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A B S T R A C T

We present the results of a systematic investigation into how the coercivity and maximum energy product
of NdFeB permanent magnets are affected by magnetic and geometric microscopic properties. The results
are based on numerical micromagnetic simulations carried out with the open source numerical framework
MagTense. We considered artificially generated realistic microstructures for which we can control the number
of crystal grains as well as the thickness of the intergrain region. Based on variations of the exchange constant,
easy axis orientation, grain boundary width and intergrain material properties, the results indicate that while
all of these can contribute to a reduction of coercivity, the easy axis orientation has the largest influence. For
this, if the easy axis orientation is distributed within a cone with an opening angle of 15◦, that is enough to
reduce the coercivity by 1 T. Regarding the maximum energy product, the width of the grain boundary layer as
well as the easy axis orientation were seen to have the largest influence, with the exchange constant only very
weakly influencing the maximum energy product. Our analysis thus methodically clarifies the different factors
contributing to the reduction of the value of the coercivity and maximum energy product when compared to
the theoretical limit, a discrepancy known as Brown’s paradox.
1. Introduction

At present, permanent magnets are among the most critical materi-
als in connection to sustainable energy technologies. In fact, they are an
essential element of many electro-mechanical conversion machines [1].
These can be subdivided in two main categories: electric generators,
e.g. in power plants or wind turbines, and electric motors, e.g. in
electric vehicles or pumps.

The most powerful permanent magnets available nowadays are
composed of rare-earth elements and in particular, NdFeB magnets are
the most widely used and the most powerful among permanent magnet
materials [2]. However, rare-earths are expensive materials, subject to
price fluctuations, and the extraction and processing is not environ-
mentally friendly. It is thus of crucial strategic importance to explore
ways of improving the performance of permanent magnet materials so
that magnetic machines can be realized with lesser amount of these
materials, without compromising the performance of the devices.

Micromagnetic simulations provide a very powerful tool to aid in
this investigation. This mathematical formalism describes the behav-
ior of magnetic materials at the micro-scale [3]. It can be used to
predict the macroscopic magnetic properties of materials from their
microstructure and composition [4]. This knowledge can in turn be

∗ Corresponding author.
E-mail address: rabj@dtu.dk (R. Bjørk).

used to optimize the manufacturing process and potentially obtain
better-performing materials [5].

In particular, here we focus on two macroscopic magnetic prop-
erties, namely the maximum energy product and the coercivity or
coercive field. The latter is a measure of how strong an opposing field
a magnet can withstand before its magnetization direction flips. In
actual usage, a magnet is always subject to an opposing field which
is due to other surrounding magnets and to its own demagnetizing
field. Hence, the coercivity of a material defines a limit to its suitable
range of applicability. The higher the coercivity, the wider is the range
of possible applications, making the material more versatile. Though
the use of micromagnetic simulations we in this study explore how
the maximum energy product and the coercivity are influenced by the
different geometrical and physical properties of the microstructure of
permanent magnet materials.

This is an area that already received significant attention from
the scientific community. For example, Toson et al. analyzed the co-
ercivity of rare earth free magnets based on elongated Fe and Co
nanoparticles [6]. Sepehri-Amin et al. considered the effect of size
and aspect ratio of the grains on the coercivity of NdFeB sintered
magnets [5,7]. Fischbacher et al. investigated how grain boundary
engineering can be employed to improve the performance of NdFeB
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magnets [4]. Kovacs et al. explored enhancement of the performance
through nano-structuring of rare earth free magnets [8]. The study
by Lee et al. reports on the effect of the grain-boundary phase on
the nucleation mechanism and domain-wall motion [9]. Hoyun et al.
consider the coercivity of AlNiCo and how it is affected by dimensions
and geometry [10].

The novelty of our study is that we systematically analyze the
impact of all the main microstructural features on the coercivity and
maximum energy product. Specifically, we investigate how the differ-
ent factors are responsible for the observed reduction of the coercivity
with respect to the maximal theoretical value. We show the dependence
of the coercivity on the strength of the exchange interaction, the
dependence on the misalignment between the easy axes of the different
crystal grains composing the microstructure and the dependence on the
thickness and the magnetic properties of the secondary phase that is
present at the boundary between adjacent grains.

This investigation advances the understanding of the relation be-
tween the structure of permanent magnets and their macroscopic
behavior, i.e. their performance. Thus, it suggests the most promis-
ing directions for future research aimed at developing manufacturing
processes for stronger permanent magnet materials. All our results
have been obtained with the computational framework MagTense [11],
which has been extensively validated [12] with the μMAG standard

icromagnetic problems [13]. The results of additional validation tests
re included in the present work.

. Model

.1. Governing equations

At the nano- and micro-scale, the behavior of magnetic materials
an be modeled by considering the formalism of micromagnetics. Here,
he magnetic state of the system is described by the vector field
(𝒙), i.e. the magnetization spatial variation. Here 𝒙 denotes a vector

orresponding to a generic point of space inside the region 𝛺 occupied
y the magnetic material. The time-evolution and the equilibrium
onfigurations of the systems are determined by the micromagnetic free
nergy , which is a function of 𝐌(𝒙).

As explained below, the equation governing the time evolution of
(𝒙) conserves the norm ‖𝐌‖ at any point, since this is assumed to be
fixed (local) property of the material. Therefore, it is customary to

ntroduce the quantity Ms(𝒙), referred to as saturation magnetization,
which corresponds to the magnitude of 𝐌 at the point 𝒙. The state of
the system is thus naturally expressed by the reduced magnetization 𝐦
defined by:

𝐦(𝒙) = 𝐌(𝒙)
Ms(𝒙)

(1)

he micromagnetic free energy  is expressed as the integral over the
egion 𝛺 of a corresponding energy density function 𝑔 that depends on
(𝒙), and on its spatial derivatives:

[𝐦] = ∫𝛺
dV 𝑔(𝐦,𝛁𝐦) (2)

he time-evolution equation is expressed in terms of the effective field
hich is proportional to the functional derivative of  with respect to
:

eff = − 1
𝜇0Ms

𝛿
𝛿𝐦

(3)

where 𝜇0 indicates the vacuum permeability. The time-evolution of the
system is described by the Landau–Lifshitz equation [4]:
d𝐦
d𝑡 = −𝛾 𝐦 ×𝐇eff − 𝛼 𝐦 ×

(

𝐦 ×𝐇eff
)

(4)

The equation is parametrized by the gyromagnetic ratio 𝛾 and damping
parameter 𝛼. Since the time derivative of 𝐦 is perpendicular to 𝐦
at any point, the norm of 𝐦(𝒙) is conserved. The first term on the
2

Table 1
Physical mechanisms.

Physical Energy Effective
mechanism density field

External field −𝜇0Ms(𝐦 ⋅𝐇a) 𝐇a

Demagnetization −
(

𝜇0Ms
2

)

(𝐦 ⋅𝐇d) 𝐇d

Exchange A0
∑

𝑗 ‖𝛁m𝑗‖
2

(

2A0

𝜇0Ms

)

∑

𝑗
𝜕2𝐦
𝜕𝑥2𝑗

Anisotropy −K0(𝐦 ⋅ �̂�𝐾 )2
2K0

𝜇0Ms
(𝐦 ⋅ �̂�𝐾 )�̂�𝐾

right-hand side of Eq. (4) causes the vector 𝐦(𝒙) to precess around
the effective field 𝐇eff(𝒙), while the second term causes 𝐦(𝒙) to rotate
owards 𝐇eff(𝒙). At equilibrium, 𝐦 is aligned to the effective field at
ny point, as expressed by Brown’s equation:

eq ×𝐇eff = 𝟎 (5)

The expression of the micromagnetic free energy  includes dif-
erent physical mechanisms, each corresponding to a different en-
rgy term. The four main mechanisms are: the external field energy,
he demagnetization energy, the exchange interaction, and the crystal
nisotropy. For each of the energy terms, a corresponding effective field
s constructed. The energy density functions 𝑔 and associated effective

fields are listed in Table 1.
In the table, K0 denotes the anisotropy constant, �̂�𝐾 is a unit vector

ointing in the direction of the easy (or hard) crystallographic axis, A0
denotes the exchange interaction constant, 𝐇a is the applied magnetic
field, and 𝐇d is the demagnetization field. The index 𝑗 runs over the
spatial coordinates 𝑥, 𝑦 and 𝑧. The demagnetization field is the field
generated by the magnetic material in 𝛺 and is expressed in terms of
the rank-2 demagnetization tensor  :

𝐇d(𝒙) = ∫𝛺
dV′  (𝒙,𝒙′)𝐌(𝒙′) (6)

Besides the four physical mechanisms mentioned above, the same
ormalism can also be applied to model other effects. One example
s the simulation of thermal fluctuations, which may be included as
iscussed in Refs. [4,14]. However, in this work we do not explicitly
onsider thermal effects since these can be well approximated by
ncluding a thermal fluctuation term directly in the results [4].

In this work we focus on permanent magnet materials, and specif-
cally on magnetic hysteresis curves. These curves describe the depen-
ence of the equilibrium magnetic state as function of a time-varying
pplied magnetic field 𝐇a. The rate of variation of the field is assumed
o be slow enough that the system can realistically be assumed to be
uasi-statically following the equilibrium state [15].

Fig. 1(a) shows an illustrative example of a typical hysteresis curve.
e consider a situation where the permanent magnet is initially uni-

ormly magnetized in the direction of the external field. The applied
ield is then decreased until it eventually reverses, i.e. it points in the
pposite direction with respect to its initial orientation. During this
rocess, the magnet will be able to maintain its original magnetized
tate until the opposing field becomes too intense and the magnetiza-
ion direction of the material eventually reverses as well. The value
f applied field corresponding to this magnetization-reversal process is
nown as the coercive field and indicated by H𝑐 .

As discussed in the introduction, the goal of this study is to investi-
gate the dependence of H𝑐 and the maximum energy product, (BH)max,
on the different physical parameters and on the geometrical features
of the microstructure of polycrystalline permanent magnet materials.
For this purpose, we employ the micromagnetic numerical simulation

framework MagTense [11].



Journal of Magnetism and Magnetic Materials 571 (2023) 170510R. Bjørk and A.R. Insinga
Fig. 1. (a): Example of hysteresis curve of permanent magnet material. The coercive field, 𝐻𝑐 , corresponding to the intersection of the curve with the horizontal axis, is
shown. (b): Example of mesh used to discretize the governing equations. The mesh-elements can have different sizes. The total demagnetization field is obtained by adding the
analytically-computed contributions from all the mesh-elements, each assumed uniformly magnetized.
2.2. Numerical framework

In MagTense, the governing equations are discretized by subdivid-
ing the region 𝛺 into a number of mesh-elements, each of which is
assumed to be uniformly magnetized. An example of a typical mesh is
shown in Fig. 1(b). As can be noticed, the mesh elements do not need to
be identical to each other. Section 2.3 includes additional details on the
mesh-generation procedure. The mesh-elements will also be referred to
as ‘‘tiles’’.

The demagnetization field in any point 𝒙 is obtained by super-
imposing the analytically-computed contributions from all the mesh-
elements [12]:

𝐇d(𝒙) =
∑

𝑛


𝑛
(𝒙)𝐌𝑛 (7)

where 𝐌𝑛 denotes the magnetization of the 𝑛th tile and 
𝑛
(𝒙) denotes

the demagnetization tensor of the 𝑛th tile evaluated at the point 𝒙. The
summation runs over all the tiles composing the mesh.

As compared to the MagTense modeling framework published pre-
viously [12], the version presented here has furthermore been modified
to include averaging of the magnetic field within each tile, instead of
evaluating this only at the center of the tile. The magnetic field gener-
ated by a uniformly magnetized tile 𝑅𝑛 should ideally be evaluated over
the whole receiving tile 𝑅𝑛′ . In principle, the analytical expression for
the field averaged over the receiving tile can be found by the volume
integration of the analytical expression for the demagnetization tensor
across the receiving tile 𝑅𝑛′ as

⟨𝐇d⟩𝑅𝑛′
= 1

𝑉 ′ ∫𝑅𝑛′
dV 𝐇d(𝒙) = ⟨

𝑛
⟩𝑅𝑛′

𝐌𝑛 (8)

where 𝑉 ′ denotes the volume of the receiving tile, and ⟨
𝑛
⟩𝑅𝑛′

is
defined as

⟨
𝑛
⟩𝑅𝑛′

= 1
𝑉 ′ ∫𝑅𝑛′

dV 
𝑛
(𝒙) (9)

However, the analytical expressions for the demagnetization tensor
cannot easily be integrated. Closed-form expressions have been re-
ported for a grid of identical cubic tiles and also for a mesh of prisms,
as long as the faces are parallel [16]. Instead, here we employ the
approach of computing the average demagnetization tensor across each
tile by calculating the tensor for a finite number of points in each tile
and then performing the average. This is a valid approximation as long
as the mesh resolution is sufficient. As demonstrated in Ref. [12], the
model is already able to reproduce the 𝜇mag standard problem results
simply by evaluating the field at a single point in the center of the tile,
3

provided that the resolution is suitable.
As seen in Table 1, the effective field associated to the exchange
interaction involves the calculation of the Laplace operator applied to
𝐦(𝒙). In our framework the Laplace operator is computed by consider-
ing a generalization of the finite-difference method that is applicable
to arbitrary unstructured meshes. Ref. [17] discusses in details the
construction of the Laplace operator and the implementation of the
correct boundary conditions at the external boundaries, and at the
interface between regions characterized by different values of A0.

2.3. Geometry and mesh

Our goal is investigating the behavior of sintered polycrystalline
permanent magnet materials, most prominently NdFeB magnets. The
microstructure of these materials is composed by a number of crystal
grains of hard-ferromagnetic NdFeB phase, separated from each other
by a thin layer of intergrain phase. This phase will also be referred to
as the grain boundary phase.

An example of such a microstructure is shown in Fig. 2(a). Here,
the different NdFeB grains are indicated by different colors, while
the intergrain phase is not shown. The structure has been generated
by constructing a Voronoi tessellation. This procedure allows us to
control the shape and size of the magnet, the number of grains, and
the thickness of the intergrain region.

Following the generation of the microstructure, a mesh is realized
by employing an iterative refinement scheme. The procedure starts with
a regular Cartesian mesh with given resolutions along the 𝑥, 𝑦, and 𝑧
directions. At each step of the iteration, all the tiles that lie (partially or
entirely) in the intergrain region are subdivided into 8 smaller identical
tiles by bisecting the original tile along each spatial dimension. Fig. 2(b)
shows the mesh corresponding to the microstructure shown in Fig. 2(a).
The mesh has been constructed by performing 3 refinements steps on
a mesh with base resolution 5 × 5 × 5. As discussed in Ref. [17], the
construction of the Laplace operator for such an irregular mesh involves
choosing the exponent of a distance weight factor, here taken to be 6
in accordance with the aforementioned reference.

2.4. Model and material parameters

For the purpose of calculating hysteresis curves, we assume quasi-
static conditions. In this regime, it is not necessary to include the
precessional term in the Landau–Lifshitz equation, i.e. Eq. (4), and we
therefore set 𝛾 = 0 m∕(As). For each hysteresis curve, we vary the
external field starting from 1 T and until the coercivity of the magnet
has been exceeded. The steps in field are 0.1 T unless otherwise stated.

At each step, the system is allowed to relax to the new equilibrium
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Fig. 2. (a): The grain structure considered: a cube with side-length 240 nm, 25 grains, and grain boundary width 𝛿GB = 7.5 nm. (b): The corresponding mesh has a base resolution
of 5 tiles along each spatial dimension and has been successively refined 3 times.
Table 2
Material parameters.
Material Parameter Quantity

NdFeB grains
𝜇0Ms 1.61 T
A0 7.7 × 10−12 J/m
K0 4.3 × 106 J/m3

Intergrain phase
𝜇0Ms 0.50 T
A0 7.7 × 10−12 J/m
K0 0 J/m3

value. This is performed by numerically integrating the Landau–Lifshitz
equation from 0 to 40 ns with the value of the damping parameter 𝛼
set to 4000 m∕(As).

In order to model the NdFeB and intergrain phases, we consider
the two sets of properties for the saturation magnetization, 𝜇0Ms, the
exchange constant, A0 and the anisotropy constant, K0, listed in Table 2.

For the values of these parameters, we follow the work by Fis-
chbacher et al. [4]. Moreover, it is worth mentioning that in a mod-
eling study of melt-spun NdFeB magnets Toson et al. [6] used a
very similar set of material parameters for NdFeB: 𝜇0M𝑠=1.61 T and
A0=7.7 × 10−12 J/m and K0=4.9 × 106 J/m3. These are identical
to the parameters used here, except for a slightly larger anisotropy
constant. In the same work, three different magnetic grain boundary
phases were modeled. The soft-ferromagnetic phase, which is the most
similar to the one used here has the following properties 𝜇0Ms=0.75 T,
A0=2.5 × 10−12 J/m and K0=0 J/m3, again very close to the values
used in this study. These values agree with values determined from
experiments [18–20] as also argued by Toson et al. [6].

The theory of micromagnetics predicts that the possible values of
coercive field are limited by a maximum attainable value, known as
the nucleation field [4,21]. The nucleation field is defined as:

HN =
2K0
Ms

(10)

With the parameters used in this work for the NdFeB crystal grains, the
maximum coercive field expressed in teslas is thus 𝜇0HN = 6.71 T. Cor-
recting for shape demagnetization, the nucleation field becomes [22]

HN =
2K0
Ms

−𝑁
Ms
𝜇0

(11)

where 𝑁 is the shape demagnetization factor. As we here consider a
cubed sample we have 𝑁 = 1∕3, giving a nucleation field of 𝜇0HN =
6.18 T.
4

2.5. Easy axis direction

As discussed in the previous section, we assume that the NdFeB
grains are characterized by identical values for K0, A0 and Ms. However,
the crystallographic orientation can be different in different grains.
This situation is modeled by considering a different easy-axis vector
�̂�𝐾 for each grain. It is important to stress that since we are considering
uni-axial anisotropy, the directions ±�̂�𝐾 are equivalent.

For each grain, the easy axis is generated randomly on a spherical
cap centered on the [0,0,1] direction, i.e. along the 𝑧 axis, which
is also the direction of the applied field. The opening angle of the
spherical cap is defined as half the full opening angle of the spherical
cap, i.e. as shown in Fig. 3. Thus, when the cone opening angle 𝜃cone
is 90◦, the easy axis directions are uniformly distributed across the
northern hemisphere of the unit circle. When considering the uni-
axial symmetry, this corresponds to a completely isotropic random
distribution. On the opposite situation, when 𝜃cone = 0◦, the easy axis
points along the 𝑧 direction in all the grains.

We also consider the special case of the easy axis being located only
on the edge of the spherical cap defined above. Thus in this case, a cone
edge angle of 90◦ corresponds to a situation where for all the grains
the easy is perpendicular to the 𝑧 direction, i.e. perpendicular to the
direction of the applied field.

Finally, we note that the centered spherical cap considered as the
base case is defined such that no angles are found outside the spherical
cap. A true physical distribution would most likely be more normally
distributed, so therefore we also consider a case where the easy axis
orientations are normally distributed on the sphere centered on the
[0,0,1] direction and with the standard deviation given by the opening
angle of the spherical cap.

3. Model validation

We consider the effect of different geometrical and magnetic pa-
rameters on the hysteresis curves and the corresponding coercivity and
energy product. In order to ensure that the investigation is performed
systematically, the starting model is always the same, except for the
parameter being varied in each section. The geometry of the starting
model is shown in Fig. 2, and we term this the base case. It consists of
a cubic magnet with side-length equal to 240 nm along each direction,
similar to the system studied in Ref. [4], and comparable to the
(200 nm)3 system studied in Ref. [6]. The cube is subdivided into 25
crystal grains, with a grain-boundary base thickness of 7.5 nm. The
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Fig. 3. The definition of the cone opening angle, 𝜃cone, which parametrizes the random distribution of the easy axis orientation among the different crystal grains.
Fig. 4. (a) The hysteresis curve for the base case. The mean hysteresis curve is an average of five simulations with randomized cone angles. These are plotted behind the curve
in the plot. (b) Magnetization states for four intermediate steps of one of the five simulations. The color indicate the direction of the magnetization at any point: black and white
indicate the positive and negative 𝑧 direction, respectively, while the colors of the rainbow indicate in-plane magnetization. For example, in the first step, the magnetization points
roughly in the 𝑧 direction, although there is a small in-plane component, which is different for each grain. The steps corresponding to these four intermediate states are indicated
in the left panel as green circles.
base properties are listed in Table 2. The cone opening angle of the
easy axis distribution is 𝜃cone = 15◦. We perform five simulations with
the same grain structure but different randomized easy axis orientation
within the defined 𝜃cone = 15◦. The mean hysteresis curve for these
five simulations is shown in black in Fig. 4(a) with mean value of the
coercivity of 𝜇0𝐻𝑐 = −4.32 ± 0.2 T and (𝐵𝐻)max = 385 ± 3 kJm−3. The
individual curves corresponding to the five simulations are also shown,
indicated by the colored curves. Fig. 4(b) shows the magnetization
states corresponding to the four intermediate steps shown in (a) as
green circles. As can be observed, the grain boundary phase under-
goes magnetization-reversal before the NdFeB phase. Subsequently, the
demagnetized front expands inwards until all the grains are reversed.

3.1. Model sensitivity verification

In order to verify the grained model, we considered the base model,
but with zero grain boundary thickness and cone opening angle of the
easy axis orientation of 𝜃cone = 1◦. Ten simulations were conducted and
the mean coercivity was calculated to be 𝜇0Hc = −5.52±0.02 T. Follow-
ing this, ten simulations with a regular grid, i.e. where all tiles are the
same size and there are no grains, were conducted. Here the exchange
operator is calculated using a standard finite difference method [12].
The mean of the coercivity for these models are 𝜇0Hc = −5.57 ± 0.04 T,
which is very close to the grained models. This establishes that the
grained model correctly calculate the coercivity of a given sample.

Returning to a model with grain boundaries, in order to confirm a
correct selection of the time interval for integration, field stepping for
the hysteresis curve and weight factor for the exchange operator, we
5

performed a simulation of the base case, where the time integration
was changed to 120 ns, the field stepping was made to be 0.05 T
and the weight scheme was changed to 8 for the exchange calculation.
Furthermore, for this simulation we also averaged the 

𝑛
-tensor over

4 × 4 × 4 evenly distributed points in each tile, as discussed in Eq. (9).
This test resulted in a coercivity of 𝜇0Hc = −4.29 T, very similar to the
value of the coercivity of the base case given above.

Finally, to ensure that the exchange calculations were done cor-
rectly, a simulation was run where the Green–Gauss method was in-
stead used to calculate the exchange matrix operator, but otherwise
using the standard parameters defined above. This resulted in a coer-
civity of 𝜇0Hc = −4.50 T. This is again quite close to the result obtained
with the standard Direct Laplacian method, which anyway is expected
to be the most accurate of the two approaches [17].

4. Results of a multigrain system

In the following subsections we will consider how the coercivity,
Hc, and maximum energy product, (BH)max, for a multigrain NdFeB
system depend on the geometrical and microstructural parameters. We
study how the exchange constant A0, easy axis orientation, 𝜃cone, grain
boundary width, 𝛿GB, and grain boundary material properties affect the
coercivity and the maximum energy product. In all cases, the starting
configuration is the base model discussed above.

The coercivity and the maximum energy product are both calculated
from the computed hysteresis curves. The coercivity is interpolated as
the value of applied field at which the magnetization in the direction of
the applied field is zero. The maximum energy product is interpolated
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Fig. 5. (a) The coercivity and (b) the maximum energy product as function of A0 normalized by A0 of the base model, respectively. The legend indicates the system studied. The
rror bars indicate the standard deviation of the five simulations with randomized easy axis orientations as described in the text used to compute the average value.
s the value at which the negative product of the magnetic field and
he magnetic flux density is maximized. The magnetic flux density is
alculated as 𝐁 = 𝜇0(𝐇 +𝐌). In the following, Hc and (BH)max will be
resented directly as results. The hysteresis curves are not shown for
revity but can be obtained from the data repository for this work, as
escribed in the data availability section.

.1. Exchange interaction strength

We first consider a case that can somewhat be compared with the
ell-known Stoner–Wohlfarth model, which describes the hysteresis

urve for uniformly magnetized particles, i.e. where the exchange in-
eraction is dominating, thus preventing magnetization gradients from
ccurring. For this purpose, we return to the base model properties and
esh introduced at the beginning of Section 3, which is also used in the
ext sections. To understand the influence of the exchange interaction
trength, A0, not only for the base case, we additionally also consider
single-crystal magnet. For this we take a cone opening angle of the

asy axis orientation to be 𝜃cone = 1◦ and a grain boundary width of
GB = 0 nm.

We simultaneously increase A0 for both the NdFeB and the inter-
rain phase. As A0 increases, the steps in external field in the hysteresis
urve is decreased to ensure convergence of the simulations, as was
lso done for solutions to the 𝜇mag standard problem 2 published
reviously [12]. The convergence criteria used was that the coercivity
ad to change less that 0.01 T when decreasing the field steps in half.
or the exchange interaction strength equal to 1A0 and 2.2A0 the field
tep was 0.1 T, at 4.6A0 the field step was 0.02 T, at 10A0, 21A0 and
6A0 the field step was 0.01 T, at 100A0 it was 0.005 T and finally at
15A0 it was 0.001 T.

The calculated coercivity and maximum energy product averaged
ver five simulations with randomized easy axis directions are shown
n Fig. 5. The base model corresponds to the black dots, and the single
rystal to the blue dots. As expected, when A0 becomes large, i.e. A0 >
01, the value of the coercive field increases significantly. This is caused
y the system being dominated by exchange interactions and the value
f the coercivity approaches the Stoner–Wolfarth limit, although this
alue is not reached here due to the excessive convergence criteria at
igh A0 values.

In the opposite case as A0 is reduced, i.e. A0 > 10−1, the coercivity
ecomes dominated by the uni-axial anisotropy of the grains and thus
tabilizes. The value obtained for the choice of A0 used for the base
odel is indicated by the star marker. The drop in maximum energy
roduct seen for the base model when A0 is decreased is caused by
reversal of the grain boundary phase. With lower A0 the coupling

etween the grains and the grain boundary becomes weaker, causing
he grain boundary to reverse earlier, until it reverses before the
aximum energy product is reached.
6

4.2. Easy axis misalignment

Next we consider the influence of the easy axis orientation on the
coercivity and the maximum energy product. As discussed previously,
the easy axis orientation is randomized within a specified cone opening
angle. We consider both the base case model, as well as a similar system
but without a grain boundary phase, i.e. 𝛿GB = 0, as well as cases
where the easy axis orientation has to be located on the cone edge
or are normally distributed, as also described previously. Shown in
Fig. 6 is the coercivity and the maximum energy product as function
on the cone opening angle of the easy axis direction. A total of five
simulations, each with random easy axis generated for the chosen cone
opening angle, has been conducted to provide a statistical measure on
the certainty of the results. The error bar shows the standard deviation
within the five simulations with the same cone opening angle.

As can be seen from the figure, the size of the error bars increases
as the cone opening angle widens. This is expected, as the randomness
in the easy axis orientation becomes larger with the cone opening
angle. The coercivity decreases significantly with the cone opening
angle, until at a fully randomized cone angle 𝜃cone = 90◦ for the
case of the easy axis orientation being on the edge of the cone, the
coercivity and maximum energy product become zero. This result is
expected, since in this situation all the easy axes of the various grains
point in directions perpendicular to the applied field. It is also seen
that the normally distributed angles result in a worse coercivity and
maximum energy product compared to the base case. This is because in
the normally distributed case there is simply more variation in the easy
axis orientations, resulting in more grains with an easy axis orientation
more perpendicular to the applied field. Finally, the difference between
a multigrain structure with and without grain boundary is seen to be
small.

The trend observed in this work, namely that the coercivity in-
creases with alignment of the easy axis orientation to the direction of
the applied field, is opposite to the magnetostatic regime calculation
where the opposite effect occurs, namely that coercivity increases as the
angle between the easy axis orientation and the applied field increases.
In the magnetostatic limit this occurs because the coercivity is the
average coercivity of the individual grains in the ensemble. For a single
large particle with an easy axis, if there is an angle between the applied
field and the easy axis, then the projection of the applied field onto
the easy axis orientation will obviously be smaller than the full applied
field. As the vector projection is smaller, a larger applied field is needed
to overcome the coercivity in the easy axis orientation. This is also seen
experimentally for NdFeB magnets with large grains, 3 − 5 μm [23].

However, in this work, we explore the limit of much smaller Nd-
FeB grains, which thus are much more tightly interacting due to the
exchange coupling. This causes the different trend in the orientation
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Fig. 6. (a) The coercivity and (b) the maximum energy product as function of the cone angle for both the standard uniform full cone orientation, for the case where the easy
axis can only be located on the edge of the cone, and for the normally distributed case, as defined in Section 2.5.
Fig. 7. The base case with a grain boundary of 0 nm, 10.5 nm and 31.5 nm, respectively.
investigation seen here. That systems with small NdFeB grains have an
increasing coercivity compared to systems with larger grains have been
observed experimentally [24,25], although this was not investigated for
different applied field orientations.

Another issue worth remarking is that an investigation by Suss et al.
(2000) showed that if a micromagnetic grain model system is free
of defects coercivity increases with an increased easy axis alignment,
which is also in agreement with the Stoner–Wolfarth model [26]. How-
ever, coercivity will decreases with an increase of easy axis alignment,
i.e. texturing, if there is a defect reducing the anisotropy near the grain
boundaries [26,27]. We here consider a defect-free model and thus can
expect results in agreement with Suss et al. and the Stoner–Wolfarth
model, i.e. an increase in the coercivity with an increased easy axis
alignment.

4.3. Grain boundary width

To explore the influence of the grain boundary layer further, we
next vary the thickness of this layer and study its influence on the
coercivity and maximum energy product. We consider 9 different grain
boundary layer widths, ranging from 𝛿GB = 0 nm to 𝛿GB = 31.5 nm. The
base case with 25 grains but with increasing grain boundary widths are
shown in Fig. 7.

The coercivity and the maximum energy product were determined
from the computed hysteresis curves and are shown in Fig. 8. Besides
the previous base model discussed above, we also consider a model
with an easy axis alignment cone angle of 𝜃cone = 1◦. As can be seen
from the figure, the energy product is much more strongly affected
by the increase in grain boundary width than the coercivity is. An
explanation for this observation is that the magnetic field produced
by the soft ferromagnetic grain boundary phase is not significantly
7

contributing to the external field, which is thus the primary factor
in reaching the coercive field of the grains. It is thus not a surprise
that the properties of the magnet worsen when the volume fraction of
NdFeB material decreases. However, shown in Fig. 8 is the coercivity
and the maximum energy product values for the case of 𝛿GB = 0 nm
scaled by the volume fraction of the grain boundary phase for the
given grain boundary width. As can be seen both the coercivity and
the maximum energy product do not scale as the volume fraction of
the grain boundary phase, although the maximum energy product do
show a similar behavior as the simple volume fraction scaling.

4.4. Grain boundary properties

In order to further investigate the properties of the grain boundary
layer on the overall properties of the system, we systematically varied
the exchange constant and the saturation magnetization of the grain
boundary layer for the base case model. The values of A0 and Ms for
the intergrain layer were varied independently and systematically from
10−3 to 101 of the values for the base case, except combinations of
high A0 and low Ms which were considered to be unrealistic material
properties. Similarly as was done in the study of the influence of the
exchange parameter, A0, described in Section 4.1, the field steps size
was decreased from 0.1 T to 0.01 T for the set of outermost data points
in the high A0, low Ms part of the data set shown in Fig. 9 to ensure
that convergence was reached in all cases.

The determined coercivity and maximum energy product are shown
in Fig. 9 as a color map, with the circles indicating the data points used
for interpolation of the map. The material parameters corresponding to
the white regions were not modeled, as stated above. As can be seen
from the figure, the coercivity increases with lower A0 and Ms of the
intergrain layer. This is expected as the less magnetic the intergrain
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Fig. 8. The coercivity as function of the grain boundary width for two different cone opening angles for the easy axis direction of the grains. The volume fraction curves are the
values for 𝛿GB = 0 nm scaled by the volume fraction of grain boundary material at the given value of 𝛿GB.
Fig. 9. (a) The coercivity and (b) the maximum energy product as function of the grain boundary Ms and the grain boundary 𝐴0 values normalized to their base line ferromagnetic
values. The circles show the actual data points used to construct the interpolated surface.
layer is, the less the different magnetic grains couple across the grain
boundary. In fact, being isotropic, the intergrain phase would demag-
netize earlier and thus trigger demagnetization of the NdFeB grains due
to the exchange coupling. However, it is of interest that the energy
product apparently benefits from a strongly ferromagnetic material at
the grain boundary. This can be interpreted as the grain boundary
material generating a magnetic field that, if the external field is not
strong enough to turn the grain boundary layer, positively contributes
to the energy product of the system as a whole.

In the study of Toson et al. [6] three different sets of material
parameters for the inter-grain phase are modeled. Besides the soft ferro-
magnetic phase listed previously, a paramagnetic phase with material
properties 𝜇0Ms=0.75 T and A0 = 0.077 × 10−12 J/m1, as well as a non-
magnetic phase with properties 𝜇0Ms=0.001 T and A0 = 0.0077 × 10−12

J/m are modeled. These material properties are also shown in Fig. 9. In
that study there is a misorientation angle between the hard magnetic
grains and the external field of 7–10 degrees. The study finds that
modeling a paramagnetic phase for systems with 8 grains or more
increases the coercivity by a factor of 1.4 on average, while if a non-
magnetic phase is used the coercivity increases by a factor of 2.5.
Estimating the coercivity for these material properties from Fig. 9 we
here find a much smaller change in coercivity of only 1.02 and 1.06
respectively. However, it should be kept in mind that the simulations
performed here have grains that can be internally misaligned, whereas
this is not the case for Toson et al.
8

5. Discussion

Based on the above variation of the exchange constant, easy axis
orientation, grain boundary width and grain boundary material prop-
erties, the results indicate that, while all of these can contribute to
a reduction of coercivity of the system, the easy axis orientation has
the largest influence. For this, a cone opening angle of 𝜃cone = 15◦ is
enough to reduce the coercivity by 1 T. Regarding the maximum energy
product, the width of the grain boundary layer, as well as the easy axis
orientation were seen to have the largest influence, with the exchange
constant only very weakly influencing the maximum energy product.
Browns paradox is caused by combination of the previously mentioned
factors, but the easy axis orientation seems to play the largest role
among these.

Fig. 10 summarizes the impact of the various factors on the resulting
coercivity and on the maximum energy product. The horizontal green
line corresponds to the base case, whereas the bars indicate the change
that occur when one of the properties is decreased or increased. As
mentioned above, and as indicated in the graphs, the randomness of the
easy axis orientation is the largest contribution affecting the coercivity.
On the other hand, the thickness of the grain boundary region and the
corresponding physical properties, i.e. A0 and Ms, are the factors that
cause the largest change in the energy product.

Our study continues and expands several other investigations on
micromagnetic simulations of hysteresis curves corresponding to NdFeB
polycrystalline materials. In some cases the geometry is highly ideal-
ized, as in the work by Li et al. [28] investigating the effect of the
grain boundary diffusion on an idealized structure composed of cubic
grains arranged in a grid.
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Fig. 10. A comparison of the influence of the different effects on the coercivity and the maximum energy product. The 𝑥-axis label indicate the parameter changed compared to
the base model. The last 𝑥-axis label indicate a change in A0 and Ms of the grain boundary.
Other studies consider more realistic microstructure generation ap-
proaches based on Voronoi tessellations, similarly to the present work.
For example, Liu et al. [29] investigate poly-crystalline magnets where
some of the Nd2Fe14B crystal grains are replaced by Ce2Fe14B. They
consider different proportions between the two materials. Moreover,
they study the effect of the thickness of the grain boundary amorphous
soft magnetic phase. In their work, this phase is modeled by assuming
zero anisotropy and 10% of the saturation magnetization. Their calcu-
lations predict a reduction of the coercivity by ≈0.1 T as the thickness
goes from 0 nm to 6 nm, which is of the same order of magnitude as
the reduction shown in Fig. 8.

The work by Hong, et al. [30] analyzes a similar system, i.e. with
secondary phase substitution of some of the Nd2Fe14B grains, while
also considering the dependence of the coercivity on the saturation
magnetization of the grain boundary phase and its thickness. Concern-
ing the thickness, they found that for a non-magnetic grain boundary
phase, i.e. with 𝜇0Ms = 0 T, the coercivity is fairly independent of the
thickness, while the remanent magnetization decreases by ≈0.25 T as
the thickness increases from 4 nm to 14 nm. Conversely, when the grain
boundary phase is magnetic, i.e. having almost the same value of Ms as
the Nd2Fe14B grains, the coercivity decreases by ≈1.2 T as the thickness
increases from 4 nm to 14 nm, while the remanent magnetization
remains almost constant. Again, these results are in the same range as
the reduction in Hc and (BH)max predicted by our simulations as shown
in Figs. 8 and 9.

Kim, et al. [31] focus on the effect of misalignment of the easy axis
between different grains, finding that the coercivity decreases by ≈34%
when the easy axes go from being perfectly aligned to each other to
completely randomized, which is consistent with the ≈45% reduction
predicted by our model and shown in Fig. 6.

Fischbacher et al. [32] analyzed the impact of the aspect ratio of
the grains, the misorientation of the easy axes, thermal fluctuations
and Dysprosium content in the grain boundary phase and its diffusion
within the grains. Consistently with our results, they found that the
misorientation of the easy axes and the magnetic properties of the
grain boundary phase are then factors that affect the coercivity more
significantly.

Our results are qualitatively in agreement with the aforementioned
publications. However, a direct quantitative comparison between our
investigations and previous works is not feasible, since there are too
many independent input parameters affecting the results, e.g. aspect
ratio of the grains, number of grains per unit volume, etc. Regarding
the quantitative comparison of the coercivity computed by our model
with the previously published results, the predictions of our study are
in the same range as other studies, i.e. ≈3–5.5 T.
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6. Conclusions

The theoretical limit to the coercive force of magnets is known
as the nucleation field and can be obtained from simple analytical
arguments for single crystal magnets. However, the values of coer-
civity actually observed in NdFeB magnets are much lower than this
theoretical limit. This inconsistency is referred to as Brown’s paradox.

In reality, permanent magnets are not composed of a single crystal:
on the contrary, the microstructure is composed of several crystal grains
separated by a thin region occupied by soft-magnetic material. The
crystallographic orientation does not have a perfect match between the
different grains. Finally, the assumption of uniform magnetization does
not remain valid when considering all but extremely small particles.

For all these reasons, it is not to be expected that the value of
coercivity is aligned with the theoretical limit given by the nucleation
field. In this work we performed a methodical analysis of the influence
of all these different factors on the value coercivity and maximum
energy product. Our investigation, based on variations of the exchange
constant, easy axis orientation, grain boundary width and intergrain
material properties, revealed that, while all of these can contribute
to a reduction of coercivity, the easy axis orientation has the largest
influence. Regarding the maximum energy product, the width of the
grain boundary layer, as well as the easy axis orientation were seen
to have the largest influence, with the exchange constant only very
weakly influencing the maximum energy product. Our analysis thus
methodically clarifies Brown’s paradox.
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