
dc

-S
BM

(a) Non-informative prior (↵in =
↵out = �in = �out = 0.01)

(b) Medium community enforcing
prior (↵in = 19.5,↵out = 39,�in =
144.5,�out = 289)

(c) Strong community enforcing prior
(↵in = 39,↵out = 0.01,�in =
144.5,�out = 289)

Fig. 11: Comparison of different priors for ↵ and � on the solution landscape of the Karate network (b = 1 for the BC
model). The solution landscape was created using all posterior samples generated by running both models with 15 chains
and 100 posterior samples for each configuration.

(a) Weak community constraint b=1 (b) Medium community constraint b=0.1 (c) Strong community constraint b=0.01

Fig. 12: Comparison of different constraints (b) on the solution landscape of the Karate network with non-informative prior
(↵in = ↵out = �in = �out = 0.01). The solution space is based on the samples generated in figure 11

lowers the support for the non-community structure region
of the solution space, it still maintains a mode in the non-
desired region. Only the strong community enforcing prior
forces the dc-SBM to abandon these regions. However, im-
puting such a strong prior belief effectively makes the prior
the posterior distribution, which is the reason that in this
case the solution landscapes for both models look identical.
In conclusion, the constraint imposed by BC distinguishes
itself by allowing to explore the posterior with a non-
informative prior while still enforcing community-structure.

The role of the b parameter, i.e. the strength of the
constraint can be seen in figure 12. The lower b, the more
the model enforces community structure the more it drops

those regions of the solution space not supporting the com-
munity structure. Accordingly, b sets the boundaries of the
constraints that can also be learned as part of the model
inference.

6.5 Additional Experiment

20

Fig. 13: Coffee: Resulting cut of BC model for C=2 (d) segments compared with unconstrained dc-SBM with shared ⌘out as
well as spectral Norm cut. As experiments in the main body also these results demonstrate on par or better results of BC
against referenced methods. Resulting cuts were obtained from 50 MCMC chains, 1000 samples each.

126 The Bayesian Cut (Paper B)

Bibliography

[Achille and Soatto, 2016] Achille, A. and Soatto, S. (2016). Information
dropout: learning optimal representations through noise.

[Achille and Soatto, 2018a] Achille, A. and Soatto, S. (2018a). Emergence of
invariance and disentanglement in deep representations. The Journal of
Machine Learning Research, 19(1):1947–1980.

[Achille and Soatto, 2018b] Achille, A. and Soatto, S. (2018b). Information
dropout: Learning optimal representations through noisy computation. IEEE
transactions on pattern analysis and machine intelligence, 40(12):2897–2905.

[Amari, 2016] Amari, S.-i. (2016). Information geometry and its applications,
volume 194. Springer.

[Ba et al., 2016] Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer nor-
malization.

[Banerjee et al., 2004] Banerjee, A., Dhillon, I., Ghosh, J., and Merugu, S.
(2004). An information theoretic analysis of maximum likelihood mixture esti-
mation for exponential families. In Proceedings of the twenty-first international
conference on Machine learning, page 8.

[Banerjee et al., 2005] Banerjee, A., Merugu, S., Dhillon, I. S., and Ghosh, J.
(2005). Clustering with bregman divergences. Journal of machine learning
research, 6(Oct):1705–1749.

[Baskerville et al., 2022] Baskerville, N. P., Granziol, D., and Keating, J. P.
(2022). Appearance of random matrix theory in deep learning. Physica A:
Statistical Mechanics and its Applications, 590:126742.

128 BIBLIOGRAPHY

[Bengio et al., 2021] Bengio, Y., Lecun, Y., and Hinton, G. (2021). Deep learning
for ai. Communications of the Acm, 64(7):58–65.

[Bhatia, 1997] Bhatia, R. (1997). Matrix Analysis. Springer New York.

[Billingsley, 1995] Billingsley, P. (1995). Probability and measure. Wiley.

[Bishop, 1995] Bishop, C. M. (1995). Regularization and complexity control in
feed-forward networks.

[Bishop, 2006] Bishop, C. M. (2006). Pattern recognition and machine learning.
springer.

[Bogachev and Ruas, 2007] Bogachev, V. I. and Ruas, M. A. S. (2007). Measure
theory, volume 1. Springer.

[Bottou and Bousquet, 2007] Bottou, L. and Bousquet, O. (2007). The tradeoffs
of large scale learning. Advances in neural information processing systems, 20.

[Carmo and Flaherty, 1992] Carmo, M. P. and Flaherty, F. J. (1992). Rieman-
nian geometry. Birkhäuser.

[Choromanska et al., 2015] Choromanska, A., Henaff, M., Mathieu, M., Arous,
G. B., and LeCun, Y. (2015). The loss surfaces of multilayer networks. In
Artificial intelligence and statistics, pages 192–204. PMLR.

[Cohen et al., 2021] Cohen, J. M., Kaur, S., Li, Y., Kolter, J. Z., and Talwalkar,
A. (2021). Gradient descent on neural networks typically occurs at the edge
of stability. arXiv preprint arXiv:2103.00065.

[Daniely et al., 2016] Daniely, A., Frostig, R., and Singer, Y. (2016). Toward
deeper understanding of neural networks: The power of initialization and a
dual view on expressivity. Advances In Neural Information Processing Systems,
29:2253–2261.

[Devinatz, 1955] Devinatz, A. (1955). The representation of functions as a
laplace-stieltjes integrals. Duke Mathematical Journal, 22(2):185–191.

[Du et al., 2019] Du, S., Lee, J., Li, H., Wang, L., and Zhai, X. (2019). Gradient
descent finds global minima of deep neural networks. In Chaudhuri, K. and
Salakhutdinov, R., editors, Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 1675–1685. PMLR.

[Du et al., 2018] Du, S. S., Zhai, X., Poczos, B., and Singh, A. (2018). Gradient
descent provably optimizes over-parameterized neural networks. arXiv preprint
arXiv:1810.02054.

BIBLIOGRAPHY 129

[Feier, 2012] Feier, A. R. (2012). Methods of proof in random matrix theory.
PhD thesis, Harvard University.

[Frankle and Carbin, 2018] Frankle, J. and Carbin, M. (2018). The lottery
ticket hypothesis: Finding sparse, trainable neural networks. arXiv preprint
arXiv:1803.03635.

[Gantmakher, 1959] Gantmakher, F. R. (1959). The theory of matrices, volume
131. American Mathematical Soc.

[Geiger et al., 2019] Geiger, M., Spigler, S., d’Ascoli, S., Sagun, L., Baity-Jesi,
M., Biroli, G., and Wyart, M. (2019). Jamming transition as a paradigm to
understand the loss landscape of deep neural networks. Physical Review E,
100(1):012115.

[Geiping et al., 2021] Geiping, J., Goldblum, M., Pope, P. E., Moeller, M., and
Goldstein, T. (2021). Stochastic training is not necessary for generalization.
arXiv preprint arXiv:2109.14119.

[Gelman et al., 2013] Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B.,
Vehtari, A., and Rubin, D. B. (2013). Bayesian data analysis. CRC press.

[Ghorbani et al., 2019] Ghorbani, B., Krishnan, S., and Xiao, Y. (2019). An
investigation into neural net optimization via hessian eigenvalue density. In
International Conference on Machine Learning, pages 2232–2241. PMLR.

[Giffin, 2008] Giffin, A. (2008). Maximum entropy: The universal method for
inference. Ph. D. Thesis.

[Glorot and Bengio, 2010] Glorot, X. and Bengio, Y. (2010). Understanding the
difficulty of training deep feedforward neural networks. In Proceedings of
the thirteenth international conference on artificial intelligence and statistics,
pages 249–256. JMLR Workshop and Conference Proceedings.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., Courville, A., and Bengio,
Y. (2016). Deep learning, volume 1. MIT press Cambridge.

[Hanin and Rolnick, 2019] Hanin, B. and Rolnick, D. (2019). Deep relu networks
have surprisingly few activation patterns. Advances in neural information
processing systems, 32.

[Hansen et al., 1993] Hansen, L. K., Pathria, R., and Salamon, P. (1993).
Stochastic dynamics of supervised learning. Journal of Physics A: Math-
ematical and General, 26(1):63.

[Hansen and Salamon, 1990] Hansen, L. K. and Salamon, P. (1990). Neural
network ensembles. IEEE transactions on pattern analysis and machine
intelligence, 12(10):993–1001.

130 BIBLIOGRAPHY

[Hardt et al., 2016] Hardt, M., Recht, B., and Singer, Y. (2016). Train faster,
generalize better: Stability of stochastic gradient descent. In International
Conference on Machine Learning, pages 1225–1234.

[Hauser and Ray, 2017] Hauser, M. and Ray, A. (2017). Principles of riemannian
geometry in neural networks. Advances in Neural Information Processing
Systems 30 (nips 2017), 30.

[Hauser, 2018] Hauser, M. B. (2018). Principles of riemannian geometry in
neural networks.

[He et al., 2020] He, F., Liu, T., and Tao, D. (2020). Why resnet works? residu-
als generalize. IEEE transactions on neural networks and learning systems,
31(12):5349–5362.

[He et al., 2019a] He, H., Huang, G., and Yuan, Y. (2019a). Asymmetric valleys:
Beyond sharp and flat local minima. Advances in neural information processing
systems, 32.

[He et al., 2015] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep
into rectifiers: Surpassing human-level performance on imagenet classification.
In Proceedings of the IEEE international conference on computer vision, pages
1026–1034.

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778.

[He et al., 2019b] He, Z., Rakin, A. S., and Fan, D. (2019b). Parametric noise
injection: Trainable randomness to improve deep neural network robustness
against adversarial attack. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 588–597.

[Hinton et al., 2012a] Hinton, G., Srivastava, N., and Swersky, K. (2012a). Neu-
ral networks for machine learning lecture 6a overview of mini-batch gradient
descent. Cited on, 14(8):2.

[Hinton, 2012] Hinton, G. E. (2012). A practical guide to training restricted
boltzmann machines. In Neural networks: Tricks of the trade, pages 599–619.
Springer.

[Hinton et al., 2006] Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast
learning algorithm for deep belief nets. Neural computation, 18(7):1527–1554.

[Hinton et al., 2012b] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever,
I., and Salakhutdinov, R. R. (2012b). Improving neural networks by preventing
co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580.

BIBLIOGRAPHY 131

[Hiriart-Urruty and Lemaréchal, 2012] Hiriart-Urruty, J.-B. and Lemaréchal, C.
(2012). Fundamentals of convex analysis. Springer Science & Business Media.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997).
Flat minima. Neural computation, 9(1):1–42.

[Huh et al., 2021] Huh, M., Mobahi, H., Zhang, R., Cheung, B., Agrawal, P.,
and Isola, P. (2021). The low-rank simplicity bias in deep networks. arXiv
preprint arXiv:2103.10427.

[Ioffe and Szegedy, 2015] Ioffe, S. and Szegedy, C. (2015). Batch normalization:
Accelerating deep network training by reducing internal covariate shift. In
International conference on machine learning, pages 448–456. PMLR.

[Jastrzebski et al., 2021] Jastrzebski, S., Arpit, D., Astrand, O., Kerg, G. B.,
Wang, H., Xiong, C., Socher, R., Cho, K., and Geras, K. J. (2021). Catas-
trophic fisher explosion: Early phase fisher matrix impacts generalization. In
International Conference on Machine Learning, pages 4772–4784. PMLR.

[Jastrzębski et al., 2017] Jastrzębski, S., Kenton, Z., Arpit, D., Ballas, N., Fis-
cher, A., Bengio, Y., and Storkey, A. (2017). Three factors influencing minima
in sgd. arXiv preprint arXiv:1711.04623.

[Kawaguchi, 2016] Kawaguchi, K. (2016). Deep learning without poor local
minima. arXiv preprint arXiv:1605.07110.

[Kawaguchi et al., 2017] Kawaguchi, K., Kaelbling, L. P., and Bengio, Y. (2017).
Generalization in deep learning. arXiv preprint arXiv:1710.05468.

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.

[Kohler et al., 2018] Kohler, J., Daneshmand, H., Lucchi, A., Zhou, M.,
Neymeyr, K., and Hofmann, T. (2018). Towards a theoretical understanding
of batch normalization. stat, 1050:27.

[LeCun et al., 2012] LeCun, Y. A., Bottou, L., Orr, G. B., and Müller, K.-R.
(2012). Efficient backprop. In Neural networks: Tricks of the trade, pages
9–48. Springer.

[Lee, 2013] Lee, J. M. (2013). Smooth manifolds. In Introduction to Smooth
Manifolds, pages 1–31. Springer.

[Li et al., 2020a] Li, M., Soltanolkotabi, M., and Oymak, S. (2020a). Gradient
descent with early stopping is provably robust to label noise for overparame-
terized neural networks. In International Conference on Artificial Intelligence
and Statistics, pages 4313–4324. PMLR.

132 BIBLIOGRAPHY

[Li et al., 2017] Li, Q., Tai, C., and Weinan, E. (2017). Stochastic modified equa-
tions and adaptive stochastic gradient algorithms. In International Conference
on Machine Learning, pages 2101–2110.

[Li et al., 2019] Li, Q., Tai, C., and Weinan, E. (2019). Stochastic modified
equations and dynamics of stochastic gradient algorithms i: Mathematical
foundations. J. Mach. Learn. Res., 20:40–1.

[Li, 2010] Li, S. (2010). Concise formulas for the area and volume of a hyper-
spherical cap. Asian Journal of Mathematics and Statistics, 4(1):66–70.

[Li et al., 2020b] Li, X., Gu, Q., Zhou, Y., Chen, T., and Banerjee, A. (2020b).
Hessian based analysis of sgd for deep nets: Dynamics and generalization.
In Proceedings of the 2020 SIAM International Conference on Data Mining,
pages 190–198. SIAM.

[Lian and Liu, 2019] Lian, X. and Liu, J. (2019). Revisit batch normalization:
New understanding and refinement via composition optimization. In The
22nd International Conference on Artificial Intelligence and Statistics, pages
3254–3263. PMLR.

[Liang et al., 2019] Liang, T., Poggio, T., Rakhlin, A., and Stokes, J. (2019).
Fisher-rao metric, geometry, and complexity of neural networks. In The
22nd International Conference on Artificial Intelligence and Statistics, pages
888–896. PMLR.

[Liu et al., 2019] Liu, S., Papailiopoulos, D., and Achlioptas, D. (2019). Bad
global minima exist and sgd can reach them. arXiv preprint arXiv:1906.02613.

[Luo et al., 2018] Luo, P., Wang, X., Shao, W., and Peng, Z. (2018). To-
wards understanding regularization in batch normalization. arXiv preprint
arXiv:1809.00846.

[Malach et al., 2020] Malach, E., Yehudai, G., Shalev-Schwartz, S., and Shamir,
O. (2020). Proving the lottery ticket hypothesis: Pruning is all you need. In
International Conference on Machine Learning, pages 6682–6691. PMLR.

[Mandt et al., 2017] Mandt, S., Hoffman, M. D., and Blei, D. M. (2017). Stochas-
tic gradient descent as approximate bayesian inference. arXiv preprint
arXiv:1704.04289.

[Minka, 2001] Minka, T. P. (2001). A family of algorithms for approximate
Bayesian inference. PhD thesis, Massachusetts Institute of Technology.

[Mohri et al., 2012] Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2012).
Foundations of machine learning.[sl].

BIBLIOGRAPHY 133

[Myland et al., 2008] Myland, J., Myland, Jan, C., Spanier, J., Oldham, K., and
Oldham, Keith, B. (2008). The incomplete beta function b(v,,x). An Atlas of
Functions, pages 603–609.

[Needham, 2021] Needham, T. (2021). Visual Differential Geometry and Forms:
A Mathematical Drama in Five Acts. Princeton University Press.

[Neelakantan et al., 2016] Neelakantan, A., Vilnis, L., Le, Q. V., Kaiser, L.,
Kurach, K., Sutskever, I., and Martens, J. (2016). Adding gradient noise
improves learning for very deep networks.

[Neyshabur et al., 2015] Neyshabur, B., Tomioka, R., and Srebro, N. (2015).
Norm-based capacity control in neural networks. In Conference on Learning
Theory, pages 1376–1401. PMLR.

[Noh et al., 2017] Noh, H., You, T., Mun, J., and Han, B. (2017). Regularizing
deep neural networks by noise: Its interpretation and optimization. Advances
in Neural Information Processing Systems, 30.

[Parlett, 1998] Parlett, B. N. (1998). The symmetric eigenvalue problem. SIAM.

[Paszke et al., 2017] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer, A. (2017). Automatic
differentiation in pytorch.

[Pawitan, 2004] Pawitan, Y. (2004). In all likelihood : statistical modelling and
inference using likelihood. Clarendon Press.

[Poole et al., 2014] Poole, B., Sohl-Dickstein, J., and Ganguli, S. (2014). Analyz-
ing noise in autoencoders and deep networks. arXiv preprint arXiv:1406.1831.

[Raghu et al., 2017] Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., and Sohl-
Dickstein, J. (2017). On the expressive power of deep neural networks. In
international conference on machine learning, pages 2847–2854. PMLR.

[Rashid et al., 2019] Rashid, S., Noor, M. A., and Noor, K. I. (2019). New esti-
mates for exponentially convex functions via conformable fractional operator.
Fractal and Fractional, 3(2):19.

[Rasmussen, 2003] Rasmussen, C. E. (2003). Gaussian processes in machine
learning. In Summer school on machine learning, pages 63–71. Springer.

[Robbins and Monro, 1951] Robbins, H. and Monro, S. (1951). A stochastic
approximation method. The annals of mathematical statistics, pages 400–407.

[Roberts, 2021] Roberts, D. A. (2021). Sgd implicitly regularizes generalization
error. arXiv preprint arXiv:2104.04874.

134 BIBLIOGRAPHY

[Roman et al., 2005] Roman, S., Axler, S., and Gehring, F. (2005). Advanced
linear algebra, volume 3. Springer.

[Rousseau and Fablet, 2018] Rousseau, F. and Fablet, R. (2018). Residual net-
works as geodesic flows of diffeomorphisms. arXiv preprint arXiv:1805.09585.

[Salakhutdinov and Hinton, 2007] Salakhutdinov, R. and Hinton, G. (2007).
Deep belief networks.

[Salimans and Kingma, 2016] Salimans, T. and Kingma, D. P. (2016). Weight
normalization: A simple reparameterization to accelerate training of deep
neural networks. Advances in neural information processing systems, 29:901–
909.

[Santurkar et al., 2018] Santurkar, S., Tsipras, D., Ilyas, A., and Mądry, A.
(2018). How does batch normalization help optimization? In Proceedings of
the 32nd international conference on neural information processing systems,
pages 2488–2498.

[Smith et al., 2021] Smith, S. L., Dherin, B., Barrett, D. G., and De, S. (2021).
On the origin of implicit regularization in stochastic gradient descent. arXiv
preprint arXiv:2101.12176.

[Srivastava et al., 2014] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever,
I., and Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural
networks from overfitting. The journal of machine learning research, 15(1):1929–
1958.

[Sutskever et al., 2013] Sutskever, I., Martens, J., Dahl, G., and Hinton, G.
(2013). On the importance of initialization and momentum in deep learning.
In International conference on machine learning, pages 1139–1147. PMLR.

[Taborsky et al., 2021] Taborsky, P., Vermue, L., Korzepa, M., and Morup, M.
(2021). The bayesian cut. Ieee Transactions on Pattern Analysis and Machine
Intelligence, 43(11):4111–4124.

[Tishby et al., 2000] Tishby, N., Pereira, F. C., and Bialek, W. (2000). The
information bottleneck method. arXiv preprint physics/0004057.

[Tishby and Zaslavsky, 2015] Tishby, N. and Zaslavsky, N. (2015). Deep learning
and the information bottleneck principle. In 2015 IEEE Information Theory
Workshop (ITW), pages 1–5. IEEE.

[Tu, 2011] Tu, L. W. (2011). Manifolds. In An Introduction to Manifolds, pages
47–83. Springer.

[Tu, 2017] Tu, L. W. (2017). Differential geometry: connections, curvature, and
characteristic classes, volume 275. Springer.

BIBLIOGRAPHY 135

[vanRossum, 1995] vanRossum, G. (1995). Python reference manual. Depart-
ment of Computer Science [CS], (R 9525).

[Veit et al., 2016] Veit, A., Wilber, M. J., and Belongie, S. (2016). Residual
networks behave like ensembles of relatively shallow networks. Advances in
neural information processing systems, 29.

[Vershynin, 2018] Vershynin, R. (2018). High dimensional probability. An intro-
duction with applications in Data Science. Cambridge University Press.

[Vincent et al., 2008] Vincent, P., Larochelle, H., Bengio, Y., and Manzagol,
P.-A. (2008). Extracting and composing robust features with denoising au-
toencoders. In Proceedings of the 25th international conference on Machine
learning, pages 1096–1103.

[Wainwright and Jordan, 2008] Wainwright, M. J. and Jordan, M. I. (2008).
Graphical models, exponential families, and variational inference.

[Xie et al., 2020] Xie, Z., Sato, I., and Sugiyama, M. (2020). A diffusion theory
for deep learning dynamics: Stochastic gradient descent exponentially favors
flat minima. arXiv e-prints, pages arXiv–2002.

[Yao et al., 2020] Yao, Z., Gholami, A., Keutzer, K., and Mahoney, M. W. (2020).
Pyhessian: Neural networks through the lens of the hessian. In 2020 IEEE
international conference on big data (Big data), pages 581–590. IEEE.

[Yoshida and Miyato, 2017] Yoshida, Y. and Miyato, T. (2017). Spectral norm
regularization for improving the generalizability of deep learning. arXiv
preprint arXiv:1705.10941.

[Zhang et al., 2016] Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals,
O. (2016). Understanding deep learning requires rethinking generalization.
arXiv preprint arXiv:1611.03530.

[Zhang et al., 2021] Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
(2021). Understanding deep learning (still) requires rethinking generalization.
Communications of the ACM, 64(3):107–115.

[Zhu et al., 2019] Zhu, Z., Wu, J., Yu, B., Wu, L., and Ma, J. (2019). The
anisotropic noise in stochastic gradient descent: Its behavior of escaping from
sharp minima and regularization effects. In ICML, pages 7654–7663.

[Zou et al., 2021] Zou, D., Cao, Y., Li, Y., and Gu, Q. (2021). Understanding the
generalization of adam in learning neural networks with proper regularization.
arXiv e-prints, pages arXiv–2108.

	Summary (English)
	Summary (Danish)
	Preface
	Contributions
	Acknowledgements
	Contents
	1 Introduction
	1.1 Thesis Outline and Contributions
	1.2 Setting Up the Scene
	1.3 Related Recent Work
	1.3.1 Learning in the Manifold of Distributions (LiMoD)

	2 GD Evolution of the Hessian for General DL Objectives
	2.0.1 Chapter Introduction
	2.0.2 Chapter Related Preliminaries and Definitions

	2.1 GD Evolution of the Hessian Spectrum
	2.1.1 GD as a Sequence of Local Coordinate Changes
	2.1.2 Regime of A Small Gradient
	2.1.3 Analysis in a Small Gradient Regime of GD

	3 Self Regularized Bregman Objective (SeReBrO)
	3.0.1 Preliminaries on Bregman Divergences
	3.0.2 Self-Regularized Bregman Objective (SeReBrO)
	3.0.3 SeReBrO via Cumulants Matching

	4 Generalization of Deep Learning Optimizing Bregman Divergences
	4.0.1 Going Deep
	4.0.2 SGD Gradient Norm in Deep Networks
	4.0.3 The Norm of the Gradient as Anti-Overfitting Prior
	4.0.4 Implications

	4.1 Experiment: DAEs Self-Regularized by Width, Depth, and Rank of the Gradient Noise

	5 Discussion and Conclusion
	5.0.1 The Elephant in the Room
	5.0.2 On Weights and Diffusion to Irrelevant Directions

	6 Mechanisms that support generalization in deep learning (Paper A)
	7 The Bayesian Cut (Paper B)
	Bibliography

